
Modeling Product Variety Induced Manufacturing

Complexity for Assembly System Design

by

Xiaowei Zhu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2009

Doctoral Committee:
Professor Shixin Jack Hu, Co-Chair
Professor Yoram Koren, Co-Chair
Assistant Professor Amy Ellen Mainville Cohn
Ningjian Huang, General Motors

c© Xiaowei Zhu 2009
All Rights Reserved

Dedicated to my family who have loved and supported me

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my committee members, my friends, my
family, and many others for their guidance, help, and support. Without them, I would
never have been able to finish this dissertation.

First and foremost, I would like to thank my co-advisors, Professor S. Jack Hu and
Professor Yoram Koren, for their great vision, vast knowledge, and continual encouragement.
Professor Hu inspired me to explore on my own, and at the same time gave me the invaluable
insights and strength to continue when my progress stops. Word by word, line by line, he
taught me how to speak and write concisely and precisely. Professor Koren emphasizes on
intuition and understanding the big picture, because he believes, this is the most valuable
piece that graduate students should possess and could use for their lifetime.

I would also like to extend my thanks to my other committee members, Professor Amy M.
Cohn and Dr. Ningjian Huang, for their constructive suggestions and valuable discussions.
Professor Cohn is one of the best experts in Operations Research. I appreciate her inputs
on how to efficiently solve the optimization problem. Dr. Huang not only serves on my
committee, but was my mentor at General Motors as well. His industrial experience and
expertise proved a integral part to this research.

I wish I could also thank my former committee member, Dr. Samuel P. Marin, who
passed away recently. Dr. Marin was a mathematician and the former group manager at
General Motors. He was the first who recognized the value of this research and bridged the
theory to the real-world industrial practices. Vividly, I still remember his smiling face when
he told me, “I think you may be able to apply this to our general assembly lines!”.

I gratefully acknowledge the financial support from the NSF Engineering Research Cen-
ter for Reconfigurable Manufacturing Systems (ERC/RMS) under Award Number EEC-
9529125 and the General Motors Collaborative Research Laboratory (GMCRL) in Advanced
Vehicle Manufacturing, both at The University of Michigan, as well as support from the
NSF CMMI under grant 0825438.

My gratitude also goes to my friends and colleagues in the GMCRL, ERC, and at
General Motors, with whom I had the privilege to work and spend time together. I want
to thank them all for their help and support. The friendship made my life easier, happier,
and warmer during the long-lasting Michigan winters.

I want to thank the ME, IOE, and Statistics departments’ faculty, staff, and students.

iii

I learned a lot during my time at Michigan both in and out of the classrooms.
Last but certainly not least, my greatest gratitude goes to my family for their love and

unconditional support. My parents, Aiguan Meng and Chengming Zhu, are always proud
of me and believe in me. From them, I received the most encouragement and strength in
the hard times. My parents-in-law, Yongming Liao and Yinshan Xu, my brother-in-law,
Bing Xu, understand our life in another country would never be easy. They tried their best
to support us and let us feel confident. To my beloved wife, Hui Xu, I would like to say,
“You bring me the joy along the journey and into the future. With you, I would never feel
I am lonely.”. To my one-year-old daughter, Jiayi, “You are a gift to me and let me gain
the momentum to never stop moving forward!”.

To all these people I will always be in debt. Thank you all!

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ABSTRACT . x

CHAPTER

1 Introduction . 1
1.1 Motivation . 1
1.2 Research Objective and Tasks . 3
1.3 Organization of the Dissertation . 3

2 Modeling Product Variety Induced Manufacturing Complexity 5
2.1 Introduction . 5
2.2 Measure of Operator Choice Complexity 8

2.2.1 Mixed-Model Assembly Line 8
2.2.2 Choices and Choice Processes 9
2.2.3 Operator Choice Complexity 9
2.2.4 Justifications for Choice Complexity Measure 10

2.3 Models of Complexity for Mixed-Model Assembly Lines 13
2.3.1 Station Level Complexity Model 13
2.3.2 Propagation of Complexity 14
2.3.3 Examples of Complexity Calculation 16
2.3.4 System Level “Stream of Complexity” Model 20
2.3.5 Extension of the Model . 24

2.4 Potential Applications . 25
2.4.1 Performance Evaluation and Root Cause Identification Using

Complexity Charts . 25
2.4.2 Influence Index and Configuration Design 26
2.4.3 Assembly Sequence Planning to Minimize Complexity . . . 27
2.4.4 Build Sequence Scheduling to Minimize Complexity 28

2.5 Summary . 28

v

3 Assembly Sequence Planning to Minimize Complexity 29
3.1 Introduction . 29
3.2 Complexity Model for Sequence Planning 32

3.2.1 Measure of Complexity . 32
3.2.2 Complexity Propagation . 33
3.2.3 System Level “Stream of Complexity” Model 34

3.3 Problem Formulation . 36
3.3.1 Assumption: Position Independent Choice Complexity . . . 36
3.3.2 Problems with Integer Program Formulation 38

3.4 A Network Flow Program Formulation 38
3.4.1 Purging Inadmissible Cells 38
3.4.2 Equivalent Network Flow Model 39
3.4.3 Solution Procedures by Dynamic Programming 42

3.5 Numerical Examples . 45
3.5.1 Example 1 . 46
3.5.2 Example 2 . 47

3.6 Summary . 48

4 Build Sequence Scheduling to Minimize Complexity 51
4.1 Introduction . 51
4.2 Complexity Model for Sequence Scheduling 54

4.2.1 General Form of Complexity Measure 55
4.2.2 Principle of “Conditioning Reduces Entropy” 55

4.3 Build Sequence Problem Formulation 57
4.3.1 The Hidden Markov Model 57
4.3.2 The Optimization Problem 58

4.4 Solutions . 59
4.5 Numerical Example and Discussions 62

4.5.1 Example Setup . 62
4.5.2 Result Discussions . 63
4.5.3 Incorporating Responsiveness in Problem Formulation . . . 65

4.6 Summary . 67

5 Conclusions and Future Work . 68
5.1 Conclusions and Original Contributions 68
5.2 Future Research Directions . 70

BIBLIOGRAPHY . 73

vi

LIST OF FIGURES

Figure
1.1 A Mixed-Model Assembly Line for Automobiles 1
2.1 An illustration of a Product Family Architecture (PFA) and its mixed-model

assembly line . 8
2.2 Mean choice RT as (a) a nonlinear function of the number of stimulus-

response alternatives [52]; (b) a linear function of stimulus information, or
log2 of the number of alternatives [21], reprinted from [51] 11

2.3 Choice RT for three different ways of manipulating the stimulus information
H, reprinted from [6], using data from [23] 12

2.4 Choices in sequential assembly activities at one station 14
2.5 Complexity propagation scheme . 15
2.6 Complexity propagation of the example in Fig. 2.1 16
2.7 Propagation of complexity at the system level in a multi-stage assembly system 22
2.8 Incoming and Outgoing Complexity Charts 26
2.9 Possible configurations for mixed-model assembly systems. Mi’s are machines

in the system [26]. 27
2.10 Differences in transfer complexity values for different assembly sequences: (a)

Task i precedes j, which results in Cij ; (b) Task j precedes i, which results
in Cji, while Cij and Cji are not equal. 28

3.1 Precedence Graph of a Ten-Task Assembly (From [43], pp.5) 30
3.2 Types of Complexity . 34
3.3 Propagation of Complexity at the System Level in a Multi-Stage Assembly

System . 34
3.4 Transfer Complexity between Two Assembly Tasks i and j, (a) Cij if i ≺ j,

(b) Cji if j ≺ i . 36
3.5 Transfer Complexity Values between any Two of the Ten Tasks 37
3.6 Resulting Array after Steps 1 and 2 . 39
3.7 Reduced Complexity Cost Array . 40
3.8 Extended Precedence Graph . 40
3.9 Stretched Path of (a) a Feasible Solution, (b) an Infeasible Solution 41
3.10 Complete DPN for the Ten-Task Example 46
3.11 Precedence Graph of a Ten-Task Assembly with Number of Variants Indi-

cated (From [1]) . 47
4.1 Model and Part Sequences in a Mixed-Model Assembly Line 52
4.2 State Transition Diagram of a Markov Chain 53

vii

4.3 HMM Example with Two Models and Two Parts 63
4.4 HMM Example Output with Changing α (Model Parameters: µ1 = 0.3,

b1 = 0.9, b2 = 0.5) . 64
4.5 Deviation of Production from Ideal Mix Ratio 65
4.6 Expected Deviation Versus Values of α . 66

viii

LIST OF TABLES

Table
2.1 Numerical Example of Complexity Calculation 21
3.1 Label, State, and Corresponding Decision Space D(S)

for the Nodes of the DPN . 47
3.2 State Transition Costs on the Arcs of the DPN 49
3.3 All Feasible Solutions for Example 1 . 50

ix

ABSTRACT

Modeling Product Variety Induced Manufacturing

Complexity for Assembly System Design

by

Xiaowei Zhu

Co-Chairs: Shixin Jack Hu and Yoram Koren

Mixed-model assembly systems have been recognized as a major enabler to handle
product variety. However, the assembly process can become quite complex as the vari-
ety increases. The complexity may impact the system performance in terms of quality and
productivity. This dissertation considers the variety induced manufacturing complexity in
manual, mixed-model assembly lines, develops models for the propagation of complexity,
and applies the models to assembly system design. A complexity measure called “Operator
Choice Complexity” (OCC) is proposed to quantify human performance in making choices.
The OCC is an entropy measure of the average randomness in a choice process. Meanwhile,
empirical evidences support the proposed complexity measure. Based on the OCC, mod-
els are developed to evaluate the complexity at each station, and for the entire assembly
system. The system level model, termed “Stream of Complexity” (SoC) model, addresses
complexity propagation in multi-stage systems. By applying the SoC model, complexity
can be mitigated with system design and operation decisions. The models are then applied
to assembly sequence planning and build sequence scheduling.

Assembly sequence planning is to determine the order of assembly tasks. According
to the SoC model, assembly sequence determines the directions of complexity flows. Thus
proper sequence planning can reduce complexity. However, due to the difficulty of handling
the directions of complexity flows in optimization, a transformed network flow model is
formulated and solved based on dynamic programming.

Build sequence scheduling is to determine the order of products being built. It also
determines the sequential dependencies between the choices. According to the complexity
model, the knowledge of the sequential dependencies can help operators make choices, and
scheduling proper build sequences can reduce complexity. However, deterministic models
are not sufficient to study such sequence scheduling problems. A probabilistic model based
on hidden Markov chains is proposed to formulate the scheduling problem with constraints.

x

Analytical solutions are obtained, and suggest that proportional production attains the
maximum complexity while batch production attains the minimum.

The results of the research are highly applicable to all manufacturers who are interested
in economically offering product variety without loss of quality and productivity.

xi

CHAPTER 1

Introduction

1.1 Motivation

Mass customization has been recognized as a new paradigm for today’s manufacturing
[40]. Different industries are practicing mass customization to gain competitive advantages.
In order to satisfy the finely targeted niche markets, the variety of products offered in these
industries has increased dramatically over the last several decades. For example, in the
automotive industry, BMW claims 1 that “Every vehicle that rolls off the belt is unique”
and the number of possible automobile variations in the BMW 7 Series alone could reach
1017. In the US market, the major US auto makers are competing with their Japanese
rivals not only on closing the “quality gaps”, but also the “variety gaps” [33]. Although
statistics shows that US auto makers have far more product variety in terms of possible
build combinations of options, gaps exist in how to efficiently and cost-effectively provide
the variety.

Mixed-model assembly systems have been recognized as a major enabler to handle the
increased variety. Such a system typically takes the form of a flow line, thus it is also
called a mixed-model assembly line (MMAL). Fig. 1.1 illustrates an MMAL for automobiles.
The line is capable of not only handling different vehicle models, but also a large number
of customized options. The advantage of such a system is obvious: it saves equipment
investment and absorbs demand fluctuations across the vehicle models.

t r im 3

(1 4 colors)

t r im 2

(1 4 colors)

t r im 4

(1 4 colors)

inst rum ent panels

(8 select ions)

w ire harnesses

(1 9 types)

m any,

m any m ore ...

Mixed- m odel assem bly line

t r im 1

(1 4 colors)

Figure 1.1: A Mixed-Model Assembly Line for Automobiles
1http://www.bmwgroup.com/e/nav/index.html.

1

One of the challenges in using the mixed-model assembly system to achieve mass cus-
tomization is associated with the increased complexity induced by product variety. As
variety increases, the manufacturing process can become quite complex. The complexity
exists almost everywhere, from planning, part supply, to assembling. One of the causes
for the complexity lies in the challenges of coordinating numerous small production steps
as a large number of different parts are used for products with different options. It has
been shown that such complexity has a significant negative impact on manufacturing per-
formances, such as productivity and quality [15, 33, 14]. The obvious question is how to
organize production in a way to allow the company to absorb high levels of complexity
without sacrificing productivity and quality.

Although people realize the existence of complexity, the understanding of complexity
is limited. From the dictionary 2, complexity is defined as “the state of having many
different parts connected or related to each other in a complicated way”. In people’s mind,
complexity is a subjective manner. For example, when one refers to something as being
complex, he/she could not quantify the exact level of complexity. Oftentimes, he/she could
state that something has more complexity than others, but may not be able to tell how
much the complexities are. Therefore, the assessment of complexity is incomplete. The
incompleteness is partly due to a lack of proper complexity measures.

For engineering systems design, a complete and accurate quantification of complexity is
necessary. Thus, a measure of complexity has to be defined. Attempts have been made to
define complexity measures. Some definitions deal with the complexity of a process, such
as the computational effort required to solve a problem [7], the length of a shortest binary
computer program to describe a random variable drawn according to a probability mass
function (which is widely known as Kolmogorov complexity or algorithmic complexity).
Complexity has also been defined to measure the bits of information it takes to describe
a message in communication systems [45], which has led to an important concept – infor-
mation entropy. Information entropy plays a strong role in information theory and other
disciplines as measures of information, choice, uncertainty, and complexity.

For mixed-model assembly systems, the complexity measure should reflect the under-
lining “physics” of the assembly process, and answer the basic question about the mecha-
nism through which variety causes complexity and impacts performance. Furthermore, the
mixed-model system has multiple stages. The complexity will propagate across the stages,
which makes the quantification of complexity more difficult. Therefore, models need to be
developed to properly address the complexity propagation.

Some limited research work has been done in the literature on manufacturing system
complexity. Such work includes manufacturing systems configuration complexity as well
as variety induced complexity. However, the existing research does not provide sufficient

2Collins COBUILD Dictionaries and Reference Books, COBUILD is an acronym for Collins Birmingham
University International Language Database.

2

understanding on the mechanism through which variety causes complexity and impacts
performance for mixed-model assembly systems. For example, Deshmukh et al. [9, 10]
defined static complexity of manufacturing systems due to part mix. But the research was
focused on the station level or job shop setting, thus is not applicable for flow lines as in the
mixed-model systems. Fujimoto et al. [17] proposed an information entropy based measure
of complexity for assembly planning. However, the complexity measure is based on product
configuration and does not incorporate the manufacturing system characteristics into the
analysis. More recently, ElMaraghy et al. [13] applied entropy function to quantify the
complexity of manufacturing systems and their configurations with examples in machining
processes. However, their approach is not applicable for mixed-model assembly systems.

Hence, this dissertation is intended to develop proper understanding of product variety
induced manufacturing complexity using new measures and models of complexity.

1.2 Research Objective and Tasks

The objective of the research is to develop new measures of complexity and mathematical
models for the propagation of complexity in multi-stage, mixed-model assembly systems and
to apply the developed models to assembly system design. Specifically, the research shall
include the following tasks.

Task 1: To define measures of complexity reflecting the underlining “physics” of the as-
sembly process in the mixed-model system. The measure should answer the question
about the mechanism through which variety causes complexity and impacts perfor-
mance.

Task 2: To develop models for understanding the mechanism of complexity propagation
in multi-stage assembly systems, i.e., “Stream of Complexity” models. The models
should be developed at both the stations and systems levels, integrating both prod-
uct variety and manufacturing process information. Once developed, they could be
applied for assembly system design and operations.

Task 3: To apply the Stream of Complexity models for system design and operations.
When needed, specific models and algorithms should be developed to search for opti-
mal system designs to minimize complexity.

1.3 Organization of the Dissertation

The dissertation is presented in a multiple manuscript format. Part of the work in
Chapters 2, 3, and 4 has appeared as individual research papers. The organization of the
dissertation is as follows.

Chapter 2 discusses the modeling of product variety induced manufacturing complexity.

3

A measure of complexity is proposed based on a careful observation of the choice processes
in mixed-model assembly systems. As the simplest form, the measure is defined for inde-
pendent and identically distributed (i.i.d.) sequences of choices. The i.i.d. based measure
has a closed form for calculating complexity, and allows for the development of models for
large systems analysis. Based on the measure, complexity models are developed for assem-
bly stations and systems. The station level model captures the complexity calculation for
each individual station, while the system level model reveals the interconnects between the
stations. Moreover, in the system level model, a unique complexity propagation has been
proposed. The propagation suggests the cause-and-effect relationship between variety and
complexity, which enhances the understanding on the mechanism through which variety
impacts manufacturing. Because of the stream-like flows in defining the relationship, the
system level model is also called a “Stream of Complexity” (SoC) model. Finally, by us-
ing the complexity measure and models, various applications are suggested in an effort of
minimizing complexity for the best performances.

Chapter 3 applies the SoC model for assembly sequence planning. The sequence plan-
ning is an important task in assembly system design. It is to determine the order of assembly
tasks to be performed. According to the system level complexity model developed in Chap-
ter 2 under the i.i.d. assumption, assembly sequence determines the directions in which
complexity flows. Thus proper sequence planning helps reduce complexity. However, due to
the difficulty of handling the directions of complexity flows in optimization, a transformed
network flow model is formulated and solved based on dynamic programming.

Chapter 4 extends the complexity measure for non-i.i.d. sequences of choices, and
applies the extended model for build sequence scheduling. The extension suggests that
the knowledge of sequential dependencies could be utilized to reduce uncertainty and help
operators to make choices. Since build sequence scheduling makes the decisions on the order
of products being built, it determines the sequential dependencies between the choices.
Thus, proper build sequence can help to reduce complexity. A model based on the Hidden
Markov Chains is proposed and solved for the scheduling problem with constraints.

In summary, Chapter 2 answers the questions in Tasks 1 and 2. Chapters 3 and 4 tackle
the problems in Task 3, and at the same time, they extend the complexity measure and
model.

Finally, Chapter 5 concludes the thesis and suggests future research directions.

4

CHAPTER 2

Modeling Product Variety Induced Manufacturing

Complexity

Abstract

Mixed-model assembly systems have been recognized as a major enabler to handle prod-
uct variety. However, the assembly process becomes very complex when the number of
product variants is high, which, in turn, may impact the system performance in terms of
quality and productivity. This chapter 1 considers the variety induced manufacturing com-
plexity in manual, mixed-model assembly lines where operators have to make choices for
various assembly activities. A complexity measure called “Operator Choice Complexity”
(OCC) is proposed to quantify human performance in making choices. The OCC takes an
analytical form as an information-theoretic entropy measure of the average randomness in a
choice process. Meanwhile, empirical evidences are provided to support the proposed com-
plexity measure. Based on the OCC, models are developed to evaluate the complexity at
each station, and for the entire assembly line. Consequently, complexity can be minimized
by making systems design and operation decisions, such as error-proof strategies, assembly
sequence planning, and build sequence scheduling.

2.1 Introduction

Traditional mass production was based on dedicated assembly lines where only one
product model was produced in large quantities. Such systems can achieve high produc-
tivity by using principles of economies of scale and work division among assembly stations.
However, in today’s marketplace, where customers demand high product variety and short
lead time, mass customization has been recognized as a new paradigm for manufacturing

1Part of work in this chapter has appeared on [54]: X. Zhu, S. J. Hu, Y. Koren, and S. P. Marin.
Modeling of manufacturing complexity in mixed-model assembly lines. Journal of Manufacturing Science
and Engineering, 130(5):051013-10, 2008. Also appears on the Proceedings of 2006 ASME International
Conference on Manufacturing Science and Engineering.

5

[40, 27]. Mass customization promises individualized products at mass production cost. As
a result of such paradigm change, assembly systems must be designed to be responsive to
customer needs while at the same time achieving mass production’s quality and produc-
tivity. Mixed-model assembly lines (MMAL) have been recognized as a major enabler to
handle increased variety. An MMAL typically takes the form of a flow line. The topics of
effectively assigning tasks to stations and balancing the lines for the multiple product types
have been active research areas for MMAL in recent years [42].

Various industries are practicing mixed-model assembly lines. The variety of products
offered in these lines has increased dramatically over the last decade. For example, in a
typical automobile assembly plant, the number of different vehicles being assembled can
reach tens of thousands in terms of the possible build-combinations of options. In fact,
BMW claims that “Every vehicle that rolls off the belt is unique” and the number of
possible automobile variations in the BMW 7 Series alone could reach 1017.

Such an astronomical number of build-combinations undoubtedly presents enormous
difficulties in the design and operation of the assembly systems. Using automobile assembly
as an example, it has been shown by both empirical and simulation results [15, 33, 14] that
increased vehicle product variety has significant negative impact on the performance of the
mixed-model assembly process, such as quality and productivity. Such impact can result
from assembly system design as well as people performance under high variety. The effect
from the latter persists since only limited automation can be implemented in the automo-
bile final assembly [39, 2]. Thus the questions presented here are two fold: how variety
impacts people and system performance, and how to design assembly systems and organize
production to allow high product variety without sacrificing quality and productivity.

One of the possible approaches to assess the impact of product variety on manufactur-
ing system performance is to investigate how product variety complicates the mixed-model
assembly process. However, only limited research has been done on defining manufacturing
system complexity. For example, MacDuffie et al. [33] established empirical relation-
ship between complexity and manufacturing system performance. They defined product
mix complexity by looking at product variety (product mix and its structure) in assembly
plants. According to the differences in the levels of product variety, three types of product
mix complexity were defined in terms of empirical scores: Model Mix Complexity, Parts
Complexity, and Option Complexity. By statistical analysis, significant negative correla-
tion between the complexity measures and the manufacturing performance was found. The
result was based on the data from 70 assembly plants worldwide who participated in the
International Motor Vehicle Program at M.I.T.

Besides empirical studies, attempts have also been made to analytically define complex-
ity in manufacturing. For instance, complexity has once been associated with the amount
of effort needed to make a part. The effort was quantified by a logarithmic function of the
probability of achieving a certain geometric precision and surface quality in machining [38].

6

The function is widely known as Shannon’s Information Entropy [45]. Similarly, Fujimoto
and Ahmed [16] defined a complexity index for assembling. The index takes the form of
entropy in evaluating the assemblability of a product. The assemblability was defined as the
uncertainty of gripping, positioning, and inserting parts in an assembly process. Also, com-
plexity has been extended as a measure of uncertainty in achieving the specified functional
requirements in axiomatic design [47].

Recently, complexity has been defined in an analytical form for manufacturing sys-
tems as a measure of how product variety complicates the process. Fujimoto et al. [17]
introduced a complexity measure based on product structure using information entropy
in different assembly process planning stages. By reducing the complexity, they claimed
that impact of product variety on manufacturing systems could be reduced. However, the
complexity measure does not incorporate the manufacturing system characteristics into the
analysis. Deshmukh et al. [10] defined an entropic complexity measure for part mix in job
shop scheduling. The complexity quantifies the difficulty associated with making scheduling
decisions for the job shop, in which several types of products are manufactured simulta-
neously. An information-theoretic entropy measure of complexity is derived for a given
combination and ratio of the part types. However, the complexity analysis is not applicable
for mixed-model assembly, which has a flow line or various hybrid configurations.

In summary, there is a general agreement that (i) product variety does increase the
complexity in manufacturing systems, and (ii) information entropy is an effective measure of
complexity. However, in order to analyze the impact of variety on manufacturing complexity
in mixed-model assembly systems, one has to take into consideration of the characteristics of
the assembly system, such as system configuration, task to station assignment, and assembly
sequences, etc. In addition, there is a lack of understanding on the mechanisms through
which variety impacts manufacturing.

To address the above issues, this chapter defines a new measure of complexity which
integrates both product variety and assembly process information, and then develops mod-
els for evaluating complexity in multi-stage mixed-model assembly systems. The chapter is
organized as follows. Section 2.2 defines the measure of operator choice complexity which
results from the analysis of choices and choice processes in mixed-model assembly opera-
tions. Moreover, the section also provides both theoretic and empirical justifications for the
viability of the measure. Section 2.3 presents the modeling of complexity for mixed-model
assembly lines, where models at the station and system levels are both investigated. Ad-
ditionally, the influence of process flexibility is analyzed using numerical examples. Then
potential applications for assembly system design by using the models are suggested in
Section 2.4. Finally Section 2.5 summarizes the chapter.

7

2.2 Measure of Operator Choice Complexity

This section begins with a brief introduction to mixed-model assembly lines. Then it
describes the choices and choice processes on the line to help theoretically define the measure
of choice complexity. The measure is then justified by results from the cognitive ergonomics
studies.

2.2.1 Mixed-Model Assembly Line

Figure 2.1 illustrates an example of a product structure and its corresponding mixed-
model assembly line. The product has three functional features (Fi); each feature has
several variants (e.g., Vij is the jth variant of Fi). The product structure is represented by
a Product Family Architecture (PFA) [48].

Figure 2.1: An illustration of a Product Family Architecture (PFA) and its mixed-model
assembly line

The PFA illustrates all the possible build-combinations of the customized products by
combining the variants of features. For example, in Fig. 2.1, the maximal number of different
end products is 24 (i.e., 3× 2× 4). Moreover, we represent the product mix information by
a matrix P, where pij is the demand (in percentage) of the jth variant of the ith feature.
For instance, the P matrix for the product in Fig. 2.1 is the following:

P =




p11 p12 p13 0
p21 p22 0 0
p31 p32 p33 p34


 (2.1)

Each row corresponds to the demand (in terms of mix ratio) of one feature, satisfying:∑
j pij = 1, ∀i.
In the mixed-model assembly process, one of the variants from every feature is selected

and assembled sequentially along the flow of the assembly line. For example, as depicted
in Fig. 2.1, V11 is chosen for F1, V22 for F2, and V32 for F3. Quite often, this assembly
process is accomplished manually. Operators at every station must make correct choices

8

among a number of alternatives. The choices include choosing the right part, tool, fixture,
and assembly procedure for the variant.

2.2.2 Choices and Choice Processes

At each assembly station, the operator must choose the correct part from all possible
variants according to customer orders. The specification of an order is usually written on a
production tag/manifest attached on the partially completed assemblage. This process of
selecting the right part is continuing during the day. To better understand the process, we
define it as a choice process.

The choice process consists of a sequence of choices with respect to time. It can be mod-
eled as a sequence of random variables, each of which represents choosing one of the possible
alternatives. Mathematically, it can be considered as a discrete time discrete state stochas-
tic process {Xt, t = 1, 2, . . .}, on the state space (the choice set) Xt ∈ {1, 2, . . . , M}, where
t is the index of discrete time period, M is the total number of possible alternatives (parts)
which could be chosen during each period. More specifically, Xt = m,m ∈ {1, 2, . . . ,M}, is
the event of choosing the mth alterative during period t.

In the simplest case, if the choice process is independent and identically distributed
(i.i.d.), we then use a single random variable X (instead of Xt’s) to describe the outcome
of a choice. Furthermore, we know all the alternatives of X and their probabilities, i.e.,
the probability of a choice taking the mth outcome is known as pm , P(X = m), for m =
1, 2, . . . , M . In the following discussions, we limit ourselves by assuming i.i.d. sequences.

2.2.3 Operator Choice Complexity

To characterize the operator performance in making choices, we define the term operator
choice complexity (or choice complexity) as follows.

Definition: Choice complexity is the average uncertainty or randomness in a choice pro-
cess, which can be described by a function H in the following form:

H(X) = H(p1, p2, . . . , pM) = −C ·
M∑

m=1

pm · log pm (2.2)

where C is a constant depending on the base of the logarithm function chosen. If log2 is
selected, C = 1 and the unit of complexity is bit.

Theoretical Properties: The following seven properties of the function H as described
in [45] make it suitable as a measure of choice complexity.

1. H is continuous in pm, i.e., small changes in pm should result in only small changes
in choice complexity.

9

2. If pm’s are brought closer to each other, H would increase. Put alternatively, any
change towards equalization of p1, p2, . . . , pM should increase H. For a given M , H

is a maximum and equal to log M when all pi’s are equal (i.e., 1
M). In this case, H is

a increasing function of M . This case is also intuitively the most uncertain situation
to make a choice, since the operator is considered to be non-informative [25].

3. If a choice process is broken down into two successive stages, the original H is the
weighted sum of the individual values of H. For example, H(1

2 , 1
3 , 1

6) = H(1
2 , 1

2) +
1
2H(2

3 , 1
3).

4. H = 0 if and only if all the pm’s but one are zero, this one has the value of unity, i.e.,
H(1, 0, . . . , 0) = H(0, 1, . . . , 0) = H(0, 0, . . . , 1) = 0. Thus only when we are certain
of the outcome does H vanish and there exists no choice complexity. Otherwise H is
positive.

5. H does not change when an additional alternative with no chance to happen is added
into the original system.

6. H is a symmetrical function of p1, p2, . . . , pM , i.e., if the probabilities of choices are
permuted among the alternatives, choice complexity does not change.

7. H is a sum of surprisal functions weighted by probability pm’s[25]. A surprisal func-
tion log 1

pm
is defined to quantify how much surprise (uncertainty) is incurred for an

individual choice. The higher the probability of the incoming alternative is, the less
surprisal incurred, and vice versa. Thus, by weighting the surprisal with probabil-
ities for the choice process, we obtain the entropy which characterizes the average
randomness in the sequence.

Therefore the entropy function H possesses most of the desirable properties to be one
of the possible measures of choice complexity.

2.2.4 Justifications for Choice Complexity Measure

There is a close similarity and connection between the theoretical properties of the
complexity measure and the experimental results found in human cognitive studies. The
experiments were conducted to assess human performance when making choices. Coinciden-
tally, information entropy was found to be one of the effective measures. The performance
of human choice-making activities was investigated by measuring average reaction times,
i.e., how quickly a person can make a choice to a stimulus. One of the earliest studies was
done by Merkei in 1885, described by Woodworth [52]. In the experiment, digits 1 through
5 were assigned to the fingers of the right hand and the Roman numbers I through V were
assigned to the fingers of the left hand. On any given set of trials, the subject knew which
of the set of stimuli would be possible (e.g., if there were three possible stimuli, they might

10

be 3, 5, and V). Merkel studied the relationship between the number of possible stimuli
and the choice reaction time (RT). His basic findings are presented in Fig. 2.2(a), where the
relationship between choice RT and the number of alternatives was not linear.

This relationship in Fig. 2.2(a) has been further studied by a number of researchers since
Merkel’s original observations. Among them, the most widely known one was Hick [21]. He
discovered that the choice RT is linearly proportional to the logarithm of the number of
stimulus alternatives if all the alternatives are equal likely, see Fig. 2.2(b), i.e.,

Mean Choice RT = a + b · [log2 n] (2.3)

where n is the number of stimulus-response alternatives, a and b are constants, which can
be determined empirically by fitting a line to the measured data. This relation came to be
known as Hick’s Law, which was regarded as one major milestone in the area of cognitive
ergonomics.

Figure 2.2: Mean choice RT as (a) a nonlinear function of the number of stimulus-response
alternatives [52]; (b) a linear function of stimulus information, or log2 of the number of
alternatives [21], reprinted from [51]

Coincidentally, the term [log2 n] is exactly the information entropy calculated in Eq. (2.2)
if all the pm’s are equal, which follows from the experiment setting that the choice process is
i.i.d. and all the alternatives occur equal likely. The above analogy was first discovered by
Hyman [23], where he concluded that, “The reaction time seems to behave, under certain
conditions, in a manner analogous to the definition of information”.

Hyman [23] also realized that, according to Shannon’s definition of information entropy,
he could change information content in the experiment by other means. Thus, in addition
to varying the number of stimuli and letting each one of them occur equally likely in
Hick’s [21] experiment, he altered stimulus information content simply by (i) changing
the probability of occurrence of particular choices, (ii) introducing sequential dependencies
between successive choices of alternatives, see Fig. 2.3. Thus, naturally enough, we can use
H to replace the [log2 n] term, Eq. (2.3) becomes,

11

Figure 2.3: Choice RT for three different ways of manipulating the stimulus information H,
reprinted from [6], using data from [23]

Mean Choice RT = a + b ·H (2.4)

Because of the significance of this generalization, Hick’s Law is also referred as the
Hick-Hyman Law.

The H term in Eq. (2.4) is one of the variants of Shannon’s information entropy [45] in
the communication systems study. Thus, a fundamental assumption behind this analogue is
that the mental process of human being is modeled as an information transmission process.
In fact, this assumption is confirmed by the recent research in cognitive ergonomics on
the queuing network modeling of elementary mental process. Liu [32] suggested that, at
the level of mean RTs, a continuous-transmission fork-join network demonstrate the same
logarithmic behavior as that of the experimental results in Hick-Hyman Law. Hence, the
legitimacy of applying Eq. (2.4) is limited to the situation where the individuals are asked
to response to the stimulus promptly, and the decision to be made is very simple, requiring
little conscious thought. When analyzing mixed-model assembly process, we observe the
very similar situation that the line operators are asked to handle variety in a very tight cycle
time without time for deliberating over the decisions. However, if the subjects are given
more time, the thinking process will not be as simple as merely an information transmission.
Liu [32] also reviewed a class of more sophisticated queuing network models for RT.

Moreover, it was suggested in Welford [51] that the information measure is adequate to
assess human performance, since it provides a valuable means for combining reaction time
and errors (i.e., speed and accuracy) into a single score.

Practitioners in various fields have found the information entropic measure of human
performance useful. One of the examples using the Hick-Hyman Law in assembly operation
analysis comes from Bishu and Drury [4]. They used the amount of information, measured

12

in bits, contained in a wiring assembly task to predict task completion time. The amount
of information is a function of both the number of wires to choose from and the number of
terminals to be wired. They found that task completion time was linearly related to the
amount of information contained in the task. Additionally, they also found that the more
the information gain was, the more likely errors will occur. That is, the total information
content increases both the task completion time and errors. Gatchell [18] used the Choice
Reaction Time technique and experimentally studied operator performance on part choices
under part proliferation. Her findings suggest that operator with more part choices made
more errors and needed more decision time.

According to both theoretical properties and empirical results, the entropy-based quan-
tity H is suitable to measure operator choice complexity. Therefore, we propose to use the
following form to quantify the value of choice complexity.

Choice Complexity = α(a + b ·H), α > 0 (2.5)

The form is similar to that of the Hick-Hyman Law. It only differs in a positive scalar
α, served as a weight to a specific choice process. In other words, the choice complexity
is positive monotonic to the amount of uncertainty embedded in the choice process. Since
Eq. (2.5) takes a simple linear form with constants α, a, and b, the only remaining part to
be determined is the value of H when evaluating complexity. By incorporating information
from product design, line design, and operation, one can develop models and methodologies
to quantify the information content in terms of the various operator choices in a mixed-
model assembly process.

2.3 Models of Complexity for Mixed-Model Assembly Lines

This section defines the operator choice complexity in the station level by simply extend-
ing the previous definition for a single assembly activity. Then complexity in the system
level is examined after a unique propagation behavior of complexity is found. Moreover, pro-
cess flexibility and commonality is taken into account when analyzing complexity. Finally
a “Stream of Complexity” model is proposed for multi-stage assembly systems.

2.3.1 Station Level Complexity Model

On a station, in addition to the part choice mentioned in Section 2, the operator may
perform other assembly activities as well in a sequential manner, and some examples of the
corresponding choices are briefly described as follows, see Fig. 2.4.

Fixture choice: choose the right fixture according to the base part (i.e., the partially
completed assemblage) to be mounted on as well as the added part to be assembled.

Tool choice: choose the right tool according to the added part to be assembled as well as

13

the base part to be mounted on.

Procedure choice: choose the right procedure, e.g., part orientation, approach angle, or
temporary unload of certain parts due to geometric conflicts/subassembly stabilities.

According to Eq. (2.5), we define the associated complexity at the station as part choice
complexity, fixture choice complexity, tool choice complexity, and assembly procedure choice
complexity respectively. All these choices contribute to the operator choice complexity.

Without loss of generality, we number the sequential assembly activities in Fig. 2.4 from
1 to K and denote Cj as the total complexity of station j, which is a weighted sum of the
various types of choice complexity at the station.

Cj =
K∑

k=1

αk
j (a

k
j + bk

j ·Hk
j), αk

j > 0, k = 1, 2, . . . , K (2.6)

where αk
j , are the weights related to the task difficulty of the kth assembly activity at station

j; ak
j ’s and bk

j ’s are empirical constants depending on the nominal human performance
similar to that of the choice reaction time experiments; Hk

j is the entropy computed from
the variant mix ratio relevant to the kth activity at station j. For simplicity, we assume
ak

j = 0, bk
j = 1,∀j, k. Then Eq. (2.6) reduces to,

Cj =
K∑

k=1

αk
j H

k
j , αk

j > 0, k = 1, 2, . . . , K (2.7)

Figure 2.4: Choices in sequential assembly activities at one station

2.3.2 Propagation of Complexity

By Eq. (2.7), complexity on individual stations is considered as a weighted sum of
complexities associated with every assembly activities. Among them, some activities are

14

caused only by the feature variants at the current station, such as picking up a part, or
making choices on tools for the selected part. The complexity associated with such assembly
activity is defined as feed complexity. However, the choice of fixtures, tools, or assembly
procedures at the current station may depend on the feature variant that has been added
at an upstream station. This particular component of complexity is termed as transfer
complexity.

A formal definition of the two types of complexity is given below. Assume a current
station j:

Feed complexity: Choice complexity caused by the feature variants added at station j.

Transfer complexity : Choice complexity caused by the feature variants added at an
upstream station, i.e., station i (i precedes j, denoted as i ≺ j).

Transfer complexity exists because the feature variants added on the previous station i may
affect the process of realizing the feature at station j, causing tool changeovers, fixture
conversions, or procedure changes.

Station i ... Station j ...

Transfer Complexity Cij

...

Feed Complexity Cjj

Figure 2.5: Complexity propagation scheme

The propagation behavior of the two types of complexity is depicted in Fig. 2.5, where,
for station j, the feed complexity is denoted as Cjj (with two identical subscripts), and
the transfer complexity is denoted as Cij (with two distinct subscripts to represent the
complexity of station j caused by an upstream station i). Thus the transfer complexity
can flow from upstream to downstream, but not in the opposite direction. In contrast, the
feed complexity can only be added at the current station with no flowing or transferring
behavior.

Hence the total complexity at a station is simply the sum of the feed complexity at the
station and the transfer complexity from all the upstream ones, i.e., for station j,

Cj = Cjj +
∑

∀i:i≺j

Cij (2.8)

Compared with Eq. (2.7), we may find equivalence relationships term by term between the
two sets of equations. We illustrate this in the following section with examples.

15

2.3.3 Examples of Complexity Calculation

In this section, by continuing the example in Fig. 2.1 which is redrawn in Fig. 2.6, we
demonstrate the procedures of calculating complexity at a station. More specifically, we
will consider examples with or without process flexibility respectively.

Example without process flexibility

In Fig. 2.6, on the one hand, four sequential assembly activities are identified at station 3,
complexity is expressed according to Eq. (2.7) by assigning superscripts 1 to 4 as part choice
complexity, fixture choice complexity, tool choice complexity, and assembly procedure choice
complexity respectively. Thus, according to the station level model, we have the following
equation for station 3.

C3 = α1
3H

1
3 + α2

3H
2
3 + α3

3H
3
3 + α4

3H
4
3 (2.9)

Figure 2.6: Complexity propagation of the example in Fig. 2.1

At the station, we also know the process requirement as follows.

1. One of the four parts, i.e., variants of F3, is chosen according to customer order;

2. One of the four distinct tools is chosen according to the chosen variant of F3;

3. One of the two distinct fixtures is chosen according to the variant of F2 installed at
station 2;

4. One of the three distinct assembly procedures is chosen according to the variant of F1

installed at station 1.

On the other hand, the propagation scheme at the system level can be determined from
the viewpoint of feed complexity (C33) and transfer complexity (C13 and C23), which is
expressed according to Eq. (2.8) as follows.

C3 = C33 + C13 + C23 (2.10)

16

There exists an agreement between Eqs.(2.9) and (2.10), or equivalently, Eqs.(2.7) and
(2.8), which is shown below.

Given process information, we identify the types of choice complexity in Eq. (2.10) as
follows:

• Part choice complexity: α1
3H

1
3

• Tool choice complexity: α3
3H

3
3

• Fixture choice complexity: α2
3H

2
3

• Procedure choice complexity: α4
3H

4
3

By complexity propagation, we have:

• Feed complexity: C33 = α1
3H

1
3 + α3

3H
3
3

• Transfer complexity: C23 = α2
3H

2
3 , C13 = α4

3H
4
3

From the agreement, the sources of complexity can be identified and the H terms are
now easily calculated. That is, if an H term corresponds to the feed complexity, it is
a function of the mix ratio of the current station; however, if an H corresponds to the
transfer complexity, it is a function of the mix ratio of the station which is specified in the
first subscript of its corresponding Cij , i.e., station i. As a result, H1

3 = H3
3 = H3, where

H3 is the entropy of the variants added at station 3; and similarly, H2
3 = H2, H4

3 = H1.
Now, let us consider numerical values for the example, assume the P matrix in Eq. (2.1)

takes the following values.

P =




0.5 0.2 0.3 0
0.5 0.5 0 0
0.3 0.3 0.2 0.2




Then,

H1
3 = H3

3 = H3 = H(0.3, 0.3, 0.2, 0.2) = 1.971 bits

H2
3 = H2 = H(0.5, 0.5) = 1 bit

H4
3 = H1 = H(0.5, 0.2, 0.3) = 1.485 bits (2.11)

and,

C3 = C33 + C13 + C23

= 1.971α1
3 + 1.971α3

3 + α2
3 + 1.485α4

3 (2.12)

17

For simplicity, assuming α1
3 = α2

3 = α3
3 = α4

3 = 1, we finally obtain the total complexity at
station 3.

C3 = 1.971 + 1.971 + 1 + 1.485 = 6.427 bits (2.13)

Influence of process flexibility

So far, we have illustrated in Eqs.(2.11)–(2.13) an example of calculating choice complex-
ity with no flexibility in the manual assembly process. However, flexibility is usually built
into assembly systems such that common tools or fixtures can be used for different variants
so as to simplify the process. That is, flexible tools, common fixtures, or shared assembly
procedures are adopted to treat a set of variants so that choices (of the tools, fixtures, and
assembly procedures) are eliminated. Since fewer choices are needed, complexity reduces.
However, not all the assembly processes can be simplified by flexibility strategies. Some-
times, flexible tools, common fixtures, or shared assembly procedure may require significant
changes or compromises in product design and process planning, which is usually costly if
not impossible. To characterize the impact of flexibility, i.e., to establish the relationship
between product feature variants and process requirements, a product-process association
matrix (denoted as ∆-matrix) is defined in the following discussion.

We again use the example in Fig. 2.6. At station 3, we consider fixture changeover, and
it is denoted as the kth assembly activity. Which fixture should be used in assembling F3

at station 3 is determined by the variant of F2 assembled previously at station 2. If no
flexibility is present, fixture choice is needed at station 3 by observing feature F2 according
to the following rules,

• Use fixture 1, if V21 is present;

• Use fixture 2, if V22 is present.

Thus there are two states in the fixture choice process; the mapping relationship can be
expressed in a ∆-matrix as follows.

∆2
23 =

[
1 0
0 1

]
(2.14)

where ∆2
23 denotes the ∆-matrix for the 2nd activity at station 3 associated with the variants

added at station 2; the columns are the states of the 2nd activity at station 3, rows are the
variants of the feature F2 affecting the activity. The ones in the cells establish associations
between the state in the column and the variant in the row.

A general definition of the ∆-matrix for the kth assembly activity at station j due to
variety added at station i is given as follows.

18

∆k
ij =




δ1,1 δ1,2 . . . δ1,m

...
...

. . .
...

δn,1 δn,2 . . . δn,m


 (2.15)

where,

δs,t =





1 Variant s at station i requires kth activity
to be in state t at station j

0 Otherwise

m, n are the cardinality of states and variants respectively.
By definition, the ∆-matrix satisfies the following properties:

1.
∑m

t=1 δs,t = 1, for s = 1, 2, . . . , n;

2.
∑n

s=1 δs,t ≥ 1, for t = 1, 2, . . . , m;

3. n ≥ m.

Property 1 holds because one variant can lead to one and only one state. Property 2 holds
because each state must be associated with at least one variant; otherwise, the column
associated the empty state can be eliminated, and the size the matrix shrinks by 1. Lastly,
property 3 holds because the maximal number of states cannot exceed the total number of
variants. That is, in the extreme case of non-flexibility, each variant requires the character-
istic to be in a distinct state, and the ∆-matrix becomes a unit matrix of dimension being
the number of variants.

Consider the example in Fig. 2.6 again, however, if a common fixture is adopted, the
same fixture can be used no matter V21 or V22 is mounted on station 2. Thus, by definition,
the ∆-matrix becomes simply:

∆2
23 =

[
1 0
1 0

]

which could be reduced to:

∆2
23 =

[
1
1

]
(2.16)

By using the ∆-matrix, we are now capable of calculating the H terms when flexibility
is present in the process. Define a vector qk

ij = [q1, q2, . . . , qm], where qt, t ∈ {1, 2, . . . , m} is
the probability of the kth activity being in state t at station j due to the variants added at
station i, satisfying

∑m
s=1 qs = 1. By the definition of the product mix matrix P in Eq. (2.1)

and the ∆-matrix in Eq. (2.15), the following relationship holds:

19

qk
ij = [q1, q2, . . . , qm] = Pi· ×∆k

ij (2.17)

where Pi· is the ith row of matrix P, representing the mix ratio of the feature (i.e., F2 in
the example) assembled on station i. Thus, the corresponding H term is:

Hk
j = H(qk

ij) = −
m∑

t=1

qt · log2 qt (2.18)

Revisit the example in Fig. 2.6. When calculating the H term (H2
3) corresponding to the

fixture choice complexity at station 3, we have the following results:

Case 1 Use dedicated fixtures, i.e., a different fixture for each variant. By the ∆-matrix
in Eq. (2.14), we have:

q2
23 =

[
q1 q2

]
= P2· ×∆2

23

=
[

0.5 0.5
]
×

[
1 0
0 1

]
=

[
0.5 0.5

]

⇒ H2
3 =

∑2
t=1 qt · log2

1
qt

= 2× 0.5 log2
1

0.5 = 1 bit

which duplicates exactly the result in Eq. (2.11).

Case 2 Common fixture is used. By the ∆-matrix in Eq. (2.16), we have:

q2
23 =

[
q1 q2

]
=

[
0.5 0.5

]
×

[
1
1

]
=

[
1

]

⇒ H2
3 =

∑1
t=1 qt · log2

1
qt

= 1 · log2
1
1 = 0 bit

Since fixture is common to the process of assembling F3 with variants of F2, no choice
is needed.

Assume we have flexibility or commonality in fixture, tool, and assembly procedures
respectively, which is expressed by the ∆-matrices in Table 1. As a summary, the table
also demonstrates a detailed numerical example to calculate complexity at station 3. The
results show a reduced value of choice complexity compared with Eq. (2.13) because of the
additional process flexibility.

2.3.4 System Level “Stream of Complexity” Model

In general, consider an assembly line with n workstations, numbered 1 through n se-
quentially, see Fig. 2.7. The mix ratio defined in Eq. (2.1) is known. Using Eq. (2.2), we
can obtain the entropy H for the variants at each station according to their mix ratios.

The propagation of complexity in a multi-stage system can be analyzed by considering
how the complexity of assembly operations (choices) at a station is influenced by the variety
added at its upstream stations (incoming complexity), as well as how variants added at the

20

Table 2.1: Numerical Example of Complexity Calculation

station impact the downstream stations (outgoing complexity). Because of the stream-like
flows in defining the cause-and-effect between variety and complexity, the system level model
is also called a “Stream of Complexity” model.

The incoming complexity at station j, C in
j is the amount of complexity flowing into the

station from its upstream stations, which can be calculated in the following way:

Station 1: C in
1 = C01 = a01H0

Station 2: C in
2 = C02 + C12 = a02H0 + a12H1

.

Station j: C in
j = C0j + C1j + C2j + . . . + Cj−1,j

= a0jH0 + a1jH1 + a2jH2 + . . . + aj−1,jHj−1

.

Station n: C in
n = C0n + C1n + C2n + . . . + Cn−1,n

= a0nH0 + a1nH1 + a2nH2 + . . . + an−1,nHn−1

where,

21

Station 1 j-1...

H1

H0
j j+1 n...

Hj-1

Hn

C1,j

Cj-1,j

C0,j

Cj,j+1

Cj,n

Transfer Complexity

Hj

Feed Complexity

Hj+1

Figure 2.7: Propagation of complexity at the system level in a multi-stage assembly system

C in
j − The incoming complexity of station j, j = 1 to n;

Hj − Entropy of variants added at station j;

H0 − Entropy of variants due to the base part;

aij − Coefficient of complexity impact on station j

due to variety added at station i, i.e.,

aij =





αk
j Variants added at station i has an

impact on the kth assembly activity
at station j, and i < j, αk

j has been
defined in Eq. (2.7).

0 Otherwise

Or equivalently, by using a matrix representation, a comprehensive model can be obtained
as follows:




C1

C2

...
Cn




in

=




a01 0 . . . 0
a02 a12 . . . 0
...

...
. . . 0

a0n a1n . . . an−1,n



×




H0

H1

...
Hn−1




(2.19)

In short,

Cin = AT ×H (2.20)

where Cin is the incoming complexity vector of size n for the system, with its ith entry being
the incoming complexity at station i, for i = 1, 2, . . . , n; A is the characteristics matrix of
size n×n, which characterizes the interactions between stations (due to the feature variants
added on the stations) in term of choice complexity; and H encapsulates product variety
information including the number of variants and their distributions.

22

The outgoing complexity at station j, Cout
j is the amount of complexity flowing out

of the station. It is the amount of choice complexity caused by the variants added at the
station, affecting the operations on the other stations downstream. Similarly, we have the
following equations:

Station 1: Cout
1 = C12 + . . . + C1n = (a12 + . . . + a1n) ·H1

Station 2: Cout
2 = C23 + . . . + C2n = (a23 + . . . + a2n) ·H2

.

Station j: Cout
j = Cj,j+1 + . . . + Cjn

= (aj,j+1 + . . . + ajn) ·Hj

.

Station n: Cout
n−1 = Cn−1,n = an−1,n ·Hn

where,

Cout
j − Outgoing complexity of station j, j = 1 to n;

In fact, by definition Cout
n = 0

Additionally, since the variety of the base part incurs transfer complexity as well, we denote
it as Cout

0 , i.e.,

Base Part: Cout
0 = C01 + C02 + . . . + C0n

= (a01 + a02 + . . . + a0n) ·H0

Using matrix form again, we obtain a comprehensive model for outgoing complexity as
follows:




C0

C1

...
Cn−1




out

=








a01 a02 . . . a0n

0 a12 . . . a1n

...
...

. . .
...

0 0 . . . an−1,n



×




1
1
...
1








. ∗
[
H0,H1, . . . , Hn−1

]T
(2.21)

In short,

23

Cout = [A× 1]. ∗H (2.22)

where Cout is the outgoing complexity vector of size n for the system, with its jth entry
being the outgoing complexity from station j − 1, for j = 1, 2, . . . , n; 1 is a column vector
of ones with size n; and .∗ denotes the entry-by-entry product of two vectors with identical
sizes.

2.3.5 Extension of the Model

The Stream of Complexity model can also be extended to incorporate the influence of
process flexibility and commonality. In Section 2.3.3, we have demonstrated the use of
product-process association matrix (i.e., the ∆-matrix) to deal with the situation where a
common fixture was utilized for two different variants. Since the fixture helped to eliminate
choices, the associated choice complexity was expected to decrease as well.

By the definition of ∆-matrix in Eq. (2.15), we safely drop k in the notation for conve-
nience, and we rewrite Eq. (2.17):

qij = Pi· ×∆ij (2.23)

In fact, the ∆-matrix in the above equations acts as a mathematical operator on the
entropy of variants added at station i, we denote the operator in the form of a function.

∆ij(Hi) , H(qij) (2.24)

Basically, what the operator does is to calculate the entropy value by incorporating the
information of process flexibility (that may help eliminate choices) in the assembly process
at station j regarding the variants assembled at station i.

By using ∆-matrices for every flows of transfer complexity in the system, we have
Eqs.(2.19) and (2.20) extended.




C1

C2

...
Cn




in

=




a01 ·∆01 0 . . . 0
a02 ·∆02 a12 ·∆12 . . . 0

...
...

. . . 0
a0n ·∆0n a1n ·∆1n . . . an−1,n ·∆n−1,n




×
[
H0, H1, . . . , Hn−1

]T

In short,

24

Cin = (A ·∆)T ×H (2.25)

The matrix multiplication requires the entry-by-entry computation:

aij ·∆ij ·Hi = aij ·∆ij(Hi) = aij ·H(qij)

Similarly, the extended versions of Eqs.(2.21) and (2.22) for outgoing complexity are as
follows.

{[
C0, C1, . . . , Cn−1

]T
}out

=







a01 ·∆01 a02 ·∆02 . . . a0n ·∆0n

0 a12 ·∆12 . . . a1n ·∆1n

...
...

. . .
...

0 0 . . . an−1,n ·∆n−1,n



×




1
1
...
1








. ∗
[
H0, H1, . . . , Hn−1

]T

In short,

Cout = [(A ·∆)× 1]. ∗H (2.26)

Therefore, the extended system level complexity model comprehensively incorporates
both product (such as product architecture and mix) and process (such as system configu-
ration, tooling, task to station assignment, flexibility, etc.) information.

2.4 Potential Applications

Once the propagation of complexity is understood and models developed, they can be
applied to the design of mixed model assembly systems. Several potential applications are
described below.

2.4.1 Performance Evaluation and Root Cause Identification Using Com-

plexity Charts

Following the procedures in Section 2.3.4, we can analyze the incoming and outgoing
complexity for each station and plot them against the station position in a multi-stage
assembly system, see Fig. 2.8. As a result, the stations with high incoming complexity are
the potential stations where error-proofing strategies need to be provided to mitigate the
impact of variety induced complexity on operator and system performance.

25

Figure 2.8: Incoming and Outgoing Complexity Charts

In Fig. 2.8, the outgoing complexity also shows how much influence the variants at one
particular station have on its downstream operations. As a result, the outgoing complexity
implies the root cause of the choice complexity in the system. Thus decisions from prod-
uct design, such as process commonality strategies, option bundling policies need to be
considered to moderate outgoing complexity.

2.4.2 Influence Index and Configuration Design

For any station j, once the values of incoming and outgoing complexity are found, we
may define an index, called influence index, as follows:

Ij =
Cout

j

C in
j

(2.27)

The index quantifies how much relative influence the variants added at station j have
on the operations of the other stations. To illustrate, in the Stream of Complexity model
of Fig. 2.7, if every complexity streams have one unit of complexity, we can calculate the
influence index for station j, j = 1, 2, . . . , n by simply counting the number of streams:

Ij =
of Outgoing Complexity Streams
of Incoming Complexity Streams

=
n− j

j
(2.28)

Obviously,

• I1 = n− 1, the first station potentially has the maximal influence on the others;

• In = 0, the last station has no influence on the others.

Thus, in such a sequential manufacturing process, the influence index is monotonically
decreasing with respect to j. Hence we can conclude that operations at the later stations
become vulnerable to be affected by the variants assembled at the previous ones. Therefore,
by wisely assigning assembly tasks (i.e., the functional features) onto stations, it is possible
to prevent complexity streams from propagating. One of the intuitive approaches is to
assign features with more variants to the stations of smaller influence index (downstream

26

stations), and vise versa. In this aspect, the proposed complexity model implies the principle
of “delayed differentiation”, which already has become a common practice in industry [30].

However, by Eq. (2.27), our model suggests that it is not sufficient by looking at the
number of variants and the position where they are deployed according to the “delayed
differentiation” principle. The evaluation of the impact of product variety on manufac-
turing complexity should also take into account the process flexibility built in the system.
For instance, if all the variants from the upstream could be treated by the same flexible
tools, common fixture, and shared assembly procedures in the downstream, variants can
be introduced in the upstream without increasing system complexity. In this case, all the
∆-matrices for transfer complexity become column vectors with all ones in the column,
indicating common process requirements for the feature variants in the product family. As
a result, the transfer complexity vanishes.

Since different configurations have profound impact on the performance of the system
[28], selecting an assembly system configuration other than a pure serial line may help reduce
complexity. For instance, using parallel workstations at the later stages of a mixed-model
assembly process reduces the number of choices on these stations if we can wisely route the
variants at the joint of the ramified paths, see Fig. 2.9. However, balancing these types
of manufacturing systems will be a challenge since the system configuration is no longer
serial [26]. A novel method for task-machine assignment and system balancing needs to be
developed to minimize complexity while maintaining manufacturing system efficiency.

Figure 2.9: Possible configurations for mixed-model assembly systems. Mi’s are machines
in the system [26].

2.4.3 Assembly Sequence Planning to Minimize Complexity

Assembly sequence planning is an important task in assembly system design. It is
to determine the order of assembly tasks to be performed. Since the assembly sequence
determines the directions in which complexity flows, see Fig. 2.10, proper assembly sequence
planning can reduce complexity.

Generally, suppose we have a product with n assembly tasks, and the tasks are to be
carried out sequentially in an order subject to precedence constraints. By applying the

27

i j

Cij

... j i

Cji

...

(a) (b)

Figure 2.10: Differences in transfer complexity values for different assembly sequences: (a)
Task i precedes j, which results in Cij ; (b) Task j precedes i, which results in Cji, while
Cij and Cji are not equal.

complexity model, we assume that the transfer complexity can be found between every two
assembly tasks. Since only one of the two transfer complexity values in Fig. 2.10 is effective
(because only the upstream task/station has influence on the downstream ones) for one
particular assembly sequence, an optimization problem can be formulated to minimize the
system complexity by finding an optimal assembly sequence while satisfying the precedence
constraints. Chapter 3 discuss a detailed algorithm to solve the sequence planning problem.

2.4.4 Build Sequence Scheduling to Minimize Complexity

Build sequence scheduling is an important task in assembly system operation. It is
to determine the order of products being built during the production. Since the build
sequence determines the sequential dependencies between the choices, and the sequential
dependencies reduce the degree of uncertainty, proper build sequence can help to reduce
complexity.

In order to take into account the sequential dependencies, we need to extend the model
discussed in this chapter to non-i.i.d. sequences. By the extended model, we are able
to show that “conditioning reduces entropy”, and the conditional entropy with sequential
dependencies is generally smaller than that of the independent cases. Therefore, sequential
dependencies provide additional information to the operators and help them to make choices.
Chapter 4 discuss a detailed model to discuss the sequence scheduling problem.

2.5 Summary

The chapter proposes a measure of complexity based on the choices that the operator
has to make at the station level. The measure incorporates both product mix and process
information. Moreover, Stream of Complexity model is developed for the propagation of
complexity at the system level. The significance of this research includes: (i) mathematical
models that reveal the mechanisms that contribute to complexity and its propagation in
multi-stage mixed-model assembly systems; (ii) understanding of the impact of manufac-
turing system complexity on performance; and (iii) guidelines for managing complexity in
designing mixed-model assembly systems to optimize performance.

28

CHAPTER 3

Assembly Sequence Planning to Minimize Complexity

Abstract

Sequence planning is an important problem in assembly system design. It is to deter-
mine the order of assembly tasks to be performed sequentially. Significant research has
been done to find good sequences based on various criteria, such as process time, invest-
ment cost, and product quality. This chapter 1 discusses the selection of optimal sequences
based on the complexity measure and models developed in the previous chapter. According
to the complexity models developed, assembly sequence determines the directions in which
complexity flows. Thus proper assembly sequence planning can reduce complexity. How-
ever, due to the difficulty of handling the directions of complexity flows in optimization, a
transformed network flow model is formulated and solved based on dynamic programming.
Methodologies developed in this chapter extend the previous work on modeling complexity,
and provide solution strategies for assembly sequence planning to minimize complexity.

3.1 Introduction

As an important step in assembly system design, sequence planning or sequence analysis,
is to determine which assembly task should be done first, which should be done later. Proper
determination of the sequence may help balance the line, reduce equipment investment,
and ensure better product quality. Significant research has been done to find effective
methodologies in search of good sequences [8].

The process of assembly sequence planning (ASP) begins with the representation of
an assembled product, for example, by a graph or adjacency matrix. One type of graph,
liaison graph, was first introduced by Bourjault in [5] to establish the relationships among
component parts in an assembly. The liaison graph is a graphical network in which nodes

1Part of work in this chapter has appeared on [55]: X. Zhu, S. J. Hu, Y. Koren, S. P. Marin, and N.
Huang. Sequence planning to minimize complexity in assembly mixed-model lines. In Proceedings of the
2007 IEEE International Symposium on Assembly and Manufacturing, 2007.

29

represent parts and lines (or arcs) between nodes represent liaisons. Each liaison represents
an assembly feature where two parts join. The process of realizing such a liaison or liaisons
is referred to as an assembly task. Hence, the problem of ASP is to find a proper order of
realizing the liaisons, i.e., the sequence of tasks needed to completely assemble the product.

Another assembly representation is the precedence graph. A precedence graph is a
network representation of precedence relations among assembly tasks. A sample graph is
shown in Fig. 3.1. In the graph, nodes represent tasks, and there exists an arc (i, j) if task
i is an immediate predecessor of task j.

Figure 3.1: Precedence Graph of a Ten-Task Assembly (From [43], pp.5)

An immediate predecessor is defined as follows [37]. If i ≺ j, then task i is known as
a predecessor or ancestor of task j; and j is known as a successor or descendent of i. If i

is a predecessor of j, and there is no other task which is a successor of i and a predecessor
of j, then i is known as an immediate predecessor of j. For example, in Fig. 3.1, task 3
is a predecessor (but not an immediate predecessor) of task 5; task 5 has two immediate
predecessors, tasks 1 and 4.

Two important concepts in a precedence graph are unrelated task pair and transitivity.
A task may have more than one immediate predecessor and can be started as soon as
all its immediate predecessors have been completed. By definition, if a task has two or
more immediate predecessors, every pair of them must be unrelated (i.e., no precedence
relationship) in the sense that neither of them is a predecessor of the other. Moreover, if i

is a predecessor of j, and j is a predecessor of k, then obviously i is a predecessor of k. In
notation, we write: i ≺ j, j ≺ k ⇒ i ≺ k. This property of precedence relationships is called
transitivity. By transitivity, therefore, we can determine the set of predecessors, or the set
of successors of any task from the set of immediate predecessors of each task (i.e., from the
precedence graph). We will use the above two concepts in the subsequent analysis.

Typically, one precedence graph corresponds to multiple, sometimes, a large number
of sequences. With these candidate sequences, the best sequences are selected according
to various criteria. One of such criteria is to balance the line. Scholl [43] presented a
thorough treatment of assembly line balancing. Most of the efforts have been devoted to
simple assembly line balancing problem with the restriction of one homogeneous product.
Recently, Scholl and Becker [44] gave an up-to-date and comprehensive survey on the exact
and heuristic solution procedures for simple assembly lines. In addition to balancing the
line, other engineering knowledge could also be incorporated into the sequence selection
process [8], for example, removing unstable subassembly states to avoid awkward assembly

30

procedures and improve quality; eliminating refixturing & reorientation to reduce non-value
added costs; imposing a subassembly to allow parallel processing; and so on.

Besides the attentions on a single product, researchers have also developed sequence
planning methodologies for a group of similar products in a family. Gupta and Krishnan
[19] showed that careful assembly sequence design for a product family helped to create
genetic subassemblies which can reduce subassembly proliferation and the cost of offering
product variety. Rekiek et al. [42] and Lit et al. [31] developed an integrated approach
for designing product family (including assembly sequences) and the mixed-model assembly
system at the same time so that multiple products could be assembled on the same line.
Becker and Scholl [1] argued that mixed-model line balancing problems were often connected
to sequencing problems in which one has to decide on the sequences of assembling the
model units. For example, Yano and Rachamadugu [53] developed sequencing algorithms
to minimize work overload caused by the differences in processing times among different
models. Merengo et al. [34] proposed a concept of horizontal balancing to smooth the station
times of the different models in balancing the line. Vilarinho and Simaria [49] considered
balancing mixed-model assembly lines with parallel workstations and zoning constraints
and developed a two-stage procedure to minimize the number of workstations for a given
cycle time while at the same time balance the workloads between and within workstations.

In this chapter, we discuss sequence planning to reduce manufacturing complexity in
manual, mixed-model assembly lines. The mixed-model assembly lines are widely used in
various industries (such as appliances, automotive, and aerospace) to handle more than
one product models. This flexibility helps share expensive equipment investments and
absorb uncertain demand fluctuations. However, the mixed-model assembly process may
become very complex when the number of product variants is high. This is because, during
production, numerous small production steps need to be coordinated as many parts (e.g., for
automobiles, more than three thousand different parts) are used for products with different
options. Furthermore, only limited automation is economically available, and a significant
portion of the process still relies on manual operations. Thus, the assembly process is subject
to unpredictable human errors and performance (quality and productivity) degradations
due to complexity. In order to better understand the manufacturing complexity and its
impact on performance, a quantitative model has been developed in the previous chapter
for evaluating complexity. The model is based on choices an operator has to make at a
station, and complexity is measured as the uncertainty of making the choices. The details
about the complexity measure and model will be reviewed in the next section. According
to the complexity model developed, assembly sequence determines the directions in which
complexity flows and thus proper assembly sequence planning can reduce complexity.

The objective of this chapter is to develop methodologies of finding the optimal assembly
sequences to minimize system complexity. The chapter is structured as follows. Section 3.2
provides background information on the complexity measure and model needed in this chap-

31

ter, and shows the opportunity of minimizing complexity by assembly sequence planning.
Section 3.3 discusses the problem formulation and the preliminary attempts to solve the
problem based on an integer program (IP). Due to the difficulties of handling constraints
in the IP, Section 3.4 presents a network flow program formulation, which transforms the
original problem into a manageable traveling salesman problem with precedence constraints
represented by an extended precedence graph. During the transformation, the information
from the precedence constraints are utilized to simplify the problem before actually solving
the original optimization problem. Then, procedures are developed to solve the transformed
problem using dynamic programming. Section 3.5 demonstrates numerical examples for the
ten-task case study shown in Fig. 3.1. Finally, Section 3.6 summarizes the chapter.

3.2 Complexity Model for Sequence Planning

In this section, we review the complexity model developed for mixed-model assembly
lines in Chapter 2, and demonstrates the opportunity of minimizing complexity by assem-
bly sequence planning. The model considers the product variety induced manufacturing
complexity in manual assembly lines where operators have to make choices according to the
variants of parts, tools, fixtures, and assembly procedures.

A complexity measure called “Operator Choice Complexity” (OCC) was proposed to
quantify the uncertainty in making the choices. The OCC takes an analytical form as an
information-theoretic entropy measure of the average randomness (uncertainty) in a choice
process. It is assumed that the more certain the operator is about what to choose in
the upcoming assembly task, the less the complexity is, and the less chance the operator
would make mistakes. Reducing the complexity may help to improve assembly system
performance.

In fact, the definition of OCC is also similar to that of the cognitive measure of human
performance in the Hicks-Hyman Law [21, 23], which has wide applications in various man-
ual assembly operations [18, 4]. In a more general setting, Sivadasan et al. [46] defined
entropy as the expected amount of information required to describe the state of the system.
By using the entropy definition, they developed measures of the operational complexity
for supplier-customer systems. The complexity measure takes into considerations of the
uncertainty associated with managing the dynamic variations, in time or quantity, across
information and material flows at the supplier-customer systems.

3.2.1 Measure of Complexity

In Eq. (2.7), the measure of complexity is defined as a linear function of the entropy of
a choice process. The choice process consists of a sequence of random choices with respect
to time. The choices are then represented by random variables, each of which represents
choosing one of the possible alternatives from a choice set.

32

In fact, the choice process can be considered as a discrete time discrete state stochastic
process X ′ = {Xt, t = 1, 2, . . .}, on the state space (the choice set) {1, 2, . . . , M}, where t

is the index of discrete time period, M is the total number of possible alternatives which
could be chosen during each period.

Based on the above notation, and if the random sequence is independent, identically
distributed (i.i.d.), the entropy of the choice process can be calculated by the following H

function:

H(X) = H(p1, p2, . . . , pM) = −C ·
M∑

m=1

pm · log pm (3.1)

where C is a constant depending on the base of the logarithm function chosen, if log2 is
selected, C = 1 and the unit of entropy is bit ; pm , P(X = m), for m = 1, 2, . . . ,M ,
which is the probability of choosing the mth alternative; (p1, p2, . . . , pM) determines the
probability mass function of X, is also known as the mix ratio of the (component) variants
associated with the choice process. The mix ratio reflects the variety information in the
mixed-model assembly processes.

With known entropy values of various choice processes at a station, the complexity for
the station is calculated by the summation of all the entropy values associated with the
choices. The choices are related to variety, and determining where the variety are added on
the assembly line is key to the complexity calculation. We will show how the complexity
calculation is accomplished in the context of complexity propagation and system level model.

3.2.2 Complexity Propagation

Base on the idea that variety causes complexity in a multi-stage manufacturing system,
we define two types of complexity for each station:

• Feed complexity: Choice complexity caused by the feature variants added at the
current station.

• Transfer complexity: Choice complexity of the current station caused by the feature
variants previously added at an upstream station.

The propagation scheme of the two types of complexity is depicted in Fig. 3.2, where,
for station j, the feed complexity is denoted as Cjj (with two identical subscripts), and
the transfer complexity is denoted as Cij (with two distinct subscripts to represent the
complexity of station j caused by the variants added at an upstream station i). Transfer
complexity exists because the feature variant added on the upstream station i has been
carried down to station j, and may affect the process of realizing other features at station
j. The effects can cause, for example, accessory part selections, tool changeovers, fixture
conversions, or assembly procedure changes. By definition, the transfer complexity can only

33

flow from upstream to downstream, but not in the opposite direction. In contrast, the feed
complexity can only be added at the current station with no “transfer” behavior.

Station i ... Station j ...

Transfer Complexity Cij

...

Feed Complexity Cjj

Figure 3.2: Types of Complexity

3.2.3 System Level “Stream of Complexity” Model

With the two types of complexity defined, we can derive a system level complexity model
to characterize the interactions among multiple sequentially arranged stations. Consider an
assembly line having n workstations shown in Fig. 3.3. The stations are numbered 1 through
n sequentially from the beginning of the line to the end. The mix ratio, i.e., the percentages
of component variants added at each station, is known. Using Eq. (3.1), we can obtain the
entropy H for the variants at each station according to their mix ratios (by assuming an
i.i.d. component build sequence).

Station 1 j-1...

H1

H0
j j+1 n...

Hj-1

Hn

C1,j

Cj-1,j

C0,j

Cj,j+1

Cj,n

Transfer Complexity

Hj

Feed Complexity

Hj+1

Figure 3.3: Propagation of Complexity at the System Level in a Multi-Stage Assembly
System

In Fig. 3.3, each directed arc stands for a stream of transfer complexity, Cij , flowing
from station i to j (Cij can be zero). Hence, we also call this model as the “Stream
of Complexity” model. The total complexity at a station is simply the sum of the feed
complexity at the station and all transfer complexity from the upstream ones. For station
j, the total complexity is:

Cj = Cjj +
∑

∀i:i≺j

Cij (3.2)

According to the definition of transfer complexity, if component variants added at station
i cause choices during the assembly operations at station j, we have:

34

Cij = aij ·Hi, for i = 0, 1, 2, . . . , n− 1; j = 1, 2, . . . , n (3.3)

where,

Hi − Entropy of component variants added at station i;

H0 − Entropy of variants of the base part;

aij − Coefficient of interaction between assembly

operations at station j and variants added

at station i, i.e.,

aij =





1 Variants added at station i have im-
pacts on station j, and i < j, assum-
ing choice difficulties are identical.

0 Otherwise

Therefore, the values of Cij ’s are determined by the following two steps.

Step 1: Determine the value of Hi, which depends on the mix ratio of component variants
added at station i. As we have mentioned earlier, for component variants with an
i.i.d. build sequence, Eq. (3.1) can be used to calculate the Hi levels. In other words,
Hi is determined by the assignment of the assembly task at station i.

Step 2: Determine the value of aij , which depends on the relationship between the com-
ponent variants added at station i and the process requirements at station j, which,
in turn, is related to the assignment of assembly task at station j.

The two-step procedure of determining Cij makes it difficult to formulate an optimiza-
tion problem to minimize total system complexity since different sequences will result in
different Cij ’s. In addition, the number of candidate sequences can be quite large and
it is computationally prohibitive to exhaustively evaluate all of them in finding the one
with minimum system complexity. Therefore, methodologies and algorithms are needed to
efficiently search for the optimal sequences.

To begin with, we set up a sequence planning problem as follows. We consider an
assembly system, having n assembly tasks, denoted as 1 to n. Tasks are to be arranged
sequentially in an order subject to precedence constraints, such as the constraints expressed
by the precedence graph in Fig. 3.1, where n = 10. Additionally, to make the problem
comparable to the original problem in Fig. 3.3, we assume each task corresponds to one and
only one station, and vice versa.

35

According to the multi-stage complexity model in Fig. 3.3, transfer complexity may
be found between every two tasks. The complexity becomes effective only from upstream
tasks to downstream ones. For example, in Fig. 3.4, when task i precedes task j (denoted
as i ≺ j), there is transfer complexity flowing from tasks i to j (denoted as a directed arc
from nodes i to j). In other words, since task j is performed after task i, it is possible that
the assembly process for task j requires choices of parts/tools/fixtures/assembly procedures
(to be made) according to the variants previously installed by task i. Using the notations
of transfer complexity in Fig. 3.2, we know that the amount of complexity incurred in the
above scenario is Cij . Alternatively, it is also possible for transfer complexity, Cji, to exist
and flow from tasks j to i if j ≺ i. Obviously, only one of the two scenarios will take place
at one time. Thus, for each assembly sequence, although transfer complexity can exist in
either directions, one and only one of the values in the pair (Cij , Cji) is effective. We define
this value as the “effective complexity”

i j

Cij

... j i

Cji

...

(a) (b)

Figure 3.4: Transfer Complexity between Two Assembly Tasks i and j, (a) Cij if i ≺ j, (b)
Cji if j ≺ i

Hence, the assembly sequence determines the directions in which transfer complexity
flows, and hence the total system complexity. In general, Cij and Cji are not equal. There-
fore, an assembly sequence planning (ASP) problem needs to be formulated to find the
optimal sequences, which result in the minimum total system complexity. In the following,
we discuss the formulation of the ASP problem.

3.3 Problem Formulation

In this section, we discuss the assumption and formulation of the sequence planning
problem proposed above. In addition, an integer program has been formulated as the first
attempt to solve the problem. Although the attempt was not successful, it suggested the
further discussions in the next section.

3.3.1 Assumption: Position Independent Choice Complexity

For simplicity and practical reasons, we assume position independence for transfer com-
plexity. That is, the values of Cij and Cji depend solely on the relative positions of the two
tasks i and j, but not the tasks in between, nor their absolute positions in the assembly
sequence. Although the assumption seems restrictive, it is applicable for assembling cus-
tomized products with highly modularized components such as the final assembly process

36

of automobiles, home appliances, and electronics. Because of the simplification, the com-
putational effort to find the optimal solution is greatly reduced and the problem becomes
manageable as well.

Under the above assumption, we are able to determine all the values of transfer com-
plexity between every pair of assembly tasks by Eq. (3.3). For the example of the ten-task
assembly system described in Fig. 3.1, a node-node cost array can be formed as shown
in Fig. 3.5 to record all the transfer complexity values, where Cij corresponds to the cell
(i, j) at row i and column j. For each feasible assembly sequence, the system complex-
ity then can be found by summing all the complexity values that exist, i.e.,

∑
Cij , where

(i, j) ∈ {(i, j)|i ≺ j}. If no precedence constraint is present, there exist n! feasible assembly
sequences. It is obvious that when the constraints are less stringent, the number of feasible
sequences can become quite large.

1 2 3 4 5 6 7 8 9 10

1 C12 C13 C14 C15 C16 C17 C18 C19 C1,10

2 C21 C23 C24 C25 C26 C27 C28 C29 C2,10

3 C31 C32 C34 C35 C36 C37 C38 C39 C3,10

4 C41 C42 C43 C45 C46 C47 C48 C49 C4,10

5 C51 C52 C53 C54 C56 C57 C58 C59 C5,10

6 C61 C62 C63 C64 C65 C67 C68 C69 C6,10

7 C71 C72 C73 C74 C75 C76 C78 C79 C7,10

8 C81 C82 C83 C84 C85 C86 C87 C89 C8,10

9 C91 C92 C93 C94 C95 C96 C97 C98 C9,10

10 C10,1 C10,2 C10,3 C10,4 C10,5 C10,6 C10,7 C10,8 C10,9

Figure 3.5: Transfer Complexity Values between any Two of the Ten Tasks

Among all the feasible assembly sequences, our objective is to find the sequence with
minimum system complexity, which we define to be the optimal sequence. Notice that, the
feed complexity Cjj in Eq. (3.2) is associated with the feature variants added at the current
station, thus it does not change with sequences. As a result, for simplification, we could
possibly set Cjj = 0. This simplification does not affect the procedure of finding optimal
sequences, and it only changes the total system complexity by a constant. Put differently,
in formulating the assembly sequence planning (ASP), only transfer complexity matters.

Therefore, the optimization problem for the ASP can be written as follows.

Program 1:

Minimize:
System (transfer) complexity Z =

∑
(i,j)∈{(i,j)|i≺j}Cij

With respect to: Assembly sequence
Subject to: Precedence constraints

37

3.3.2 Problems with Integer Program Formulation

Because of the imposed precedence constraints, Program 1 can be viewed equivalently
as finding a node covering chain (or tour) in the precedence graph of Fig. 3.1 with minimum
sum of effective complexity flowing from nodes i to j, where i ≺ j. Accordingly, an integer
program can be formulated as follows.

Program 2:

Decision variables:

xij =

{
1 Task i is assigned prior to task j

0 Otherwise
Minimize Z(x) =

∑
∀i,j Cijxij

Subject to:
(i) xij + xji = 1,∀i, j
(ii) xij ∈ {0, 1}
(iii) If (i1, i2), i2, (i2, i3), . . . , in−1, (in−1, in) forms

a tour in the precedence graph, then



xi1,i2 = xi1,i3 = . . . = xi1,in−1 = xi1,in = 1
xi2,i3 = . . . = xi2,in−1 = xi2,in = 1

.

xin−1,in = 1

Constraints (i) and (ii) ensure one and only one task is assigned to a station, constraint
(iii) determines the directions of complexity flows. Because of the difficulties in handling
constraint (iii) of Program 2, the ASP problem in the above formulation is difficult to
solve directly. Here, we use the methods from network flow modeling to simplify the above
problem. That is, we add all the complexity values as flows on the arcs of the precedence
graph, such as the one in Fig. 3.1, then solve a minimum flow problem accordingly.

3.4 A Network Flow Program Formulation

To begin with, we assume the values of transfer complexity between every pair of as-
sembly tasks are known. They are recorded in the array shown in Fig. 3.5. However, due
to precedence constraints, some of the cells in the array are inadmissible, i.e., if it is not
possible for task i to precede task j, we denote the cell (i, j) as inadmissible, and assign it
an ∞ complexity value. Finding all these inadmissible cells and purging them can greatly
simplify the original problem. Thus, a procedure is developed below.

3.4.1 Purging Inadmissible Cells

It takes three steps to find and purge inadmissible cells using the transitivity property
of precedence mentioned in Section 3.1.

38

Step 1: For row i, mark with X in the jth column for all j, where j ∈ Ji = {j|i ≺ j}
(Ji is the set of nodes with a precedence relationship with node i, including implicit
transitivity relationships).

Step 2: For row i, {i, j} is a pair of unrelated elements if the jth row is unmarked. The
meaning of unrelated pair is that either task i could be assigned before task j, or vice
versa. The incurred complexity of these two scenarios is Cij or Cji respectively, and
their cell locations are found and marked with Y. Fig. 3.6 shows the resulting array
after Steps 1 and 2.

1 2 3 4 5 6 7 8 9 10

1 X Y Y X X X X X X

2 Y Y Y Y X X X X

3 Y Y X X X Y X X X

4 Y Y X X Y X X X

5 Y X Y X X X

6 Y Y X X X

7 Y Y Y Y X X X

8 X X

9 X

10

Figure 3.6: Resulting Array after Steps 1 and 2

Step 3: By now, all the unmarked cells are inadmissible cells. Mark them with ∞ and
restore the corresponding cost coefficients with appropriate subscripts to the rest of
cells, and shadow the cells which were marked with X for later use.

3.4.2 Equivalent Network Flow Model

It is observed that the complexity values in the non-shadowed cells are formed in pairs; in
each one of the feasible solutions, one and only one of them are effective and counted in the
total system complexity cost function. Conversely, the complexity values in the shadowed
cells are imposed by precedence constraints either explicitly or implicitly; therefore, all of
them are by all means counted in every feasible solutions.

The above observation implies one of the ways to simplify the complexity cost array
without changing the original problem. That is, we simply set all the shadowed cells to zero,
see Fig. 3.7. Then the only change to the objective function of the original optimization
problem in Program 2 is by a constant, which does not affect the optimal solutions. In
fact, the equivalent argument for the simplification is to set complexity from i to j to zero
if the precedence constraint requires i to precede j either explicitly or implicitly (through
transitivity), i.e., Cij = 0 for i ≺ j.

The cells with denoted complexity cost in Fig. 3.7 are the ones forming an unrelated
pair. On the original precedence graph as shown in Fig. 3.1, directed, dotted arcs between
i and j are drawn in both directions if {i, j} is such an unrelated pair, and flow values

39

1 2 3 4 5 6 7 8 9 10

1 Y1,1 0 C13 C14 0 0 0 0 0 0

2 Y2,2 C23 C24 C25 C26 0 0 0 0

3 C31 C32 Y3,3 0 0 0 C37 0 0 0

4 C41 C42 Y4,4 0 0 C47 0 0 0

5 C52 Y5,5 0 C57 0 0 0

6 C62 Y6,6 C67 0 0 0

7 C73 C74 C75 C76 Y7,7 0 0 0

8 Y8,8 0 0

9 Y9,9 0

10

Figure 3.7: Reduced Complexity Cost Array

Cij , Cji are assigned to the associated arcs respectively. An extended precedence graph is
obtained as shown in Fig. 3.8. Notice that the flows on the solid arcs are the complexity
values between two tasks with explicit precedence relationships, which are all zero due to
the simplification made in the previous paragraph. However the flows on the dotted arcs are
the complexity values between every unrelated pair of tasks, which may take on non-zero
values.

Solid Arc

Dotted Arc

Figure 3.8: Extended Precedence Graph

The graph in Fig. 3.8 is now an equivalent network flow model where the objective is
to find a tour which has the least flow cost. This is because each of the feasible solutions
corresponds to a path satisfying the following properties in the extended precedence graph.

1. The path is directed, i.e., the travel must follow the direction of the arrows;

2. Every node must be visited once and only once;

3. The path must have the solid arcs directed forward.

Properties 1 and 2 are required simply due to the definition of a precedence graph. In
other words, the path is Hamiltonian. Property 3 is imposed because the solid arcs are
the explicit precedence relationships (ten in total for the example) which must be satisfied.
Once these precedence are satisfied, all the implicit precedence relations hold automatically,

40

i.e., the precedence constraints specified by the original precedence graph are satisfied. For
example, by inspection, one of the feasible solutions is 1-2-3-4-5-6-7-8-9-10. By stretching
the path from the extended precedence graph, we find that all the solid arcs are directed
forward, see Fig. 3.9(a). For comparison, an infeasible solution violating property 3 is
illustrated in Fig. 3.9(b): a path satisfying properties 1 and 2 is taken with the sequence of
nodes being 1-4-7-3-2-5-6-8-9-10. By stretching the path again, the solid arcs of (2, 7) and
(3, 4) are found to be in the opposite direction. Thus property 3, i.e., the constraint in the
original precedence graph, has been violated.

(a)

(b)

Figure 3.9: Stretched Path of (a) a Feasible Solution, (b) an Infeasible Solution

Once the constraints are satisfied, the objective value is computed by counting all the
effective flows. The effective flow is defined as the flow on the dotted arc whose direction
is the same as that of the path. In fact, the effective flow represents the effective transfer
complexity in the unrelated pair. Take the example in Fig. 3.9(a), the effective flows are
C13, C14, C23, C24, C25, C26, C37, C47, C57, and C67. Therefore, the objective value of the
solution is,

Z = C13 + C14 + C23 + C24 + C25 + C26

+C37 + C47 + C57 + C67 + constant (3.4)

The reason for adding the constant in the above expression follows from the arguments (of
simplification) made for the use of the reduced complexity cost array in Fig. 3.7.

Similarly, in Fig. 3.9(b), the effective flows are C13, C14, C42, C47, C73, C75, C76, C32,
C25, and C26, and the objective value of the infeasible solution (not achievable) is,

Z = C13 + C14 + C42 + C47 + C73 + C75

+C76 + C32 + C25 + C26 + constant (3.5)

41

In conclusion, by combining properties 1 and 2 with property 3, the equivalent network
flow model transforms the original formulation (Program 2) into a problem of finding a
Hamiltonian tour in the extended precedence graph, and at the same time, subject to the
constraints imposed by the original precedence graph. The problem is then similar to what
is widely known as the traveling salesman problem with precedence constraints (TSP-PC)
[3], which can be solved using Dynamic Programming (DP) with some modifications.

In addition, by using the transformation, we gain the advantage of greatly reducing the
number of non-zero, finite cells in the complexity cost array. For the purpose of assembly
sequence planning, this reduction significantly simplifies the work of evaluating the transfer
complexity values by the procedures discussed about Eq. (3.1). For the ten-task example,
only the transfer complexity of the pairs {1, 3}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 7},
{4, 7}, {5, 7}, and {6, 7} needs to be evaluated. Moreover, as we shall see shortly, the
transformation also provides the means of finding state transition costs in DP, which makes
our problem comparable to the classical TSP-PC with Cij being the arc length.

3.4.3 Solution Procedures by Dynamic Programming

Here we reformulate our problem and restate it with the notations similar to that of the
classical TSP-PC. First, we append a “dummy” node 0 that has no transfer complexity from
or to the other nodes, and connect it with the starting nodes (ending nodes) with forward
(backward) arcs according to the precedence constraints. The starting node (ending node)
is defined as the node having no predecessor (successor). In our example, the starting
nodes are 1 and 3, and the ending node is 10. Thus, we add node 0 with forward arcs (0, 1),
(0, 3), and backward arc (10, 0) to the graph in Fig. 3.8, and set C01 = C03 = C10,0 = 0.
Next, let the extended precedence graph be G = (N ,A), which is a directed graph, where
N = {0, 1, 2, . . . , n} is the node set, A is the arc set. Cij ≥ 0, (i, j) ∈ A is the complexity
incurred if task i precedes task j, i.e., node i is visited prior to j (denoted as i ≺ j). By
convention, let Cii = ∞,∀i ∈ N to eliminate self-loops. (Notice that, setting Cii = ∞
has different purpose from setting Cjj = 0 in Section 3.3.1. They are not contradictory.)
Finally, for each node i ∈ N , the precedence relationships defined by the original precedence
graph (or, equivalently the solid arcs in Fig. 3.8) can be expressed by means of a set of nodes
(Π−1

i ⊂ N) that must be visited before node i, or a set of nodes (Πi ⊂ N) that must be
visited after node i.

The ASP problem is then cast as one of the variants of the classical TSP-PC in [3] as to
find a Hamiltonian tour starting from node 0, visiting every node in Πi ⊂ N before entering
node i (i ∈ {1, 2, . . . , n}), and finally returning to node 0. The objective is to find a feasible
tour that minimizes the sum of the complexity incurred. However, it is important to note
that instead of calculating the sum of the costs on its arcs (along the traveling path) as
in the classical problem, we compute the sum of Cij ’s, where (i, j) ∈ A and i ≺ j. This
presents difficulties in handling the state transition cost in developing DP procedures. For

42

that, we need to ensure the following two conditions:

• Condition 1: The decision space for state transition, i.e., going from a state (say
State∗) to another state depends on State∗, not the path coming into State∗.

• Condition 2: The state transition cost depends on State∗, not the path coming into
State∗.

We will show how to satisfy these conditions in the following the DP procedures.
Define state (S, i) as the state being at node i (i ∈ S, S is the set of nodes visited so far)

and visited every node in Π−1
j before passing through node j (∀j ∈ S), and further define

the objective value function f(S, i) to be the least complexity cost “determined” (explained
later on the state transition cost structure) on a path starting at node i, legitimately visiting
the rest of (n+1−|S|) nodes, i.e., all the nodes in the set N\S, and finally finishing at the
dummy node 0.

State transition takes place from state (S, i) to (S
⋃{j}, j) by visiting node j (where

j ∈ D(S)) at the next step, where D(S) is the decision space, consists of the set of nodes
that can be visited after acquiring state (S, i).

Theorem 1: D(S) is a function of solely S.

Proof: First, denote Yk = {i : |Π−1
i | + 1 ≤ k ≤ n + 1 − |Πi|} as the set of nodes that

may stay in position k (k ∈ {1, 2, . . . , n + 1}) in any feasible tour. Next, note that, if
|S| = k, then j ∈ Yk, i.e., by definition, D(S) = Yk\S. Since Yk is determined by the
precedence graph G = (N ,A), thus D(S) relies only on S.

Put alternatively, D(S) is determined by the set of the nodes we have visited not the
node where we are at, nor the path coming into the node. Thus, Theorem 1 shows that
Condition 1 has been satisfied.

As we have mentioned earlier, the state transition cost structure of our ASP problem
is quite different from that of the classical TSP-PC, which causes the difficulty of solving
the problem. However the equivalent transformation in the previous section gains us the
insight to transfer the state transition cost to that of the classical TSP-PC as being the arc
length from node i to node j.

Theorem 2: The complexity incurred by choosing to visit node j at state (S, i) is a function
of the state and node j.

Proof: First of all, we notice that by choosing node j as the next node to be visited,
we “determine” the complexity flowing from node j to all the other nodes in the
set N\(S ⋃{j}) but not in the opposite direction. The “determined” complexity
flows are the finite Cjk’s with node k ∈ N\(S ⋃{j}). To express explicitly, the

43

transition cost from state (S, i) to state (S
⋃{j}, j) is

∑
∀k∈K(S,j) Cjk, where K(S, j) =

{N\(S ⋃{j})}⋂{k|0 ≤ Cjk < ∞}. Therefore, the state transition cost depends only
on state (S, i) and node j.

Put alternatively, the effective flows are “determined” by selecting finite values in the
columns corresponding to the un-visited nodes, and in row j of the reduced complexity
array in Fig. 3.7. Therefore, by Theorems 1 and 2, Condition 2 has been satisfied.

Corollary 3: The state transition cost from state (S, i) to (S
⋃{j}, j) is zero, if j is the

only candidate decision in D(S), i.e., D(S) = {j}.

Proof: Since D(S) = {j}, ∀k ∈ K(S, j) we have strictly j ≺ k, which is imposed by
precedence constraints. Because of the simplification shown in Fig. 3.7 (where Cij = 0
if i ≺ j), we have Cjk = 0. Therefore, by Theorem 2, the state transition cost∑
∀k∈K(S,j) Cjk is zero.

The result of Corollary 3 helps us to simplify the calculation of state transition costs in
DP recursions.

Now the functional equation for the exact solution follows. Moreover, to fully utilize
the easily-found decision space D(S), the DP recursion is intentionally developed to be
backwards.

Program 3:

f(S, i) =





minj|j∈D(S){
∑
∀k∈K(S,j) Cjk + f(S

⋃{j}, j)},
for {0} ⊆ S ⊂ N , i ∈ S; for S = N , i ∈ S\{0}

0, for S = N , i = 0

Answer:f({0}, 0)

The classical TSP-PC is known to be NP-hard. Using the DP, the computational com-
plexity of the unconstrained TSP with n nodes is O(n22n) [20]. For Program 3 with no
precedence constraints, due to the unique structure in handling state transition costs, the
computational complexity is higher than O(n22n). The computational complexity can be
evaluated as follows.

• The number of states in the DPN corresponding to Program 3 is at most
∑n

k=1 k
(
n
k

)
.

• Correspondingly, the number of arcs is at most is at most:
∑n

k=2 k(k − 1)
(
n
k

)
+ n.

• For each arc in the above, one has to obtain the state transition cost from state (S, i) to
state (S

⋃{j}, j) by
∑
∀k∈K(S,j) Cjk, where K(S, j) = {N\(S ⋃{j})}⋂{k|0 ≤ Cjk <

44

∞}. The calculations required are at most (n − k) additions. Furthermore, due
to the comparisons needed in minj|j∈D(S){

∑
∀k∈K(S,j) Cjk + f(S

⋃{j}, j)}, each arc
corresponds to (n− k) additions and 1 comparison.

Therefore, total number of additions or comparisons needed for Program 3 is at most:

∑n
k=2(k(k − 1)

(
n
k

)
+ n)× (n− k + 1)

≤ n
∑n

k=2 k(k − 1)
(
n
k

)
+ n2

= n2(n− 1)2n−2 + n2

Thus, O(n32n) can be accepted as an upper bound for the computational complexity
of Program 3. Although this number grows exponentially with the number of nodes, it is
still much lower than O(n2n!), which is the computational complexity using the exhaustive
search. To better comprehend the computational load in magnitude, we take the following
example. If n = 30, O(n32n) is equivalent to 2.9 × 1013 additions or comparisons, which
equals to 4.03 hours on a 2 GHz CPU.

In practice, since the number of assembly tasks for sequence planning is moderate, which
is around 30 stations for one of the line segments in a typical automobile plant, the exact
algorithm based on DP is still applicable. In the long-term strategic planning, such as
ASP, it is practically manageable to solve the problem in a reasonable amount of time,
i.e., as a matter of several hours. Additionally, in most of the cases, there exist precedence
constraints. As we have seen in Section 3.4, through the simplification and transformation,
we are able to significantly reduce the problem size, and in turn the computational load,
by utilizing the information from the precedence constraints. If further computational
improvements are needed, heuristics in [3] or more recent algorithms based on ant colony
optimization [11] can be investigated.

3.5 Numerical Examples

By continuing the ten-task example, we demonstrate the numerical results solved by
Program 3. We examine the original precedence relationships (network of the solid arcs in
Fig. 3.8), and by Theorem 1, we can find the decision space D(S) for every feasible node
set S, see Table 3.1.

Then the complete Dynamic Programming Network (DPN) is drawn in Fig. 3.10, where
nodes represent states (refer to Table 3.1 for the details of the states), and arcs represent
possible state transitions (refer to Table 3.2 for transition costs, where node in the first
column (rows) is the starting (ending) node of the arc, and an ∞ value denotes no arc
between the two nodes).

45

A1

B1

B2

C1

C2

C4

C3

D1

D2

D3

D4

D5

E1

E3

E2

E4

E5

F1

F3

F2

F4

F5

G1

G3

G2

G4

H1

H2

I1

J1

K1

L1

IX,X,XIVIIIVIIVIVIVIIIIII

Stages (# of Nodes Visited)

Figure 3.10: Complete DPN for the Ten-Task Example

3.5.1 Example 1

In this example, we demonstrate the effect of precedence constraints by using special
numerical values for the cost array.

First, notice that in Fig. 3.9(b), we illustrate an infeasible solution with the sequence
1-4-7-3-2-5-6-8-9-10. The corresponding system complexity can be calculated by Eq. (3.5).
In this example, we intentionally assign zeros to all Cij ’s in Eq. (3.5), and assign ones to
the remaining Cij ’s. Put alternatively, in Fig. 3.7, we assign 0’s to the cells (1, 3), (1, 4),
(4, 2), (4, 7), (7, 3), (7, 5), (7, 6), (3, 2), (2, 5), (2, 6), and 1’s to the cells (2, 3), (2, 4), (3, 1),
(3, 7), (4, 1), (5, 2), (5, 7), (6, 2), (6, 7), (7, 4).

Based on this special setup, if no precedence constraints are imposed, we can easily
conclude that system complexity (neglecting feed complexity) Z = 0 (with constant = 0),
and the sequence 1-4-7-3-2-5-6-8-9-10 is the optimal. However, if the precedence constraints
in Fig. 3.1 are imposed, the above optimal is no longer achievable.

As discussed in Section 3.4.2, one of the arbitrary feasible solution is the sequence 1-2-
3-4-5-6-7-8-9-10. By Eq. (3.5), the corresponding system complexity is Z = 5 bits.

By Program 3, we find that the optimal sequence is 1-3-4-2-7-5-6-8-9-10, and the corre-
sponding system complexity is Z = 1 bit. The optimal solution corresponds to a shortest
path in the DPN, which is shown in Fig. 3.10 by the thick arcs.

To conclude the above comparisons, we can see that the resulting optimal solution
gives a system complexity (Z = 1 bit) lower than that of the arbitrary feasible solution
(Z = 5 bits) but higher than that of the infeasible solution (Z = 0). This comparison
demonstrates that the optimization finds a optimal solution with higher objective value due
to active precedence constraints, which verifies the effectiveness of Program 3. To verify,
Table 3.3 lists all feasible solutions (∗ denotes the optimal sequence).

46

Table 3.1: Label, State, and Corresponding Decision Space D(S)
for the Nodes of the DPN

Label State D(S) Label State D(S)

A1 ({0},0) 1,3 E5 ({0,1,3,4,5},5 2,6

B1 ({0,1},1) 2,3 F1 ({0,1,2,3,4,5},5) 6,7

B2 ({0,3},3) 1,4 F2 ({0,1,2,3,4,7},4) 5

C1 ({0,1,2},2) 3,7 F3 ({0,1,2,3,4,7},7) 5

C2 ({0,1,3},3) 2,4 F4 ({0,1,2,3,4,5},2) 6,7

C3 ({0,1,3},1) 2,4 F5 ({0,1,3,4,5,6},6) 2

C4 ({0,3,4},4) 1 G1 ({0,1,2,3,4,5,6},6) 7

D1 ({0,1,2,3},3) 4,7 G2 ({0,1,2,3,4,5,7},5) 6

D2 ({0,1,2,7},7) 3 G3 ({0,1,2,3,4,5,7},7) 6

D3 ({0,1,2,3},2) 4,7 G4 ({0,1,2,3,4,5,6},2) 7

D4 ({0,1,3,4},4) 2,5 H1 ({0,1,2,3,4,5,6,7},7) 8

D5 ({0,1,3,4},1) 2,5 H2 ({0,1,2,3,4,5,6,7},6) 8

E1 ({0,1,2,3,4},4) 5,7 I1 ({0,1,2,3,4,5,6,7,8},8) 9

E2 ({0,1,2,3,7},3) 4 J1 ({0,1,2,3,4,5,6,7,8,9},9) 10

E3 ({0,1,2,3,7},7) 4 K1 ({0,1,2,3,4,5,6,7,8,9,10},10) 0

E4 ({0,1,2,3,4},2) 5,7 L1 ({0,1,2,3,4,5,6,7,8,9,10},0) 0

3.5.2 Example 2

In this example, we demonstrate a complete numerical example, which includes both
the complexity calculation and the assembly sequence planning.

In Fig. 3.11, we redraw the precedence graph and denote the number of variants that
the corresponding task has to handle. We assume all variants are equal likely to take place
in the choice processes. Moreover, the variants in the upstream stations are assumed to
influence any assembly task in the downstream stations, i.e., all aij = 1.

Figure 3.11: Precedence Graph of a Ten-Task Assembly with Number of Variants Indicated
(From [1])

With the above assumptions, we can calculate every Cij in Fig. 3.5 by Eq. (3.1). How-
ever, thanks to the transformation made in Section 3.4, only the values in Fig. 3.7 needs to
be evaluated, i.e.,

• C13 = C14 = log2 6

• C23 = C24 = C25 = C26 = log2 6

• C31 = C32 = C37 = log2 4

47

• C41 = C42 = C47 = log2 5

• C52 = C57 = log2 4

• C62 = C67 = log2 5

• C73 = C74 = C75 = C76 = log2 4

Notice that, due to the particular setup of the example, the complexity Cij is calculated
based on the number of variants of the station indicated by the first subscript i.

Using Program 3, we are able to perform the sequence planning to minimize complexity.
The optimal sequence is found to be 3-4-1-5-2-7-6-8-9-10, and the corresponding system
complexity is Z = 22.55 bits.

3.6 Summary

In this chapter, we have demonstrated the opportunity of minimizing complexity for
manufacturing systems by assembly sequence planning. The complexity is defined as op-
erator choice complexity, which indirectly measures the human performance in making
choices, such as selecting parts, tools, fixtures, and assembly procedures in a multi-product,
multi-stage, manual assembly environment.

Methodologies developed in this chapter extend the previous work on modeling complex-
ity and provide solution strategies for assembly sequence planning to minimize complexity.
The solution strategies overcome the difficulty of handling the directions of complexity flows
in optimization and effectively simplify the original problem through equivalent transfor-
mation into a network flow model. This makes the problem comparable to the traveling
salesman problem with precedence constraints. By a careful construction of the state tran-
sition cost structure, we obtain the exact optimal solution through recursions based on
dynamic programming. Such solution strategy is also generally applicable to problems in
multi-stage systems where complex interactions between stages are considered.

However, due to the restrictive assumption on position independence for complexity,
the application of the methodology is still limited. Moreover, the exponentially growing
computational complexity is also not satisfactory for large problems with the number of
assembly tasks far beyond 30. Hence, the further improvement should address the above
limitations by developing approximations and heuristics without significantly sacrificing the
accuracy of the solutions.

48

Table 3.2: State Transition Costs on the Arcs of the DPN
B1 B2

A1 C13+C14 C31+C32+C37

C1 C2 C3 C4

B1 C23+C24+C25+C26 C32+C37

B2 C14 C41+C42+C47

D1 D2 D3 D4 D5

C1 C37 C73+C74+C75+C76

C2 C24+C25+C26 C42+C47

C3 C24+C25+C26 C42+C47

C4 0

E1 E2 E3 E4 E5

D1 C47 C74+C75+C76

D2 0

D3 C47 C74+C75+C76

D4 C25+C26 C52+C57

D5 C25+C26 C52+C57

F1 F2 F3 F4 F5

E1 C57 C75+C76

E2 0

E3 0

E4 C57 C75+C76

E5 C26 C62+C67

G1 G2 G3 G4

F1 C67 C76

F2 0

F3 0

F4 C67 C76

F5 0

H1 H2 I1 J1 K1 L1

G1 0

G2 0

G3 0

G4 0

H1 0

H2 0

I1 0

J1 0

K1 0

49

Table 3.3: All Feasible Solutions for Example 1

Assembly Sequence Complexity (bit)
1-2-3-4-5-6-7-8-9-10 5
1-2-3-4-5-7-6-8-9-10 4
1-2-3-4-7-5-6-8-9-10 3
1-2-3-7-4-5-6-8-9-10 4
1-2-7-3-4-5-6-8-9-10 3
1-3-2-4-5-6-7-8-9-10 4
1-3-2-4-5-7-6-8-9-10 3
1-3-2-4-7-5-6-8-9-10 2
1-3-2-7-4-5-6-8-9-10 3
1-3-4-2-5-6-7-8-9-10 3
1-3-4-2-5-7-6-8-9-10 2
1-3-4-2-7-5-6-8-9-10 ∗ 1
1-3-4-5-2-6-7-8-9-10 4
1-3-4-5-2-7-6-8-9-10 3
1-3-4-5-6-2-7-8-9-10 5
3-1-2-4-5-6-7-8-9-10 5
3-1-2-4-5-7-6-8-9-10 4
3-1-2-4-7-5-6-8-9-10 3
3-1-2-7-4-5-6-8-9-10 4
3-1-4-2-5-6-7-8-9-10 4
3-1-4-2-5-7-6-8-9-10 3
3-1-4-2-7-5-6-8-9-10 2
3-1-4-5-2-6-7-8-9-10 5
3-1-4-5-2-7-6-8-9-10 4
3-1-4-5-6-2-7-8-9-10 6
3-4-1-2-5-6-7-8-9-10 5
3-4-1-2-5-7-6-8-9-10 4
3-4-1-2-7-5-6-8-9-10 3
3-4-1-5-2-6-7-8-9-10 6
3-4-1-5-2-7-6-8-9-10 5
3-4-1-5-6-2-7-8-9-10 7

50

CHAPTER 4

Build Sequence Scheduling to Minimize Complexity

Abstract

Build sequence scheduling is an important topic in mixed-model assembly. It is to
determine the order of products being built in the assembly line. Significant research has
been conducted to determine good sequences based on various criteria. For example, in
Just-In-Time production systems, optimal sequences are searched to minimize the variation
in the rate at which different parts were utilized. This chapter discusses the selection
of optimal build sequences based on complexity introduced by product variety in mixed-
model assembly lines. The complexity was defined as the information entropy that operator
processes during assembly, which indirectly measures the human performance in making
choices, such as selecting parts, tools, fixtures, and assembly procedures in a multi-product,
multi-stage, manual assembly environment. In Chapter 2, a simple version of complexity
measure has been developed for independent identically distributed (i.i.d.) sequences. This
chapter 1 extends the concept by taking into account the sequential dependence of the
choices and its impact on build sequence schedules. A model based on the Hidden Markov
Chains is proposed for the sequence scheduling problem with constraints. Through a two-
model two-part example, the results from the model indicates that proportional production
causes the most complexity, while the batch production the least. Methodologies developed
in this chapter enhance the previous work on modeling complexity, and provide solution
strategies for build sequence scheduling to minimize complexity.

4.1 Introduction

An assembly process in a mixed-model line can be viewed from different perspectives.
Besides the procedure of mounting parts to a partially completed assemblage, it is also a part

1Part of work in this chapter has appeared on [56]: X. Zhu, H. Wang, S. J. Hu, and Y. Koren. Build se-
quence scheduling to minimize complexity in mixed-model assembly lines. In Proceedings of the 9th Biennial
ASME Conference on Engineering Systems Design and Analysis, 2008.

51

supply process. Particularly, in Just-In-Time mixed-model assembly lines, different types,
shapes, and colors of materials have to be provided at the right time, at the right place,
and with the right quantity. Among the materials, some are sequenced pre-hand, others
are un-sequenced and stored in line-sided bins. In the latter case, the role of operators is to
choose the correct parts from the bins, and assemble them to the correct model. Fig. 4.1
illustrates how operators choose variants of parts C and D and assemble them to models A

and B according to customer requirements. In a view, one of the objectives of the assembly
operation is to ensure the correct part sequence to match with the model sequence.

Station 2Station 1
… A A B A B

C2

C2

C1

C2

C2

.

.

.

D1

D2

D1

D1

D2

.

.

.

C1 C1 C1

C1

C2 C2 C2

C2

D1 D1 D1

D1

D2 D2 D2

D2

BC2 AC1D2
…

Model Sequence

P
a
rt

 S
e
q
u
e
n
c
e

Figure 4.1: Model and Part Sequences in a Mixed-Model Assembly Line

The build sequence is one of the important scheduling decisions made during the opera-
tions of a mixed-model assembly line. For example, in automobile assembly lines, one needs
to decide which vehicle is the first, which one is the next in the continuous product flow. In
this chapter, we refer to the build sequence as the model sequence shown in Fig. 4.1. The
objectives of build sequence scheduling could be to level work content [53], or to smooth
material usage [36, 29], or both [12]. However, to avoid work overload at the bottleneck
stations, some spacing rules are usually enforced for build sequence decisions [24], with
typical examples being:

• Maximum of 3 model I’s in a row;

• Minimum of 3 non-model II’s between any two model II’s;

• Minimum of 1 non-model III between any two model III’s;

• Minimum of 2 non-model IV between any two model IV’s;

• Minimum of 10 non-exports between any two exports.

Obviously, the build sequences corresponding to these spacing rules cause sequential de-
pendencies in both model and part sequences. The sequential dependencies will be utilized
later in the article.

52

In studying mixed-model assembly process, a deterministic model is usually not sufficient
to describe build sequences with spacing rules. For example, consider a constrained binary
sequence [7] having at least one 0 and at most two 0’s between any pair of 1’s. Thus,
sequences like 101001 and 0101001 are valid, but 0110010 and 0000101 are not. Hence, the
resulting build sequences are generated by arbitrarily inserting one 0 or two 0’s between
every two 1’s.

To model such random sequences, probabilistic models are needed. In the above exam-
ple, we can use a Markov chain to generate the legitimate sequences. We define State 1 as
being in “1”, State 2 as being in “0” for the first time, and State 3 as being in “0” for the
second time. The following state transition diagram in Fig. 4.2 can be used to describe all
possible transitions and their chances.

Figure 4.2: State Transition Diagram of a Markov Chain

Correspondingly, we define a state transition matrix Λ for the chain as follows:

Λ = {λij} =




0 1 0
α 0 1− α

1 0 0


 (4.1)

where λij = P (Xt = j|Xt−1 = i) is the transition probability from State i to State j at
time t, and λ21 = α means after attaining the first “0” we can either obtain the second “0”
with probability 1− α or obtain a “1” with probability α.

Furthermore, based on a probabilistic model (such as a Markov chain) rather than a
deterministic one, one is capable of studying the statistical characteristics of the constrained
build sequences. The reason is that the former can generate enough number of sequences
instead of an individual one for statistical inference.

The complexity associated with properly coordinating the part supply process as de-
scribed in Fig. 4.1 increases if the product variety goes high. In mass production, only one
kind of material is fed into each station. Thus, the assembly operation is rather straightfor-
ward: same part, same procedure, every cycle. In mixed-model lines, however, more than
one types of materials are to be chosen and assembled. The assembly operation becomes
more complex. The complexity is related with how operators handle variety. It has been
reported by both empirical and simulation studies [15, 33, 14] that increased product variety
has significant negative impact on the performance of the mixed-model assembly process.

53

Such impact can result from assembly system design as well as people performance under
high variety.

To evaluate the impact, complexity needs to be defined and measured. In Fig. 4.1, one
has observed that both model and part sequences are random, thus, complexity can be
defined as the average randomness in a sequence. In other words, since the operators must
make choices of parts, the process of making the choices is equivalent to handling uncertainty
of the random sequence. Based on this idea, a complexity measure called “Operator Choice
Complexity” (OCC) was proposed in Chapter 2 to quantify the uncertainty in making the
choices. The OCC takes an analytical form as an information-theoretic entropy measure
of the average uncertainty in a choice process, i.e., the random sequence of parts. It can
be inferred that the more certain an operator is about what to choose in the upcoming
assembly task, the less the complexity is. In fact, the definition of OCC is similar to that of
the cognitive measure of human performance in the Hicks-Hyman Law [21, 23]. Reducing
the complexity may help to improve assembly system performance.

In Chapters 2 and 3 [55, 54], complexity measure has been used for assembly sequence
design under the i.i.d. (independent identically distributed) conditions. In this chapter,
assembly processes with sequential dependencies from the non-i.i.d. choices are considered.
The study of the sequential dependencies enables the application of the complexity measure
for build sequence scheduling problems.

The objective of this chapter is to develop methodologies for finding the optimal build
sequences to minimize complexity. The complexity measure and its models for assembly
systems were developed in Chapter 2 and will be reviewed in the next section. According
to the complexity models developed, build sequence determines the sequential dependencies
of the random choices and thus proper sequence scheduling can reduce complexity.

The chapter is structured as follows. Section 4.2 provides background information on the
complexity measure and shows the opportunity of minimizing complexity by build sequence
scheduling. Section 4.3 discusses the problem formulation based on a Hidden Markov model
and Section 4.4 provide the general solution strategy. Section 4.5 presents a two-model two-
part numerical example and discusses results. A trade-off factor is proposed to demonstrate
the use of the model for a balanced decision on complexity and responsiveness. Section 4.6
summarizes the chapter.

4.2 Complexity Model for Sequence Scheduling

In this section, we first review the complexity measure and its models discussed in
Chapter 2. Based on a general form of the complexity measure, we discuss the sequential
dependencies of the non-i.i.d. sequences. Due to the principle of “conditioning reduces
entropy”, the sequential dependencies provide an avenue of reducing complexity.

54

4.2.1 General Form of Complexity Measure

In a general form, the measure of complexity, OCC is a linear function of the entropy
rate of a stochastic process (choice process). The choice process consists of a sequence of
random choices with respect to time. The choices are then modeled as a sequence of random
variables, each of which represents choosing one of the possible alternatives from a choice
set. In fact, the choice process can be considered as a discrete time discrete state stochastic
process X ′ = {Xt, t = 1, 2, . . .}, on the state space (the choice set) {1, 2, . . . , M}, where t

is the index of discrete time period, M is the total number of possible alternatives which
could be chosen during each period. More specifically, Xt = m,m ∈ {1, 2, . . . , M}, is the
event of choosing the mth alterative during period t. With the above notation, the general
form of OCC is:

H(X ′) = lim
N→∞

1
N

H(X1, X2, . . . , XN)

= lim
N→∞

H(XN |XN−1, XN−2, . . . , X1) (4.2)

The second equivalence sign holds if the process is stationary [7].
In the simplest case, if the sequence is independent, identically distributed (i.i.d.),

Eq. (4.2) can be reduced to an analytical entropy function H as we have discussed in
Eq. (2.2) of Chapter 2. The H function takes the following form:

H(X) = H(p1, p2, . . . , pM) = −C ·
M∑

m=1

pm · log pm (4.3)

where pm , P(X = m), for m = 1, 2, . . . , M , which is the probability of choosing the mth

alternative; (p1, p2, . . . , pM) determines the probability mass function of X, is also known
as the mix ratio of the (component) variants associated with the choice process.

4.2.2 Principle of “Conditioning Reduces Entropy”

Sequential dependencies provide additional “information” to the operators, thus po-
tentially reduce uncertainty and complexity. Suppose we have two successive choices. To
simplify the subsequent notations, we denote X as the first choice, and Y the second. Both
choices have M alternatives (numbered from 1 to M). Let p(xi, yj) be the probability of
the joint event {X = xi, Y = yj}, where i, j ∈ {1, 2, . . . , M}. The complexity of the joint
choice is:

H(X, Y) = −
M∑

i=1

M∑

j=1

p(xi, yj) log p(xi, yj)

While,

55

H(X) = −
M∑

i=1

M∑

j=1

p(xi, yj) log
M∑

j=1

p(xi, yj)

H(Y) = −
M∑

j=1

M∑

i=1

p(xi, yj) log
M∑

i=1

p(xi, yj)

It is easy to show that,

H(X, Y) ≤ H(X) + H(Y) (4.4)

with equality achieved only if the two choices are independent [45], i.e., p(xi, yj) = p(xi)p(yj),
where p(xi) , P (X = xi), and p(yj) , P (Y = yj).

Consider the two choices X and Y again, assume they are not independent. For any
particular value xi that X can take, assume there is a conditional probability given that Y

has the value of yj , i.e., p(yj |xi) , P (X = xi|Y = yj). By Bayes’ rule:

p(yj |xi) =
p(xi, yj)∑M

j=1 p(xi, yj)
(4.5)

We define conditional entropy of Y , H(Y |X) as the expected entropy of Y for knowing the
values of X, i.e.,

H(Y |X) = −
M∑

i=1

p(xi)
M∑

j=1

p(yj |xi) log p(yj |xi)

= −
M∑

i=1

M∑

j=1

p(xi, yj) log p(yj |xi) (4.6)

The quantity measures how uncertain we are of Y on the average (how complex we
make choices by responding to Y) when we know X. Substituting the value of p(yj |xi) in
Eq. (4.5), we obtain:

H(Y |X) = −
M∑

i=1

M∑

j=1

p(xi, yj) log p(xi, yj)

+
M∑

i=1

M∑

j=1

p(xi, yj) log
M∑

j=1

p(xi, yj)

= H(X,Y)−H(X))

or,

56

H(X, Y) = H(X) + H(Y |X) (4.7)

The uncertainty (or choice complexity) of the joint choice X and Y is the uncertainty of X

plus the uncertainty of Y when X is known.
From Eqs. (4.4) and (4.7) we have,

H(X) + H(Y) ≥ H(X,Y) = H(X) + H(Y |X)

Hence,

H(Y) ≥ H(Y |X) (4.8)

The uncertainty (or choice complexity) of the second choice Y is never increased by the
knowledge of the first choice X. H(Y |X) will reach the maximum as H(Y) if X and Y are
independent choices. This is known as the principle of “conditioning reduces entropy” [7].

4.3 Build Sequence Problem Formulation

Let us consider a customized vehicle with N types of models (e.g., chassis frames). At a
station, one of the M types of parts is to be assembled. Also, assume the type of the model is
not recognizable by the operator. However, the parts being installed are observable. In the
meantime, the operator tries to predict the next part type based on the information given
on the current part. By using the information and due to the principle of “conditioning
reduces uncertainty”, the operator may reduce the uncertainty (thus complexity) of making
choices, i.e., H(Y |X) ≤ H(X) as suggested in Eq. (4.8).

In order to calculate the complexity H(Y |X) (in the form of conditional entropy), we
need to compute the probabilities of the observations of the parts. The probabilities can be
obtained via a Hidden Markov Model (HMM) described as follows.

4.3.1 The Hidden Markov Model

The model has two major parts, an unobservable (thus hidden) Markov chain and a set
of observations.

The Markov chain incorporates the spacing rules and is capable of probabilistically
generating build sequences. The chain has N ′ (N ′ ≥ N as in the example of Fig. 4.2,
where N = 2 and N ′ = 3) states, and each of which corresponds to a type of models.
Assume the chain is ergodic, which means the states are interconnected in such a way
that any one of them is reachable from any of the others. Here, ergodicity is a reasonable
assumption since every model will be built in the plant. We denote the set of the states
as S = {s1, s2, . . . , sN ′}, and the generated state sequence as Q = Q1Q2 . . ., Qt ∈ S, for

57

t = 1, 2, . . . The state transition probability distribution Λ = {λij}, where λij is probability
of moving into state j while previously in state i, i.e., λij = P (Qt = sj |Qt−1 = si).

A set of observations correspond to the parts assembled by the operator. Let M be the
number of observations per state, which suggests all parts are possible to be installed on any
model. We denote the set of the observations as V = {v1, v2, . . . , vM}, and the generated
observation sequence as O = O1O2 . . ., Ot ∈ V , for t = 1, 2, . . . The observation probability
distribution is B = {bij}, where bij is the probability of attaining observation j while in
state i, i.e., bij = P (Ot = vj |Qt = si).

Furthermore, we define Π(t) = {π(t)
i } as the probability vector of states at time t (i.e.,

after (t−1) transitions), where π
(t)
i is the probability of being in state i, i.e., π

(t)
i = P (Qt =

si). As an initial condition, we set the values for Π(1) = Π = {πi}, where πi = P (Q1 = si).
Given appropriate values of N ′, M , Λ, B, and Π. The HMM can generate a random

sequence of observations with its corresponding sequence of states. Let the length of the
sequence be T . The procedure of sequence generation can be described as follows [41].

1. Choose an initial state Q1 = si according to the initial state distribution Π;

2. Set t = 1;

3. Choose Ot = vk according to the observation probability distribution in state si, i.e.,
bki in B;

4. Transit to a new state Qt+1 = sj according to the state transition probability distri-
bution for state sj , i.e., λij in Λ;

5. Set t = t + 1; return to step 3 if t < T ; otherwise terminate the procedure.

The above sequence generation procedure simulates the build sequence scheduling for
the mixed-model assembly line. The model sequence corresponds to the state sequence,
and the part sequence corresponds to the observation sequence as shown in Fig. 4.2. At a
station, once the type of chassis is determined, a type of part is decided accordingly as in
step 3. Thus, the generated observation sequence mimics the sequence of parts handled by
the operator at the station.

4.3.2 The Optimization Problem

To minimize complexity, we need to make decisions on the parameters of how to generate
the state sequence, i.e., the transition probability distribution Λ. Once the decisions are
made, the state sequence drives the generation of the observation sequence, hence, the
complexity can be determined in the form of conditional entropy rate as defined in Eq. (4.6).
In short, we can construct the following optimization problem.

58

Minimize : Complexity = limt→∞H(Ot|Ot−1)
With respect to : Λ
Subject to : Spacing rules and other constraints

(4.9)

Note, according to the objective function, we need to evaluate H(Ot|Ot−1) in the long run
and preferably in the steady state. Thus numerical methods are required to find H(Ot|Ot−1)
when t → ∞. Also, the spacing rules and other constraints (such as mix ratios) should be
incorporated into the structure of the Markov chain.

4.4 Solutions

In order to calculate complexity, we need to know the probability of the observations,
which can be derived from the probability of the first observation and the conditional
probabilities of the other observations. Let φ

(t)
j be the probability of observation in state j

at time t, i.e.,

φ
(t)
j = P (Ot = vj) (4.10)

Let θ
(t−1)
ij be the conditional probability of attaining observation j at time t given that the

previous observation is i, i.e.,

θ
(t−1)
ij = P (Ot = vj |Ot−1 = vi) (4.11)

Once values of φ
(t)
j and θ

(t−1)
ij are determined, the complexity can be calculated according

to the definition of conditional entropy in Eq. (4.6) as follows:
For t = 1,

H(O1) =
M∑

j=1

P (O1 = vj) · log
1

P (O1 = vj)

=
M∑

j=1

φ
(1)
j · log

1

φ
(1)
j

For t = 2, 3, . . .,

59

H(Ot|Ot−1) =
M∑

i=1

P (Ot−1 = vi) ·
M∑

j=1

P (Ot = vj |Ot−1 = vi)

· log
1

P (Ot = vj |Ot−1 = vi)

=
M∑

i=1

φ
(t−1)
i

M∑

j=1

θ
(t−1)
ij · log

1

θ
(t−1)
ij

(4.12)

The following discussions illustrate the procedures of deriving φ
(t)
j and θ

(t−1)
ij .

For the first observation, i.e., t = 1, we can directly obtain the probability of observations
from the initial conditions in Π.

φ
(1)
j = P (O1 = vj)

=
N ′∑

l=1

P (O1 = vj |Q1 = sl) · P (Q1 = sl)

=
N ′∑

l=1

πl · blj

For the subsequent observations, i.e., t = 2, 3, . . ., we obtain the conditional proba-
bility θ

(t−1)
ij by the derivation from the first observation according to the state transition

probability distribution Λ and the observation probability distribution B.

θ
(t−1)
ij = P (Ot = vj |Ot−1 = vi)

=
N ′∑

l=1

P (Ot = vj , Qt−1 = sl|Ot−1 = vi)

=
N ′∑

l=1

P (Ot = vj |Ot−1 = vi, Qt−1 = sl) · P (Qt−1 = sl|Ot−1 = vi)

where,

60

P (Ot = vj |Ot−1 = vi, Qt−1 = sl)

=
N ′∑

r=1

P (Ot = vj |Ot−1 = vi, Qt−1 = sl, Qt = sr)

·P (Qt = sr|Ot−1 = vi, Qt−1 = sl)

=
N ′∑

r=1

P (Ot = vj |Qt = sr) · P (Qt = sr|Qt−1 = sl)

=
N ′∑

r=1

λlr · brj

and,

P (Qt−1 = sl|Ot−1 = vi) =
P (Qt−1 = sl, Ot−1 = vi)

P (Ot−1 = vi)

=
P (Ot−1 = vi|Qt−1 = sl) · P (Qt−1 = sl)∑N ′

k=1 P (Ot−1 = vi|Qt−1 = sk) · P (Qt−1 = sk)

=
π

(t−1)
l · bli∑N ′

k=1 π
(t−1)
k · bki

Therefore,

θ
(t−1)
ij =

N ′∑

l=1

[
N ′∑

r=1

λlr · brj

]
· π

(t−1)
l · bli∑N ′

k=1 π
(t−1)
k · bki

where πt
i can be obtained from Π(t) = Π× Λt−1 with Λt =

t︷ ︸︸ ︷
Λ× Λ× . . .Λ.

By the definitions of φ(t) and θ
(t−1)
ij in Eqs.(4.10) and (4.11), for t = 2, 3, . . .,

φ
(t)
j =

M∑

i=1

P (Ot = vj |Ot−1 = vi) · P (Ot−1 = vi)

=
M∑

i=1

θ
(t−1)
ij · φ(t−1)

i

By substituting θ
(t−1)
ij and φ

(t)
j into Eq. (4.12), we obtain the values of H(Ot|Ot−1) for

t = 2, 3, ...

To simplify the notations, we use the following matrix operations for the above alge-
bra. Note, ‘×’ denotes matrix multiplication; ‘·’ denotes dot product of two matrices with

61

identical sizes.

θ
(t−1)
ij =

Π(t−1) ·BT
·i

Π(t−1) ×B·i
× Λ×B·j

Since φ
(t−1)
i = Π(t−1) ×B·i, we have:

H(Ot|Ot−1) = Π(t−1) ×B×
[
(θ(t−1) · log

1
θ(t−1)

)× 1
]T

where 1 is a column vector of ones with size M .

4.5 Numerical Example and Discussions

We use an example of two models and two parts to demonstrate the use of above
procedures. The results of the example are discussed. Based on the results, we introduce
responsiveness as an additional factor to achieve a balanced decision on system performance.

4.5.1 Example Setup

The two-model two-part system is given as follows.

1. Two models, i.e., S = {s1, s2}, N = 2; two parts, i.e., V = {v1, v2}, M = 2.

2. The spacing rules are expressed by a two-state Markov chain in Fig. 4.3, with the
following state transition probability matrix:

Λ =

[
1− α α

β 1− β

]

3. The observation probability distribution matrix B is as follows:

B =

[
b1 1− b1

b2 1− b2

]

4. As an additional constraint, the mix ratio of the chassis is µ1 : µ2, where µ1 +µ2 = 1.
This ratio is also known as the steady state probability mass function of the two-state
Markov chain.

5. The state sequence starts with Q1 = s1, thus, Π = [1 0].

Because of the additional constraint in item 4, it is easy to verify that β is simply a
function of α and µ1, i.e.,

62

Figure 4.3: HMM Example with Two Models and Two Parts

β =
µ1

1− µ1
α (4.13)

Hence, the build sequence scheduling formulation in Eq. (4.9) is reduced to the following
problem:

Minimize : h(µ1, b1, b2, α) = lim
t→∞H(Ot|Ot−1)

With respect to : α (4.14)

Subject to : Spacing rules

The objective is to minimize the choice complexity in the form of conditional entropy rate
as defined in Eq. (4.6). However, we are more interested in the long run steady state of the
quantity, i.e., limt→∞H(Ot|Ot−1). In calculating the quantity, convergence is observed by
the numerical examples; it seems that the convergence is closely related to the convergence
of the Markov chain. The convergence rate is different for different α’s.

4.5.2 Result Discussions

We use parameters µ1 : µ2 = 0.3 : 0.7, b1 = 0.9, and b2 = 0.5 to run the model for T

sufficiently large (i.e., steady state). Here are the results:

1. Optimality: The maximum entropy h∗(µ1, b1, b2, α
∗) is obtained at α∗ = 1−µ1 (and

β∗ = µ1), where the underlining Markov process starts with its long run probability
distributions; as α deviates from α∗, the magnitude of decrease on entropy is closely
related to the observation probability distribution, i.e., the decreasing trend is not
necessarily symmetric, see Fig. 4.4.

2. Symmetry: Function h is symmetric about the axes b1 = b2 = 0.5, i.e., h(µ1, b1, b2, α) =
h(µ1, 1− b1, 1− b2, α). In particular, if b1 = b2, g stays constantly at 1. This property

63

is again consistent with the intuition behind the structure of the example.

3. Loss of influence from mixing: If b1 = b2, values of g is uniform for all α’s, i.e.,
h(µ1, b1, b1, α) = H(b1, 1− b1).

4. Mixing overwhelms distinction: If µ1 = µ2 = 0.5 and b1 + b2 = 1 , the value of
maximum h is 1, i.e., h∗ = H(0.5, 0.5) = 1.

5. Sensitivity: If µ1 < µ2 and |b1−0.5| < |b2−0.5| , then entropy reduction by deviating
α from 1− µ1 (to either directions) is more effective, since the state can stay in state
2 for longer time.

Properties 1 and 5 suggest that batch production results in the least complexity. The
intuition behind this result is that batch production takes the most distinctive transition
probabilities, and the minimum entropy is achieved at the extreme points. On the contrary,
proportional production causes the most complexity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

α

C
om

pl
ex

ity
 (

C
on

di
tio

na
l E

nt
ro

py
, b

its
)

Figure 4.4: HMM Example Output with Changing α (Model Parameters: µ1 = 0.3, b1 = 0.9,
b2 = 0.5)

From the outcomes of the example, we observe that proportional production results in
the maximum complexity. Furthermore, from Fig. 4.4, we find that the curve is concave.
In other words, if we are interested in minimizing complexity, we will find the optimal on
the boundary. This solution is trivial although it is consistent with our intuition. That is,
complexity is reduced if we tend to follow batch production. On the other hand, proportional
production does have advantages in terms of responsiveness. Therefore, we can incorporate
responsiveness as a trading factor with complexity.

64

4.5.3 Incorporating Responsiveness in Problem Formulation

In order to assess responsiveness, we need to calculate the expected deviation from the
mix ratio of the real production to the ideal mix ratio. In Fig. 4.5, we demonstrate the
deviation for distinctive α’s. We use solid line (for α = 0.1) and dotted line (for α = 0.9) to
denote the quantity of models produced, and use dashed line to denote the ideal mix ratio.
Visually, it is obvious that α = 0.1 generates larger deviation, since the 2-state Markov
process dwells in State 1 with a small probability (α = 0.1) for transitions into State 2,
and observations emitted from State 1 has less uncertainty due to the distinct observation
probability distribution (b1 : 1 − b1 = 0.9 : 0.1). Quantitatively, the deviation is defined
as the squared vertical distance between the solid (or dotted) line and the dashed line. To
compute the squared distance, we need to construct a backward recursion to calculate the
expected deviation. The procedures of the calculation are discussed below.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Number of Model s1

N
um

be
r

of
 M

od
el

 s
2

Figure 4.5: Deviation of Production from Ideal Mix Ratio

To simplify the explanation, we assume the Markov chain defined in Section 4.3 has the
same number of states as that of the models, i.e., N = N ′. Cases beyond this assumption
can be tackled similarly by the same approach as follows.

Define (t, q,X) as the state for the recursion, where t denotes the index of time (pro-
duction step) we are at, t = 1, 2, . . . , T ; q denotes the current state of the model, q ∈ S and
S = {s1, s2, . . . , sN} is the set of states in the Markov chain; X = [x1, x2, . . . , xN]T and xi

denotes the cumulative number of the models corresponding to state si produced from time
1 through t, thus xi ∈ {0, 1, . . . , t} and t =

∑N
i=1 xi.

Let g(X) be the deviation of production in state (t, q, X), hence,

g(t,X) =
N∑

i=1

(xi − tµi)2

65

where µi is the mix ratio of the model corresponding to state i as defined before.
Let ei be a unit vector with n entries, all of which are zero except for a single “1”

in the ith row, i.e., ei = [0, . . . , 0, 1, 0, . . . , 0], where i refers to the event of scheduling a
model corresponding to state si in the next production step. According to the transition
probability distribution of the Markov chain, P (ej |q = si) = λij , for i, j ∈ {1, 2, . . . , N}.

Furthermore, we define ft(q, X) as the objective value function, which is the expected
deviation from time t to T . In fact, ft(q,X) counts the average deviation for each production
step from present to the end. Therefore, we obtain the following backward recursion.

ft(q, X) =





gt(X) +
∑N

i=1 ft+1(i,X + ei) · P (ej |q = si),
for t = 1, 2, . . . , T − 1; q ∈ S; X = [x1, x2, . . . , xN]

gt(X), for t = T ; q ∈ S; X = [x1, x2, . . . , xN];

The answer is f0(0,0) =
∑N

i=1 πi · f1(i, ei), which counts for the total expected deviation.
Since the above procedures are developed based on a known α, we denote dα as the value
of f0(0,0) based on a specific α.

We perform the calculation for the 2-model 2-part example and get the following result
as shown in Fig. 4.6. In the figure, the expected deviation has been standardized by dividing
the largest dα, denoted as d∗α. It can be seen that the expected deviation is monotonically
decreasing with α at an exponential rate. In the example, since α and β (β is proportional
to α) are both the probabilities of making transition to the other state, thus, intuitively,
the larger α is, the more responsive the system is, and the less the deviation is. Therefore,
the intuition is consistent with the result in Fig. 4.6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

E
xp

ec
te

d
D

ev
ia

tio
n

Figure 4.6: Expected Deviation Versus Values of α

66

By incorporating the expected deviation as the trading factor, we are able to trade-off
complexity and responsiveness. The trade-off is formed by a multi-objective function as
follows:

z(α) =
h(µ1, b1, b2, α)

h∗(µ1, b1, b2, α∗)
+

dα

d∗α

where the first term is the relative complexity compare to the maximum complexity when
proportional production is adopted; the second term is the relative expected deviation
under parameter α. Minimizing z(α) gives a balanced solution of α for both complexity
and responsiveness.

From our example, we find α to be on the extreme point to the right of α∗. The solution
suggests to promote responsiveness by choosing large α and at same time to keep away from
the proportional production.

4.6 Summary

In this chapter, we have presented the procedure of minimizing complexity for assembly
systems by build sequence scheduling. The complexity is defined as the operator choice
complexity, which indirectly measures the human performance in making part choices in a
multi-model, multi-stage, manual assembly environment.

Methodologies developed in this chapter extend the previous work on modeling complex-
ity, and provide solution strategies for build sequence scheduling to minimize complexity.
The chapter considers sequential dependencies in a random sequence, and develops a Hidden
Markov Model for making decisions on build sequences. Such solution strategy is generally
applicable to sequence scheduling problems with spacing rules. Through a numerical ex-
ample, we demonstrate the use of the model and its solution. The results of the example
suggest the optimal build sequence to minimize complexity. The maximum is attained in the
proportional production situation, while the minimum is attained in the batch production.
This conclusion is consistent with the intuition behind the example.

However, the minimum complexity is attained on the boundary, the solution is not satis-
factorily interesting. Thus, responsiveness is introduced as a trading factor for the problem.
The responsiveness is assessed by the expected deviation from the real production to the
ideal mix ratio. Based on a multi-objective function, a balanced decision for complexity
and responsiveness can be made.

67

CHAPTER 5

Conclusions and Future Work

In this chapter, the original contributions of the dissertation are summarized, and po-
tential areas for future research are suggested.

5.1 Conclusions and Original Contributions

This dissertation presents the original research work on modeling product variety in-
duced manufacturing complexity and the application of the model for assembly system
design. The presentation takes a multiple manuscript format, and conclusions have been
drawn in each individual chapters. Thus, only the original contributions are summarized
here.

1. Definition of a new complexity measure

This dissertation defines a measure of complexity based on the choices that an operator
has to make at the station level. This definition is based on a careful observation and
understanding on the choice processes in the mixed-model assembly systems. The
measure reflects the underlining “physics” of assembly process for product variety.
It suggests that variety causes complexity by introducing uncertainty in the choice
process.

2. Development of a multi-stage complexity model

A “Stream of Complexity” model is proposed for multi-stage assembly systems. The
model provides a detailed understanding on how variety interacts with assembly op-
erations. Thus, applications can be formulated based on the model for system design.
The model captures a unique complexity propagation as a result of modeling the inter-
actions between variety and complexity. Based on the propagation, two categories of
complexity are defined: feed complexity and transfer complexity. Feed complexity is
static to the sequence of assembly operations, while transfer complexity changes with
the sequence. The propagation and categorization of complexity facilitates the view of

68

complexity in the system level, thus suggest potential applications of the complexity
model in system design.

3. Enhancement of understanding on complexity

The measure and model contribute towards a better understanding of manufacturing
complexity and its impact on performances in mixed-model assembly systems. Based
on the understanding, it becomes clear that product variety raises the level of uncer-
tainty in making choices of parts, tools, fixtures, and assembly procedures, and thus
the complexity in mixed-model assembly operations. Therefore, tracing down the va-
riety in the assembly system and modeling its interactions with assembly operations
are essential means to assess complexity and its impact on system performances.

4. Application of the complexity model for assembly sequence planning

Based on the multi-stage complexity model and the fact that transfer complexity
changes with the sequence, one can reduce complexity by proper assembly sequence
planning. The planning is formulated as an optimization problem and a solution
strategy based on model simplification and equivalent transformation is developed.
The solution strategy overcomes the difficulties of handling the directions of complex-
ity flows in the optimization, and effectively simplifies the original problem through
an equivalent transformation. This makes the problem comparable to the traveling
salesman problem with precedence constraints. By a careful construction of the state
transition cost structure, the exact optimal solution could be obtained based on dy-
namic programming. Such solution strategy makes the application of the complexity
model accessible for industries, and is also generally applicable to other similar prob-
lems in multi-stage systems where complex interactions between stages are concerned.

5. Application of the complexity model for build sequence scheduling

When non-i.i.d. sequences of choices are studied, sequential dependency among the se-
quences presents an opportunity for minimizing complexity by build sequence schedul-
ing. The scheduling is formulated by using a Hidden Markov Model to simulate the
build sequence generation under spacing-rule constraints. Accordingly, a solution
strategy is developed to find analytical solutions for minimum and maximum complex-
ity. Such model and solution strategy are generally applicable to sequence scheduling
problem with spacing rules. A numerical example is discussed to demonstrate the use
of the model and its solution. The results of the example suggests the optimal points
in terms of complexity. The maximum complexity is attained in the proportional
production situation, while the minimum is in the batch production. Although this
conclusion is consistent with the intuition behind the example, the solution is not
satisfactorily interesting since the minimum complexity is attained on the boundary.
Thus, responsiveness is introduced as a trade-off factor to the problem. Based on a

69

multi-objective function, a balanced decision for complexity and responsiveness can
be made.

6. General principles of design and operations for assembly systems

How to reduce variety-induced complexity is a prevailing problem for today’s mixed-
model assembly system design. This dissertation proposes the new measure and mod-
els for complexity analysis, and also suggests some general principles of design and
operations for the system design under variety. For example, the principles of “de-
layed differentiation” and “conditioning reduces entropy” are readily visible from the
model. Moreover, some of the principles have already been proved and practiced in
industry. The principles derived from the models can assist manufacturing system
designers in managing complexity when designing assembly systems, which will re-
sult in improved operator and system performance. The results of the research will
be highly applicable to all manufacturers who are interested in economically offering
product variety without loss of quality and productivity.

5.2 Future Research Directions

Potential areas for future research are suggested below.

1. To investigate the causal relationship between complexity and performance

Although this dissertation finds a measure of complexity which reflects the intrinsic
characteristics of the system, the measure can not directly reflect the performance
indices accepted by the industry. Thus it is important to investigate the causal re-
lationship between complexity and performance. However, a typical mixed-model
assembly system may involve various performance indices, and the indices may in-
terconnect with each other. Due to the scale of complication and the randomness of
manufacturing processes, simple mapping relationship between complexity and per-
formance may not exist. Future research needs to address how rather than whether
the performance indices and complexity are related.

2. To apply the complexity models for product family design

The complete, system level complexity model presented in Eqs. (2.25) and (2.26) of
Chapter 3 suggest the application of complexity analysis for product family design.
The complete model is capable of incorporating the detailed information of process
flexibility and commonality, and evaluating their impact on complexity. Such detailed
information may be reviewed and revised during the early product design phase in
order to reduce complexity later in manufacturing. Therefore, an effective handler
could be provided from the model to design product family with the simultaneous

70

consideration of manufacturing complexity. Future research needs to address how
this concurrent design process should be conducted.

3. To apply the complexity models for factory design

The complexity models are capable of evaluating complexity at each station, and
can be used for factory design. One of the tasks in factory design is to determine
the deployment of error-proof devices. The error-proof devices are used to assist
operators to make choices, thus reduce complexity. However, on the plant floor,
the resources for installing error-proof devices are limited. For example, one of the
resources is the Programmable Logic Controller (PLC) capacity. In a line zone, the
PLC capacity refers to the number of control nodes available from the PLC to the
error-proof devices, and this number is limited. Additionally, the error-proof devices
are expensive to purchase, install, and use. Thus, an optimal deployment plan of
the error-proof devices is needed to minimize complexity with resource constraints.
Another task in factory design is to determine the system configurations or layout
of stations. Since different configurations have profound impact on the performance
of the system [28], selecting an assembly system configuration other than a pure
serial line may help reduce complexity. For instance, according to the complexity
“influence index” analysis in Chapter 2, using parallel workstations at the later stages
of a mixed-model assembly process reduces the number of choices on these stations
if we can properly route the variants at the joint of the ramified paths, see Fig. 2.9.
However, balancing such types of manufacturing systems will be a challenge since
the system configuration is no longer serial [26]. A novel method for task-machine
assignment and system balancing needs to be developed to minimize complexity while
maintaining manufacturing system efficiency.

4. To extend the approach of complexity analysis for other processes in mixed-model
assembly

Complexity analysis performed in this dissertation is based on an intrinsic complex-
ity measure derived from the “physics” of the mixed-model assembly process. The
“physics” is limited to the choices that operators have to make. Such approach is
generic and could be extended and applied to other processes in the mixed-model
assembly process. For each of the processes, the complexity measure could be defined
differently, since the mechanism through which variety causes complexity are different.
For example, a part supply processes with product variety can have high complexity
because of large number of variants and fluctuating demands. Thus a complexity
measure may be established based on the product rate variation (PRV) [35, 29]. The
PRV measures the variation in the rate at which different part variants are consumed
at a station. Thus a lower PRV means a steady (rather than varying) part supply.
The steady supply requires a simple material replenishment schedule, which leads to

71

low complexity for the process.

5. To apply the complexity models for the “whole” supply chain

From a supply chain perspective, this dissertation deals with the part delivery process
from the line side storage to the assemblage by operator choices. Other processes are
also essential to the performance of the “whole” supply chain. For example, the part
supply process discussed in the pervious item deals with the part of supply chain from
the supermarket in the plant to the line side storages. Similar complexity analysis
could also be pursued for the part of supply chain from the outside suppliers to the
supermarket. The author has made preliminary attempts in collaboration with other
researchers [22, 50] in this area to conduct a complete complexity analysis for the
“whole” supply chain with product variety.

72

BIBLIOGRAPHY

73

BIBLIOGRAPHY

[1] C. Becker and A. Scholl. A survey on problems and methods in generalized assembly
line balancing. European Journal of Operational Research, 168:694–715, 2006.

[2] J. Benders and M. Morita. Changes in toyota motors’ operations management. Inter-
national Journal of Production Research, 42(3):433–444, 2004.

[3] L. Bianco, A. Mingozzi, S. Ricciardelli, and M. Spadoni. Exact and heuristic proce-
dures for the traveling salesman problem with precedence constraints based on dynamic
programming. INFOR, 32(1):19–31, 1994.

[4] R. R. Bishu and C. G. Drury. Information processing in assembly tasks – a case study.
Applied Ergonomics, 19(2):90–98, 2003.

[5] A. Bourjault. Contribution a une approche mthodologique de assemblage automatis:
Elaboration automatique des squences opratoires. PhD thesis, Universit de Franche-
Comt, Besanon, France, 1984.

[6] S. K. Card, T. P. Moran, and A. Newell. The Psychology of Human-Computer Inter-
action. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1983.

[7] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley
& Sons, 2 edition, 1991.

[8] T. L. De Fazio and D. E. Whitney. Simplified generation of all mechanical assembly
sequences. IEEE Journal of Robotics and Automation, RA-3(6):640–658, December
1987.

[9] A. V. Deshmukh, J. J. Talavage, and M. M. Barash. Characteristics of part mix
complexity measure for manufacturing systems. In IEEE International Conference on
Systems, Man and Cybernetics, volume 2, pages 1384–1389, 1992.

[10] A. V. Deshmukh, J. J. Talavage, and M. M. Barash. Complexity in manufacturing
systems, part 1: Analysis of static complexity. IIE Transactions, 30(7):645–655, 1998.

[11] M. Dorigo and L. M. Gambardella. Ant colonies for the travelling salesman problem.
BioSystems, 43:73–81, 1997.

[12] A. Drexl and A. Kimms. Sequencing JIT mixed-model assembly lines under station-
load and part-usage constraints. Management Science, 47(3):480–491, 2001.

[13] H. A. ElMaraghy, O. Kuzgunkaya, and R. J. Urbanic. Manufacturing systems config-
uration complexity. In Annals of the CIRP, 2005.

74

[14] M. L. Fisher and C. D. Ittner. The impact of product variety on automobile assembly
operations: Empirical evidence and simulation. Management Science, 45(6):771–786,
1999.

[15] M. L. Fisher, A. Jain, and J. P. Macduffie. Strategies for product variety: Lessons
from the auto industry. In E. H. Bowman and B. M. Kogut, editors, Redesigning the
Firm, chapter 6. Oxford University Press, 1995.

[16] H. Fujimoto and A. Ahmed. Entropic evaluation of assemblability in concurrent ap-
proach to assembly planning. In Proceedings of the IEEE International Symposium on
Assembly and Task Planning, pages 306–311, 2001.

[17] H. Fujimoto, A. Ahmed, Y. Iida, and M. Hanai. Assembly process design for manag-
ing manufacturing complexities because of product varieties. International Journal of
Flexible Manufacturing Systems, 15(4):283–307, 2003.

[18] S. M. Gatchell. The effect of part proliferation on assembly line operators’ decision
making capabilities. In Proceedings of the Human Factors Society, 23rd Annual Meet-
ing. Santa Monica: The Human Factors Society, 1979.

[19] S. Gupta and V. Krishnan. Product family-based assembly sequence design method-
ology. IIE Transactions, 30:933–945, 1998.

[20] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

[21] W. E. Hick. On the rate of gain of information. Journal of Experimental Psychology,
4:11–26, 1952.

[22] S. J. Hu, X. Zhu, H. Wang, and Y. Koren. Product variety and manufacturing com-
plexity in assembly systems and supply chains. Annuals of CIRP, 57:45–48, 2008.

[23] R. Hyman. Stimulus information as a determinant of reaction time. Journal of Exper-
imental Psychology, 45:188–196, 1953.

[24] R. R. Inman and D. M. Schmeling. Algorithm for agile assembling-to-order in the
automotive industry. International Journal of Production Research, 41(16):3831–3848,
November 2003.

[25] A. Jessop. Informed Assessments: An Introduction to Information, Entropy, and
Statistics. Ellis Horwood, New York, 1995.

[26] J. Ko and S. J. Hu. Balancing of manufacturing systems with asymmetric configurations
for delayed product differentiation. International Journal of Production Research, 45,
2007.

[27] Y. Koren. The Global Manufacturing Revolution: Product-Process-Business Integration
and Reconfigurable Systems. University of Michigan, 2006. ME/MFG 587 course pack.

[28] Y. Koren, S. J. Hu, and T. W. Weber. Impact of manufacturing system configurations
on performance. Annals of the CIRP, 47(1):369–372, 1998.

[29] W. Kubiak. Minimizing variation of production rates in Just-In-Time systems - a
survey. European Journal of Operational Research, 66:259–271, 1993.

75

[30] H. L. Lee and C. S. Tang. Modeling the costs and benefits of delayed product differ-
entiation. Management Science, 43(1):40–53, 1997.

[31] P. De Lit, A. Delchambre, and J. Henrioud. An integrated approach for product
family and assembly system design. IEEE Transactions on Robotics and Automation,
19(2):324–334, April 2003.

[32] Y. Liu. Queueing network modeling of elementary mental processes. Psychological
Review, 103(1):116–136, 1996.

[33] J. P. MacDuffie, K. Sethuraman, and M. L. Fisher. Product variety and manufactur-
ing performance: Evidence from the international automotive assembly plant study.
Management Science, 42(3):350–369, 1996.

[34] C. Merengo, F. Nava, and A. Pozzetti. Balancing and sequencing manual mixed-model
assembly lines. International Journal of Production Research, 37(12):2835–2860, 1999.

[35] J. Miltenburg. Level schedules for mixed-model assembly lines in Just-In-Time pro-
duction systems. Management Science, 35(2):192–207, 1989.

[36] J. Miltenburg, G. Steiner, and S. Yeomans. A dynamic-programming algorithm for
scheduling mixed-model, Just-In-Time production systems. Mathematical and Com-
puter Modelling, 13(3):57–66, 1990.

[37] K. G. Murty. Network Programming. Englewood Cliffs, N.J.: Prentice Hall, 1992.

[38] H. Nakazawa and N. P. Suh. Process planning based on information concept. Robotics
& Computer-Integrated Manufacturing, 1(1):115–123, 1984.

[39] A. Niimi and Y. Matsudaira. Development of a vehicle assembly line at toyota: Worker-
orientated, autonomous, new assembly system. In K. Shimokawa, U. Jurgens, and
T. Fujimoto, editors, Transforming Automobile Assembly: Experience in Automation
and Work Organization. Springer Verlag, Berlin, 1997.

[40] B. J. Pine. Mass Customization: The New Frontier in Business Competition. Harvard
Business School Press, Boston, 1993.

[41] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[42] B. Rekiek, P. De Lit, and A. Delchambre. Designing mixed-product assembly lines.
IEEE Transactions on Robotics and Automation, 16(3):268–280, 2000.

[43] A. Scholl. Balancing and Sequencing of Assembly Lines. Heidelberg; New York:
Physica-Verlag, 1999.

[44] A. Scholl and C. Becker. State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing. European Journal of Operational Research, 168:666–
693, 2006.

[45] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 1948.

76

[46] S. Sivadasan, J. Efstathiou, A. Calinescu, and L. Huaccho Huatuco. Advances on
measuring the operational complexity of suppliercustomer systems. European Journal
of Operational Research, 171:208–226, 2006.

[47] N. P. Suh. The Principles of Design. Oxford University Press, New York, 1990.

[48] M. M. Tseng and J. Jiao. Design for mass customization. Annals of the CIRP,
45(1):153–156, 1996.

[49] P. M. Vilarinho and A. S. Simaria. A two-stage heuristic method for balancing mixed-
model assembly lines with parallel workstations. International Journal of Production
Research, 40(6):1405–1420, 2002.

[50] H. Wang, X. Zhu, S. J. Hu, and Y. Koren. Complexity analysis of assembly supply chain
configuraions. In Proceedings of the 9th Biennial ASME Conference on Engineering
Systems Design and Analysis, 2008.

[51] A. T. Welford. Fundamentals of Skill. Methuen, London, 1968.

[52] R. S. Woodworth. Experimental Psychology. Holt, New York, 1938.

[53] C. A. Yano and R. Rachamadugu. Sequencing to minimize work overload in assembly
lines with product options. Management Science, 37(5):572–586, May 1991.

[54] X. Zhu, S. J. Hu, Y. Koren, and S. P. Marin. Modeling of manufacturing complexity
in mixed-model assembly lines. Journal of Manufacturing Science and Engineering,
130(5):051013–10, 2008. Also appears in the Proceedings of 2006 ASME International
Conference on Manufacturing Science and Engineering.

[55] X. Zhu, S. J. Hu, Y. Koren, S. P. Marin, and N. Huang. Sequence planning to min-
imize complexity in assembly mixed-model lines. In Proceedings of the 2007 IEEE
International Symposium on Assembly and Manufacturing, 2007.

[56] X. Zhu, H. Wang, S. J. Hu, and Y. Koren. Build sequence scheduling to minimize
complexity in mixed-model assembly lines. In Proceedings of the 9th Biennial ASME
Conference on Engineering Systems Design and Analysis, 2008.

77

