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ABSTRACT

Tolerance determination involves considerations from manufacturing, design, and
assembly. Along with minimum cost and maximum functionality and interchangeability,
the practice of tolerancing urges a process engineer to choose an appropriate
manufacturing process as well. This situation is formalized by using a discrete model. For
an optimum selection of tolerances from given tolerances of various manufacturing
processes, minimization of manufacturing cost is achieved under the constraints of
tolerance stack-ups.

A random variable and its standard deviation are assigned to a dimension and its
tolerance. This probabilistic approach enables trade-off between performance and
tolerance but it also suggests stochastic optimization. With the aid of a notion called the
reliability index (8], tolerance selection is formulated as an integer programming problem.
A branch and bound algorithm for ensuring an optimum selection is developed by
exploiting the special structure of the constraints. To make the enumeration tree small,
monotonic relations among the reliability index, cost, and tolerance are examined. The

algorithm is tested with examples.

Keywords: Tolerancing, Combinatorial Optimization, Branch-and-Bound



1. INTRODUCTION

Tolerance is the total amount by which a specific dimension in an engineering
drawing is permitted to vary [1]. It is specified by the difference between the upper and
the lower limits of a dimension. Once assigned, tolerance reflects the cost of
manufacturing. Reduction of cost can be achieved by increasing tolerance but such an
increase must be constrained by performance (functionality and interchangeability). A
great deal of research [3-7,10,18,21,23] on tolerancing have been devoted to the resolution
of this trade-off between cost and performance. However, they are concerned with
tolerance analysis — that is, for a given set of tolerances, find the effect on cost or
performance. It may be noted that tolerance is an input. If the particular combination of
tolerances does not meet the criteria, some or all of the input have to be changed. And,
the analysis procedure iterates. This potentially combinatorially complex situation of
tolerance selection raises the concern for convergence. In an interactive mode [4-6,10,21],
convergence depends on the “experience” of the user. However, because of the nature of
input selection, there is no assurance of optimality. In a more resource abundant
environment, Monte Carlo simulation [7,21] can be adopted. While? with simulation, the
solution can be made arbitrarily close to the optimum, the amount of resource demanded
can be arbitrarily large. The synthesis of tolerance, an alternative to manual data
preparation and random number generation, remained as an intellectual and practical
challenge. Recently, tolerance synthesis by non-linear optimization have been reported
(11,14,15]. In them, tolerance is treated as a continuous variable such that the
relationship between tolerance and cost takes the form of a continuous function as
illustrated in Figure 1-(a).

<Insert Figure 1>
Tolerance can be thought of as a discrete variable. The eight classes of fit in the

ANSI standard [1] is an example. For each class of fit, there is an associated



manufacturing process. While a process P, capable of producing a tight tolerance t, may
be used to produce a less stringent tolerance t,, its cost ¢, however, may be higher than
Co that of another process P, capable of producing t,. In this paper, a discrete tolerance
model such as the one illustfated in Figure 1—(b) is adopted. That each process p, is the
most efficient in tolerance and in cost is also understood. Because of the discrete nature of
the tolerance-cost model, the problem of synthesizing tolerances becomes one of tolerance
selection. This paper presents the dévelopment of a procedure that optimizes the selection.
Suppose n tolerances are to be selected for the n dimensions and each tolerance is to
be selected from a set of s, manufacturing processes, 1<i<n. For each dirﬁension X, the
s; available manufacturing processes will be referred to as the PSMP, (Predetermined Set
of Manufacturing Processes for the i-th dimension). Tolerance selection starts with the
given PSMP, for 1<is<n. Only one manufacturing process is to be selected from each
PSMPi and this condition will be referred to as the selection condition. In other words, the
selection condition for dimension X, is described by using the 0-1 variables, Vi for
1sk_<_si such that Yot =ty = 1, where Yy =1 signifies that the k-th manufacturing

1

process (tolerance) is chosen from PSMP.l.

As a criterion for selection, cost minimization is used. The cost minimization
selection, however, ‘is constrained by stack-up conditions for functionality and
interchangeability. Consider Figure 2. Suppose the clearance between the two
components in Figure 2—(a) is to be within limits —0.1 and 0.2. Figure 2—(b) illustrates

the area RS for satisfying the following stack-up conditions:

FI(X)= X —x2—0.120

1

FZ(X) = -x +x2+ 0.2 = 0.

and x, are 5.00 and 4.85,

Suppose the nominal dimensions for the dimensions X 2

respectively. If two manufacturing processes are available for X, and four for X, as shown



in Figure 2—(c), the number of feasible solutions that satisfy the selection condition is
eight and their relations with the stack-up conditions are shown in Figure 2—(d). Notice
the overlap between Rs and the rectangle specified by the tolerances. For example, the
rectangle specified by (tlz, t,,) is entirely covered by RS, whereas a smaller fraction of the
rectangle specified by (t,,, t,,) is covered by RS. The fraction of coverage determines the
level that the dimension within tolerance limits satisfies the stack-up conditions. Now, cost
minimization leads to the selection of (t:1 e t21)’ but this selection gives the worst result —
with the least fraction of coverage in the in-tolerance area. If a higher level of satisfaction
of the stack-up conditions is deemed desirable, some of the manufacturing processes would
have to be replaced by those with having smaller tolerances and the feasibility test for the
stack-up conditions is iterated.
<Insert Figure 2>

Tolerance selection is formulated here as a combinatorial optimization problem by
treating cost minimization as the objective function and stack-up conditions and selection
conditions as the constraints. The overall procedure for tolerance selection is outlined in
Figure 3.

<Insert Figure 3>

Concept in probability is used. Since tolerance implies randomness, a random
variable and its standard deviation ‘are respectively associated with a dimension and its
tolerance. The probabilistic approach enables the partial satisfaction of the stack-up
conditions. By permitting a fraction of the assemblies to be “out-of-spec,” a reduction in
cost may be achieved by selectively increasing some of the tolerances. This approach is
considered to be advantageous over the deterministic approach [3,5,14] for the 100% “in-
spec” case only. Suppose an inequality F(X)=0 represents a certain stack-up condition,
where X is a random vector composed of dimensions. The level of satisfaction of the stack-

up condition can be described by the following multiple integral:



J F(X)=0 fiX) dX (2)

where f(X) is the multivariate probability density function (p.d.f.) of X. F(X), the function
for stack-up condition, is nonlinear if non-rectilinear shapes and/or dimensions are in an
engineering drawing. See, for example, F3(X) and F 4X) in Figure 4. (Those two
conditions specify that the angular difference between 91 and 6, is to be within i(vr{ 180)
radians.)’ Now, suppose the stack-up conditions are linear. Tolerance selection then can
be formulated as a pure 0-1 linear integer programming problem because of the following
property: under the assumption of independence, the variance of a linear function can be
expressed as the linear sum of the variances of the constituting dimensions. Hence, binary
tree enumeration such as Balas’ 0-1 algorithm [2] can be used for tolerance selection
[9,16,23]. Unfortunately, such is not the case in general as engineering drawings are not
always rectilinear. Furthermore, there is no rule for expressing the variance of a

nonlinear function, such as F3(X), in terms of variances of its constituting dimensions.

<Insert Figure 4>
To compute the multiple integral of equation (2), simulation or numerical methods
may be considered. But, since it is an inner loop in the overall algorithm for tolerance
selection (as illustrated in Figure 3), a fast approximation is sought. In this paper, the
nonlinear function F(X) is approximated by a hyperplane. To retain accuracy, the area
that is probabilistically the densest is preserved by computing the distance from the

hyperplane to the origin of standardized coordinate system. A notion called the “reliability

"The two conditions F3(X)20 and F,(X)=0 are derived by taking the following steps:
- (7/180) < 91 - 02 < 7/180
tan(— (1/180)) < tan(6, — 8, ) < tan(x/180)
tane1 - tan92
— tan (7/180) S —————— < tan(n/180)

1+ tan(?ltane2

(kg = x))x, = %) = (x5 = x)(x,) — %))

- tan (7/180) < < tan(7/180)
(19 = XXy = x9) + (x5 = x,)x5 — )




index” introduced by Hasofer and Lind [8] is used for computing this distance.
With the aid of the reliability index for computing (2), the tolerance selection

problem can be formulated as the following nonlinear 0-1 integer programming problem:

s

n i
Min c.y.

i; k§=:1 ik (3)

subject to

‘Bj z g for j=1,-~m (3-1)
5
Z Yo = L fori=1,-n (3-2)
k=1

where Yy = 0orl fork=1,-, s, and i=1,+n

where ¢, is the cost incurred when using the k-th manufacturing process for dimension X,
The constraint (3-1) states that the j-th stack-up condition, wimse satisfaction level is
approximated through the reliability index ﬂj, should be satisfied with at least the given
probability qj- The constraint (3-2) describes the selection rule such that only one
manufacturing process is selected from the given PSMPi. _The notation is summarized in
Table 1.
<Insert Table 1>

An algorithm for (3) that comes to mind first is the binary tree enumeration since
the formulation takes the form of a pure 0-1 integer programming problem. The number
of solutions, however, is of O(2N), where N is the total number of manufacturing

processes. If each PSMP.l for 1<i<n has s; elements (manufacturing processes), then
n

N= Zsi. For example, if two and four different manufacturing processes are considered
i=1

for the dimensions x, and X, then s

) =2, sz=4 and N=6. Tolerances (t, , t..) and (t,2

1 11’ "12 r

tygr tyar t,,) are associated with the dimensions x. and X,, respectively. The number of

1
solutions for the binary tree enumeration becomes 0(26) though only eight solutions, i.e.,

(trpta) (ptagh (tptygh (tpty)s (bpty ) Cyptyp)s (t50tyy) and (,t,,) are actually

feasible to constraint (3-2). A branch-and-bound algorithm is developed in this paper by



exploiting the special structure of the constraint (3-2), the so called “multiple choice
constraint.”
It is noted that the computation time for the branch-and-bound algorithm can be

n
O(Hsi). Hence, making the enumeration tree smaller is essential. The monotonic

1=1
relations among cost, performance and tolerance — as tolerance decreases, cost and
performance increase — enable efficient pruning and fathoming operations in the
algorithm. Monotonicity is also used to simplify the lower bound computation and the
feasibility test in each iteration. Furthermore, to facilitate fathoming by cost, a heuristic
procedure requiring O(N) feasibility tests is given to provide an initial incumbent value.

Finally, the practical run time of the algorithm (about 3 CPU seconds) is illustrated by one

of examples (for 12 dimension variables, each with up to 5 manufacturing processes).

2. FORMULATION

t . . . .
X )" is used to represent the n dimensions in an

A random vector X=(x1,--, n

engineering drawing to capture the randomness of manufacturing processes. Mean and
standard deviation vectors for X, denoted by X and £, are associated with nominal
dimensions and tolerances, respectively. Dimension variables x;s are assumed to be
independent with each other and to follow the normal distribution [13].

Stack-up conditions are assumed to be given and are represented by the functional
form Fj(X) for 1<sj<m, that are inequalities. Each inequality divides the dimensional
space into a safe region st = {X] F,(X)20} and a fail region RFj?{ X| F,(X)<0}. The
safe region R of satisfying all the stack-up conditions is the intersection of RSJ.’ I<jsm.
That is, RS = njleSj' Figure 2—(b) illustrates the safe region specified by the two

stack-up conditions of (1). The probability of satisfying a stack-up condition FJ.(X)ZO is

then described as:



/ oX; V) dX (4)
Fj(X)zo

The objective of tolerance selection.is to select tolerances (standard deviations) by
minimizing the manufacturing cost. The selected tolerances are constrained to satisfy the
stack-up condition FJ.(X)ZO at a desired probability level 1-6).. These constraints are
referred to as reliability constraints. Also, by the nature of tolerance selection, only one
tolerance should be selected from a given PSMP. These selection constraints are referred

to as selection constraints. Then, the problem can be formulated as:

S

n i
Min Z )y CinYik
i=1 k=1
subject to (5)

/ oX; V)dX = 1-6, for j=1,m (reliability constraints)

F.(X)z0 J

!

E Yk = 1, fori=1,- -n (selection constraints)
k=1

where Yig = Qor1l for k= 1,---,si and i=1,-n

As an example, consider Figure-2 for which s,=2 and s,=4. Tolerance selection is then

formulated as follows:

Min ¢),y;) +€5,¥15 ¥ €510 T Coo¥ap + Cog¥og ¥ C54¥p4
subject to

| 6% V)X = 1-6
F (X)= x;-x,-0.120

+X; V)dX = 1-4,

‘/1;2()()=-x1+x2+0.220

Ypptype=1
Yor t ¥op T ¥p3 t ¥y =1

where Y11 Yy Yopr Yo Yogr ¥, are 0-1 variables and



é,, &, are permissible dissatisfaction levels for FI(X)ZO, FZ(X)EO.

When solving problem (5), two difficulties arise. First, the reliability constraints of
(5) involve a multiple integral bounded by nonlinear functions. Evaluating it numerically
1s time consuming. Second, the selection constraints of (5) involve a large number of

n
solutions, i.e., Hsi. The first problem is dealt with in the remainder of this section while

i=1
the second problem is treated in the next section.
Observe that the integral of the reliability constraints of (5) is to be taken in the safe

region Rg. Since RS. is to be integrated under the multivariate normal p.d.f., the

J J
accuracy of an approximation for (4) depends on the preservation of the probabilistically
densest area. Suppose the dimension variables are standardized (to be described in
Appendix A) such that they, denoted by z;s, follow the standard normal distribution.
Then, the vicinity of the origin in the standardized coordinate system (standard system, for
short) is probabilistically the densest and the density decreases exponentially from the
origin,

Linearization is performed by taking the tangent hyperplane at a point on the stack-
up function having the minimum distance from the origin in the standard system. This
minimum distance is called as reliability index [8] and is denoted by 8. (The solution
scheme for computing g is also explained in Appendix A). Then, the probability of covering
one side of the tangent hyperplane, P(st), can be computed based on the univariate
normal distribution, because rotational symmetry is preserved in the standard system as

illustrated in Figure 5. This is summarized in Lemma 1.

<Insert Figure 5>

Lemma 1. If the stack-up function FJ.(X) has a reliability index Bj, then

P(st) ~ @(,Bj). )

The accuracy of (6) depends on the curvature of the stack-up function. As long as the



radius of the curvature at the expansion point is large compared to the reliability index as
in most practical cases, this approximation is quite accurate [12]. For a linear stack-up

function, P(RS.) = @(ﬁj).
j

Based on Lemma 1, formulation (5) can be converted into the following deterministic

optimization problem:

n 5
o 5 3 e
subject to
Bj =3 1( 1—6j), forj=1,-m (reliability constraints)
5
Z Y = L fori=1,-, n (selection constraints)
k=1

where Yie = Oorl fork= 1,---,si and i=1,~n

The value & 1(1—15}.) in the reliability constraints can be looked up in the standard normal

distribution table.

3. ALGORITHM

A branch-and-bound algorithm for efficient tree enumeration is developed in this
section. To make the enumeration tree small, monotonic relations among the reliability

index, cost and tolerance are exploited.

3-1. Monotonicity
A function g(X) is said to be monotone nonincreasing in every element X,'s if

X =z X, results in gX)) = g(Xz).

The monotonicity between tolerance and cost is generally understood as: the more
tolerance the less cost. That is, (')C.l(cri)/@cri < 0 where Ci(”i) is the cost function in terms of

the standard deviation (i.e., tolerance). Indeed, most tolerance-cost models [19,20,22)
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exhibit this relationship. Without loss of generality, this strict nonincreasing monotonicity
is described by taking the following ordering:
¢, < Co < Cig < cisi fori=1,-n
0, >0,> 0> Uisi fori=1,~,n
The monotonicity between tolerance and the reliability index is less obvious. But it
can be established based on the following observation: If a certain standard deviation is
reduced, the distance from the origin of the standard system to a point on the stack-up

function becomes greater than or equal to the distance before the reduction. This

observation can be generalized as follows:

Lemma 2. Suppose dJ. o is the distance in the standard system from a point Z on the j-th

stack-up function to the origin. Then, ij o/ 00; =0 for 1sisn and 1sj<m.

Proof. The proof is given in Appendix B. @

From this lemma, it follows immediately that the minimum distance ﬂJ also decreases with
the decrease of the standard deviations. That is,

6,6). /o, <0 (7

Inequality (7) reconfirms the trade-off between tolerance and performance: tolerance
represented by standard deviation has an inverse relationship with performance implied by

the reliability index.

3-2. Branch-and-Bound

The enumeration tree used in this paper is depicted in Figure 6. To denote a partial
solution, a 1xn row vector Y is used. For example, Y=(2,sz,0,0,---,0) means that for
dimension X the second manufacturing process is selected from PSMP1 and for dimension
X, the s,-th manufacturing process from PSMP,. The value 0 in Y shows that the decision
for the corresponding dimension has not been made yet. Notice that, by using the vector

Y, the selection constraints can be handled implicitly. That is, if it is decided that a
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dimension is to be produced by a certain manufacturing process, the remaining
manufacturing processes in the same selection constraint (i.e., the same PSMP) are set to
0.
<Insert Figure 6>
The following branch-and-bound procedure TOL-B&B provides a way of tracing the
enumeration tree. Here, the terminology of branch-and-bound [17] is assumed. A
flowchart is given in Figure 7.

<Insert Figure 7>

Procedure TOL-B&B

Begin
Step 1. Initialize the candidate list to consist of partial solution vectors
(1,0,---,0),---,(51,0,---,0), and set the incumbent value C* to an arbitrary large

number. Set the incumbent solution, denoted by a 1xn row vector C, to
(0,0,---,0), where (0,0,-,0) signifies that no decision has been made for any
dimension.

Step 2. Go to Step 3 if the candidate list is not empty. Otherwise, stop and the
current incumbent solution is then optimum except the case in which the
incumbent value is an initial value set in Step 1. (The exceptional case
happens only when there is no feasible solution.)

Step 3. Select a candidate problem from the candidate list. The selection rule is
LIFO (last-in-first-out). The candidate list is maintained in a stack.

Step 4. Calculate the lower bound CL for the candidate problem. Suppose the
current partial solution for the candidate problem is Y=(i1,i2, ,ir,O, - ,0).

n

oty + Z C...

Then, the lower bound CL for Yisc 1
1 I j=r+1 J

1i
Step 5. (Fathoming Criterion 1) If C, 2C*, go to Step 2.

Step 6. (Fathoming Criterion 2) Modify Y=(

i

19i2’".7 ir,0707.")0) WIth Yﬂ:z(il"zv'”\

84198 Check if this Y* is feasible. If it is not feasible, go to Step 9.

Step 7. (Fathoming Criterion 3) If r=n (terminal node), go to Step 8. Otherwise,
go to Step 10.

Step 8. Update the incumbent solution C with Y and the incumbent value C* with
n
Zc.‘ . Go to Step 2.
; i,
=171
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Step 9. Prune the left siblings of the current partial solution from the candidate list.
For example, if ir=3, the candidates (il,i2,~~-, ir__l,l,O,---,O) and

(i1’i2""’ir-1’2’0’ -+,0) can be deleted. Go to Step 2.

Step 10. Separate the candidate problem and add its offsprings to the candidate list.
The offsprings of Y are (i1’i2""’ir’1’0""’0)’ (il,iz,---,ir,2,0,---,0), -y

(il,iz,'-f,ir,s”1,0,---,0). Go to Step 2.

end;

Steps 4 and 6 are based on the monotonic relations among the reliability index, cost
and tolerance. In Step 4, the cost ordering and its strict nonincreasing monotonicity is
used to compute the lower bound such that CL for the partial solution Y=(il,---,ir,0,---,0) is
equivalent to the cost for the selection (il,---,ir,l, -+,1). Similarly, in Step 6, to check for the

feasibility of Y, Y*=(i1,---, il_,sr +1""’Sn) is tested based on the nonincreasing monotonicity

of the reliability index of (7).
Now, to save computation time, the following observations are made.

Observation 1. If the current node is the right-most sibling, its partial solution for

feasibility test is the same as that of its parent.

From this observation, the feasibility test in Step 6 can be omitted if the candidate problem
is the right-most offspring. In a similar manner, the computation for the lower bound in

Step 4 can be expedited with the following observation.

Observation 2. If the current node is the left-most sibling, its lower bound in cost is the

same as that of its parent.

Hence, the computation in Step 4 can be omitted also if the candidate problem is the left-

most offspring. More generally, this computation can be done in the following way:

Observation 3. Provided that the partial solution is (i ir,O,---,O), the j-th left offspring

P

of the current partial solution has the following lower bound in cost:
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CL of the j-th offspring = CL of the parent + Corrj S

Note that Observation 2 is a special case of Observation 3, since C.y 1.)'—;Cr FLT"
The pruning operation of Step 9, which contributes to making the enumeration tree

smaller, is based on the following observation:

Observation 4. For siblings having the same parent, the lower bound in cost and the

feasibility of the sibling to the right are greater than those of the sibling to the left.

Lastly, to facilitate fathoming by cost in Step 5, the following heuristic procedure

TOL-INITIAL is used for generating a reasonable initial incumbent value C*.

Procedure TOL-INITIAL

Begin
Step 1. Start with Y1=(sl,---,sn) where i=0. Set the integer variables “stop-check”
and “current-flag” to 1. The variable stop-check is used to check the stop of

the circular search of feasible solution. And, the current-flag indicates the
dimension being considered.

Step 2. If the manufacturing process index for the dimension indicated by the
current-flag is the first one, go to Step 6.

Step 3. Change the manufacturing process index of the dimension indicated by the
current-flag to the manufacturing process index one lower than the current
one. Let this changed solution be Yyt

Step 4. Test if Y is feasible. If feasible, stop-check:=0 and go to Step 7.
Otherwise, go to Step 5.

Step 5. If Yi+1=(1,1,---,1,1), then stop since there is no feasible solution.

Otherwise, Y' * 1: =Y.

Step 6. stop-check:= stop-check + 1.

Step 7. If current-flag = n, then current-flag:=1. Otherwise, current-flag: =
current-flag + 1.

Step 8. If stop-check = n+1, then C:= Y'*!and stop. Otherwise, go to Step 2.

end;
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Procedure TOL-INITIAL starts with the manufacturing process having the highest
cost. It reduces the cost through circular search until cost reduction is impossible because
of infeasibility. TOL-INITIAL involves O(N) feasibility tests in the worst case. In the
example to follow, it is assumed that in Step 1 of TOL-B&B, the initial solution C is now
obtained from TOL-INITIAL. Since TOL-INITIAL checks for the existence of feasible
solutions in Step 5, the use of TOL-INITIAL simplifies Step 2 of TOL-B&B as follows: if

candidate list is empty, stop and the incumbent solution is optimum.

4. EXAMPLES

Algorithm TOL-B&B has been programmed in PASCAL and run on the University
of Michigan IBM 3090-400/VM under the MTS operating system. Two. examples are
given. Example 1, based on the simple assembly of Figure 2—(a) with two dimension
variables and two linear stack-up conditions, traces the flow of the algorithm. In
particular, effective pruning by TOL-B&B is illustrated. Example 2 is based on the
assembly in Figure 4, with twelve dimension variables, each with three to five selections

for a total of 1,574,640 possible solutions.

Example 1.

Consider the assembly in Figure 2—(a) in which stack-up conditions are specified by
the two inequalities of (1). These two conditions define the safe region Ry in the relevant
positive dimension space as shown in Figure 2—(b). Suppose each stack-up condition of (1)
is to be satisfied with a 97.468% (=,/0.95) confidence level. Then, 61=62=1—ﬂS75.
Here, two and four different manufacturing processes are respectively considered for the
dimensions x ) and X, i.e., s1=2, 52=4, and N=6. The corresponding tolerance-cost model
is illustrated in Figure 2—(c). The discrete tolerances t., as shown in Figure 2—(c) are
assumed to signify 99.73% two-sided ¢onﬁdence intervals. That is, b is the same as

130, such that ., =t /6. Note that these standard deviations o, are used to compute
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ﬂj’s in the reliability constraints of (3-1). The dimensions X, and X, are assumed to have
the nominal dimension values 5.00 and 4.85 respectively, i.e., (§1,§2)=(5.00,4.85). The
relationship between tolerances and the nominal dimensions is illustrated in Figure 2—(d).

To obtain an initial solution for proéedure TOL-B&B, procedure TOL-INITIAL is
used. It finds an initial solution (2,3): the second manufacturing process with tolerance to
is selected for dimension X, and the third manufacturing process with tolerance tos is
selected for dimension X, This initial solution incurring a cost of 47.0 is obtained in four
iterations of TOL-INITIAL. These four iterations start respectively with solutions (2,4),
(2,4), (2,3) and (2,3), and perform the feasibility test in Step 4 with solutions (1,4), (2,3),
(1,3) and (2,2). The solution (2,3) and its cost of 47.0 are used as the initial incumbent
solution and its incumbent value in Step 1 of procedure TOL-B&B.

TOL-B&B traverses the enumeration tree as illustrated in Figure 8. In that figure,
the nodes indicated by solid circles are the nodes traversed by TOL-B&B while the dashed
nodes are the non-traversed ones. The number in a traversed node represent the traversal
sequence. This numbering shows that TOL-B&B is based on the depth-first search. When
the procedure first visits node 1, the lower bound in cost for the partial solution (2,0)
becomes 32.0. Since this lower bound is less than the incumbent value 47.0, the feasibility
test i1s done with solution (2,4). It turns out to be feasible so that the next traversal node
is node 2 having the solution (2,4). 'Nodes 2 and 3 are fathomed since their lower bounds
in cost are not less than the incumbent value 47.0. Nodes 4 and 5 are fathomed because
they are infeasible. It is noted here that TOL-B&B obtains the optimum solution with five
iterations whereas the possible solutions for binary tree enumeration is 64 (=26).

Figure 8 also shows how the monotonicity among tolerance, cost, and the reliability
index works for partial enumeration. The pruning of node A is due to the monotonicity
between tolerance and the reliability index: the reliability indices of the left-siblings are
less than or equal to those of the current node. That is, node A is infeasible because of the

infeasibility of node 4. In the case of node B, the solution for feasibility test is the same as
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the solution of its parent, i.e., node 5, by Observation 1. Since node 5 turns out to be
infeasible, node B is also infeasible and this infeasibility makes possible the pruning of
node C as in the case of node A. In this example, the initial incumbent solution obtair;ed
by TOL-INITIAL is the optimum.

<Insert Figure 8>

Example 2.

The assembly is shown in Figure 4. The first and second stack-up functions are for
specifying the vertical and the horizontal clearances between two parts, respectively. The
third and fourth stack-up conditions show the angular difference condition between angles
6, and 6, as mentioned in the footnote in Section 1. The last two functions show that the
size difference of the horizontal lengths of two parts should be within 0.01. F3(X) and

F 4(X) are nonlinear and the others are linear.

The nominal dimensions for the 12 dimensions are given as X = (50.0, 40.00125,
20.05, 9.9985, 9.9985, 30.00, 10.00, 30.00, 10.05, 30.00, 40.00, 50.00)". The other input
data for cost and standard deviations are listed in Table 2.

<Insert Table 2>

Suppose each of the six stack-up conditions is to be satisfied at 99.1488%

)1/6 1/6

(=(0.95)7") level, i.e., 61= --~=64=1—(0.95) . The output produced by TOL-B&B and its
statistics are given in Table 3. The initial incumbent solution by TOL-INITIAL is (2, 2, 2.
2,2,2,1,1, 1, 8, 4, 3) and its corresponding incumbent value is 275. Starting with this
initial incumbent solution, the optimum solution of (3,2,1,3,2,2,2,1,1,2,2,1) is obtained in
2554 iterations which is 0.16% of the total number of possible selections 1,574,640. This
result (in 3.076 CPU seconds) is tabulated and compared to the one obtained without using
TOL-INITIAL (in 3.884 CPU seconds) in Table 3.

<Insert Table 3>

Under optimum selection, the reliability indices of the given stack-up functions FJ(X'
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for 1<j<6 are shown in the second column of Table 4. This column shows that the
reliability index obtained for each stack-up function is almost the same as the reliability
index 2.38617 for the desired satisfaction level 99.1488%. By the definition of the
reliability index, it corresponds to the minimum distance from each stack-up function to the
origin in the standard system. This distance is used here to measure the satisfaction level
covering the half-space safe region obtained by the hyperplane approximation of a stack-up
function. By Lemma 1, these satisfaction levels are approximately equal to <I>(ﬁj) for
1<j<6. Those are listed in the third column of Table 4 and their differences from the
desired level of 99.1488% are shown in the fourth column of Table 4. The reason that the
obtained reliability indices are not exactly the same as the desired reliability index is due
to the discrete nature of tolerance selection. By Lemma 2 and inequality (7), the reliability
index higher than the desired level needs a smaller tolerance because of the negative
monotonicity of the reliability index to tolerance. The smaller tolerance, however, in turn
incurs a high cost because of the negative monotonicity of cost to tolerance. Hence, the
selection is optimized so as to reduce the gap between both sides of the reliability
constraint of (3-1) to as small a value as possible.

<Insert Table 4>

5. SUMMARY

It is recognized that the arena of CAD, CAM and robotics is populated with “islands
of technology.” While tolerancing may be construed as another island, it has the
integrative element that bridge design, manufacturing, assembly and testing. The intent
of this work is to fold the traditionally “down-stream” considerations such as functionality,
interchangeability and cost to the design stage. Formulated probabilistically, the problem
of automatic tolerancing permits trade-offs between these considerations.

The contribution of this work is in practice. As born by the practical considerations

such as the association of tolerance to discrete manufacturing processes and the
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observations on monotonicity hence the fathoming criteria, the branch-and-bound algorithm
as implemented is suitable for near real-time tolerancing. In addition, the algorithm
guarantees an optimum selection from given PSMPs under linear as well as nonlinear

stack-up conditions.
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APPENDICES

Appendix A. Reliability Index

The Euclidean distance of a point Z in the standard system to the origin is (ZtZ) vz

X - X,
1 1
The standardized vector Z is obtained by the transformation z, = for 1gi<n.

.
1

Hence, @'z = {(X_'g)tv-l(x_i)}llz. The reliability index can be obtained by

solving the following problem:

Min £=X-V }x-X)
subject to (8)
FX)<0

Here, the objective function is expressed as ,32 instead of 3 since the positive definiteness of
the covariance matrix V always guarantees the same solution.
As a solution scheme for (8), the iterative method based on the Newton-Raphson

method [12] is as follows:

(k) t (k)

VFX™)"V VF(X™)
where X® denotes the solution after the k-th iteration and VF(X) is the nx1 gradient
vector of F(X) at X. It is noted that this iterative method starts from the nominal

dimension point X.
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Appendix B. Monotonicity of the Reliability Index

As shown in Appendix A, the Euclidean distance dj 0 from the origin of the standard
system to a point Z  can be expressed in terms of the original vector X by
{(Xo—i)"v- 1(X 0—3?)}1/2, where X0 is for the point ZO before standardization. Note that

this distance expression corresponds to the equation of an ellipsoid with center X, the semi-

axes of which are expressed as the product of dJ. 0 and the standard deviations. Then,

As a standard deviation o, decreases, the distance dJ. 0 increases.
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Table 1. Notation

Notation Description
i=1,+n dimension index
j=1,-m stack-up function index
k=1, 5 manufacturing process index

C incumbent solution in TOL-B&B

C* incumbent value in TOL-B&B

Cix cost for dimension i and manufacturing process k

CL lower bound in cost for the partial solution Y in TOL-B&B

FJ.(X) the j-th stack-up function where FJ.(X) = 0 is the desired condition

N total number of manufacturing processes, i.e., s + ---+sn

g desired reliability of the j-th stack-up condition, i.e., & 1(1—¢Sj)
st, RFj safe and fail regions formed by FJ.(X)

b tolerance of dimension i due to the use of manufacturing process k

A" nxn diagonal variance matrix whose i-th diagonal element is aiz

X random dimension vector

X mean vector of X

Y partial solution in TOL-B&B

Yik 0-1 decision variable for dimension i and manufacturing process k

y/ standardized dimension vector

BJ. reliability index for the j-th stack-up function

6). permissible dissatisfaction of the j-th stack-up condition

T standard deviation for dimension i and manufacturing process k

+X;V) multivariate normal p.d.f. having mean X and variance V
() cumulative standardized normal distribution function

8”10

inverse cumulative standardized normal distribution function
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Table 2. Cost and Standard Deviations for Example 2
Process
Di-
men- 1 2 3 4
sion
Cost| SD* |Cost| SD* |Cost| SD* |Cost| SD* [Cost|SD*
1 1200 35.0] 23.0 30.0} 29.0 25.0 - - - -
2 2.0] 2200.0{ 5.01 2000.0{ 11.0| 1800.0 - - - -
3 113.0 97.0| 16.0 96.0] 22.0 95.0 - - - -
4 13.0] 110.0} 16.0{ 105.0] 22.0} 100.0 - - - -
5 |35.0 3.3] 45.0 3.2] 65.0 3.1 - - - -
6 | 35.0 4.1] 41.0 4.0] 53.0 3.0 - - - -
7 1320 3.0 39.0 2.9] 53.0 2.8 - - - -
8 | 32.0 2.21 38.0 2.11 50.0 2.0 - - - -
9 2.0] 2100.0f 5.0{ 2050.0f 11.0| 2000.0 - - - -
10 4.0/ 136.0] 6.0 134.0{ 10.0| 132.0{ 18.0] 130.00 - -
11 | 10.0 97.0] 12.0 96.0] 16.0 95.01 24.0|1 94.00 - -
12 | 16.0 31.01 18.0 30.0] 22.0 29.0/ 30.0| 28.00| 46.0] 27.0

* standard deviation (unit: 10 %)
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Table 3. Results for Example 2

Data see Table 2
Input n
Size (3 s, 40
i=1
L
No. of Selections (] s) © 1,574,640
i=1
. . . (b) - (f
iterations in TOL-B&B =2553 (3267)
Run fathoming by cost © =121 (1719(0)
Statistics feasibility checks @ = 1282 (1548‘“)
fathoming by feasibility = 460 (490°)
incumbent changes =9 (73(0)
Efficiency of TOL-B&B © 616.8 (482.07)
Run Time 3.076 (3.884"%) CPU seconds
Output | Optimum Selection 3,2,1,3,2,2,2,1,1,2,2,1)

Optimum Cost

262.00

Note:

(b) = (c) + (d)
(e) = (a) / (b)

(f): result obtained without TOL-INITIAL
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Table 4. Satisfaction Level at Optimum in Example 2

Stack-Up |Reliability Index | Satisfaction Level in % | Over-Satisfaction Level in %
Condition (ﬁj) (<I>(Bj)) (<I>(,6j) —0.991488)

1 2.38697 99.151 0.002

2 2.38618 99.149 0.000

3 2.39801 99.176 0.027

4 2.39556 99.170 0.022

5 2.51101 99.398 0.249

6 2.51101 99.398 0.249

Note: The desired reliability index corresponding to 99.1488% is 2.38617
since & '(1-0.991488) = 2.38617
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Figure 3. Basic Scheme of Tolerance Selection
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Figure 7. Flow-Chart of Procedure TOL-B&B
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