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Abstract

Minimum cost tolerance allocation is considered for recti-linear systems, in which the dimensions
are recti-linear, such as VLSI circuits and peg-hole assemblies. Tolerance synthesis is achieved by non-
linear optimization in which the objective is cost minimization and the constraints are design functions,
both of which are non-linear. Globally optimal solution for tolerances is obtained by a key development: a
proof that those non-linear functions are convex. This enables the utilization of known algorithms for
convex programming,

The non-linear constraints are carefully derived through the point of view of tolerance stack-up
analysis. The derivation yields a technique that unifies the deterministic approach and the probabilistic
approaches by considering asymmetric probability density functions. A model for representing the

geometric uncertainty of a dimension is also proposed.



1. INTRODUCTION

Tolerance is the total amount by which a specific dimension in an engineering drawing is permitted
to vary [1]. The specification of a tolerance involves opposing considerations in cost and in performance
(functionality and interchangeability): the more tolerance, the less cost and performance and vice versa. The

resolution of this conflict in tolerancing for recti-linear systems is considered in this paper.

As a global criterion for resolving the conflict, cost is minimized. Minimum cost tolerance
allocation, however, is constrained by design functions for performance. A design function specifies the
scope of permissible variations in the aggregation of component tolerances, or what is commonly referred
to as "stack-up”. Consider Figure 1. The clearance Y between the two components is represented by the
equation Y=X,-X,, where the variables X, and X, represent the dimensions of the hole and the shaft,
respectively. Suppose the variation of the clearance is to be less than or equal to 0.05 for successful

assembly. That is, Ty < 0.05, where Ty is the tolerance for the aggregate Y. Under this constraint,

minimum cost tolerance allocation can be formulated as follows:

Min C(T;, Ty)

subject to
Ty =1£(T, Ty) < 0.05

where C(*) is the cost function, T, and T, are, respectively, tolerances for X, and X,, and Ty is a function

of T; and T,. For situations where many design functions are involved, minimum cost tolerance allocation

generalizes to:

Min C(Ty, Ty, T,)

subject to 0]

u .
Ty, = (T}, Ty, =+, T) € Ty, for i=1,....m
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Figure 1. Clearance between Mating Parts
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Figure 2. An Example of a Recti-Linear System



where C() : cost function in terms of component tolerances,

T; : tolerance of the j-th component dimension Xj,

n : total number of component tolerances to be decided,
Ty. @ thei-th assembly tolerance,

£() : design function relating TYi T, -, T,,
TYi . upper limit of TYi for desired performance in an assembly,

X. : the j-th component dimension,

Y. : thei-th assembly dimension, and

m : number of assembly tolerances (stack-up tolerances) to be considered.

A recti-linear system is one in which an assembly dimension Y; is defined by a linear function of

component dimensions X;,....X:

Y. = Z aij X. for i=l,...,m (2)

where a; is an integer. Recti-linear systems are found not only with mechanical applications, such as peg-
hole assemblies illustrated by Figure 1, but also in the design of VLSI (Very Large Scale Integrated)
circuits. A mask used in the fabrication of VLSI circuits is composed of a collection of rectangles. Each
rectangle is either a portion of a diffused region, a polysilicon line, an ion implantation region, or a "via"
contact, as illustrated in Figure 2-(a). These rectangles are laid out according to certain design rules, which
specify allowances for certain widths, clearances, extensions, or overlaps. These inter-component relations
such as widths, clearances, etc., can be thought of as assembly dimensions Y;. Consider Figure 2-(b) in
which a polysilicon gate crosses a diffused region, thereby forming a transistor. In order to make certain
that the diffused region does not short-circuit the drain-to-source path of the transistor, it is necessary for the
polysilicon gate to extend a distance Y of at least 2A beyond the nominal boundary of the diffused area,
where A denotes a unit length in process resolution [2,10,13]. This distance Y can be represented by the

difference of the two values X, and X,, i.e.,, Y = X;- X,. In general, by associating all the geometric



dimensions X; in Figure 2-(b), design rules can be described as linear functions of the component

dimensions X;.

Because of the "randomness" of the fabrication process, resulting dimensions follow a distribution.
In this paper, asymmetric distribution for dimension X; is considered. The consideration of asymmetric
distribution is motivated by a practice called "maximum material condition" (MMC) [1] (or, LMC for "least
material condition" as the case may be). The practice, in effect, encourages the least amount of
manufacturing time and produces skewed distributions. MMC tells the machining process to remove as
little material as possible to meet the specification, hence leaving the "maximum material”. (Alternatively,
LMC tells the vapor deposition process to deposit as little material as possible so as to create the "least
material condition.") Either way the resulting dimension is far from being distributed normally as

illustrated in Figure 3.

_” 11.1}/: !" !”1',/1 _r !J'Ti“ rj !jn'j/z
(a) Least Material Condition for Shaft (b) Maximum Material Condition for Shaft
(Maximum Material Condition for Hole) (Least Material Condition for Hole)

Figure 3. Asymmetric Distribution due to MMC or LMC

In solving formulation (1), the tolerances T; in the objective function are computed, hence
synthesized. But they must obey the constraint which specifies the functional relation £(Ty, Tp, o, Tp)

between assembly tolerance TYi and component tolerances T,, Ty, -, T;. The study of the aggregate
behavior of given individual tolerance Ty, Ty, -, T, is referred to as tolerance analysis or, more

commonly, as stack-up analysis. Hence, synthesis is performed through analysis. Tolerance analysis is



typically conducted in one of two ways: deterministic or probabilistic. Neither approach is considered as
appropriate for dealing with asymmetric tolerances. The deterministic approach (worst-case analysis)

evaluates an assembly tolerance to a value larger than necessary. In the work by Balling, et al. * and

Michael and Siddall 14, the i-th assembly tolerance TYi is represented by

n
Ty, = j§1 lag| T, for i=1,...,m. )

While (3) is very simple to compute, the resulting assembly tolerance is often pessimistic. For
example, five components each with 0.001 inch tolerance will stack up to 0.005 inches assembly tolerance
according to (3). If the sum exceeds the specified upper bound for assembly tolerance (of, say, 0.0017
inches), what typically happens next is that the component tolerances T; are reduced. To continue the
example, suppose the component tolerances are reduced uniformly from 0.001 inch to 0.0003 inches by the
designer. As common sense dictates - higher cost for lower tolerance - worst case analysis incurs a
component cost higher than otherwise possible. With the probabilistic approach, partial satisfaction of the

design function, e.g., 99% yield, is possible.

The probabilistic approach is well-defined under the assumption of normality for the random variable
X; by the following property: when the constituting dimensions follow the normal distributions, the linear
sum for an assembly dimension also follows a normal distribution . However, distributions are assumed to
be asymmetric in this paper. While an asymmetric p.d.f. (probability density function) may be modeled by
the beta distribution,*3 there is no general rule for representing the distribution of the linear sum for an
assembly dimension Y. The challenge of the optimization problem formulated as (1) may be now
summarized. Because of the problem domain, the assembly dimension Y; in a rect-linear system is a linear
function of the component dimensions as described by (2). But because of process considerations,
asymmetric distributions for component dimensions are assumed as shown in Figure 3. However, there is

no known technique for computing the linear sum of asymmetric distributions.



To overcome the difficulty, a new model for a dimension is proposed. The basic idea is to
decompose the manufacturing uncertainty into two parts: uncertainty due to mean shift and uncertainty due
to other noises. Then, tolerance is represented by the sum of these two parts. The concept of
decomposition has been used in market forecasting [16] to explain the variation of market demand
influenced by predictable factors such as seasonal effects and less predictable factors due to the introduction
of competitions or the discovery of new materials and processes. The first application of decomposition to
tolerancing was due to Greenwood and Chase [8]. This paper, in addition to providing statistical
justification, proves f,(T,, T, -+, T ) to be a convex function in terms of the component tolerances.
Because of this proof of convexity, the tolerance synthesis problem of formulation (1) becomes a convex
programming (CP) problem. This observation leads to a pleasant result: that the globally minimum cost
tolerances for a recti-linear system can always be obtained. There exist several algorithms to guarantee an
optimum for a CP problem, such as the homotopy procedure of Eaves and Saigal for finding a fixed point

[20] and the Lagrangean method [23]. The cost function adopts existing models [21,22].

The paper is organized as follows. Section 2 presents a new approach and its justification. Section

3 investigates the convexity of f;(Ty, Ty, *** , Tp) for recti-linear systems. The result of convexity is then

applied to the solution procedure of problem (1) and the whole procedure is illustrated with an example.



2. HYBRID TOLERANCE ANALYSIS

In the probabilistic approach, a random variable and its confidence interval are associated with a

dimension and its tolerance. The confidence interval (tolerance Tj) for the j-th dimension Xj is determined

by two attributes; the confidence coefficient kj and the standard deviation o, such that TJ- = kj o for

j=1,...,n. Then,

for j=1,...,n @)

Q
I

Since the variance of the linear sum Y; of (2) is the sum of the squares of the variances of the constituting

n
variables, i.e., (<5Yi)2 =y (aij)z(cj)z, the i-th assembly tolerance can be represented by
=1

n .
=ko. A ’ 2012 .
TYi“ kYi j=1(aij) (kj) for i=1,...,m ")

where kYi is a confidence coefficient for the i-th assembly dimension Y.. Since tolerance is the amount by

which a dimension is permitted to vary, as in 1.000 + 0.002, it is an unsigned magnitude. The square root

in equation (5) is always positive.

To illustrate the approach, the example from Figure 1 is again considered. Suppose the tolerances
for X, and X, are 0.001 with confidence coefficients k,=k,=6 and they follow (for the time being) the
normal distribution. The worst-case tolerance for Y by the deterministic approach is 0.002. Assume that

in the probabilistic approach a 1% defect is allowed in the linear sum. Then 5.15 Oy = 0.002, since Pr(Z <
5.15 0.01

T) =1- = where Z denotes a random variable following the standard normal distribution. This leads

If equal distribution of this linear sum tolerance into components is assumed, then o, =

to GY = 5.15 .

0, = 0.000275 since (ch)2 = (0'1)2+ (02)2. As a result, the tolerances for X, and X, can be increased by

65% from 0.001 to 0.001647 (= 6 x 0.000275) by allowing a 1% defect in the linear sum (i.e., stack-up).



However, the above procedure can not be applied since the distribution of the dimension X;, hence that of
the linear sum Y;, are not symmetric. To resolve the difficulty from asymmetry, a hybrid approach, which

combines the deterministic and probabilistic approaches, is proposed.

The concept of a hybrid approach is based on the decomposition of a tolerance into a known quantity
(deterministic) and other uncertain quantities (probabilistic). The decomposition of a tolerance is explained

by the following additive model for a dimension:

X;=C;+M;+E for j =1,...,n. ©)

C ; is a constant representing the center of the j-th tolerance interval. Mj and Ej are, respectively,
independent random variables for representing the mean shift from CJ- and the remaining error term. To
capture the general asymmetric case, the distribution form of Mj is assumed to be unknown. However, the
error term E.j is assumed to follow the normal distribution around the shifted mean Cj + MJ- (ie., E(Ej)=0)
based on the central limit theorem since it is due to many independent sources. The relationship among Cj,
M;, and E; s illustrated in Figure 4. If M;=M, the p.d.. of E; is symmetric around C;+M, but the p.d.f.

for XJ- could be asymmetric because of the unknown distribution of Mj.

>
(T /2) M l ! X;

Cj'

Figure 4. Additive Model for Dimension X;



3.1 Representation of the First and Second Moments of a Dimension

To compensate for the lack of information about Mj, its first and second moments and those of Ej are

determined in terms of tolerance Tj. Suppose the mean of Mj is rewritten as a convex combination of the

two limits of the tolerance interval:

Tj Tj
E(Mj) =3p- 7(1'91') = Tj (pj -0.5)

where P is a positive scalar such that 0 < P; < 1. The scalar P; reflects the skewness of the tolerance

interval:

if 0< p; < 0.5, the mean value of Xj is to the left of Cj,
if pj= 0.5, the mean value of Xj coincides with Cj, and

if 0.5 < P; <1, the mean value of Xj is to the right of CJ-.
Hence, the measure of skewness of E(Mj) can be obtained from the two variables Tj and Py

The variability of Mj and Ej also can be represented in terms of Tj and P; by taking the following two

steps: (i) represent the standard deviations of Mj and Ej in terms of ’I‘j and a new scalar w i and (ii) relate w;

to p;.

For the first step, denote the standard deviations of Mj and Ej by O'Mj and O'Ej, respectively, and define

the proportion of G,4. to 0. as the weighting factor w, i.e.,
M; ™ J

W= — or j=1,...,n M

—



Since ch and °Ej are usually very smallt, the standard deviation o;can be approximated by the sum of ch

and cEj”. That is,

o; ~ O'Mj + "Ej for j=1,...,n )

By combining (8) with equations (4) and (7), ch and °Ej can be represented in terms of Tj:

Tj

M =Y &
&)

T

O'E = (l-w) 1—(—

Now, the second step is to relate W to P} The relation is based on the observation that the

variability by random noise is proportional to the minimum distance to the tolerance limit. The essence of
this observation is illustrated in Figure 5: the further the shifted mean is from the center, the smaller the
variability becomes (in order to keep the manufacturing process in control). This observation can be

expressed as follows:

GEj =2 P; O if 0.0SijO.S
(10)
=Q2- 2p ) o; if 0.5<pjs1.0
Since cEj is approximated by (l-wj)cj in (9), equation (10) leads to the following relation:

These two steps combined are summarized in the following lemma.

t For instance, the tolerance for a hole or shaft of diameter 1.00 is recommended by ANSI to be 0.0025
(or 0.0006) in case of loose fit (or tight ﬁt)

tt Sinceo. 2=0M 2+c o= \/ (O'M +cE ) - 2cM O’E . When ch«l.O and oEj«l.O, chcEj becomes

almost zero and hence g ~ c51\,11’"‘3'[-:}

10



(a) when p= 0.6
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Figure 5. Variability due to Random Noise after Mean Shift



Lemma 1: In the additive model of (6), the first two moments of a dimension can be represented in terms

of four parameters Cj, Tj, Pp and kj as follows:

E(Xj) = Cj + E(Mj) = Cj + Tj (pj -0.5)

'Iji

5
T,

)
og; = (- |1-2pjl)kj

3.2 Representation of Assembly Tolerance

Based on Lemma 1, the tolerance of an assembly dimension TYi can be expressed in terms of O'MJ.

and O‘Ej. By combining equations (2) and (6), an assembly dimension has three parts: sum of constant

centers CSi, sum of mean shifts MSi, and sum of error terms ESi. That is,

Yi —Zal_) j+2 M+zal.l j
for i=1,...,m
= C§; + MSi + ES.

1

Since the first term CS,; is a constant, it does not influence the assembly tolerance TYi' Hence, the
assembly tolerance TYi can be determined by tolerances due to MS; and ES;. Denote those two tolerances

by TMSi and TF.Si' respectively. Then, the assembly tolerance TYi can be represented by

TYl = TMS[ + TES, for i=1,.. ..M (12)

Recall that the distribution of MSi is unknown hence the distribution of Yi is also unknown. The

derivation for TYi is as follows.

12



To compute TYi’ first consider TESi' Note that TESi is the tolerance for the linear sum of error
n

terms, i.e., 3, aijEj' Since each error term Ej follows the normal distribution, the tolerance of the linear
Fl

sum can be described by using (5)- That is, tf

Tpe. =k g 2(1 I1-2 1)2(13)2 fori=1 3
ES; = “ESi jz.l(aij) -i1- Pj kj ori=l,...m (13)

where kESi is a confidence coefficient for TESi' Note that (13) is probabilistic.

n
Next, consider TMSi' It is the tolerance for the linear sum of the mean shift Mj's. ie., Y, aiij.
Fl

Since the distribution of each component Mj is unknown, the tolerance of the linear sum is taken to be the

worst case. That is,

n T.
J .
Tys; = P 1a,u.| I -2pj| E; ij for i=1,...,m (14)
Fl

where ij is a confidence coefficient for the j-th tolerance due to Mj. Note that (14) is deterministic. By

substituting (13) and (14) into (12), an assembly tolerance is obtained.

Lemma 2: In the additive model of (6), the tolerance of the linear sum of dimensions can be computed by

S b l-2p, o S (&)’ 2y’ -
Ty, = }El a,l 11 - 2p; i(;ij+kEsi jgl(aij) (1-11-2p,)) (Ej-) for i=1,...,m (15)

n n T,
. )
tt ES; = jZ‘iaijEj. Hence, (cEsi)2= Ei(aij)z(osj)z' Since O, = - h - 2p; 1) i(-J' by Lemma 1, (GESi)Z

n T,
J . . .
= T (@ (1- 11-2p;1*(°)". This leads to (13) since Ty, is defined as kg, O

Fl kJ

13



In (15), the natural choice of ij is to make it equal to kj since both distributions of Mj and Xj are

unknown. In addition, kESi can be set to 6 such that a 99.73% confidence level is covered under the normal

distribution. Then, equation (15) is simplified to

5)2

n n 2 2 )
Ty,= Zla/l11-2p T,+6 —\/ @) (1-11- 2p;)) (kj for i=1,...,m (16)
Fl Fl

This hybrid approach unifies the existing approaches [4,5,6,9,11,12,14,15] to tolerance analysis.
That is, both the deterministic and the probabilistic approaches can be explained by equation (16): if p;= 0

orl(ie., wj=1) for j=1,...,n, the equation is the same as that for the worst-case analysis; if p;= 0.5 (ie., if

wj=0) for j=1,...,n, the equation is the same as that for the probabilistic analysis.

14



3. TOLERANCE SYNTHESIS

This section presents the solution to tolerance synthesis. Based on the derivations in the previous

section, formulation (1) for tolerance synthesis can be written as a non-linear programming (NLP) problem:

Min C(Tls T29 .“’Tﬂ)
subject to (17)

T
w la,| T, +6 \/z (1-wj)2 (aij)2 (jkj%)z sr}’i for i=1,....m

In this formulation, the decision variables are Tj's for 1 <j<n. The constraint is derived through tolerance

analysis. The scalars 3 and lcj are given, and w; is computed from the given P using equation (11).

Now, consider the solution scheme for this NLP problem. To determine the existence of an
algorithm that guarantees global convergence to the optimum, the objective function C(T;, Ty, -+, T,) and
the constraint functions must be examined. If these functions turn out to be convex, the corresponding
NLP then becomes a convex programming (CP) problem. Then, existing algorithms for CP can be used to
solve problem (17). Convexity of the cost function C(Ty, T,, **-, T,)) is generally understood in
tolerancing [4,17,21,22]; the more tolerance the less cost. Hence, this section is devoted to showing the
convexity of the constraint.

The first part of the constraint, i.e., Z wJ la, I T}, is a linear function in terms of T/'s. Soitisa

J_

convex function. Since the linear sum of two convex functions is also convex, the remaining work is to

n T
show the convexity of the second part, i.e., 3 (l-wj)2 (aij)2 (I-K-J-)2 . For its proof, the following
5 ]

theorem is used.

15



Theorem (Cauchy-Schwartz Inequality): Letx and y be two column vectors in R™. Then,

Ix'yl < lIxIl lyll

where Il denotes the Euclidean norm.

(Proof) The proof can be found in page 130 of [19].

nooo2 2002
Y (1-w)“ (@) () isaconvex function in terms of Ts.
= J i) kj J

n I,
(Proof) For notational convenience, denote the function 3y (l-wj)2 (aij)2 (l-(-J-)2 by G(T) and
=1 ]

2a.2
(1-wj) (%L) by hij‘ Notice that hij 2 0. Then,
j

4 2
Fl
The function G(T) is convex if
a G(T)) + (1-a) G(Ty) 2 G(aT, +(1-a)T,) (18)

for two arbitrarily chosen tolerance vectors T=(Ty1, Taqs oo s Tnl)‘, T,=(T15, Tygs - Tnz)t and

a scalar a such that 0<a<1. To see if inequality (18) holds, the difference of the squares of both
sides, i.e., (4G(T,) + (1-0)G(T,))% - G(aT, + (1-0)T,)>, is checked. (Squaring both sides of

inequality (18) is permissible since they are nonnegative. Refer to equation (5).) Invoking the

Cauchy-Schwartz inequality proves the convexity of G(T) as follows:

16



(AG(T,) + (1-0)G(T,) - G(aT, + (1-0)T,)?

n_ n n
20(1-01) {—\/zi(\/ h; le)z\/ Zl(\/ hy; Tj2)2 - g(\/qul)(\/h—ij_TjZ)}
F F F

2a(l-0) { IT{IITH 1 - 1T) Ty1} 20

*
Where Tl = ( hij Tll, V hi_] Tzl,.--, \l hi_] Tnl) fOl' 1=1,2. Q.E.D.

Since both the objective function and the constraints are convex, the tolerance synthesis problem of
(17) is a CP problem. This leads to a desirable result: that the minimum cost tolerances can be always

found by using the existing algorithms for a CP problem [23].

Example

Consider the assembly in Figure 6 in which three assembly dimensions Y, ~ Y are described as

linear functions of component dimensions X; ~ X;. (In this example, the component dimensions are
specified with respect to datums A and B, which are the surfaces labelled in the drawing.) The three

assembly dimensions are for clearances between the two parts. To synthesize the tolerances of component

dimensions, three kinds of input are needed: (i) bounds on the assembly dimensions TYi’ (ii) probabilistic

data on component dimension Xj, and (iii) cost function C(T;,T,, ... , Tp).

The maximum allowable tolerances of the assembly dimensions specify the performance of the

system. In this example, the three assembly tolerances have the following upper bounds:

Ty, 0005, Ty, <0003, and Ty, $0005.

As each dimension is represented by the additive model of (6), the center Cj of tolerance limit and

scalar p; for mean shift are read in for each dimension Xj. Table 1 gives the data. In it, the scalar w f is

17



computed from P; using (11). Although Cj does not influence the determination of Tj, it is used to compute

J

T.
the resultant tolerance limits [Cj wx Cj + -Zl] The coefficient P; is used not only for the determination of

Tj, but also for the computation of the mean value of Xj since E(Xj)=Cj+Tj(pj-0.5) according to Lemma 1.

-
-l o -

|

P PR

Y1=X2'X1'X7+X6
Y2=X6'X5'X3+X2
Y3=X4'X3'X5

Figure 6. Assembly of Two Mating Parts

Dimension Index 1 2 3 4 5 6 7
G, 10 20 3.0 40 0998 20 2998
P, 06 01 09 04 06 04 05
¥i 02 08 08 02 02 02 00

Table 1. Data for the Component Dimensions

18



Cost functions typically fall into two groups: inverse-square model [21] and exponential model [22].

Both models describe a convex relationship between cost and tolerance:

Q.
C(T) = Lo+ f (inverse-square model)
j E j
T.
C(T) = o, exp(- BL) + f (exponential model)

J

where C(Tj) denotes the manufacturing cost for tolerance Tj, while o, and Bj are the coefficients for variable

cost, and fJ indicates the fixed cost. For this example, the inverse-square model is adopted and the

corresponding coefficients are given in Table 2:

Dimension Index 1 2 3 4 5 6 7
o 10 10 15 15 14 14 06
f 01 01 01 01 01 01 01

Table 2. Coefficients of Tolerance-Cost Model

Then, the total manufacturing cost is:

n n (lj 6 n
C(T}. Ty T) = J_>=:IC(TJ~) = El (Zx107)+ jg‘.lf,-
; -

Tolerance synthesis by cost minimization (17) instantiates to:

19



aj P 7
(=5 x107) + ij
1T Fl

=
=
‘M

J

subject to

Wl T1+W2 T2+W6T6+W7T7+

\ 1w pPT 2 + (1w’ T, + (1w T + (1w T, <0.005

W2T2+W3T3+W5T5+W6T6+

V 1w T2 + (1w T + (1-wg)’Ts? + (1-wg’Tg> < 0.003

To solve this CP problem, the software package MPS-FIXPT, which implements the homotopy procedure
of Eaves and Saigal for finding a fixed point [20], is used. It runs on the IBM AT personal computer. The
result of executing the algorithm is given in Table 3. And, this result is compared in Table 4 with results
from two other methods, worst-case [3,14] and probabilistic [4,11,15], which were also implemented by
adjusting w;. The hybrid approach generates tolerances looser than the worst-case analysis but tighter than
the probabilistic approach, for a total cost 6.849. For instance, the tolerance T, is 25.095 x 104 units
when the hybrid approach is used. If the worst-case analysis (or the probabilistic approach) is used for
tolerance analysis, then T; decreases (or increases) by 35.1% (by 19.9%). This decrease (or increase) in turn
incurs an increase (or decrease) in manufacturing cost. The difference in cost among the approaches is due
to the difference in the available information about the distribution of the dimensions: if the distribution is
fully known, then the probabilistic approach should be used to reduce the manufacturing cost; if the
distribution is totally unknown as in the worst-case analysis, then a higher manufacturing cost is incurred

to insure against uncertainty. The hybrid approach deals with partial information.

20



dimension index Tj(*) Mean E(Xj) ) Tolerance Limits *)

j Lower Upper
1 29.4381 10002.9400 9985.2810 10014.7200
2 8.4896 19996.6000  19995.7600 20004.2400
3 9.7463 30003.9000  29995.1300 30004.8700
4 39.1872 39996.0800  39980.4100 40019.5900
5 9.8801 9980.9880 9975.0600 9984.9400
6 9.8617 19999.0100  19995.0700 20004.9300
7 25.0950 29980.0000  29967.4500 29992.5500

Note:  (*) unit: 10'4
Table 3. Result of the Example

T, Worst-Case ) Probabilistic ** Hybrid™*"

T, 19.299 34.183 29.438
(65.6%) (116.1%) (100.0%)

T, 6.807 13.975 8.490
(80.2%) (164.6%) (100.0%)

Ty 7.878 15.521 9.746
(80.8%) (159.3%) (100.0%)

T, 34.423 45.015 39.187
(87.8%) (114.9%) (100.0%)

Ts 7.699 15.255 9.880
(77.9%) (154.4%) (100.0%)

T 7.615 15.202 9.862
(77.2%) (154.1%) (100.0%)

T, 16.278 30.085 25.095
(64.9%) (119.9%) (100.0%)

Total Cost 10.672 3.268 6.849
(155.8%) (47.7%) (100.0%)

Note: - The values in parenthesis are normalized ones based on the values of the hybrid approach

- (* whenall wJ=1.O, unit ; 10'4
- () when all w:=0.0, unit : 10

J

- (%% unit: 10%

Table 4. Comparison with Other Methods
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4. SUMMARY AND DISCUSSION

The contribution of this paper is two-fold. In theory, the hybrid technique in section 2 unifies the
deterministic and the probabilistic approaches to tolerance analysis. This is made possible by the additive
model (6) that handles both the symmetric and the asymmetric distributions, the properties of which have
been rigorously derived. In practice, globally optimum tolerances for recti-linear systems that are prevalent
in simple assembly tasks and in VLSI design are synthesized by cost minimization. The globally optimum

solution is enabled by the formulation of an NLP (17) which is proven to be convex in section 3.

In the early days of computer aided design, development of finite element analysis and computer
graphics proceeded in parallel. It was not until both areas were sufficiently mature did automatic meshing
emerge. Here, a technique for synthesizing tolerances in recti-linear electro-mechanical systems is reported.
It requires "non-geometric" data such as tolerance-cost models and probabilistic parameters. If tolerance
synthesis turns out to be useful, this and other recent efforts [11,12] merely underscore the need to
incorporate manufacturing related data in product models. Perhaps more fundamental is the issue of
representing geometric uncertainties. While developments in computer hardware and application software
have advanced, the representation of a non-ideal world, in which noise abounds and in particular dimensions
are not nominal, has not been fully embraced by CAD/CAM researchers. Work in geometric modeling
such as [7,18] and probabilistic models in section 3.1 and 3.2 are but the first steps from different
directions. It is hoped that this work will generate a critical mass of researchers not only in the modeling
but also in the computation of geometric uncertainties. In turn, such an effort will enable designers to fold

some of the "downstream" considerations such as manufacturability and cost into the design stage.
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