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Abstract

Automatic assignment of tolerances to dimensioned mechanical
assemblies is studied as an optimization problem: the objective of which is
to minimize the (manufacturing) cost, subject to the constraints of (design)
functionality and (assembly) interchangeability. By associating a nominal
dimension and a tolerance to the variance, the probabilistic approach is

taken.

Trigonometric functions relating the component geometries give rise
to the nonlinearity in the system. Estimating an n-dimensional nonlinear
integral by a polytope converts the probabilistic optimization formulation to
a deterministic one. It also allows speedy evaluation of tolerance analysis

embedded in tolerance synthesis.

Local optimality is ensured by analysis of convexity and quasi-
concavity of the objective function and some of the constraints. Sensitivity
analysis is performed to provide search directions for global optimality. An

implementation is reported with an example.



1. Introduction

Tolerances in an engineering design are intended to capture
variations from the ideal, as introduced by the very process of realization
such as manufacturing and assembly. Nominal dimensions specify
idealized geometries by size, location and form. The range between the

upper and lower limits of the variation from the nominal dimension is

called tolerance [1].

At the design stage, functionality, performance and reliability are the
major issues under consideration. Tolerance, or variation from the ideal,
should be set to be as close to zero as possible. However, high precision or
tight tolerances are usually associated with high costs; looser tolerances
are less costly at the manufacturing stage. Yet, at the assembly stage, due
to the objective of optimizing the interchangeability of components, tight
tolerances are desirable. While design and assembly prefer tight
tolerancing, virtual components (from design) must be brought to
realization by manufacturing before physical components can be

assembled. This requirement results in a three-way trade-off amongst

design, manufacturing and assembly as shown in Figure 1.

DESIGN MANUFACTURING ASSEMBLY
FUNCTIONALITY,
PROCESS INTERCHAGE-
PERFORMANCE, CAPABILITY ABILITY
RELIABILITY
TIGHT TOLERANCE LOOSE TOLERANCE TIGHT TOLERANCE

Figure 1. Concurrent Consideration of Tolerance
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The concurrent consideration of opposing criteria on tolerancing,
between design and manufacturing, and between manufacturing and
assembly, can only be resolved by compromise. The result of such a
rationalization, if agreeable to all concerns, is effectively a synthesis of
tolerances. This paper deals with computational techniques for tolerance

synthesis by analysis.

Basic to component manufacturing is cost. To assign cost-effective
product tolerances, probabilistic tolerancing is considered in this paper.
The probabilistic approach is considered to be advantageous over the
deterministic approach, because it is possible to perform trade-off analysis
with the probabilistic approach [13,19]. The problem, simply stated, is to
convert the designer's "function-oriented" specifications into
manufacturable specifications by allocating the tolerances to the ideal
dimensions such that the manufacturing cost is minimized. Models of
tolerance-cost functions from [10,19,22,23,25] are employed. Figure 2
shows a typical inverse relation of manufacturing cost to tolerances: the

tighter the tolerance the higher the cost.

Fine
machining

rough
machining

tolerance

Figure 2. A Typical Tolerance-Cost Curve
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To make the optimization effective for the probabilistic tolerancing
approach requires efficient algorithms to estimate the yield and its
sensitivity with respect to tolerances. A major obstacle of probabilistic
tolerancing for general nonlinear system is the tremendous amount of CPU
time required to recompute the yield at each iteration of the optimization.
To reduce the time for the yield computation, Parkinson [20] and the
authors [14,15] used the notion of reliability index [9] as an approximation of
the yield. However, the computation of the approximation is still intensive.
In [14], a local circular search was used to find a global optimal solution.
Michael and Siddall [19] decomposed the random variable space into
orthogonal n-dimensional cubes, where n is the number of dimensions
considered; that gives O(2") cells to be tested. Other attempts which impose
restrictions on the domain of the problem such as, linearity [2,7,11,24,25,26]

and single design constraint [22], have practical limitations.

The purpose of this paper is to provide a general framework for
tolerance synthesis for nonlinear systems with multiple, dependent!
design constraints. Least-cost tolerance synthesis is mathematically
formulated as a nonlinear programming (NLP) problem. Algorithms are
provided and illustrated by an example. Post-optimality analysis is also
considered so as to allow the possibility of modifying some yield constraints

in the design process.

I, The design constraints are termed "dependent" if they share the same dimension
variables. For instance, the two design constraints x,-x,-0.1<0 and x,+x3-0.05<0 are
dependent because they share the same variable x;.
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2. Basic Concepts

2.1 Design Function

Design and assembly are concerning more with inter-component

relations. Consider a simple assembly as shown in Figure 3.

X1

Figure 3. An Assembly

Suppose the clearance between the components has to be greater than or
equal to 0.01 to achieve certain performance and assemblability. This

requirement can be expressed mathematically as:
x1-x2 20.01, (1)

where x1 and x2 denote the dimensions of the hole and the shaft respectively

as shown in the figure. Rewriting inequality (1) as a function F(x,c) gives:
Fx,001)=-x1+x9+0.01<0. (2)

Functions such as (2) are called design functions. They describe the

inter-component relations, and provide a mathematical basis for
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controlling functionality and interchangeability. In (2), 0.01 is referred to as
a design constant ¢ of the design function F(x,c). A design function is not
always linear. For example, if the assembly is not recti-linear, as
illustrated in Figure 4, some of the design functions will take on

trigonometric terms.

X9
PartA %5
<, - T,

at

y : vertical distance from C (of part B) to D (of part A) is equal to X4 + X9 Sin x3

Figure 4. A Non-linear Design Function

A linear system is one in which an assembly dimension y is defined by

a linear combination of component dimensions x1, x2,...,X,:

n
y =) ajx (3)

J=1
where a; is a signed binary integer. As variations accumulates, the
tolerance analysis (or "stack-up", as it is commonly referred to) for linear
systems is useful and has been studied extensively [2,7,11,24,25,26]. The key

property that facilitates the analysis is that the variance of the linear sum is



4/9/90

the sum of the variances of component dimensions under the assumption of

independence, that is,

n

%2 = Z (aj)2 o’xj2. (4)

J=1

When tolerance ¢; of dimension x; is defined as £30j from the mean y;, the

assembly tolerance ¢, can be then represented by

n ti
ty = ky ‘\[J ) (a))? (é)2 (5)

where k, is a constant derived from an allowable percentage 1, of defect in

A
the assembly. In the case of normal distribution, k, =2 * ®-1(1 - —21).

However, the analysis procedure for linear system can not be extended to
nonlinear system because of the lack of a general rule for an aggregate

such as equation (4).

22 Yield

The probabilistic approach is performed under the assumption that the
dimension vector x follows the multivariate normal distribution. (Indeed,
Mansoor [18] shows that most manufacturing processes produce
dimensions with normal distributions.) Let 4 and o; denote the mean and
the standard deviation of the normally distributed random variable x;. The
mean f; is typically fixed by the designer, whereas the standard deviation
oj is chosen according to the precision of the controls exercised over the

manufacturing process. This parameter oj is therefore a function of the
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. . . t;
tolerance ¢;, and according to standard practice, oj is normally set to *é

Clearly, if ¢; is given, x; is a well defined random variable.

Probabilistic tolerance analysis can be stated more succinctly in a
mathematical formulation: Given tolerances ¢; (or standard deviations gj),
determine the probability such that the design function F(x,c) is less than or

equal to zero, i.e., Pr(F(x,c) <0). In other words, evaluate the integral,

yield = Y(8) = J flsut,R) dx 6)

F(x,c)<0

where F(x,c) is a design function, and flx;l,t,R) is the probability density
function of multivariate normal vector x for which (,¢, and R denote the
mean vector, the tolerance vector (standard deviation vector), and the
correlation matrix of x, respectively. (If the random variables x;are
independent, it will not be necessary to specify covariances.) The integral (6)

shall be referred as the yield.

It helps the intuition to visualize the interaction between the tolerance
and the design function. Consider an assembly of two random variables, x;
and x2. A design function F(x,c) partitions the two-dimensional space into
two regions. The safe region Rg in Figure 5(a) corresponds to the region in
which F(x,c) £ 0. (The complement of the safe region is called the failure
region Rf.) Now, the given tolerances also prescribe a region in the same
space. In Figure 5(b), the upper and lower limits of a random variable x;
define a strip. Intersecting the strips for x1 and x9 gives the tolerance
region Rt. It is noted that the size of RT varies with tolerances, but Rg (or
RF) is independent of tolerances. Combining Rt with Rg gives the reliable

region RR as shown in Figure 5(c). For any system to perform reliably, RR
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must be non-empty. (Such would be the case if the tolerances were not

assigned properly or the design function was incorrectly specified.)
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x2‘ F X,c)=0
(a) Rr

...........................

(b) tolerance
limit of xo | Ko : Rr
Uy
\ N N ’x 1
tolerance

limit of x;

(c)

Figure 5. Safe, Tolerance and Reliable Regions
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3. Tolerance Analysis

3.1 Yield of Linear Design Function

While this paper addresses systems with nonlinear design functions,
discussion of the linear case facilitates subsequent development as non-
linear functions will be approximated by hyperplanes. The yield of a linear
design function F(x,c) as computed from (6), involves multiple integration.
An approximation method which can be extended to the nonlinear case?
adopts the notion of the reliability index, which was introduced by Hasofer
and Lind [9]. Consider Figure 6, in which there are two independent
random variables z; and z, both following the standard normal distribution

N(0,1). The (standardized) linear design function is given by the form

a1z1+09z9+a3. The desired yield Pr(oiz1+a9zo+ag < 0) is equal to ®(f3),
lagl

\ a2+ 002

the origin. The distance /3 is referred to as the reliability index of the design

where f= is the minimum distance from the design function to

function. Because of the rotational symmetry of the standard normal
coordinate, the yield can be obtained by looking up the value of ®(f3) in the
univariate standard normal distribution table. The above technique is next
generalized for computing the yield of a design function with any number of

random variables.

2 The observation that a linear combination of multivariate normal random variables
follow a univariate normal distribution [6, p.56] does not extend readily to the case of
nonlinear design functions.

10
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1toags +ay

Pr(Rq;) =Pr(oz1+0a9zo+03 < 0) = O(3) =Pr(Rg,)
Figure 6. Rotational Symmetry of Standard Coordinate

In general, tolerance analysis for linear design functions F(x,c)=a’x+c

requires the following steps:

(1)

(ii)

Standardization : Transform the dependent normal variables to

the independent standard normal variables by using
z=PD)yl(x- W (7

where z is the transformed standard normal vector and P is the
orthogonal matrix for diagonalizing a given covariance matrix V
such that PTVP=DD’. (The detailed transformation procedure is
given in Appendix A.) The transformed z space is referred to as

the standard coordinates.

Reliability Index Computation : Compute the minimum distance
f from the origin to the transformed design function in the
standard coordinates. First, represent the design function in

terms of z:

11
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a’x +c = a’PDz + all +c. (8)
The distance from the origin to the right hand side of equation (8)

corresponds to # which can be then expressed as

_ -a’ll-c _a'l-c
" \(@PDYa’PD)’ a'Va

B )

since PD(PD)"=PDDTPT=P(P"VP)PT=V. Note that the numerator of
equation (9), - a™ll - ¢, is always positive since the given nominal

dimensions, U, are assumed to satisfy the design condition.

(iii)) Table Look-Up : Look up the univariate standard normal
distribution table for ®(f3).

32 Yield of Nonlinear Design Functions

To solve the integral (6) under nonlinear function F(x,c) and
multivariate normal PDF, two techniques are considered: (i) Monte-Carlo
simulation [5,8] and (ii) approximation through the linearization of F(x,c)

[14,15,20].

Monte-Carlo simulation starts with generating N sets of random
samples (X11,£21,..-,Xn1)5.+-,(X 1N, X2N,...,Xnn) from the given multivariate

normal PDF, where x; denotes the [-th sample (/=1,...,N) of the j-th
dimension (j=1,...,n). Then, each set is substituted into the design function

and the sign of the functional value is checked. Suppose T sets out of N sets

have a nonpositive sign. Then, the estimate of the yield is % While Monte-

Carlo simulation can be applied to the linear or nonlinear F(x,c), it is time

intensive because a large number of random samples needs to be taken to

12



4/9/90

have an accurate result. This intensive consumption of time is compounded
in tolerance synthesis, which requires iterative tolerance analysis to

estimate the yield and the gradient.

In order to reduce the computational time, approximation of yield by
linearization of nonlinear function is used. An expansion point of a design
function F(x,c) is selected, then linearization is done through Taylor series
expansion3. Note that the probability density in the standard coordinate
decreases exponentially as the distance from the origin increases. This
suggests that for an expansion point to be well-selected the

(probabilistically) densest area should be preserved after linearization.

The "dense" area is estimated by the distance . The "densest" area is
estimated by minimizing . Each design function is standardized by
transformation (7), and the point on each standardized design function
which has the minimum distance from the origin is selected as the
expansion point. Consider two points p1 and pg on G(z,7), the standardized
F(x,c), as candidates for expansion points. In figure 7, lines L, and Ly
correspond to linearization of G(z,y) through p1 and po. Since dq < do, p1 is

closer to the origin than po.

3. The first order Taylor series expansion gives the tangent hyperplane passing through
the expansion point.
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Figure 7. Expansion Point for Linearization

The expansion point having the minimum distance from the origin is

obtained by solving the following single constraint NLP:
Min 8 =Vz"z , subjectto G(z,y = 0. (10)

Based on equation (7), formulation (10) can be rewritten with the original

variables:
Min 2= (x-W)"V-Yx-11), subject to Flx,c) = 0. 11)

Here, the objective function is expressed as /32 instead of 3 since the positive
definiteness of the covariance matrix V always guarantees the same
solution. As a solution scheme for (11), the iterative method based on

Newton-Raphson method [17] is used:

@® - T YRR 0) - Fix®),0)
VFE® eV vF® o)

8D =y vV IFGEW ) (12)

14
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where x'®) denotes the solution after the k-th iteration and VF(x,)is the nx1
gradient vector of F(x,c) at x. As an initial solution for (12), the mean

nominal vector U is used.

Tolerance analysis for nonlinear design function therefore takes the

following steps:

(i) Expansion Point Finding : Find the expansion point x* by

iteratively using equation (12).

(i) Reliability Index Computation : The reliability index f is
computed by \/ (x*- L)V L% )

(iii) Table Look-Up : The yield Y(¢) (i.e.,Pr(F(x,c) < 0)) is approximated
by ®(f3), which can be looked up in the univariate standard normal

distribution table.

15
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4. Least Cost Tolerance Synthesis

The problem in the context of tolerance analysis is: given design
functions and tolerances, compute the yield. Suppose, instead, the yield is
given, how are the tolerances to be assigned to each dimension? Figure 8
illustrates the impact of two different sets of tolerances on the yield. In the
figures, the concentric circles represent the contour of equal probability
density. It is noted that the tighter set of tolerances (as in Figure 8(a))
results in a higher yield as compared to the yield with the looser set of

tolerances (as in Figure 8(b)).

FX,)=0
sz
(a)
0.01
FXe)=0
(b)

Figure 8. Impact of Different Tolerances on Yield

16
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A higher yield, while desirable, is achieved at the expense of other
considerations such as cost and manufacturability. To resolve this conflict,
heuristic rules have been proposed [2]: (i) equal tolerances, (ii) tolerances
proportional to dimensions, and (iii) tolerances proportional to process
deviations. While heuristics are practical, it would be intellectually

satisfying to see if assignments of tolerances can be optimized.

4.1 Tolerance-Cost Model

As indicated in the introduction, it is generally accepted that there is
an inverse relationship between tolerance and manufacturing cost. A

number of cost models have been employed to fit manufacturing tolerance-

cost sampled data [10,19,22,23,25], as shown in Table 1.

Model Name References Cost Function ®
Sutherland-Roth Model [23] C)=atl+f
Reciprocal Squared Model (10, 22] C@) = % +f
Exponential Model [25] C(t) =a expl % Y+ f
Michael-Siddall Model [19] Ct)=at® expl-et}+f

(*) a,b,e constants for variable manufacturing cost
f : constant for fixed manufacturing cost

Table 1. Tolerance-Cost Models

17
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With such tolerance-cost models for the toleranced dimensions, the
total manufacturing cost can be obtained by summing the individual
manufacturing cost:

n
C(t) = C(tj) (13)
J=1

Note that model (13) is based on the "throw-aways" strategy, that is, the
repair cost for the defect is not considered in the model. However, if the

reworking cost is considered, the model becomes:

n
C®) = 21 Cltj)+Crp1, ..., pn) {1 - Y(&) (14)

J

where Cy(+) is the cost function due to reworking and p; is the probability of
reworking the j-th dimension in case that the design function is not
satisfied. The difficulty of employing model (14) is in procuring the
empirical values for p;. In this paper, the throw-away cost model (13) is

adopted.

42 Mathematical Formulation

Least-cost tolerance allocation is a procedure for determining an
optimal set of tolerances which minimizes the manufacturing cost and
satisfies the performance requirement; the decision variables are the
tolerances. Therefore, we can formulate the problem with minimizing the
manufacturing cost as the objective function and satisfying the

performance requirements as the constraints:
Min C(¢), subjectto Y(¢) > 1-A. (15)

18
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where C(¢) is the manufacturing cost function in terms of tolerance ¢, and
(1-14) is the minimal satisfactory yield, i.e., the yield given by tolerances ¢
should be greater than or equal to the given level 1-A. Formulation (15)

implies that tolerance synthesis includes tolerance analysis.

With cost model (13) and multiple design functions, formulation (15) is

rewritten as

n
Min Y C(t) (16)
J=1
subject to
Yi¢) 2 1-4 fori=1,2, .., m.

This probabilistic optimization problem is simplified into a deterministic
optimization problem through approximation of the yield by the reliability

index.

This conversion into deterministic optimization differs from chance
constrained programming due to Charnes and Cooper [3] in that the yield
is approximated not at the origin of the standard coordinates but at the
point of minimum distance from the origin. Thus, Y;(¢) is approximated by
d(f3;), as suggested in Section 3.2. The constraints of (16) are rewritten as
®(f3;) 21 - A;. Furthermore, by the monotonic property of the function &(.)
the constraint ®(8;) 2 1-4; can be inverted to the constraint ;> ®1(1-4;), and
the formulation becomes

n

Min ¥ C() 17

J=1
subject to
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Bi > @1(1 - A7) fori=1,2,..,m.

Note that f3; is a function (with respect to ¢;); and ®1(1-4;) is equal to a value

q; which can be obtained from the standard normal distribution table.

Recall that an expansion point xj is obtained from solving
formulation (11) with a fixed oj. However, the "optimal" oj obtained from
solving formulation (17) is in general different from the initial oj.
Therefore, in the solution process, as an x; is changed, the constraints of
(17) are changed as well. Consequently, oj may no longer be optimal or even
feasible. In order to reflect the changes in x;, formulation (11) (for all
design functions) is added to formulation (17) as constraints, hence,

guaranteeing the satisfaction of locally optimal conditions.

The local optima of (11) are the solutions that satisfy the Kuhn-
Tucker necessary condition? [27]. Since (11) is a minimization problem, its
constraints, F;(x,c)=0, can be relaxed to F;(x,c)20. With the Kuhn-Tucker
necessary conditions, formulation (17) becomes:

n

Min ¥ C(t) (18)

J=1
subject to

Bi > &l1-2)

OBi  OFi(x*c) _o

o Uj o (18.1)
uiFi(x*,c)=0 (18.2)
u; 20 (18.3)

fori=1,2,..,m.

4 j3; and F(x,c) being differentiable at x* are assumed.

20
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4.3 Global Optimality Analysis

In Nonlinear Programming, no existing algorithm guarantees a
globally optimal solﬁtion unless the objective function and the constraints
are of certain forms. The existence check for the special forms is performed
based on the following theorem [27, pp.43-44]: that the objective function is
convex and the constraint functions are quasi-concave corresponds to a
sufficient condition for global optimality. This ensures that the locally
optimal solution implied by the Kuhn-Tucker necessary conditions is also a

globally optimal solution.

Checking formulation (18) for the satisfaction of the Kuhn-Tucker
sufficient condition proceeds as follows. The objective function is the sum of
the individual tolerance-cost function (as in (13)). Cost models such as the
ones in Table 1 are convex because the derivative of C(¢j) are monotonically
nondecreasing with respect to tolerances. Since the sum of convex

functions is also convex, the tolerance-cost function of (13) is always convex.

Similarly, the derivatives of the reliability index function are checked

: .. o . . : :
for quasi-concavity. Py ﬁ - is obtained by following the chain rule:
J

of OB ,of*_ 1,082
do; % d0; 28 dg;

(19)
2
For op* , rewrite 32 as:
00j

/32 = (x*-/,L)TV'l(x*-y) = (x*-u)T(DRD)'l(x*-u) = gTR'lg

21
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where D is a diagonal matrix whose the k-th diagonal element is 1 ,Risa

Ok
*
nxn correlation matrix, and g= (xl /J1 . xnc-un)T. Then,
n
P22 og" 198
=—g'R1lg = R1 TR-1—=-
23 aojg g 20 g§+8 20
2" Xj-Hi
=2=-Rlg =-200,..07%0,..0 Rg
00; 0j
_. 2_,_12 “’) (20)
Oy l=1 O;

where /[\)ji is the (i,j)-th element of matrix R™!. Substituting (20) into (19)

results in

op __x;"#j(%"..x?'“i). 21)

JU
d0; Bao? i1 o;

The quasi-concavity of the reliability index function with respect to
standard deviation is checked under the assumption of independence
among dimension variables, i.e., ﬁjizl if j=i, and ;Sﬂ-=o otherwise.
Therefore, equation (21) can be rewritten as

B _ (xj'e-uj)2
3gj  foP

(22)

The quasi-concavity of the reliability index functions is thus shown by the
nonincreasing monotonic relationship between the reliability index and the

tolerances.

Since there is no restriction on the type of the design functions that

can be used, equations (18.1) and (18.2) are not necessarily quasi-concave.
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As a result, with arbitrary design functions, the optimal solution of

formulation (18) is not guaranteed.

44 Algorithmic Analysis

The feasible direction method is commonly used to solve the NLP
problems. The constraints of formulation (18) comprise a feasible region. A
point in the feasible region corresponds to a feasible assignment of
tolerance. The total cost with the assigned tolerances is obtained by

evaluating the objective function at that point.

®) is a point in the feasible region. A direction d™ is

Suppose ©
identified such that, for a sufficiently small A>0, the following two
properties are true: 1) oV - o g™ s feasible, and ii) the objective value
at 0**" is better than the objective value at o™ In each iteration of the
feasible direction method, having determined a feasible direction, a one-

dimensional optimization problem is solved to maximize the improvement

of the objective value.

If formulation (11) satisfies the Kuhn-Tucker sufficient condition and
equations (18.1) and (18.2) are quasi-concave, the optimal solution of (18) is
guaranteed by applying the feasible direction method. That is, if the feasible
direction algorithm reaches a point that satisfies the Kuhn-Tucker
necessary condition, then the corresponding tolerance assignment requires
the least cost. The modified version of Zoutendijk's Method due to Topkis

and Veinott [16,27] can be applied and is guaranteed to converge.
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If either the formulation (11) does not satisfy the Kuhn-Tucker
sufficient condition or equations (18.1) and (18.2) are not quasi-concave (or
both), the sensitivity of yield is analyzed. The sensitivity of yield provides
information about which tolerances are critical and helps determine the

search direction in the optimization process for tolerance assignment.

With respect to a tolerance ¢j, it is defined as

aY(¢t)
sBt)=—"—". (23)
J atj

Now that Y(¢#) is approximated by ®(f3) (by step (iii) in tolerance analysis for

o0d(f3)
otj

nonlinear design functions), (23) can be approximated by (For a

linear design function, is the exact yield sensitivity.)

ot;
Expanding s(f,tj) by the chain rule reveals the search direction:

od J0; *. 4, n A ’;_ .
0. = ) 2B 0G; _ gy [ MK (5 A AT )

op doj otj B o a7 g

where ﬁji is the (i,j) element of the inverse matrix of the correlation matrix,
xj is the j-th coordinate of the expansion point, and

¢(+) is the PDF of the standard normal distribution, i.e.,

1 f?
o(8) = Vo exp{ - 5.

Substituting (22) into (24) and by assumption of independence of

dimensions, the sensitivity of yield is rewritten as
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*
s(B.t) = ¢(B) * {- (‘x;‘o_;ﬁ} * é (25)
Equation (25) shows that the s(f,fj) are always nonpositive. This means that
there is a nonincreasing monotonicity between yield and tolerance. This
monotonic property demonstrates the trade-off between tolerance and
performance: the performance, which is implied by yield, increases as the

tolerances are tightened.
4.5. Lagrangean Multiplier

The impact of modifying yields constraints on the manufacturing cost,

i.e., the objective value, is considered in this section. This is performed as a
post-optimality analysis.

0C(oy,..

oA

decomposed into two parts using the chain rule:

o; . ) .
The partial derivative ) at the optimal solution (UT,...,GZ)T is

AC(#) 3C@) 9q;
ki dqi A

(26)

a .
The second part of this decomposition, 5%— , turns out to be:
l

i 2

Ly q?
' oexpl )

since A;= 1-®(q;). The first part of (26), ag;f)
l

multiplier" in NLP has the following characteristic: if the constraint is

, called the "Lagrangean

inactive at the optimal solution, then the corresponding Lagrangean

multiplier should be zero. This means that for an inactive constraint at
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optimum the corresponding q; can be modified slightly without incurring

additional manufacturing cost.

In case that a constraint is active at optimum, the corresponding

Lagrangean multiplier should be greater than zero. It is computed as:

oC®) % C(8) aq g C()_ql

27

since the i-th constraint is assumed to be active, i.e. ¢; = ;. From equation
*
i (xij- )
00 Bioj

(22), , where x;' is the j-th expansion point for f;, (27)

becomes

o _ 1 bC(t){ /3LGJ )

(28)
0qi 51 905 (xij- )
Based on the inverse-squared model, i.e., C(¢) = Z {(:k 2 +fk}, (28)
becomes
aC®) % a_f Big® y M ajBi

3i 211808 (- ) jS1180ef - w2
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5. Implementation

An assembly of two parts with twelve dimensions is shown in Figure
9(a). Six design functions, linear and non-linear, are given in Figure 9(b).
Design functions F1(X) and Fo(X) represent the vertical and the horizontal
clearance conditions of the two parts. Design functions F3(X) and F4(X) post
the restriction on the difference between angles 6; and 692 to ensure

feasibility of assembly. Design functions F5(X) and Fg(X) give the

requirements for the size difference of those two parts.
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F1(X) = (xg - x5) - (x5 - %)
Fo(X) = (x5 - x4) - (), - x10)

F3(X) = (xg - x7)(xg - x3) - (x4 - x5)(%10 - Xo)
+ tan(n/180) * {(x,q - X9)(%5 - X3) + (X4 - x7)(Xg - X5))

Fy(X) = (x6 - 5)(x10 - Xg) - (x5 - x7)(x3 - X3)
+ tan(n/180) * {(x,o - x9)(x5 - x3) + (x5 - x7)(xg - X5))
F5(X) = -x; + x; + 0.01
Fg(X)=x,-x,,+0.01
(b)

Figure 9. Examples of Linear and Nonlinear Design Functions.

The nominal dimensions are given as X" = (50.0, 40.00125, 20.05, 9.9985,
9.9985, 30.0, 10.0, 30.0, 10.05, 30.0, 40.0, 50.0). The cost function with respect

to the tolerance of each dimension is

a; x 10°

Clop = ———.
"7 (6o

The coefficients of the respective cost functions are: a, = 0.2, a, = 1.0, a3 = a,4
=0.015, a5 = 0.008, a¢ = 0.009, a; = 0.008, a; = 0.006, ay = 1.0, a,, = 0.01, a,, =
0.015, and Qg = 0.2; and bl == b12 = 2.0

The algorithm given in this paper is implemented in PASCAL and
runs on the IBM PC. For the algorithms to be practical in an interactive
design environment, attention is given to speed - in particular, the
computation for the Jacobian matrix. The initial tolerances are assigned in

accordance to ANSI-Y14.5M for loose fit.
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It took 5.25 CPU seconds to obtain the optimal solution, and the
resulted tolerances are shown in Table 2; each stack-up condition is
satisfied with 95% confidence if the dimensions x; to x,, are manufactured
within the tolerances obtained. To cross check the algorithm, dimensions x,
and x, are intentionally assigned with higher manufacturing costs, i.e.,
they are harder to be manufactured then the other dimensions. The
tolerances computed are consistent with the manufacturing costs as much

looser tolerances are assigned to dimensions x, and x.

Dimensions Cost function coefficients Tolerances
a; b;
X 0.2 2.0 0.0093
X9 1.0 2.0 0.6427
X3 0.015 2.0 0.0337
X4 0.015 2.0 0.0337
X5 0.008 2.0 0.0010
Xg 0.009 2.0 0.0011
Xq 0.008 2.0 0.0010
Xg 0.006 2.0 0.0008
X9 1.0 2.0 0.6433
X10 0.01 2.0 0.0337
Xy 0.015 2.0 0.0337
X1 0.2 2.0 0.0093

Table 2. Result of the example.
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6. Concluding Remarks

A general framework for tolerance synthesis based on least
manufacturing cost has been presented. The algorithm for probabilistic
tolerancing has been developed based on the notion of feasible directions.
An analytic result of yield sensitivity is used to speed up the computation of
the Jacobian matrix inside the optimization loop. Compared to a previously
established landmark [14], this new algorithm produces a solution with
more than 10 times reduction in CPU time. Also, the post-optimality
analysis of the algorithm enables a designer to verify design intention with

ease.
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Appendix : Transformation to the Standard Coordinates

The transformation into the standard coordinates is accomplished by

taking the following four steps [6]:

Step 1: Translate into the origin by x0 = x - [;

Step 2: Diagonalize the given covariance matrix V through the operation
PTVP =V,, where P is the orthogonal matrix;

Step 3: Orthogonally transform by z0 = PTxo;

Step 4: Standardize by z = D-1z0, where DD=V, .
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