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Abstract 
 

This work is an effort to understand the mechanical properties of the catalytically 

cross-linked polymer system, created by the ring opening metathesis polymerization 

(ROMP) of dicyclopentadiene (DCPD). This system is used as a healing agent in a novel 

self-healing material that promises much improvement in reliability and performance of 

polymer composites.  

We used multi-scale molecular simulation methods, including coarse-grained and 

fully atomistic molecular dynamics (MD) simulations to generate realistic structures of 

DCPD networks, characterized their structures, and determined their mechanical 

properties. Using density functional theory (DFT) calculations, complemented by 

structural information derived from molecular dynamics simulations we reconstruct 

experimentally observed Raman spectra and differential scanning calorimetry (DSC) 

data, allowing us to identify details about the ROMP reaction mechanisms and the 

temporal evolution of chemical species during this process. These insights along with 

information from experimental studies helped formulate the reactive molecular 

simulation algorithm we developed for this investigation. 

We performed coarse-grained simulations of networks generated via the ROMP 

reaction process and compared them to those generated via a process in which bonds 

between network nodes are formed randomly (RANDOM reaction process). This 
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comparison led us to the fundamental realization that the polymerization process has a 

unique influence on the network topology, as understood by the distribution of bonds 

between structural units, and accordingly, results in a unique mechanical response of the 

structure. The insights generated from our coarse grained models particularly the 

maximum extent of reaction achieved were then used to parameterize the reaction process 

for the atomistic simulations.  

To generate more realistic cross-linked networks we carried out fully atomistic 

simulations of DCPD using a novel algorithm for recreating ROMP reactions between 

DCPD molecules.  We found that the mechanical properties derived from these atomistic 

networks are in excellent agreement with those obtained from our coarse-grained 

simulations in which interactions between nodes are subject to angular constraints.  This 

comparison provided self-consistent validation of our molecular simulation results, and 

helped to identify the level of detail necessary for the coarse-grained interaction model. 

Based on the understanding we gained from our simulation investigation, we 

propose a classification of networks into three distinct stages of cure: fluid-like, rubber-

like or glass-like.  In each stage the polymer system exhibits a different predominant 

mechanical response to deformation at low degrees of reaction the system tends to flow 

and fluid mechanics becomes relevant, at intermediate stages the mechanical response is 

entropic or is solely due to structural rearrangements with no change in internal energy 

and at high degree of reaction the mechanical behavior is enthalpic or due to change in 

internal energy..  



xxx 

Lastly we developed graph theory-based network characterization approaches to 

correlate observed mechanical properties with network topologies. We calculate four 

different graph theory-based quantities: 1) eigenvector centrality of nodes, which is a 

measure of the importance of a particular node within a network, 2) graph fractal 

dimension, which is a dimension that depends solely on the connectivity of the graph, 3) 

Fiedler or Laplacian partitioning of networks to calculate the fraction of cut bonds in 

order to split the graph into two disconnected sub-graphs, and 4) The fraction of cross-

linkers in a network which is the sum Q3 and Q4. species in the network. Of these 

quantities we find that the Fiedler partition method is the best characteristic for the 

prediction of Young’s Modulus. 

These computational methodologies and characterization tools can also be applied 

to study other networked systems, such as epoxies that lie between the boundaries of 

glass and polymer science and therefore are of great fundamental and practical interest.  
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Chapter 1 
Introduction 

1.1 Motivation 

Self-healing materials are a new frontier in the polymer materials, capable of 

healing damage from environmental conditions or applied loads. These therefore have 

tremendous potential to enhance the performance of polymer matrix composites in 

applications that are prone to subcritical fatigue crack growth. For example, highly cross-

linked polymers exhibit a tendency to undergo brittle fracture, unlike many metals that 

generally exhibit significant plasticity before complete failure. This catastrophic failure 

behavior has been a serious impediment in the wider use of polymer composites in 

critical load bearing structures such as a bridge spans, pressure vessels and aircraft wings 

etc.  Self-healing ameliorates the catastrophic failure modes of the polymer matrices by 

healing micro-cracks as they appear in the system, increasing lifespan and decreasing the 

need for non-destructive testing such as ultrasonic testing (UT) and servicing 

requirements as a result.  

The purpose of our investigations into self-healing behaviors is to understand at a 

molecular level the kinetics with which structural integrity is restored in a new class of 

self-healing materials, first synthesized by White et al. 1. A schematic of this system is 

shown in Figure 1.1. The epoxy polymer matrix contains healing agent filled 

microcapsules with specially engineered shells that break when a crack approaches them. 

The microcapsules themselves act as stress concentrators nudging emerging cracks in the 
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matrix towards themselves. After the shell of the capsule is breached the healing agent 

flows out into the crack due to capillary effects. The epoxy matrix also contains pre-

embedded catalyst particles. These catalyst particles are exposed at the crack surfaces and 

promote the healing process after coming in contact with the healing agent. The healing 

agent is a monomer that upon polymerization and cross-linking bonds to the crack 

surfaces to restore mechanical cohesion in the matrix when the material is in an 

unstressed state during the load cycle.  

In Figure 1.2 the load displacement curves of a virgin and a self-head specimen 

tested by White et al. 1 are shown, revealing almost total recovery of mechanical integrity 

due to the action of the self-healing system. Figure 1.3 shows the change in healing 

efficiency with time, defined as.  

! 

" =
KIc

healed

KIc

virgin
, (1.1)  

 
where 

! 

K
Ic

 is the mode-I fracture toughness, generally measured by pulling a specimen 

perpendicular to a notch of standard depth. 

! 

K
Ic

 is determined by measuring the failure 

stress at which crack propagation takes place by using the formula below  

! 

KIc =" f #a  (1.2)  
 

where 

! 

" f  is the failure stress and 

! 

a  is the depth of the notch. 

The self-healing system developed by White et al. 1 involves a healing agent, initially in 

monomer form, and a catalyst.  The healing agent they chose is dicycopentadiene 

(DCPD) and the catalyst is a first generation Grubb’s catalyst that mediates the ring 

opening metathesis polymerization (ROMP) of DCPD under ambient conditions.  The 

system was chosen for its chemical stability and the high modulus of the fully cured 
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resulting polymer. In Section 1.2 we explore the chemistry of endo and exo isomers of 

DCPD that show differing reactivities for ROMP reaction. We can use these differences 

in reactivity to create mixtures of isomeric DCPD molecules, that along with carefully 

chosen catalyst concentrations and careful design of catalyst sensitivity to reaction sites 

in differing molecules, can be used in order to create self healing reaction mixtures which 

can cure in as little as a few minutes to a few hours 2 with final mechanical properties 

tailored to meet specific requirements from rubbery solids that have a low crosslink 

density achieved by inhibiting the cross-linking reaction to tough epoxy like matrices by 

ensuring that the cross-linking reaction occurs with high probability  

1.2 Ring opening metathesis reaction (ROMP) 

Ring opening metathesis polymerization or ROMP as it is commonly known is a 

new olefin polymerization technique that was first discovered in 1971 by Hérisson and 

Chauvin 3 during their work on Tungsten compounds and later by Schrock et. al in 1980 4 

while investigating Tungsten and Molybdenum based compounds. Their seminal 

contributions were followed by Grubbs and Tumas in 1989 5, who discovered Ruthenium 

based catalysts that were more selective than the previous generation catalysts in olefin 

metathesis. For their contributions to metathesis chemistry Yves Chauvin, Robert H. 

Grubbs and Richard R. Schrock were awarded the Nobel Prize for Chemistry in 2005. 

Since those early days the field of olefin metathesis has exploded with many new 

catalysts mostly based on heavy transition metals such as Nickel, Tungsten, Ruthenium 

and Molybdenum. Each of these catalysts has either different reactivity or selectivity to 

different substrates or show unique behavior after exposure to specific solvents 6. 
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Typically Grubb’s catalysts appear in two varieties commonly termed as first 

generation and second generation catalysts, Figure 1.4 shows a typical first generation 

Ruthenium based Grubbs catalyst, which is more stable to moisture and oxygen than the 

second generation catalyst which is more reactive. Typically a ROMP reaction is initiated 

by the Metal carbene M=C species attacking a strained C=C double bond in a carbon 

ring forming a highly unstable metallo-cyclo-butane intermediate. The unstable 

intermediate then exchanges its double bonds and falls open due to ring strain giving the 

beginnings of a linear chain. The polymer now also contains a linear chain double bonded 

to the catalytic metal with a terminal double bond as well. The new M=C bond can now 

further react with the double bonds on the next monomer, thus propagating the reaction, 

giving rise to so-called living tip polymerization as shown in Figure 1.5. 

One of the advantages of ROMP olefin metathesis is its specificity and stability in 

moist or oxygen rich conditions that other free radical type living tip reactions cannot 

function in. ROMP reactions also create monodisperse polymer chains in linear polymers 

since each living tip generally grows at the same rate. ROMP catalysts can also be 

functionalized to allow only stereo specific products such as cis only or trans only 

configurations to form. Second generation Grubbs catalysts however are not stereo 

specific and react without prejudice to form both cis and trans compounds, whereas first 

generation catalysts show slight stereo selectivity with the trans conformer product being 

formed 87% of the time in linear polymerizations of DCPD7. Due to their environmental 

stability second generation Grubb’s catalysts have found industrial use in synthesizing 

mono-disperse high-strength linear polymers with inexpensive reactants or as a method to 

make specialty compounds with tailored properties8. Organic chemists consider 
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metathesis reactions an important accoutrement in their arsenal of available molecular 

reaction tools to achieve synthesis goals. 

1.3  ROMP of DCPD 

We focus on a specific application of ROMP of dicyclopentadiene (DCPD) in the 

synthesis of cross-linked networks for use in self-healing materials.  The substrate DCPD 

occurs in 2 major conformations endo and exo DCPD as shown in Figure 1.6 The 

molecule consists of a 5 membered ring called the cyclo-pentene ring and a 6 member 

bicyclic ring with a buckled carbon across the middle, generally described as the 

norborene ring in literature. Both rings contain strained double bonds and are candidate 

sites for ROMP reaction. Since the driving force for ROMP is due to the ring strain it is 

thought that the norborene ring in both endo and exo DCPD is more reactive than the 

cyclo-pentene double.  

It is however known from kinetic studies that the exo-DCPD has higher reactivity 

than the endo-DCPD conformer during ROMP. This reactivity difference is thought to be 

due to difficulties in steric access to the reaction sites in the endo DCPD as compared to 

the exo DCPD conformer 9,10. But there is a lack of experimental techniques capable of 

probing these differences. We will clarify these questions in Chapter 2 using DFT 

simulations. 

Recent experimental work by Schaubroeck et al.11 explores the extent of reaction at 

each of the two reaction sites i.e. the cyclo-pentene and norborene double bond on a 

single DCPD molecule in exo-DCPD. They show that the norborene preferentially reacts 

and then masks the signal of the cyclo-pentene ROMP reaction due to the release of 

cyclo-pentene ring strain. Intuition from these experimental results along with DFT 
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simulation data in Chapter 2 will shape the simulation effort in subsequent chapters. The 

DFT simulation elucidates the reaction process and thereby the mechanical response 

evolution of the network with change in its degree of reaction. On the other hand a well 

known non-contact technique that can probe modulus behavior during the curing process 

is Brillion spectroscopy, which uses inelastic light scattering phenomena on acoustic 

phonons to probe the shear and loss modulus at high frequencies. The high frequency 

modulus behavior can then be extrapolated to low frequency for comparison with 

experiments and simulations. Such experiments have been performed for end-linked 

polydimethylsiloxane (PDMS) measuring a longitudinal loss modulus M 12. The 

longitudinal modulus M is a combination of the bulk and shear modulus given below 

M = K+4G/3 (1.3) 
 

where K is the bulk modulus and G is the shear modulus. These measurements show a 

linear dependence of M on the inverse of chain length as predicted by polymer theories 

discussed below. 

1.4 Physics of Cross-linked Networks: Are they Polymers or Glasses? 

There are fundamental questions that need clarification in the cross-linking 

reactions of DCPD with ROMP process. They involve a deeper investigation of how 

network formation affects mechanical properties. 

Simulations of cross-linked networks are a nascent and exciting field that holds 

vast promise for materials design and processing. Today organic chemistry with its 

myriad of processes and catalytic techniques have broken new ground in creating new 

organic polymer macromolecules such as high-density polyethylene (HDPE), poly 

ethylene terepthalate (PET) and many other industrially significant molecules. This large 
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palette of molecules exhibits widely differing properties and is subject to intense 

research. Fundamentally materials derive their mechanical response to deformation from 

2 different mechanisms. 1) The enthalpic effects due to changes in molecular structure 

mainly characterized by deformation in bonds, angles and dihedrals that result in a 

change in the internal energy of the molecule and 2) entropy effects due to reduction in 

the macromolecular conformational space available resulting from deformation.  

A large volume of theoretical and simulation efforts in the last fifty years focused 

on mechanical properties of rubbery networks fundamentally beginning with the 

assumption that the elastic properties of networks are a consequence of underlying 

molecular chains behaving as entropic springs 13 i.e. the mechanical properties solely 

arise from the fluctuation of chains that is expressed as a configuration entropy. These 

chain fluctuations are constrained after mechanical deformation leading to differences in 

entropy. At their very core such theories are based on the fact that polymer strands in 

their unstrained states exhibit a Gaussian distribution of the end-to-end vectors above the 

glass transition temperature given by  

! 

P(r,n) = 4"r2
2nb

2"
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# 

$ 
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' 
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where P(r,n) is the probability of finding the end-to-end distance of a chain of n segments 

equal to a distance r. Here b is the segment length, which can be thought of as a rigid 

bond connecting 2 backbone carbons. The entropy of the chain can then be represented as  

! 

S = k
B
ln" # k

B
ln(P(r,n)) . (1.5) 

 
The work done is equivalent to the change in the Helmholtz free energy, 

! 

fdr = d(U "TS). (1.6) 
 

Neglecting change in internal energy we therefore get  
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! 

f =
3kBT

nb
2
r   (1.7) 

 
From classical theories ensembles of such chains at constant volume can be 

shown to have an elastic modulus at constant volume given by  

! 

Y =
3"k

B
T

M
x

, (1.8) 

 
where ρ is the density of the polymer and Mx is the average molecular weight between 

cross-links.  It must be noted that such theoretical formulations are generally applicable 

when the network is characterized by a low concentration of cross-links or equivalently 

large chain lengths between cross-links.  

A large amount of literature in polymer science is devoted to the analysis of the 

entropic effects, starting with the seminal work of theoretical polymer physics by Wall 14 

and Flory 13 that laid down the statistical mechanics and thermodynamic foundations of 

understanding polymer behavior. These theories explain the origins of mechanical 

properties such as the shear and Young’s modulus, thermal properties such as heat 

capacity and conductivity, and other physical properties such as swelling behavior in the 

presence of solvents using statistical thermodynamic ideas.  

Two of the earliest theoretical explanations of network mechanical behavior are 

the affine model 13 as suggested by Flory and Wall and the phantom model 15 by James 

and Guth. Both these theories assume that elastically active strands pass freely through 

their neighbors as if they did not exist. These two theories differ in their assumptions of 

the nature of cross-linking sites. In the small deformation limit the affine model assumes 

that the cross linkers are positioned at fixed locations on the polymer backbone and 

predicts a shear modulus according to  
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! 

G
affine

="RT   (1.9) 
 

where 

! 

"  is the number of polymer chains per unit volume.  The phantom model on the 

other hand assumes that the crosslink’s are free to move along the network backbone and 

therefore predicts a shear modulus of  

! 

G
phantom = (" #µ)RT  (1.10) 

 
where the number of cross-links per unit volume 

! 

µ = 2" /# , where 

! 

"  is a constant called 

the network functionality. We note the quantity 

! 

"  increases linearly with the number of 

cross-links as each cross-link delineates the chains into 2 separate chains. The 

uncrossability of chains due to excluded volume effects of constituent atoms and 

entanglement effects is addressed by new theories such as the constrained junction 

model16 where physical covalent crosslink impede the motion of the cross links in the 

phantom model. The constrained junction model predicts a shear modulus that lies in 

between the predictions of the affine and phantom models and has been shown to better 

predict behavior of some real networks 17. Theories such as the reptation model 18 and the 

tube model 19 explain mechanical properties of non-cross-linked polymers that exceed a 

phenomenological entanglement length Ne by modeling polymers fluctuating in a 

constrained tube about their coarse grained backbones. The entanglement length Ne is 

hard to precisely measure in real linear polymers. The quantity can be estimated from the 

change in the self-diffusion coefficient D of the polymer as a function of chain length. 

For small chain length polymers follow a Rouse 20 like regime where D~N-1 and at long 

chain length enter a new regime where D~N-2. The crossover between these 2 regimes is 

expected at the entanglement length Ne. The above theories are thought to be valid for 
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cross-linked polymers such as rubbers that exhibit sparse population of physical cross-

links and behave like linear chains between them. 

In the special case where cross-links form a significant proportion of the bonds in 

a network system, such approximations of network behavior modeled after rubbery 

networks may no longer be valid. Thorpe 21 suggests that the elastic properties of random 

networks depend primarily on 

! 

r : the mean atomic coordination number. Thorpe’s 

simulation efforts led to the introduction of the concept of rigidity percolation for 

network glass systems such as GexAsySe1-x-y. Mixtures of Ge, As, Se afford a wide range 

of glass forming compositions due to the large variability of the values of x and y as a 

result of the polyvalence of these elements particularly their ability to form 

! 

"  and 

! 

"  

bonds. Accordingly, GexAsySe1-x-y glasses can be modeled as a continuous random 

network, where the number of bonds emanating from each node, i.e., the Ge, As, or Se 

atoms, can be two, three, or four depending on the covalent coordination of that node. 

These networks show abrupt monotonic increase in values of physical properties such as 

the bulk modulus after a mean coordination number of 

! 

r = 2.4 , which defines the so-

called rigidity percolation threshold.22  

Polymer macromolecules such as highly cross-linked polymers, therefore, may 

not entirely follow the entropy driven elastic response to deformation as suggested by the 

theories mentioned. A deformation in highly cross-linked network polymer implicitly has 

large energy barriers to network conformational changes and therefore has no easily 

accessible relaxation pathway to relieve the stress caused by a deformation. It therefore 

plausible that its response is enthalpic, namely an increase in internal energy due to 

deformation in bonds lengths, angles and dihedrals. This effect is rarely studied in the 
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literature due to difficulties in recreating network structure of highly cross-linked 

networks. Cross-linked covalent network polymers therefore could behave less like long 

chain polymers and more like network glasses. It is to be noted however that even linear 

polymers exhibit an enthalpic response to deformation at temperatures below 

! 

T
G

 since 

macroscopic chain conformation changes are energetically inaccessible and therefore 

only the enthalpic response is available for deformations. Polymer properties are heavily 

dependent on processing conditions that affect the properties such as the degree of 

crystallanity. Amorphous polymers such as PE can also be created via catalytic processes 

in forms such as high density polyethylene (HDPE), which has a high degree of  

crystallinity and consequently exhibits remarkable properties such as high strength and 

modulus that are an order of magnitude higher than polyethylene (PE).  

On the other hand, in glass theory the prevailing consensus suggests low or zero 

shear modulus below the percolation threshold defined by a critical coordination number. 

The shear modulus increases after the percolation threshold in a linearly and monotonic 

fashion. Figure 1.7 schematically explains the differences in opinion between the glassy 

theories and the polymer theories. 

Network or cross-linked polymers form a special class of polymeric materials that 

over the years have delivered improvements in properties such as impact resistance, 

hardness, elastic properties and durability as compared to linear polymers. The term 

network polymers encompasses a variety of molecules ranging from sparsely cross linked 

rubbers where the relatively short cross links connecting two backbone strands may occur 

on the polymer backbone carbon chain at a frequency of the order of 1 in 10000 atoms as 

in natural rubber, to highly cross-linked epoxy resins where cross linking may occur 
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every 5 or even fewer carbon atoms.  In the latter case differentiating the underlying 

network into backbones and cross links becomes irrelevant since the size of the 

backbones become comparable to the size of the cross-links.  

The deformation response of networks can be explained by 2 competing theories: 

a) polymer theories that assume no change in internal energy and b) glassy theories that 

predominantly (but not totally) work under the opposite assumption. We will delineate 

the state of the networks and deformation regimes to elucidate the factors that affect the 

applicability of the above theories. Even though there is sufficient evidence that glassy 

solids exhibit entropic or non affine response to deformation, in this work we will refer to 

networks that exhibit internal energy change in response to deformation as “glassy.” 

This work focuses on the creation, characterization and mechanical properties of 

network polymers.  Chapter 2 explores the chemistry of the ROMP of DCPD using DFT 

simulations, Chapter 3 is an excursion into coarse-grained models of networks. Chapter 4 

explores the generation and mechanical properties of all atomistic networks of DCPD. 

Chapter 5 shows comparisons between coarse-grained networks, atomistic networks and 

experimental observations. Chapter 6 is a foray into characterization of networks using 

graph theory ideas and correlations to mechanical properties. Finally Chapter 7 

summarizes the salient results and conclusions. 
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1.5 Figures 

 

 
Figure 1.1: Self healing reaction mechanism i) Microcapsules act as stress 
concentrators. ii) Crack breaches capsule, monomer flows out due to 
capillarity. iii) Exposed catalyst on crack surface initiates polymerization 
and healing. 
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Figure 1.2: Load displacement data of self healing polymer matrix. Red 
dotted plot for virgin matrix with healing mirocapsules, Blue curve after 
failure and subsequent self healing via ROMP of DCPD. White et al1 

 

Figure 1.3: Healing efficiency development as a function of time. Curves 
is a guide to the eye. Healing efficiency or mechanical recovery increases 
rapidly as the healing time is increased and plateaus out after about 5-6 
hours.White et al1 

 



 15 

 

Figure 1.4: First generation ROMP catalyst structure: Green = Chlorine, 
White = H, Blue = Ruthenium, Black = Aromatic Carbon, Orange = 
Aliphatic Carbon. The Ruthenium atom is connected via a double bond to 
an aromatic carbon. This double bond is the ROMP active double bond. 
Source: http://upload.wikimedia.org/wikipedia/commons/a/aa/Grubbs-1G-
3D-balls.png. 
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Figure 1.5: ROMP mechanism for strained rings. The Ruthenium catalyst 
as shown in Figure 1.4 exchanges the original double bond it is connected 
to with other double bonds, creating a living tip that continues the 
polymerization reaction. The exchange of double bonds releases ring 
strain, which is the driving force for ROMP reactions. 
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a 

b 

Figure 1.6: a) endo-DCPD and b) exo-DCPD. The red atoms are 

! 

sp
2
 

hybridized carbons and the grey atoms are 

! 

sp
3
 hybridized carbons. 

Hydrogens are not shown for clarity. The exo DCPD is an armchair 
conformer, whereas the endo DCPD appears as a boat conformer.  
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Figure 1.7: Glass theories and polymer theories of modulus. The Glassy 
theories predict rigidity percolation at a degree of reaction ~0.6 and the 
Polymer theories show a  modulus proportional to the crosslink density. 
Cross-ink density itself follows a increasing function with given degree of 
reaction. The curves are ad-hoc representations of expected modulus 
behavior. 
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Chapter 2 
The DCPD System and the ROMP Reaction  

2.1 Introduction 

Experimental investigations 1 suggest that the differences in reactivity between 

endo and exo DCPD, shown in Figure 2.1, arise from steric effects. However these 

assumptions need further scrutiny. It is very difficult to delineate whether a ROMP 

reaction on a given bond derives its reactivity from steric effects or energetic effects.  In 

the case of steric effects it is assumed that reactivity differences arise due to differences 

in chemical structure and a given bond is available for ROMP reaction at different rates  

due to differences in approachability. Reaction enthalpies do not directly affect the 

reaction kinetics.  However, exothermic reactions are more likely to provide the 

necessary thermal activation and self-acceleration than endothermic reactions do.  

Moreover, strongly exothermic reactions could be an indication of initial structural states 

characterized by high potential energies, i.e., they may be relatively unstable and already 

possess an activation gain.  Based on these arguments we assume that reactivity 

differences between the two reactive sites of the DCPD molecule, in a first 

approximation, parallels the difference in reaction enthalpies. We note that the heat of 

reaction of ROMP on each site is due to the ring strain on these bonds. We therefore need 

to accurately find ring strain energies of the two reaction sites of DCPD. 
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2.2 DFT of ROMP reaction on DCPD 

We use DFT calculations to gain the desired insights into the reaction energetics 

of the ROMP process for DCPD. These calculations were carried out in collaboration 

with another Kieffer group member, Changgua Zhen. 

Figure 2.2 shows the reaction pathway for ROMP involving the two different 

reactive sites of DCPD with ethene (

! 

H
2
C = CH

2
) molecules.  The initial configurations of 

the endo and the exo structures of the molecules a, b, c,  and d were first generated using 

ChemDraw3D®, which included relaxation of the structures towards their local ground 

state energy using a combination of MD and energy minimization based on the inbuilt 

MM2 potential in ChemDraw3D®. The procedure involved creating a putative structure 

of the desired molecule and then using energy minimization to create the low energy 

configuration. We first anneal the molecule at 700 K for 5000 steps for a total time of 

50 ps using 0.001 ps time-steps of MD.  The annealing step is followed by an energy 

minimization quench run to generate minimum energy configurations terminated when 

! 

"E /E <10
#4 . If the energy of the quenched molecule is lower than the lowest energy 

configuration from previous annealing and quenching runs, we replace the previous low 

energy configuration with the new low energy configuration. After ten to fifteen cycles of 

the above process we can be sure that the low energy configuration chosen is indeed the 

lowest possible. The low energy configuration for each molecule is then used as the 

starting point for DFT calculations using the Gaussian 03 2 package.  We used the 

B3LYP/6-31G(d) energy functional for all DFT calculations.  Computational time for 

frequency calculations based on optimized geometries for molecule a, b, c, d, and ethene 
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in endo or exo forms took approximately 283, 263, 464, 213, and 5 minutes on a 2 GHz 

G5 Xserve processor, respectively.  

2.3 Results  

Table 2.1 shows the ground state energies from electronic structure calculations as 

well as the zero point energy (ZPE) corrections of the candidate molecules generated 

from endo and exo forms of DCPD. Calculations of reaction energies depicted in Figure 

2.2 using the thermodynamic expression below  

! 

"HR = Hproducts #Hreac tan ts
 (2.1) 

 
is shown in Table 2.2 and Table 2.3. For example to calculate the heat of reaction of 

ROMP (which essentially amounts to the ring strain energy) of norborene ring in exo-

DCPD, we subtract the sum of the DFT calculated internal energy (after ZPE corrections) 

of reactants (exo-DCPD and ethene) from the internal energy of the products (exo 

molecule b). Therefore Hnb(exo) = -12696+2137.097+10559.067 = -0.539 eV  as shown in 

Table 2.2. 

We define 

! 

H
nb

,

! 

Hcp  and 

! 

H
R
 as the energy of reaction of the norborene, cyclo-

pentene and both rings opening via ROMP, respectively.  These energies are attributable 

to ring strain energy release. It is to be noted that 

! 

H
nb

 and 

! 

Hcp  are reaction energies when 

the other site on constitutive DCPD molecule is unreacted.  

Ring strain energies of these bonds are primary indicators of reactivity to ROMP 

reactions along with secondary factors such as reaction site approachability that is hard to 

quantify. There is no available literature that accurately quantifies ring strain in DCPD 

molecules apart from general heuristic arguments that note a higher angular strain of 
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angles in the vicinity of the norborene ring as compared to that of angles near the cyclo-

pentene ring. To our knowledge these simulations are first quantitative results for DCPD 

ring strains. The heats of reaction, or equivalently ring strains energies, are in shown in 

Table 2.2 and Table 2.3 for exo-DCPD and endo DCPD respectively 

 

2.4 Discussion 

If we compare the heat of reaction of various sites or equivalently strain energy of 

those site by looking at values after ZPE corrections in Table 2.2 and Table 2.3, a number 

of interesting features emerge. We find that in endo-DCPD the cyclo-pentene double 

bond is always endothermic to a ROMP reaction, whereas in exo DCPD case the 

cyclopentene ring is exothermic when the norborene ring is reacted. This implies that 

endo-DCPD is unlikely react its cyclo-pentene bond and will form generally linear 

DCPD. On the other hand exo-DCPD can undergo ROMP reaction at the cyclo-pentene 

site, giving rise to cross-linking. The combined ring strain energy (

! 

H
R
) for ROMP 

reaction on both sites in endo-DCPD is less than the same quantity for exo-DCPD. This 

explains experimental observations of the higher exothermicity of exo-DCPD as 

compared to the endo-DCPD.  We can also say that the cyclo-pentene site in the exo-

DCPD is not likely to react before the norborene site on the same DCPD molecule has 

reacted due to a positive heat of reaction as can be seen in Table 2.2 if it reacts first. This 

therefore gives us a heuristic on the design of our reaction algorithm in later chapters.  

All of the discussion above hinges on our assumption that it is the enthalpy 

change that accounts for the differences in reactivity of various sites in exo and endo-
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DCPD and there is little or no role of the entropy change of the reaction. To justify this 

conjecture consider the free energy of reactions that is given below 

! 

"G = "H #T"S  (2.2) 
 

We know that entropy change 

! 

"S  of any linking process as is the case with the ROMP of 

DCPD is always negative since it reduces the degrees of freedom available to the system. 

Therefore the only driver of the reaction process remains the enthalpy change.  

We therefore come to a conclusion that the second ROMP reaction on any 

endo-DCPD monomer can only be driven by harnessing the heat of reaction of the first 

ROMP reaction or neighboring reactions in the vicinity of a putative second reaction site. 

We suggest that the cross-linking process of endo-DCPD via ROMP is energetically 

unfavorable and since even the entropy change is negative implies that the free energy 

change of the cross-linking reaction is positive and therefore thermodynamics states that 

it is impossible.  

However it is to be noted that endo-DCPD has been observed to have cross-

linking. One way to explain this discrepancy is that cross-linking in endo-DCPD is not 

due to the reaction of the second double bond via the ROMP but due to a different 

reaction mechanism as proposed by Davidson et al. 3. They suggest that the cross-links in 

DCPD are due to a thermally induced olefin addition as is shown in Figure 2.3a. We posit 

that the actual reaction is as shown in Figure 2.3b.  This reaction is commonly known as 

olefin addition.  Note that the residual C=C double bond after olefin addition is unstable 

and short-lived, such strained double bonds easily undergo addition reactions with small 

molecules like water to form alcohol transforming the double bond in to a single bond. 

This hypothesis needs more investigation, which is encumbered by the fact that relaxed 
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C-C bonds are generally not active in common experimental techniques such as Raman 

or IR spectra. 

It can be seen that in our proposed reaction scheme two C=C on adjacent 

cyclo-pentene rings are replaced with one C=C cross-linking bond and two C-C bonds 

where the two original C=C used to exist. This reaction is exothermic because the two 

C-C have a combined bond energy of 2×348 KJ/mol which is greater than the 

! 

C = C  

bond energy of 614 KJ/mol. This olefin addition reaction is thus thermodynamically 

plausible. It is however limited by high activation energy barriers that make it feasible 

only at high temperature. Mauldin et. al 4 propose that such high temperatures could 

locally arise due to ROMP reactions. 

From the DFT calculated heat of reaction data we can predict that the exo-DCPD 

is more likely to cross-link using ROMP mechanism as compared to the endo-DCPD. 

Also exo-DCPD, due to its greater exothermicity, could drive the olefin addition 

mechanism shown in Figure 2.3b. In essence the thermodynamics of the ROMP reaction 

dictates that the endo-DCPD system is likely to evolve into linear chains where as exo-

DCPD is likely to have more cross-links. This unique feature can then be used to design 

polymerization systems that can be tailored for specific applications and reaction. An 

initial solution rich in endo-DCPD and low in exo-DCPD will have more rubbery 

properties due to the formation of linear chains, whereas an initial solution rich in exo-

DCPD will be highly cross-linked and will behave on full cure as a thermoset with high 

modulus. A recent work by Mauldin et al. 4 on blends of endo- and exo-DCPD to tailor 

the final network structures to self-healing materials is salient. Their experimental results 

on ROMP of DCPD measured fracture toughness. They observe that exo-DCPD reacts 
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faster than endo-DCPD and if carefully controlled for proper catalyst dissolution results 

in exo-DCPD networks that have equal or higher fracture toughness than those formed by 

endo-DCPD.  

2.5 Reaction Model to be Implemented in Molecular Simulations 

Based on our preliminary survey of the DCPD ROMP reaction landscape we find 

a rich variety of possibilities and need to narrow down our investigations. We first need 

to understand the broad details that are relevant in creating network polymers from 

reactive processes. The key assumptions we make for further MD studies of the evolving 

network system of DCPD ROMP are as follows.  

1. Cross-linking reaction of norborene or cyclo-pentene sites occurs via ROMP 

regardless of the state of reaction of the other reaction site on a given DCPD. We 

also ignore any contributions made by olefin addition mechanism discussed 

above. This is contrary to our DFT calculations and experimental work by 3 but at 

the time at which the majority of this work was undertaken the two-site ROMP 

reaction was the accepted physical model 56 for cross-linking. 

2.  The probability of ROMP reaction is the same for both sites and occurs due to a 

steric criterion i.e. the reactions on both sites are diffusion limited. We explore 

this assumption in our coarse grained simulations by assuming a different 

probability of reaction for the second reaction based on the DFT data presented 

above.  However we relax this condition for our all-atomistic simulations. 

3. We simulate the ROMP of DCPD that is likely formed by the action of first 

generation Grubb’s catalyst on exo DCPD with the important caveat that we will 
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ignore cis and trans conformer selectivity of the first generation catalyst and allow 

both conformations to occur in the reaction with equal probability. 

We will use the above assumptions primarily in our investigation in Chapter 4 where 

we simulate reaction on atomistic systems. In Chapter 3 we allow ourselves more 

flexibility since there we model the DCPD molecule as a bead and attach additional 

criteria to the reaction mechanism to suit the constraints imposed by coarse graining. 
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2.6 Tables 

Table 2.1: Internal energies and zero point corrections of candidate 
molecules. 

Molecule 

! 

E
o
(eV ) 

! 

ZPE (eV )  

! 

E = E
o
+ ZPE  

! 

ethene  -2138.491 1.394 -2137.097 

! 

a(exo) 10564.353 5.286 -10559.067 

! 

a (endo) -10564.306 5.285 -10559.021 

! 

b(exo)  -12703.455 6.752 -12696.703 

! 

b(endo)  -12703.383 6.761 -12696.622 

! 

c (exo)  -12702.897 6.755 -12696.142 

! 

c (endo)  -12702.802 6.762 -12696.040 

! 

d (exo)  -14842.205 8.216 -14833.989 

! 

d (endo)  -14841.902 8.224 -14833.678 

Each candidate molecule was first created using ad-hoc procedure detailed 
in text and equilibrated using DFT simulations to calculate internal 
energies. The internal energy here can be thought of as the heat of 
formation of these molecules  
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Table 2.2: Heat of reactions of ROMP on exo-DCPD system. 

Reaction #  
Figure 2.2 

Significance: Value (eV) 
(w/ ZPE) 

Value (eV) 
(w ZPE) 

1 (Hnb) Norborene ring opening -0.611 -0.539 
2 (Hcp) Cyclo-pentene  ring opening -0.053 +0.022 
3 Cyclo-pentene ring opening after 1 -0.259 -0.189 
4 Norborene ring opening after 2 -0.817 -0.75 
1+ 3 OR 2 + 4 (HR) Opening of both rings  -0.870 -0.728 

The heat of reaction of each reaction mentioned in Figure 2.2 is calculated for exo-DCPD 
ROMP reaction using the internal energies of exo-derivatives listed in Table 2.1. An 
example is given in text. Note exo-DCPD combined heat of reaction (HR) is more 
exothermic than the same for endo-DCPD. This quantitatively explains experimental 
observations. 

Table 2.3: Heat of reaction of ROMP on endo-DCPD system. 

Reaction #  
Figure 2.2 

Significance: Value (eV) 
(w/ ZPE) 

Value (eV) 
(w ZPE) 

1 (Hnb) Norborene ring opening -0.586 -0.504 
2 (Hcp) Cyclo-pentene ring opening -0.050 +0.078 
3 Cyclo-pentene ring opening after 1 -0.028 +0.041 
4 Norborene ring opening after 2 -0.568 -0.541 
1+ 3 OR 2 + 4 (HR) Opening of both rings  -0.614 -0.463 

The heat of reaction of each reaction mentioned in Figure 2.2 is calculated for exo-DCPD 
ROMP reaction using the internal energies of exo-derivatives listed in Table 2.1. Note 
endo-DCPD cyclopentene is endothermic in reaction 2 and 3 in contrast to the same in 
exo-DCPD. This implies endo-DCPD cyclopentene ring is unlikely to undergo ROMP 
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2.7 Figures 

 

a 

b 

Figure 2.1: Molecular representation of a) endo-DCPD and b) exo-DCPD. 
In both figures double bonds represented by red atoms and bonds. Left 
side double bonds are the cyclo-pentene double bonds and double bonds to 
the right side of molecules are the norborene double bonds. These double 
bonds exhibit differing reactivity to ROMP reaction. These reactivity 
differences occur primarily due to differing ring strains and secondarily 
due to site accessibility. 
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A 

Figure 2.2: Reaction pathway for ROMP of DCPD with ethene. The 
reaction molecule are a) unreacted DCPD  b) norborene after reaction with 
ethene c) cyclo-pentene after reaction with ethene d) both bonds after 
reaction with 2 ethenes 

 

b 

d c 

a 
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a) 

b) 

Figure 2.3: Alternative cross-linking mechanism by a) Davidson et al. 3 b) 
this work. The proposed double bond in b) is unstable due to connection of 
the central double bonded carbons to 3 other carbon atoms and therefore is 
short-lived. This double bond is likely to interact with small molecules 
such as water to form complex alcohols by an addition reaction (not 
shown). The resultant single bond after the addition reaction is IR and 
Raman inactive as suggested by DFT simulations not presented in this 
work. 
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Chapter 3 
Coarse-Grained Simulations 

3.1  Introduction 

In this Chapter we further our understanding of the relationship between 

mechanical properties of a network structure and its topology.  Our first goal is to assess 

whether the process by which a network forms, indeed creates unique structure and 

properties.  We devised a coarse-grained (CG) simulation scheme mimicking the 

formation of networks from dicyclopentadiene (DCPD). The DCPD molecule is shown in 

Figure 3.1. The DCPD molecule undergoes a ring opening metathesis polymerization 

(ROMP) catalyzed by a ruthenium based Grubb’s catalyst 1. The reaction mechanisms for 

such a cross-linking process are shown in Figure 3.2. The highly cross-linked polymers 

formed by the ROMP reaction of DCPD monomers shares similar bonding characteristics 

with GexAsySe1-x-y glasses 2. The main difference being that they can only form bonds 

with 2 or 4 of their neighbors instead of 2, 3 and 4 neighbors as is the case with 

GexAsySe1-x-y glasses.  Another important difference is that ROMP is a catalyzed reaction 

and the sequence of network bonds marks the trail of the catalyst. Whereas in glasses 

bonds can break and form spontaneously at any moment while in the molten state, and 

the quench captures one particular bonding configuration.  

ROMP of DCPD system is of enormous importance in applications such as 

autonomic self-healing of polymer composites 3 and it is not well studied insofar as the 

evolution of mechanical properties as a function of the degree of cure is concerned. 
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Multi-scale modeling efforts 4 for crack retardation as envisaged in self-healing materials 

require information about the kinetics of DCPD ROMP reactions to model the effects of 

the competition between the healing process and the fatigue crack propagation process in 

order to optimize the design of the self-healing material.  Current investigations of 

ROMP reactions involving DCPD employ techniques such as ultrasonic spectroscopy 5, 

Raman spectroscopy 6,7, and differential scanning calorimetry (DSC) 8. The key challenge 

in such techniques is the unambiguous interpretation of DCPD network formation. Post 

cure techniques such as x-ray diffraction pose special problems due to radiation damage 

during analysis, in addition DCPD networks being amorphous, do not lend themselves 

well to structural characterization using diffraction techniques.  

In this Chapter we will address two critical issues in network generation: 1) does 

mechanical property depend on the mechanism of network formation and 2) what 

features does a CG simulation need to reproduce in order to accurately describe the real 

system. The former question will be answered in this Chapter and the latter will be 

answered in Chapter 5 by comparing the results of the mechanical properties predicted by 

CG simulations against our all atom simulations in Chapter 4.  

3.2  Force Field Discussion 

The 22 atoms of the DCPD monomer shown in Figure 3.1 are represented by a 

single bead in CG scheme.  Each bead can have a maximum cross-link functionality of 4. 

Pair interactions between beads are modeled as a standard LJ (12-6) potential to model 

van der Waal’s interactions between monomers as shown below.  
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Where ε = 1.0, σ = 1.0 and the cutoff distance rc = 2.5. The constant CP ensures 

the potential energy is 0 for r > rc. The pair potential acts on all neighboring beads 

regardless of bonding. This is because the DCPD monomer center of mass does not 

change appreciably after bonding takes place and van der Waal forces by other atoms in a 

given DCPD monomer are still applicable to neighboring monomers. In the following 

sections the word beads will be synonymously used to refer to monomers in our coarse 

grained representation. 

The bonded potential is a modified LJ potential given below that allows us to 

model bond breakage without force discontinuities at cutoff if needed.  
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Here εb = 200, σb = 1.1, rb = 1.5.  The constant Cb ensures that the bond potential 

is 0 for (r ≥ rb).  The distance rb was chosen to ensure that bonds could not slip past each 

other without breaking during extension tests described in Section 3.4. We note that the 

density of fully cured DCPD is 1.05 g/cc and that of DCPD monomers is 1.03 g/cc. These 

real density observations in turn imply that there is very little contraction/expansion stress 

due to the ROMP reaction in DCPD. The key feature that controls the expansion or 

contraction stress accumulation, as reactions takes place is the parameter σb. In order to 

choose the best value of σb, sample runs of network generation were conducted on a 

small system (1000 beads) with different values 1.0 < σb < 1.5. These simulations were 

compared amongst each other and the value of σb that caused the least 

contraction/expansion stress accumulation as the reaction processes introduce bonds into 
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the system was chosen. This process resulted in σb = 1.1. This choice then ensures the 

simulation reproduces the small density changes upon polymerization observed 

experimentally.  

In order to account for the energy gain associated with the unfolding of opened 

rings and the spreading of the newly created network bonds, we introduced angular 

constraints between adjacent pairs of bonds. Angular interaction potential given below 

were also integrated with an rRESPA time-step of 5×10-4 τ 

! 

Eangle = K(" #"
0
)
2 , (3.3) 

 
where θ0 = 109.5o and K = 30. The reaction coordinate or the degree of reaction in 

our systems is calculated as the average number of bonds per monomer denoted as 

Bonds/Monomer and it is a number between 0.0 and 4.0. Alternatively the reaction 

coordinate can also be understood as the fraction of bonds formed as compared to the 

maximum possible bonds. We call this fraction the degree of reaction α and it is a 

number between 0.0 and 1.0. In the sections and chapters hence we will refer to the 

degree of reaction (α) as our reaction coordinate.  

3.3 ROMP and RANDOM Network Generation Methodology 

In order to assess whether the process by which a polymer network is formed has 

an effect on its mechanical properties, we compare the behaviors of two systems: one in 

which the network has been created by simulating the ROMP process (henceforth 

referred to as ROMP network), and another one in which bonds between network nodes 

are assigned randomly (referred to as RANDOM network). 
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3.3.1 Network generation MD simulation details 

All network generation MD simulations were carried out using a multiple time 

step second order sympletic integrator rRESPA9,. The pair interactions were integrated 

with a time step of 0.01τ and the bond interactions with a time step of 5×10-4 τ since the 

potential function for bonds has a sharp curvature near the energy minimum as compared 

to the pair potential. Simulations were performed on systems of 16000 beads each of 

mass m = 1.0 and at a reduced density of 0.75. These initial simulation ensembles were 

cooled from T = 1.9, to T = 0.9 using a Nose-Hoover NVT ensemble simulation using a 

temperature damping factor of 0.7τ in a total time of 20τ, where  

! 

" =
m# 2

$
 (3.4) 

 
This high temperature quench run ensures initial randomness of the simulation 

boxes before reactions for network formation begin. The initial condition of T = 0.9 and 

reduced density of 0.75 was carefully chosen so that the system lies in the molten phase 

of LJ 12-6 phase diagram and would not be affected by crystallization phenomena. 

The ROMP network is formed as described by the catalytic process as shown in 

Figure 3.2. Essentially each catalyst can be thought of as an off-lattice non-self avoiding 

random walker. The trace of the walker’s path constitutes the network morphology. 2% 

of beads in any simulation (ROMP/RANDOM) are designated as catalytic beads that 

have maximum bond functionality of 3 bonds each. In ROMP reactions these beads serve 

as the starting points for network evolution but serve no functional purpose in RANDOM 

networks, apart from ensuring that the maximum possible number of bonds in any 
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(RANDOM or ROMP) simulation are the same. The coarse-grained ROMP and 

RANDOM networks were created using the procedure detailed below 

 

3.3.2 Networks with no Angular Constraints 

For the creation of RANDOM networks with no angular constraints the molecular 

dynamics simulation is interrupted every 1.0 τ to randomly choose 2% of beads. We call 

them initiator beads. Bond formation is attempted between the initiator beads and one of 

its randomly chosen neighbors. Bond formation is successful if the two beads occur at a 

distance r satisfying the criteria 0.9 rcut < r < 1.1 rcut and if both of the beads have less 

than their maximum bonding functionality of 4, where rcut = 1.2347.  In case the attempt 

fails no more reaction attempts are allowed on that particular initiator bead for the current 

reaction step. Additionally no bead is allowed to react twice in the same reaction step. If 

in case a bead is chosen twice or more times in the same reaction step then all but one 

randomly chosen reaction is disallowed.  

On the other hand ROMP networks are created when bonds are formed between a 

catalytic bead (2% of the population) and a non-catalytic bead, satisfying the reaction 

criterion as described for the RANDOM case. In the case of ROMP networks a 

successful bond formation reaction leads to the non-catalytic bead converting to a 

catalytic bead and the previous catalyst bead reverts to a non-catalytic state, i.e., the 

catalyst always advances to the end of the chain.  In the case of ROMP networks the 

catalytic beads are the initiator beads for reactions and are not chosen randomly once the 

simulation is started, they remain tethered to the evolving network initiating reactions. 
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In creating the ROMP networks there are 5 species in the reactions process. 

Adopting the nomenclature from the NMR community, DCPD with 0 bonds to neighbors 

termed as Q0, monomers with 2 or 4 bonds termed Q2 and Q4 respectively. It becomes 

immediately obvious from the reaction equations below that the catalytic species have 1 

bond and 3 bonds and therefore are termed Q1 and Q3 respectively  

These species interact in 4 reaction processes as shown schematically as reaction 

(1) through reaction (4) below.  The black bars indicate the number of bonds a particular 

species has, red beads are catalytic, blue are unreacted monomers, striped green beads are 

monomers that have reacted once, and solid green beads are monomers that have reacted 

twice. Each bead is also referred to as Qx where x refers to the number of bonds attached 

to a bead. 
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In ROMP simulations the reactions described by reaction (1) and (2) occur with 

unit probability if the proximity reaction criteria discussed above are met, reaction (3) 

occurs with a probability of 0.20 and reaction (4) occurs with a probability of 0.10. These 

reaction probabilities are so chosen since the norborene double bond of DCPD (bottom 

double bond in Figure 3.1 is more reactive than the cyclopentene double bond. Due to the 

lack of experimentally available kinetic models for these reaction processes in literature, 

we used ad hoc principles from our understanding of chemical reactivity of DCPD to 

assign reaction probabilities based on DFT calculations in Chapter 2. Reactions (1) and 

(2) are due to the attack on the norborene site of an un-reacted DCPD by a catalyst and 

were assigned a unit probability. Reaction (3) is the attack of a singly bonded catalyst 

(Q1) on a cyclopentene site of DCPD and we assign a 0.2 probability to this reaction, 

reaction (4) is the attack of a 3 bonded catalyst (Q3) on the cyclopentene site and we 

expected a lower reaction probability than reaction (3) due to steric reasons and therefore 

assigned it a value of 0.1.  

All the network formation simulations were carried out under Nose-Hoover NVT 

ensemble with T = 0.9 at a reduced density of ρ = 0.75 with the temperature time 

damping factor of 0.7τ. Snapshots of these systems were saved at regular intervals during 

the progression of reactions for mechanical testing. Four independent samples of ROMP 
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and RANDOM networks were created. Figure 3.3 shows a typical arrangement of a 

ROMP network at various degrees of reaction. Due to the random nature of the bond 

formation mechanism, creating simulation ensembles with exactly equal number of bonds 

at each degree of reaction was difficult and we therefore saved simulation snapshots 

within ∆α = 0.1 ± 0.004 increments in α. Such differences in the degree of reaction do 

not significantly change behavior of networks. 

ROMP networks with no angular constraints on 16000-bead systems were created 

in approximately two million time-steps using LAMMPS.10,  These took 700 hours on 

both processors of a dual CPU Apple G5-Xserve node to achieve a maximum α of 0.85. 

Simulations of RANDOM networks with no angular constraint achieved a maximum α of 

0.9 after 1.0 million time-steps in 500 hrs.  

3.3.3 Networks with Angular Constraints 

Networks with angular constraints are created using the same procedure as those 

without constraints, with some additional criteria.  During the formation of the networks 

with angular constraints we ensure that the angle between a new bond and the last created 

old bond lies within  ± 15˚ of the angle θ0 specified in eqn(3.3). This prevents excessive 

angular forces at the time of network formation from causing energetically unfavorable 

configurations to build up over long times. An addition of a bond in the system with 

angular constraints also results in the addition of an angular constraint between the 2 

reacting beads and the previous beads they have reacted to if any. If the beads undergoing 

reaction had not previously reacted to any beads in previous reaction step then no angular 

constraint is added. In both ROMP and RANDOM cases angular constraints are attached 
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to the angle between the newest bond and the bond that was created in previous reaction 

process  

However, with these angular constraints we find that networks do not achieve as 

high degrees of reaction as without angular constraints, as seen by the maximum 

achieved degree of reaction in Figure 3.5b. Snapshots of these systems were saved at 

regular intervals in the progression of reactions for mechanical testing. Four independent 

samples of angularly constrained ROMP and RANDOM networks were created for 

mechanical testing, as is the case for networks without angular constraints. 

In the simulation of a ROMP network with angular constraints we assigned unit 

probabilities to all reactions as mentioned in reaction 1 through 4 as noted above. This is 

justified since the angular constraints automatically restrict a large number of possible 

reactions and therefore implicitly change the reaction probabilities. We find that ROMP 

and RANDOM networks achieve a maximum degree of reaction of 0.7 and 0.85, 

respectively, after 5 million time-steps.  These simulations required about 550 hours on 2 

processors of the G5 Xserve cluster. The speciation, i.e., the distribution of Q0, Q1, Q2, 

Q3, and Q4 species in networks with angular constraints is similar to that obtained from 

simulations without angular constraints as shown in Figure 3.4 c and d .  

3.3.4 Reaction Kinetics. 

A first order kinetic model effectively explains the reaction kinetics as is expected 

from the reaction model that is used to generate the networks. The rate equation for the 

concentration of the monomer species for both mechanisms is fit to the expression given 

by eqn(3.5) and the degree of reaction (α) is fit to the expression given by eqn(3.6) 

! 

[Q0] = 0.98 " exp(#t /$ 0)  (3.5) 
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The results of the fit are shown in Table 3.1 and plotted along with data in Figure 

3.5. The two exponential terms in the expression can be thought of as rate expressions of 

a fast first order reaction added to a rate expression of a second slower first order 

reaction. The fast reaction can be thought of as the initial conversion of norborene and 

cyclopentene double bonds via ROMP and the second reaction the subsequent slow-down 

of reactions due to cross-linking, lesser availability and lower diffusion of reactive 

species as the network gels disallowing free movement. From the plot the fit for ROMP 

networks is not good at large α. This is due to the fact that the ROMP network tethers the 

catalyst particles and therefore inhibits the encounters of catalyst and monomers with free 

reaction sites. RANDOM reactions do not place this constraint on their reactions and 

therefore the probability that reactions follow first order kinetics regardless of the state of 

the network.   

These results are consistent with experimental studies in ROMP polymerization 

of DCPD5 that also suggest first order reaction kinetics. It is interesting to note that both 

ROMP and RANDOM networks with angular constraints, along with the ROMP network 

without angular constraints, seem to have two distinct reaction time constants that differ 

considerably in magnitude as evidenced by 

! 

"
1
 and 

! 

"
2
. These widely different time 

constants explain network evolution behavior at initial times and at longer times. The 

larger time constant is a slowdown effect that occurs due to the unavailability of reactants 

after the initial reactions have consumed all non-reacted and partially reacted monomers 

in the vicinity of the catalyst.  Thereafter, due to limited access, further network 

development slows in ROMP networks generated with and without angular constraints, 
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as well as in RANDOM networks with angular constraints. The RANDOM network 

without angular constraints is unaffected since it has less rigid criteria to satisfy for 

reactions since we allow reactions on randomly chosen beads in the simulation with only 

the proximity constraint that is independent of diffusion of species.  

The long-time network behavior of our reaction scheme is highly important as it 

allows the evolving network to relax into more stable configurations while the reaction 

progresses, and thereby reduces the probability of high-energy configurations developing.  

The ROMP network with angular constraints does not follow the first order kinetics 

proposed by eqn(3.5) for the monomer concentrations at high degrees of reaction, 

because after some time the catalyst beads that facilitate further bond formations are 

locally trapped into highly reacted networks with no avenues to access un-reacted sites. 

This catalyst sequestration by the network does not affect the RANDOM networks since 

the reaction sites are randomly chosen throughout the simulation box.  

We therefore observe RANDOM networks reaching higher degrees of reaction 

than catalytically reacted ROMP networks. We believe this feature should hold true even 

in real systems and therefore especially significant to the design of self-healing systems. 

This is useful because higher α indicates better mechanical cohesion. The ramifications 

of the differences in the extent of reaction between catalytic and non-catalytic networks is 

discussed in Section 3.5 

3.4  Calculation of Mechanical Properties 

Figure 3.4a/b shows the speciation of a ROMP and a RANDOM network at 

different degrees of reaction (α) for networks with no angular constraints and Figures 

3.4 c and d show the same for networks with angular constraints.  We can see significant 
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differences between the fractions of various species in the configurations these two 

systems. It is to be noted that the sum of the fractions of Q1 and Q3 species is the fraction 

of catalyst particles in the simulation. As is seen from Figure 3.4 the ROMP networks is 

made up of predominantly Q2 and Q4 nodes where as the RANDOM networks have 

significant amounts of Q1, Q2, Q3 and Q4 nodes at comparable α. The evolution of 

mechanical properties is dependent on the network morphology and we show that 

conventional theories of network percolation insufficiently explain differences in 

mechanical properties. In these network percolation theories the onset of rubber elasticity 

is not considered. This is mainly due to the fact that the mechanical properties are 

reported at absolute zero temperature where the rubbery elastic modulus is zero, a fact 

that is well known in classical polymer physics of rubbers, since modulus is directly 

proportional to absolute temperature. Secondly generating networks using lattices is not 

ideal since it imposes symmetry. On example of such a method is the bond dilution 

paradigm of network creation2, where a perfect diamond cubic (DC) lattice is created and 

bonds deleted at random to create networks at different average coordination from 0 to 1. 

In this case 1 signifies a perfect lattice where each lattice bead is connected to 4 other 

beads in a DC lattice. Such symmetric networks are likely to respond to strain like 

crystals rather than as polymer rubbers. Therefore to show how topology matters, we 

test the mechanical properties of ROMP and RANDOM networks created by non lattice 

mechanisms in the next section and show significant differences in their behavior. 
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3.4.1 Toughness 

As an initial investigation into network properties a large deformation uniaxial 

test is carried out before we probe the network for modulus properties at small strains in 

Section 3.4.2 and Section 3.4.3 where we measure the Young’s modulus and Poisson’s 

ratio respectively. In the uniaxial tension tests, the networks are uniformly extended in 

one direction at a constant strain rate. Observing the behavior of networks during this 

deformation provides valuable insight. We describe these uniaxial tests in the following 

and discuss the salient results and conclusions. 

3.4.1.1 Networks with no Angular Constraints 

An important mechanical property of materials is their toughness. One measure of 

toughness of solids can be calculated from the area under the stress strain curve until 

complete failure. In MD simulations this is difficult to measure since the area under the 

curve is strongly strain rate dependent due to hydrodynamic and viscous effects. At the 

large strain rates that MD simulation probes it is hard to directly correlate the MD 

calculated toughness with real values. Nevertheless we report the results of systems of 

non-angular constrained networks without angular constraints strained uniformly to a 

maximum of 100%. This is possible since our bond potentials are designed to smoothly 

tail off without discontinuities in force or energy, enabling bond breaking.  

The toughness of each system is measured by the following procedure. The 

simulation snapshots obtained from the network formation process are allowed to relax 

for 100 τ using a Nose-Hoover barostat (NPT) at (T = 0.9) with a temperature damping 

factor of 1.0 τ and the stresses in the x and z directions are controlled concurrently to a 

pressure of 0.02 (ε⁄σ3) with a pressure damping factor of 50 τ, the

! 

y  dimension is held 
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constant. These relaxed network configurations are then extended in the 

! 

y  dimension at a 

constant strain rate of 10–3 τ–1 for 1000 τ until a strain is of 100% is reached. As a result 

of holding the y dimension static the initial stress in the y direction (σyy) is not fully 

relaxed and contains some residual stress especially at high degrees of reaction.  

It is important to note the behavior of the networks below 20% extension since we 

use that limit in our Young’s modulus and Poisson’s ratio calculation in Section 3.4.2.1 

and Section 3.4.3 respectively. 

Figure 3.6 and shows typical behavior of a ROMP network at 3 different degrees of 

reaction and Figure 3.7 shows the same for a RANDOM network at 3 different degrees of 

reaction. We report toughness by integrating the stresses 

! 

" yy  with strain until 100% 

extension. Figure 3.8 shows the toughness of both ROMP and RAND networks. 

3.4.1.2 Network with Angular Constraints 

A toughness test is not possible with the angularly constrained networks since a 

bond break during extension will result in the physically unrealistic state where the 

angular constraints still remain in the system. Even though we do not report the 

toughness of network with angular constraints, we performed a similar uniaxial stress test 

as above but limited to 20% strain to ensure that no bonds are broken instead of 100% 

extension as is the case with toughness test of networks with no angular constraints. 

Figure 3.9 and Figure 3.10 shows the network behavior of ROMP and RANDOM 

networks with angular constraints networks to applied strain in our 20% extension 

uniaxial test described above. 

The most important feature we see from these extension experiments is the 

behavior of the internal energy of the networks up to 5% strain which is the limit used for 
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our Young’s modulus and Poisson’s ratio calculation in Section 3.4.2.2 and Section 3.4.3 

respectively. 

3.4.2 Young’s Modulus 

3.4.2.1 Networks without Angular Constraints 

The Young’s modulus of each system is measured by subjecting the networks to a 

uniaxial tension test using the following 3-step process. Step 1: The simulation snapshots 

at different degrees of reaction obtained from the network formation simulations are 

allowed to relax for 1000 τ using a Nose-Hoover barostat (NPT) at (T = 0.9) with a 

temperature-damping factor of 1.0 τ. The x and z dimensions are coupled to control the 

pressure (σxx+σzz)/2 to 0.02·(ε/σ3), with a pressure-damping factor of 50 τ, the y 

dimension is held constant. Step 2: These relaxed network configurations are then 

extended in the y dimension at a constant strain rate of 10-3(1/τ-) for 200 τ until the strain 

reaches 20%. Step 3: This strained simulation box is relaxed for 1000 τ using the same 

NPT conditions as in step 1.  Average stresses are obtained by averaging σyy over the last 

200τ of the 1000τ relaxation. The Young’s modulus is calculated by comparing the 

average stresses, of the strained <σyy >ext and unstrained <σyy >0 configurations 
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which can be written in our case as. 
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We also calculated the Young’s modulus for these systems at 1% strain by 

modifying step 2 keeping all other steps the same as described above. The results of the 
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Young’s modulus for the ROMP and RANDOM networks without angular constraints at 

1% strain and 20% strain are shown in Figure 3.11 a and b respectively. As can be seen, 

at low strain (1%) is difficult to discern differences in the Young’s modulus for ROMP 

and RANDOM networks, but they become apparent at high strains such as 20%. 

Equilibrium methods such as Green-Kubo formulations can also be used for the same 

measurement and yields a shear viscosity measure. However, we chose not to use this 

method based on the poor signal to noise ratio it yields11,12.  Furthermore, the tensile test 

approach also provides an easy measurement of the Poisson’s ratio from the simulation 

box dimensions.  

We note that in all our simulations none of networks have more than 10 monomers 

in a linear chain and we therefore expected these networks to behave more like glasses, 

since the chain lengths of our systems are less than that in the work of Barsky et al. and 

Kremer et al.13,14. In their work the entanglement length is estimated to be 

! 

N
e
" 35 , and 

since our mean length between cross-links is lower than the entanglement length, we 

expect mechanical effects of entanglements to be insignificant.  

We see from Figure 3.11b that for both ROMP and RANDOM systems α

! 

< 0.6 

behave plastically. This plastic or flow like behavior is further supported by data from 

our large strain uniaxial experiments in Section 3.4.1. In these experiments we find that 

both ROMP and RANDOM networks without angular constraints do not offer resistance 

to strain until large extensions particularly at low degrees of reaction. These results can 

be seen in Figure 3.6a and Figure 3.7a and is consistent with network rigidity percolation 

theories proposed by Thorpe et al.15 where the rigidity percolation threshold is 

approximately at α = 0.6 for RANDOM networks.  



 53 

3.4.2.2 Networks with Angular Constraints 

Tensile tests for ROMP and RANDOM networks with angular constraints were 

similarly achieved with final extension of 5%, while for networks without angular 

constraints the final extension was 20% as mentioned in Section 3.4.2.1. The 5% strain 

limit was chosen after examination of the network behavior with angular constraints to a 

maximum extension of 20% as discussed previously in Section 3.4.1.2 

We note that none of the networks with angular constraints experienced bond 

breaking during the uniaxial mechanical test even up to an extension of 20%. The 

Young’s modulus was calculated using the same three-step process that was used in 

Section 3.4.2.1 with the relaxation time of 200τ instead of the 1000τ that was used in 

networks in no angular constraints. Secondly the average stress required for the Young’s 

modulus calculation was obtained from the last 50τ of the relaxation period of 200τ. The 

reason for choosing a shorter relaxation time in angular constraint systems was because 

the introduction of angular constraints resulted in faster relaxation times of the systems. 

Figure 3.12 shows the Young’s modulus obtained for RANDOM and ROMP networks 

with angular constraints. 

3.4.3 Poisson’s Ratio 

Poisson’s ratio was calculated from the Young’s modulus simulations at 20% 

strain for networks with no angular constraints and from 5% strain experiments in the 

networks with angular constraints. The Poisson’s ratio is given by  
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where the strain 

! 

"y  can be related to the simulation box extension ratio 

! 

"y  as 

below. 

! 

"
i
= #

i
$1 (3.10) 

 
Where the subscript i refers to the coordinate direction x, y, or z. Using eqn(3.10), 

now eqn(3.9) can reframed in our case as the following equation 
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 and λy – 1 = 0.2 and 0.05 for networks without angular and with 

angular constraints, respectively. 
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x
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z

ext  are the equilibrium values of the 

simulation box after strain in y direction. 
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x
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z

0  are the equilibrium values in the no-

strained state 

The Poisson’s ratios for networks without angular and with angular constraints 

are shown in Figure 3.13 and Figure 3.14, respectively. As we can see the behavior of the 

Poisson’s ratio and Young’s modulus are inversely related. Networks without angular 

constraints of the ROMP and RANDOM systems closely follow the percolation threshold 

phenomena described by Thorpe et al15. However the imposition of angular constraints in 

the bonding between network nodes shifts the percolation threshold to a lower degree of 

reaction. 

3.4.4 Bulk Modulus 

The bulk modulus of all networks ROMP/ RANDOM with and without angular 

constraints is calculated by using the following procedure. We first equilibrate each 

simulation box for 200 τ using a Nose-Hoover barostat (NPT) at (T = 0.9) with a 



 55 

temperature damping factor of 1.0 τ.  All the dimensions of the box are coupled to control 

the hydrodynamic pressure to 0.02(ε/σ3) with a pressure damping factor of 5.0 τ. After 

the initial equilibration the box is then compressed isotropically by 

! 

±0.5%  in each 

dimension thereby changing the volume and then relaxed for 200 τ for both the extension 

and compression runs. The hydrodynamic pressure is calculated as the average of the last 

50 τ of each of the compression, extension and initial relaxation. The bulk modulus is 

calculated as 

! 

K = "V
dP

dV
 (3.12) 

 
eqn(3.12) can be reframed as shown below. 
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where P+ is the average hydrostatic pressure after expansion from equilibrium volume 

(V+) and P- is the pressure after compression from equilibrium volume (V-). 

The results of the bulk modulus calculations for networks without angular 

constraints are shown in Figure 3.15 and for networks with angular constraints are shown 

in Figure 3.16. The values of the bulk modulus along with the values of the Poisson’s 

ratio and the Young’s modulus can be used to calculate other elastic modulus values 

using standard transformations. 

3.5 Results and Discussion 

The behavior of Young’s modulus in Figure 3.11, Figure 3.12 and Poisson’s ratio 

in Figure 3.13, Figure 3.14 as a function of the degree of reaction is relevant. In particular 

we note from the Poisson’s ratio behavior of all networks (with and without angular 
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constraints, for ROMP/RAND networks) shown in Figure 3.13 and Figure 3.14 that the 

Poisson’s ratio show two linear regions with differing slopes. The degree of reaction 

where these overlap or change over appears to be the point at which the network response 

to deformation switches from a predominantly entropic mode to a predominantly 

enthalpic mode. This is well supported by our uniaxial deformation results shown in 

Figure 3.6 and Figure 3.7 for networks with no angular constraints and in Figure 3.9 and 

Figure 3.10.  

We first consider networks without angular constraints. Figure 3.6 shows salient 

network properties for ROMP networks with no angular constraints. We can see from the 

stress response that at a degree of reaction α = 0.4 there is no restoring stress σyy at any 

strain. This implies there is no network in the simulation box that can resist the flow and 

the system therefore behaves as a fluid. We could have expected to see a viscous 

response to this rather fast deformation however the high temperature (T = 0.9) ensures a 

low viscosity and practically zero viscous response. A similar behavior is seen for 

RANDOM networks in Figure 3.7 at similar degree of reaction at α = 0.42. At a slightly 

higher degree of reaction at α = 0.6 there is a definite stress response, curiously however 

the internal energy seen by pair interaction energy and the total potential energy shows 

little or no change at lower strains and only seems to increase at large strains approaching 

almost 100%. The features seen in ROMP networks are mirrored by the response of 

RANDOM networks at similar degrees of reaction as can be seen in the curves for 

α = 0.62 in Figure 3.7. At high α such as that shown by curves at α = 0.9 in Figure 3.6 

and Figure 3.7 we see that the stress response is accompanied by a change in internal 

energy and density.  
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Similar phenomena can be observed in networks with angular constraints. In 

Figure 3.9 we show again at low degrees of reaction such as seen by the curves of 

α = 0.20 for ROMP networks there is no stress response apart from barostat oscillations. 

The same behavior can be seen in RANDOM networks at α = 0.15 in Figure 3.10. 

However at α = 0.4, shown in Figure 3.9 for ROMP networks, we see the characteristic 

stress response without tangible internal energy or density changes. Interestingly 

RANDOM networks with angular constraints seem to show such a behavior above a 

different threshold value of α than ROMP networks. We show an example of stress 

response with no density or internal energy response to deformation for RANDOM 

networks at α = 0.5 in Figure 3.10. This is a departure of from the behavior of networks 

without angular constraints where both ROMP and RANDOM networks seem to have the 

same threshold at which such a response is seen. At still higher degree of reaction things 

are a little more complicated. Our simulation algorithm for generating networks with 

angular constraints is unable to create stress free networks as can be seen by non 

monotonic nature of the equilibrium total energy in Figure 3.9d and Figure 3.10d with the 

increase of α. We expect a network at a higher degree of reaction to have a lower 

potential energy. However this becomes increasingly difficult as addition of angular 

constraints to newly added bonds creates angles at non-equilibrium values. In spite of our 

efforts as described in the generation of networks with angular constraints to mitigate 

formation of non-equilibrium angles, they could not be avoided as we increased the 

degree of reaction. These non-equilibrium angles are energetically penalized by the stiff 

angular constraint term. For ROMP networks we find at an α = 0.685 as shown in Figure 

3.9 the stress response is accompanied by decrease in density along with an increase in 
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pair energy as is expected. However total energy decreases contrary to expectations as 

can be seen in Figure 3.9d. This is because the deformation process relaxes the angles 

that are not at equilibrium and thereby reducing the internal energy. The same increase in 

total energy phenomena with deformation can be seen in RANDOM networks in the 

curves at α = 0.8 for RANDOM networks in Figure 3.10d. 

There are interesting implications of these observations. If the deformation 

response is entropic then interaction potentials have no effect on elastic properties, 

whereas if the response is enthalpic then the pair, bond and other backbone interactions 

become important. An internal energy change with concurrent density change due to 

deformation is indicative of enthalpic response. Absence of internal energy change or 

density change to applied strain indicates entropic response. 

Glasses that deform in strain bands do so in a non-affine (inhomogeneous) 

manner where a certain fraction of atoms in the network deform more than the rest of the 

matrix. This observation can be further nuanced for polymeric materials where this non-

affine deformation can be further subdivided into a entropic or enthalpic response. Cross-

linked polymers initially transition from a viscous liquid state to a rubbery state where 

Poisson’s ratio ~ 0.5 and then as the number of cross-links increases, the rubbery regions 

in the matrix become more and more rigid and finally form glassy matrix that show an 

internal energy change to deformation along with a Poisson’s ratio less than 0.5. An 

elastic deformation can be expected to yield a change in internal energy as shown below. 
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We can arrive at an approximate value of the potential energy change with 

deformation if we assume that 1) the stress σyy is a linear function of εy 2) stress σxx and 
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σzz is maintained at 0.02 by our barostat and 3) neglect number density (ρN) changes 

during deformation. We can then rewrite eqn(3.14) as 
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Where εy = 5% is the applied maximum y strain, εt is the resultant transverse 

strain. σx
o σy

o σz
o is the initial stress in x y and z direction respectively and σy

f is the final 

y stress after strain. For example in our Young’s modulus tests if we apply eqn(3.15) for 

networks where αY<α<αP and observe the time evolution of stress (σyy), number density 

and internal energy before and after deformation some interesting features emerge. We 

show these plots in Figure 3.18 for a ROMP network with angular constraints at α = 0.35. 

For this network the calculated ΔΕdeform ~ 0.002ε (using σy
f = -0.1 and ρN = 0.75 from 

Figure 3.18) is difficult to discern from the thermal noise. However the change in density 

upon deformation is negligible. This observation can be explained in two ways a) the 

deformation response is viscous or b) it is entropic in nature. In both cases the Poisson’s 

ratio is close to incompressible liquid value of 0.5. We show in Figure 3.19 for a 

candidate ROMP network with angular constraints (α = 0.40) recovery to initial 

configuration after release from a strained state. This supports an entropic restoration 

argument, whereas a viscous liquid would retain its final strained state. 

The entropic argument can also be intuitively understood from the realization that 

a predominantly entropic response necessarily means that the average separation of beads 

or atoms along with bond lengths and angles and other constraints cannot change 

significantly upon deformation, since such a change would be reflected in both density 
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and internal energy. However the internal energy change is more difficult to measure than 

a density change. 

Based in this we posit two thresholds that are of relevance in explaining the 

behavior of any network. 1) Threshold at which the Young’s modulus changes slope 

(αY). 2) Threshold at which the Poisson’s ratio changes slope. (αP) In general these two 

thresholds differ with the threshold for the Poisson’s ratio occurring at higher degrees of 

reaction than the Young’s modulus threshold for the same system. These thresholds are 

tabulated in Table 3.2 based on observations of the Young’s modulus behavior in Figure 

3.11 and Figure 3.13 and Poisson’s ratio behavior in Figure 3.12 and Figure 3.14. Based 

on these thresholds we can classify a network into one of 3 regions depending on its 

degree of reaction α. In region 1) for α < αY the networks have no elastic restoring 

capacity and behave as fluids with negligible Young’s modulus specially for small 

deformations. In region 2) for αY<α<αP the network elastic response is entropic and there 

is very little change in internal energy or in the density of the system during deformation. 

This region can be thought of as a rubbery elastic region since the Poisson’s ratio is ~0.5. 

In region 3) for α>αP the response is enthalpic. Region 1 is where fluid mechanical 

theories apply, as the response is viscous, in region 2 polymer theories explain observed 

phenomena and the networks behave as rubbers, and in region 3 deformations cause 

change in internal energy and glass theory explanations hold. 

Our results for the Bulk modulus in Figure 3.15 and Figure 3.16 are shown for 

completeness sake and together with our results for Young’s modulus and Poisson’s ratio 

allow us to calculate any other modulus using standard transformations for comparison 

with experimental results should they become available in the future.  
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We show that the network morphology differences between ROMP and 

RANDOM network, as evidenced by the distribution of species with different number of 

bonds in Figure 3.4, plays a significant role in the mechanical properties of networks. We 

observe that the ROMP network forms a stronger network than the RANDOM system at 

the same degree of reaction after rigidity percolation. This can be attributed to the larger 

fraction of over-constrained quadruple-bonded monomers, Q4, in ROMP systems 

whereas in the RANDOM system the fraction of quadruple-bonded monomers Q4 is 

smaller, as can be seen in Figure 3.4. However according to polymer theories the 

Young’s modulus behavior is correlated with the fraction of cross-linked species 

(Q3+Q4). This network characteristic among others will be examined in Chapter 6 where 

we characterize the networks generated using graph theory concepts and correlate these 

characteristics with Young’s modulus behavior. 

We also note that RANDOM systems go farther towards complete conversion as 

compared to ROMP networks since they do not need a tethered catalyst to facilitate a 

reaction, as in the case of the ROMP network This is a useful design heuristic that can 

enable designers of self-healing materials to tailor healing systems to get better 

mechanical properties. Recently self-healing materials have used a RANDOM reaction 

mechanism using two-component epoxies 16 instead of a catalytic system such as ROMP 

of DCPD. We believe that the RANDOM reaction processes of epoxy cross-linked 

networks could potentially offer superior performance as compared to a ROMP of DCPD 

reaction process. However there are other factors such as healing reservoir fraction in the 

matrix, density mismatches after reaction, and mixing efficiency that are critical to the 

self-healing process. We cannot predict these effects with our current simulations but 



 62 

under ideal conditions of complete mixing, equal reservoir volumes per healing effect 

needed, and further assuming that the healing process does not create internal stresses due 

to density mismatches the RANDOM reaction process though less mechanically strong at 

smaller degrees of reaction, reaches a given degree of reaction faster than a catalyst 

driven process and ultimately reaches a higher degree of reaction. All these factors lead 

us to conclude that a RANDOM reaction system would better serve a self-healing 

material. 

Based on our observations of these polymer networks we believe that the evolving 

network transitions from a fluid state to a rubber composite state, where rigid sections 

networks are held together by predominantly rubbery section of the matrix. As the 

reaction continues, the rubbery portions coalesce leaving a highly cross-linked material 

that behave in a non-affine manner to deformation albeit exhibiting an enthalpic 

response.  

Finally though we expected significantly different toughness values between 

ROMP and RANDOM networks (Figure 3.8) we find that results of the simulations do 

not support our hypothesis. This is an area that needs further study since toughness is 

strain rate dependent. We show in Chapter 6 expected toughness behavior based on the 

energy required to cleave the network using graph theory ideas. 

3.6 Methodology for Converting LJ Units to Real Units 

In Chapter 5 comparison of coarse-grained and atomistic simulation is shown and 

therefore transformations of LJ units to real units is essential. The 

! 

"  parameter represent 

the size of the molecule and can be obtained after mapping the pair correlation functions 
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(PCF) of the coarse-grained LJ system onto the all-atomistic DCPD center of mass PCF, 

as shown in Figure 3.17. 

The energy unit can be obtained by equating the heat of vaporization of an LJ 

liquid to that of the real DCPD system. The heat of vaporization of a LJ liquid was 

obtained by the application of the Clausius-Clapeyron equation as shown below to the LJ 

vapor liquid equilibrium (VLE) curves obtained from literature 17.  
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From this the heat of vaporization for LJ (12-6) liquids is calculated as below  

! 

"Hvap # 6.774$  (3.17) 
 

Comparing the LJ value of the heat of vaporization to real DCPD ΔΗvap = 50 

KJ/mol18, we get a value for the energy term ε = 738 J/mol  

For the distance term, one method of calculating the 

! 

"  is apparent in Figure 3.17, 

a second limit for the 

! 

"  using real density of DCPD at 300K : 1.05 g/cm3, and using 

eqn(3.18) gives a value of 5.37Å. The value of 5.85 Å is obtained by comparing PCFs of 

atomistic and coarse grained systems is a direct consequence of the lower simulated 

density of the atomistic system from Chapter 4 due to the presence of a small fraction of 

catalyst molecules.  

! 

"
LJ

=
N

A
"
real

M
DCPD

#
LJ

#
real

$ 

% 
& 

' 

( 
) 

3

 (3.18) 

 

! 

P
LJ

"
LJ

3

#
LJ

= P
real

"
real

3

#
real

 (3.19) 

 
From eqn(3.18) and (3.17) and experimentally obtained data give us σreal=5.37Å, 

εreal=738 J/mol respectively. Substitution of the scale factors for energy and distance in 
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eqn(3.19) then gives us a pressure/stress conversion factor of 78 MPa. Assuming the 

value of σreal = 5.85Å will give us a pressure conversion factor of 60 MPa. We therefore 

make an ad-hoc choice of 71 MPa for our pressure conversion factor. 

It is to be noted that the PCFs do not fully match up because of the selection of 

the operating temperature and density of the LJ system. A LJ (T = 0.9) implies a real 

temperature of ~ 798K. However it is to be noted that the parameters of the LJ system 

were carefully chosen so as to prevent local crystallization during the network formation 

stage necessitating the choice of the high temperature. Crystallization of the LJ particles 

manifests itself when the same simulations were conducted at (T = 0.35) corresponding to 

room temperature.  

These conversion factors are only valid for entropic deformations i.e. until a 

degree of reaction less the Poisson’s threshold (αP) since we neglect the contribution of 

bond deformations in these calculations. Accounting for bond deformation is complicated 

by the fact that in real systems generally a change in distance between two bonded 

monomer units is a complex interaction of angle deformation, dihedral deformation along 

with bond deformation. Our choice of the bond energy interaction parameter and angle 

interaction parameters in our simulations that envelops all these effects may be an 

extreme simplification however is justified by the observed entropic response. It is 

therefore instructive to understanding elastic response differences arising solely from 

topological changes in network structure.  

As a result in subsequent Chapters all LJ pressures will be converted to real units 

using a pressure conversion factor of 71 MPa if the response is primarily entropic and 

choose a conversion factor of 142 MPa if there is enthalpic or internal energy changes on 
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deformation. The choice of the conversion factor does not change the characteristics of 

the percolation phenomena we observe.  

3.7 Synopsis 

In practical terms cure of network polymers is a challenging area that involves 

explanation of various phenomena ranging from fluid mechanics to rubbery elasticity and 

glass theory concepts such as rigidity percolation. Any theory that attempts to realize real 

world behavior of such systems in-silico is constrained by time dependant phenomena 

and system size. In this Chapter we have shown some ideas that help classify the 

behavior of networks according to the degree of reaction.  

There also is the question on how to extrapolate coarse-grained simulation results 

obtained to real values. We show a simple procedure for these transformations in Section 

3.6. We will use this scaling factor to compare CG results with all atomistic modulus 

results from Chapter 4 in Chapter 5. 

In conclusion this Chapter provides a coarse-grained framework for exploring 

highly cross-linked networks for their mechanical properties. We can explore elastic 

phenomena and along with failure due to the specially developed bonding interactions 

that allow bonds to break smoothly unlike other potentials such as harmonic bonds. 
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3.8 Tables 

Table 3.1: Kinetic parameters fit values for eqn(3.5) and eqn(3.6) for coarse 
grained networks with angular constraints and without angular constraints  

Type 

! 

"
0
 

! 

"
1
 

! 

"
2
 

! 

"  

! 

"  
ROMP (no angles) 709(5.1) 1061.8(42) 13370(1378) 0.67 0.31 
RAND (no angles) 325(2.3) 1078.7(16) NA 1.0 NA 
ROMP (with angles) 2870(107) 3155.2(64) 153660(11605) 0.58 0.41 
RAND (with angles) 780(14) 2936.8(202) 31745(6281) 0.68 0.30 

RANDOM networks with no angular constrains do not exhibit a second time 
constant in the fit. This points to the fact that the reaction is unaffected by 
network formation. All other network forming systems are in some way affected 
by the evolving network. 

Table 3.2 Degree of reaction thresholds for Young's modulus and Poisson's ratio 
for various networks. 

System αY αP 
ROMP(no angles) 0.4 (at 20% strain) or 

0.8 (at 1% strain) 
0.8(at 20% strain) 

RANDOM (no angles) 0.4(at 20% strain) or 
0.8 (at 1%s train) 

0.8 (at 20% strain) 

ROMP (with angles) 0.3 0.4 
RANDOM (with angles) 0.4 0.55 

Simulated networks behave as 1) fluids α < αY and 2) as rubbers αY < α < αp and 
finally as 3) glassy solids α > αp. We find the introduction of angular constraints 
changes the threshold values αY and αp significantly. It is not known 
experimentally if any real polymer network formers reach the Poisson’s threshold 
αp. This is an unanswered question and needs further experimental investigation. 
In case 2) elastic properties are entropic in origin, in case 3) the elastic properties 
are enthalpic in origin, and involve change in internal energy in response to 
deformation.  
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3.9 Figures 

 

Figure 3.1: Molecular Structure of DCPD: red-

! 

sp
2
Carbon, green-

! 

sp
3
Carbon , C1-Carbon attached to 1 Hydrogen, C2 Carbon attached to 2 

Hydrogen. The bottom double bond is termed the norborene double bond 
and the top double bond is termed the cyclopentene double bond. 
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Figure 3.2: Schematic of the ROMP process for DCPD polymerization in 
atomistic and coarse grained detail. a) catalyst initiation  b) propagation 
initiation c) propagation reaction completed d) cross-link initiation e) 
cross-link completed. Pursuant to a proximity criteria reaction (b)  occurs 
with unit probability, reaction (d) takes place with probability 0.2. Refer 
text  
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a) b) 

c) 

Figure 3.3: Coarse grained simulation viewgraphs at 14%, 35% and 58% 
degree of reaction. Only the bonded network is shown for clarity  
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Figure 3.4: Morphology of Networks: plots of fraction of nodes with x 
number of bonds denoted as Qx versus degree of reaction a) ROMP 
networks without angular constraints b) RANDOM networks without 
angular constraints c) ROMP network with angular constraint and d) 
RANDOM network with angular constraint. The species Q0 Q1 Q2 Q3 Q4 
are beads with 0,1,2,3,4 bonds attached respectively. Additionally the Q1 
and Q3 species in ROMP networks are catalysts. 
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Figure 3.5: Kinetics for ROMP/RANDOM of networks generated using 
interaction models with and without angular constraints: a) Concentration 
of monomers versus time (LJ units), line is the curve fit to eqn(3.5) b) 
degree of reaction versus time (LJ units), lines are the curve fits to 
eqn(3.6). The fit parameters are tabulated in Table 3.1. 
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Figure 3.6: Behavior of ROMP network without angular constraints at (α 
= 0.4,0.6,0.9) versus strain a) stress σyy b) number density c) pair 
interaction energy d) total energy. Note that the oscillations of pair energy 
and number density are artifacts of the barostat. The number density, pair 
and the total energies do not change significantly with deformation for 
α<αY (αY~0.6). Only at α>αP (αP~0.8) do we see significant changes in 
number density, pair or total energies, however there is still a stress 
response without internal energy or density changes at αP>α>αY an 
example of which can be seen in the curves at α = 0.6 
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Figure 3.7: Behavior of RANDOM network without angular constraints at 
(α = 0.42,0.62,0.9) versus strain a) stress σyy b) number density c) pair 
interaction energy d) total energy. The oscillations of pair energy and 
number density are artifacts of the barostat. The number density, pair and 
the total energies do not change significantly with deformation for α<αY 

(αY~0.6). Only at α>αP (αP~0.8) do we see significant changes in number 
density, pair or total energies, however there is still a stress response 
without internal energy or density changes at αP>α>αY an example of 
which can be seen in the curves at α = 0.62 
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Figure 3.8: Toughness of networks without angular constraints. Both 
ROMP and RANDOM network seem to show a toughness percolation 
starting at a degree of reaction ~0.4.  



 75 

 

 

Figure 3.9: Behavior of ROMP network with angular constraints at (α = 
0.2,0.4,0.685) versus strain a) stress σyy b) number density c) pair 
interaction energy d) total energy. Note that the oscillations of pair energy 
and number density are artifacts of the barostat. The number density, pair 
and the total energies do not change significantly with deformation for 
α<αY (αY~0.3). Only at α>αP (αP~0.4) do we see significant changes in 
number density, pair or total energies, however there is still a stress 
response without internal energy or density changes at αP>α>αY an 
example of which can be seen in the curves at α = 0.4. The initial 0 strain 
σyy at high α is not zero since relaxation of x and z box dimension does 
not relax σyy. 
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Figure 3.10: Behavior of RANDOM network with angular constraints at (α = 
0.15,0.5,0.8) versus strain a) stress σyy b) number density c) pair interaction 
energy d) total energy. Note that the oscillations of pair energy and number 
density are artifacts of the barostat. The number density, pair and the total 
energies do not change significantly with deformation for α<αY (αY~0.4). Only 
at α>αP (αP~0.55) do we see significant changes in number density, pair or 
total energies, however there is still a stress response without internal energy or 
density changes at αP>α>αY an example of which can be seen in the curves at 
α = 0.5. The initial 0 strain σyy at high α is not zero since relaxation of x and z 
box dimension does not relax σyy. 
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Figure 3.11: Young’s modulus of networks without angular constraints at 
a) 1% strain b) 20% strain. The threshold for drastic change in modulus 
behavior is strain dependant. However the 1% extension seems to closely 
mirror  Poisson’s ratio behavior in Figure 3.13.  
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Figure 3.12: Young’s modulus of networks with angular constraints. The 
ROMP network appears to show a threshold (αY) starting at degree of 
reaction ~0.3, the RANDOM network shows threshold (αY) starting 
around 0.4.  
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Figure 3.13: Poisson's ratio for networks without angular constraints. 
There appears to be 2 regions separated at degree of reaction ~0.8. The 
first linear regime below a threshold (αP) = 0.8 suggests the response to 
deformation is predominantly entropic. However the response after the 0.8 
limit is predominantly enthalpic since the box is not able to retain a 
Poisson’s ratio of ~0.5 
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Figure 3.14: Poisson's ratio for network with angular constraints. The 
ROMP network appears to show a threshold αP around degree of reaction 
~0.4. The RANDOM network shows a threshold around 0.6. These 
thresholds are different from the threshold exhibit by the Young’s 
modulus curves.  
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Figure 3.15: Bulk modulus of ROMP and RANDOM networks without 
angular constraints. We find 2 linear regimes separated at degree of 
reaction ~0.8. This tends to correlate with the behavior of the Young’ 
modulus at low strain in Figure 3.11 and the Poisson’s ratio behavior in 
Figure 3.13. 
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Figure 3.16: Bulk modulus for ROMP and RANDOM networks with 
angular constraints. There are 2 linear regimes separated at a degree of 
reaction ~0.3 in both ROMP and RANDOM cases. These 2 regions 
appears to be separated at a threshold αY  
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Figure 3.17: DCPD center of mass pair correlation functions calculated 
using COMPASS potential using all atom representation of DCPD 
molecules equilibrated at 300K and 1 atmosphere pressure (details in 
Chapter 4) and LJ system: σ of the LJ scaled by 5.85 
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Figure 3.18: Behavior of a ROMP network with angular constraints at α = 0.35 
at neutral strain and 5% tensile strain versus equilibration time showing a) stress  
b) internal energy c) number density response. From eqn(3.15) the expected 
change in internal energy is 0.002 at 5% strain is difficult to discern from 
thermal noise. Density difference after deformation is negligible indicative of 
rubbery elasticity  
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Figure 3.19: ROMP network with angular constraints (α = 0.40) uniformly 
extended in the y dimension to a final strain of 2%. The subsequent 
recovery to regain zero strain is indicative of entropic response since a 
viscous liquid would retain strained state. 
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Chapter 4 
All Atomistic ROMP Catalyzed DCPD Networks 

4.1 Introduction 

In Chapter 3 we explored the formation of two different types of cross-linked 

networks and came to the conclusion that it is necessary to create fully atomistic 

representation of the molecular networks. The DCPD ROMP system has not been studied 

using simulations due to its complex chemistry and a myriad of possible reaction 

pathways. The plethora of ROMP catalysts now commercially available with different 

activities and selectivities make it even more challenging to study. Different ROMP 

catalysts lead to different network topologies and therefore different mechanical 

properties. Even more challenging is the extreme difficulty of experimentally 

characterizing the degree of reaction and correlating the degree of reaction with the 

mechanical properties. Recently some experimental studies of DCPD undergoing ROMP 

reactions looking at reaction extent by Raman scattering with concurrent mechanical 

property characterization by Brillouin scattering is being conducted at our research group. 

It is expected that these results in conjunction with this simulation effort will be able to 

characterize the DCPD ROMP system in new and more accurate ways. Chapter 5 

discusses some of these details.  

Generation of realistic molecular networks of cross-linked polymers remains a 

difficult proposition. Most simulation works in this area have so far been limited to 

topologically defined networks created to exact specifications so as to test current 
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theories of cross linked polymer behavior, particularly the rubbery characteristics of 

sparsely cross linked chains. Ring opening metathesis polymerization (ROMP) of 

dicyclopentadiene (DCPD) on the other hand results in highly cross-linked networks.  

Physical details about the topology remain extremely difficult to evaluate due to the 

stochastic nature of the reaction process and the inability of conventional techniques such 

as XRD to reveal anything more than nearest neighbor distances between individual 

species in the amorphous polymer matrix.  Experimental methods of exploring the 

network structure include FTIR and Raman spectroscopy1,2. Schaubroeck et al2 found 

unusual features in the in-situ FTIR spectra of poly-DCPD while undergoing reactions, 

making it difficult to determine the degree of cross-linking unambiguously. The Raman 

spectra for linear poly-DCPD show an atrophy of the peak associated with the 

cyclopentene double bond of DCPD, even though only the norborene ring was selectively 

reacting using a special ROMP catalyst.  Hence, when the norborene ring undergoes 

ROMP it causes shifts in FTIR/Raman peaks that coincide with those that would occur if 

the cyclopentene ring reacted.  However Raman spectra investigations of DCPD 

undergoing ROMP reactions by Schaubroeck show experimental evidence for the 

maximum degree of reaction attainable by the system to be around 0.6-0.7.  Our 

simulations of ROMP networks with angular constraints closely approximate the 

experimentally achieved extent of reaction, where a maximum degree of reaction of 0.7 

was attained. Beyond the aforementioned studies, no further experimental evidence for 

the actual extent of cross-linking could be found in the literature. The actual mechanism 

by which the reaction of the norborene site affects the unreacted cyclopentene site and 

vice versa is unknown. Our modeling approach for recreating DCPD network structures 
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is based on the knowledge concerning reaction mechanisms that is currently available in 

the literature. However, simulation easily allows us to explore possible scenarios and 

deduce the most likely mechanism based on how well experimental results are 

reproduced.   

To the best of our knowledge only recently have a few groups successfully 

implemented atomistic or united atom models of network polymers. Wu and Xu3 

constructed an all-atomistic model of epoxy network. Heine et al 4 have developed a 

coarse-grained model of end-linked polydimethylsiloxane networks using a recently 

developed united atom force field. Komarov et al5 used a coarse-grained approach for 

constructing epoxy networks using a hybrid Monte Carlo (MC) and molecular dynamics 

procedure. Their work is especially interesting in their attempt recast the coarse grained 

networks to an all atom representation.  

This chapter is arranged as follows. Section 4.2 discusses the force field details of 

the system, Section 4.3 explains the reaction procedure for forming networks, Section 4.4 

articulates the structural characteristics of the evolving network and mechanical testing 

procedure and results thereof is discussed in section 4.5. The stress, internal energy, and 

density response behavior of networks to applied strain is shown in Section 4.6. Section 

4.7 outlines some general conclusions. 

4.2 Force-field Discussion  

The all-atomistic force field for species in our simulation is the widely used 

class-II COMPASS potential.6  This potential is widely used in simulation research in 

commercial software such as Material Studio distributed by Accelrys Inc. The COMPASS 

force field was chosen due to the ability to describe the unique features of complex 
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organic molecules that responds to applied forces with a complex combination of bond, 

angular and dihedral deformations. Some of these features are currently unavailable in 

potentials such as Stillinger Weber (SW) or our in-house reactive FLX potential. Both 

these potentials are superior to the class-II COMPASS force field since they allow 

multiple coordination capability based on neighboring criteria. Even though such reactive 

potentials are invaluable for identifying the correct reaction mechanisms, as our initial 

studies showed, letting the ROMP process happen naturally would take a prohibitively 

long time to achieve any significant degrees of cure for DCPD in any reasonable time 

frame.  We therefore developed a simulation scheme described below, and based it on a 

simpler potential for which the correct angular, dihedral, bonding and improper 

interaction parameters for DCPD already existed. We note that as the network evolution 

of DCPD takes place there is a net conservation of double bonds and no atomic species 

actually changes its coordination number or species type, though the double bonded 

carbons on DCPD did change their bonded neighbors upon reaction. Effectively it means 

that there is no need to develop a potential that physically maps the transition from one 

coordination profile to its final reacted form. This is a major advantage since the 

molecular species remain the same.  Therefore pair, bond, dihedral and improper 

parameters do not change before and after a reaction in the DCPD ROMP system. With 

this intuition we designed a reaction code that updates the connectivity of the molecules 

in order to create the cross linked networks that were necessary for investigating the 

mechanical behavior of the network behavior at hand.  
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The functional form of the COMPASS potential is shown in eqn(4.1) through 

eqn(4.18). This potential has been implemented in the LAMMPS molecular dynamics 

engine 7. 
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! 

E
i
 is the improper term and 

! 

" ijkl  refers to the angle between the plane 

! 

ijk  and 

! 

jkl . Where

! 

"
o
 is the out of plane angle set by parameters in the COMPASS forcefield. 

Atom 

! 

j  is the central atom of the quadruplet and the 

! 

E
aa

 term takes the same coefficients 

as the 

! 

E
aat

 in the dihedral interactions. The parameters used for each interaction are listed 
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4.3 Network Generation Methodology 

In this chapter a new method to create DCPD networks using a stochastic process 

following the ROMP mechanism shown in Figure 4.1 is explored. There are two major 

reactions that define the network, a) the ROMP exchange on the norborene ring and b) 

the ROMP exchange on the cyclopentene group. Noting that there is a tremendous variety 

of configurations that can result from simple modifications of parameters, catalysts and 

other features of the DCPD ROMP system, a wide variety of network configurations can 

be created.  Some of the elements of the model implemented in our stochastic MD 

network generation scheme were chosen based on the best estimates of quantities that 

characterize the reacting molecular system.  Some of the assumptions may need further 

fine-tuning to come up with a better model of the final network structure.  However the 

absence of exact kinetic or structural data of the DCPD system during reaction, we 

believe that our method is a reasonable way of creating probable network configurations.  

Our approach uses a process that realistically recreates the random walk type reaction 

processes that the ROMP catalyst traces in space to create a putative polymer backbone. 

The key feature of the DCPD ROMP polymerization is the coupling between the double 

bonds in the rings of DCPD and the double bond carrying the Ruthenium catalyst, which 

results in opening of the ring and the transfer of Ruthenium to the newly attached DCPD 

entity, as shown in Figure 4.1. At the end of each reaction step the strained double bonds 

in the DCPD rings are able to achieve energetically more favorable/relaxed positions. We 

therefore work under the assumption that provided adequate spatial proximity between 

DCPD and catalyst all ROMP reactions are thermodynamically favorable and would 

occur given enough time. However we do note that this assumption need not always hold 
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true. Even though a ring opening releases strain on a particular molecule, it is possible 

that the new bond formed causes more strain on the backbone the molecule is connected 

to. 

To achieve thermodynamically valid network structures, we combine a Monte 

Carlo (MC) scheme stochastically scrutinizing the likelihood of double bond 

reconfiguration mechanisms to occur with MD simulations for post reaction relaxation, as 

described below.  This algorithm allows us to achieve a large degree of reaction in 

reasonable time. We validate the approach by comparing the structural features of the 

networks so created and their properties with known experimental quantities. 

The initial structure of the DCPD monomer was created using the Accelrys 

Discover software. The charge equilibration method 8 was used for a single molecule to 

determine the charge distribution. This was followed by energy minimization to get 

correct single molecule coordinates.  

The Grubb’s catalyst 9 is a complex molecule with large pendant ligands and a 

ruthenium center, as shown in the inset in Figure 4.1. An accurate representation of this 

molecule is computationally expensive along with the added requirement of procuring 

interaction potentials for ruthenium within the COMPASS force field. We therefore 

approximate the catalyst molecule by replacing the actual pendant group with a CH2 

group.  This reduces the number of atoms in the simulation and parameters for the atoms 

in the ethene molecule are readily availability in the COMPASS force field.  This 

simplification of the catalyst is justifiable given the steric search criteria we implemented 

in our MC scheme. 
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The first ROMP reaction between the ethene and a DCPD molecule creates two 

reaction centers that can independently propagate, effectively each CH2 in the ethene 

molecule behaves like a full molecule of Grubb’s catalyst. The reactions in our code 

solely depend on a steric factor and therefore our choice of an ethene molecule, though 

not completely realistic, still recreates the ROMP mechanism.  390 DCPD molecules 

along with 10 ethene molecules were tiled into a cubic box on a simple cubic lattice 

randomly to get a density of 0.7 g/cc. Each sample was then equilibrated for 25ps under 

isotropic NPT conditions P = 10 atm, T = 300 K and the time step is 2.0fs. Time step 

integration was done using a 4th order rRESPA algorithm 10 where the bond and dihedral 

interactions were integrated eight times, improper interactions four times, pair 

interactions two times, and the long range coulomb interactions integrated once per time-

step. Simulations were done using a Nose-Hoover barostat with pressure relaxation time 

of 1ps and Langevin thermostat with temperature relaxation time of 0.1ps to obtain the 

initial simulation box to begin the ROMP reaction process. The equilibrium density of the 

DCPD and ethene mixture is 0.92 g/cc which is close to the pure DCPD density at 

ambient conditions ~1.0 g/cc.  Simulations with pure DCPD show density of 0.97 g/cc. 

After the above equilibration of the DCPD and ethene mixture to generate the initial 

randomized simulation box we loop through a series of 3 steps to achieve network 

formation as follows.   

1. A 1.0ps MD simulation under NPT conditions P = 1.0 Atm, T = 300 K with a 

time step of 1.0fs integrated using the same 4th order rRESPA algorithm as the 

equilibration of the ethene and DCPD mixture as described above. The simulation 
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is run with Nose-Hoover barostat with pressure relaxation time of 1.0ps and 

Langevin thermostat with temperature relaxation time of 0.1ps simulations  

2. Each 1.0ps MD simulation is followed by an offline reaction step. The reaction 

step consists of checking distance of each unreacted DCPD double bond with all 

the dangling Ruthenium attached via double bonds to the extremities of polymeric 

chains. In the reaction process all pairs of double bonds are swapped if the 

reaction steric criterion as shown in Figure 4.2 is met where Rc = 6.0 Å. The 

bond-swapping algorithm chooses randomly 10% of possible swap sites that meet 

the steric criteria to implement the reaction step. We only allow up to a maximum 

of 10 bond exchanges per reaction step to cap excessive reactions occurring in the 

initial stages of the network evolution. After the bonds are swapped all angular, 

dihedral and improper interactions are updated to reflect the change in topology.  

And the new updated topology is then submitted to the energy minimization in 

step 3 

3. The highly non-equilibrium state of the bond, angular, dihedral and improper 

interactions is ameliorated using conjugate gradient energy minimization, which 

is terminated when ΔΕ/Ε < 10-5 to ensure stabilization of the structure.  The new 

energy minimized structure is then subjected to step 1 for further annealing to get 

better global structures and facilitate new encounters of reactive sites. 

We continue with steps 1, 2 and 3 until reactions plateau off.  This procedure requires 

exponentially larger amounts of time for same number of reactions as the reaction 

progresses. During this process we capture ensembles at differing degrees of reaction and 

subject them to mechanical test as discussed in Section 4. The reaction proximity 
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criterion was chosen based on the inter-molecular peak in the RDF that corresponds to 

sp2 carbon-carbon distance in pure DCPD, which is at 4.0 Å. We therefore chose the 

cutoff of 6.0 Å for reaction that corresponds to an average distance of 4.2 Å between 

double bonded carbons on adjacent molecules undergoing reactions (details in caption of 

Figure 4.2). This value is calculated by assuming the sp2 carbons undergoing ROMP on 

the separate molecules are equidistant from their counterparts in the other molecule as is 

explained graphically in Figure 4.2. 

With the reaction criteria described above, we obtained a maximum degree of 

reaction of 60%, as defined by the percentage of DCPD double bonds that underwent 

ROMP reaction. Changing the reaction cut-off to Rc = 6.5Å a maximum degree of 

reaction of 76% could be achieved in 2 of our 4 independent samples.  Since there is no 

biasing of ROMP reaction on the two DCPD double bonds, therefore both norborene and 

cyclopentene sites react with equal probably.  Four independent samples at each degree 

of reaction were created.  A typical reaction run needed about 4.5 million MD time steps 

and took 400 hours on 4 CPUs of the dual CPU Apple G5 Xserve cluster at CAC.  

4.3.1 Reaction Kinetics 

Figure 4.3a shows the degree of reaction (α) with time of a typical simulation. 

The line is the best fit to eqn(4.19).  

! 

" =1#$ exp(#t /%1) #& exp(#t /% 2)  (4.19) 
 

Where  

! 

" = 0.477 , 

! 

" = 0.481, 

! 

"
1

=17.065 ns and 

! 

"
2

= 0.374ns.  Two superimposed first-

order processes seem to fit the overall reaction behavior.  It reflects of a fast initial 

reaction when the diffusion of catalysts to the reaction sites is unhindered by the presence 
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of the backbone networks. At large reaction times the availability of the catalyst and 

reactive double bond sites is more rare and is manifest in the large time constant 

! 

"
1
.  

Figure 4.3b shows the fraction of different species that exist at any given degree 

of reaction. The monomers are shown as the Q0 i.e. monomers with no bonds, the Q1 and 

Q3 are monomers that are connected to catalysts and Q2 are molecules that have two 

bonds to other monomers and Q4 are molecules that are cross-linked.  As can be seen the 

concentration of the Q2 species goes through a maximum at a degree of reaction of about 

0.5 and the concentration of monomers is monotonically decreasing as they are consumed 

by reactions. The concentration of Q4 monotonically increases due to the consumption of 

Q2 monomers. As is implicit from the ROMP mechanism the sum of the fraction of Q1 

monomers and Q3 monomers is a constant equal to the fraction of catalyst particles in the 

simulation. 

4.4 Structural Characterization of DCPD Network 

In this section we explore the structural evolution of the DCPD network due to the 

ROMP reaction. In Section 4.4.1 the radial distributions of the center of mass of the 

DCPD molecule at different degrees of reaction, in Section 4.4.2 the bond angle 

distributions, and in Section 4.4.3 the changes in the dihedral angle distributions with 

reaction are discussed. 

4.4.1 Pair Correlation Functions of DCPD Centers of Mass 

Figure 4.4 shows the pair correlation functions (PCF) of the center of mass of 

DCPD as a function of the degree of reaction. As can be seen in the figure the peak 

positions do not shift significantly as the degree of reaction varies.  This is a 
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manifestation of the fact that the density of the evolving network is more or less constant 

at about 1.00 g/cc. This implies that conventional powder XRD studies to investigate the 

structure of DCPD networks will not be sensitive enough to discern the reaction 

signature.  

4.4.2 Bond Angle Distribution Functions  

Figure 4.5 shows the bond angle distribution functions associated with some 

relevant bonding configurations at 3 different degrees of reaction, 1%, 30%, and 70%. 

C1sp3 is the sp3 hybridized carbon with one hydrogen attached, C2sp3 is the sp3 hybridized 

carbon with two hydrogen attached and Csp2 is the double bonded carbon. For example in 

Figure 4.5a the bond angle distribution function is for the angle between atom types 

C1sp3-Csp2=Csp2, with Csp2 in the center, which is expected to be 120o according to its 

hybridization state. As we can see, the distribution shows at 1% degree of reaction a) one 

peak at 108o and b) a shoulder at 115o. The former is due to the strain in the norborene 

ring and the latter is indicative of the lesser strain of the cyclopentene ring. On the other 

hand we can see in Figure 4.5b that C2sp3-Csp2-Csp2 does not show two peaks because the 

molecule only contains one such angle on the cyclopentene ring and the peak is at 113o at 

1% degree of reaction. Therefore comparing Figure 4.5a and Figure 4.5b confirms that 

the norborene ring is more strained than the cyclopentene ring. After reaction, however, 

both C1sp3-Csp2-Csp2 and C2sp3-Csp2-Csp2 relax to their equilibrium values of 125o which 

the set C=C-C equilibrium angle value of ~125o in our simulations as can be seen in 

COMPASS potential parameters in Appendix A. Other bond angle distribution functions 

also provide clues, based on how they evolve at different degrees of reaction. For 
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example, changes in the distribution of angles centered on the double bonded carbons are 

indicative of the ring strain relaxation due to the ROMP reaction. 

4.4.3 Dihedral Angle Distribution Function 

Figure 4.6 shows the dihedral angle distribution of selected configurations around 

the C=C double bond. The DCPD molecules consists of only cis configurations around 

its double bonds since the dihedral angles are all centered around 0o. However as the 

ROMP reaction takes place the resultant C=C configurations that appears are cis and 

trans with equal probability.  This feature can be easily seen from Figure 4.6 a, b, and c. 

The appearance of the peaks around 180o is the signature of the trans conformation. The 

area under each curve around a particular angle yields the fraction of structural units in 

the corresponding conformation.  Accordingly, for a degree of reaction of 0.7, half of the 

reacted C=C groups are found in trans and the other half in cis conformation.  This effect 

is a consequence of the fact that the reaction algorithm does not discriminate between the 

cis and trans conformations. The effect of selecting only trans configurations as is the 

case with ROMP catalysis with first generation catalyst is an area that needs further 

investigation. We believe that the mechanical properties of networks do not significantly 

depend on the proportions of cis and trans, as both configurations are likely to respond 

similarly to applied stresses.  

4.5 Mechanical Properties 

In this section we discuss the mechanical testing procedure to calculate the 

Young’s modulus, Poisson’s ratio and Bulk modulus of the networks generated above. 
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4.5.1 Calculation of the Young’s Modulus and Poisson’s Ratio 

Measurement of Young’s modulus (E) was done using the following procedure. 

Each simulation box was equilibrated for 1000ps  anisotropically i.e. box dimensions in 

the x,y,z  direction are independently controlled to modulate pressure. Simulations were 

carried out with a time step of 1.0fs integrated using the 4th order rRESPA algorithm, as 

described in section 4.3 during network generation.  The Nose-Hoover barostat with a 

pressure relaxation time of 1.0ps combined with the Langevin thermostat with a 

temperature relaxation time of 0.1ps were used for creating NPT conditions Pxx = Pzz = 10 

Atm, Pyy = 10 Atm and T = 300K . At the end of this equilibration the NPT conditions 

were switched to Pxx = Pzz = 10 Atm, T = 300K  and the y-axis pressure control was 

switched off. The y-axis was then linearly strained by ±5% in two separate runs of 10ps 

each. The two resultant strained boxes were equilibrated for 1000ps at the final strained 

state. The Young’s modulus was calculated by the ratio of differences in stresses 

! 
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the simulation box under tension and compression respectively. The equilibrium stress 

! 

" yy

+  and 

! 

" yy

#  is calculated as the average over the final 100ps of 1000ps equilibration runs. 

The extension and compression stress in y-direction can be obtained from the average 

values of the dashed and dotted lines in Figure 4.10 respectively for various degrees of 

reaction. 

The Poisson’s ratio, ν, is also calculated by using equilibrium values of the other 

box dimensions that are relaxing due to the applied y direction strains. We note that at 

low degrees of reaction the box is quite fluid and fluctuations in extension ratios of the 

other box dimensions sometimes lead to spurious results in the Poisson’s ratio. When this 

occurs we check the volume of the simulation box to see if there is any significant density 

change during the process of tension and compression.  A negligible density change 

implies a Poisson’s ratio of 0.5 and this value is then used instead of the value calculated 

by 
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Where εT is the transverse strain for the tensile strain εY. Using eqn(4.21) we can then 

reframe Poisson’s ratio as 
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compression respectively, which can be obtained from the dashed and dotted lines plotted 

in Figure 4.13 respectively for various α. 

4.5.1.1 Young’s Modulus  

Figure 4.7 shows the Young’s modulus with respect to the degree of reaction. We 

can see that the mechanical percolation of the system occurs at a degree of reaction 

around 0.24-0.3. After this percolation threshold we find a monotonic increase in the 

Young’s modulus.  

4.5.1.2 Poisson’s Ratio 

Figure 4.8 shows the evolution of the Poisson’s ratio as a function of the degree of 

reaction. As can seen the Poisson’s ratio is approximately equal to 0.5 until percolation 

occurs at degree of reaction ~0.3 and then starts decreasing monotonically. 

4.5.2 Calculation of  Bulk modulus 

The bulk modulus (K) is calculated using the following procedure. We first 

equilibrate a simulation box by subjecting it to the Nose Hoover NPT ensemble with one 

degree of freedom, i.e., the dimensions of the box in the x, y and z dimensions are 

coupled to modulate hydrostatic pressure such that a compressive pressure of 10 

atmospheres and a temperature of 300 K is maintained. We allow equilibration for 

! 

100 ps 

using a time-step of 1.0fs using the same 4th order rRESPA integrator as described in the 

preceding Section 4.5.1 for the Young’s modulus. A pressure relaxation time of 100 fs 

and a temperature relaxation time of 10 fs were used. 

After this equilibration step the box was then subjected to a NVT ensemble with T 

= 300K  and further relaxed for 50 ps to get the initial box using a temperature relaxation 
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time of 10 fs. The box was then linearly strained in all 3 dimensions by 1% in expansion 

and compression in 1 ps the strained simulation box is then allowed to equilibrate for 

50ps under NVT conditions. The equilibrium values for pressure and volume are 

recorded by averaging the pressure and volume of the strained simulation box in the final 

10ps of the 50ps equilibration run. The bulk modulus can then be calculated from 

eqn(4.25) 

! 

K = "V
dP

dV
 (4.25) 

 
this can be reframed as shown below. 

! 

K = "
P

+
" P

"

V
+
"V

"( ) V
+ +V "( ) 2( )

 (4.26) 

 
Where 

! 

P
+ and 

! 

P
"  are the equilibrium hydrodynamic pressures at extension and 

compression and 

! 

V
+ and 

! 

V
"  are the equilibrium volume at extension and compression 

respectively. 

4.5.2.1 Bulk modulus 

Figure 4.9 shows the evolution of the bulk modulus of the system as a function of 

the degree of reaction. As expected, the bulk modulus increases monotonically with the 

degree of reaction as the network gains the connections.  However, there is no distinct 

threshold as is seen in the Young’s modulus data.  

4.6 Network Behavior with Applied Strain 

In this section we compare the behavior of the relaxed network against its 

behavior after applied compression and tension during mechanical tests. Please note that 

all solid lines represent the behavior of the unstrained configuration, dashed lines that at a 
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positive strain of 

! 

+5%  (extension in the y dimension) and dotted lines that at a negative 

strain of 5% (compression in the y dimension).  

4.6.1 Stress  

In Figure 4.11 we plot for various degrees of reaction the evolution of the normal 

stress in y-direction (

! 

" yy ) as a function of time in response to applied strains, i.e., after 

the simulation box was abruptly lengthened or shortened in the y-direction. We find that 

a noticeable stress response is only observed above a threshold of about 30% degree of 

cure. We use the stress response of the simulation boxes at different degrees of reaction 

in our calculation of the Young’s modulus as is explained in section 4.5.1 

4.6.2 Internal Energy 

Figure 4.11 shows the equilibrium values of internal energy change due to applied 

strain. We can see that there is only a small internal energy shift due to deformation for 

degrees of reaction of less than 40%.  This implies that observed modulus is dominated 

by entropic effects and internal energy change only plays a role at high degrees of 

reaction. A simple calculation of expected internal energy change due to strain can be 

calculated by  

! 

"#deform =
$ xxd%x
&N0

% x

' +
$ yyd%y
&N0

% y

' +
$ zzd%z
&N0

% z

'  (4.27) 

 
We can arrive at an approximate value of the potential energy change with 

deformation if we assume that 1) the stress σyy is a linear function of εy 2) stress σxx and 

σzz is maintained at 10 atm and 3) neglect atomic number density (ρN) changes during 

deformation. We can then rewrite eqn(4.27) as 
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! 

"#deform =
($ xx

o
+$ zz

o
)%t + ($ yy

o
+$ yy

f
)%y /2

&N
 (4.28) 

 
Where εy is the applied maximum y strain, εt is the resultant transverse strain. σx

o 

σy
o σz

o is the initial stress in x y and z direction respectively and σy
f is the final y stress 

after strain.  

Consider the case of DCPD at a degree of reaction α = 0.4. We can see from 

Figure 4.10 that the final stress after 5% tensile strain is σy
f ~250 Atm. Using this value 

in eqn(4.28) gives us a ΔΕdeform ~ 1 cal/mol. This energy difference is difficult to 

delineate from the thermal noise. Despite careful averaging of our data we could show no 

such systematic increase in comparison to values from the unstrained state. This however 

is inadequate proof of entropic effects we therefore based our conclusions by observing 

the change in density on deformation in the section below. This is analogous to our 

argument in Chapter 3 Section 3.5 where we show proof of entropic restoration from a 

strained state. 

4.6.3 Density 

Figure 4.12 shows the density evolution with time of equilibration at neutral, 5% 

tensile strain and 5% compression strain in the last 0.4 ns of the 1 ns equilibration. The 

average density of networks with degree of reaction of less than 40% is generally 

constant within thermal fluctuations upon deformation. This implies that the Poisson’s 

ratio is equal to 0.5 for ensembles with low degree of reaction < 40 % since the volume 

does not change. The threshold is significant since it marks the end of rubbery elasticity. 

Unlike the difficulty in discerning change in energy during deformation the density 

change is much easier to see. We can intuitively understand that a density change is 
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necessarily indicative of potential energy change since it means that relative position of 

atoms changes which causes a change in potential energy or in our case where the 

temperature is controlled, a change in total energy. 

4.6.4 Simulation Box Behavior  

Figure 4.13 shows how the other two dimension of simulation box behave after 

the applied strain as evidenced by the cross section area Axz. We use the cross sectional 

area behavior in our calculation of the Poisson’s ratio as is mentioned in section 4.5.1  

4.7 Conclusions 

We describe a novel reactive MD simulation method capable of creating 

amorphous networks. Using this methodology we were capable of generating organic 

molecular networks in which the chemistry of the constituent reactions is known and can 

be applied to systems such as epoxies and other condensation polymers that crosslink. 

The all-atomistic DCPD networks can now be used for a variety of tests such as diffusion 

of small molecules, heat transfer coefficients and other transport properties.  

The ROMP reaction of DCPD is capped at a degree of reaction of about 0.7. In 

our reaction process the reaction of DCPD via ROMP causes rearrangement of double 

bonds and associated dihedrals and after reaction, we show the formation of trans 

compounds around double bonds when initially only cis configuration exist in pure 

DCPD. First order kinetics explain the reaction process and is broadly similar to results 

obtained from experiment.  

As discussed in Chapter 3 there are 3 distinct stages of cure delimited by two 

thresholds the Young’s modulus threshold αY occurs at degree of reaction ~0.3 and the 
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Poisson’s ratio threshold αP occurs at degree of reaction ~0.4, based on our best 

estimates. These values compare very well with the same thresholds for ROMP networks 

with angular constraints where these values are 0.3 and 0.4 respectively. Based on these 

thresholds we can then state that the networks are fluid like at degrees of reaction < 0.3 

and rubber like at degrees of reaction between 0.3-0.4 and glass like at degrees of 

reaction > 0.4.  

Fundamentally there needs to be an effort to calculate the values of these 

thresholds in a general case. The values of the Young’s or Shear modulus between αY 

and αP is proportional to temperature, whereas above αP these moduli are inversely 

proportional due to softening of molecular force factors with increase in temperature.  

There has been inadequate attention paid to entropic effects of elastic properties 

of network polymer with the degree of cure. We show here evidence of such effects at 

different thresholds. These effects are fundamental to the understanding and design of 

molecular networks and their applications. 
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4.8  Figures 

 

Figure 4.1: ROMP of DCPD reaction. In our simulations the Ruthenium 
based ligand shown in red is replaced by a CH2 group. This group is then 
artificially used as the living tip catalyst that traces the network backbone. 
The actual catalyst molecule is shown in the inset (Ruthenium is the blue 
atom) a) shows the attack of catalyst on norborene double bond, b) shows 
configuration after ring strain release c) shows attack of catalyst on 
cyclopentene ring and d) shows configuration after cyclopentene ring strain 
relaxation.  
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Figure 4.2: DCPD ROMP reaction steric criterion. The proximity criteria allows reaction 
as shown in the diagram above where Rc = 6.0Å. The reaction proximity criteria used is 
chosen so that the maximum degree of reaction (α) ~ 0.7. Alternatively choosing Rc = 
5.5Å capped reactions to α~0.4 which is too low. Higher values of Rc

 such as Rc = 7.0Å 
resulted in higher α but the resultant networks had high internal strain. The RDF of sp2C 
shows an intermolecular peak at 4.0Å. If we assume ac = bd (or bc = ad in the other case) 
then Rc = 6.0 implies ac = bd = 4.2Å. This is slightly larger than the intermolecular peak 
distance and enables a fast reaction rate. Reaction rate drop considerably as we reduce Rc 
value. 
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Figure 4.3:  Kinetics of atomistic simulations a) degree of reaction vs. time 
b) component fraction vs. degree of reaction 
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Figure 4.4: Pair correlation functions of the centers of mass of the reacting 
DCPD system for different degrees of reaction. We note that these 
correlations functions do not significantly differ as the reaction progresses. 
This is reflected in the relatively constant density of network during 
ROMP of DCPD. 
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Figure 4.5: Bond angle distribution functions of selected angles (α=1%, 30%, and 70%) 
that change significantly after the ROMP of the norborene or cyclopentene double 
bond. a) C1-sp2C-sp2C: there are 3 such angles, the shoulder at 115o is due to the angle 
on the cyclopentene. b) C2-sp2C-sp2C: only 1 such angle in DCPD c) C2-C1-sp2C: only 
one such angle in DCPD. d) key for part a b and c: The red atoms are sp2 carbon. The 
bottom double bond is on the norborene ring and the top double bond is on the 
cyclopentene ring. The sp3C1 is a carbon with one hydrogen attached and sp3C2 is a 
carbon with two hydrogen attached. This key is also used in Figure 4.6. he effect of 
ROMP reaction on norborene is seen in plot (a) and (c), and effect of ROMP on 
cyclopentene is seen in plots (a) and (b). The evolution of peaks reflects generation of 
equilibrium values of respective angles due to ring strain release.  
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Figure 4.6: Dihedral angle distribution of groups around C=C double bond showing 
transformations due to the effect of the ROMP reaction. Especially important are the 
part a) C1-sp2C=sp2C-C1: one such dihedral in DCPD on norborene ring b) C1-
sp2C=sp2C-C2: one such dihedral on cyclopentene ring and c) H-sp2C=sp2C-H: 2 
dihedrals one on norborene and one on cyclopentene ring that are dihedrals where the 
C=C is the central. Pure DCPD is 100% cis configuration as can be seen from the DCPD 
molecule. As the system undergoes ROMP the peaks appear at 180o that is the signature 
of the trans configuration. The reaction process converts the initial cis configuration to 
trans configuration with 50% probability.  
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Figure 4.7: Young’s modulus for atomistic simulations. We note that the 
Young’s modulus threshold αP is somewhere between 0.20-0.30. 
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Figure 4.8: Poisson’s ratio for atomistic simulations. The Poisson’s ratio 
threshold is difficult to predict due to the noise and probably appears at 
degree of reaction ~0.4 as can be confirmed from absence of change in 
internal energy and negligible density change up to this limit from Figure 
4.11.and 4.12 respectively. 
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Figure 4.9: Bulk modulus of atomistic simulations versus α. The modulus 
exhibits linearity with α and does not seem to show characteristic 
thresholds apparent in the Young’s modulus plot or the Poisson’s ratio 
plot.  



 120 

 

 

Figure 4.10: Behavior of stress σyy (atmospheres) versus time for the last 0.4 ns of 
equilibration for 3 strained states a) neutral in solid red line b) 5% uniaxial extension 
by dashed green line c) 5% uniaxial compression by dotted blue line. Each sub graph 
is plotted at different α as shown in their respective titles (10%, 20%, 30 %, 40%, 
50% and 60%). Significant differences in σyy due to deformation is apparent at α = 
40% and there is evidence of the same at α=30%. This implies that there is a 
modulus for networks α ~0.30.  
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Figure 4.11: Behavior of internal energy 

! 

"E (kcal /mol) versus time (ns) for the 
last 0.4ns of the 1ns equilibration for 3 strain states a) neutral in solid red line b) 
5% uniaxial extension by dashed green line c) 5% uniaxial compression by dotted 
blue line. Each sub graph is plotted at different α as shown in their title  (10%, 
20%, 30 %, 40%, 50% and 60%). We note that the change in internal energy is 
negligible for degree of reaction < 40%. This implies that the Young’s modulus is 
entropic until this limit. 
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Figure 4.12: Behavior of density ρ(g/cc) versus time for the last 0.4ns of the 1.0ns 
equilibration for 3 strained states a) neutral in solid red line b) 5% uniaxial 
extension by dashed green line c) 5% uniaxial compression by dotted blue line. 
Each sub graph is plotted at different α as shown in their respective titles (10%, 
20%, 30 %, 40%, 50% and 60%). Significant differences in density due to 
deformation is apparent at α = 50%. We note that the density of the system is 
conserved for degrees of reaction ≤40%. This leads us to believe that the response is 
enthalpic after threshold of αP=α~0.40.  
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Figure 4.13: Behavior of 

! 

Area
xz
(A

o
" A

o
) , for the last 0.3 ns of equilibration for 3 

strained states a) neutral in solid red line b) 5% uniaxial extension by dashed green 
line c) 5% uniaxial compression by dotted blue line. These results are used to 
calculate the Poisson’s ratio. We note that the drift in initial cross sectional area in 
α = 10%, 20% is indicative that the networks are fluid at these α. 
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Chapter 5 
 Comparisons between Simulations and Experimental Data 

5.1 Introduction 

In Chapter 3 we derive the factors to convert between LJ units and physical units.  

We now use these conversion factors to compare the results obtained using the coarse-

grained model with those resulting from our atomistic reactive MD simulations.  

Consistency among the findings from two different numerical approaches can be viewed 

as a means for initial validation of these methodologies. In Section 5.3 we compare the 

reaction kinetics and maximum degree of cure values from atomistic, coarse-grained and 

experimental results. In Section 5.4 we compare the Raman spectra from first principles 

calculation with experimental data. In Section 5.5 we compare extent of reaction as is 

calculated from differential scanning calorimetry (DSC) measurements of with our 

simulation results. Section 5.6 concludes this chapter. 

5.2 Coarse-grained Model Validation via Atomistic Simulations  

In the following we show how coarse-graining of the atomistic simulations 

replicates the key features of the ROMP system.  Coarse-grained simulations can be used 

at lesser computational cost and can therefore be used to efficiently scan broad parameter 

spaces.  CG simulations can also provide critical input for atomistic simulation, such as 

the possible maximum extent of the degree of reaction under various conditions.  In 

Section 5.2.1 we explore the mechanical behaviors of various simulated ROMP networks. 
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5.2.1 Mechanical Behaviors  

Figure 5.1 and Figure 5.2 show the Young’s modulus and Poisson’s ratio vs. the 

degree of reaction of networks generated using fully atomistic simulations, coarse-

grained simulations based on an interaction model with angular constraints, and coarse-

grained simulations without angular constraints, all of the ROMP process.  The moduli 

derived from both CG approaches are converted to real units using a factor of 71 

MPa/(LJ unit) as discussed in Chapter 3.  

Note that degrees of reaction larger than 0.6 for atomistic simulations required a 

larger proximity of 6.5Å cut-off distance for reactions to occur.  These data are shown for 

completeness sake.  We confine our analysis to the degree of reaction range below ~2/3, 

which the physically more meaningful as the value coincides with the experimentally 

observed maximum degree of cure.  This has also been the guiding principle for our 

choice of the reaction cutoff in fully atomistic reactive MD simulations.  

While the atomistic simulations and CG simulations with angular constraints yield 

modulus data that are in good agreement, the CG simulations without angular constraints 

shows the onset of mechanical rigidity at ~ 0.6 degree of reaction.  Apparently, the 

introduction of angular constraints into the interaction model shifts the percolation 

threshold to ~ 0.3. In conclusion, we believe that coarse-graining of atomistic simulations 

cannot be as a simple as a bond only model and still capture essential percolation 

behavior of DCPD networks. 
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5.3 Comparison of Reaction Kinetics  

In Chapter 3 and Chapter 4 we posit that the reaction processes simulated using 

fully atomistic and coarse-grained simulations can be described by a rate law consisting 

of the linear combination of two exponentials.  The degree of reaction (α) is well fit by 

the rate expression below 

! 

" =1#$ exp(#t /%1) #& exp(#t /% 2)  (5.1) 
 

 Figure 5.3 shows the experimental 1, scaled fully atomistic reactive MD and 

scaled angular constraint simulation degree of reaction versus time. The lines represent 

best fits of the data using eqn(5.1), given above.  The scaling factors and parameters for 

the curve fit are tabulated in Table 5.1. The time scaling factors for atomistic and coarse 

grained simulations were chosen such that the time required by simulations to achieve α 

= 0.6 was equal to the real time required to reach maximum degree of reaction ~0.6 as in 

observed in experiments.  

Given the close agreements of the degree of reaction versus time curves of 

simulations, especially all atomistic simulations, and experiments as can be seen in 

Figure 5.3, we can state that both the experiments and the simulations follow similar 

kinetics. This combined with the replication of reaction mechanism gives a high degree 

of confidence that our simulation effort generates realistic network structure.  

We further note that the ratio of the first and second time constants is of great 

import, we stated in Chapter 3 and 4 that the smaller time constant is a reflection of the 

reaction kinetic behavior at low degrees of reaction where collisions between catalysts 

and free sites takes place unimpeded by the nascent network structure. On the other hand 

the large time constant in the degree of reaction expression is the embodiment of the 
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difficulty of reaction at large degrees of reaction where the catalysts finds it difficult to 

find neighboring unreacted double bonds. This occurs partly because of the tethered state 

of the catalyst that in percolated network limits its diffusion, and partly because of the 

lower diffusion of reaction sites to these catalysts due to impediments imposed by the 

percolated network. In any case, we find that the comparison ratio of the time constants 

from the simulations and experiment is good and therefore the major physical features 

that govern network formation is replicated. 

5.4 Experimental and Simulation Raman Spectra Comparison  

Since many experimental investigations of the ROMP of DCPD involve Raman 

spectroscopy, there was interest in comparing the putative Raman spectra of the evolving 

network structure derived from combined DFT calculations and reactive MD simulations 

with these experimental results. The DFT calculations of Raman spectra of different 

molecular groups that exist at intermediate degrees of cure were carried out in 

collaboration with Changgua Zhen (Materials Science and Engineering, University of 

Michigan) a member of Prof. John Kieffer’s research group. 

The following section outlines the method of generating the Raman spectra of 

structures generated with our MD simulations at various α. We first generate Raman 

spectra of component molecules that occur within networks generated by the reactive MD 

simulation using DFT calculations and then compute linear combinations of these spectra 

in the proportion of the occurrence of the different structural motifs. Figure 5.4b shows us 

the small fragment molecules that make up the library of all possible molecules formed 

via ROMP.  The methodology for component Raman spectra is explained in Section 5.4.1 
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and the procedure for using the component Raman spectra in order to generate the 

network Raman spectra at different α is explained in Section 5.4.2.  

5.4.1 Component Raman Spectra Generation Methodology 

As discussed in Chapter 2 Section 2.2 we use DFT calculations to investigate 

properties of DCPD analogues. These DFT simulations also yield Raman spectra along 

with other salient vibrational spectra of molecules, such as IR and NMR spectra. Since 

many experimental investigators use Raman spectroscopy to explain the ROMP of DCPD 

12 we felt it would be instructive to generate the same for our simulation systems. 

Calculating Raman spectra of component molecules using DFT overestimates the peak 

frequencies to a degree that depends on the type of functional used. This overestimation 

occurs due to the anharmonicity of a vibration and is usually corrected using an empirical 

correction factor. For the B3LYP/6-31G(d) functional in our DFT simulations. This 

correction factor is 0.961 34 

Figure 5.4a shows the resultant Raman spectra for the candidate molecules shown 

in Figure 5.4b. We restrict our attention to the 1550-1700 (1/cm) frequency range. This 

frequency range is populated with several peaks that have been assigned to the stretching 

mode of various C=C bonds.  The strained double bonds exhibit a lower C=C stretching 

frequency that then unstrained C=C. This can be easily understood since an unstrained 

C=C bond oscillates around its bond energy minima and consequently experiences the 

largest potential curvature, however a strained bond experiences a curvature of potential 

that is smaller than the curvature at the minima and hence oscillates at a lower frequency. 

The ROMP reaction releases the ring strain on its constituent double bonds and the 
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release of ring strain shifts the oscillations from their strained positions to the equilibrium 

position around the bond energy minima.  

Consequently the strained norborene double bond stretching peak initially at 

1592(1/cm) and the strained cyclo-pentene double bond stretching peak initially at 

1634(1/cm) is shifted to their unstrained stretching frequency of 1660(1/cm) due to the 

ROMP reaction .  

The unstrained C=C stretching frequency closely resembles the ethene double 

bond stretching peak which in our simulations occurs at 1653(/1/cm). The slight 

discrepancy is due to the differences in effective mass of the carbons around the 

networked double bonds. In ethene the carbons are connected to two hydrogens and real 

molecular networks they are generally connected to one carbon and one hydrogen, which 

changes their effective mass and hence the frequency of vibration. 

5.4.2  Simulated Raman Spectra 

In this section we discuss generation of small molecule DFT based Raman 

spectra. This powerful technique cannot be used for large systems due to large 

computational overheads required. Raman spectra of large molecules can be 

approximated by the linear combination of its components, weighting the individual peak 

heights with component concentrations. This is especially applicable in selected 

frequency ranges if there is no interference of the peaks in question by other peaks in the 

same range. In our case we find that the frequency range of interest is 1550-1700(1/cm) 

and is dominated by the stretching modes of C=C. From our reactive MD simulation as 

described in Chapter 4 we have an exact picture of how many C=C bonds of each type, 

whether norborene or cyclopentene, are present in the system at any point in the process. 
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This insight can be used to formulate the requisite linear combination equation that gives 

us the Raman spectra at any degree of reaction as is proposed below The molecules a, b, 

c, and d shown in Figure 5.4b can be understood to have the following properties.  

Molecule a is an unreacted DCPD molecule, b is a molecule with the norborene ring 

reacted, c is a molecule with the cyclopentene ring reacted, and molecule d is a moleule 

with both rings reacted. 
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Where α is the degree of reaction, 

! 

a
o
(") is the fraction of unreacted DCPD at a degree of 

reaction 

! 

" , 

! 

a
1
(")  is the fraction of  monomers with only the norborene ring reacted, 

! 

a
2
(") is the fraction of monomers with only cyclopentene reacted and 

! 

a
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fraction of monomers with both sites reacted. 
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the Raman spectra of molecules a, b, c, and d, respectively. In our simulations both the 

norborene ring and the cyclopentene ring react with equal probability as can be seen in 

Figure 5.5b and therefore we can recast eqn(5.2) as  

! 
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Where 

! 

a
s
(") is the fraction of monomers with only one of their double bonds 

reacted. The reacted molecules b, c, and d are species that occur in our simulated 

configuration with one important caveat: they are connected to other monomers and not 

capped off by the CH2 groups as assumed for the DFT calculations. We therefore have to 

subtract the frequency peaks due to double bonded CH2 in the spectrum. We propose that 

this peak is similar to the shifted ethene stretching peak also shown in Figure 5.4a. A 
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straightforward subtraction is not the ideal solution since it neglects molecular cross-

section and density details we use a pre-factor to multiply the ethene CH2=CH2 stretching 

intensity before subtracting it from component Raman spectra of molecules b, c, and d. 

Therefore we propose  

! 

Rnb _ rxt (" ) = Rb (v) # fRethene (")  (5.4) 
 

! 

Rcp _ rxt (") = Rc (v) # fRethene (" )  (5.5) 
 

! 

Rboth _ rxt (") = Rd (v) # 2 fRethene (")  (5.6) 
 

Where f = 5.0 and Raman spectra of the components along with that of the ethene 

molecule is given in Figure 5.4a. Figure 5.6 shows the simulated Raman spectra of the 

DCPD system for our reactive MD simulation and Figure 5.7 shows experimental results 

from Schaubroeck et al. 1. The simulated Raman spectra reproduce the transformation 

peak shifts observed in experimental work,21 except for the development of a shoulder on 

the peak assigned to the C=C bond in cyclopentene ring.  The emergence of this shoulder 

has been explained as due to the relaxation of the cyclopentene ring upon opening of the 

norborene ring.  DFT calculations are seemingly not sensitive enough to pick up this 

nuance. 

5.5 Simulated Extent of Reaction via Comparison to DSC Data and Raman Data 

DSC is a popular measure for determining the progress of reactions in many 

chemical systems that are either endothermic or exothermic. The key information is the 

heat of reaction of the various reactions that take place during the ROMP process. Figure 

5.8 shows the reaction pathway of DCPD and the resultant structures that are formed. 



 134 

In order to calculate the heat of reaction at various degrees of cure we use DFT calculated 

total ground state energies of component molecules to calculate the associated heat of 

reaction of ROMP of the norborene and cyclo-pentene rings, as discussed in Chapter 2.  

The heat of reaction for the ROMP of the norborene site of DCPD, the cyclo-

pentene site, and both sites combined is equivalent to the ring strain energies as tabulated 

in Chapter 2. We use these values to replicate DSC measurements in a recent work by 

Mauldin et. Al.,5 which describes measurements of the extent of reaction of the DCPD 

system using DSC.  The degree of reaction is defined as 

! 

"(t) =
H(t)

H
R

, (5.7) 

 
where H(t) is the total heat evolved during time t  and HR is the combined heat of reaction 

of norborene and cyclo-pentene C=C bonds reacting via the ROMP.  This degree of 

reaction is at variance with our definition of the degree of reaction α(t) defined by 

eqn(5.8), and corresponds to the fraction of double bonds reacted. However we can 

convert the degree of reaction observed in our simulations to experimentally observable 

DSC calculated degree of reaction by using eqn(5.9). 

! 

"(t) =
("nb +"cp + 2"R )

2
 (5.8) 

 

! 

"(t) =
(#nbHnb +#cpHcp +#RHR )

HR

 
(5.9) 

 
Where αnb, αcp and αR are the fractions of b, c, and d species.  Hnb, Hcp and HR are the 

heats of reaction of the 3 reactions as described above. Table 2.2 and Table 2.3 shows the 

values of the heats of reaction of these reactions for exo and endo DCPD respectively.  
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It is immediately obvious from the magnitudes of Hnb,, Hcp,, HR  that DSC 

measurements of the degree of reaction cannot capture the cross-linking reaction process 

adequately. The cross-linking reaction releases only miniscule amount of heat or even 

consumes heat liberated for the endo-DCPD system. For the exo-DCPD system the heat 

released by the cyclopentene group is smaller than the norborene group and one cannot 

decipher what double bond has reacted based on the heat generated as the reaction 

progresses.  

In trying to model the DSC data from reference 5 we assume that the exo-DCPD 

plausibly follows only the all-exothermic path to the final cross-linked state, which 

corresponds to a pathway of reaction 1 followed by reaction 3, as described in Figure 5.8 

then (5.9) reduces to  

! 

"(t) =
(#

nb
H

nb
+#

R
H

R
)

H
R

 (5.10) 

 
This is because we assume that only the norborene reaction releases heat and the cyclo-

pentene reaction only releases heat if the norborene ring on its monomer is reacted, and 

that combined heat of reaction is assimilated by the HR term. Based on this 

transformation we plot 

! 

"(t) with 

! 

"(t)  for our atomistic simulations in Figure 5.9 for the 

exo-DCPD system. We can see that the final data point observed by DSC measurements 5 

coincides with our simulated DSC measurements at a maximum degree of cure of 0.6377. 

However this analysis is based on a set of very restrictive assumptions and needs further 

experimental verification. We believe that describing the degree of reaction as suggested 

in eqn(5.9) is inadequate and experimental characterization techniques such as analyzing 

Raman spectra are superior since they directly probe the molecular transformations that 
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take place. Figure 5.3 show experimental results 1 and our simulation results for the 

kinetics of reaction.  

One of the critical parameters of our reactive MD simulation is the reaction cut-

off distance, which was chosen based on the criteria of reaching experimentally observed 

maximum degree of reaction of 60%. A reaction cut-off distance greater than 6.0 Å 

resulted in conversion greater than 60% and vice versa in computationally accessible 

times of < 500 hours given system sizes under consideration. The greater than 60% 

conversion shown in some graphs in this work were achieved after resetting the reaction 

cut-offs to 6.5 Å however we believe these degrees of reaction are merely of academic 

interest and is unlikely to occur naturally with current generation catalysts.  

5.6  Conclusions 

We show that the simulations reproduce experimental observations in many key 

areas such as reaction kinetics, maximum extent of reaction and the evolution of Raman 

spectra. We hope shortly that we will be able to validate the modulus simulation results 

after experimental investigation currently underway using Brillouin spectroscopy is 

completed.  

As a result of this simulation work it is now possible to predict the mechanical 

performance of new generation catalysts provided models of how they react to form 

networks is made available. This allows us to design the network structure in unique 

ways, drive experimental work and perhaps as methods increase in sophistication 

subsume them completely. Also with such success we can now think of creating other 

amorphous network polymers such as epoxies and explore their mechanical properties 

with a great degree of flexibility.  



 137 

5.7 Tables 

Table 5.1:Scaling factors and other details of the fit to eqn(5.1). 

System Time Scale 

! 

"  

! 

"  

! 

"1 (min) 

! 

" 2 (min)  

! 

"
1

"
2

 

Experimental 1.0 0.54 0.46 11358 335 34 
Atomistic 
Simulation 

1100 
(min/ns) 

0.5 0.5 19129 412 46 

Angular ROMP 
Simulation 

0.132 
(min/

! 

" ) 
0.42 0.58 20283 416 49 

The ratio τ1/τ2 is a good indicator that simulations and experiments are kinetically 
comparable even though the simulations acheive α = 0.6 in a simulation time of 5.0ns 
whereas in reality this process takes a few hours. We can see that the 2 simulation 
techniques are roughly comparable, however there is a significant difference in the ratio. 
This means that our simulations do not capture all the features that govern the kinetics 
present in the real system.  
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5.8 Figures: 
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Figure 5.1:Young’s modulus of atomistic, angular coarse grained and non-
angular coarse-grained networks. The ROMP network with angular 
constraints shows good agreement with our all atomistic simulations. The 
ROMP networks with no angular constraints show drastically different 
behavior. 
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Figure 5.2: Poisson’s ratio of atomistic, angular coarse grained and non-
angular  coarse grained networks 
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Figure 5.6: Simulated Raman spectra: MD reaction model and DFT. The 
legend represents the degree of reaction. The simulated Raman spectra 
reproduces the key features of the experimental observations. Increase in 
the 1660 peak with concurrent decrease in the peaks at 1635 and 1593. A 
shoulder at 1650 is also discernable at low degrees of reaction.  
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Figure 5.7: Experimental Raman spectra of DCPD undergoing ROMP 
Schaubroeck et al1. We see increase in the 1665 peak with concurrent 
decrease in 1570 peak along with a decrease in 1617 peak.  
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Figure 5.8: Reaction Pathways of DCPD undergoing ROMP with ethene. 
Reaction (1) is the norborene ring opening, Reaction (2) is the cyclo-
pentene ring opening. Reaction (3) is the cyclo-pentene ring opening after 
reaction 1 and Reaction (4) is the norborene ring opening after reaction 
(2).  
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Figure 5.9: DSC calculated degree of reaction (y-axis) vs. actual degree of 
reaction (x-axis). The simulation prediction of the DSC maximum extent 
of reaction is 0.65 is closed to what is measured in experiments. 
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Chapter 6 
Graph Theory Characterization of Networks 

6.1 Introduction 

In Chapters 3 and 4 we reveal the importance of structure for the mechanical 

behavior of amorphous polymer networks, separate from the strengths of bonds, bond 

angles and dihedral angles and other short range interactions that are commonly assumed 

to be responsible for the mechanical properties in most materials. In Chapter 3 and 

Chapter 4 we show the modulus behavior below the Poisson threshold (αP) is primarily 

due to entropic contributions. Therefore networks behave more like polymers rather than 

ionic glasses under this limit. 

Amorphous materials such as cross-linked polymer networks are fundamentally 

different from other amorphous materials such as covalent, ionic, or metallic glasses, 

which generally exhibit different bonding topology.  We posit that cross-linked polymer 

networks derive their elastic behavior from their specific topology of their connections. 

Below the Poisson’s threshold, network polymers retain the ability to reorient themselves 

under deformation without changing internal energy and density. This ability is lost 

above the Poisson’s threshold and can be seen in either the increase in internal energy, a 

feature that is hard to measure for small strains, or by the more easily observed decrease 

in density with deformation. Below αP the form of interaction potentials of bonds, 

dihedrals, and other non-pair interactions does not play a role in elastic behavior, what is 

more important is the geometric constraints imposed by such interactions. Rubbery 
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elasticity is due to a change in configurational states available to the network after 

deformation  

Many simulations and experiments of glasses report the bulk modulus, however 

such measurements do not take into account regimes where the glasses behave like 

polymers since such behavior is generally not expected. These phenomena is however 

critical in the evolution of elastic properties of polymers. We note that bulk modulus is 

quantity that necessarily probes the strength of particle interactions due to its isotropic 

nature. Bulk modulus measurements always result in changes in density and internal 

energy unlike a Young’s modulus measurement where deformations can occur with no 

change in density or internal energy In Uniaxial measurements such as the Young’s 

modulus test that we use to probe mechanical properties allow transverse axes 

rearrangements. This allows response to deformation conserving internal energy and 

therefore density. Most physical deformations are not isotropic in nature and therefore 

Young’s modulus is a better indicator of material properties than the bulk modulus.  

Here we explore whether the key difference between amorphous network 

polymers and ionic glasses can be understood through their representation in graph theory 

terms. Consider a covalent network polymer made up of atoms bonded to each other. 

Each atom can be thought of as a node in the network and each constraint a unit value in 

the so-called adjacency matrix reflecting the connection between two nodes.  

For example if atom i is connected to atom j with a bond then we can think of an 

interaction adjacency matrix 

! 

A  such that 

! 

Aij =1; (6.1) 
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otherwise, if particles i and j are not connected, this matrix element is zero.  Similarly if 3 

nodes i-j-k form an angle,  

! 

A
ik

=1 (6.2) 
 

Since we have already included the bonding interaction i-j and j-k in eqn(6.1) we have 

also completely described the angular interaction. Now let us consider the dihedral 

interaction i-j-k-l , a strong dihedral interaction such as that in a double bond constrains 

the i and l nodes to the same plane. Therefore we can then state that  

! 

A
il

=1 (6.3) 

 
We can therefore create a matrix representation of all interactions between participating 

nodes of a molecular network in our adjacency matrix as described above. All these 

interactions occur within a definable cutoff radius and therefore yield a matrix that is 

sparse. 

Ionic glasses such as silicates on the other hand contain charges that make this 

description difficult since the effect of coulomb interactions at long distances though 

individually small is collectively still significant. These long-range interactions in effect 

nullify the sparse matrix assumption for the case of ionic glasses that we can successfully 

make for polymer networks. 

Therefore mechanical characterization analysis routinely used for glasses does not 

translate well to network polymers. In the following sections we concentrate on of 

molecular networks with only covalent bonding interactions to identify network measures 

that correlate with the observed Young’s modulus behavior. 

Briefly we will discuss Eigenvalue centrality in Section 6.2, Fractal dimension in 

Section 6.3, Fiedler partitioning in Section 6.4 and average crosslink density in Section 
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6.5. Section 6.6 discusses the results of such network characterizations and their utility as 

indicators of elastic modulus. We note that our analysis is limited to only bonding 

interactions and we discount any angular or dihedral interactions as mentioned above. 

This assumption limits us to probing networks that only have bonding interactions. In our 

case we concentrate on ROMP and RANDOM network without angular constraints as 

described in Chapter 3, and for atomistic simulations we make the simplifying 

assumption that the complicated bonding interactions between monomers,  consisting of 

bonds dihedrals and multiple atoms, can be approximated by simple bonds between the 

center of masses and due to the inherent flexibility of these connections there exist no 

angular or dihedral constraints between connected monomer center of masses.    

6.2 Eigenvalue Centrality Measure 

The eigenvalue centrality (EC) measure assigns a score to a node in a network 

based on its connections to other nodes. It is based on the assumption that a node with 

connections to other higher scoring nodes itself gets a higher score as compared to 

another node with the same number of connections to lower scoring nodes. The 

magnitude of the EC of a node is a measure of the burden assumed by this node in the 

network.  We are therefore motivated by the idea that the number of higher scoring nodes 

in a network could also be indicative of the network mechanical performance. 

The eigenvalue centrality of a node in a network can be calculated as follows. Let 

us assume that node i is given a score of x. According to the fundamental assumption 

stated above let the score of node i be proportional to the sum of the scores of nodes it 

connects to. We can therefore write  
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! 

xi =
1

"
x j

j#E( i)

$  (6.4) 

 
Where 

! 

E(i) is the set of nodes connected to i. This can then be framed as below 

! 

xi =
1

"
Aij x j

j=1

N

#  (6.5) 

 
where 

! 

"  is an eigenvalue of Aij and 

! 

Aij =
1 if i " j connected

0 if not connected

# 

$ 
% 

& 

' 
(  (6.6) 

 
We note that eqn(6.6) is the standard definition of an undirected adjacency matrix. The 

adjacency matrix is a symmetric matrix that by definition has real positive eigenvalues.  

Immediately we can reframe eqn(6.5) into an eigenvalue problem as below 

! 

Aij x = "x  (6.7) 
 

There are N (equal to number of nodes) real positive eigenvalues of the matrix 

! 

A .  

However the condition that all xi > 0, can only be satisfied for the largest eigenvalue, 

henceforth called the cardinal eigenvalue. The fact that the largest eigenvalue ensures that 

all eigenvector coefficients are positive is a direct consequence of the famous Perron–

Frobenius theorem in graph theory. The coefficients of the eigenvector represented by the 

array xi for the cardinal eigenvalue is therefore the score we aim to calculate. This score 

is called the eigenvalue centrality or simply centrality of a node or in this work 

alternatively also called the cardinal eigenvalue centrality. 

It can be seen that for a simulation system that is N atoms large, the eigenvalue 

problem is O(N2). A typical MD simulation in this study used systems that were ~10000 

atoms. The eigenvalue problem of the full matrix therefore becomes difficult to solve. 

However it is to be noted that the number of connections for each node/atom is quite low 
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(typically <4) for our molecular systems and therefore the adjacency matrix is sparse and 

is O(E). Where is E is the number of edges that is approximately O(N).  

We used the sparse matrix libraries in the Python module pysparse to calculate 

the largest eigenvalues of the simulation adjacency matrix. The results of these 

calculations are discussed in Section 6.6. We normalize the eigenvector coefficient 

obtained by dividing with N0.5 since an ideal network is a crystalline structure. This 

implies that all nodes in the crystal lattice are equally important and consequently will 

have the same eigenvector coefficient equal to N0.5. This value is therefore used to 

normalize the eigenvector coefficients calculated for our networks 

Figure 6.1 shows the spectrum of the normalized eigenvector centrality scores for 

a ROMP network, Figure 6.2 shows the spectrum of eigenvector centrality of a 

RANDOM network and Figure 6.3 shows the spectrum of centrality scores for the 

atomistic center of mass network. If we compare Figure 6.1 and Figure 6.2 we can see 

that the ROMP network exhibits a maxima at eigenvector coefficients values than the 

corresponding RANDOM case. For example we find that the maxima for α = 0.6 in 

ROMP occurs at between -17 and -16 in the graph whereas the same occurs in the 

RANDOM case at a value of -18 and -19. This implies that there are a lot of nodes in 

ROMP networks of high centrality as compared to the RANDOM case. In effect this 

points to the fact that ROMP networks at almost all but the highest degree of reaction 

have a larger number of nodes that are better connected to each other.  

We cannot directly compare Figure 6.3 with Figure 6.1 and Figure 6.2 since the 

system sizes are different and the scaling of centrality values of nodes makes it hard to 

normalize for system size. However we can see that since the atomistic networks follow 
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the ROMP mechanism they too show the same trend of high centrality nodes at low 

degrees of reaction. A better comparison is to calculate the fraction of high centrality 

nodes as is discussed below. 

Figure 6.4 shows the fraction of monomers in each system that has an eigenvalue 

centrality greater than 

! 

10
"30 i.e. the machine precision limit of the sparse matrix solver. 

We find that the ROMP network shows a lower threshold for percolation of the high 

centrality fraction. This figure shows that ROMP and atomistic networks have the similar 

profile of high centrality nodes since they both follow the same reaction mechanisms. 

However the atomistic networks percolate seemingly at a lower threshold than both 

ROMP and RANDOM networks. This is because we have used the same cutoff for 

determining the high centrality nodes all three curves. Choosing the right cutoff for high 

centrality changes the threshold and the value itself is dependant on system size. In this 

exploratory work we have not been able to determine the exact criteria for choosing 

cutoffs and this is part of the outlook for such characterization methods. 

6.3  Graph Fractal Dimension 

Conventional formulations of fractal dimension derived from the RDFs of atomic 

positions in a simulation 1 2 of networks cannot exceed the dimension of the physical 

space that a system exists in. However we can define a graph theoretical fractal 

dimension that is based on the connectivity of the network. as suggested by Shanker 3. 

We can define a function 

! 

V (r) that is the total number of nodes reachable by shortest 

paths less than r bonds moves from a given central node. In general 

! 

V (r) scales as  

! 

V (r) = kr
d , (6.8) 
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where we term d as the graph fractal dimension. We note that the graph fractal dimension 

for any network cannot exceed the maximum connectivity of any node.  In our systems 

we are limited to a maximum of 4 bonds per node and therefore d < 4.  

Intuitively V(r) can be understood as a volume function that describes the graph 

node volume within r bond moves of a central point in the network. However we note 

that a move along a bond could double back in real space according to the coordinates of 

the bond in question. Equivalently we define a surface function S(r) that is the number of 

nodes that have exactly r links in their shortest path to a central node. S(r) can be written 

as shown below. 

! 

S(r) = kdr
d"1 (6.9) 

 
We are interested in knowing how the graph fractal dimension scales with the mechanical 

properties of a network. This is especially interesting since we think that a larger fractal 

dimension implies a larger Young’s modulus because of it denotes a network that is 

better connected. Therefore we believe that this measure may be a promising candidate 

network characteristic. 

We calculate the graph fractal dimension using the following procedure. We 

randomly choose N/2 of the nodes and calculate the S(r) for values of r up to 5. For each 

randomly chosen node we average the individual values of S(r) over all the randomly 

chosen nodes to a value 

! 

S(r)  , where the average is given by  

! 

S(r) =

S(r)
j

N / 2

"

N /2
, 

(6.10) 

 
where node j is one of the randomly chosen nodes form the network. We then fit the 

value s of 

! 

S(r)  at different r to eqn(6.9) to get the value of d and k for a given network. 
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The choice of N/2 random nodes is ad-hoc and for large networks this fraction could be 

even smaller. A larger fraction only reduces the noise in the S(r) values.  

 We note that we cannot use large values of r in our calculations of 

! 

S(r)  because 

the analysis is only valid for infinite systems and if we include periodic images of 

particles at larger distances, the analysis is no longer valid. To avoid this problem we 

ensure that the volume function V(r) at the highest r is around N/2.  Assuming that d<4 

from previous discussion, we can see that our choice of r≤5 places an upper limit on the 

volume.  At r = 5 V(r)≤54 = 625, which satisfies keeping the volume function to less than 

N/2 in our of coarse-grained simulations with 16000 nodes. For our atomistic systems we 

only fit 

! 

S(r)  up to r = 4 since the number of monomers in our atomistic simulations is 

400.  

! 

V (r) " 4
4

= 256  which is close to the N/2 limit. Note that our atomistic simulations 

in general have ~8000 atoms but we choose to analyze the atomistic network based on 

monomer connectivity and not atomic connectivity 

 The results of the graph fractal dimension calculation for ROMP, RANDOM and 

all atomistic DCPD center of mass (COM) networks is shown in Figure 6.5 

6.4 Fiedler Partitioning of Graphs 

Graph partitioning is a well-studied problem with many different methodologies 

that enable graph partitioning. Fiedler partitioning of graphs is a method that allows 

graphs to be partitioned into 2 almost equal parts with the minimum number of edge cuts. 

Recently this method has been used by Sibsankar and Kundu4 to delineate protein 

structures to identify hinge points in their structure, so as to access low frequency 

motions of the macromolecule. We therefore propose to use this technique to identify the 

bonds that partition the simulation network into two components. Intuitively the number 
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of bonds that constitute the edge cut is a good indication of the mechanical properties of 

the network. It may be argued that the edge cut is more indicative of the strength or 

fracture toughness of a structure than its elastic modulus. However since these quantities 

are related we believe that the Fiedler partitioning could provide a useful indicator of 

network properties. 

Calculation of the Fiedler partition of a network involves finding eigenvalues of 

the Laplacian matrix of the graph. The Laplacian matrix is related to an adjacency matrix 

and is defined as 

! 

L = D" A (6.11) 
 

Where 

! 

D is the diagonal matrix whose elements are given by  

! 

Dii = Aij

j

"  (6.12) 

 
The eigenvalues of the Laplacian matrix have many interesting properties. If we assume 

that 
  

! 

"
1
, "

2
, "

3
,L "

i
L"

N
 are the eigenvalues of the Laplacian matrix then the number of 

times 0 appears as eigenvalues is equivalent to the number of disjoint sub graphs in the 

system. It is well known that symmetric real matrices have only positive real eigenvalues. 

More interesting for our purposes is the behavior of the smallest non-zero 

eigenvalue, also called the Laplacian spectral gap henceforth referred to as 

! 

"
S
. One 

interesting property is that the larger 

! 

"
S
, the better connected is the network. The 

eigenvector of the eigenvalue 

! 

"
S
 yields a set of coefficients for each node of the network. 

The positive and negative coefficients values automatically delineate the nodes into two 

roughly equal parts and the edges that span nodes with coefficients of opposite sign are 

then the cut edges that divide the network.  
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 Solving the Laplacian matrix in its full form for even reasonably sized graphs 

such as ours, where system sizes of N~10000 makes the full matrix solution prohibitive 

as in Section 6.2. As discussed before we use the Python module pysparse for sparse 

matrix calculations, since the Laplacian matrix shares the O(E) scaling behavior of 

adjacency matrix. However for networks with significant fractions of unreacted 

monomers or smaller unconnected fragments it becomes necessary to select the giant 

component or the largest fully connected fragment of the network and then perform the 

Laplacian eigenvalue analysis for the smallest non-zero eigenvalue.  This is because of 

the fact that we would get a number of zeros equivalent to the number of disjointed 

components of the submitted network as eigenvalues, when we subject an incompletely 

connected graph to Fiedler analysis. The sparse matrix solver works the best when 

deployed to calculate a small number of eigenvalues around a certain range we want. In 

our case for Fiedler analysis we want the smallest non-zero positive eigenvalue and 

therefore we set the sparse matrix solver to calculate values near zero.  In order to 

achieve this we use the Python igraph module to extract the largest connected 

component among all fully connected components and then use pysparse to calculate the 

smallest positive eigenvalue.   

We also investigated the relation of the fraction defined by the number of the cut 

edges divided by the total number of surface nodes 

! 

S
N

 (

! 

S
N

: defined below) among 

various networks i.e. ROMP, RANDOM and atomistic-COM systems.  We define 

surface nodes as follows, in a simulation box with periodic boundary conditions (PBC), 

an intuitive way to separate a graph into two disjoint parts is to cut the box along all 

periodic surfaces and then apply a final cutting surface thru the middle of the box in the 
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plane that creates the least surface area. This involves cleaving the box along six faces 

and one extra plane for a total of 7 planes that creates two sub-volumes of a simulation 

box, with no contiguous path of nearest-neighbor nodes between the two components. 

For a cubic box with N total nodes the number of nodes on these 7 surfaces assuming 

uniform density is given by  

! 

S
N

= 7N
2 / 3  (6.13) 

 
We divide by the fraction of surface nodes because Fiedler partitioning is basically 

a surface generating procedure that scales according to surface area and not volume and 

therefore dividing by the total number of nodes is not the correct normalization 

procedure. We show the Fiedler cut fraction for configurations generated according to the 

coarse grained ROMP, coarse grained RANDOM and atomistic center of mass graphs in 

Figure 6.6. In this case the plot shows on the fraction of bonds that need to be cut to split 

the network in to two disconnected sub-graphs. The fraction is calculated as the number 

of bonds to be cut using the Fiedler partitioning algorithm divided by the number of 

bonds that would be cut if we artificially created planar surfaces on the boundaries of the 

simulation box at any degree of reaction. The plot shows that the ROMP networks have a 

slightly lower point at which percolation of cut bonds takes place. The atomistic center of 

mass curves closely follows the ROMP network. We note here the scaling according to 

system size is more easily achieved. This is because the denominator and the numerator 

of the fraction calculated scale similarly as we change system size. 

6.5 Average Cross-link Density. 

As discussed in Chapter 1 many theories polymer networks such as Flory et al 5 

suggest that the modulus values of networks scale as the density if cross-link per unit 
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volume. The cross-link density can be thought of as the fraction of nodes that have 3 or 

greater number of bonds. Cross-link density is plotted as a function of the degree of 

reaction for ROMP, RANDOM and atomistic-COM network in Figure 6.7. We can see 

that the curves for cross-link fraction are smooth unlike the other calculated network 

quantities and does not show any threshold behavior. Also we note the RANDOM 

network has a larger fraction of cross-linked nodes than the ROMP network. This would 

suggest that the RANDOM network is mechanically superior to the ROMP network 

contrary to what is observed. These two factors lead us to conclude that this characteristic 

of networks is insufficient to explain observed mechanical behavior. The curve for 

atomistic networks is provided for comparison purposes to the ROMP network . It shows 

that even though the mechanisms of network formation in atomistic is similar to that of 

the ROMP network the speciation is significantly different and therefore likely to affect 

mechanical behavior. 

6.6 Results and Discussion 

We tried 4 network characterization methods 1) Eigenvector centrality 2) Graph 

spectral dimension 3) Fiedler partitioning and 4) Crosslink fraction. We then plot the 

Young’s modulus of atomistic networks with the calculated network measure as shown in 

Figure 6.8. It appears from the good linearity of the Figure 6.8d that the crosslink density 

is the best indicator of mechanical properties as is suggested in classical polymer 

elasticity theories. However we see from Figure 6.7 that the RANDOM networks have a 

higher crosslink fraction than the ROMP networks and therefore should in theory have a 

higher modulus as predicted by classical entropic formulations as is discussed in Chapter 

1. However it is evident from our simulations of ROMP and RANDOM networks that the 
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reverse trend i.e. that of the Young’s modulus of ROMP networks being greater than that 

of RANDOM networks is manifest. This discrepancy can be explained by the larger 

fraction of free ends and unreacted monomers in RANDOM networks as compared to 

ROMP networks. Secondly, the fraction of cross-links with degree of reaction does not 

show a threshold behavior we have come to expect from our simulations therefore while 

the correlations are good the suitability of this measure is suspect. 

We see that the best characterization technique among those we tried is the 

Fiedler partitioning method. Not only do we see good linear behavior in Figure 6.8c we 

also see that the partitioning method correctly predicts the ROMP network to have a 

higher modulus than the RANDOM network as can be seen from the trend in Figure 6.6.  

In conclusion therefore we propose the Fiedler vector cut bond per surface node 

characterization the most reliable predictor of modulus behavior and recommend further 

investigations in other materials. We also note that the eigenvalue centrality cutoff was 

arbitrarily chosen to classify high centrality as any node, which has an eigenvector 

coefficient greater than machine precision (here 1030). This choice is ad-hoc and we 

believe there may be a correlation between nodes of high centrality and their influence on 

mechanical behavior. This however will be the topic of future exploration. 

The graph fractal dimension does not show the threshold behavior that is expected 

but nevertheless still communicates the basic premise that the network coalesces fast as 

the degree of reaction increases and then this measure saturates to a maximum value. 

6.7 Conclusion 

One major question that remains unanswered is the prediction of the Young’s and 

Poisson’s threshold values for arbitrary networks. These thresholds appear to be different 
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from the ordinarily known percolation thresholds such as those stated by glassy theories. 

Our attempt to characterize the networks does not address this question completely, 

though it offers correlations with the Young’s modulus data.  This question is relevant to 

many other materials whose elastic response is yet undelineated into fluid, entropic, or 

enthalpic regimes. A deeper understanding of such phenomena is part of our future 

endeavors.  

We also state here without proof based on our physical understanding that the 

Young’s modulus below the Young’s threshold is linearly dependant on temperature as is 

well understood from polymer theories. The modulus behavior above the Poisson’s 

threshold shows a temperature dependence directly proportional to the temperature 

dependence of the spring constants of particle interactions.  We know that the spring 

constants of particle interactions in real systems decreases as temperature increases 

causing a softening however a combination of entropic hardening and enthalpic softening 

at the Poisson’s threshold offers interesting possibilities. 

This is a question that can be readily answered by running modulus experiments 

at higher temperatures and is part of the outlook for this project.  
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6.8 Figures 
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Figure 6.1: Eigenvector centrality measured by the magnitude of the 
cardinal eigenvector coefficient or eigenvector centrality value for ROMP 
networks. The x-axis is the natural log of the centrality value and the y-
axis is the fraction of nodes with that value. Each curve shows the 
centrality distribution for a different degree of reaction.   
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Figure 6.2: Eigenvector centrality measured by the magnitude of the 
cardinal eigenvector coefficient or eigenvector centrality value for 
RANDOM networks. The x-axis is the natural log of the centrality value 
and the y-axis is the fraction of nodes with that value. Each curve shows 
the centrality distribution for a different degree of reaction. 
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Figure 6.3: Eigenvector centrality measured by the magnitude of the 
cardinal eigenvector coefficient or eigenvector centrality value for 
Atomistic-COM networks. The x-axis is the natural log of the centrality 
value and the y-axis is the fraction of nodes with that value. Each curve 
shows the centrality distribution for a different degree of reaction. 
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Figure 6.4: Fraction of nodes with high centrality or high eigenvector 
coefficients (i.e. centrality value >10-30). This cutoff value was chosen 
since it is equivalent to machine precison. The graphs approximately show 
the fraction of nodes that are connected to the giant component.  
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Figure 6.5: Graph fractal dimension. There are significant differences in 
the ROMP and RANDOM CG models fractal dimension at low degrees of 
reaction that later converges at high degrees of reaction. The atomistic 
center of mass fractal dimension is calculated by considering each 
molecule as a node connected to other molecules and not as individual 
atoms. The Atomistic-COM corresponds to the CG-ROMP curves. Close 
similarity between CG-ROMP and Atomistic-COM curves is indicative 
that they both create similar networks, however we find significant 
differences in curves at α>0.15. 
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Figure 6.6: Fiedler partitioning cut bonds per unit surface node.  
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Figure 6.7: Fraction of cross-linked nodes in ROMP, RANDOM and 
atomistic-COM systems.  



 169 

 

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (

G
P

a
)

High centrality Fraction a) 
0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (

G
P

a
)

Fractal dimension b) 

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Y
o

u
n

g
's

 M
o

d
u

lu
s
 (

G
P

a
)

Fraction of Cut Bonds per Surface Node. c) 
0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (

G
P

a
)

Crosslinked Fraction d) 

Figure 6.8: Young’s modulus of atomistic networks plotted against 
calculated network measures a) high eigenvector centrality fraction b) 
graph fractal dimension c) Fiedler partitioning fraction per surface node d) 
crosslink fraction 
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Chapter 7 
Summary and Outlook 

 

Our investigation on cross-linked polymers have brought together for the much 

clarity to ROMP catalyzed DCPD networks.  

We use DFT calculations in Chapter 2 to clarify the ROMP cross-linking process 

in DCPD. To the best of our knowledge this work is the first to quantify the heat of 

reactions for the ROMP of DCPD. In doing so we were able to explain the observed 

kinetic phenomena in experiments. Based on these results we propose endo-DCPD is 

likely to form linear chains and exo-DCPD is more likely to form cross-links via the 

ROMP mechanism.  

In Chapter 3 we compare networks formed by ROMP process to networks created 

by RANDOM insertion of bonds. We find significant differences in mechanical 

properties based on internal topology at similar degrees of reaction. This is a nuance yet 

unappreciated in literature where all networks at a given degree of reaction are expected 

to have similar properties. Significantly, we discover a novel delineation of networks in 

to three different phases based on their degree of cure, characterized by their response to 

deformation. We show that percolation phenomena in networks exhibit two distinct 

thresholds instead of the commonly assumed single threshold. We term them a) Young’s 

modulus threshold (αY) and b) Poisson’s ratio threshold (αP) where αY < αP. In region 1 

for degree of cure below αY the network is fluid-like. At degrees of cure between αY and 

αP the network exhibits a predominantly entropic response to deformation and is rubber-
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like. Finally above αP the network shows an enthalpic response. Region 1 being fluid like 

shows zero modulus and exhibits only viscous behavior, region 2 shows rubber like 

response to small deformations, where the volume and internal energy do not change, yet 

there is an observed Young’s modulus. The origin of this modulus is entropic in nature 

and well explained by polymer statistical mechanics. It is only in region 3 where small 

deformation actually strains bonds and other potential interactions. It is only in this 

region do we see a change in internal energy and volume. We term this as enthalpic 

response. In this chapter we also show a simple scaling procedure applicable to any 

network with a degree of cure below αP. This procedure is used to convert the coarse 

grained results into real units for comparison with atomistic simulations. CG simulations 

also directed parameterization of reactions for our atomistic simulations helping us define 

a reaction cutoff.  

In Chapter 4 we create atomistic models of DCPD networks using a novel 

reactive MD scheme. The creation procedure closely implements intuition gained from 

DFT calculations, CG simulations, and experimental observations from literature. We 

report for the first time mechanical properties (Young’s modulus, Poisson’s ratio and 

Bulk modulus) of DCPD networks at various degrees of cure and delineate the αY and αP 

thresholds for this system. Our atomistic simulations reinforce the results obtained by CG 

simulations by closely reproducing the two thresholds along with reaction kinetics. The 

created networks are now available for further investigation of properties such as 

diffusion etc. 

Chapter 5 is a comparison of our network generation results with experimental 

observations from DSC and Raman spectroscopy. We combine results obtained from 
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Reactive MD simulations from Chapter 4 and DFT data from Chapter 2. This attempt 

shows a procedure to systematically approach this question. The DCPD network 

generated are ultimately only as good as the assumptions made while creating them. 

There are still unanswered questions that affect the evolution of network structure such as 

the effect of ROMP reaction on one site affecting reactivity of ROMP on the other site in 

DPCD.  Regardless we were able to replicate key features of experimental observations.  

Chapter 6 is an attempt to characterize networks using novel graph theory 

concepts. We explored four different characteristics 1) Eigenvector centrality, 2) Graph 

fractal dimension 3) Fiedler partitioning 4) Fraction of cross-linked nodes. From initial 

observations we propose the Fiedler partitioning measure as the best candidate for 

predicting mechanical properties based on its high correlation with our modulus results. 

An important question that remains unanswered is the formulation of characterization 

tools that pinpoint the onset of the two observed thresholds in modulus behavior. This 

effort is part of the future outlook. 
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Appendix A: Topology and COMPASS Parameters 
 

A.1: Molecular Topology 

A.1.1: Atom Types 

Type Atom  
1 

! 

sp3CH  
2 

! 

sp2C  
3 

! 

sp3CH
2

 
4 

! 

H  
 

A.1.2: Bond Topology 

Bond Type Atom1 Atom2 
1 1 1 
2 1 3 
3 1 4 
4 1 2 
5 2 2 
6 2 4 
7 3 4 
8 2 3 
9 2 2 
10 2 2 
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A.1.3: Angle Topology 

Angle Type Atom1 Atom2 Atom3 
1 1 1 1 
2 1 1 3 
3 1 1 4 
4 3 1 4 
5 1 1 2 
6 2 1 3 
7 2 1 4 
8 1 2 2 
9 1 2 4 
10 2 2 4 
11 1 3 1 
12 1 3 4 
13 4 3 4 
14 1 3 2 
15 2 3 4 
16 2 2 3 
17 3 2 4 
18 4 2 4 

 

A.1.5: Improper Topology 

Improper Type Atom1 Atom2 Atom3 Atom4 
1 1 2 2 4 
2 2 2 3 4 
3 1 1 1 3 
4 1 1 1 4 
5 1 1 3 4 
6 1 1 2 3 
7 1 1 2 4 
8 2 1 3 4 
9 1 1 1 2 
10 1 3 1 4 
11 1 3 4 4 
12 1 3 2 4 
13 2 3 4 4 
14 4 2 2 4 
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A.1.4: Dihedral Topology 

Dihedral Type Atom 1 Atom 2 Atom 3 Atom 4 
1 1 1 1 2 
2 1 1 1 3 
3 1 1 1 4 
4 2 1 1 3 
5 3 1 1 3 
6 3 1 1 4 
7 2 1 1 4 
8 4 1 1 4 
9 1 1 1 1 
10 1 1 3 2 
11 1 1 3 4 
12 4 1 3 2 
13 4 1 3 4 
14 1 1 2 2 
15 1 1 2 4 
16 3 1 2 2 
17 3 1 2 4 
18 4 1 2 2 
19 4 1 2 4 
20 2 1 3 1 
21 2 1 3 4 
22 1 1 3 1 
23 4 1 3 1 
24 1 2 2 1 
25 1 2 2 4 
26 4 2 2 4 
27 2 1 1 2 
28 2 2 3 1 
29 4 2 3 1 
30 2 2 3 4 
31 4 2 3 4 
32 1 2 2 3 
33 3 2 2 4 
34 3 2 2 3 
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A.2: Interaction Parameters  

A.2.1: Pair  and Coulomb Interaction Parameters 

! 

Epair = " 2
# 9

r
9
$ 3

# 6

r
6

% 

& 
' 

( 

) 
* , 

! 

Ecoul =
Kq

1
q
2

r
2

 

Type 

! 

"(Kcal /Mol)  

! 

"(Ao
)  

! 

q(e)  Comments for charge 
1 0.054000 4.0100 0.0 or -0.1 0.0 if connected to a  type 2 
2 0.064000 4.0100 -0.2  
3 0.054000 4.0100 -0.2 or -0.1 -0.1 if connected to a type 2 
4 0.020000 2.9950 0.1  
 

A.2.2: Bond Interaction Parameters 

! 

E
bond

= k
2
(r " r

o
)
2

+ k
3
(r " r

o
)
3

+ k
4
(r " r

o
)
4  

Type 

! 

r
0
(A

o
) 

! 

K
1
[kcal /(mol " (A

o
)
2
)] 

! 

K
2
 

! 

K
3
 

1 1.5330 299.67 -501.77 679.81 
2 1.5330 299.67 -501.77 679.81 
3 1.1010 341.00 -691.89 844.60 
4 1.5060 312.35 -582.19 339.90 
5 1.3521 545.27 -1005.6 1225.7 
6 1.0883 365.77 -725.54 781.66 
7 1.1010 341.00 -691.89 844.60 
8 1.5060 312.35 -582.19 339.90 
9 1.3521 545.27 -1005.6 1225.7 
10 1.3521 545.27 -1005.6 1225.7 
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A2.3: Angle Interaction Parameters: 

! 

Eangle = Ea + Ebb + Eab  

! 

E
a

= K
2
(" #"

o
)
2

+ K
3
(" #"

o
)
3

+ K
4
(" #"

o
)
4  

Type 

! 

"
o
(deg) 

! 

K
2
[(kcal /mol) /rad

2
] 

! 

K
3
 

! 

K
4
 

1 112.67 39.516 -7.4430 -9.5583 
2 112.67 39.516 -7.4430 -9.5583 
3 110.77 41.453 -10.604 5.1290 
4 110.77 41.453 -10.604 5.1290 
5 111.76 45.703 -10.640 -9.9121 
6 111.76 45.703 -10.640 -9.9121 
7 110.06 41.278 -14.296 -5.2229 
8 126.26 43.825 -27.727 1.0056 
9 117.27 30.094 -8.0826 -8.6781 
10 124.88 35.277 -17.774 -1.6215 
11 112.67 39.516 -7.4430 -9.5583 
12 110.77 41.453 -10.604 5.1290 
13 107.66 39.641 -12.921 -2.4318 
14 111.76 45.703 -10.640 -9.9121 
15 110.06 41.278 -14.296 5.2229 
16 126.26 43.825 -27.727 1.0056 
17 117.27 30.094 -8.0826 -8.6781 
18 117.27 30.094 -8.0826 -8.6781 
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! 

Ebb = M(r
1
" rij )(r2 " rjk ) 

Type 

! 

M[kcal /(mol " (A
o
)
2
)] 

! 

r
1
(A

o
)  

! 

r
2
(A

o
) 

1 0.0000 1.5330 1.5330 
2 0.0000 1.5330 1.5330 
3 3.3872 1.5330 1.1010 
4 3.3872 1.5330 1.1010 
5 7.7827 1.5330 1.5060 
6 7.7827 1.5060 1.5330 
7 9.9922 1.5060 1.1010 
8 17.791 1.5060 1.3521 
9 3.4394 1.5060 1.0883 
10 10.105 1.3521 1.0883 
11 0.0000 1.5330 1.5330 
12 3.3872 1.5330 1.1010 
13 5.3316 1.1010 1.1010 
14 7.7827 1.5330 1.5060 
15 9.9922 1.5060 1.1010 
16 17.791 1.3521 1.5060 
17 3.4394 1.5060 1.0883 
18 3.4394 1.5060 1.0883 
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! 

Eab = "[N
1
(r
1
" rij ) + N

2
(r
2
" rjk )](# "#o)  

Type 

! 

N
1
[kcal /mol /A

o
/rad] 

! 

N
2
[kcal /mol /A

o
/rad] 

! 

r
1
(A

o
)  

! 

r
2
(A

o
) 

1 8.0160 8.0160 1.5330 1.5330 
2 8.0160 8.0160 1.5330 1.5330 
3 20.754 11.421 1.5330 1.1010 
4 20.754 11.421 1.5330 1.1010 
5 15.982 18.978 1.5330 1.5060 
6 18.978 15.982 1.5060 1.5330 
7 20.877 14.274 1.5060 1.1010 
8 31.588 24.225 1.5060 1.3521 
9 17.645 15.349 1.5060 1.0883 
10 23.359 19.059 1.3521 1.0883 
11 8.0160 8.0160 1.5330 1.5330 
12 20.754 11.421 1.5330 1.1010 
13 18.103 18.103 1.1010 1.1010 
14 15.982 18.978 1.5330 1.5060 
15 20.877 14.274 1.5060 1.1010 
16 24.225 31.588 1.3521 1.5060 
17 17.645 15.349 1.5060 1.0883 
18 17.645 15.349 1.5060 1.0883 
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A2.4: Dihedral Interaction Parameters: 

! 

E
dihed

= E
d

+ E
mbt

+ E
ebt

+ E
at

+ E
aat

+ E
bb13

  and 

! 

Ed = Dj

n=1

3

" 1# cos(n$ # $n )[ ]  

Type 

! 

D
1
(kcal /mol)  

! 

"(deg)  

! 

D
2
(kcal /mol) 

! 

"(deg)  

! 

D
3
(kcal /mol) 

! 

"(deg)  
1 0.088300 0.0000 0.0000 0.0000 -0.019800 0.0000 
2 0.12230 0.0000 0.051400 0.0000 -0.22300 0.0000 
3 0.0000 0.0000 0.031600 0.0000 -0.17810 0.0000 
4 0.088300 0.0000 0.0000 0.0000 -0.019800 0.0000 
5 0.12230 0.0000 0.051400 0.0000 -0.22300 0.0000 
6 0.0000 0.0000 0.031600 0.0000 -0.17810 0.0000 
7 0.0000 0.0000 0.0000 0.0000 -0.11660 0.0000 
8 -0.24320 0.0000 0.061700 0.0000 -0.13830 0.0000 
9 0.12230 0.0000 0.051400 0.0000 -0.22300 0.0000 
10 0.088300 0.0000 0.0000 0.0000 -0.019800 0.0000 
11 0.0000 0.0000 0.031600 0.0000 -0.17810 0.0000 
12 0.0000 0.0000 0.0000 0.0000 -0.11660 0.0000 
13 -0.24320 0.0000 0.061700 0.0000 -0.13830 0.0000 
14 -0.24330 0.0000 0.0000 0.0000 0.10400 0.0000 
15 -0.24330 0.0000 0.0000 0.0000 -0.32810 0.0000 
16 0.24330 0.0000 0.0000 0.0000 0.10400 0.0000 
17 -0.24330 0.0000 0.0000 0.0000 -0.32810 0.0000 
18 0.11430 0.0000 0.0000 0.0000 0.18540 0.0000 
19 -0.11430 0.0000 0.0000 0.0000 -0.13490 0.0000 
20 0.088300 0.0000 0.0000 0.0000 -0.019800 0.0000 
21 0.0000 0.0000 0.0000 0.0000 -0.11660 0.0000 
22 0.12230 0.0000 0.051400 0.0000 -0.22300 0.0000 
23 0.0000 0.0000 0.031600 0.0000 -0.17810 0.0000 
24 0.086000 0.0000 5.1995 0.0000 0.0000 0.0000 
25 0.0000 0.0000 5.2097 0.0000 0.0000 0.0000 
26 0.0000 0.0000 4.8974 0.0000 0.0000 0.0000 
27 0.0000 0.0000 0.0000 0.0000 -0.31600 0.0000 
28 0.24330 0.0000 0.0000 0.0000 0.10400 0.0000 
29 -0.24330 0.0000 0.0000 0.0000 -0.32810 0.0000 
30 0.11430 0.0000 0.0000 0.0000 0.18540 0.0000 
31 -0.11430 0.0000 0.0000 0.0000 -0.13490 0.0000 
32 0.086000 0.0000 5.1995 0.0000 0.0000 0.0000 
33 0.0000 0.0000 5.2097 0.0000 0.0000 0.0000 
34 0.0000 0.0000 5.2097 0.0000 0.0000 0.0000 
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! 

Eaat = M("ijk #"1)(" jkl #"2)cos($)  

Type 

! 

M(kcal /mol)  

! 

"1(deg)  

! 

"2(deg) 
1 -27.913 112.67 111.76 
2 -22.045 112.67 112.67 
3 -16.164 112.67 110.77 
4 -27.913 111.76 112.67 
5 -22.045 112.67 112.67 
6 -16.164 112.67 110.77 
7 -18.372 111.76 110.77 
8 -12.564 110.77 110.77 
9 -22.045 112.67 112.67 
10 -27.913 112.67 111.76 
11 -16.164 112.67 110.77 
12 -18.372 110.77 111.76 
13 -12.564 110.77 110.77 
14 -20.371 111.76 126.26 
15 -16.899 111.76 117.27 
16 -20.371 111.76 126.26 
17 -16.899 111.76 117.27 
18 -13.683 110.06 126.26 
19 -10.951 110.06 117.27 
20 -27.913 111.76 112.67 
21 -18.372 111.76 110.77 
22 -22.045 112.67 112.67 
23 -16.164 110.77 112.67 
24 -5.5205 126.26 126.26 
25 -7.6912 126.26 124.88 
26 -7.0058 124.88 124.88 
27 -9.6558 111.76 111.76 
28 -20.371 126.26 111.76 
29 -16.899 117.27 111.76 
30 -13.683 126.26 110.06 
31 -10.951 117.27 110.06 
32 -5.5205 126.26 126.26 
33 -7.6912 126.26 124.88 
34 -7.6912 126.26 124.88 
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! 

Eebt =
(rij " r1) B1 cos(#) + B

2
cos(2#) + B

3
cos(3#)[ ] +

(rkl " r3) C1 cos(#) + C
2
cos(2#) + C

3
cos(3#)[ ]

$ 

% 
& 
& 

' 

( 
) 
) 
 

Type B1 B2 B3 C1 C2 C3 r1 r3 
1 -0.6028 0.0000 0.7675 1.0356 0.0000 0.0506 1.5330 1.5060 
2 -0.0732 0.0000 0.0000 -0.0732 0.0000 0.0000 1.5330 1.5330 
3 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.5330 1.1010 
4 1.0356 0.0000 0.0506 -0.6028 0.0000 0.7675 1.5060 1.5330 
5 -0.0732 0.0000 0.0000 -0.0732 0.0000 0.0000 1.5330 1.5330 
6 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.5330 1.1010 
7 0.9856 0.0000 -0.0864 0.1954 0.0000 -0.0871 1.5060 1.1010 
8 0.2130 0.3120 0.0777 0.2130 0.312 0.0777 1.1010 1.1010 
9 -0.0732 0.0000 0.0000 -0.0732 0.0000 0.0000 1.5330 1.5330 
10 -0.6028 0.0000 0.7675 1.0356 0.0000 0.0506 1.5330 1.5060 
11 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.5330 1.1010 
12 0.1954 0.0000 -0.0871 0.9856 0.0000 -0.0864 1.1010 1.5060 
13 0.2130 0.3120 0.0777 0.2130 0.3120 0.0777 1.1010 1.1010 
14 0.1159 0.0000 -0.8513 -0.6486 0.0000 0.8394 1.5330 1.3521 
15 0.1852 0.0000 0.5906 1.1730 0.0000 -0.0582 1.5330 1.0883 
16 0.1159 0.0000 -0.8513 -0.6486 0.0000 0.8394 1.5330 1.3521 
17 0.1852 0.0000 0.5906 1.1730 0.0000 -0.0582 1.5330 1.0883 
18 1.9787 0.0000 -0.1805 0.8566 0.0000 0.0811 1.1010 1.3521 
19 0.2212 0.0000 0.0915 0.5934 0.0000 0.0424 1.1010 1.0883 
20 1.0356 0.0000 0.0506 -0.6028 0.0000 0.7675 1.5060 1.5330 
21 0.9856 0.0000 -0.0864 0.1954 0.0000 -0.0871 1.5060 1.1010 
22 -0.0732 0.0000 0.0000 -0.0732 0.0000 0.0000 1.5330 1.5330 
23 0.0814 0.0591 0.2219 0.2486 0.2422 -0.0925 1.1010 1.5330 
24 -0.5916 0.0000 -0.5440 -0.5916 0.0000 -0.5440 1.5060 1.5060 
25 -0.2201 0.6770 0.0000 0.5406 -0.1611 0.0000 1.5060 1.0883 
26 0.7129 0.5161 0.0000 0.7129 0.5161 0.0000 1.0883 1.0883 
27 1.0166 0.0000 0.0446 1.0166 0.0000 0.0446 1.5060 1.5060 
28 -0.6486 0.0000 -0.8394 0.1159 0.0000 -0.8513 1.3521 1.5330 
29 1.1730 0.0000 -0.0582 0.1852 0.0000 0.5906 1.0883 1.5330 
30 0.8566 0.0000 0.0811 1.9787 0.0000 -0.1805 1.3521 1.1010 
31 0.5934 0.0000 0.0424 0.2212 0.0000 0.0915 1.0883 1.1010 
32 -0.5916 0.0000 -0.5440 -0.5916 0.0000 -0.544 1.5060 1.5060 
33 -0.2201 0.6770 0.0000 0.5406 -0.1611 0.0000 1.5060 1.0883 
34 -0.2201 0.6770 0.0000 0.5406 -0.1611 0.0000 1.5060 1.0883 
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! 

Embt = (rjk " r2) A1 cos(#) + A
2
cos(2#) + A

3
cos(3#)[ ]  

Type A1(kcal/mol.Å) A2 A3 r2 
1 -2.2408 0.0000 -5.4870 1.5330 
2 -17.787 -7.1877 0.0000 1.5330 
3 -14.879 -3.6581 -0.3138 1.5330 
4 -2.2408 0.0000 -5.487 1.5330 
5 -17.787 -7.1877 0.0000 1.5330 
6 -14.879 -3.6581 -0.3138 1.5330 
7 -5.0113 0.0000 0.58950 1.5330 
8 -14.261 -0.5322 -0.4864 1.5330 
9 -17.787 -7.1877 0.0000 1.5330 
10 -2.2408 0.0000 -5.4870 1.5330 
11 -14.879 -3.6581 -0.3138 1.5330 
12 -5.0113 0.0000 0.58950 1.5330 
13 -14.261 -0.5322 -0.4864 1.5330 
14 -2.1444 0.0000 -0.1038 1.5060 
15 1.2814 0.0000 -1.1022 1.5060 
16 -2.1444 0.0000 -0.1038 1.5060 
17 1.2814 0.0000 -1.1022 1.5060 
18 -1.5727 0.0000 0.65650 1.5060 
19 1.8730 0.0000 -0.3702 1.5060 
20 -2.2408 0.0000 -5.4870 1.5330 
21 -5.0113 0.0000 0.58950 1.5330 
22 -17.787 -7.1877 0.0000 1.5330 
23 -14.879 -3.6581 -0.3138 1.5330 
24 -0.18990 5.5768 0.0000 1.3521 
25 1.1220 6.0669 0.0000 1.3521 
26 -0.85580 6.3911 0.0000 1.3521 
27 -0.35460 0.0000 0.04830 1.5330 
28 -2.1444 0.0000 -0.1038 1.5060 
29 1.2814 0.0000 -1.1022 1.5060 
30 -1.5727 0.0000 0.65650 1.5060 
31 1.8730 0.0000 -0.3702 1.5060 
32 -0.18990 5.5768 0.0000 1.3521 
33 1.1220 6.0669 0.0000 1.3521 
34 1.1220 6.0669 0.0000 1.3521 

 



 185 

! 

Ebb13 = N(rij " r1)(rkl " r3)  

Type N 

! 

kcal

mol " A
o( )
2

 
! 

r
1
(A

o
)  

! 

r
2
(A

o
) 

1 0.0000 1.5330 1.5060 
2 0.0000 1.5330 1.5330 
3 0.0000 1.5330 1.1010 
4 0.0000 1.5060 1.5330 
5 0.0000 1.5330 1.5330 
6 0.0000 1.5330 1.1010 
7 0.0000 1.5060 1.1010 
8 0.0000 1.1010 1.1010 
9 0.0000 1.5330 1.5330 
10 0.0000 1.5330 1.5060 
11 0.0000 1.5330 1.1010 
12 0.0000 1.1010 1.5060 
13 0.0000 1.1010 1.1010 
14 0.0000 1.5330 1.3521 
15 0.0000 1.5330 1.0883 
16 0.0000 1.5330 1.3521 
17 0.0000 1.5330 1.0883 
18 0.0000 1.1010 1.3521 
19 0.0000 1.1010 1.0883 
20 0.0000 1.5060 1.5330 
21 0.0000 1.5060 1.1010 
22 0.0000 1.5330 1.5330 
23 0.0000 1.1010 1.5330 
24 0.0000 1.5060 1.5060 
25 0.0000 1.5060 1.0883 
26 0.0000 1.0883 1.0883 
27 0.0000 1.5060 1.5060 
28 0.0000 1.3521 1.5330 
29 0.0000 1.0883 1.5330 
30 0.0000 1.3521 1.1010 
31 0.0000 1.0883 1.1010 
32 0.0000 1.5060 1.5060 
33 0.0000 1.5060 1.0883 
34 0.0000 1.5060 1.0883 
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! 

Eat =
(" jk #"1) D1 cos($) + D

2
cos(2$) + D

3
cos(3$)[ ] +

("ij #"2) E1 cos($) + E
2
cos(2$) + E

3
cos(3$)[ ]

% 

& 
' 
' 

( 

) 
* 
* 
 

Type D1 

 

D2 
kcal/mol 

 

D3 E1 E2 E3 

! 

"1(deg)

 

! 

"1(deg)

 
1 2.4027 0.0000 0.0000 1.1559 0.0000 -1.2900 112.6

7 

111.76 
2 0.38860 -0.3139 0.13890 0.38860 -0.3139 0.13890 112.6

7 

112.67 
3 -0.2454 0.0000 -0.1136 0.31130 0.45160 -0.1988 112.6

7 

110.77 
4 1.1559 0.0000 -1.2900 2.4027 0.0000 0.0000 111.7

6 

112.67 
5 0.38860 -0.3139 0.1389 0.38860 -0.3139 0.13890 112.6

7 

112.67 
6 -0.2454 0.0000 -0.1136 0.31130 0.45160 -0.1988 112.6

7 

110.77 
7 0.60830 0.0000 0.0000 -0.8714 0.0000 0.0000 111.7

6 

110.77 
8 -0.8085 0.5569 -0.2466 -0.8085 0.55690 -0.2466 110.7

7 

110.77 
9 0.38860 -0.3139 0.1389 0.38860 -0.3139 0.13890 112.6

7 

112.67 
10 2.4027 0.0000 0.0000 1.1559 0.0000 -1.2900 112.6

7 

111.76 
11 -0.2454 0.0000 -0.1136 0.31130 0.45160 -0.1988 112.6

7 

110.77 
12 -0.8714 0.0000 0.0000 0.60830 0.0000 0.0000 110.7

7 

111.76 
13 -0.8085 0.5569 -0.2466 -0.8085 0.55690 -0.2466 110.7

7 

110.77 
14 -0.2409 0.0000 0.38700 -0.1646 0.0000 0.0000 111.7

6 

126.26 
15 0.53110 0.0000 0.0000 -0.9172 0.0000 0.0000 111.7

6 

117.27 
16 -0.2409 0.0000 0.3870 -0.1646 0.0000 0.0000 111.7

6 

126.26 
17 0.53110 0.0000 0.0000 -0.9172 0.0000 0.0000 111.7

6 

117.27 
18 1.5982 0.0000 0.0000 -1.8873 0.0000 0.0000 110.0

6 

126.26 
19 1.9061 0.0000 0.0000 -0.0677 0.0000 0.0000 110.0

6 

117.27 
20 1.1559 0.0000 -1.2900 2.4027 0.0000 0.0000 111.7

6 

112.67 
21 0.60830 0.0000 0.0000 -0.8714 0.0000 0.0000 111.7

6 

110.77 
22 0.38860 -0.3139 0.13890 0.38860 -0.3139 0.1389 112.6

7 

112.67 
23 0.31130 0.4516 -0.1988 -0.2454 0.0000 -0.1136 110.7

7 

112.67 
24 -4.3970 2.5810 0.0000 -4.3970 2.5810 0.0000 126.2

6 

126.26 
25 -5.4082 1.4731 0.0000 -1.5176 3.7112 0.0000 126.2

6 

124.88 
26 -1.8911 3.2540 0.0000 -1.8911 3.2540 0.0000 124.8

8 

124.88 
27 -0.4053 0.0000 0.43000 -0.4053 0.0000 0.4300 111.7

6 

111.76 
28 -0.1646 0.0000 0.0000 -0.2409 0.0000 0.3870 126.2

6 

111.76 
29 -0.9172 0.0000 0.0000 0.53110 0.0000 0.0000 117.2

7 

111.76 
30 -1.8873 0.0000 0.0000 1.5982 0.0000 0.0000 126.2

6 

110.06 
31 -0.0677 0.0000 0.0000 1.9061 0.0000 0.0000 117.2

7 

110.06 
32 -4.3970 2.5810 0.0000 -4.3970 2.5810 0.0000 126.2

6 

126.26 
33 -5.4082 1.4731 0.0000 -1.5176 3.7112 0.0000 126.2

6 

124.88 
34 -5.4082 1.4731 0.0000 -1.5176 3.7112 0.0000 126.2

6 

124.88 
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A2.5: Improper Interaction Parameters: 

! 

Eimproper = Ei + Eaa  

! 

Ei = K
" ijkl + "kjli + " ljik

3
# "o

$ 

% 
& 

' 

( 
) 

2

 and 

! 

Eaa =

M
1
("ijk #"1)("kjl #"3) +

M
2
("ijk #"1)("ijl #"2) +

M
3
("ijl #"2)("kjl #"3)

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
 

Type 

! 

K(kcal /mol)  

! 

"
o
 

1 2.0765 0.0000 
2 2.0765 0.0000 
3 0.0000 0.0000 
4 0.0000 0.0000 
5 0.0000 0.0000 
6 0.0000 0.0000 
7 0.0000 0.0000 
8 0.0000 0.0000 
9 0.0000 0.0000 
10 0.0000 0.0000 
11 0.0000 0.0000 
12 0.0000 0.0000 
13 0.0000 0.0000 
14 2.0765 0.0000 

 

Type 

! 

M
1
(kcal /mol)  

! 

M
1
 

! 

M
1
 

! 

"1(deg)  

! 

"2(deg) 

! 

"3(deg) 
1 0.0000 0.0000 0.0000 126.26 124.88 117.27 
2 0.0000 0.0000 0.0000 126.26 117.27 124.88 
3 -0.17290 -0.17290 -0.17290 112.67 112.67 112.67 
4 -1.3199 -1.3199 0.11840 112.67 110.77 110.77 
5 -1.3199 -1.3199 0.11840 112.67 110.77 110.77 
6 0.0000 0.0000 0.0000 111.76 111.76 112.67 
7 0.97470 -1.4639 4.1941 111.76 110.06 110.77 
8 -1.4639 0.97470 4.1941 111.76 110.77 110.06 
9 0.0000 0.0000 0.0000 112.67 111.76 111.76 
10 -1.3199 -1.3199 0.11840 112.67 110.77 110.77 
11 0.27380 -0.48250 0.27380 110.77 107.66 110.77 
12 0.97470 -1.4639 4.1941 111.76 110.06 110.77 
13 -0.11410 -8.2464 -0.11410 110.06 107.66 110.06 
14 0.0000 0.0000 0.0000 126.26 124.88 117.27 
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Appendix B: Atomistic Network Generation Code 
 

This is a perl script that takes the xyz coordinates of atoms in xyzfile, the bonding 
information from the bndfile along with a topologyfile type2topoinfofile to exchange the 
bonding in DCPD.  The reaction distance is typically adjusted to get reasonable reaction 
rates and has to be chosen carefully to get valid results. A low value results in almost no 
reactions and a high value results in high strain at large degrees of reaction. The program 
header show required files for the reaction code to run. It can be modified to change atom 
types also although here it only changes bonding topology. A sample topoinfo file is 
shown after the code that is designed for ROMP in DCPD. 
 

# this program reads a timestep bndfile xyzfile and type2topoinfo file 
and creates a new lammps input file 
# mech.txt that can be used to start off a new simulation  
# this program creates bondlist anglelist dihedrallist improperlist 
from just the bonding and atomtype data 
# This program requires a file called coeff.txt that lists all the 
bond, angle,dihedral,improper coeffs in a simulation  
# each angletype/dihedral/improper is uniquely determined by the type 
of its constituents  
# the type2topoinfofile gives this information and has to be created 
before this script can be used 
# if a given topology type is not mentioned in the topology file  then 
the output of the dihderal/angle/improper type is "NA" and cannot be 
run. 
 
# created May 4th 2007 
 
$argc= @ARGV; 
$argc == 6 || $argc ==7 || die " enter: timestep bndfile xyzfile 
type2topoinfofile rxnbondtype rxndistance (finalbondtype)\n"; 
$snapnum = $ARGV[0]; 
 
open (BND, "$ARGV[1]"); 
open (XYZ, "$ARGV[2]"); 
open (TOPO, "$ARGV[3]"); 
$rxnbondtype = $ARGV[4]; 
$sqrxndist = 2*$ARGV[5]*$ARGV[5]; 
if ($argc ==7) {$finbndtype = $ARGV[6];} 
 
#$atmtypes = 0; 
#$bndtypes = 0; 
#$angtypes = 0; 
#$dihtypes = 0; 
#$imptypes = 0; 
@bndtypelist = (); 
@angtypelist = (); 
@dihtypelist = (); 
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@imptypelist = (); 
 
$test = 0; 
while (<TOPO>){ 
  if ($test == 0){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[1] eq "atom"){ 
      $atmtypes = $t[0];    
      $test++; 
      print ("atmtypes = $atmtypes\n"); 
    } 
  } 
  if ($test == 1){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[1] eq "bond"){ 
      $bndtypes = $t[0];    
      $test++; 
      print ("bndtypes = $bndtypes\n"); 
    } 
  } 
  if ($test == 2){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[1] eq "angle"){ 
      $angtypes = $t[0];    
      $test++; 
      print ("angtypes = $angtypes\n"); 
    } 
  } 
  if ($test == 3){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[1] eq "dihedral"){ 
      $dihtypes = $t[0];    
      $test++; 
      print ("dihtypes = $dihtypes\n"); 
    } 
  } 
  if ($test == 4){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[1] eq "improper"){ 
      $imptypes = $t[0];    
      $test++; 
      print ("imptypes = $imptypes\n"); 
    } 
  } 
  # input a list of bondtypes based on atomtypes 
  if ($test == 5){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[0] eq "bndtype"){ 
      #print ("bndtype\n"); 
      for ($i=1; $i<=$bndtypes; $i++){ 
        $temp = <TOPO>; 
        @t =split(" ",$temp); 
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        $bndtypelist[$t[0]][0] = $t[1];     
        $bndtypelist[$t[0]][1] = $t[2];  
      } 
      $test++; 
    } 
  } 
  # input a list of angletypes based on atomtypes 
  if ($test == 6){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[0] eq "angtype"){ 
      #print ("angtype\n"); 
      for ($i=1; $i<=$angtypes; $i++){ 
        $temp = <TOPO>; 
        @t =split(" ",$temp); 
        $angtypelist[$t[0]][0] = $t[1];     
        $angtypelist[$t[0]][1] = $t[2];     
        $angtypelist[$t[0]][2] = $t[3];     
      } 
      $test++; 
    } 
  } 
  # input a list of dihedraltypes based on atomtypes 
  if ($test == 7){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[0] eq "dihtype"){ 
      #print ("dihtype\n"); 
      for ($i=1; $i<=$dihtypes; $i++){ 
        $temp = <TOPO>; 
        @t =split(" ",$temp); 
        $dihtypelist[$t[0]][0] = $t[1];     
        $dihtypelist[$t[0]][1] = $t[2];     
        $dihtypelist[$t[0]][2] = $t[3];     
        $dihtypelist[$t[0]][3] = $t[4];     
      } 
      $test++; 
    } 
  } 
  if ($test == 8){ 
    $temp = $_; 
    @t =split(" ",$temp); 
    if ($t[0] eq "imptype"){ 
      #print ("imptype\n"); 
      for ($i=1; $i<=$imptypes; $i++){ 
        $temp = <TOPO>; 
        @t =split(" ",$temp); 
        $imptypelist[$t[0]][0] = $t[1];     
        $imptypelist[$t[0]][1] = $t[2];     
        $imptypelist[$t[0]][2] = $t[3];     
        $imptypelist[$t[0]][3] = $t[4];     
        #print 
("$t[0],$imptypelist[$t[0]][0],$imptypelist[$t[0]][1],$imptypelist[$t[0
]][2],$imptypelist[$t[0]][3]\n");     
      } 
      $test++; 
    } 
  } 
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} 
print ("finished topofile reading\n"); 
 
# we just finished getting all the data about the what atom types  make  
bond, angle and dihedral and improper type 
 
 
# we now start getting information about atom positions and box size 
etc etc 
$numatoms =0; 
$numbnd=0; 
$numang=0; 
$numdih=0; 
$numimp=0; 
 
$test = 0; 
while (<XYZ>){ 
  if ($test == 0){ 
    $temp = $_; 
    @t = split (" ", $temp); 
    if ($t[1] eq "TIMESTEP"){ 
      $temp = <XYZ>; 
      @t = split (" ", $temp); 
      if ($t[0]==$snapnum){ 
        $test =1; 
      } 
    } 
    if ($test == 1){ 
      $temp =<XYZ>; # skip line ITEM: NUMBER OF ATOM 
      $temp = <XYZ>; 
      @t = split (" ", $temp); 
      $numatoms = $t[0]; 
      <XYZ>; #skip line ITEM: BOX BOUNDS 
      $temp = <XYZ>; 
      @t = split (" ", $temp); 
      $xboxmin = round($t[0]); 
      $xboxmax = round($t[1]); 
      $xbox = $xboxmax-$xboxmin; 
      $temp = <XYZ>; 
      @t = split (" ", $temp); 
      $yboxmin = round($t[0]); 
      $yboxmax = round($t[1]); 
      $ybox = $yboxmax-$yboxmin; 
      $temp = <XYZ>; 
      @t = split (" ", $temp); 
      $zboxmin = round($t[0]); 
      $zboxmax = round($t[1]); 
      $zbox = $zboxmax-$zboxmin; 
      <XYZ>; # skip line ITEM: ATOMS  
      $bondcnt = 0; #total num bonds contains the implicit dnagling 
bond of  
      $croscnt = 0; 
      $catcnt = 0;    
      for ($i=0; $i< $numatoms; $i++){ 
        $temp =<XYZ> ; 
        @t = split (" ", $temp); 
        $tag = $t[0]; 
        $mol[$tag] = $t[1]; 
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        $type[$tag] = $t[2]; 
        $q[$tag] = $t[3]; 
        $x[$tag] = $t[4]; 
        $y[$tag] = $t[5]; 
        $z[$tag] = $t[6]; 
 
        #$x[$tag] = ($t[3]-$xboxmin)/($xboxmax-$xboxmin); 
        #$y[$tag] = ($t[4]-$yboxmin)/($yboxmax-$yboxmin); 
        #$z[$tag] = ($t[5]-$zboxmin)/($zboxmax-$zboxmin);      
      } 
    } 
   
  } 
} 
print ("finished xyzfile reading\n"); 
 
# atom position are now in memory and can be used for topology updates 
if need be (this is not implemented yet)  
 
 
# we now start making a topology list for a data file to be input from 
lammps it uses nothing but bonding info. 
 
$test = 0; 
 
# initial listspace for bond of $i+1   
for ($i=0; $i<$numatoms; $i++){ 
 @tmp =(); 
 @list = (); 
 $list[$i]= [@tmp];   
} 
 
while (<BND>) { 
  if ($test == 0){ 
    $temp = $_; 
    @t = split (" ", $temp); 
    if ($t[0]==$snapnum){ 
        $test =1; 
    } 
     
    if ($test == 1){ 
      $temp = <BND>; 
      $temp =<BND>; # skip line ITEM: NUMBER OF BONDS 
      $temp = <BND>; 
      @t = split (" ", $temp); 
      $numbonds = $t[0]; 
      print ("numbonds in file = $numbonds\n"); 
      # initialize a bondlist to hold max 2x num of bonds 
      @bondlist = (); 
      for ($i=0; $i<$numbonds; $i++){ 
          @bondtmp =(); 
          $bondlist[$i]= [@bondtmp];   
       } 
 
      <BND>; #skip line ITEM: BONDS 
      $count = 0; 
      for ($i=0; $i< $numbonds; $i++){ 
        $temp =<BND> ; 
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        @t = split (" ", $temp); 
        $valid = 0; 
        for ($j=0; $j<@{$list[$t[2]]}; $j++){ 
          if (${$list[$t[2]]}[$j] == $t[3]) {$valid=1;} 
        } 
        if ($valid == 0) {  
          push (@{$list[$t[3]]}, $t[2]); 
          push (@{$list[$t[2]]}, $t[3]); 
          #next 3 lines makes a bondlist that will be used by the angle 
section 
          push (@{$bondlist[$count]}, $t[2]); 
          push (@{$bondlist[$count]}, $t[3]); 
          push (@{$bondlist[$count]}, $t[1]); 
          #print ("type$t[1] atom1=$t[2] atom2=$t[3]\n"); 
   #print ("type = ${$bondlist[$count]}[2] 
atom1=${$bondlist[$count]}[0],atom2=${$bondlist[$count]}[1]\n"); 
          $count++; 
        } 
      } 
    } 
  } 
} 
 
print ("finished reading bnd file\n"); 
 
$numbnd = $count; 
print ("unique bonds = $numbnd\n"); 
 
# At this point there is all the data required to make any topology 
updates as necessary. you need to import a periodic distance fn from 
dump2pov.pl ~/bin/ 
# then we will look at a list of all bonds of a certain type and try 
and exchange it with other nearby bonds of the same type 
# also need a randomizer for these lists so that when reactions take 
place they do so randomly  
 
@bndtemp = (); 
@tbndlist = (); 
@marker = (); 
$count = 0; 
for ($i=0; $i<$numbnd;$i++){ 
  $btype = ${$bondlist[$i]}[2]; 
  if($btype == $rxnbondtype){ 
    # make a marker that count if a swap takes place  
    $marker[$count]=0;  
    $tbndlist[$count] = [@bndtemp]; 
    # save the 2 atoms in the bond and the position in global bond list 
    push (@{$tbndlist[$count]}, ${$bondlist[$i]}[0]); 
    push (@{$tbndlist[$count]}, ${$bondlist[$i]}[1]); 
    push (@{$tbndlist[$count]}, $i); 
    $count++; 
  } 
} 
 
print ("finished creating list of size=$count of all 
bondtype=$rxnbondtype\n"); 
 
# randomly shuffle the tbndlist to ensure mixing 
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for ($i=0;$i<@tbndlist;$i++){ 
  shuffle(\@tbndlist); 
} 
print ("shuffled the list \n"); 
 
@marker = (); 
for ($i=0;$i<$count; $i++){ 
  $marker[$i]=0; 
} 
 
#check for reactions 
$rxtcount =0; 
for ($i=0; $i<$count; $i++){ 
  $b1 = ${$tbndlist[$i]}[0]; 
  $b2 = ${$tbndlist[$i]}[1]; 
  $pos1 = ${$tbndlist[$i]}[2]; 
  if ($marker[$i]==0){ 
    for ($j=0; $j<$count; $j++){ 
      if($marker[$j]==0 && $i!=$j){ 
        $c1 = ${$tbndlist[$j]}[0]; 
        $c2 = ${$tbndlist[$j]}[1]; 
        $pos2 = ${$tbndlist[$j]}[2]; 
        $d1 = getdistance($b1, $c1); 
        $d2 = getdistance($b2, $c2); 
        $d3 = getdistance($b1, $c2); 
        $d4 = getdistance($b2, $c1); 
        $case1 = $d1+$d2;         
        $case2 = $d3+$d4; 
        #print ("$i reacting $j/$count :  sqdist1 $case1 sqdist2 $case2 
dist for  sqrxndist=$sqrxndist\n"); 
        if ($case1>$case2 && $case2< $sqrxndist){ 
          print ("swapping $b1-$b2 $i/$count with $c1-$c2 
$j/$count\n");          
          $marker[$j]=1; 
          $marker[$i]=1; 
          $bondlist[$pos1][1]=$c1; 
          $bondlist[$pos2][0]=$b2; 
          if($argc ==7) { 
            $bondlist[$pos1][2]=$finbndtype; 
            $bondlist[$pos2][2]=$finbndtype; 
          } 
          for ($i1=0; $i1<@{$list[$b1]};$i1++){ 
            if (${$list[$b1]}[$i1]==$b2) {${$list[$b1]}[$i1]=$c1;} 
          } 
          for ($i1=0; $i1<@{$list[$b2]};$i1++){ 
            if (${$list[$b2]}[$i1]==$b1) {${$list[$b2]}[$i1]=$c2;} 
          } 
          for ($i1=0; $i1<@{$list[$c1]};$i1++){ 
            if (${$list[$c1]}[$i1]==$c2) {${$list[$c1]}[$i1]=$b1;} 
          } 
          for ($i1=0; $i1<@{$list[$c2]};$i1++){ 
            if (${$list[$c2]}[$i1]==$c1) {${$list[$c2]}[$i1]=$b2;} 
          } 
          $rxtcount++; 
          break; 
        } elsif ($case2>$case1 && $case1< $sqrxndist){ 
          print ("swapping bond $b1-$b2 $i/$count with $c2-$c1 
$j/$count\n");          
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          $marker[$j]=1; 
          $marker[$i]=1; 
          $bondlist[$pos1][1]=$c2; 
          $bondlist[$pos2][1]=$b2; 
          if($argc ==7) { 
            $bondlist[$pos1][2]=$finbndtype; 
            $bondlist[$pos2][2]=$finbndtype; 
          } 
          for ($i1=0; $i1<@{$list[$b1]};$i1++){ 
            if (${$list[$b1]}[$i1]==$b2) {${$list[$b1]}[$i1]=$c2;} 
          } 
          for ($i1=0; $i1<@{$list[$b2]};$i1++){ 
            if (${$list[$b2]}[$i1]==$b1) {${$list[$b2]}[$i1]=$c1;} 
          } 
          for ($i1=0; $i1<@{$list[$c1]};$i1++){ 
            if (${$list[$c1]}[$i1]==$c2) {${$list[$c1]}[$i1]=$b2;} 
          } 
          for ($i1=0; $i1<@{$list[$c2]};$i1++){ 
            if (${$list[$c2]}[$i1]==$c1) {${$list[$c2]}[$i1]=$b1;} 
          } 
          $rxtcount++; 
          break;  
        } 
      } 
    } 
  } 
} 
print ("$rxtcount reactions completed and updated all topology 
changes\n"); 
 
 
$count =0; 
open (DATA, ">bndtemp");  
print (DATA "\nBonds\n\n"); 
for($i=0; $i<$numbnd; $i++){ 
  $count++; 
  $btype = ${$bondlist[$i]}[2];   
  $bond1 = ${$bondlist[$i]}[0];   
  $bond2 = ${$bondlist[$i]}[1];   
  print (DATA "$count $btype\t$bond1\t$bond2\n") 
} 
# list now has the bond data and at a specific time step looks at the 
bond profile and and creates a list of angles. 
close (DATA); 
print ("finished bndtemp formation\n"); 
 
$count =0; 
open (DATA, ">angtemp"); 
print (DATA "\nAngles\n\n"); 
for ($i=1; $i<=$numatoms; $i++){ 
  $localbnd = @{$list[$i]}; 
  $a2=$i; 
  $t2=$type[$a2]; 
  for ($j=0;$j<$localbnd; $j++){ 
    $a1=${$list[$i]}[$j]; 
    $t1=$type[$a1]; 
    for ($k=$j+1; $k<$localbnd; $k++){ 
      $a3=${$list[$i]}[$k]; 
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      if ($a1 != $a3) { 
        $t3=$type[$a3]; 
        $count++; 
        $angletype = getangletype($t1,$t2,$t3); 
        print (DATA "$count\t$angletype\t$a1\t$a2\t$a3\n"); 
      } 
    } 
  } 
} 
$numang = $count; 
close (DATA); 
print ("finished angtemp formation\n"); 
 
$count =0; 
open (DATA, ">dihedtemp"); 
print (DATA "\nDihedrals\n\n"); 
# dihedral is p-b1-b2-q 
for ($i=0; $i<$numbnd; $i++){ 
  $b1 = ${$bondlist[$i]}[0]; 
  $b2 = ${$bondlist[$i]}[1]; 
  $t2=$type[$b1]; 
  $t3=$type[$b2]; 
  for ($j=0;$j<@{$list[$b1]}; $j++){ 
    $p = ${$list[$b1]}[$j]; 
    $t1=$type[$p]; 
    for ($k=0;$k<@{$list[$b2]}; $k++){ 
      $q = ${$list[$b2]}[$k]; 
      $t4=$type[$q]; 
      # this $p>$q ensure each dihedral is counted only once 
      if ($q!=$b1 && $p!=$b2){ 
        $count++; 
        $dihedtype = getdihedtype($t1,$t2,$t3,$t4); 
        print (DATA "$count\t$dihedtype\t$p\t$b1\t$b2\t$q\n"); 
      } 
    } 
  } 
} 
$numdih = $count; 
close (DATA); 
print ("finished dihedtemp formation\n"); 
 
$count =0; 
open (DATA, ">improtemp"); 
print (DATA "\nImpropers\n\n"); 
# dihedral is p-c: q-c: r-c: c = center and p q r are connected atoms  
for ($i=1; $i<=$numatoms; $i++){ 
  #$tempatm= $i; 
  $localbnd = @{$list[$i]}; 
  $c = $i; 
  $t2 = $type[$c]; 
  for ($j=0; $j<$localbnd; $j++){ 
    $p = ${$list[$i]}[$j]; 
    $t1 = $type[$p]; 
    for ($k=$j+1; $k<$localbnd; $k++){ 
      $q = ${$list[$i]}[$k]; 
      $t3 = $type[$q]; 
      for ($l=$k+1; $l<$localbnd; $l++){ 
        $r = ${$list[$i]}[$l]; 
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        $t4 = $type[$r]; 
        $count++; 
        $improtype = getimprotype($t1,$t2,$t3,$t4); 
        print (DATA "$count\t$improtype\t$p\t$c\t$q\t$r\n"); 
      } 
    } 
  } 
} 
$numimp = $count; 
close (DATA); 
 
print ("finished improtemp formation\n"); 
 
printheader(); 
printatoms(); 
 
 
close (BND); 
close (XYZ); 
system "cat hdrtemp coeffs.txt atmtemp bndtemp angtemp dihedtemp 
improtemp >mech.txt"; 
system "rm hdrtemp atmtemp bndtemp angtemp dihedtemp improtemp "; 
 
exit(); 
 
sub printheader { 
  my $header; 
  $header = "Datafile at timestep $snapnum of $ARGV[1]\n"; 
  $header = "$header\n$numatoms\tatoms\n$numbnd\tbonds"; 
  $header =       
"$header\n$numang\tangles\n$numdih\tdihedrals\n$numimp\timpropers\n"; 
  $header = "$header\n$atmtypes\tatom types\n$bndtypes\tbond   
types\n$angtypes\tangle types\n$dihtypes\tdihedral 
types\n$imptypes\timproper types\n"; 
  $header = "$header\n$xboxmin $xboxmax xlo xhi"; 
  $header = "$header\n$yboxmin $yboxmax ylo yhi"; 
  $header = "$header\n$zboxmin $zboxmax zlo zhi"; 
  open (HDR, ">hdrtemp"); 
  print (HDR "$header\n"); 
  close(HDR); 
} 
 
 
sub printatoms { 
  my $i, $tag; 
  open (ATM, ">atmtemp"); 
  print (ATM "\nAtoms\n\n"); 
  for ($i=0; $i < $numatoms; $i++){ 
    $tag = $i+1; 
    print (ATM 
"$tag\t$mol[$tag]\t$type[$tag]\t$q[$tag]\t$x[$tag]\t$y[$tag]\t$z[$tag]\
n"); 
  } 
  close (ATM); 
} 
 
sub round { 
  my $in, $out, $dec3; 



 198 

  $in = $_[0]; 
  $dec3 = $in*1000 - int($in*1000); 
  if ($dec3 > 5){ 
    $out = int($in*100+1)/100; 
  } elsif ($dec3 < -5) { 
    $out = int($in*100-1)/100; 
  } else { 
    $out = int($in*100)/100; 
  } 
  
  return $out; 
} 
 
sub getangletype {  
  my $i1, $at1, $at2, $at3, $cat1, $cat2, $cat3, $cangtype; 
  $at1 = $_[0]; 
  $at2 = $_[1]; 
  $at3 = $_[2];   
  $cangtype = "NA"; 
  for ($i1=1; $i1<=$angtypes; $i1++){    
    $cat1 = $angtypelist[$i1][0]; 
    $cat2 = $angtypelist[$i1][1]; 
    $cat3 = $angtypelist[$i1][2]; 
    if (($cat1==$at1 && $cat2==$at2 && $cat3==$at3) || (($cat1==$at3 && 
$cat2==$at2 && $cat3==$at1))){ 
      $cangtype = $i1; 
    } 
  } 
  if ($cangtype == "NA") {print ("no angtype: $at1 $at2 $at3\n");} 
  return $cangtype; 
} 
 
sub getdihedtype { 
  my $i1, $at1, $at2, $at3, $at4, $cat1, $cat2, $cat3, $cat4, 
$cdihtype; 
  $at1 = $_[0]; 
  $at2 = $_[1]; 
  $at3 = $_[2];   
  $at4 = $_[3];   
  $cdihtype = "NA"; 
  for ($i1=1; $i1<=$dihtypes; $i1++){    
    $cat1 = $dihtypelist[$i1][0]; 
    $cat2 = $dihtypelist[$i1][1]; 
    $cat3 = $dihtypelist[$i1][2]; 
    $cat4 = $dihtypelist[$i1][3]; 
    if (($cat1==$at1 && $cat2==$at2 && $cat3==$at3 && $cat4==$at4 ) || 
(($cat1==$at4 && $cat2==$at3 && $cat3==$at2 && $cat4==$at1))){ 
      $cdihtype = $i1; 
    } 
  } 
  if ($cdihtype == "NA") {print ("no dihtype: $at1 $at2 $at3 $at4\n");} 
  return $cdihtype; 
} 
 
sub getimprotype { 
  my $i1, $at1, $at2, $at3, $at4, $cat1, $cat2, $cat3, $cat4, 
$cimptype; 
  $at1 = $_[0]; 
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  $at2 = $_[1]; 
  $at3 = $_[2];   
  $at4 = $_[3];   
  $cimptype = "NA"; 
  for ($i1=1; $i1<=$imptypes; $i1++){    
    $cat1 = $imptypelist[$i1][0]; 
    $cat2 = $imptypelist[$i1][1]; 
    $cat3 = $imptypelist[$i1][2]; 
    $cat4 = $imptypelist[$i1][3]; 
    if ($cat2==$at2 && (($cat1==$at1 && $cat3==$at3 && 
$cat4==$at4)||($cat1==$at4 && $cat3==$at1 && $cat4==$at3)||($cat1==$at3 
&& $cat3==$at4 && $cat4==$at1)  
                      ||($cat1==$at1 && $cat3==$at4 && 
$cat4==$at3)||($cat1==$at4 && $cat3==$at3 && $cat4==$at1)||($cat1==$at3 
&& $cat3==$at1 && $cat4==$at4))){ 
      $cimptype = $i1; 
    } 
  } 
  #if ($cimptype == "NA") {print ("no imptype: $at1 $at2 $at3 
$at4\n");} 
  return $cimptype; 
} 
 
sub getdistance { 
  my $sqdist, $n1, $n2, $dx, $dy, $dz; 
  $n1 = $_[0]; 
  $n2 = $_[1]; 
        $dx = ($x[$n1]-$x[$n2])/$xbox; 
        $dy = ($y[$n1]-$y[$n2])/$ybox; 
        $dz = ($z[$n1]-$z[$n2])/$zbox; 
        #print ("$dx $dy $dz\n"); 
        if ($dx >0.5) {$dx -= 1;} 
        elsif ($dx < -0.9) {$dx += 1;} 
        if ($dy >0.5) {$dy -= 1;} 
        elsif ($dy < -0.9) {$dy += 1;} 
        if ($dz >0.5) {$dz -= 1;} 
        elsif ($dz < -0.9) {$dz += 1;} 
        $sqdist = $dx*$dx*$xbox*$xbox + $dy*$dy*$ybox*$ybox + 
$dz*$dz*$zbox*$zbox; 
   return $sqdist; 
} 
 
# Shuffle taken in toto from 
http://www.unix.org.ua/orelly/perl/cookbook/ch04_18.htm 
sub shuffle { 
    my $array = shift; 
    my $i2; 
    for ($i2 = @$array; --$i2; ) { 
        my $j2 = int rand ($i2+1); 
        next if $i2 == $j2; 
        @$array[$i2,$j2] = @$array[$j2,$i2]; 
    } 
} 
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Topoinfofile: 

 

4 atom types 
   11 bond types 
  18 angle types 
  34 dihedral types 
  14 improper types 
 
atmtype 
1 sp3Ch 
2 sp2C 
3 sp3CH2 
4 H 
 
 
bndtype type1 type2 
1       1       1 
2       1       3 
3       1       4 
4       1       2 
5       2       2 
6       2       4 
7       3       4 
8       2       3 
9       2       2 
10       2       2 
11       2       2 
 
sp3ch=1: sp2C=2: sp3ch2=3: H=4 
angtype typea typeb typec 
1 1 1 1 
2 1 1 3 
3 1 1 4 
4 3 1 4 
5 1 1 2 
6 2 1 3 
7 2 1 4 
8 1 2 2 
9 1 2 4 
10 2 2 4 
11 1 3 1 
12 1 3 4 
13 4 3 4 
14 1 3 2 
15 2 3 4 
16 2 2 3 
17 3 2 4 
18 4 2 4 
    
1 = sp3CH: 2 = sp2C: 3 = sp3CH2: 4 = H (this is not a united atom 
simulation, sp3CH implies the C is sp3 and has only one H) 
dihtype typea typeb typec typed 
1 1 1 1 2 
2 1 1 1 3 
3 1 1 1 4 
4 2 1 1 3 
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5 3 1 1 3 
6 3 1 1 4 
7 2 1 1 4 
8 4 1 1 4 
9 1 1 1 1 
10 1 1 3 2 
11 1 1 3 4 
12 4 1 3 2 
13 4 1 3 4 
14 1 1 2 2 
15 1 1 2 4 
16 3 1 2 2 
17 3 1 2 4 
18 4 1 2 2 
19 4 1 2 4 
20 2 1 3 1 
21 2 1 3 4 
22 1 1 3 1 
23 4 1 3 1 
24 1 2 2 1 
25 1 2 2 4 
26 4 2 2 4 
27 2 1 1 2 
28 2 2 3 1 
29 4 2 3 1 
30 2 2 3 4 
31 4 2 3 4 
32 1 2 2 3 
33 3 2 2 4 
34 3 2 2 3 
 
sp3Ch=1: sp2C=2: sp3CH2=3: H=4 
imptype typea typeb typec typed 
1 1 2 2 4 
2 2 2 3 4 
3 1 1 1 3 
4 1 1 1 4 
5 1 1 3 4 
6 1 1 2 3 
7 1 1 2 4 
8 2 1 3 4 
9 1 1 1 2 
10 1 3 1 4 
11 1 3 4 4 
12 1 3 2 4 
13 2 3 4 4 
14 4 2 2 4 
 

 


