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ABSTRACT

Dimensionality Reduction on Statistical Manifolds

by

Kevin Michael Carter

Chair: Alfred O. Hero III

This thesis concerns the problem of dimensionality reduction through information

geometric methods on statistical manifolds. While there has been considerable work

recently presented regarding dimensionality reduction for the purposes of learning

tasks such as classification, clustering, and visualization, these methods have focused

primarily on Riemannian sub-manifolds in Euclidean space. While sufficient for many

applications, there are many high-dimensional signals which have no straightforward

and meaningful Euclidean representation. In these cases, signals may be more ap-

propriately represented as a realization of some distribution lying on a statistical

manifold, or a manifold of probability density functions (PDFs). These manifolds

are often intrinsically lower dimensional than the domain of the data realization.

We begin by first discussing local intrinsic dimension estimation and its applica-

tions. There has been much work done on estimating the global dimension of a data

set, typically for the purposes of dimensionality reduction. We show that by esti-

mating dimension locally, we are able to extend the uses of dimension estimation to

statistical manifolds as well as many applications which are not possible with global

xv



dimension estimation. We illustrate independent benefit of dimension estimation on

complex problems such as anomaly detection, clustering, and image segmentation.

We then discuss two methods of dimensionality reduction on statistical manifolds.

First, we propose a method for statistical manifold reconstruction that utilizes the

principals of information geometry and Euclidean manifold learning to embed PDFs

into a low-dimensional Euclidean space. This embedding enables comparative anal-

ysis of multiple high-dimensional data sets using standard Euclidean methods. Our

second algorithm proposes a linear projection method which creates a dimension re-

duced subspace which preserves the high-dimensional relationships between multiple

signals. Defining this information preserving projection contributes to both feature

extraction and visualization of high-dimensional data.

Finally, we illustrate these techniques toward their original motivating problem

of clinical flow cytometric analysis. These methods of dimensionality reduction ap-

proach the problems of diagnosis, visualization, and verification of flow cytometric

data in a manner which has not been given significant consideration in the past. The

tools we propose are illustrated for several case studies on actual patient data sets.
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CHAPTER I

Introduction

1.1 The Curse of Dimensionality

In the recent past, sensing and media storage capabilities have enabled the gen-

eration of enormous amounts of information, often in the form of high-dimensional

data. This is easily viewed within sensor networks, imaging, and biomedical appli-

cations such as flow cytometry and gene micro-arrays. While this vast amount of

retrieved data has opened a wealth of opportunities for data analysis, the problem

of the curse of dimensionality has become more substantial. High-dimensional data

is inherently difficult to analyze for a multitude of reasons. As the dimensionality

increases, it becomes much more computationally complex for learning algorithms to

effectively perform. Additionally, higher dimensions require significantly more points

to fill the space. As an example, the probability that a point sampled from a uniform

distribution on a hypercube in Rm will lie within some distance ε from a boundary

on the cube approaches 1 as m →∞ and ε → 0. This is detailed in Proposition 3.1,

but intuitively as the dimensionality of a data set increases, all of the sample points

tend to lie near the boundaries of the space. This causes significant problems with

many learning algorithms, often resulting in over-fitting and unreliable models.

The high-dimensional nature of data is often simply a product of its representa-

1
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tion. In many instances data dimensions are redundant and entirely correlated with

some combination of other dimensions within the same data set. In these instances,

although the retrieved data seems to exhibit a naturally high dimension, it is ac-

tually constrained to a lower dimensional subset – manifold – of the measurement

space. This allows for significant dimensionality reduction with minor or no loss of

information. This focus of manifold learning, which is a subset of machine learning,

aims at the high dimension regime, in which examples are governed by geometric

constraints effectively reducing the dimension of the problem from a high extrinsic

dimension to a low intrinsic dimension. There has been much research done in the

area of manifold learning in Euclidean space [5, 71, 74], providing algorithms which

reconstruct manifolds based on the geometric properties of samples within a data

set.

Often data does not exhibit a low intrinsic dimension in the data domain as

one would have in Euclidean manifold learning. For example, data generated by a

multivariate Gaussian distribution with i.i.d. dimensions N (µ, σ2I), µ ∈ Rd, is not

constrained to lie on any low dimensional Euclidean manifold in Rm, m < d. A

straightforward strategy is to express the data in terms of a low-dimensional feature

vector to alleviate the dimensionality issue. This initial processing of data as real-

valued feature vectors in Euclidean space, which is often carried out in an ad hoc

manner, has been called the “dirty laundry” of machine learning [30]. This procedure

is highly dependent on having a good model for the data, and in the absence of such

a model may be highly suboptimal. This problem is even more prevalent when there

is no straight-forward Euclidean representation of the data, which is the reality in

many practical applications such as document classification, flow cytometry analysis,

face recognition, and shape analysis.
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The aim of this thesis is the development of nonparametric methods of dimen-

sionality reduction which work on statistical models of retrieved data. We intend

to discover low-dimensional representations of data which maintain the information-

geometric structure of the original high-dimensional data.

1.2 Background and Previous Work

1.2.1 Dimension Estimation

When the intrinsic dimension is assumed constant over the data set, several al-

gorithms [10, 24, 50, 58] have been proposed to estimate the dimensionality of the

manifold. In many problems of practical interest, however, data will exhibit varying

dimensionality, as there may be multiple manifolds of varying dimension supporting

the data. In these situations, the local intrinsic dimension may be of more impor-

tance than the global dimension. In previous work we illustrated the process of local

dimension estimation [12], in which a dimension estimate is obtained for each sample

within the data, rather than a single dimension estimate for the entire set.

While dimension estimation has typically been utilized for the purposes of infer-

ring an appropriate projection or embedding dimension, there have also been novel

uses presented in which dimensionality reduction is not the final goal. We have

presented the ability to use dimension as a means of anomaly detection in router

networks [12]. Significant work has been shown using dimension estimation for im-

age and texture segmentation [22, 65], although to our knowledge all methods focus

on the usage of fractal dimensions, which in itself requires a specific model assump-

tion [59].
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1.2.2 Learning on Statistical Manifolds

Informally, a statistical manifold may be considered as a manifold whose elements

consist of probability density functions (PDFs). This information-theoretic construct

does not exist in Euclidean space, and is defined by its own properties and metrics [3].

As such, problems which are not easily represented in Euclidean space are often

better described with statistical manifolds. Applications of statistical manifolds have

been presented in the cases of document classification [53, 55], face recognition [4],

texture segmentation [56], image analysis [73], clustering [72], and shape analysis [52];

including our own work on flow cytometry analysis [15, 16, 34] and dimensionality

reduction for document classification [19] and object recognition [13].

A common theme to all of the problems is that the model from which the data

is generated is unknown, and each paper proposes alternatives to using Euclidean

geometry for data modeling. However, outside of our own work, these methods

focus on clustering and classification, and do not explicitly address the problems of

dimensionality reduction and visualization. Additionally, many focus on parameter

estimation as a necessity for their methods.

Recent work by Lee et al. [57] similar to our own [14,18,19] has demonstrated the

use of statistical manifolds for dimensionality reduction. Their work focuses on the

specific case of image segmentation, which consists of modeling images as multinomial

distributions which lie on an n-simplex (or projected onto an (n + 1)-dimensional

sphere). By framing their problem as such, they are able to exploit the properties

of such a manifold: using the cosine distance as an exact computation of the Fisher

information distance, and using linear methods of dimensionality reduction.
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1.2.3 Data Projections

There has been much work presented in which high-dimensional data is projected

into a low-dimensional space to aid in various learning tasks such as classification

and visualization. Much of the work done for unsupervised dimensionality reduc-

tion [5, 71, 74] operates in a non-linear framework, which requires re-processing the

low-dimensional space whenever new data is available, which may be noticeably

different than previous spaces (e.g. scaled or rotated differently). This has been

approached with out-of-sample extension methods [6], but it is still a relatively

open problem. Linear methods which have been presented often focus on opti-

mizing an objective function – such as variance with principal component analysis

(PCA) [37] or independence with independent component analysis (ICA) [46] – of

the low-dimensional components.

A common theme to all methods, however, is that the dimensionality reduction

is typically performed based on the properties of a single data set. This often causes

difficulties when one wishes to find a single low-dimensional projection for multiple

related data sets. This setting fits into the supervised Fisher’s linear discriminate

analysis (LDA) [35, 42, 63] framework by assigning each set a unique class label.

However LDA and other supervised methods are designed to separate classes, which is

not ideal when attempting to preserve the geometry and similarities between multiple

sets.

1.2.4 Flow Cytometry

In flow cytometry, pathologists gather readings of fluorescent markers and light

scatter off of individual blood cells from a patient sample, leading to a characteristic

multidimensional distribution that, depending on the panel of markers selected, may
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be distinct for a specific disease entity. The data from clinical flow cytometry can

be considered multidimensional both from the standpoint of multiple characteristics

measured for each cell, and from the standpoint of thousands of cells analyzed per

sample. Historically, however, clinical flow cytometry analysis has been a step-by-

step process of 2-dimensional histogram analysis, and the multidimensional nature

of flow cytometry is routinely underutilized in clinical practice.

There have been previous attempts at using machine learning to aid in flow cytom-

etry diagnosis. Some have focused on clustering in the high-dimensional space [78,79],

while others have utilized information geometry to identify differences in sample sub-

sets and between data sets [69, 70]. These methods have not satisfied the problem

because they do not significantly approach the aspect of visualization for ‘human in

the loop’ diagnosis, and the ones that do [60,61] only apply dimensionality reduction

to a single set at a time.

1.3 Contributions of Thesis

The focus of the work presented in this thesis is to apply learning techniques

to complex problems using the properties of statistical manifolds and dimensionality

reduction. By combining these interest areas, we are able to effectively analyze prob-

lems which presented significant difficulties in the past due to Euclidean assumptions,

and improve upon those which have shown promise using statistical manifolds but

ignoring the dimensionality effects. In order to reduce the dimension of a data set, it

is first necessary to know the intrinsic dimension of the data, and we present meth-

ods for obtaining this knowledge in Chapter III. Rather than obtaining the global

dimension of a data set, which assumes all data is generated by a single manifold, we

focus on the local dimensionality, which allows for the recognition of multiple man-
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ifolds within a single set. This is useful not only as a precursor for dimensionality

reduction, but the information garnered by intrinsic dimension can be applied to-

wards many practical application. We will present several novel problem areas which

capitalize on the changes in dimensionality in a data set, such as anomaly detection,

clustering, and image segmentation.

Given the intrinsic dimensionality of a statistical manifold, we can effectively

recreate said manifold through samples from it. These samples are probability den-

sity functions p(x), or realizations thereof, and can be used to find a low-dimensional

embedding of the original statistical manifold in Euclidean space A : p(x) → y, where

y ∈ Rm. In Chapter IV we present an information-geometric framework for deter-

mining this embedding, which includes a characterization of data sets in terms of a

nonparametric statistical model, a geodesic approximation of the Fisher information

distance as a metric for evaluating similarities between data sets, and a dimension-

ality reduction procedure to obtain a low-dimensional Euclidean embedding of the

original collection of high-dimensional data sets for the purposes of both classifica-

tion and visualization. We present two algorithms to obtain this embedding – which

we refer to as Fisher Information Nonparametric Embedding (FINE) and Spherical

Laplacian Information Maps (SLIM).

While FINE/SLIM jointly embeds a collection of high-dimensional data sets in

order to recreate the underlying statistical manifold, we are often interested in re-

ducing the dimension in the data domain of each individual set. However, unlike

traditional methods of dimensionality reduction and manifold learning, which oper-

ate only on an individual data set, there are applications in which the dimensionality

reduction is desired to preserve the similarities between multiple sets. Rather than

finding the low-dimensional representation which best describes an individual data
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set A : x → y – where once again x ∈ Rd and y ∈ Rm, m < d – we would like

to find the low-dimensional representation which best maintains the relationships

within a collection of sets. This is done in a statistical sense by finding the optimal

transformation for A : p(x) → p(y). In Chapter V we present a novel method of

dimensionality reduction – Information Preserving Component Analysis (IPCA) –

whose objective is to preserve the Fisher information distances between the data

PDFs in the high-dimensional space when projecting into a low-dimensional space.

We will show the usages of IPCA for both supervised and unsupervised problems.

The majority of the work presented here was motivated by an application to

clinical flow cytometry. In Chapter VI, we apply our methods to accomplish both

clustering and visualization to help with flow cytometry diagnosis and analysis. By

characterizing each patient data set as a realization of some generative model, in

which different disease classes have different characterizations, we are able to fit the

problem directly into the framework we present. Each patient is viewed as a real-

ization of some PDF lying on a statistical manifold, which enables both information

based embedding with FINE/SLIM and information preserving linear projections

with IPCA. We analyze these techniques for the ultimate goal of diagnosis on several

different case studies which range from well defined within the pathology community

to open problems.

1.4 List of Relevant Publications

The following publications were produced based on the research presented in this

thesis:

(1) K. M. Carter, R. Raich, W. G. Finn and A. O. Hero. Information preserv-
ing component analysis: data projections for flow cytometry analysis. To appear
in IEEE Journal of Selected Topics in Signal Processing: Special Issue on Digital
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Image Processing Techniques for Oncology, Feb. 2009.
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CHAPTER II

Background on Information Geometry

Information geometry is a field that has emerged from the study of geometrical

constructs on manifolds of probability distributions. These investigations analyze

probability distributions as geometrical structures in a Riemannian space. Using

tools and methods deriving from differential geometry, information geometry is ap-

plicable to information theory, probability theory, and statistics. The field of infor-

mation theory is largely based on the works of Shun’ichi Amari [2] and has been

used for analysis in such fields as statistical inference, neural networks, and control

systems. In this chapter, we will give a brief background on the methods of infor-

mation geometry utilized throughout the rest of this thesis. For a more thorough

introduction to information geometry, we suggest [3, 49].

2.1 Differential Manifolds

The concept of a differential manifold is similar to that of a smooth curve or

surface lying in a high-dimensional space. A manifold M can be intuitively thought

of as a set of points with a coordinate system. These points can be from a variety

of constructs, such as Euclidean coordinates, linear systems, images, or probability

distributions. Regardless of the definition of the points on the manifold M, there

exists a coordinate system with a one-to-one mapping from M to Rd, hence d is

10
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known as the dimension of M.

For reference, we will refer to the coordinate system on M as ψ : M → Rd. If

ψ has M as its domain, we call it a global coordinate system [3]. In this situation,

ψ is a one-to-one mapping onto Rd for all points in M. A manifold is differentiable

if the coordinate system mapping ψ is differentiable over its entire domain. If ψ is

infinitely differentiable, the manifold is said to be ‘smooth’ [49].
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Figure 2.1: Examples of manifolds in which no global coordinate system exists.

In many cases there does not exist a global coordinate system. Examples of

such manifolds include the surface of a sphere, the “swiss roll”, and the torus (see

Fig. 2.1). For these manifolds, there are only local coordinate systems. Intuitively, a

local coordinate system acts as a global coordinate system for a local neighborhood

of the manifold, and there may be many local coordinate systems for a particular

manifold. Fortunately, since a local coordinate system contains the same properties

as a global coordinate system (only on a local level), analysis is consistent between

the two. As such, we shall focus solely on manifolds with a global coordinate system.

2.1.1 Statistical Manifolds

Let us now present the notion of statistical manifolds, or a set M whose elements

are probability distributions. A probability density function (PDF) on a set X is
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defined as a function p : X → R in which

p(x) > 0, ∀x ∈ X
∫

p(x) dx = 1.(2.1)

We describe only the case for continuum on the set X , however if X was discrete

valued, equation (2.1) will still apply by switching
∫

p(x) dx = 1 with
∑

p(x) = 1.

If we consider M to be a family of PDFs on the set X , in which each element of M

is a PDF which can be parameterized by θ =
[
θ1, . . . , θd

]
, then M is known as a

statistical model on X . Specifically, let

(2.2) M = {p(x | θ) | θ ∈ Θ ⊆ Rd},

with p(x | θ) satisfying the equations in (2.1). Additionally, there exists a one-to-one

mapping between θ and p(x | θ).

Given certain properties of the parameterization of M, such as differentiability

and C∞ diffeomorphism (details of which are described in [3]), the parameterization

θ is also a coordinate system of M. In this case, M is known as a statistical mani-

fold. For the remainder of this thesis, we will use the terms ‘manifold’ and ‘statistical

manifold’ interchangeably. When referring to standard Euclidean differentiable man-

ifolds, we will make this clear.

2.2 Distances on Manifolds

2.2.1 Euclidean Distance

In Euclidean space, the distance between two points x and y is defined as the

length of a straight line between the points and is calculated with the L2-norm

D(x, y) = ‖x− y‖.
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On a manifold, however, one can measure distance by a trace of the shortest path

between the points along the manifold. This path is called a geodesic, and the length

of the path is the geodesic distance. In local regions about the manifold the strict

Euclidean distance converges to the geodesic distance as the radius of the region

decreases. Given ‘far’ points on a well-sampled Euclidean manifold, the geodesic

may be approximated through graphical methods [7].

2.2.2 Fisher Information Distance

The Fisher information metric measures the amount of information a random

variable X contains in reference to an unknown parameter θ. For the single parameter

case it is defined as

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)2

|θ
]

.

If the condition
∫

∂2

∂θ2 f(X; θ) dX = 0 is met, then the above equation can be written

as

I(θ) = −E

[
∂2

∂θ2
log f(X; θ)

]
.

For the case of multiple parameters θ =
[
θ1, . . . , θd

]
, we define the Fisher informa-

tion matrix [I(θ)], whose elements consist of the Fisher information with respect to

specified parameters, as

(2.3) [I(θ)]ij =

∫
f(X; θ)

∂ log f(X; θ)

∂θi

∂ log f(X; θ)

∂θj
dX.

For a parametric family of probability distributions, it is possible to define a

Riemannian metric using the Fisher information matrix, known as the information

metric. The information metric distance, or Fisher information distance, between

two distributions p(x; θ1) and p(x; θ2) in a single parameter family is

(2.4) DF (θ1, θ2) =

∫ θ2

θ1

I(θ)1/2dθ,
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where θ1 and θ2 are parameter values corresponding to the two PDFs and I(θ) is the

Fisher information for the parameter θ. Extending to the multi-parameter case, we

obtain:

(2.5) DF (θ1, θ2) = min
θ(·):

θ(0)=θ1

θ(1)=θ2

∫ 1

0

√(dθ

dt

)T
[I(θ)]

(dθ

dt

)
dt.

where θ = θ(t) is the parameter path along the manifold. Note that the coordinate

system of a statistical manifold is the same as the parameterization of the PDFs

(i.e. θ). Essentially, (2.5) amounts to finding the length of the shortest path – the

geodesic – on M connecting coordinates θ1 and θ2.

Example

Here we present a derivation of a geodesic distance between univariate Gaussian

densities via the Fisher information metric for two reasons. First, we would like to

illustrate how involved the process is for such a simple family of PDFs. Secondly,

we present a process of deriving the Fisher information metric that is involved in

computing the geodesic distance. Let us consider the family of univariate Gaussian

distributions P = {p1, . . . , pN}, such that

pi(x) =
1√
2πσ2

i

exp
(−(x− µi)

2/2σ2
i

)
.

where (µi, σi) is respectively the mean and standard deviation of distribution pi.

For the case of P parameterized by θ =
(

µ√
2
, σ

)
, the resultant Fisher information

matrix is

[I(θ)] =




2
σ2 0

0 2
σ2


 .

We omit the derivation, which can be found in [49] and is straight forward from (2.3).
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We define the distance between two points on the manifold as the minimum length

between all paths connecting the two points. Using the inner product associated with

the Fisher information matrix

< u,v >F = uT [I(θ)]v,

we define the length of the path P between two points parameterized by θ1 and θ2,

on the manifold M as

‖θ1 − θ2‖P =
√

< θ1 − θ2, θ1 − θ2 >F .

Using the parameterization θ(t) such that θ(0) = θ1 and θ(1) = θ2, we obtain the

length of P as

‖θ1 − θ2‖P =

∫ 1

0

√(
d

dt
θ(t)

)T

[I(θ(t))]

(
d

dt
θ(t)

)
dt.

We are able to define the distance between points p1 = p(x; θ1) and p2 = p(x; θ2) as

the minimum over all path lengths defined above,

(2.6) DF (p1, p2) = min
θ(t)

√
2

∫ 1

0

√
1√
2
µ̇2 + σ̇2

σ(t)2
dt,

where µ̇ = d
dt

µ(t) and σ̇ = d
dt

σ(t).

The solution to (2.6) is the well known Poincaré hyperbolic distance, in which the

shortest path between two points is the length of an arc on a circle in which both

points are at a radius length from the circle’s center. In the case of the univariate

normal distribution, this arc is a straight line when the mean is held constant and

the variance is changed.

By changing variables and parameterizing σ as a function of µ, we obtain:

DF (p1, p2) = min
σ(µ):

σ(µ1)=σ1

σ(µ1)=σ2

∫ µ2

µ1

√
1 + σ̇2

σ(µ)2
dµ,
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where σ̇ = d
dµ

σ(µ). It should be clear that this is a representation of (2.4). It should

also be noted that there exists a one-to-one mapping σ(µ) : R → R+ along the

geodesic from σ(µ1) to σ(µ2), except for the case when µ1 = µ2.

Solving (2.6) becomes a problem of calculus of variations. For the univariate

normal family of distributions, this has been calculated in a closed-form expression

presented in [26], determining the Fisher information distance as:

(2.7) DF (p1, p2) =
√

2 log

∥∥∥
(

µ1√
2
, σ1

)
−

(
µ2√

2
,−σ2

)∥∥∥ +
∥∥∥
(

µ1√
2
, σ1

)
−

(
µ2√

2
, σ2

)∥∥∥
∥∥∥
(

µ1√
2
, σ1

)
−

(
µ2√

2
,−σ2

)∥∥∥−
∥∥∥
(

µ1√
2
, σ1

)
−

(
µ2√

2
, σ2

)∥∥∥
.
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(b) Contour plot

Figure 2.2: The Fisher information distance based on a grid of univariate normal densities, pa-
rameterized by (µ, σ). The reference point, pi, is located at (µi, σi) = (0.6, 1.5) and is
denoted by ?.

For visualization, let us define a set of probability densities P = {pi(x)} on a

grid, such that pi = pk,l is parameterized by (µi, σi) = (αk, 1 + βl), k, l = 1 . . . N and

α, β ∈ R. Figure 2.2 shows a mesh-grid and contour plot of the Fisher information

distance between the density defined by (µi, σi) = (0.6, 1.5) and the neighboring

densities on the set P (α = β = 0.1).
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2.3 Approximation of Fisher Information Distance

The Fisher information distance is a consistent metric, regardless of the param-

eterization of the manifold [73]. This fact enables the approximation of the infor-

mation distance when the specific parameterization of the manifold is unknown, and

there have been many metrics developed for this approximation. An important class

of such divergences is known as the f -divergence [28], in which f(u) is a convex

function on u > 0 and

Df (p‖q) =

∫
p(x)f

(
q(x)

p(x)

)
dx.

A specific and important example of the f -divergence is the α-divergence, where

D(α) = Df (α) for a real number α. The function f (α)(u) is defined as

f (α)(u) =





4
1−α2

(
1− u(1+α)/2

)
α 6= ±1

u log u α = 1

− log u α = −1

.

As such, the α-divergence can be evaluated as

D(α)(p‖q) =
4

1− α2

(
1−

∫
p(x)

1−α
2 q(x)

1+α
2 dx

)
α 6= ±1,

and

(2.8) D(−1)(p‖q) = D(1)(q‖p) =

∫
p(x) log

p(x)

q(x)
dx.

The α-divergence is the basis for many important and well known divergence metrics,

such as the Kullback-Leibler divergence and the Hellinger distance.

2.3.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is defined as

(2.9) KL(p‖q) =

∫
p(x) log

p(x)

q(x)
dx,
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which is equal to D(−1) (2.8). The KL-divergence is a very important metric in in-

formation theory, and is commonly referred to as the relative entropy of one PDF

to another. Kass and Vos show [49] the relation between the Kullback-Leibler diver-

gence and the Fisher information distance is

√
2KL(p‖q) → DF (p, q)

as p → q. This allows for an approximation of the Fisher information distance,

through the use of the available PDFs, without the need for the specific parameter-

ization of the manifold. We approach the case where p and q are far apart, in which

case the approximation becomes weak, in Chapter IV.

Returning to our illustration developed in Section 2.2.2, we have defined the data

set P of univariate normal distributions, and presented an expression for the Fisher

information distance on the resultant manifold (2.7). The Kullback-Leibler diver-

gence between univariate normal distributions is also available in a closed-form ex-

pression:

KL(pi‖pj) =
1

2

(
log

(
σ2

j

σ2
i

)
+

σ2
i

σ2
j

+ (µj − µi)
2 /σ2

j − 1

)
.

To compare the KL-divergence to the Fisher information distance, we define the

error as E =
∣∣∣
√

2KL(pi‖pj)−DF (pi, pj)
∣∣∣, where pi,j ∈ P . In Fig. 2.3 we display the

mesh-grid and contour plots of E, where point pi is held constant in the center of

the grid defining P , and pj varies about the manifold. As described earlier, as the

density pj → pi, the error E → 0. In Fig. 2.3(b), the reference point pi is noted by

the red star.

It should be noted that the KL-divergence is not a distance metric, as it does

not satisfy the symmetry, KL(p‖q) 6= KL(p‖q), or triangle inequality properties of

a distance metric. To obtain symmetry, we will define the symmetric KL-divergence
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Figure 2.3: The error between the KL-divergence and the Fisher information distance based on a
grid of univariate normal densities, parameterized by (µ, σ). Note that

√
2KL → DF ,

where pi is denoted by ?.

as:

(2.10) DKL(p, q) = KL(p‖q) + KL(q‖p),

which is symmetric, but still not a distance as it does not satisfy the triangle inequal-

ity. Since the Fisher information distance is a symmetric measure, we can relate the

symmetric KL-divergence and approximate the Fisher information distance as

(2.11)
√

DKL(p, q) → DF (p, q),

as p → q.

2.3.2 Hellinger Distance

Another important result of the α-divergence is the evaluation with α = 0:

D(0)(p‖q) = 2

∫ (√
p(x)−

√
q(x)

)2

dx,

which is closely related to the Hellinger distance,

DH =

√
1

2
D(0),
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which satisfies the axioms of distance – symmetry and the triangle inequality. The

Hellinger distance is related to the information distance in the limit by

2DH(p, q) → DF (p, q)

as p → q [49]. We note that the Hellinger distance is related to the Kullback-Leibler

divergence, as in the limit
√

KL(p‖q) → DH(p, q).

2.3.3 Other Fisher Approximations

There are other metrics which approximate the Fisher information distance, such

as the cosine distance. When dealing with multinomial distributions, the approxi-

mation

DC(p, q) = 2 arccos

∫ √
p(x) · q(x) dx → DF (p, q),

is the natural metric on the sphere in Euclidean space.

Throughout this thesis we restrict our analysis to that of the Kullback-Leibler

divergence and the Hellinger distance. The KL-divergence is a great means of differ-

entiating shapes of continuous PDFs. Analysis of (2.9) shows that as p(x)/q(x) →∞,

KL(p‖q) →∞. These properties ensure that the KL-divergence will be amplified in

regions where there is a significant difference in the probability distributions. While

this property is positive in some applications, it can also be very unstable for the

same reasons, especially when estimating PDFs from a finite sampling. For cases

in which this instability may become an issue (e.g. multinomial PDFs because of

divide-by-zero issues), the Hellinger distance is the desired metric, as it is entirely

bounded by
√

2. Note that there also exists a monotonic transformation function

ψ : DH → DC [49]. For additional measures of probabilistic distance, some of which

approximate the Fisher information distance, and a means of calculating them be-

tween data sets, we refer the reader to [80]. We provide specific details on our
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implementation of these information divergences in Appendix B.



CHAPTER III

Local Dimension Estimation

3.1 Introduction

Technological advances in both sensing and media storage have allowed for the

generation of massive amounts of high dimensional data and information. Consider

the class of applications which generate these high dimensional signals: e.g., digi-

tal cameras capture images at enormous resolutions; dozens of video cameras may

be filming the exact same object from different angles; planes randomly drop hun-

dreds of sensors into the same area to map the terrain. While this has opened a

wealth of opportunities for data analysis, the problem of the curse of dimension-

ality has become more substantial, as many learning algorithms perform poorly in

high dimensions. While the data in these applications may be represented in high

dimensions, strictly based upon the immense capacity for data retrieval, it is typi-

cally concentrated on a lower dimensional manifold of the measurement space. The

study of these low dimensional manifolds has led to a field of machine learning called

manifold learning, and has yielded such renowned work as Isomap [74], Local Linear

Embedding [71], and Laplacian Eigenmaps [5], among several other dimensionality

reduction methods.

The point at which the data can be reduced with minimal loss of information is

22
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related to the intrinsic dimensionality of the manifold supporting the data. When the

intrinsic dimension is assumed constant over the data set, several algorithms [10,24,

50,58] have been proposed to estimate the dimensionality of the manifold. In several

problems of practical interest, however, data will exhibit varying dimensionality,

as there may lie multiple manifolds of varying dimension within the data. This is

easily viewed in images with different textures or in classification tasks in which

data from different classes is generated by unique PDFs. In these situations, the

local intrinsic dimension may be of more importance than the global dimension. In

previous work [12, 23] we illustrated the process of local dimension estimation, in

which a dimension estimate is obtained for each sample within the data, rather than

a single dimension estimate for the entire set.

In this chapter we focus on the applications of local dimension estimation [17].

One immediate benefit is using local dimension to estimate the global dimension of

a data set. To our knowledge, every method of estimating intrinsic dimension has

expressed an issue with a negative bias. While insufficient sampling is a common

source of this bias, a significant portion is a result of samples near the boundaries

or edges of a manifold. These regions appear to be low dimensional when sampled,

and contribute a strong negative bias to the global estimate of dimension. Through

the use of local dimension estimation, we will show that we can significantly remove

this negative bias.

We continue by showing novel applications in which the exact dimension of the

data is of no immediate concern, but rather the differences between the local dimen-

sions. Dimensionality can be viewed as the number of degrees of freedom in a data

set, and as such may be interpreted as a measure of data complexity. By comparing

the local dimension of samples within a data set, we are able to identify different
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subsets of the data for analysis. For example, in a time series data set, the intrinsic

dimensionality may change as a function of time. By viewing each time step as a

sample, we can identify changes in the system at specific time points. We illustrate

this ability by finding anomalous activity in a router network. Additionally, the iden-

tification of subsets within the data allows for the immediate application of clustering

and image segmentation. There has been much work presented on using fractal di-

mension estimation for image and texture segmentation [22,65]. We do not make the

model assumption that textures may be represented as a collection of fractals [59],

and instead segment images using a novel method based on Euclidean dimension.

We show that by using a technique we developed termed ‘neighborhood smooth-

ing’ [11] over the dimension estimates, we are able to find the regions which exhibit

differing complexities, and use the smoothed dimension estimates as identifiers for

the clusters/segments.

The rest of this chapter proceeds as follows: We give an overview of the two

dimension estimation algorithms we will utilize in our simulations in Section 3.2. In

Section 3.3, we describe the process of ‘neighborhood smoothing’ as a means of post-

processing for local dimension estimation. We illustrate the various novel applications

of local dimension estimation in Section 5.4, including de-biasing for global dimension

estimation, network anomaly detection, clustering, and image segmentation. Finally,

we offer a discussion and present areas for future work in Section 5.5.

3.2 Dimension Estimation

We will now present two algorithms for dimension estimation, the k-NN algorithm

[24, 25] and the maximum likelihood estimation method [58]. While there are many

algorithms available for dimension estimation, we focus on these two as a means for
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illustrating the applications we later present. By utilizing two distinct methods, we

hope to quell any concerns that our applications are algorithm dependent. Note that

the applications in this chapter assume Euclidean space and therefore the algorithms

are developed in a Euclidean fashion by using the L2-distance norm. However, both

algorithms are easily extended to statistical manifolds by substituting the Fisher

information distance for the Euclidean distance, and will be utilized as such in later

chapters.

3.2.1 The k-Nearest Neighbor Algorithm for Dimension Estimation

Let X = [x1, . . . , xn] be n independent and identically distributed (i.i.d.) random

vectors with values in a compact subset of Rd. The (1-)nearest neighbor of xi in X

is given by

arg min
x∈X\{xi}

D(x, xi)

where D(x, xi) is an appropriate distance measure between x and xi. For a general

integer k > 1, the k-nearest neighbor of a point is defined in a similar way. The

k-NN graph assigns an edge between each point in X and its k-nearest neighbors.

Let Nk,i = Nk,i(X) be the set of k-nearest neighbors of xi in X. The total edge

length of the k-NN graph is defined as:

(3.1) Lγ,k(X) =
n∑

i=1

∑
x∈Nk,i

D(x, xi)
γ ,

where γ > 0 is a power weighting constant; generally γ = 1 for dimension estimation.

For many data sets of interest, the random vectors X are constrained to lie

on an m-dimensional Riemannian submanifold M of Rd (m < d). Let us define

D(x, xi) = ‖x− xi‖ as the standard Euclidean distance. As described in [25], w.p.1

(3.2) lim
n→∞

Lγ,k(X)

nα
= βm,γ,k

∫

M
fα(x) µM(dx),
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where f is the bounded density of [x1, . . . , xn] relative to the differential volume

element over M (µM(dx)), βm,γ,k is a constant independent of f , and α = α(m) =

(m− γ)/m. Under this framework, the asymptotic behavior of (3.1) is given as:

(3.3) Lγ,k(X) = nαc + εn

where c is a constant with respect to α that depends on the Rényi entropy of the

distribution on the manifold, and εn is an error residual [12].

The estimate of the intrinsic dimension m̂ can be found using a non-linear least

squares solution, by calculating graph lengths over varying values of n. In order to

calculate graph lengths for differing sample sizes on the manifold, it is necessary to

randomly subsample from the full set X = [x1, . . . , xn], utilizing the non-overlapping

block bootstrapping method [54]. Specifically, let X ′
n = [x(1), . . . , x(n)] be a spatially

or temporally sorted version of X, and let w be an integer satisfying w < n/Q.

Define the blocks Bi = (x((i−1)w+1), . . . , x(iw)), i = 1, . . . , n/w; we may now redefine

X ′ = {B1, . . . ,Bn/w}. Let {p1, . . . , pQ} be Q integers such that 1 6 p1 < . . . , < pQ 6

n/w. For each value of p ∈ {p1, . . . , pQ} randomly draw N bootstrap datasets Xj
p,

j = 1, . . . , N , with replacement, where the p blocks of data points within each Xj
p

are chosen from the entire data set X ′
n independently. From these samples define

Ln =
{
Lγ,k(X

1
p), . . . , Lγ,k(X

N
p )

}
, where n = pw.

Since c is dependent on m, it is necessary to solve for the minimum mean squared

error, derived from (3.3), by minimizing over both c and integer values of m ∈ Z.

(3.4) m̂ = arg min
m∈Z

{
min

c

Q∑
i=1

∥∥∥Lni
− n

α(m)
i c1

∥∥∥
2
}

,

where ni = pi w and 1 is the vector of length ni whose elements are all 1. We solve

over integer values of m as we do not consider fractal dimensions for this algorithm.

This improves accuracy by constraining the estimation space to discrete values, rather
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than discretizing estimates in a continuous space. One can solve (3.4) in the general

manner presented in Appendix 3-A. This non-linear least squares solution yields the

dimension estimate m̂ based on the k-NN graphs.

3.2.2 The Maximum Likelihood Estimator for Intrinsic Dimension

The maximum likelihood estimation (MLE) method [58] for dimension estimation

estimates the intrinsic dimension m̂ from a collection of i.i.d. observations X =

[x1, . . . , xn] ∈ Rd. Similar to the k-NN algorithm for dimension estimation, the

MLE method assumes that close neighbors lie on the same manifold. The estimator

proceeds as follows, letting k be a fixed number of nearest neighbors to sample xi:

(3.5) m̂k(xi) =

[
1

k − 2

k−1∑
j=1

log
Tk(xi)

Tj(xi)

]−1

,

where Tk(xi) is the distance from point xi to its k-th nearest neighbor in X, measured

with some suitable metric. The intrinsic dimension for the data set can then be

estimated as the average over all observations:

m̂k =
1

n

n∑
i=1

m̂k(xi).

The complete derivation and further details of the MLE algorithm can be found

in [58].

3.2.3 Local Dimension Estimation

While the MLE method inherently generates local dimension estimates for each

sample, m̂(xi), the k-NN algorithm in itself is a global dimension estimator. We are

able to adopt it (and any other dimension estimation algorithm) as a local dimension

estimator by running the algorithm over a smaller neighborhood about each sample

point. Define a set of n samples X = [x1, . . . , xn] from the collection of manifolds

M = {M1, . . . ,MM} such that each point xi lies on manifoldMj. Any small sphere
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or data cluster of samples C ⊆ X centered at point xi, with |C| = n′ 6 n, will contain

samples from M ′ 6 M distinct manifolds. As n′ → 1, all of the points in C will lie

on a single manifold (i.e. M ′ → 1). Intuitively speaking, as the cluster about point

xi is reduced in size, the local neighborhood defined by said cluster can be viewed as

its own data set confined to a single manifold. Hence, we can use a global dimension

estimation algorithm on a local subset of the data to estimate the local intrinsic

dimension of each sample point. This can be performed as described in Algorithm

3.1, where ‘dimension(C)’ refers to applying any method of dimension estimation to

the data cluster C.

Algorithm 3.1. Local Dimension Estimation

Input: Data set X = [x1, . . . , xn]

1: for i = 1 to n do

2: Initialize cluster C = xi

3: for k = 1 to n′ do

4: Find the k-th NN, xk,i, of xi

5: C ← C ∪ xk,i

6: end for

7: m̂(xi) = dimension(C)

8: end for

Output: Local dimension estimates m̂

One of the keys to local dimension estimation is defining a value of n′. There

must be a significant number of samples in order to obtain a proper estimate, but

it is also important to keep a small sample size as to (ideally) only include samples

which lie on the same manifold. Currently we arbitrarily choose n′ based on the size

of the data set. However, a more definitive method of choosing n′ is grounds for
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future work.

3.3 Neighborhood Smoothing

For the problem of local dimension estimation, results are often highly variable,

where nearby samples from the same manifold may estimate at different dimensions.

This issue can be a result of a variety of reasons, such as variability due to random

subsampling in the k-NN algorithm, or variability due to the neighborhood size in the

MLE method. When constructing a global dimension estimate, this variance is rela-

tively insignificant as the estimate is constructed as a function of the local estimates.

For local dimension estimation, however, this variance is of significant concern, and

we propose a variance reduction method known as ‘neighborhood smoothing’ [11]

which improves estimation accuracy.

An initial intuition for manifold learning algorithms is that samples that are

“close” tend to lie on the same manifold, which extends to the assumption that they

therefore have the same dimension. With this assumption in place, it follows that

filtering by majority vote over the dimension estimates of nearby samples should

smooth the estimator and reduce variance. This voting strategy is similar to the

methods of mode filtering, bagging [9] and learning by rule ensembles [36]. Smooth-

ing simply looks at the distribution of dimension estimates within each sample point’s

local neighborhood, and re-assigns each sample a dimension estimate equal to that

with the highest probability within its neighborhood. Specifically,

(3.6) m̂ = arg max
l

PNi
[m̂ = l] ,

where PNi
is the probability over the neighborhood of the current sample Ni. Given
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a finite number of samples [x1, . . . , xn], this may be empirically evaluated as

(3.7) m̂(xi) = arg max
l

∑
xj∈Ni

I(m̂(xj) = l) ,

where I(·) is the standard indicator function. This process may then be iterated

until each neighborhood converges to a consistent estimate. This has the effect of

implicitly incorporating the neighbors of each sample’s neighbors to some extent, as

the dimension estimates within a local region may change through iterations.

Intuitively, neighborhood smoothing is similar to iteratively imposing a k-NN

classifier on the local dimension estimates – under the guise that at each iteration,

sample xi is a test sample and all points xj, j 6= i are appropriately labeled training

samples. Similarly to k-NN classification, the key factor to smoothing is defining the

neighborhood, Ni. If Ni is too large, oversmoothing will occur. The variance of the

dimension estimates will drastically decrease, but there will be a strong bias which

will remove the detection of coarsely sampled manifolds. As such, one cannot use

a constant region about a point, but must adapt that region to the statistics of the

sample.

3.3.1 Spherical Radius Selection

Since the number of sample points on each manifold of a data set is generally

unknown, using a constant number of smoothing samples is not a viable option.

Samples on a smaller manifold may have points from a disjoint manifold included

in their smoothing neighborhood. Therefore, when using a spherical region as a

smoothing neighborhood, it is important to adjust the radius of that region for each

sample point. This can be done by looking at the distribution of the distances of

each point from the current sample location. Often, one can quickly determine a

reasonable neighborhood radius, as there tends to be a jump in the distance distri-
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Figure 3.1: Analysis of a histogram of distances from a point on the sphere suggests a spherical
neighborhood radius of no larger than 2. This clearly distinguishes the distinct mani-
folds.

bution. This can be very apparent when there are multiple manifolds in the data

set (see Fig. 3.1). When the difference is not as clear, one can decide the radius in

various different ways (such as a function of the median distance).

By adjusting the spherical radius of the smoothing neighborhood for each sample

point, we are efficiently adapting the smoothing algorithm to, ideally, smooth only

over samples which lie on the same manifold. This method is feasible only when

manifolds are disconnected and somewhat distant from one another.

3.3.2 Non-Spherical Neighborhoods

When distinct manifolds lie near one another, or potentially intersect, it is neces-

sary to further adapt the smoothing neighborhood beyond a spherical region. This

is due to the fact that points on a nearby or intersecting manifold may be as close

(or closer) to a sample as others on its own manifold. A spherical region may smooth

over different manifolds, and the results will lead to the dimension estimates ‘leaking’

from one manifold to another.

Rather than defining neighborhoods through Euclidean distance, which will form
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Figure 3.2: Neighborhoods (?) of the sample in question (¦) defined by a) Euclidean distance and
b) geodesic distance.

only spherical regions about each sample point, we will define neighborhoods using

a geodesic distance metric. This will adapt the neighborhood to the geometry of the

manifold. For our purposes, the geodesic distance can be approximated by taking

each point and creating an edge to its the k-NN. Then using Dijkstra’s shortest path

algorithm (or any other algorithm for computing the shortest path), approximate

the geodesic distances to each pair of points in the graph. Any points that remain

unconnected are considered to have an infinite geodesic distance.

To define a local neighborhood, we can now simply choose the closest ng points

for which the geodesic distance is not infinite. This forms a non-spherical neighbor-

hood that adapts to the curvature of the manifold, performing much better than

spherical neighborhoods. Figure 3.2 illustrates the difference in the neighborhoods

(black stars) that are formed on the ‘swiss roll’ manifold when using different prox-

imity metrics. The Euclidean distance (Fig. 3.2(a)) forms a spherical neighborhood,

including points that are separated from the sample in question (red diamond). The

geodesic distance (Fig. 3.2(b)), however, forms a neighborhood considering points

only in close proximity along the actual manifold. While all points in this exam-
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Figure 3.3: Neighborhood smoothing applied to 7-dimensional data containing two spheres with
intrinsic dimensions 2 and 5

ple do exist on the same manifold, it is clear that defining neighborhoods along the

manifold rather than in simple spherical regions reduces the probability of including

samples from a nearby distinct manifold.

Illustrating the effects of neighborhood smoothing, we create a 7-dimensional data

set that includes 2 distinct spheres of intrinsic dimensions 2 and 5, each containing

300 uniformly sampled points intersecting in 3 common dimensions. Figure 3.3(a)

shows the histogram of the local dimension estimates of each sample before any neigh-

borhood smoothing was applied, while Fig. 3.3(b) shows the results after smoothing.

One can clearly see that the wide histogram was correctly condensed to the proper

local dimension estimates, even though the manifolds intersect. The use of the

geodesic distance measure prevents smoothing across distinct manifolds which lie

closely together in Euclidean space.

It is important to note that, as with any form of post-processing, neighborhood

smoothing can only produce accurate results given sufficient input. The benefits

of smoothing can be significantly diminished if the initial local dimension estimates

are not sufficiently accurate. We note this explicitly because of the known issues
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Figure 3.4: Issues arise with neighborhood smoothing when estimating very large dimensions, due
to the variance of such estimates. In this example smoothing would assign a dimension
estimate of 40, although the more appropriate estimate would be 33 or 34.

with estimating large dimensions (e.g. m > 10). Because of variance issues due to

insufficient samples and boundary effects, it is difficult to accurately estimate very

large dimensions, and often times the estimate can more appropriately be consid-

ered a measure of complexity, where the difference between m and m + 1 is rather

insignificant. This is important because no single dimension may dominate a given

local neighborhood, yet smoothing will still assign a dimension estimate equal to

the most represented dimension, which may indeed be inconsistent with the rest.

We demonstrate this scenario with the example shown in Fig. 3.4, where smoothing

would assign a dimension estimate of m = 40, which is the most represented dimen-

sion in the neighborhood. However, a more accurate dimension estimate could be

considered m = 33 or m = 34, as that would be more consistent with the major-

ity of the samples. In these scenarios it may be more appropriate to smooth over

a histogram with user defined bin sizes, corresponding to significant differences in

complexity, rather than individual dimensions. This is an area for future work.
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3.4 Applications

3.4.1 De-biasing Global Dimension Estimation

To our knowledge, a phenomenon common to all algorithms of intrinsic dimension

estimation is a negative bias in the dimension estimate. It is believed that this is

an effect of undersampling the high dimensional manifold. While the bias due to

lack of sufficient samples is inherent, we offer that the sample size is not the only

source of bias; a significant portion is related to the depth of the data. Specifically, as

data samples approach the boundaries of the manifold, they exhibit a lower intrinsic

dimension. This issue becomes more prevalent as the dimension of the manifold

increases, and is directly related to the curse of dimensionality. Consider the m-

dimensional unit hypercube A = [0, 1]m. One can define the interior as the set

I = {x | ε
2

6 xi 6 1− ε
2
, ∀i = [1,m]}. The ε-boundary is therefore ∂A = A/I. The

following statement can be made:

Proposition 3.1. With probability of at least 1− δ, a uniformly selected x from A

is contained in the boundary ∂A, i.e., x ∈ ∂A and ε = log(1/δ)
m

.

Proof. Since x is uniform in A, its components are i.i.d. uniform random variables

U [0, 1]. The probability of x being in the interior I is therefore given by the product

P (x ∈ I) =
m∏

i=1

P
( ε

2
6 xi 6 1− ε

2

)
= (1− ε)m.

Therefore, the probability of x ∈ ∂A is

P (x ∈ ∂A) = 1− (1− ε)m

= 1− exp(m log(1− ε)).

Since log(1 + t) 6 t, we have exp(m log(1− ε)) 6 exp(−mε) and therefore

P (x ∈ ∂A) > 1− exp(−mε).
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Figure 3.5: The probability of randomly selecting a point on the boundary of an m-dimensional
hypercube for ε = 0.2 (×), ε = 0.1 (◦), and ε = 0.05 (¦).

For ε = log(1/δ)
m

, we have

P (x ∈ ∂A) > 1− exp

(
−m

log(1/δ)

m

)
= 1− δ.

2

This result suggests that at least 1 − δ of the entire points in the hypercube are

concentrated in a boundary with ε → 0 as m →∞. Alternatively, for large m most

points in a hypercube will concentrate on its boundary (see Fig. 3.5).

We proceed by suggesting that the boundary of the m-dimensional hypercube

can be approximated as an (m − c)-dimensional manifold, where c is the number

of connected boundaries (i.e. edges and corners), and hence should produce a lower

dimension estimate. Clearly, a simple average of the local dimension estimates over

the manifold will consider many more points (1 − δ) on a boundary with a lower

dimension as compared with the number of points in the interior of the hypercube

(δ), leading to a lower global dimension estimate.

We are able to further justify the effect of data depth on dimension estimation by

calculating the depth of each sample and quantitatively analyzing the relationship
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between depth and dimension. We utilize the L1-data depth algorithm developed

by Vardi and Zhang [77], which calculates depth Dn(x) as the sum of all the unit

vectors between the interested sample x ∈ X and the rest of the data set X =

{x1, . . . , xn}\{x}. Specifically,

(3.8) Dn(x) = 1−max
(
0,

∥∥∥
∑

xi 6=x

e(xi − x)/n
∥∥∥−

∑
xi=x

1

n

)

where e(xi − x) = (xi − x)/‖xi − x‖ is the unit vector in the direction of (xi − x).

This depth metric assigns the most interior points in the data set a depth value

approaching 1, while samples along the boundaries approach a depth of 0.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Depth

P
(X

)

 

 

m=4
m=5
m=6
m=7

Figure 3.6: Analysis of the effect of data depth on local dimension estimation. Points with less
depth estimate at a lower dimension, contributing to the overall negative bias.

Using this measure, we illustrate the effect of data depth on dimension estima-

tion in Fig. 3.6. The data set used was of 3000 points uniformly sampled on a

6-dimensional hypercube. We utilize the MLE method for dimension estimation,

and Fig. 3.6 illustrates the distribution of data depths for samples that estimate at

different dimensions. It is clear that as the depth increased, so did the probability

of estimating at a higher dimension, even to the point where the most deep points

estimated at a dimension of 7 (although we note that there were very few points with

this estimate).
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When estimating the global dimension of a data set, one can substantially reduce

the negative bias by placing more emphasis on the local dimension of those points

away from the boundaries, as they are more indicative of the true dimension of the

manifold. Specifically, let the global dimension be estimated as follows:

(3.9) m̂ =
1∑
j Wj

∑
i

Wim̂(xi),

where Wi is a weighting on each sample point. We offer two potential definitions of

Wi, the first being a binary weighting:

(3.10) Wi =





1, Dn(xi) > Dn(x(α×n))

0, otherwise

,

where 0 6 α 6 1 and Dn(x(α×n)) is the data depth of the α × n deepest point.

Essentially this binary weight amounts to de-biasing by averaging over the local

dimension estimates of the deepest α×100% of points, where the threshold α is user

defined. This is worthwhile for potentially large data sets, where there are enough

samples to ignore a large portion of them. When this is not the case, let us make

the definition

(3.11) Wi = exp−(1−Dn(xi))/c,

where c is a user defined constant. This weighting may be viewed as a heat kernel,

in which larger depths will yield higher weights. Unlike the binary weighting, which

will ignore a large number of the data samples, this heat kernel weighting will utilize

all samples (even those lying on a boundary), yet give preference to those with more

depth in the manifold.

We now illustrate this de-biasing ability in Fig. 3.7, in which we estimated the

global dimension of the 6-dimensional hypercube (3000 i.i.d. samples) over 200 unique
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Figure 3.7: Developing a de-biased global dimension estimate by averaging over the 50% of points
with the greatest depth on the manifold

trials. Figure 3.7(a) shows the histogram of biased dimension estimates obtained by

using the entire set for dimension estimation, while Fig. 3.7(b) estimates the correct

global dimension each trial by using our de-biasing method (3.9) with the binary

weighting function (3.10). We chose to set our threshold at α = 0.5 by setting our

boundary limit at ε = 0.1. As previously calculated in Proposition 3.1 and shown in

Fig. 3.5, the probability of a 6-dimensional point lying away from such a boundary

is roughly 0.5. Although this suggests a priori knowledge of the true dimension, this

knowledge is easily inferred from biased results as well; an estimate of m̂ = 5 would

imply including the deepest ∼ 60% of the points, and there is minimal consequence

for including slightly fewer points in the final approximation.

It is important to note that our method of de-biasing is only applicable for data

with a relatively low intrinsic dimension. When dealing with very high dimensional

data, the probability of a sample lying near a boundary approaches 1 (see Fig. 3.5),

and the value of the depth approximation becomes irrelevant. This is shown in Fig.

3.8 where the ‘deepest’ and most ‘shallow’ samples converge to the same depth value

as the intrinsic dimension increases. When all samples estimate near the same depth,
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Figure 3.8: As the intrinsic dimension dimension increases, the maximum and minimum data depth
of points in the set converge to the same value. This simulation was over a 5-fold cross-
validation with 400 uniformly distributed points in the range [0,1].

it is clear that de-biasing based on depth will not have the intended effect.

3.4.2 Network Anomaly Detection

Figure 3.9: Map of Abilene router network

As illustrated in Figure 3.9, the Abilene Network is the set of routers which is the

backbone of the ‘.edu’ network. When an anomaly occurs on the network, there are

changes in the correlation between traffic traces at different points in the network,

imposing nonlinear constraints on the observed data. We have shown that anomalies

can be detected in router networks through the use of local dimension estimation
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Figure 3.10: Neighborhood smoothing applied to Abilene Network traffic data dimension estimation
results. Anomalous activity is preserved and more easily observed.

[11, 12]. Specifically, when only a few of the routers contribute disproportionably

large amounts of traffic, the intrinsic dimension of the entire network decreases. Using

neighborhood smoothing as a form of post-processing, we are better able to locate

the traffic anomalies, as the variance of the estimates is reduced. Fig. 3.10 illustrates

the results of k-NN algorithm for local dimension estimation for the purposes of

anomaly detection. The data used is the number of packets counted on each of the

11 routers on the Abilene network, on January 1-2, 2005. Each sample is taken every

5 minutes, leading to 576 samples with an extrinsic dimension of d = 11.

Figure 3.10(b) illustrates that neighborhood smoothing is able to preserve both

the visually obvious (n = 148, n > 300) and non-obvious (n = 87− 120) changes in

network complexity. A detailed investigation of time n = 244, for example, reveals

that the Sunnyvale router (SNVA) showed increased contribution from a single IP

address. Large percentages (over half) of the overall packets had both source and

destination IP 128.223.216.xxx within port 119. This port showed increased activity

on the Atlanta router as well. This change in dimensionality indicating anomalous

activity would generally go unnoticed with the raw results of local dimension esti-
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mation due to the high variance (Fig. 3.10(a)).
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Figure 3.11: Using the k-NN algorithm with fully functional settings and no neighborhood smooth-
ing still yields highly variable results on the Abilene data.

We note the results shown in Fig. 3.10 are performed using nominal settings

within the k-NN algorithm which allows the algorithm to run quickly and accurately

with neighborhood smoothing. We are able to generate results with much less vari-

ance than Fig. 3.10(a) by applying more averaging and bootstrapping as shown in

Fig. 3.11, but this increases computation time by multiple orders of magnitude while

still producing results with more variance than Fig. 3.10(b).

3.4.3 Clustering

As discussed previously, data sets often consist of multiple submanifolds of dif-

fering dimension. When the intrinsic dimension of these submanifolds becomes in-

creasingly large, the value of the dimension may be interpreted as a measure of the

complexity of the data. From this interpretation, we may use local dimension esti-

mation to cluster data within a set by complexity. Specifically, we can define clusters

through the use of recursive entropy estimation and neighborhood smoothing. As we

increase the neighborhood size k, we incorporate more samples into our smoothing

region, eventually oversmoothing between differing manifolds. By finding the point
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in which the smoothing regions extend into multiple manifolds, we can define clus-

ters in the data. This point of change can be located by analyzing the change in the

entropy H of the dimension estimates as the region grows, such that

H = −
∑

j

Pj log Pj,

where Pj = 1
n

∑n
i I(m̂(i) = j) is the empirical probability a sample estimates at

dimension j.

When the regions are stable within each cluster, H will be constant. As the

smoothing neighborhood incorporates additional manifolds, the entropy will leave

its constant state and eventually H → 0 as k → ∞ (i.e. the region includes every

point). With a priori knowledge of the distribution of dimensionality, one may

choose a neighborhood size which yields an appropriate value of entropy. Without

this knowledge, the point at which H leaves its constant state can be used as a

threshold for defining clusters based on dimension. This process is similar to dual-

rooted diffusion kernels method of clustering [39], in which the authors used the jump

in nearest neighbor distance as as means to differentiate clusters.

For example, let X = [x1, . . . , xn], where xi ∈ Rd is uniformly distributed in

[0, 1]mi (mi ∈ M , a discrete set of integer values) and constant elsewhere. Hence, mi

is the intrinsic dimension of xi. For our simulation, let d = 13 and M = {2, 6, 10},

and there are n = 200 samples for each value in M . After obtaining local dimension

estimates, we apply neighborhood smoothing to differing neighborhood sizes and

measure the entropy of the local dimension estimates at each size. The results

are shown in Fig. 3.12, where the entropy exhibits the same pattern we previously

described; after initially decreasing, H remains constant as k approaches the region

size of each manifold (n = 200). As the smoothing covers multiple manifolds, k >

200, the entropy decreases until the smoothing neighborhood eventually covers all
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manifolds simultaneously and H = 0.
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Figure 3.12: The entropy of the local dimension estimates changes as a function of neighborhood
size k. As k increases to the size of the differing regions (k = 200 samples each), the
entropy becomes constant and the data is properly clustered. As the neighborhood
incorporates samples from differing manifolds, the entropy decrease until all points
estimate at the same value (k = 350).

The histogram of local dimension estimates (with both k-NN and MLE methods),

which is used to calculate the entropy, is shown in Fig. 3.13 to illustrate the evolution

of the dimension estimates. It is clear that at k = 100 the 3 distinct clusters are

represented, and this value also corresponds to the optimal entropy estimate given

a priori knowledge that each dimension is represented with a constant probability

of P = 1
3
, which yields the entropy value H = 1.1. Due to insufficient sampling,

the actual value of the dimension estimates ({2, 5, 7} for the k-NN algorithm and

{2, 5, 6} for the MLE method) differ from the true dimensions {2, 6, 10}. However,

this is not of particular concern since the primary objective is to locate clusters of

differing complexity. It is also worth noting that some samples are misidentified due

to the overlapping nature of the 3 clusters (i.e. common dimensions share the same

range), but the overall performance is respectable.

We note the dimension estimate obtained when smoothing over the entire set does

not correspond to the global dimension of the data. Since we are using a majority
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Figure 3.13: Comparing dimension histograms of dimension estimates at various neighborhood
sizes, we see that samples are clustered very well at k = 100, which corresponds
to constant point in the entropy plot shown in Fig. 3.12.

voting method, the final value will be equal to the estimated dimension which is

most represented (with simple tie-breaking rules). This is not necessarily equal to

the global dimension, and is often not close to the dimension which best characterizes

the entire data set (as in our example).

Let us now compare our clustering performance on a separate synthetic exam-

ple. Consider the data set X = [x1, . . . , x400] which consists of 200 points uniformly

sampled on the ‘swiss roll’ manifold, and 200 points uniformly sampled on an intrin-

sically 3-dimensional hyper-sphere. Hence, each xi ∈ R4 (points sampled from the

‘swiss roll’ have a constant value in the 4th dimension) and there are two distinct

clusters formed. A visual representation of this set is illustrated in Fig. 3.14, and we

compare our method of clustering by complexity using local dimension estimation

with that of standard clustering methods – Fuzzy c-means [8] and K-means [41]. To

demonstrate clustering performance we utilize the Jaccard index [48], which assesses

the similarity between a predetermined set of class labels C and a clustering result

K. Specifically,

J(C, K) =
a

a + b + c
,
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Figure 3.14: Clustering based on local intrinsic dimensionality is useful for problems such as this, in
which 3-dimensional hyper-sphere (•) is placed “inside” the 2-dimensional ‘swiss roll’
(+). Side and front angles of set shown.

where a is the number of pairs of points with the same class label in C and the same

cluster label in K, b is the number of pairs which have the same label C but differ

in K, and c is the number of pairs of points with the same cluster label in K but

different class label in C. Essentially, the Jaccard index gives a rating in the range

[0, 1] for which 1 signifies complete agreement between the true labels C and the

clustering results K.

Method Mean Jaccard
Dimension Estimation 0.7834
K-Means 0.4224
Fuzzy c-means 0.3607

Table 3.1: Comparison of various clustering methods on data set consisting of ‘swiss roll’ and 3-
dimensional hyper-sphere manifolds. Performance reported based on mean Jaccard index
over a 20-fold cross validation.

We show the results in Table 3.1, over a 20-fold cross validation with i.i.d. real-

izations of X. We see clustering by dimension estimation yields far superior per-

formance to standard methods. While these methods aim to cluster by a variety

of means, such as optimizing distances to centroids, dimension estimation simply

assigns cluster labels based on the local dimensionality of each data point. In this
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simulation we utilized a neighborhood size of k = 25 when smoothing, as larger

values tended to incorporate both manifolds since they are so close to one another.

We acknowledge that clustering by dimensionality is not applicable in many practical

problems in which the different clusters exhibit the same dimensionality. However, in

the realm of high-dimensional clustering, there may often exist an intrinsic difference

in dimensionality, in which our method would be applicable.

3.4.4 Image Segmentation

After showing the ability to use local dimension estimation for clustering data by

complexity, a natural extension is to apply the methods for the problem of image

segmentation. Differing textures in images can be considered to have different levels

of complexity (e.g. a periodic texture is less complex than a random one). This has

been well stated in [59], where natural images and textures are viewed as a collection

of fractals. For our purposes we chose to ignore such model assumptions and see

whether or not Euclidean dimension can be used as a means of image segmentation.

In this case, the same framework as our clustering method applies.

Consider the satellite image of New York City1 in Fig. 3.16(a), which has a resolu-

tion of 1452×1500. We wish to segment the image into land and water masses. To use

local dimension estimation, we define X = [x1, . . . , xn], where xi is a 144-dimensional

vector representing a rasterized 12 × 12 block of the image. After obtaining the lo-

cal dimension estimates, we apply neighborhood smoothing and recursive entropy

estimation as described above. The results, illustrated in Fig. 3.15(a), lead us to

define an ideal neighborhood size of k = 3500. This allows us to segment the image

into 2 regions, defined by the complexity estimates shown in Fig. 3.15(b). The final

segmentation can be viewed in Fig. 3.16(b), where the water is well separated from

1http://newsdesk.si.edu/photos/sites_earth_from_space.htm
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the land portions of the island of Manhattan and the surrounding burroughs. We

note that this image is that of the smoothed local dimension estimates, uniformly

scaled to the range [0, 255].
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Figure 3.15: Plotting the entropy of the dimension estimates suggests a neighborhood size of k =
4000, which yields 2 significant clusters in the dimension estimates.

We notice there is a relatively low resolution in our segmentation image, due to the

large 12×12 blocks used for estimation. We can correct this by using a smaller pixel

blocks, however computational issues prevent us from estimating at much higher

resolutions. We can alleviate this problem by estimating at a high resolution only

in the areas which require such; this may be determined by using edge detection on

the image of local dimension estimates as in Fig. 3.16(c). In the regions which are

determined to contain edges, we re-segment at a higher resolution – using 4×4 pixel

blocks – with the same recursive entropy estimation process. The results are shown

in Fig. 3.16(d); it is clear that this segmentation appears significantly less digitized

and more detailed.

While the previous task was simply to segment water from land in an image, we

detailed the ‘binary’ task to demonstrate the process. The problem is easily extended

to the multi-texture case, which we illustrate in Fig. 3.17 with images of local di-
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(a) New York City (b) Low Resolution Segmentation

(c) Edges of Segmented Image (d) High Resolution Segmentation

Figure 3.16: By using local dimension estimation, neighborhood smoothing, and entropy estimation,
we are able to segment the satellite image of New York City into water and land regions.
After segmenting the image at a low-resolution, we perform edge detection to find the
regions which should be analyzed at a higher resolution, yielding a significantly more
detailed segmentation.

mension estimates scaled to the range [0, 255]. In these cases we segmented images

of a sloth bear2 and a panda bear cub3 using the same techniques as previously de-

scribed, only we utilized a high-resolution segmentation over entire image along with

small smoothing neighborhoods. This may give a finer segmentation than required

(e.g. the bears are not segmented entirely as one object), but shows the potential

segmentation power of local dimension estimation. If a coarser segmentation was

desired, larger smoothing neighborhoods may be applied, similar to the previous

2http://newsdesk.si.edu/photos/nzp_sloth_bear.htm
3http://newsdesk.si.edu/photos/nzp_panda_cub.htm



50

case of New York City. We note that by no means are we suggesting that dimension

alone is a superior means of image segmentation; we simply illustrate that there is

a semblance of power to Euclidean dimension when segmenting natural images, and

that dimension may be used in conjunction with other means for this complex task.

3.5 Conclusions and Future Work

We have shown the ability to use local intrinsic dimension estimation for a myriad

of applications. The negative bias in global dimension estimation is strongly influ-

enced by the data depth of the samples on the manifold. By developing a global

dimension estimator based on the local dimension estimates of the deepest points,

we have shown the issue of the negative bias can be significantly reduced. Typically,

dimension estimation is used for the purposes of dimensionality reduction of Rieman-

nian manifolds, and we will extend this to the problem of dimensionality reduction

on statistical manifolds in the proceeding chapters..

By viewing dimension as a substitute for data complexity, we have applied local

dimension estimation to problems which may not naturally be considered. Local

dimension estimates can be used to find anomalous activity in router networks, as

the overall complexity of the network is decreased when a few sources account for

a disproportionate amount of traffic. We have also applied complexity estimation

towards the problems of data clustering and image segmentation through the use of

neighborhood smoothing. By finding the points in which entropy remains constant

as the neighborhood size increases, we are able to optimally cluster the data.

Further analysis into the applications we have presented here is an area for fu-

ture work. In terms of de-biasing global dimension estimation, the number of interior

points decreases (holding total number of points constant) as the dimension increases.
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As such, applying significant weight the interior points in averaging over local dimen-

sions may result in large variance of the dimension estimate due to a small sample

size. The bias-variance trade-off and its optimization is of great importance, and

should be considered an area for future work. Additionally, we would like to further

investigate using Euclidean dimension estimation (as opposed to fractal dimensions)

for image segmentation, as we feel this is a very interesting application which has not

been thoroughly researched. Specifically, we are interested in combining Euclidean

dimension with other measures of textures in order to optimally segment a natural

image.

3-A Appendix: Non-linear Least Squares Solution of Dimension Esti-
mation

Here we detail how to solve the non-linear least squares problem for the k-NN

algorithm for dimension estimation. Given the vector of length functionals Ln =

{
Lγ,k(X

1
p), . . . , Lγ,k(X

N
p )

}
, for a specific number of samples n, we solve

(3.12) m̂ = arg min
m∈Z

{
min

c

Q∑
i=1

∥∥∥Lni
− n

α(m)
i c1

∥∥∥
2
}

,

where 1 is the vector of length ni whose elements are all 1, in the following manner:

for m = 2 to d do

1. Calculate ĉ(m) from the expansion of (3.4):

a) ĉ = min
c

Q∑
i=1

‖Lni
‖2 − 2c

Q∑
i=1

nα
i LT

ni
1 + c2

Q∑
i=1

(nα
i )21T1,

⇒ ĉ =

Q∑
i=1

nα
i LT

ni
1/

Q∑
i=1

(nα
i )21T1
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2. Calculate the error, ε(m) with m and ĉ from step 1

ε(m) =

Q∑
i=1

‖Lni
− ĉn

α(m)
i 1‖2

end.

m̂ = arg min
i

ε(i)
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Figure 3.17: Segmentation of multi-texture images using local dimension estimation and neighbor-
hood smoothing. The first row contains the original images, the second row contains
the images of local dimension estimates (scaled to [0, 255]), while the third row is the
histogram of local dimension estimates.



CHAPTER IV

Information-Geometric Embeddings

4.1 Introduction

Recently presented methods of manifold learning and dimensionality reduction

[5, 71, 74] focus on finding a low-dimensional representation of the data which is

restricted to lie on some Riemannian submanifold of Euclidean space. These deriva-

tions of multidimensional scaling (MDS) [27] utilize pairwise Euclidean distances to

reconstruct manifolds and embed points into a low-dimensional space. However, it

has been well documented that these methods use Euclidean distance as a measure

of dissimilarity between elements, and other measures of dissimilarity may be sub-

stituted. Isomap [74], for example, approximates geodesic distances between data

samples. Laplacian Eigenmaps [5] simply uses Euclidean distance as a means to cal-

culate a weight function. Hence, if an appropriate distance between PDFs is utilized,

these well-respected algorithms could be used for an entirely new class of problems

on statistical manifolds.

Consider the collection of PDFs P = {p1, . . . , pN} lying on some statistical man-

ifold M. Our goal is to reconstruct M using only the information available in P .

This is a similar setting to traditional manifold learning algorithms which aim to

reconstruct Riemannian manifolds based on a finite sampling. In this chapter, we

54
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extend these principles to statistical manifolds. Specifically, we focus on the case

where the data is high-dimensional and cannot be represented in a straightforward

and meaningful manner in Euclidean space. In many of these cases, a lower di-

mensional statistical manifold can be used to assess the data for various learning

tasks.

Many applications of statistical manifolds have proved promising, such as docu-

ment classification [19,53,55], flow cytometry analysis [15,16,34], face recognition [4],

texture segmentation [56], image analysis [73], clustering [72], and shape analysis [52].

While all have proposed alternatives to using Euclidean geometry for data modeling,

most methods (outside of our own work) focus on clustering and classification, and

do not explicitly address the problems of dimensionality reduction and visualization.

Additionally, most presented work has been in the parametric setting, in which pa-

rameter estimation is a necessity for the various methods. This becomes ad-hoc and

potentially troublesome if a good model is unavailable.

We provide a start-to-finish framework for determining an information-geometric

embedding of PDFs A : p(x) → y, where y ∈ Rm; expressed through two separate

algorithms approaching the problem of statistical manifold reconstruction. These

methods include a characterization of data sets in terms of a nonparametric statisti-

cal model, a geodesic approximation of the Fisher information distance as a metric for

evaluating similarities between data sets, and a dimensionality reduction procedure

to obtain a low-dimensional Euclidean embedding of the original high-dimensional

data set for the purposes of both classification and visualization. The first presented

algorithm – termed Fisher information nonparametric embedding (FINE) – embeds

PDFs into an open low-dimensional Euclidean space. This is useful when there is no

a priori knowledge of the manifold structure. If the manifold geometry is known to
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be that of a low-dimensional hyper-sphere (e.g. a transformation of multinomial dis-

tributions), we offer Spherical laplacian information maps (SLIM), which constrains

the embedding to the surface of a sphere in Euclidean space. This is useful as the

measure of distance in the embedding space (i.e. great-circle distance) is an accu-

rate representation of the true Fisher information distance in the probability space.

Both FINE and SLIM are non-linear embedding methods, driven by information,

not Euclidean, geometry. In conjunction, our methods require no explicit model as-

sumptions; only that the given data is a realization from an unknown model with

some natural parameterization.

Recent work by Lee et al. [57] similar to our own [18, 19] has demonstrated the

use of statistical manifolds for dimensionality reduction. Specifically, we consider

the work presented by Lee et al. to be a specialized case of our more general frame-

work. They focus on the specific case of image segmentation, which consists of

multinomial distributions as points which lie on an n-simplex (or projected onto

an (n + 1)-dimensional sphere). By framing their problem as such, they are able

to exploit the properties of such a manifold: using the cosine distance as an exact

computation of the Fisher information distance, and using linear methods (PCA) of

dimensionality reduction. They have shown very promising results for the problem of

image segmentation, and briefly mention the possibility of using non-linear methods

of dimensionality reduction, which they consider unnecessary for their problem. The

work we present differs in that we make no assumptions on the type of distributions

making up the statistical manifold. Hence, our geodesic approximation for the Fisher

information accounts for submanifolds of interest. This is illustrated later in Fig. 4.1,

where the submanifold lies on the (n + 1)-dimensional sphere, but does not fill the

entire space. As such, there is no exact measure of the Fisher information between
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points, and we must approximate with a geodesic along the manifold. Additionally,

we utilize non-linear methods of dimensionality reduction, which we consider to be

more relevant for many non-linear types of applications. Finally, by considering all

statistical manifolds rather than focusing on those of consisting solely of multino-

mial distributions, we are able to apply our methods to many problems of practical

interest.

The remainder of this chapter is organized as follows: Section 4.2 illustrates our

estimation of the Fisher information distance by approximating the geodesic on the

statistical manifold. We review several manifold learning techniques for dimensional-

ity reduction in Section 4.3, and proceed with the formulation of the FINE algorithm

in Section 4.4 and SLIM in Section 4.5. We illustrate the results of using FINE and

SLIM on real and synthetic data sets in Section 4.6. Finally, we draw conclusions

and discuss the possibilities for future work in Section 4.7.

4.2 Approximation of Distance on Statistical Manifolds

Let us consider the approximation function D̂F (p1, p2) of the Fisher information

distance between p1 and p2, which may can be calculated using a variety of metrics

as p1 → p2 (see Section 2.3). If p1 and p2 do not lie closely together on the manifold,

these approximations become weak, as the convergence properties no longer hold. It

has previously been suggested [57] to use the cosine distance as a strict approximation

of the Fisher information distance. This is due to the fact that the cosine distance

measures a portion of a great circle on a hyper-sphere, and in the discrete case

all PDFs can be considered as multinomial distributions which may be projected

onto a hyper-sphere manifold. This usage of the cosine distance is true only in the

assumption that the manifold of interest fills the entire space of the hyper-sphere.
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A

B

Figure 4.1: Given a 1-dimensional submanifold (the curvy dark line) of interest lying on a 2-
dimensional sphere manifold, the Fisher information distance is the shortest path con-
necting the points A and B along the 1-D submanifold, rather than the length of a
portion of the great circle connecting the points on the sphere.

In many cases the PDFs are constrained to form a submanifold of interest, and the

geodesic is no longer accurately described as a portion of a great circle on the hyper-

sphere. This is illustrated in Fig. 4.1 in which we represent a (d − 1)-dimensional

submanifold which occupies a subspace of the d-dimensional hyper-sphere (d = 2 for

illustration). The Fisher information distance is equal to the shortest path along the

submanifold (curvy line), and in this case that is not equal to the portion of a great

circle on a hyper-sphere connecting the two points. Hence, there are situations in

which standard approximations of the information distance do not converge to the

true distance, and it is necessary to approximate the geodesic along the manifold.

A good approximation can still be achieved if the manifold is densely sampled

between the two end points. By defining the path between p1 and p2 as a series of

connected segments and summing the length of those segments, we may approximate

the length of the geodesic with graphical methods. Specifically, given the set of N

PDFs parameterized by Pθ = {θ1, . . . , θN}, the Fisher information distance between
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Figure 4.2: Convergence of the graph approximation of the Fisher information distance using the
Kullback-Leibler divergence. As the manifold is more densely sampled, the approxima-
tion approaches the true value.

p1 and p2 can be estimated as:

DF (p1, p2) ≈ min
m,{θ(1),...,θ(M)}

M−1∑
i=1

DF (p(θ(i)), p(θ(i+1))), p(θ(i)) → p(θ(i+1)) ∀ i

where p(θ(1)) = p1, p(θ(M)) = p2,
{
θ(1), . . . , θ(M)

} ∈ Pθ, and M 6 N .

Using an approximation of the Fisher information distance as p1 → p2, we can

now define an approximation function G for all pairs of PDFs:

(4.1) G(p1, p2;P) = min
M,P

M−1∑
i=1

D̂F (p(i), p(i+1)), p(i) → p(i+1) ∀ i

where P = {p1, . . . , pN} is the available collection of PDFs on the manifold. Intu-

itively, this estimate calculates the length of the shortest path between points in a

connected graph on the well sampled manifold, and as such G(p1, p2;P) → DF (p1, p2)

as N → ∞. This is similar to the manner in which Isomap [74] approximates dis-

tances on Euclidean manifolds. Figure 4.2 illustrates this approximation by compar-

ing the KL graph approximation to the actual Fisher information distance for the

univariate Gaussian case. As the manifold is more densely sampled (uniformly in

mean and variance parameters for this simulation), the approximation converges to

the true Fisher information distance, as calculated in (2.7).
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4.3 Dimensionality Reduction

Given a matrix of dissimilarities between entities, many algorithms have been de-

veloped to find a low-dimensional embedding of the original data ψ : M→ Rd. These

techniques have been classified as a group of methods called multidimensional scaling

(MDS) [27]. There are supervised methods, which are generally used for classifica-

tion purposes, and unsupervised methods, which are often used for clustering and

visualization. Using these MDS methods allows us to find a single low-dimensional

coordinate representation of each high-dimensional, large sample, data set.

4.3.1 Classical Multi-Dimensional Scaling

Classical MDS (cMDS) takes a matrix of dissimilarities and embeds each point

into a Euclidean space. This unsupervised method permits the calculation of the low-

dimensional embedding coordinates which reveal any natural separation or clustering

of the data, preserving the data geometry.

Define D as a dissimilarity matrix which contains (or approximates) Euclidean

distances between N element pairs (e.g. D ∈ RN×N). Let B be the “double centered”

matrix which is calculated by taking the matrix of squared dissimilarities (denoted

D(2)), subtracting its row and column means, then adding back the grand mean and

multiplying by −1
2
. Mathematically, this process is solved by

B = −1

2
HD(2)H,

where H = I − (1/N)11T , I is the N -dimensional identity matrix, and 1 is an

N -element vector of ones.

The embedding coordinates, Y ∈ Rd×N , can then be determined by taking the

eigenvalue decomposition of B,

B = [V1 V2]diag (λ1, ..., λN) [V1 V2]
T ,
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where [V1 V2] is a partitioned matrix, and calculating

Y = diag
(
λ

1/2
1 , ..., λ

1/2
d

)
V T

1 .

The matrix V1 consists of the eigenvectors corresponding to the d largest eigenvalues

λ1, . . . , λd while the remaining N − d eigenvectors are represented as V2. The term

‘diag(λ1, . . . , λN)’ refers to an N × N diagonal matrix with λi as its ith diagonal

element.
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Figure 4.3: Classical MDS to the matrix of a) Fisher information distances and b) Kullback-Leibler
geodesic approximations of the Fisher information distance, on a grid of univariate
normal densities, parameterized by (µ, σ)

To continue our Gaussian illustration from Section 2.2.2, in which P = {p1, . . . , pN}

is a family of univariate Gaussian distributions, let D be the matrix of exact Fisher

information distances defined in (2.7), where D(i, j) = DF (pi, pj). Figure 4.3(a) dis-

plays the results of applying cMDS to D. We demonstrate the embedding with the

geodesic approximation of the Fisher information distance, D(i, j) = G(pi, pj;P), in

Fig. 4.3(b), which is very similar to the embedding created with the exact values. It

is clear that while the densities defining the set P are parameterized on a rectangu-

lar grid, the manifold on which P lives is not rectangular itself, which is due to the

differing effects that changes in mean and variance have on the Gaussian PDF.
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4.3.2 Laplacian Eigenmaps

Laplacian Eigenmaps (LEM) is an unsupervised technique developed by Belkin

and Niyogi and first presented in [5]. This performs non-linear dimensionality re-

duction by performing an eigenvalue decomposition on the graph Laplacian formed

by the data. As such, this algorithm is able to discern low-dimensional structure

in high-dimensional spaces that were previously indiscernible with methods such as

principal components analysis and classical MDS. The algorithm contains three steps

and works as follows:

1. Construct adjacency graph

Given dissimilarity matrix DX between data points in the set X, define the

graph G over all data points by adding an edge between points i and j if X i is

one of the k-nearest neighbors of Xj (k is defined by the user).

2. Compute weight matrix W

If points i and j are connected, assign Wij = e−
DX (i,j)2

t , otherwise Wij = 0.

3. Construct low-dimensional embedding

Solve the generalized eigenvalue problem

Lv = λDv,

where D is the diagonal weight matrix in which Dii =
∑

j Wji, and L = D−W is

the Laplacian matrix. If [v1, . . . ,vd] is the collection of eigenvectors associated

with d smallest generalized eigenvalues which solve the above, the d-dimensional

embedding is defined by yi = (vi1, . . . , vid)
T , 1 6 i 6 N .

4.3.3 Additional MDS Methods

While we choose to only detail the cMDS and LEM algorithms, there are many

other methods for performing dimensionality reduction in a linear fashion (PCA) and
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non-linearly (Local Linear Embedding [71]) for unsupervised learning. For supervised

learning there are also linear (Linear Discriminant Analysis [35,42,63]) and non-linear

(Classification Constrained Dimensionality Reduction [67], Neighbourhood Compo-

nent Analysis [38]) methods, all of which can be applied to our framework. We do

not highlight the heavily utilized Isomap [74] algorithm since it is identical to using

cMDS on the approximation of the geodesic distances.

4.4 FINE Algorithm

We have presented a series of methods for manifold learning developed in the field

of information geometry. By performing dimensionality reduction on a family of data

sets, we are able to both better visualize and classify the data. In order to obtain a

lower dimensional embedding, we calculate a dissimilarity metric between data sets

within the family by approximating the Fisher information distance between their

corresponding PDFs. This has been illustrated with the family of univariate normal

probability distributions.

In problems of practical interest, however, the parameterization of the probability

densities is usually unknown. We instead are given a family of data sets X =

{X1, . . . , XN}, in which we may assume that each data set X i is a realization

of some underlying probability distribution to which we do not have knowledge of

the parameters. As such, we rely on nonparametric techniques to estimate both the

probability density and the approximation of the Fisher information distance. In

the work presented in this thesis, we implement kernel density estimation methods

(see Appendix A), although k-NN methods are also applicable. Following these

approximations, we are able to perform the same multidimensional scaling operations

as previously described.
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Fisher Information Nonparametric Embedding (FINE) is presented in Algorithm 4.1

and combines all of the presented methods in order to find a low-dimensional em-

bedding of a collection of data sets. If we assume each data set is a realization of

an underlying PDF, and each of those distributions lie on a manifold with some

natural parameterization, then this embedding can be viewed as an embedding of

the actual manifold into Euclidean space. Note that in line 5, ‘mds(G, d)’ refers to

using any multidimensional scaling method to embed the dissimilarity matrix G into

a Euclidean space with dimension d.

Algorithm 4.1. Fisher Information Nonparametric Embedding

Input: Collection of data sets X = {X1, . . . , XN}; the desired embedding dimen-

sion d

1: for i = 1 to N do

2: Calculate p̂i(x), the density estimate of X i

3: end for

4: Calculate G, where G(i, j) is the geodesic approximation of the Fisher informa-

tion distance between pi and pj (4.1)

5: Y = mds(G, d)

Output: d-dimensional embedding of X , into Euclidean space Y ∈ Rd×N

At this point it is worth stressing the benefits of this framework. Through infor-

mation geometry, FINE enables the joint embedding of multiple data sets X i into

a single low-dimensional Euclidean space. By viewing each X i ∈ X as a realization

of pi ∈ P , we reduce the numerous samples in X i to a single point. The dimension-

ality of the statistical manifold may be significantly less than that of the Euclidean

realizations. For example, a Gaussian distribution is entirely defined by its mean µ

and covariance Σ, leading to a 2-dimensional statistical manifold, while the dimen-
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sionality of the realization X ∼ N (µ, Σ) may be significantly larger (i.e. µ ∈ Rd,

d À 2). MDS methods reduce the dimensionality of pi from the Euclidean dimension

to the dimension of the statistical manifold on which it lies. This results in a single

low-dimensional representation of each original data set X i ∈ X .

4.5 Spherical Embedding Constraints

With FINE, we find an embedding into an open Euclidean space in Rd, for which

the L2-norm is an appropriate and accurate distance metric, directly related to the

Fisher information distance on the original statistical manifold. This is useful when

the manifold structure is unknown, as the embedding space is relatively uncon-

strained. Suppose, however, that there exists a priori knowledge that the statis-

tical manifold is a portion of a hyper-sphere. This can be realized with multinomial

distributions by applying a monotonic transformation p′(x) =
√

p(x), converting

the original d-dimensional simplex to a (d + 1)-dimensional hyper-sphere with unit

radius. In such situations, it may be beneficial to constrain the low-dimensional

embedding to the surface of a sphere, which will enable the usage of the great-circle

distance, the natural measure of a geodesic on a sphere. Specifically, given points on

the unit sphere parameterized with spherical coordinates θ = [φ, ψ]T , −π
2

6 φ 6 π
2

and 0 6 ψ 6 2π, the distance between θi and θj is defined as

(4.2) DS2(θi, θj) = arccos (cos(φi) cos(φj) cos(ψi − ψj) + sin(φi) sin(φj)) .

Let us briefly return to Laplacian Eigenmaps [5], which looked to solve the fol-

lowing optimization problem:

Y = arg min
{yi}

∑
i

∑
j

Wij‖yi − yj‖2

under appropriate constraints, where the weights Wij are chosen to incur heavy

penalties if neighboring points are mapped far apart. Note that this cost is optimizing
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the total length of the embedding map, with edge lengths between nodes equal to

Wij times some measure of distance (Euclidean in this case).

We may utilize this framework towards an information-geometric embedding by

modifying the choice of distance measure to that of the great-circle distance. Specif-

ically, we can solve the optimization:

(4.3) Θ = arg min
{θi}

∑
i

∑
j

WijDS2(θi, θj),

under similarly appropriate constraints and weightings, where Θ = [θ1, . . . , θN ].

While using spherical MDS [27] may be also be appropriate, optimizing (4.3) adds a

sense of locality that better preserves the local neighborhood structure of the mani-

fold.

Notice that under no additional constraints, the trivial solution to (4.3) is to

collapse all samples to the same embedded point. To prevent this, we add a constraint

designed to regulate the spread of the embedded points on the sphere. Specifically,

let us solve (4.3) such that we maximize

(4.4)
∑

i

∑
j

DS2(θi, θj)
γ,

where 0 < γ < 2 is a power-weighting constant which regulates the spread on the

sphere. One may view this constraint as maximizing the length of the graph formed

when each embedded point represents a node and the length of the edge between

nodes is the great-circle distance between points, raised to the power γ. By using

(4.3) in conjunction with maximizing (4.4), we obtain the final objective function

(4.5) Θ = arg max
{θi}

∑
i

∑
j

DS2(θi, θj)
γ −WijDS2(θi, θj),

which ensures that close PDFs will be represented by close points in the embedding

space, but the trivial solution is avoided.
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One may also view our spread constraint (4.4) as having a relationship to control-

ling the entropy of the data. As detailed by Costa and Hero in [25], the data entropy

may be estimated as a function of the length the minimal spanning tree (MST)

(4.6) L̂γ(X) = min
T∈T

∑
e∈T

D(e)γ,

where T is the set of spanning trees over X, e is an edge between sample points,

and D(e) is the length of that edge (i.e. the distance between sample points). Larger

values of L̂γ(X) are related to larger entropy values of the data X. We essentially

measure the length of the maximal spanning tree (i.e. all nodes connected by an

edge), which is indeed an element in T . Hence, while our cost was designed to

regulate the spread of embedded points to prevent trivial solutions, there is also

a direct relationship to the entropy of the data. This result is also intuitive, as

entropy is minimized with the trivial point solution, while maximized over a uniform

distribution.

Unlike LEM, there is no closed form eigenvalue solution to this optimization,

as the distance measure is highly non-linear. Hence, we solve the optimization with

gradient ascent methods (see Appendix 4-A). Let our objective function be measured

as

J =
∑

i

∑
j

DS2(θi, θj)
γ −WijDS2(θi, θj),

we may iteratively determine the optimal embedding Θ through the process

Θl+1 = Θl + µ
∂

∂Θl

J,

where µ is the step size and ∂
∂Θ

J is the direction of the gradient of the objective.

The complete derivation of this gradient is available in Appendix 4-B.

We refer to this framework as Spherical Laplacian Information Maps (SLIM), as

we find an information-geometric embedding of a statistical manifold, constrained to
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the surface of an intrinsically 2-dimensional sphere. The weights Wij are calculated

in a similar way to LEM, using the Fisher information distance rather than Euclidean

distance,

Wij = exp(−DF (pi, pj)/t),

if nodes i and j are connected, with t being some constant.

4.5.1 Spread Constraint
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Figure 4.4: When using γ → 0 or γ → ∞, a trivial solution for SLIM is found in which PDFs
collapse to either 1 or 2 points, respectively, at the poles of the sphere. The illustrated
data was 74 3-dimensional normal distributions with means equal to the location on
the unit sphere.

The choice of γ is of particular importance, as this value controls the actual spread

between points. For example, as γ → 0, the constraint (4.4) approaches the constant

N , the number of PDFs, as each power-weighted distance approaches 1. This will

result in an embedding for which trivial point solution is optimal. As γ → ∞, the

solution is optimal when all samples collapse to 2 points at the poles of the sphere,

which is the largest distance possible. Both of these cases are illustrated in Fig. 4.4,

where we demonstrate on a collection of 3-dimensional normal PDFs with mean

values equal to their location on the unit sphere. The full description of this data

is discussed shortly in Section 4.6.1, where we also demonstrate the embedding with
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γ = 0.5, which obtains the desired results.

4.5.2 SLIM Algorithm

We now present the full algorithm for SLIM, which embeds PDFs onto a 2-

dimensional spherical subspace. The resultant embedding is parameterized through

spherical coordinates θ = [φ, ψ]T , which maps to a 3-dimensional Euclidean subspace,

constrained to lie on the surface of a sphere. The user-defined constant γ determines

how large a portion of the sphere the embedding should occupy.

Algorithm 4.2. Spherical Laplacian Information Maps

Input: Collection of data sets X = {X1, . . . , XN}; power-weighting constant γ;

step size µ

1: for i = 1 to N do

2: Calculate p̂i(x), the density estimate of X i

3: end for

4: Calculate the pairwise weight matrix Wij = exp(−DF (pi, pj)/t) if nodes i and j

are connected

5: l = 1

6: while |Jl − Jl−1| > ε do

7: Calculate ∂
∂Θl

J

8: Θl+1 = Θl + µ ∂
∂Θl

J

9: J =
∑

i

∑
j DS2(θi, θj)

γ −WijDS2(θi, θj)

10: l = l + 1

11: end while

Output: Embedding of X , constrained to the sphere Θ = [θ1, . . . , θN ]

The full description of the SLIM algorithm is available in Algorithm 4.2. Empirical
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testing suggests that a value of 0.1 < γ < 1 yields desirable results, although we

would suggest users empirically determine an appropriate γ for the data of interest.

We note that although we restrict our SLIM embedding to the 2-dimensional sphere,

it may be formulated for embedding onto an arbitrary d-dimensional hyper-sphere,

although the implementation details are more difficult.

4.6 Simulations

We have illustrated the uses of the presented framework in the previous sections

with a manifold consisting of the set of univariate normal densities, P . We now

present several synthetic and practical applications for the framework, all of which are

based around visualization and classification. In each application, the densities are

unknown, but we assume they lie on a manifold with some natural parameterization.

Unless otherwise noted, all densities are estimated with a Gaussian kernel KDE.

4.6.1 Synthetic Data

Manifold Reconstruction
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Figure 4.5: Given a collection of data sets with a Gaussian distribution having means equal to the
location of points a sampled ‘swiss roll’ manifold, our methods are able to reconstruct
the original ‘unrolled’ statistical manifold from which each data set is derived.

To demonstrate the ability of our methods to reconstruct the statistical manifold,
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we create a known manifold of densities. Let Y = [y1, . . . , yN ], where each yi is uni-

formly sampled on the ‘swiss roll’ manifold (see Fig. 4.5(a)). Let X = {X1, . . . , XN},

where each X i is generated from a normal distribution N (yi, I), where I is the iden-

tity matrix. As such, we have developed a statistical manifold of known parame-

terization, which is sampled by known PDFs. Utilizing FINE in an unsupervised

manner, with the geodesic symmetric KL-divergence as our measure of dissimilar-

ity, we are able to recreate the original manifold Y strictly from the collection of

data sets X . This is shown in Fig. 4.5(b) where each set is embedded into 2 cMDS

dimensions, and the swiss roll is reconstructed in an ‘unrolled’ manner. While this

embedding could be constructed by using Isomap on Y – or the mean of each set X i

– that requires a parametric model of the data. Our nonparametric methods illus-

trate that FINE can be used for visualizing the statistical manifold as well, without

a priori knowledge of the data.
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Figure 4.6: An example statistical manifold in which Gaussian distributions have mean values equal
to the location on the sphere.

We continue by reconstructing a statistical manifold parameterized by the intrin-

sically 2-dimensional sphere. Given that there is no way to appropriately embed the

sphere into a 2-dimensional Euclidean space, this is a good demonstration of the
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Figure 4.7: The unconstrained space of FINE is unable to embed the statistical manifold parameter-
ized by the sphere into 2-dimensional Euclidean space. By constraining the embedding
to the surface of a sphere, SLIM gives a more accurate reconstruction.

power of SLIM. We define our data in a similar manner to the swiss roll example;

let Y = [y1, . . . , yN ], where each yi lies on the surface of the sphere. Note that these

{yi} are generated with uniform spacing in both azimuth and elevation angles (see

Fig. 4.6). Let X = {X1, . . . , XN}, where each X i is generated from a normal distri-

bution N (yi, I). Figure 4.7(a) illustrates the clear inability to appropriately embed

a spherical statistical manifold into a 2-dimensional Euclidean space. Notice that

points which are the maximum distance apart on the manifold are ‘flattened’ to be

nearest neighbors in the embedding space. When utilizing SLIM however, one can

easily reconstruct the spherical manifold into a 2-dimensional space parameterized

by spherical coordinates θ = [φ, ψ]T . In Fig. 4.7(b) we illustrate this embedding in

a 3-dimensional Euclidean space (by converting from spherical to cartesian coordi-

nates) simply for the purposes of visualization. Although this visualization is difficult

due to the 2-dimensional constraints of this presentation medium, one can easily use

intuition to mentally envision the embedding on the sphere. Note that in this SLIM

simulation we set γ = 0.5.

One may argue that an embedding with FINE into a 3-dimensional Euclidean
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space will alleviate the discussed issues and still form a sphere in an unconstrained

space. While this is indeed true, the embedding is still not the optimal represen-

tation. This arises from the fact that embedding into a Euclidean space forces the

usage of the L2-norm of distance, while embedding into a spherical space utilizes

the great-circle distance. Given that any unsupervised embedding should preserve

relative pairwise distances, let us measure the error between embedding methods.

Specifically, we define E? = ‖D̃F (X ) − D̃?(X )‖2
F , where D̃F is the pairwise Fisher

distance matrix approximated with the geodesic Hellinger distance, scaled such that

the maximum distance equals 1. D̃? is the similarly scaled pairwise distance ma-

trix in the embedding space, calculated with the L2-norm when using FINE and the

great-circle distance when using SLIM. Results show that FINE yields an error of

EFINE = 53.4, while the SLIM embedding was much more accurate at ESLIM = 37.9.

Dimensionality Reduction

While the previous simulations focused on the task of manifold reconstruction,

we now illustrate the usage of SLIM for dimensionality reduction in the following

manner. Let α(i) = [α
(i)
1 , . . . , α

(i)
5 ]T be uniformly distributed as a 5-dimensional vector

satisfying the properties of a multinomial distribution: α
(i)
j > 0 and

∑
j α

(i)
j = 1. For

each α(i), we draw an i.i.d. realization X i from a Dirichlet distribution

f
(
x1, . . . , x4; α

(i)
1 , . . . , α

(i)
5

)
=

1

B(α(i))

5∏
j=1

x
α

(i)
j −1

j ,

where x5 = 1−∑4
j xj and

B(α(i)) =

∏
j Γ(α

(i)
j )

Γ
(∑

j α
(i)
j

)

is the multinomial beta function, expressed in terms of the gamma function. Hence,

we create a collection of data sets X = {X1, . . . , XN} from a statistical manifold
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paramaterized by the simplex. Given that the simplex can be mapped to a portion

of the sphere by the square root, this may be a good scenario for SLIM.

Let us further add a classification aspect to the problem, by defining class labels

such that those data sets generated with parameters α
(i)
1 + α

(i)
2 > 0.4 belong to class

1, while all other sets belong to class 2. Essentially, this measures whether or not

more than 40% of the probability mass was covered in the first 40% (2 out of 5) of

the variates of the parameterization.

Using N = 100 data sets, we perform leave-one-out cross validation over 20 clas-

sification trials, i.i.d. in {α(i)}. We compare classification performance (with a k-NN

classifier) of SLIM to that of FINE with LEM, embedded in both 2 and 3 dimen-

sions, and illustrate the best performance results in Table 4.1 (over k ∈ [1, 15]). We

believe that SLIM shows superior performance to FINE in 2-D, and comparable to

FINE in 3-D, due to the fact that the original PDFs could be easily parameterized

by the non-negative portion of the hyper-sphere. When using SLIM for dimension-

ality reduction, we maintain the spherical constraint while the mapping allows for

negativity, essentially yielding an additional degree of freedom. This explains the

similar results to the 3-dimensional embedding with FINE.

Method Classification Rate (%)
Mean STD

SLIM 2-D 80.3 6.3
FINE 2-D 76.9 6.9
FINE 3-D 80.4 5.5

Table 4.1: Classification rates for performing dimensionality reduction on the set of Dirichlet distri-
butions parameterized by multinomials. The 2-dimensional embedding found by SLIM
outperforms that of FINE using LEM in 2-dimensions and performs comparably to the
3-D embedding.

Note that we are not implying that SLIM is in general a superior algorithm to

FINE. In fact the spherical constraint forces significant limitations on SLIMs usage.

However, when a priori knowledge states that the manifold is indeed a sphere, or
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portion thereof, the constraint is appropriate and yields potentially significant gains

for the final embedding.

4.6.2 Document Classification

Recent work has shown interest in using dimensionality reduction for the pur-

poses of document classification [51] and visualization [45]. Typically documents are

represented as very high-dimensional PDFs, and learning algorithms suffer from the

curse of dimensionality. Dimensionality reduction not only alleviates these concerns,

but it also reduces the computational complexity of learning algorithms due to the

resultant low-dimensional space. As such, the problem of document classification is

an interesting application for FINE.

Given a collection of documents of known class, we wish to best classify a doc-

ument of unknown class. A document can be viewed as a realization of some over-

riding probability distribution, in which different distributions will create different

documents. For example, in a newsgroup about computers you could expect to see

multiple instances of the term “laptop”, while a group discussing recreation may see

many occurrences of “sports”. The counts of “laptop” in the recreation group, or

“sports” in the computer group would predictably be low. As such, the distributions

between articles in computers and recreation should be distinct. In this setting, we

defined the PDFs as the term frequency representation of each document. Specif-

ically, let xi be the number of times term i appears in a specific document. The

PDF of that document can then be characterized as the multinomial distribution of

normalized word counts, with the maximum likelihood estimate provided as

(4.7) p̂(x) =

(
x1∑
i xi

, . . . ,
xN∑

i xi

)
.

Note that this term frequency representation of a multinomial distribution is
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nonparametric, so although we do not utilize kernel methods for this problem, we still

require no explicit parameter estimation. Since this representation is multinomial

and highly sparse, we choose the Hellinger distance as our approximation function,

recalling that DH has a monotonic transformation onto the cosine distance DC , which

is a natural metric on a sphere defined by multinomial PDFs.

For illustration, we will utilize the well known 20 Newsgroups data set1, which is

commonly used for testing document classification methods. This set contains word

counts for postings on 20 separate newsgroups. We choose to restrict our simulation

to the 4 domains with the largest number of sub-domains (comp.*, rec.*, sci.*, and

talk.*), and wish to classify each posting by its highest level domain. Specifically we

are given P = {p1, . . . , pN} where each pi corresponds to a single newsgroup posting

and is estimated with (4.7). We note that the data was preprocessed to remove all

words that occur in 5 or less documents2.
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Figure 4.8: 2-dimensional embeddings of 20 Newsgroups data. The data displays some natural
clustering in the information based embeddings, while the PCA embedding does not
distinguish between classes.

First, we utilize unsupervised methods to see if a natural geometry exists between

domains. Using FINE (with LEM) and SLIM, we find 2-dimensional embeddings of

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
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P . Figure 4.8 shows the natural geometric separation between the different document

classes, although there is some expected overlap. Note that in the SLIM embedding

4.8(b), we plot in spherical coordinates. Contrarily, a PCA embedding (Fig. 4.8(c))

does not demonstrate the same natural clustering. PCA is often used as a means to

lower the dimension of data for learning problems due to its optimality for Euclidean

data. However, the PCA embedding of the 20 Newsgroups set does not exhibit any

natural class separation due to the non-Euclidean nature of the data.
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Figure 4.9: Local dimension estimates for each document from a random subset of 600 documents
in the 20 Newsgroups data set.

We now compare the classification performance of FINE to that of PCA. In the

case of document classification, dimensionality reduction is important as the natural

dimension (i.e. number of words) for the 20 Newsgroups data set is 26, 214. Using the

k-NN algorithm for local intrinsic dimension estimation (with no smoothing), Fig. 4.9

shows the histogram of the true dimensionality of the sample documents; we test

performance for low-dimensional embeddings P → Rd for d ∈ [5, 50]. Following each

embedding, we apply an SVM with a linear kernel to classify the data in an ‘all-vs-all’

setting (i.e. classify each test sample as one of 4 different potential classes in a single

event). The training and test sets were separated according to the recommended



78

indices, and each set was randomly sub-sampled for computational purposes, keeping

the ratio of training to test samples constant (400 training samples, 200 test samples).

Both the FINE and PCA settings jointly embed the training and test sets.
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Figure 4.10: Classification rates for low-dimensional embedding using different methods for dimen-
sionality reduction. 1-standard deviation confidence intervals shown over 20-fold cross
validation.

Figure 4.10 illustrates that the embedding calculated with FINE outperforms

using PCA as a means of dimensionality reduction. The classification rates are

shown with a 1-standard deviation confidence interval, and FINE with a dimension

as low as d = 10 generates results comparable to those of a PCA embedding with

d = 50. To ease any concerns that Laplacian Eigenmaps (LEM) is simply a better

method for embedding these multinomial PDFs, we calculated an embedding with

LEM in which each PDF was viewed as a Euclidean vector with the L2-distance used

as a dissimilarity metric. This form of embedding performed much worse than the

information based embedding using the same form of dimensionality reduction and

the same linear kernel SVM, while comparable to the PCA embedding in very low

dimensions.



79

Supervised FINE

If we allow FINE to use supervised methods for embedding, we can improve classi-

fication performance. By embedding with Classification Constrained Dimensionality

Reduction (CCDR) [67], which is essentially LEM with an additional tuning param-

eter defining the emphasis on class labels in the embedding, we hope to improve clas-

sification performance and compete with leading methods. We now compare FINE

to the diffusion kernels developed by Lafferty and Lebanon [53] for the purpose of

document classification. The diffusion kernels method uses the full term-frequency

representation of the data and does not utilize any dimensionality reduction. We

stress this difference to determine whether or not using FINE for dimensionality

reduction can generate comparable results.
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Figure 4.11: 3-dimensional embedding of 20 Newsgroups corpus using FINE in a supervised manner.

We first illustrate the classification performance in a ‘one vs. all’ setting, in which

all samples from a single class were given a positive label (i.e. 1) and all remaining

samples were labeled negatively (i.e. −1). In the FINE setting, we first subsampled

from the training and test sets, using a test set size of 200, then used CCDR to

embed the entire data set into Rd, with d ∈ [5, 95] chosen to maximize classification
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FINE Diffusion Kernels
Task L Mean STD Mean STD

comp.*

40 82.3750 4.1003 75.5750 3.9413
80 85.8250 2.8713 83.0250 3.4469
120 87.6000 2.0876 85.5750 3.2129
200 87.9750 2.3978 87.8500 2.2775
400 89.8000 2.0926 89.6250 1.9992
600 90.6500 2.0970 91.3000 2.4677
1000 91.3000 2.3864 91.9000 2.2572

rec.*

40 82.3500 3.2610 76.2000 3.1514
80 86.3500 2.0462 82.0000 3.8251
120 87.1500 2.3345 83.1250 3.9599
200 89.5500 1.4133 86.8750 2.1143
400 91.4750 2.2152 90.7000 2.0545
600 92.7500 1.2722 93.1000 2.0494
1000 93.2000 1.3318 94.6250 1.4223

sci.*

40 78.6500 2.8102 76.3250 3.2898
80 80.3750 3.3280 77.4750 4.2286
120 81.5250 2.8722 78.2250 3.1518
200 83.4000 2.9585 82.2000 3.0236
400 86.1750 2.2021 86.2000 2.2325
600 87.1750 2.9212 87.0500 2.9731
1000 89.3000 2.3022 89.8000 2.2384

talk.*

40 89.1250 3.1241 82.2750 2.9131
80 90.4250 2.8895 85.9250 3.6859
120 91.1250 2.5745 86.5500 4.0161
200 92.6500 1.8503 89.7750 3.1518
400 93.1000 1.9775 92.4750 2.1672
600 94.7500 1.3908 94.3750 1.5634
1000 94.8500 1.5483 94.8500 1.4244

Table 4.2: Experimental results on 20 Newsgroups corpus, comparing FINE using CCDR and a
linear SVM to a multinomial diffusion kernel based SVM. The performance (classification
rate in %) is reported as mean and standard deviation for different training set sizes L,
over a 20-fold cross validation.

performance. The classification task was performed using a simple linear kernel

SVM,

K(X,Y ) = X · Y.

For the diffusion kernels setting,

K(X,Y ) = (4πt)−
n
2 exp

(
−1

t
arccos2

(√
X ·

√
Y

))
,

we chose parameter value t which optimized the classification performance at each

iteration. The experimental results of performance versus training set size, with
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20-fold cross validation, are shown in Table 4.2, where the highest performance at

each range is emphasized. FINE shows a significant performance increase over the

diffusion kernels method for sets with low sample size. As the sample size increases,

however, the gap in performance between the diffusion kernels method and FINE

decreases, with diffusion kernels eventually surpassing FINE.

We now modify the classification task from a ‘one vs. all’ to an ‘all vs. all’ setting,

in which each class is given a different label and the task is to assign each test sample

to a specific class. Classification rates are defined as the number of correctly classified

test samples divided by the total number of test samples (kept constant at 200). The

structure of the experiment is otherwise identical to the ‘one vs. all’ setting. We once

again notice in Fig. 4.12 that FINE outperforms the diffusion kernels method for low

sample sizes. The point at which the diffusion kernels method surpasses FINE has

decreased (i.e. L ≈ 200 for ‘all vs. all’ compared to L ≈ 600 for ‘one vs. all’), yet

FINE is still competitive as the sample size increases.
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Figure 4.12: Classification rates for low-dimensional embedding with FINE using CCDR vs Diffu-
sion kernels. The classification task was all vs. all. Rates are plotted versus number of
training samples. Confidence intervals are shown at one standard deviation. For com-
parison to the joint embedding (FINE), we also plot the performance of FINE using
out of sample extension (OOS). The optimal Bayes classification rate is also displayed.

Note that we also plot the optimal Bayes classification rate, which is calculated
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through an upper bound with the min-max Chernoff criteria [43]. This defines prob-

ability of classification error as

P ∗
e 6 max

s,i6=j
πs

i π
1−s
j exp (−DCH(pi, pj; s)) ,

where {pi} are class PDFs, πi are the class probabilities, and

DCH(pi, pj; s) = − log

∫
ps

i (x)p1−s
j (x) dx

is the Chernoff distance between PDFs. We see that both FINE and the diffusion ker-

nels method approach the performance of the optimal Bayes classifier as the training

set increases in size. We utilized the entire training set – 2407 samples – to estimate

class PDFs when calculating the optimal Bayes performance.

While our focus when using FINE has been on jointly embedding both the train-

ing and test samples (while keeping the test samples unlabeled), Fig. 4.12 also illus-

trates the use of out of sample extension (OOS) [66] with FINE. In this scenario, the

training samples are embedded as normal with CCDR, while the test samples are

embedded into the low-dimensional space using interpolation. This setting allows

for a significant decrease in computational complexity given the fact that the FINE

embedding has already been determined for the training samples (e.g. new test sam-

ples are received). A decrease in performance exists when compared to the jointly

embedded FINE, which is reduced as the number of training samples increases.

Analysis of the results in both the ‘one vs. all’ and ‘all vs. all’ cases shows that

FINE can improve upon the deficiencies of the diffusion kernels method in the low

sample size region. By viewing each document as a coarse approximation of the

overriding class PDF, it is easy to see that, for low sample sizes, the estimate of the

within class PDF generated by the diffusion kernels will be highly variable, which

leads to poor performance. By reducing the dimension with FINE, the variance is
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Figure 4.13: Comparison of classification performance on the 20 Newsgroups data set with FINE
using different SVM kernels; one linear and two non-linear (2nd polynomial and radial
basis function).

limited to significantly fewer dimensions, enabling documents within each class to be

drawn nearer to one another. While this could also bring the classes closer to each

other, the utilization of CCDR ensures class separation. This results in better classi-

fication performance than using the entire multinomial distribution. As the number

of training samples increases, the effect of dimensionality is reduced, which allows the

diffusion kernels to better approximate the multinomial PDF representative of each

class. This reduction in variance across all dimensions ensures that a few anomalous

documents will not have the same drastic effect as they would in the low sample

size region, resulting in over-fitting. Hence, the performance gain surpasses that

of FINE, due to the fact that the curse of dimensionality was alleviated elsewhere

(i.e. increase in sample size). We note that while FINE performs slightly worse than

diffusion kernels in the large sample size region, it still performs competitively with

a leading classification method which utilizes the full dimensional data.

An additional reason for the diffusion kernels improved performance over FINE in

the large sample size region is that we have restricted FINE to using a linear kernel for

this experiment, while the diffusion kernels method is very non-linear. We do this to
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show that even a simple linear classifier can perform admirably in the FINE reduced

space. Using a non-linear kernel would show increased performance with FINE. This

is illustrated in Fig. 4.13, where we compare the performance of FINE using an

SVM classifier with a linear kernel (K(X, Y ) = XT Y ), 2nd degree polynomial kernel

(K(X, Y ) = (γXT Y )2), and a radial basis function kernel (K(X, Y ) = exp(−γ|X −

Y |2)), where γ is a weighting constant. For visualization purposes, we show the

results for only a subset of the training sample range (i.e. L = [200, 400]), but it

is clear that the use of non-linear kernels improves the performance of FINE. The

problem of which of the many possible non-linear kernels is optimal remains open

and is a subject for future work.

4.6.3 Object Recognition

The problem of object recognition from image sets is similar to the standard classi-

fication task. One is given a collection of training data I = {(I1, y1), . . . , (I
N , yN)},

where I i = [I1, . . . , Ini
] is a set of ni images {Ij} of the same object. These im-

ages may be captured at different vantage points, showcasing different attributes of

the object. We wish to classify an unknown set of images I with some function

f(I) : I → y [13].

Let us first illustrate the potential difficulties with this problem. Let I be a

collection of ∼ 150 image captures each of N = 4 unique objects. Each image

is taken at a different angle, holding pitch constant while rotating the yaw (full

details of image requisition will be described shortly). We use principal component

analysis (PCA) on the entire collection of rasterized images (i.e. X = [I1, . . . , IN ]) to

project each image onto the first 2 and 3 principal components of X; Fig. 4.14 shows

these results. One can naturally see a path formed which demonstrates the natural

transition from one image taken at one yaw to the next taken with a slight change
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in yaw. It is also clear that the paths which different objects take are very similar,

which would make it difficult to distinguish one from the other in most cases. Add

that in practice, there may be ¿ 150 available images per object, and the problem

of differentiating image sets (i.e. recognition) becomes very difficult.
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Figure 4.14: Projected each image onto the first principal components (PCs). It is clear that there
is some trajectory which is followed by each object, corresponding to the change in
yaw in each image.

Looking at the trajectories, however, it becomes apparent that there is some gen-

erative model which governs the path. While any given point in an object trajectory

may be difficult to distinguish from the path of a different object, the entire path

maybe more easily discerned. We take a statistical approach by modeling each tra-

jectory as a probability density function, which allows for an information-geometric

framework to the problem. Specifically, given I as training data, and we may esti-

mate the PDFs of each I i as pi(I), for i ∈ [1, N ]. This is performed using a KDE on

the rasterized image sets. Once the object class PDFs are estimated with the training

data, test sets are classified by minimizing the information divergence between test

and training sets. Let I be a test image set with estimated PDF p(I), our classifier
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y = f(I) is

(4.8) f(I) = arg min
i

G(p(I), pi(I);P),

where P = {pi}. This may be essentially viewed as a 1-nearest neighbor classifier,

using the information divergence as an appropriate metric. For the purposes of this

simulation, we utilize the Hellinger distance as our metric, due to the stability it

provides by being a bounded measure.

With the denoted setup (4.8), we are operating in a semi-supervised framework,

as test samples are utilized to approximate the geodesic G(p(I), pi(I);P). If this is

undesirable, as in many instances there is not an available collection of test samples,

the classification may be performed in the same manner using the strict Hellinger

distance DH(p(I), pi(I)) as opposed to the geodesic approximation.

4.6.4 Data Setup

The data we will analyze was collected at Tech-edge building, in the Air Force

Research Laboratory3. The experiment was performed with 4 unique objects – 3

different model laptops and an LCD monitor. Each object was positioned on a

swiveling desk, with a stationary camera (Canon VB-50iR) located above and to the

left side of the object. The desk was then spun by a rope (so that no person is in the

scene) and the camera captured still frames of the object at 15 fps with a 640× 480

resolution, for roughly 10 seconds. An illustration of these retrieved data sets may

be found in Fig. 4.15. Note that for each trial, the object was placed at the same

location on the desk, and the desk was spun at an (attempted) equal speed.

Given the lack of unique objects, but the well sampled trajectories of the objects

with changes in yaw, we may artificially manufacture “new” realizations of unique

3This data collection was partially supported by the AFRL ATR Center through a summer internship of Christine
Kyung-min Kim and a Signal Innovations subcontract to the University of Michigan.
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Figure 4.15: Sample images from the image sets. The objects rotate on the table, giving the camera
different capture angles. Pitch remained constant while yaw changed with the rotation.

objects by subsampling along the trajectory. Specifically, let I = [I1, . . . , In], ordered

according to change in object yaw, and let l be the sample spacing. Rather than

having only 1 image set for the object, we can create n/l image sets by subsampling

in the following manner:

(4.9) Ij = [Ij, Ij+l, Ij+2l, . . .],

which generate uniformly spaced, i.i.d. realizations along the yaw trajectory. Al-

though artificially generated, this is statistically equivalent to capturing a sequence

of images from identical items which have been positioned differently (with respect

to yaw). Note that each manufactured set has entirely unique images, so no two

estimated PDFs will be identical. This is key as it simulates the setting for this
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object recognition task.

4.6.5 Results

We first wish to study the effect of test sample size on recognition capability.

We begin by partitioning our training set to ∼ 10 sample images for each of the 4

objects, obtained with subsampling using (4.9). Next, we partition our test set using

∼ Nt samples per test object, with Nt ∈ [2, 10]. Given the small sample sizes, we

preprocess the data by projecting each image onto the first 10 principal components

of the training set. To test recognition capabilities, we use the 1-NN classifier (4.8)

and plot the classification error, over a 10-fold cross validation, in Fig. 4.16. We also

compare to the method presented in [4], which classifies image sets by maximizing

the KL-divergence between test set and training set. Note that we have modified

the method to use a KDE rather than GMM for density estimation. While this may

cause a minor change in performance, we aim to keep as many factors constant as

possible for a fair comparison. Additionally, given the low number of samples we are

considering, a GMM offers very little difference to a KDE.
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Figure 4.16: Classification error rates for object recognition using different information divergences.
The stability of the Hellinger distance for low training set sample sizes shows superior
performance, garnering even better rates when using the geodesic approximation.
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(b) SLIM

Figure 4.17: Embedding of the image sets with FINE and SLIM. We can see that two of the laptops
(4 and +) are very similar, while the third laptop (?) and LCD monitor (·) are clearly
separable.

It is clear that the proposed method using the geodesic distance outperforms

the KL method. To ease concerns that the performance gain is strictly due to the

geodesic distance approximation G(p, pi;P), which may not be practically available

in all cases, we also illustrate classification performance using the strict Hellinger

distance DH(p, pi). There is a slight decrease in performance, which shows that

there is indeed some gain from the geodesic approach, but performance is still far

superior to that of the KL-divergence. We believe this is due to the instability of the

KL measure, which is highlighted when dealing with low sample size. As the sample

size of the training set increases, and the PDFs are better estimated, we believe both

methods would perform comparably.

Finally, we illustrate the embeddings of the data obtained with FINE and SLIM.

For this case we used l = 7, such that each test image set had roughly 70% the number

of sample images as the training sets. The embedding results are shown in Fig. 4.17,

and the natural clustering is visually identified. Each point represents a unique image

set I, and the points corresponding to training sets are denoted with the circle. Note

that this embedding was entirely unsupervised. This visualization, which is entirely
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based on the natural information-geometry between the image sets, is useful for

comparing objects. One may notice that two of the laptop image sets are similarly

embedded, while the other two are clearly separated. It is logical that the points

corresponding to the LCD monitor lie furthest away from the points representing

laptop image sets, as they are the most dissimilar. We can not visually decipher the

reason 2 laptops seem so close, but note that they are still distinguishable even in 2

dimensions, even more so in 3 dimensions.

Orientation Angle Recognition

Let us now briefly present an additional application for SLIM on the available data.

Specifically, looking at Fig. 4.14 we noted that there was an apparent trajectory for

which the images progressed. This corresponded to the change in yaw angle when

capturing the sequence. Given that this angle changes as a function of a rotation, the

angle will eventually ‘reset’ as the rotation continues, as it exists in [0, 2π). Hence,

embedding each individual image onto the unit circle, or surface of the unit sphere,

should properly illustrate this trajectory.
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Figure 4.18: By embedding each image on the sphere with SLIM, we can see the clear rotational
trajectory (denoted by change in color) that is taken by the image capturing system.

We proceed by sampling a portion of the image trajectory for a single object, cor-
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responding to one complete rotation in yaw (37 images total). We then characterize

each rasterized image Ii as a multinomial distribution over the entire pixel space,

such that

pi(I) =

[
Ii(1)∑
j Ii(j)

, . . . ,
Ii(m)∑
j Ii(m)

]T

,

where m is the length of Ii (m = 307200 in this case). Given these multinomial

PDFs, we calculate the pairwise Hellinger distances and implement SLIM. Results

are illustrated in Fig. 4.18, where we see the clear trajectory which governs the

images. Colors are applied sequentially to the points so one can view the order for

which the path takes (starting at blue and ending at red).

While this work is currently in its infancy, we present it here to illustrate the

potential power of this approach. Specifically, given a constant rotation radius, any

image that is captured of an object may be mapped to the surface of a sphere. Given

a database of potential objects taken at different vantage points (in both pitch and

yaw), we believe SLIM may be used to determine the exact orientation angle of the

capturing device. This is parallel to determining the orientation of the object given a

known camera location, and could prove very helpful in task of recognizing an object

from a single image.

4.7 Conclusions and Future Work

The assumption that high-dimensional data lies on a Riemannian sub-manifold

of Euclidean space is often based on the ease of implementation due to the wealth

of knowledge and methods based on Euclidean space. This assumption is not viable

in many problems of practical interest, as there is often no straightforward and

meaningful Euclidean representation of the data. In these situations it may be more

appropriate to assume the data is a realization of some PDF lying on a statistical
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manifold. Using information geometry, we have shown the ability to find a low-

dimensional embedding of the manifold, which allows us to not only find the natural

separation of the data, but to also reconstruct the original manifold and visualize

it in a low-dimensional Euclidean space. This allows the use of many well known

learning techniques which work based on the assumption of Euclidean data.

We have illustrated the ability of both FINE and SLIM to be used in synthetic and

practical applications; for visualization, clustering, and classification. We will present

additional applications in proceeding chapters. In future work, we plan to utilize

different classification methods (such as k-NN and using different SVM kernels) to

maximize our document classification performance. We also plan to continue studies

on the effect of using out of sample extension on our performance. Additionally, we

aim to continue with the idea of determining object orientation angle with SLIM.

Lastly, we will continue to find applications which fit the setting for FINE and SLIM,

such as internet anomaly detection and face recognition, and determine whether or

not these problems would benefit from our framework.

4-A Appendix: Gradient Descent

Gradient descent (or the method of steepest descent) allows for the solution of

convex optimization problems by traversing a surface or curve in the direction of

greatest change, iterating until the minimum is reached (gradient ascent searches

for the maximum). Specifically, let J(x) be a real-valued objective function which

is differentiable about some point xi. The direction in which J(x) decreases the

fastest, from the point xi, is that of the negative gradient of J at xi, − ∂
∂x

J(xi). By

calculating the location of the next iteration point as

xi+1 = xi − µ
∂

∂x
J(xi),
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where µ is a small number regulating the step size, we ensure that J(xi) > J(xi+1).

Continued iterations will result in J(x) converging to a local minimum. Gradient

descent does not guarantee that the process will converge to an absolute minimum,

so typically it is important to initialize x0 near the estimated minimum. Note that

if gradient ascent is desired, the optimization is solved as

xi+1 = xi + µ
∂

∂x
J(xi).

4-B Appendix: SLIM Gradient Calculation

We now derive the gradient for the SLIM algorithm. Recall the objective function

in which we maximize

(4.10) J =
∑

i

∑
j

DS2(θi, θj)
γ −WijDS2(θi, θj),

which may be further described as

J = J1 − J2,

where

J1 =
∑

i

∑
j

DS2(θi, θj)
γ

is the power-weighted graph length and

J2 =
∑

i

∑
j

WijDS2(θi, θj)

is the multiplicative-weighted graph length. As the gradient operator is linear, we

may solve

(4.11)
∂

∂Θ
J =

∂

∂Θ
J1 − ∂

∂Θ
J2.

For ease of notation, define

DS2(θi, θj) = arccos(f(θi, θj)),
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where

f(θi, θj) = cos(φi) cos(φj) cos(ψi − ψj) + sin(φi) sin(φj).

Let us now derive the gradient quantities individually:

∂

∂φi

J1 =
∑

j

arccos(f(θi, θj))
γ−1 −2√

1− f(θi, θj)2
×

(− sin φi cos φj cos(ψi − ψj) + cos φi sin φj)

∂

∂ψi

J1 =
∑

j

arccos(f(θi, θj))
γ−1 −2√

1− f(θi, θj)2
×

(cos φi cos φj (− sin ψi cos ψj + cos ψi sin ψj) + cos φi sin φj)

∂

∂φi

J2 =
∑

j

Wij
−2√

1− f(θi, θj)2
(− sin φi cos φj cos(ψi − ψj) + cos φi sin φj)

∂

∂ψi

J2 =
∑

j

Wij
−2√

1− f(θi, θj)2
(cos φi cos φj (− sin ψi cos ψj + cos ψi sin ψj) +

cos φi sin φj)(4.12)

Hence, we may define the gradient of the constrained objective function by substitut-

ing the equations in (4.12) into (4.11) for each element of the matrix Θ = [θ1, . . . , θN ],

where θi = [φi, ψi]
T .



CHAPTER V

Information Preserving Component Analysis

5.1 Introduction

Consider a signal X = [x1, . . . , xn] in which each xi ∈ Rd. For many learning

methods, it is often desirable to reduce the dimensionality of X, finding a trans-

formation A : X → Y where Y = [y1, . . . , yn] and each yi ∈ Rm, m < d. This is

standard fare for manifold learning yielding the non-linear embedding methods thor-

oughly discussed in previous chapters [5, 71,74], and linear projection methods such

as principal component analysis [37] and independent component analysis (ICA) [46].

Now consider a collection of signals X = {X1, . . . , XN} in which dimensionality

reduction is still desired. Typically, each set would be reduced in an individual

manner. If there is deemed a relationship between the sets, it has generally been

approached as a classification problem in which each signal X i is considered a set

of points belonging to class i. In this setting, Fisher’s linear discriminant analysis

(LDA) [35,42,63] methods are typically used for supervised dimensionality reduction.

What if we view this problem in a different light; rather than considering each

X i to be a collection of points in a specific class, let us generalize the relationship

between sets X i and Xj. Specifically, consider the case for which each X i is a

realization of some unknown generating function pi, in which pi and pj may or may

95
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not be equivalent. This agrees with the standard classification problem, in which

each pi represents a class PDF, but it also allows for different relationships between

PDFs. Specifically, rather than having a number classes equal to the number of data

sets N , there may be significantly fewer classes M ¿ N , in which M is unknown

and no labels are available. Dimensionality reduction is still desirable, however, for

the purposes of feature extraction and visualization rather than classification.

Let us illustrate with a simple example. Suppose a census is performed in each

state generating a collection of data about each of its residents such as height, weight,

income, ethnicity, education level, etc.. Standard methods of feature extraction will

find the features which best describe each state on an individual level. We are

interested in determining the most important features when comparing all states at

the same time. While ethnicity may not be a distinguishing characteristic within

the state of Wyoming, and may not be recognized as such when solely extracting

features from that individual state, it would be quite informative when comparing

all 50 states. Hence, we desire to find a method of dimensionality reduction which

best relates a collection of signals, one to another.

In this chapter we propose a linear method of dimensionality reduction – which

we refer to as Information Preserving Component Analysis (IPCA) – that preserves

probabilistic similarities between multiple related data sets. Rather than making

Euclidean assumptions on the data, we characterize the data as a realization of some

generative model, or probability distribution, and use the Fisher information distance

as a similarity measure between sets, which we aim to preserve in the low dimension.

Whereas standard methods of dimensionality reduction aim to find some optimal

transformation of data points A : x → y, where x ∈ Rd and y ∈ Rm (m < d), IPCA

aims to find the optimal transformation of PDFs A : p(x) → p(y). By preserving
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the Fisher information distance between the estimated PDFs generating the data

sets, IPCA ensures that the low-dimensional representation maintains the similarities

between data sets which are contained in the full-dimensional data, minimizing the

loss of information.

We will show that IPCA can be used both in the unsupervised and supervised

frameworks of dimensionality reduction. In the unsupervised case, the projection

onto the same low-dimensional subspace enables a visual comparison between various

related signals in a manner that could not be done by projecting each individually,

which would create a unique subspace for each signal. When using dimensionality

reduction for the classification task, IPCA offers a subspace which minimizes the

upper bound on probability of classification error. In both cases, analysis of the

loading vectors within the IPCA projection matrix offers a form of feature extraction,

identifying which variables are most important towards information preservation,

which has the significant benefit of allowing for exploratory data analysis.

The remainder of this chapter proceeds as follows: We present our methods for

finding the unsupervised IPCA projection in Section 5.2, followed by an adaptation

to the supervised case in Section 5.3. Simulation results for synthetic data, spam

(i.e. unsolicited email) analysis, and soil imagery classification are shown in Section

5.4, followed by a discussion and areas for future work in Section 5.5.

5.2 Unsupervised IPCA

Rather than focusing on the relationships between elements in a single data set X,

it is often desirable to compare each set in a collection X = {X1, . . . , XN} in which

X i has ni elements x ∈ Rd. We can define a similarity between data sets X i and

Xj with the Fisher information distance as DF (pi, pj), in which pi is the estimated
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PDF of set X i. With an abuse of notation, we will further refer to DF (pi, pj) as

DF (X i,Xj) with the knowledge that the Fisher information distance is calculated

with respect to PDFs, not realizations.

We define the Information Preserving Component Analysis (IPCA) projection

matrix A ∈ Rm×d, in which A reduces the dimension of X from d to m (m 6 d),

such that

(5.1) DF (AX i, AXj) = DF (X i,Xj), ∀ i, j.

Formatting as an optimization problem, we would like to solve:

(5.2) A = arg min
A:AAT =I

J(A),

where I is the identity matrix and J(A) is some cost function designed to implement

(5.1). Note that we include the optimization constraint AAT = I to ensure our

projection is orthonormal, which keeps the data from scaling or skewing as that

would undesirably distort the data. Let D(X ) be a dissimilarity matrix such that

Dij(X ) = DF (X i,Xj), and D(X ; A) is a similar matrix where the elements are

perturbed by A, i.e. Dij(X ; A) = DF (AX i, AXj). We formulate the following cost

function:

(5.3) J(A) =
∑

i

∑
j

Wij (Dij(X )−Dij(X ; A))2 ,

where Wij is some weighting factor.

It should be clear that setting Wij = 1, ∀i, j is a direct implementation of our

stated objective. We may modify the weights, however, to apply a sense of locality to

our objective, which is useful give that the approximations to the Fisher information

distance are valid only as p → q. In problems in which PDFs may significantly differ,

this will prevent the algorithm from being unnecessarily biased by PDFs which are
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very far away. Specifically, we may define weights using an exponential heat kernel

Wij = exp (−Dij(X )/c),

where c is some constant. This will ensure that the PDFs which are “close” are given

more weight than those for which the Fisher information distance approximation is

weak. We may also define our weights as Wij = 1 if X i and Xj are neighbors – either

defined through some ε-ball or k-NN graph. This weighting again adds a sense of

locality, but makes no attempt to preserve “far” distances, rather than diminishing

their importance as with the heat kernel weighting.

While the choice of cost weighting function is dependent on the problem, the

overall projection method ensures that the similarity between data sets is maximally

preserved in the desired low-dimensional space, allowing for comparative learning

between sets.

5.2.1 Optimization

Using gradient descent, we are able to solve (5.2). Specifically, let J(A) =

∑
i

∑
j Wij (Dij(X )−Dij(X ; A))2 be our objective function, measuring the weighted

squared error between our projected subspace and the full-dimensional space. The

direction of the gradient is solved by taking the partial derivative of J w.r.t. a pro-

jection matrix A,

∂

∂A
J(A) =

∑
i

∑
j

Wij
∂

∂A

[
D2

ij(X ; A)− 2Dij(X )Dij(X ; A)
]
,

which is further evaluated as

∂

∂A
J(A) =

∑
i

∑
j

2Wij (Dij(X ; A)−Dij(X ))
∂

∂A
Dij(X ; A).

In Appendix B.2 we provide the specific numerical formulation of the gradient, for

both the Hellinger distance and KL-divergence, as well as a general formulation for
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information divergences.

Given the direction of the gradient, the projection matrix can be updated as

(5.4) A = A− µ
∂

∂A
J̃(A),

where

∂

∂A
J̃(A) =

∂

∂A
J(A) + Q0A + µQ1A

is the direction of the gradient, constrained to force A to remain orthonormal. Vari-

ables Q0 and Q1 are defined as:

Q0 = −1

2

((
∂

∂A
J(A)

)
AT + A

(
∂

∂A
J(A)

)T
)

Q1 =
1

2

(
∂

∂A
J(A) + Q0A

)(
∂

∂A
J(A) + Q0A

)T

.

The full derivation of this constraint can be found in Appendix 5-A. This process is

iterated until the error J(A) converges.

5.2.2 IPCA Algorithm

Algorithm 5.1. Unsupervised Information Preserving Component Analysis

Input: Collection of data sets X = {X1, . . . , XN} in Rd; the desired projection

dimension m; search step size µ

1: Calculate D(X ), the Fisher information distance matrix

2: Calculate W , the pairwise weight matrix

3: Initialize A1 ∈ Rm×d as some orthonormal projection matrix

4: Calculate D(X ; A1), the Fisher information distance matrix in the projected

space

5: l = 1

6: while |Jl − Jl−1| > ε do
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7: Calculate ∂
∂Al

J̃ , the direction of the gradient, constrained to AAT = I

8: Al+1 = Al − µ ∂
∂Al

J̃

9: Calculate D(X ; Al+1)

10: J =
∑

i

∑
j Wij (Dij(X )−Dij(X ; Al))

2

11: l = l + 1

12: end while

Output: Projection A ∈ Rm×d, which preserves the information distances between

sets in X .

The full method for IPCA is described in Algorithm 5.1. We note that A1 is often

initialized as a random orthonormal projection matrix as to not bias the estimation,

but this carries the risk of converging to a local minimum. For certain applications

it may be beneficial to initialize near some estimated global minimum if that infor-

mation is available. At this point we stress that we utilize gradient descent due to its

ease of implementation. There may be more efficient methods of optimization, but

that is out of the scope of the current contribution and is an area for future work.

5.2.3 Variable Selection

IPCA may be used as a form of variable selection, as the loading vectors in the

linear projection matrix A will be appropriately weighted towards the dimensions

which best preserve the information distance between sets within the collection.

For example, if two multivariate PDFs p and q are independent and identically

distributed in a certain dimension, that dimension will offer zero contribution to

the information distance between p and q. As such, the information distance is

entirely defined by those areas of input space in which p and q differ. When finding

a projection which preserves the information distance between p and q, A is going
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to be highly weighted towards the variables which contribute most to that distance.

Hence, the loading vectors of A essentially give a ranking of the discriminative value

of each variable. This form of variable selection is useful in exploratory data analysis.

5.3 Supervised IPCA

While in Section 5.2 we presented IPCA as an unsupervised form of dimensional-

ity reduction, we now make the connection to the supervised framework [20]; forming

a direct relation between IPCA and the Chernoff performance bound on classifica-

tion. Let us first define the classification problem as one of classifying an unknown

observation x as one of N potential classes, C = {C1, . . . , CN}. We now make the

general assumption that the observations from each class are generated by the PDFs

p1(x), . . . , pN(x) with the prior probabilities on these classes as π1, . . . , πN . Note we

make no restrictions on the complexity of the models pi(x), so our general assump-

tion holds in all cases. If we define the classifier f(x) : Rd → C, the probability of

classification error is given by

Pe =
N∑

i=1

πiP (f(x) 6= Ci|Ci)

=
N∑

i=1

πi

∫
I(f(x) 6= Ci)pi(x) dx,(5.5)

where I(·) is the standard indicator function. The optimal Bayes classifier is given

by

(5.6) f ?(x) = arg max
i

πipi(x),

which may be used to determine the minimum error probability

(5.7) P ?
e =

N∑
i=1

∫
I

(
max
j 6=i

πjpj(x)

πipi(x)
> 1

)
πipi(x) dx.
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Note that for the two-class problem, which is easily extended to the multi-class case,

(5.7) simplifies to

(5.8) P ?
e =

∫
I

(
π2p2(x)

π1p1(x)
> 1

)
π1p1(x) dx +

∫
I

(
π1p1(x)

π2p2(x)
> 1

)
π2p2(x) dx.

We may bound P ?
e by

(5.9)

P ?
e 6 πs

2π
1−s
1 exp (−Dch(p1(x), p2(x); s)) + πs′

1 π1−s′
2 exp (−DCH(p2(x), p1(x); s′)) ,

where 0 6 s 6 1 and

(5.10) DCH(p1(x), p2(x); s) = − log

∫
ps

2(x)p1−s
1 (x) dx

is the Chernoff distance between PDFs p1(x) and p2(x) [37]. Note that as DCH

increases, the upper bound on the probability of classification error between points

in classes C1 and C2 decreases.

A special case of the Chernoff distance is when s = 1
2
, and is known as the

Bhattacharya distance between PDFs f(x) and g(x),

DB(f, g) = − log

∫ √
f(x)g(x) dx,

which has been used to bound the classification error for dimensionality reduction

[44]. It is natural, therefore, to find a form of dimensionality reduction which will

maximize the Bhattacharya distance between class PDFs, as that will enable control

of the error probability. This was done in the parametric sense in [76]. We offer an

information geometric approach to the problem, creating a supervised formulation

of IPCA.

Specifically, we note that the Bhattacharya distance is a monotonic transformation

of the Hellinger distance,

DB(f, g) = − log

(
1− 1

2
D2

H(f, g)

)
.
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This transformation is important as it allows us to modify our original desire of

maximizing the Bhattacharya distance between class PDFs to that of maximizing

the Hellinger distance between classes. While seemingly trivial, this transformation

is key as it enables us to take an information geometric approach to the problem –

with no increase in complexity – due to the convergence of the Hellinger distance to

the Fisher information distance.

This information geometric approach fits into the IPCA framework. Consider the

following theorem:

Theorem 5.1. Let RVs X, X ′ ∈ Rd have PDFs fX and fX′, respectively. Using the

m× d matrix A satisfying AAT = Im, construct RVs Y, Y ′ ∈ Rm such that Y = AX

and Y ′ = AX ′. The following relation holds:

DH(fX , fX′) > DH(fY , fY ′),(5.11)

where fY and fY ′ are the PDFs of Y, Y ′, respectively.

The proof of this theorem may be found in Appendix 5-B, with a similar proof for

the Kullback-Leibler divergence in Appendix 5-C. What this theorem implies is that

maximizing the Hellinger distance in the lower dimensional space is directly related

to minimizing the difference (i.e. preserving) between the high and low dimensional

distances; they are indeed equivalent statements in the 2 class case. Hence, our

objective of finding the projection which maximizes the distance between PDFs is

parallel to the objective of preserving the distances between PDFs, albeit with a

different formulation. With this knowledge, we will still refer to our supervised

framework as IPCA. By maximizing the information distance between class PDFs,

we not only ensure an optimal performance bound on classification error, but we

also preserve the natural information geometry between classes. This fact is critical
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when class PDFs are not linearly separable (e.g. such is the assumption of standard

LDA).

5.3.1 Optimization

Let us now define the supervised IPCA projection as one that maximizes the

information distance between data sets. Specifically, let X = {X1, . . . , XN} where

X i consists of all points x ∈ Rd in class Ci; estimating the PDF of X i as pi(x). Our

IPCA formulation now becomes:

(5.12) A = arg max
A:AAT =I

∑
i

∑
j

WijDij(X ; A)2.

Note that we use the same gradient methods as described in Section 5.2, with mi-

nor modifications. We now employ gradient ascent rather than gradient descent as

objective maximization is now our desire, while our objective function is defined as

J(A) =
∑

i

∑
j

WijDij(X ; A)2

with the direction of the gradient given by

∂

∂A
J(A) =

∑
i

∑
j

2WijDij(X ; A)
∂

∂A
Dij(X ; A).

The full method for supervised IPCA, specialized towards the classification task, is

described in Algorithm 5.2. Note that this is the same framework as our unsupervised

IPCA algorithm (Algorithm 5.1) with objective function changes noted above.

Algorithm 5.2. Supervised Information Preserving Component Analysis

Input: Collection of data classes X = {X1, . . . , XN} in Rd; projection dimension

m; search step size µ; threshold ε

1: Initialize A1 ∈ Rm×d as a random orthonormal projection matrix

2: Calculate W , the pairwise weight matrix



106

3: Calculate D(X ; A1), the information distance matrix in the projected space

4: l = 1

5: while |Jl − Jl−1| > ε do

6: Calculate ∂
∂Al

J̃ , the direction of the gradient, constrained to AAT = I

7: Al+1 = Al + µ ∂
∂Al

J̃

8: Calculate D(X ; Al+1)

9: J =
∑

i

∑
j WijDij(X ; Al)

2

10: l = l + 1

11: end while

Output: Projection matrix A ∈ Rm×d, which maximizes the information distances

between class PDFs.

5.4 Simulations

We now illustrate the uses of both supervised and unsupervised IPCA. We illus-

trate the unsupervised case on synthetic data and an analysis of unsolicited email,

while we test classification performance using supervised IPCA on satellite imagery

data. Note that in all simulations we used weights Wij = 1, ∀i, j, as we do not apply

a sense of locality.

5.4.1 Synthetic Data

As a proof of concept, we now illustrate unsupervised IPCA on a synthetic data

set of known structure. An illustration of the data is shown in Fig. 5.1, which is

defined as follows: Let X = {X1, . . . , XN1 ,XN1+1, . . . , XN1+N2} be a collection of

sets in which Xj ∈ R2×400 is created by joining two Chi-squared distributions (one

flipped about the x-axis). For j = 1, . . . , N1, let us define X1 in that fashion while we

define X2 for j = N1+1, . . . , N1+N2 in a similar manner, with the data flipped about
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Figure 5.1: An illustration of a sample data set from each class for our synthetic data test. The
classes are distributed as ‘mirror images’ of each other, about the line x = 5.

the y-axis and offset by +10 units. Essentially, X1 and X2 contain ‘mirror image’

data sets (’mirrored’ about the line x = 5) with 400 samples each. We wish to

find the projection down to a single dimension which optimally preserves the Fisher

information between data sets. For this simulation, let N1 = N2 = 5.
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Figure 5.2: The objective function is minimized as we use IPCA to search for the best projection.
The circled points correspond to the projections used in Figure 5.3.

Starting with A1 ∈ R1×2 as a random orthonormal projection matrix, we use IPCA

with unity weights to obtain a projection matrix. Figure 5.2 shows the value of the

objective function (normalized to a per pair value) as a function of gradient descent
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iterations. Once the objective function converges, we obtain the projection matrix

A ∈ R1×2. This matrix is used to project the data from the 2 original dimensions

down to a dimension of 1, such that yj = AXj.
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Figure 5.3: The evolution of the projection matrix, illustrated on one set from each class. As the
objective function is minimized, the statistical separation between sets from differing
clusters is increased.

The evolution of the projection matrix is illustrated in Fig. 5.3. One set from each

cluster was projected onto the 1-dimensional space defined by Ai (as highlighted in

Fig. 5.2). The initial projection matrix A1, which was randomly generated, offers

no distinction between the sets from differing clusters. As the algorithm searches to

minimize the objective function, the projection matrix begins to recognize structure

within the data, and the sets begin to separate. This process continues until the

best projection matrix (in this case A16) is found and the sets are well distinguished.

We stress that the distinguishing characteristic is not the Euclidean location of the

samples within each data set (as we see they contain some overlap), but the statistics

of each set.

5.4.2 Project Honey Pot

We now present the usage of IPCA as a means of exploratory data analysis. The

data collection that we utilize in this simulation was provided by Project Honey

Pot1, which is a project designed to learn more about email spammers. Spam is

1http://www.projecthoneypot.org
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Table 5.1: Data dimensions and corresponding server properties
Dimension Server Property

1 Total number of emails sent
2 Time elapsed from first email to last email sent
3 BGP server life duration
4 Phishing ratio (number of phishing emails / total emails sent)

typically generated in a two-stage process: first, email addresses are harvested by

spammers which troll the web looking for email addresses in html code. Unsolicited

messages (i.e. spam) are then sent to these addresses through the use of spam servers

(e.g. public proxies, unsecured machines, etc), which offer a form of anonymity to the

spammer. Hence, it is typically extremely difficult to associate a spam email with the

original spammer, as they have taken the necessary steps to prevent detection [68].

Project Honey Pot works by setting up fake websites designed as traps, which

have no relevant content when viewed by a standard content browser. However,

these ‘honey pots’ present a unique email address each time the html source is viewed

and log the IP address which viewed it. By associating each unique email address

with an IP address, the project is able to identify the source of the spam email.

Whenever an email is received at the phony address, the project is able to connect

it to a specific harvester IP address, and extract information about the spam server

used by said harvester. By accumulating all of this data, the project hopes to be

able to determine some connection between various spammers. Specifically, we are

interested in identifying any trends between the spam servers used by phishers, who

are criminals seeking to exploit personal information such as passwords and bank

account numbers.

This project fits directly into the IPCA framework and it is useful to see if there

are any spam server properties which may differentiate types of phishers (i.e. manual

vs. automated spammers). Specifically, let X = {X1, . . . , XN} be a collection of



110

harvesters in which each X i = [x1, . . . , xni
] is a data set consisting of all of the

phishing emails2 received by Project Honey Pot associated with harvester i during

the month of October 2006. Each xi ∈ Rd represents an individual email, but the

vector values are those corresponding with the properties of spam server from which

that email was sent (see Table 5.1). Hence, the values x ∈ X are typically non-

unique, as harvesters send multiple emails over each utilized spam server. We note

that within Table 5.1, the ‘time elapsed’ for dimension 2 is over the entire lifetime of

the server while all other properties correspond to over the same one month period.

‘BGP duration’ [32] is a measure of how long a server is active (i.e. reachable) on the

internet. The majority (∼ 95%) of spam servers have a BGP duration of the entire

month.

The data dimensions are re-scaled to the 75% quantile to keep differing dimension

scales from skewing the IPCA results, which would keep variable selection from being

straightforward. We restrict our analysis to harvesters which have sent a phishing

email on at least 10 unique spam servers in order to obtain a somewhat smooth PDF

estimate using KDE methods.

Given the re-scaled version of X , we apply IPCA with an initialization of a random

orthonormal projection A1 ∈ R2×4, to project the data from 4 dimensions to 2. We

utilized the Hellinger distance to approximate the Fisher information distance. The

boundedness of the Hellinger distance is extremely useful given the potentially low

sample size when estimating PDFs. In Fig. 5.4 we show the value of the cost function

(normalized to a per element pair value) as IPCA converges on the projection:

A =




0.3318 0.9433 0.0071 0.0057

0.0359 −0.0066 −0.0028 −0.9993


 .

2We define an email as a phishing email if the subject line contains any words from a dictionary of commonly
used phishing terms (e.g. eBay, PayPal, password, account, etc.).



111

0 10 20 30 40 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iteration

J 
/ N

2

Figure 5.4: The value of the objective function as a function of time, when projecting spam data
from 4 to 2 dimensions with IPCA.

We will return to the IPCA projection shortly, but we first embed each harvester

into a low-dimensional space using FINE (with cMDS) on the full data. The 2-

dimensional embedding in Fig. 5.5 shows a clustering defined by the harvester –

not server – properties of ‘total number of emails sent’ and ‘phishing ratio’3. These

clusters are separated by harvesters which, we believe, are essentially manual (i.e. hu-

man) and those which are automated (i.e. bots). This conclusion is intuitive as bots

send massive amounts of spam (in the thousands), while humans are much more

constricted to the time it takes to manually harvest addresses and send spam. Addi-

tionally, a manual spammer is predictably more inclined to focus on a specific task

(i.e. phishing) while a bot is capable of performing multiple tasks at a high rate, such

as both phishing and advertising. These intuitions explain our choice of measures

for labeling, and the results – visually defined clusters – confirm this as well.

Returning to the IPCA projection matrix A, we notice that the measures which

define the clusters also correspond to the variables of importance found with IPCA.

Analysis of the loading vectors shows that the information distance between har-

vesters is nearly entirely contained in the second and fourth variables, which corre-

3Labeling thresholds were defined through a histogram analysis
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Figure 5.5: 2-D FINE embedding of harvesters based on information distance between projected
data sets, using different threshold measures for labeling harvesters. These measures
form clusters of automated spammers from manual spammers. The labeling measures
correspond to properties of each harvester, and are independent of the spam servers
used.

spond to the ‘Time elapsed from first email to last email sent’ and ‘Phishing ratio’

properties of each spam server. The importance of spam server phishing ratio is intu-

itive; bots may multi-task as discussed previously, leading to a low phishing ratio on

the servers they utilize. Also note that the loadings of A contains some weight with

respect to ‘total number of emails sent’. As bots send massive amounts of email, it is

natural that the spam servers they use will have large values for the total number of

emails sent. These results seem to suggest that spammers with manual implementa-

tion exploit different servers than those with an automated implementation, as there

is not a significant overlap in server usage between clusters.

The indication of ‘Time elapsed from first email to last email sent’ as an important

server property is also of interest. While we do not have the corresponding data

available for the harvesters to fully analyze, we suspect that bots send spam in

bursts, resulting in shorter server usage periods. This is an intuitive interpretation,

but would require additional data to fully validate, and is an area for future work.
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5.4.3 LandSAT Imagery

Table 5.2: Distribution of the 4435 training and 2000 test samples in the Landsat data set.
Soil Type

Red Cotton Crop Grey Damp Grey Vegetable Stubble Very Damp Grey
Training 1072 479 961 415 470 1038
Test 461 224 397 211 237 470

We now study the performance of IPCA for supervised dimensionality reduction,

utilizing the well studied Landsat satellite imagery database [1]. This data set con-

sists of satellite images of 6 differing soil types. Each sample point is a 36-dimensional

vector corresponding to the 9 intensity values of a 3×3 pixel region (with overlapping

regions) in 4 different spectral bands. The training and test sets (with 4435 and 2000

sample respectively) have been pre-defined with the breakdown described in Table

5.2.

We compare IPCA performance to other methods of linear, supervised dimension-

ality reduction: linear discriminant analysis (LDA) [42] and quadratic discriminant

analysis with slice average variance estimation (QDA-SAVE) [64]. We implement

several different classification methods – linear, radial, and quadratic kernel support

vector machines (SVMs) [21], and a k-nearest neighbor (k-NN) classifier – as different

methods of dimensionality reduction may be optimized specifically for certain classi-

fication methods (e.g. LDA and linear classification). In Table 5.3, we illustrate the

“best case” classification performance for all simulations, in which the lowest error

rate is reported over all projection dimensions with values in the range m ∈ [3, 25],

emphasizing the best performance for each classifier. We see that IPCA outperforms

LDA and QDA-SAVE for all classifiers except the quadratic kernel SVM, for which

QDA-SAVE narrowly shows better performance.

We further investigate the performance for all classifiers by plotting the classifi-
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Linear Radial Quadratic k-NN
IPCA 13.60 % 9.85 % 10.05 % 9.70 %
LDA 13.70 % 11.35 % 11.25 % 12.60 %
QDA-SAVE 13.65 % 10.15 % 9.90 % 10.15 %

Table 5.3: Classification error probability

cation error as a function of dimension in Fig. 5.6. It is clear that QDA-SAVE has

significant difficulties in the low dimensional regime, which may be an issue if sig-

nificant dimensionality reduction is required (e.g. compression). In contrast, IPCA

shows far superior performance in low dimensions, while still maintaining strong

competitiveness in high dimensions.

5.5 Conclusions and Future Work

In this chapter, we have offered an information-geometric approach to linear di-

mensionality reduction through Information Preserving Component Analysis (IPCA).

We have shown this method to work in an unsupervised framework by preserving

the information distances between high-dimensional data sets in a low-dimensional

projection space. Additionally, IPCA may operate as a form of supervised dimen-

sionality reduction by finding the projection space which maximizes the information

distances between class PDFs, as this enables control of the probability of classifica-

tion error.

By finding the low-dimensional space which best preserves/maximizes the dissim-

ilarities between data sets, we have enabled for comparative analysis in how sets

from different generative models occupy the projection space. Additionally, analysis

of the loading vectors in the IPCA projection matrix allows for a means of variable

selection, as the variables which are most crucial to preserving the information dis-

tances will have the largest loading values. We have demonstrated this ability with

the analysis of spam email, identifying spam server properties which can distinguish



115

0 5 10 15 20 25
10

15

20

25

30

35

40

45

50

Dimension

E
rr

or
 (

%
)

 

 

IPCA
LDA
QDA−SAVE

(a) Linear

0 5 10 15 20 25
5

10

15

20

25

30

35

40

45

Dimension

E
rr

or
 (

%
)

 

 

IPCA
LDA
QDA−SAVE

(b) Quadratic

0 5 10 15 20 25
5

10

15

20

25

30

35

40

45

Dimension

E
rr

or
 (

%
)

 

 

IPCA
LDA
QDA−SAVE

(c) Radial

0 5 10 15 20 25
5

10

15

20

25

30

35

40

Dimension

E
rr

or
 (

%
)

 

 

IPCA
LDA
QDA−SAVE

(d) k-NN

Figure 5.6: Classification error probability as a function of dimension when using different classi-
fication methods. IPCA show superior performance in nearly all cases, dramatically
outperforming QDA-SAVE in the low dimensional regime.

manual spammers from automated spammers. We have additionally demonstrated

supervised IPCA towards the classification task using satellite imagery, resulting in

superior performance to standard approaches to linear, supervised dimensionality

reduction. In the proceeding chapter, we will apply IPCA towards flow cytometric

analysis, which was the motivating application for the algorithm.

In future work, we would like to further evaluate the Project Honey Pot database

to observe other trends and continue to identify properties of harvester communi-

ties. Additionally, we plan to utilize different methods for optimizing the IPCA cost

function, as there may exist more efficient methods than gradient descent (e.g. fixed
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point iteration). Finally, we would like to continue pursuing applications of interest,

specifically in the biomedical fields, and utilize IPCA for exploratory research.

5-A Appendix: Orthonormality Constraint on Gradient Descent

We derive the orthonormality constraint for our gradient descent optimization in

the following manner; solving

A = arg min
A:AAT =I

J(A),

where I is the identity matrix. Using Lagrangian multiplier M , this is equivalent to

solving

A = arg min
A

J̃(A),

where J̃(A) = J(A) + tr(AT MA). We can iterate the projection matrix A, using

gradient descent, as:

(5.13) Ai+1 = Ai − µ
∂

∂A
J̃(Ai),

where ∂
∂A

J̃(A) = ∂
∂A

J(A) + (M + MT )A is the gradient of the cost function w.r.t.

matrix A. To ease notation, let ∆ , ∂
∂A

J(Ai) and ∆̃ , ∂
∂A

J̃(Ai). Continuing with

the constraint Ai+1A
T
i+1 = I, we right-multiply (5.13) by AT

i+1 and obtain

0 = −µAi∆̃
T − µ∆̃AT

i + µ2∆̃∆̃T ,

(5.14) µ∆̃∆̃T = ∆̃AT + A∆̃T ,

µ(∆+(M+MT )A)(∆+(M+MT )A)T = (∆A(M+MT )A)AT +A(∆AT (M+MT )A).

Let Q = M + MT , hence ∆̃ = ∆ + QA. Substituting this into (5.14) we obtain:

µ(∆∆T + QA∆T + ∆AT Q + QQT ) = ∆AT + A∆T + 2Q.
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Next we use the Taylor series expansion of Q around µ = 0: Q =
∑∞

j=0 µjQj. By

equating corresponding powers of µ (i.e. ∂j

∂µj |µ=0 = 0), we identify:

Q0 = −1

2
(∆AT + A∆T ),

Q1 =
1

2
(∆ + Q0A)(∆ + Q0A)T .

Replacing the expansion of Q in ∆̃ = ∆ + QA:

∆̃ = ∆− 1

2
(∆AT + A∆T )A + µQ1A + µ2 Q2A + . . . .

Finally, we would like to assure a sufficiently small step size to control the error in

forcing the constraint due to a finite Taylor series approximation of Q. Using the L2

norm of ∆̃ allows us to calculate an upper bound on the Taylor series expansion:

‖∆̃‖ 6 ‖∆− 1

2
(∆AT + A∆T )A‖+ µ ‖Q1A‖+ µ2 ‖Q2A‖+ . . . .

We condition the norm of the first order term in the Taylor series approximation

to be significantly smaller than the norm of the zeroth order term. If µ ¿ ‖∆ −
1
2
(∆AT + A∆T )A‖/‖Q1A‖ then:

(5.15)
∂

∂A
J̃(A) =

∂

∂A
J(A) + Q0A + µQ1A,

where

Q0 = −1

2

((
∂

∂A
J(A)

)
AT + A

(
∂

∂A
J(A)

)T
)

Q1 =
1

2

(
∂

∂A
J(A) + Q0A

)(
∂

∂A
J(A) + Q0A

)T

,

is a good approximation of the gradient constrained to AAT = I. We omit the higher

order terms as we experimentally find that they are unnecessary, especially as even

µ2 → 0. We note that while there are other methods for forcing the gradient to obey

orthogonality [31, 33], we find our method is straightforward and sufficient for our

purposes.
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5-B Appendix: Proof of strictly non-increasing property of Hellinger
distance w.r.t. an orthonormal data projection

Here we prove that the Hellinger distance between the PDFs of x and x′ is greater

or equal to the Hellinger distance between the PDFs of y = Ax and y′ = Ax′,

respectively, where A satisfies AAT = I.

Theorem 5.2. Let RVs X,X ′ ∈ Rn have PDFs fX and fX′, respectively. Using the

d × n matrix A satisfying AAT = Id, construct RVs Y, Y ′ ∈ Rd such that Y = AX

and Y ′ = AX ′. The following relation holds:

DH(fX , fX′) > DH(fY , fY ′),(5.16)

where fY and fY ′ are the PDFs of Y, Y ′, respectively.

The proof is in two parts. First, we show that the Hellinger distance is constant

over an arbitrary dimension preserving orthogonal transformation. Next, we show

that the same truncation of two random vectors does not increase the Hellinger

distance.

Let M be an n× n orthonormal matrix, i.e., MMT = In and MT M = In. Define

the random vectors V, V ′ ∈ Rn as follows V = MX and V ′ = MX. By a change of

variables, we have

fV : fV (v) = fX(MT v)(5.17)

fV ′ : fV ′(v
′) = fX′(MT v′).(5.18)

Note that the Jacobian of the transformation is 1 and MT is the inverse of the

transformation both due to the orthonormality of M . The squared Hellinger distance

between V and V ′ is given by

D2
H(fV , fV ′) =

∫ (√
fV (v)−

√
fV ′(v)

)2

dv.(5.19)
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Substituting the PDFs from (5.17) into (5.19), we have

D2
H(fV , fV ′) =

∫ (√
fX(MT v)−

√
fX′(MT v)

)2

dv.(5.20)

Next, using the orthonormality of M we replace x = MT v and dx = dv in (5.32) and

obtain

D2
H(fV , fV ′) =

∫ (√
fX(x)−

√
fX′(x)

)2

dv = D2
H(fX , fX′)(5.21)

and the squared Hellinger distance remains the same.

We proceed with the second part of the proof. Consider the random vector V

as a concatenation of RVs Y and Z: V T = [Y T ZT ]. If we write matrix M as

MT = [AT , BT ] where A is d × n and B is (n − d) × n, then Y = AX, Y ′ = AX ′,

and A satisfies AAT = Id (but not AT A = In). Since V T = [Y T ZT ], we have

D2
H(fV , fV ′) = D2

H(fY Z , fY ′Z′) and by virtue of (5.21)

D2
H(fX , fX′) = D2

H(fY Z , fY ′Z′).(5.22)

Next, we use the following lemma:

Lemma 5.3. Let Y, Y ′ ∈ Rd and Z,Z ′ ∈ Rn−d be RVs and denote: the joint PDF

of Y and Z by fY Z, the joint PDF of Y ′ and Z ′ by fY ′Z′, the marginal PDF of Y

by fY , the marginal PDF of Y ′ by fY ′, the conditional PDF of Z by fZ|Y , and the

conditional PDF of Z ′ by fZ′|Y ′. The following holds:

D2
H(fY Z , fY ′Z′)−D2

H(fY , fY ′) > 0.(5.23)
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The proof this Lemma begins as follows:

D2
H(f(y, z), g(y, z))−D2

H(f(y), g(y)) =
∫ ∫ (√

f(y, z)−
√

g(y, z)
)2

dydz −
∫ (√

f(y)−
√

g(y)
)2

dy =
∫ ∫

f(y, z) + g(y, z)− 2
√

f(y, z)g(y, z)dydz −
∫

f(y) + g(y)− 2
√

f(y)g(y)dy =

−2

∫ ∫ √
f(y, z)g(y, z)dydz + 2

∫ √
f(y)g(y)dy =

2

[∫ √
f(y)g(y)dy −

∫ ∫ √
f(y, z)g(y, z)dydz

]
.

We may now continue by showing
∫ ∫ √

f(y, z)g(y, z) dy dz 6
∫ √

f(y)g(y) dy:

∫ ∫ √
f(y, z)g(y, z) dy dz =

∫ ∫ √
f(y)f(z|y)g(y)g(z|y) dy dz

(5.24)

=

∫ ∫ √
f(y)g(y)

√
f(z|y)g(z|y) dy dz

=

∫ √
f(y)g(y)

(∫ √
f(z|y)g(z|y)dz

)
dy

6
∫ √

f(y)g(y)

(∫ √
f(z|y)

2
dz

) 1
2
(∫ √

g(z|y)
2
dz

) 1
2

dy(5.25)

=

∫ √
f(y)g(y)

(∫
f(z|y)dz

) 1
2
(∫

g(z|y)dz

) 1
2

dy

=

∫ √
f(y)g(y) (1)

1
2 (1)

1
2 dy

=

∫ √
f(y)g(y) dy.

Note that (5.24) used Bayes rule and (5.25) used the Cauchy-Schwartz inequality.

We now immediately obtain the following corollary:

Corollary 5.4. Let Y, Y ′ ∈ Rd and Z,Z ′ ∈ Rn−d be RVs and denote: the joint PDF

of Y and Z by fY Z, the joint PDF of Y ′ and Z ′ by fY ′Z′, the marginal PDF of Y by

fY , and the marginal PDF of Y ′ by fY ′. The following holds:

D2
H(fY Z , fY ′Z′) > D2

H(fY , fY ′).(5.26)
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This corollary suggests that the squared Hellinger distance must not increase as a

result of marginalization. Without loss of generality, due to the monotonic behavior

of the square root function, the same may be said for the strict Hellinger distance,

yielding the desired result

DH(fX , fX′) > DH(fY , fY ′).(5.27)

5-C Appendix: Proof of strictly non-increasing property of KL diver-
gence w.r.t. an orthonormal data projection

Here we prove that the KL divergence between the PDFs of x and x′ is greater or

equal to the KL divergence between the PDFs of y = Ax and y′ = Ax′, respectively,

where A satisfies AAT = I. Note that much of this derivation is repetitive to

that of the Hellinger distance in Appendix 5-B, but we include all steps here for

completeness.

Theorem 5.5. Let RVs X,X ′ ∈ Rn have PDFs fX and fX′, respectively. Using the

d × n matrix A satisfying AAT = Id, construct RVs Y, Y ′ ∈ Rd such that Y = AX

and Y ′ = AX ′. The following relation holds:

KL(fX‖fX′) > KL(fY ‖fY ′),(5.28)

where fY and fY ′ are the PDFs of Y, Y ′, respectively.

The proof is in two parts. First, we show that the KL divergence is constant over

an arbitrary dimension preserving orthogonal transformation. Next, we show that

the same truncation of two random vectors does not increase KL.

Let M be an n× n orthonormal matrix, i.e., MMT = In and MT M = In. Define

the random vectors V, V ′ ∈ Rn as follows V = MX and V ′ = MX. By a change of
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variables, we have

fV : fV (v) = fX(MT v)(5.29)

fV ′ : fV ′(v
′) = fX′(MT v′).(5.30)

Note that the Jacobian of the transformation is 1 and MT is the inverse of the

transformation both due to the orthonormality of M . The KL divergence between

V and V ′ is given by

KL(fV ‖fV ′) =

∫
fV (v) log

fV (v)

fV ′(v)
dv.(5.31)

Substituting the PDFs from (5.29) into (5.31), we have

KL(fV ‖fV ′) =

∫
fX(MT v) log

fX(MT v)

fX′(MT v)
dv.(5.32)

Next, using the orthonormality of M we replace x = MT v and dx = dv in (5.32) and

obtain

KL(fV ‖fV ′) =

∫
fX(x) log

fX(x)

fX′(x)
dx = KL(fX‖fX′)(5.33)

and the KL divergence remains the same.

We proceed with the second part of the proof. Consider the random vector V

as a concatenation of RVs Y and Z: V T = [Y T ZT ]. If we write matrix M as

MT = [AT , BT ] where A is d × n and B is (n − d) × n, then Y = AX, Y ′ = AX ′,

and A satisfies AAT = Id (but not AT A = In). Since V T = [Y T ZT ], we have

KL(fV ‖fV ′) = KL(fY Z‖fY ′Z′) and by virtue of (5.33)

KL(fX‖fX′) = KL(fY Z‖fY ′Z′).(5.34)

Next, we use the following lemma:
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Lemma 5.6. Let Y, Y ′ ∈ Rd and Z,Z ′ ∈ Rn−d be RVs and denote: the joint PDF

of Y and Z by fY Z, the joint PDF of Y ′ and Z ′ by fY ′Z′, the marginal PDF of Y

by fY , the marginal PDF of Y ′ by fY ′, the conditional PDF of Z by fZ|Y , and the

conditional PDF of Z ′ by fZ′|Y ′. The following holds:

∫
f(y)KL(fZ|Y ‖fZ′|Y ′)dy = KL(fY Z‖fY ′Z′)−KL(fY ‖fY ′).(5.35)

This may be proven as follows:

∫
f(y)KL(f(z|y)‖g(z|y))dy =

∫
f(y)

∫
f(z|y) log

f(z|y)

g(z|y)
dzdy =

∫∫
f(y, z) log

f(y, z)/f(y)

g(y, z)/g(y)
dzdy =

∫∫
f(y, z)

(
log

f(y, z)

g(y, z)
− log

f(y)

g(y)

)
dzdy =

∫∫
f(y, z) log

f(y, z)

g(y, z)
dzdy −

∫∫
f(y, z) log

f(y)

g(y)
dzdy =

KL(f(y, z)‖g(y, z))−
∫∫

f(y, z)dz log
f(y)

g(y)
dy =

KL(f(y, z)‖g(y, z))−
∫

f(y) log
f(y)

g(y)
dy =

KL(f(y, z)‖g(y, z))−KL(f(y)‖g(y)).(5.36)

Identifying that the LHS of (5.35) is non-negative, we immediately obtain the fol-

lowing corollary:

Corollary 5.7. Let Y, Y ′ ∈ Rd and Z,Z ′ ∈ Rn−d be RVs and denote: the joint PDF

of Y and Z by fY Z, the joint PDF of Y ′ and Z ′ by fY ′Z′, the marginal PDF of Y by

fY , and the marginal PDF of Y ′ by fY ′. The following holds:

KL(fY Z‖fY ′Z′) > KL(fY ‖fY ′).(5.37)

This corollary suggests that KL must not increase as a result of marginalization.
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Application of (5.37) from Corollary 5.7 to (5.34), yields the desired result

KL(fX‖fX′) > KL(fY ‖fY ′).(5.38)



CHAPTER VI

Application to Flow Cytometry

6.1 Motivation

Figure 6.1: Historically, the process of clinical flow cytometry analysis relies on a series of 2-
dimensional scatter plots in which cell populations are selected for further evaluation.
This process does not take advantage of the multidimensional nature of the problem.

In clinical flow cytometry, cellular suspensions are prepared from patient samples

(blood, bone marrow, and solid tissue), and evaluated simultaneously for the presence

of several expressed surface antigens and for characteristic patterns of light scatter as

the cells pass through an interrogating laser. Antibodies to each target antigen are

conjugated to fluorescent markers, and each individual cell is evaluated via detection

of the fluorescent signal from each marker. The data from clinical flow cytometry can

be considered multidimensional both from the standpoint of multiple characteristics

125
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measured for each cell, and from the standpoint of thousands of cells analyzed per

sample. Nonetheless, clinical pathologists generally interpret clinical flow cytometry

results in the form of two-dimensional scatter plots in which the axes each represent

one of multiple cell characteristics analyzed (Fig. 6.1). By viewing a series of these

histograms, a clinician is able to determine a diagnosis for the patient through clinical

experience of the manner in which certain leukemias and lymphomas express certain

markers.

Given that the standard method of cytometric analysis involves projections onto

the axes of the data, the multidimensional nature of the data is not fully exploited.

As such, typical flow cytometric analysis is comparable to hierarchical clustering

methods, in which data is segmented on an axis-by-axis basis. Marker combinations

have been determined through years of clinical experience, leading to relative confi-

dence in analysis given certain axes projections. These projection methods, however,

contain the underlying assumption that marker combinations are independent of each

other, and do not utilize the dependencies which may exist within the data. Ide-

ally, clinicians would like to analyze the full-dimensional data, but this cannot be

visualized outside of 3 dimensions.

An example of the difficulty in analysis of 2-dimensional scatter plots (essentially

plots of the marginal PDFs) is illustrated in Fig. 6.2. Two distinct but immunophe-

notypically similar forms of lymphoid leukemia – mantle cell lymphoma (MCL) and

chronic lymphocytic leukemia (CLL) – are illustrated with both scatter and contour

plots. These diseases exhibit similar expression patterns to many surface antigens,

but are generally distinct with respect to antigens CD23 and FMC7. The significant

similarity and overlapping nature in the marginal plots illustrates the difficulty in

traditional 2-dimensional flow cytometry analysis. It would be potentially beneficial,
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Figure 6.2: 2-dimensional plots of disease classes CLL and MCL, in which each point represents
a unique blood cell. The overlapping nature of the scatter plots makes it difficult for
pathologists to differentiate disease classes using primitive 2-dimensional axes projec-
tions.

therefore, to develop systems for clustering and visualization of clinical flow cytome-

try data that utilize all dimensions of data derived for each cell during routine clinical

analysis.

There have been previous attempts at using machine learning to aid in flow cytom-

etry diagnosis. Some have focused on clustering in the high-dimensional space [78,79],

while others have utilized information geometry to identify differences in sample sub-

sets and between data sets [69, 70]. These methods have not satisfied the problem

because they do not significantly approach the aspect of visualization for ‘human in

the loop’ diagnosis, and the ones that do [60,61] only apply dimensionality reduction

to a single set at a time.

In this chapter we utilize the methods and techniques described thus far towards

the problems of diagnosis, verification, and visualization in flow cytometric analy-

sis. While the expression of various markers may be highly variable over different

patients, the general characterization of the multivariate PDF underlying each pa-

tient sample is much less variable. Hence, each distribution exists on some statistical
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manifold with a much lower dimensional parameterization, and this application is ap-

propriate for FINE. By embedding each patient data set into a single low-dimensional

Euclidean space, we enable pathologists to visually identify relative similarities be-

tween multiple patients of differing disease diagnoses. This provides a simple and

efficient means of determining which data sets may need further investigation (e.g. for

possible misdiagnosis). This work has produced promising results which we have re-

cently published [15,16,34].

We have determined that unsupervised IPCA would be an ideal form of dimen-

sionality reduction for flow cytometric visualization of the data domain. This is

expected as the IPCA algorithm was originally motivated by the cytometry prob-

lem. The specific properties of IPCA which are beneficial toward cytometric analysis

are listed as such:

• Orthonormal: The data needs to be preserved without scaling or skewing, as

this is most similar to the current methods in practice (i.e. axes projections).

• Unsupervised: This requirement is straightforward as the dimensionality reduc-

tion would be an aid for diagnosis, so no labels would be available. Learning

should be based entirely on the geometry of the data.

• Linear: Once the projection is determined, the subspace is constant and does

not need to be recomputed when adding new data. New data is easily projected

and analyzed as desired.

• Relationship Preserving: Patients in the same disease class should show similar

expressions in the low-dimensional space, while differing disease classes should

be visually distinct from one another.

IPCA provides a low-dimensional representation which is a linear combination of
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the various markers, enabling clinicians to visualize all of the data simultaneously,

rather than the current process of axes projections, which only relays information

in relation to two markers at a time. An important facet of the IPCA projection

matrix is its variable selection, which relays information describing which marker

combinations yield the most information. This has the significant benefit of allowing

clinicians and researchers to experiment with new marker combinations, and obtain

a measure of their diagnostic ability in certain disease classes.

In the rest of this chapter we present several case studies for flow cytometric

analysis. Section 6.2 presents a lymphoid leukemia study involving CLL and MCL.

We isolate the CLL disease for further interrogation in Section 6.3, focusing on

prognosis. In Section 6.4 we focus on the disease classes of acute lymphoblastic

leukemia and hematogone hyperplasia. Finally, we discuss areas for future work in

the area of cytometric analysis in Section 6.6.

All work presented in this chapter was done in collaboration with the Department

of Pathology at the University of Michigan, which provided data and diagnoses for

all patients. Please note that in all studies the matrix of Fisher information distances

D(X ) was approximated with the symmetric Kullback-Leibler divergence using den-

sities estimated with KDE methods (see Appendix A). We have obtained similar

results when using the Hellinger distance as well.

6.2 Lymphoid Leukemia Study

For our first study, we will compare patients with two distinct but immunophe-

notypically similar forms of lymphoid leukemia – mantle cell lymphoma (MCL) and

chronic lymphocytic leukemia (CLL), as illustrated in Fig. 6.2. These diseases dis-

play similar characteristics with respect to many expressed surface antigens, but are
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generally distinct in their patterns of expression of two common B lymphocyte anti-

gens: CD23 and FMC7 (a distinct conformational epitope of the CD20 antigen).

Typically, CLL is positive for expression of CD23 and negative for expression of

FMC7, while MCL is positive for expression of FMC7 and negative for expression of

CD23. These distinctions should lead to a difference in densities between patients in

each disease class.

6.2.1 The Data

Dimension Marker
1 Forward Light Scatter
2 Side Light Scatter
3 FMC7
4 CD23
5 CD45
6 Empty

Table 6.1: Data dimensions and corresponding markers for analysis of CLL and MCL.

The data set X = {X1, . . . , X43} consists of 43 patients, 23 of which have been

diagnosed with CLL and 20 diagnosed with MCL. Each X i is a 6-dimensional ma-

trix corresponding to the flow cytometer output of the ith patient; each dimension

corresponding to a different marker (see Table 6.1), and each element representing a

unique blood cell, totaling ni ∼ 5000 total cells per patient.

Utilizing the MLE method on the matrix of Fisher information distances (geodesi-

cally approximated with the symmetric KL-divergence), we estimate (with smooth-

ing) the local intrinsic dimension of each patient PDF. The results are shown in

Fig. 6.3, where we can see the intrinsic dimension is m = {2, 3}. This result can be

interpreted as recognizing the 2 specific markers which most significantly differentiate

between classes (i.e. m = 2), but also accounting for the fact that there still exists

subtle differences between members of the same class, and some patients may not

exhibit the expected response to specific antigens as strongly as others (i.e. m = 3).
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Figure 6.3: Histogram of local dimension estimates for the statistical manifold defined by flow
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Figure 6.4: CLL and MCL Study: Evaluating the IPCA objective as a function of time. As the
iterations increase, the objective function eventually converges.

Hence, we may appropriately embed the statistical manifold in 2 or 3 dimensions.

Note that the k-NN algorithm yielded identical results.

6.2.2 IPCA

We found the IPCA projection as

(6.1) A =



−0.1177 0.0693 0.8979 0.2513 0.3346 −0.0032

0.0077 −0.2678 −0.1541 0.9243 −0.2224 0.0270


 .

This projection was calculated by minimizing the objective function with respect to

A, as illustrated in Fig. 6.4 in which the squared error (per element pair) is plotted
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as a function of time. As the iteration i increases, J converges and Ai is determined

to be the IPCA projection matrix. We note that while dimension 6 corresponds

to no marker (it is a channel of just noise), we do not remove the channel from

the data sets, as the projection determines this automatically (i.e. loading values

approach 0). Additionally, due to computational complexity issues, each data set

was randomly subsampled such that ni = 500. While we would not necessarily

suggest this decimation in practice, we have found it to have a minimal effect during

experimentation.

Given the IPCA projection, we illustrate the 2-dimensional PDFs of several dif-

ferent patients in the projected space in Fig. 6.5. We selected patients based on the

symmetric KL-divergence values between patients of different disease class. Specif-

ically, we selected the CLL and MCL patients with a small divergence (i.e. most

similar PDFs), patients with a large divergence (i.e. least similar PDFs), and pa-

tients which represented the centroid of each disease class. These low-dimensional

PDFs, which are what would be utilized by a diagnostician, are visibly different

between disease classes. While the most similar CLL and MCL patients do share

much similarity in their IPCA PDFs, there is still a significant enough difference to

distinguish them, especially given the similarities to other patient PDFs.

Using the IPCA projection matrix (6.1) for variable selection, the loading vec-

tors are highly concentrated towards the 3rd and 4th dimensions, which correspond

to fluorescent markers FMC7 and CD23. We acknowledge that this marker com-

bination is well known and currently utilized in the clinical pathology community

for differentiating CLL and MCL1. We stress, however, that what had previously

been determined through years of clinical experience was able to be independently

1CD45 and light scatter characteristics are often used as gating parameters for selection of lymphocytes among
other cell types prior to analysis, but CD23 and FMC7 are the main analytical biomarkers in this 3-color assay.
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Figure 6.5: CLL and MCL Study: Contour plots (i.e. PDFs) of the IPCA projected data. The top
row corresponds to the PDFs of the CLL patients, while the bottom row represents
PDFs of MCL patients. The selected patients are those most similar between disease
classes, the centroids of disease classes, and those least similar between disease classes,
as highlighted in Fig. 6.6(b).

validated quickly using IPCA.

6.2.3 FINE

We now illustrate the 2-dimensional embedding obtained with FINE (using cMDS)

of the projected data. The embedding results are shown in Fig. 6.6(a), in which each

point in the plot represents an individual patient. It should be noted that there

exists a natural separation between the disease types, as the implementation was

entirely unsupervised. As such, we can conclude that there is a natural difference in

probability distribution between the disease classes as well. Although this is known

through years of clinical experience, we were able to determine this without any a

priori knowledge; simply through information geometry.

The separation between classes is preserved in Fig. 6.6(b) when using the IPCA

projected data as compared to using the full-dimensional data. An important byprod-

uct of this natural clustering is the ability to visualize the cytometric data in a man-
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Figure 6.6: CLL and MCL Study: Comparison of embeddings, obtained with FINE, using the full
dimensional data and the data projected with IPCA. IPCA preserves the separation
between disease classes. The circled points correspond to the density plots in Fig. 6.5,
numbered respectively.

ner which allows comparisons between patients. The circled points correspond to the

PDFs shown in Fig. 6.5; in the IPCA projection space, these patients are well dis-

tinguished between disease classes, but it is still difficult to instantaneously compare

several patients. In the space defined by FINE, the patients are easily compared and

differentiated within the clusters of each disease type.

6.3 Chronic Lymphocytic Leukemia Study

Continuing our study of patients with chronic lymphocytic leukemia (CLL), we

wish to determine subclasses within the CLL disease class. Specifically, we now use

IPCA to find a low-dimensional space which preserves the differentiation between

patients with good and poor prognoses (i.e. favorable and unfavorable immunophe-

notypes). Literature [29] has shown that patients whose leukemic cells are strong

expressors of CD38 have significantly worse survival outcome. Genotypic studies have

shown that the absence of somatic mutation within immunoglobulin genes of CLL

cells (a so-called “pre-follicular” genotype) is a potent predictor of worse outcome.

High levels of CD38 expression are an effective surrogate marker for the absence of
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somatic immunoglobulin gene mutation, and also have been shown to be an indepen-

dent predictor of outcome in some studies. Since patients can generally be stratified

by CD38 expression levels, and CD38 has been shown to emerge as a defining variable

of CLL subsets in hierarchical immunophenotypic clustering [40], we would expect

IPCA to localize the CD38 variable as one of importance when analyzing CLL data.

6.3.1 The Data

Dimension Marker
1 Forward Light Scatter
2 Side Light Scatter
3 CD5
4 CD38
5 CD45
6 CD19

Table 6.2: Data dimensions and corresponding markers for analysis of CLL.

Using the same patients (those diagnosed with CLL) as in the lymphoid leukemia

study, we define X = {X1, . . . , X23}, where each X i was analyzed with by the series

of markers in Table 6.2. Local dimension estimation suggests an intrinsic dimension

of m = 3 for all samples, which will be further discussed shortly.

6.3.2 IPCA
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Figure 6.7: CLL Prognosis Study: The value of the IPCA objective function v.s. time.
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Figure 6.8: CLL Prognosis Study: Contour plots (i.e. PDFs) of the IPCA projected data. The
top row corresponds to the PDFs of patients with a poor immunophenotype (CD38hi),
while the bottom row represents PDFs of patients with a favorable immunophenotype
(CD38lo). The selected patients are those most similar between prognosis classes and
those least similar between classes.

Minimizing the objective function (see Fig. 6.7), we calculate the IPCA projection

matrix as

A =



−0.0700 0.0950 0.5006 −0.8361 0.1834 −0.0519

−0.1705 −0.0434 −0.3775 −0.0988 0.6992 0.5727


 .

This projection matrix has very high loadings in variables 4, 5, and 6, which corre-

spond to markers CD38, CD45, and CD19 respectively. This identifies the isolation

of B cells by CD19 expression (a B lymphocyte restricted antigen always expressed on

CLL cells) and assessment of CD38 on these B cells. As expected, we identify CD38

as a marker of importance in differentiating patient groups. We also identify the

possibility that CD45 and CD19 expression are also areas which may help prognostic

ability. Note that this seems to agree with the intrinsic dimension estimate of m = 3.

The potential importance of these markers is an area for further interrogation.

We plot the projected patient PDFs in Fig. 6.8. Due to the small sample of
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Figure 6.9: CLL Prognosis Study: Comparison of embeddings, obtained with FINE, using the
IPCA projection matrix A and the full dimensional data. The patients with a poor
immunophenotype (CD38hi) are generally well clustered against those with a favorable
immunophenotype (CD38lo) in both embedddings.

patients and their significant similarity to one another, even between prognosis groups

(this is evident in Fig. 6.9), we illustrate only those patients with high similarity and

low similarity (by information divergence) between the prognosis classes. One can

see there is still some difficulty forming a significant discernment between patient

prognoses, but the usage of FINE will further help with this task.

6.3.3 FINE

Using FINE to embed the data (Fig. 6.9) for comparative visualization, we see that

the different prognosis groups are very similar, although decent clusters are formed

when labels are applied. These clusters are not well separated, however, which fur-

ther illustrates the difficulties in forming an appropriate prognosis. There are also

issues of sample size, as a larger database of patients may lead to a more clear sepa-

ration of clusters. Nonetheless, IPCA and FINE were able to appropriately identify

the important markers for assigning prognosis, and group patients accordingly with

respect to immunophenotype.

We note that CD38hi versus CD38lo for each patient was determined using cutoff
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values endorsed in the literature [29]. Although complete follow-up data for this

retrospective cohort were not available, the findings were indirectly further validated

by the fact that, of the patients with follow-up information available, zero of 6 CD38lo

patients died, while 4 of 9 CD38hi patients died within a median follow-up interval

of 25 months (range 1 to 102 months).

6.4 Acute Lymphoblastic Leukemia vs. Hematogone Hyperplasia Study

We now demonstrate a study involving the diseases acute lymphoblastic leukemia

(ALL) and a benign condition known as hematogone hyperplasia (HP). ALL is

marked by the neoplastic proliferation of abnormal lymphocyte precursors (lym-

phoblasts). Our study specifically focused upon ALL consisting of B cell precur-

sor lymphoblasts (B-precursor ALL), the most common form of this disease, since

the normal counterpart to B-precursor lymphoblasts, termed hematogones, are de-

tectable in the bone marrow of most healthy individuals, and hematogones can pro-

liferate in benign reversible fashion in numerous clinical states [62]. The distinction

between hematogones and leukemic B-precursor lymphoblasts is highly relevant in

clinical practice since these cell types exhibit substantial immunophenotypic over-

lap, many transient conditions associated with hematogone hyperplasia can present

with clinical suspicion for leukemia, and patients with ALL can develop HP during

recovery from chemotherapy for their leukemia.

6.4.1 The Data

For this study, let us define the data set X = {X1, . . . , X54}, which consists of

54 patients, 31 of which have been diagnosed with ALL and 23 diagnosed with HP.

Patient samples were analyzed with a series of markers (see Table 6.3) designed for

the isolation of hematogones and aberrant lymphoblast populations, based on known
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Dimension Marker
1 Forward Light Scatter
2 Side Light Scatter
3 CD38
4 CD19
5 CD45
6 CD10

Table 6.3: Data dimensions and corresponding markers for analysis of ALL and HP.

differential patterns of these markers in these cell types. Specific details of how the

data was retrieved can be found in [34]. Intrinsic dimension estimation yields an

estimate of m = 3 for all samples, suggesting that visualization is indeed plausible

with minimal loss of information (even in 2 dimensions).

6.4.2 IPCA
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Figure 6.10: ALL and HP Study: The value of the IPCA objective function v.s. time

Minimizing the objective function (Fig. 6.10), we calculate the IPCA projection

as

A =



−0.1805 −0.1448 0.8691 0.0848 0.4084 0.1310

−0.0336 0.1143 −0.0291 0.2506 −0.2608 0.9242


 .

We observe that the projection matrix has strong loadings corresponding to markers

CD38 and CD10. In clinical practice, it is often noted that hematogones have a

very uniform and strong CD38 expression pattern, while lymphoblasts can have
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Figure 6.11: ALL and HP Study: Contour plots (i.e. PDFs) of the IPCA projected data. The top
row corresponds to the PDFs of the HP patients, while the bottom row represents
PDFs of ALL patients. The selected patients are those most similar between disease
classes, the centroids of disease classes, and those least similar between disease classes.

quite a range of CD38 expression [62]. This analysis seems to provide independent

validation for that observation. Furthermore, this analysis identifies CD10 as a

principal distinguishing marker among the others analyzed in this 4-color assay. This

finding is not intuitive, since in day-to-day practice CD10 is not obviously of greater

distinguishing value than marker such as CD45 or side angle light scatter. These

markers, like CD10, are used for their different expression patterns in lymphoblasts

versus hematogones, but that may show considerable overlap in expression intensity

between these two cell types. Our identification of CD10 as a marker of importance

identifies an area for further clinical investigation.

We illustrate the projected data in Fig. 6.11, once again selecting the most and

least similar patients between disease classes, as well as the class centroids. We

see that the projected PDFs match the clinical experience, as the HP patients have

limited variability to their distributions, while the patients with ALL show a wide

range of expression patterns.
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6.4.3 FINE
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Figure 6.12: ALL and HP Study: Comparison of embeddings, obtained with FINE, using the full
dimensional data and the IPCA projection matrix A. The embedding is very similar
when using the projected data, which preserves the similarities between patients.

Using FINE, we compare the embedding of the full-dimensional data to that of

the projected data in Fig. 6.12. The embeddings are very similar, which illustrates

once again that IPCA preserves the similarities between different sets. This allows

for a low-dimensional analysis in the projected space with the security of knowing

the relationships between patients have been minimally effected.

It is important to note the natural clustering which occurs between the disease

classes. Though admittedly more easily viewed given the class labels, there are still

two distinct clusters with only a few ambiguous patients. We note that the clusters

are even more easily distinguished in 3 dimensions when rotations are available to

the viewer, which agrees with our dimension estimation results. We also point out

that the behavior of the clusters is indicative of the excepted behavior given clinical

experience. Specifically, the ALL cluster of patients is generally spread out while the

HP cluster is tightly formed. This is in direct correlation to the clinical experience

where, as mentioned previously, it is often noted that hematogones have a very
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uniform and strong CD38 expression pattern, while lymphoblasts can have quite a

range of CD38 expression [62]. Once again, our methods seem to independently

validate this assertion.

6.5 Performance Comparison

We now compare IPCA to the LDA, PCA, and ICA [46] projection matrices for

the preceding studies. Given that an ultimate task is visualization for diagnosis and

validation, it is important that the disease classes are easily distinguished. For our

comparison, we utilize the Bhattacharya distance to measure how distinguishable

the “worst case” scenarios are in the projected space – essentially we desire the most

similar patients in differing disease classes (i.e. “worst case”) to have as little similar-

ity as possible. As previously detailed in Chapter V, the Bhattacharya distance has

been used to bound classification error in dimension reduction problems [44], and is

directly related to the Chernoff performance bound [37].

Study DR Method
IPCA PCA ICA LDA

Lymphoid 0.1573 0.0821 0.0220 0.1097
CLL 0.0550 0.0409 0.0326 0.0363
ALL/HP 0.0624 0.0532 0.0335 0.0428

Table 6.4: ‘Worst case’ performance comparison of dimension reduction (DR) methods for flow
cytometry studies. Results reported for each case study are of the lowest values of
the Bhattacharya distance between patient pairs with differing diseases in the projected
space. IPCA outperforms LDA, PCA, and ICA in all cases.

Results are illustrated in Table 6.4, where the best performance is emphasized

(larger numbers are more desirable). It is clear that IPCA consistently outperforms

both other methods of dimension reduction; concluding that the projection subspace

defined by IPCA is best at distinguishing between disease types. Although we do

not present them here, we have observed similar results with several other measures

of probabilistic distance and cluster similarity. Note that LDA was performed by
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assigning a unique class label for each patient. ICA was performed using the FastICA

algorithm [46], and the data was pre-processed by whitening and PCA in accordance

with [47].

6.5.1 Subsampling Performance
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Figure 6.13: IPCA performance using subset of patients XS ⊂ X from the lymphoid leukemia col-
lection, where NS is the number of randomly selected patients from each disease class.
Results shown over a 10-fold cross validation, with the IPCA projection determined
by X shown as a lower bound with the dotted line.

One concern when implementing IPCA is the number of data sets necessary to

find a proper projection. Specifically, given a subset of patients XS ⊂ X , how close

does IPCA approach the value of the objective function obtained when utilizing the

entire patient collection X ? To determine this, we return to our lymphoid leukemia

study and subsample from X , with NS patients randomly selected from each disease

class (NS ∈ [2, 5, 10, 15]), and use IPCA to determine the projection matrix A. We

then calculate the value of the objective function on the entire set X projected by A.

The mean results over a 10-fold cross validation are illustrated in Fig. 6.13, where we

signify the value of the objection function when using IPCA on the entire data set

with the dashed line. Given that the value of the objection function with the initial

random projection matrix was J
N2 = 89.0802, the relative performance of IPCA with
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few available data sets is promising.

6.6 Conclusions and Future Work

In this chapter we have applied our dimensionality reduction techniques towards

the field of clinical flow cytometry. By modeling each patient data set as a realization

of some PDF lying on a statistical manifold, we have shown that we are able to

embed all patients within the same low-dimensional Euclidean space with FINE.

This enables a visualization in which direct geometric comparisons may be made

between patients of differing disease class in order to validate clinical diagnoses. We

used IPCA to discover a low-dimensional projection that allows for visualization in

which the data is discernable between immunophenotypes. We have demonstrated

these abilities on numerous case studies of differing leukemias and lymphomas, and

have shown superiority to other standard methods of dimensionality reduction.

As discussed in Chapter V, analysis of the loading vectors in the IPCA projection

matrix allows for a means of variable selection. We have shown independent verifi-

cation for determining optimal marker combinations in distinguishing immunophe-

notypically similar cancers, as well as validating variables which help to identify

prognostic groups. Verifying these known results through independent methods pro-

vides a solid proof-of-concept for the ability to utilize IPCA for exploratory research

of different marker assays.

The combination of FINE and IPCA has proven useful for verification of cancer

diagnosis. The pathology community has shown much interest in this work, and

we look forward to continuing our studies. Specifically, we are interested in testing

on larger marker-assays, as we feel the true power of our framework is obtained in

the high-dimensional regime. When dealing with research grade cytometers, which
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reach up to 15-colors, standard methods of flow cytometric analysis are no longer

viable and our information-geometric approach will greatly help pathologists and

diagnosticians.



CHAPTER VII

Conclusions and Future Work

In this thesis we have approached the problem of dimensionality reduction on

statistical manifolds. As opposed to the standard approaches to manifold learning,

which aim to reconstruct a Riemannian sub-manifold of Euclidean space, we have

taken an information-geometric approach to the problem. We view data sets as

realizations of probability density functions lying on a statistical manifold, and aim

to reconstruct that manifold in a low-dimensional Euclidean space. This enables the

usages of many standard learning algorithms which operate in a Euclidean space,

which would not normally be easily applied to PDFs.

We first began by presenting work on local intrinsic dimension estimation. Rather

than assuming a constant dimension over an entire data set, we have accounted for

multiple supporting manifolds of varying dimensionality, and estimated the dimen-

sion of the supporting manifold for each sample. Not only has this proven useful for

dimensionality reduction, but we have also presented several practical applications

for which the information gained from intrinsic dimension is worthwhile. We have

shown the ability to detect anomalies in time-series data sets, cluster data based on

complexity, and segment images over various levels of detail.

Given the intrinsic dimension of the statistical manifold, we have shown the abil-

146



147

ity to reconstruct that manifold in a low-dimensional Euclidean space. Standard

methods of multidimensional scaling, which have been thoroughly utilized in mani-

fold learning, are easily adapted towards the reconstruction of statistical manifolds

given an appropriate measure of dissimilarity between PDFs. Although the Fisher

information distance – which is the natural metric of distance on a statistical mani-

fold – cannot be calculated without knowledge of the manifold parameterization, we

have formed good approximations of the distance using graphical methods alongside

one of several information divergences. This accurate measure of dissimilarity, in

conjunction with standard MDS methods, enabled the embedding of PDFs into an

open Euclidean space; a process we refer to a Fisher Information Nonparametric

Embedding. If the additional constraint of embedding onto the surface of a sphere

is desired, we offer Spherical Laplacian Information Maps. Both FINE and SLIM

may be used for a comparative visualization of PDFs, as well as additional learning

techniques which are not available in the probabilistic space. This has been shown

for document classification as well as object recognition.

Finally, when dimensionality reduction is desirable in the data domain, we have

presented an algorithm deemed Information Preserving Component Analysis which

finds the optimal low-dimensional subspace which preserves the high-dimensional

Fisher information distances between PDFs. Contrary to standard unsupervised

projection methods, which aim to find the optimal low-dimensional representation of

a single data set, the IPCA projection space ensures the best representation of a data

set with respect to all of the available data sets to which it will be compared. The

projection matrix itself is useful as a means of variable selection, as the dimensions

with the highest loading values will be those which contribute most to the information

distance between PDFs. This was demonstrated on the analysis of spam patterns,
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in which we were able to potentially identify community properties. We have also

shown the ability to use IPCA as a supervised method for dimensionality reduction

for the classification task, as the formulation of IPCA has a direct correlation to the

Chernoff bound for classification error. IPCA has shown superior performance to

standard supervised methods of dimensionality reduction on real data.

We have used all of the methods presented here in collaboration towards the prob-

lems of diagnosis and visualization of flow cytometry data. Current forms of analysis,

which rely on 2-dimensional axes projections, are both antiquated and prone to user

error. Through the use of FINE, we were able to embed patients into a common space

and enable diagnosticians to view a patient with an unspecified disease in relation

to a database of patients with potentially similar immunophenotype. As opposed to

traditional axes projections, IPCA offers a projection space which is formed through

a linear projection of all available markers, weighted according to importance in

preserving information distance. In this low-dimensional space, visualization is sim-

ple and we have shown that similar immunophenotypes are distinguishable, even in

the worst case scenarios. Additionally, when using the IPCA projection matrix for

variable selection, we have found agreement with standard clinical knowledge and

practice. This is critical as it offers a proof-of-concept for the use of IPCA towards

exploratory research, aiming to find new and distinguishing marker assays.

In future work, we would like to offer convergence proofs for the geodesic approx-

imation of the Fisher information distance. While we have shown empirical results,

illustrating the asymptotic convergence properties, we would like to also prove these

results analytically, providing details on specific conditions for which these properties

hold. This is similar to the way Tenenbaum et al. have provided convergence proofs

for their Isomap algorithm [7]. Additionally, we would like to continue studying the



149

benefits of our framework on flow cytometry analysis. Specifically, we aim to eventu-

ally run a clinical study, polling pathologists to obtain information on the potential

for clinical usage of our methods. This could be both qualitative in terms of ease of

use, as well as quantitative with respect to rate of misdiagnosis. Finally, we would like

to perform exploratory analysis with research-grade cytometers (which offer much

higher dimensionality) to potentially discover new and distinguishing marker assays

towards leukemias and lymphomas which are currently undistinguishable through

flow cytometry.
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APPENDIX A

Kernel Density Estimation

Kernel methods are nonparametric techniques used for estimating probability den-

sities of data sets. These methods are similar to mixture-models in that they are

defined by the normalized sum of multiple densities. Unlike mixture models, how-

ever, kernel methods are nonparametric and are comprised of the normalized sum of

identical densities centered about each data point within the set (A.1). This yields

a density estimate for the entire set in that highly probable regions will have more

samples, and the sum of the kernels in those areas will be large, corresponding to a

high probability in the resultant density.

We now illustrate the derivation of the kernel density estimate (KDE) of the PDF

f(x) of the realization Xf . We utilize Gaussian kernels as the quadratic properties

will be useful in implementation. Specifically, the KDE of a PDF is defined as

(A.1) f̂(x) =
1

nf · h
nf∑
j=1

K

(
x− xj

h

)
,

where nf is the number of sample points xj ∈ Xf , K is some kernel satisfying the

properties

K(x) > 0, ∀x ∈ X ,

∫
K(x) dx = 1,
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and h is the bandwidth or smoothing parameter. By utilizing the Gaussian kernel

K(x) =
1

|2πΣ|1/2
exp

(
−1

2
xT Σ−1x

)
,

where Σ is the covariance of the kernel, we may combine the smoothing parameter

vector h with Σ (ie. Σ = I) such that Hf = diag(h). Note that we implement a

vector bandwidth such that our Gaussian kernels are ellipses rather than spheres.

There are a variety of methods for determining this bandwidth parameter; we choose

to implement the maximal smoothing principle [75]. This yields the a final kernel

density estimate of

(A.2) f̂(x) =
1

nf

nf∑
j=1

1√|2πHf |
exp

(
−1

2
(x− xj)

T H−1
f (x− xj)

)
.

Let us now make the following definitions:

D
(f)
j = (x− x

(f)
j )T H−1

f (x− x
(f)
j )

W (f) = e−D(f)/2,(A.3)

where D
(f)
j is a Mahalanobis distance between the point x and sample points x

(f)
j ∈

Xf , and D(f) is the vector with elements D
(f)
j . Substituting (A.3) into (A.2), we

obtain

(A.4) f̂(x) =
1

nf

nf∑
j=1

1√|2πHf |
W (f),

the KDE approximation of the PDF generating Xf .

We note that the mean squared error of a KDE decreases only as n−O(1/d), which

becomes extremely slow for large d. As such, it may be difficult to calculate good

kernel density estimates. However, for our purposes, the estimation of densities is

secondary to the estimation of the divergence between them. As such, the issues

with MSE of density estimates in large dimensions, while an area for future work, is

not of immediate concern.
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APPENDIX B

Implementation Details

We now detail the calculation of the approximation of the Fisher information dis-

tance between two realizations of PDFs. Specifically, let Xf and Xg be realizations

of PDFs f(x) and g(x) respectively. Our goal is to calculate both an approximation

of the Fisher information distance between the PDFs as well as the direction of the

gradient with respect to a projection matrix A. Let us now illustrate the difficulties

with these computations.

Recall that the Hellinger distance (squared) is defined as

(B.1) D2
H(f(x), g(x)) =

∫ (√
f(x)−

√
g(x)

)2

dx.

Given the limited (and often unknown) support of x in both f(x) and g(x), it is

appropriate to reformat this definition in terms of an expected value with respect to

a single density f(x) or g(x):

(B.2) D2
H(f(x), g(x)) =





∫ (
1−

√
g(x)
f(x)

)2

f(x)dx

∫ (
1−

√
f(x)
g(x)

)2

g(x)dx

.

These equations may be numerically approximated as follows:

D̂2
H(f(x), g(x)) =





1
nf

∑nf

i=1

(
1−

√
ĝ
(
x
(f)
i

)

f̂
(
x
(f)
i

)

)2

1
ng

∑ng

i=1

(
1−

√
f̂
(
x
(g)
i

)

ĝ
(
x
(g)
i

)

)2 ,
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in which nf and ng are the number of samples x
(f)
i ∈ Xf and x

(g)
i ∈ Xg, and f̂(x)

and ĝ(x) are the kernel density estimates of PDFs f(x) and g(x) (see Appendices B.4

and A). The problem with these approximations is that they yield a non-symmetric

estimate of the Hellinger distance D̂2
H(f(x), g(x)) 6= D̂2

H(g(x), f(x)). Additionally,

the estimate is unbounded from above. By definition the Hellinger distance should

be symmetric and bounded by 2 (for the squared distance).

When approximating the Kullback-Leibler divergence, a similar approach of for-

matting as an expectation may seem natural. The definition of the KL divergence

(B.3) KL(f(x)‖g(x)) =

∫
f(x) log

f(x)

g(x)
dx

in turn would be approximated as

K̂L(f‖g) =
1

nf

nf∑
i=1

log
f̂

(
x

(f)
i

)

ĝ
(
x

(f)
i

) .

Note that by definition the KL divergence is not necessarily symmetric, however

it is strictly non-negative. This numerical approximation does not guarantee this

non-negativity.

B.1 Metric Calculation

We now detail our approximations which do not suffer from the aforementioned

pitfalls. Define

T (x) =
f(x)

f(x) + g(x)

and

(B.4) T̂ (x) =
f̂(x)

f̂(x) + ĝ(x)
.

Note that 0 6 T (x) 6 1.
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For simplicity, let us write f = f(x), g = g(x), and T = T (x). The Hellinger

distance (squared) may be computed as follows:

D2
H(f, g) =

∫ (√
f −√g

)2

dx

=

∫ (√
f

f + g
−

√
g

f + g

)2

(f + g)dx

=

∫ (√
T −

√
1− T

)2

f dx +

∫ (√
T −

√
1− T

)2

g dx.(B.5)

Hence, we may now define our numerical approximation of the squared Hellinger

distance as:

D̂2
H(f, g) =

1

nf

nf∑
i=1

(√
T̂

(
x

(f)
i

)
−

√
1− T̂

(
x

(f)
i

))2

+
1

ng

ng∑
i=1

(√
T̂

(
x

(g)
i

)
−

√
1− T̂

(
x

(g)
i

))2

,(B.6)

which is both symmetric and bounded above by 2.

The same formulation may be implemented when approximating the Kullback-

Leibler divergence. Specifically,

KL(f‖g) =

∫
f log

f

g
dx

=

∫
f

f + g
log

(
f

f + g
/

g

f + g

)
(f + g) dx

=

∫
T log

T

1− T
f dx +

∫
T log

T

1− T
g dx.(B.7)

Hence

K̂L(f‖g) =
1

nf

nf∑
i=1

T̂
(
x

(f)
i

)
log

T̂
(
x

(f)
i

)

1− T̂
(
x

(f)
i

)

+
1

ng

ng∑
i=1

T̂
(
x

(g)
i

)
log

T̂
(
x

(g)
i

)

1− T̂
(
x

(g)
i

) ,(B.8)

which no longer suffers from the issue of potential negativity. This value is still

non-symmetric, and when dealing with metric learning it is often desirable to have a
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symmetric dissimilarity metric. Hence, we implement the symmetric KL divergence

(2.10) which maybe calculated in a similar manner:

DKL(f, g) = KL(f‖g) + KL(g‖f)

=

∫
f log

f

g
dx +

∫
g log

g

f
dx

=

∫
(f − g) log

f

g
dx

=

∫
(2T − 1) log

T

1− T
f dx +

∫
(2T − 1) log

T

1− T
g dx,(B.9)

yielding

D̂KL(f, g) =
1

nf

nf∑
i=1

(2T̂
(
x

(f)
i

)
− 1) log

T̂
(
x

(f)
i

)

1− T̂
(
x

(f)
i

)

+
1

ng

ng∑
i=1

(2T̂
(
x

(g)
i

)
− 1) log

T̂
(
x

(g)
i

)

1− T̂
(
x

(g)
i

) .(B.10)

The Bhattacharya distance may be numerically formulated in the same manner

as the KL divergence and Hellinger distance:

DB(f, g) = − log

∫ √
f
√

g dx

= − log

∫ √
f
√

g
f + g

f + g
dx

= − log

[∫ √
T (1− T )f dx +

∫ √
T (1− T )g dx

]

D̂B(f, g) = − log

[
1

nf

nf∑
i=1

√
T̂

(
x

(f)
i

)(
1− T̂

(
x

(f)
i

))

− 1

ng

ng∑
i=1

√
T̂

(
x

(g)
i

)(
1− T̂

(
x

(g)
i

))]
.(B.11)

In order to numerically approximate these information divergences, we calculate

T̂ (x) as described in Section B.4.
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B.2 Gradient Calculation

In Appendix B.1 we detailed expressions of the form

D =
1

nf

nf∑
i=1

G
(
T̂ (x

(f)
i )

)
+

1

ng

ng∑
i=1

G
(
T̂ (x

(g)
i )

)
,

which were used to numerically approximate the Hellinger distance and Kullback-

Leibler divergence between PDFs f(x) and g(x). For simplicity, we write

D =
1

nf

nf∑
i=1

G(T̂ ) |
x
(f)
i

+
1

ng

ng∑
i=1

G(T̂ ) |
x
(g)
i

.

Note that we do not continue with the Bhattacharya distance as we are mainly in-

terested in that measure for final comparison to other dimension reduction methods,

and we do not calculate the gradient w.r.t. this distance. If desired, the gradient

may be calculated by a analytic transformation of the Hellinger distance gradient.

The gradient of D w.r.t. some parameter θ, to which T yields some dependency,

is defined as

(B.12)
∂D

∂θ
=

1

nf

nf∑
i=1

∂G

∂T

∂T

∂θ
|
x
(f)
i

+
1

ng

ng∑
i=1

∂G

∂T

∂T

∂θ
|
x
(g)
i

,

where

(B.13)
∂T

∂θ
= T (1− T )

(
∂

∂θ
log f − ∂

∂θ
log g

)
.

This derivation is explained in Appendix B.5. Substituting (B.13) into (B.12), the

gradient may be numerically approximated as

∂D̂

∂θ
=

1

nf

nf∑
i=1

T̂ (1− T̂ )
∂G

∂T

(
∂

∂θ
log f − ∂

∂θ
log g

)
|
x
(f)
i

+
1

ng

ng∑
i=1

T̂ (1− T̂ )
∂G

∂T

(
∂

∂θ
log f − ∂

∂θ
log g

)
|
x
(g)
i

.(B.14)

Given this general setting, it is important to recognize that the only difference

between the formulation of the Hellinger distance, KL divergence, and symmetric
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KL divergence is the definition of G(T ). Hence, the formulation of the gradient is

unchanged for all metrics, given a different definition of G(T ). We now derive the

value of T (1− T )∂G
∂T

for each metric.

B.2.1 Hellinger Distance

From (B.5) we see that G(T ) =
(√

T −√1− T
)2

. Therefore,

∂G

∂T
= (

√
T −

√
1− T )

(
1√
T

+
1√

1− T

)

=

√
T

1− T
−

√
1− T

T

=
2T − 1√
(1− T )T

.

Hence,

(B.15) T (1− T )
∂G

∂T
=

√
T (1− T ) (2T − 1).

B.2.2 Kullback-Leibler Divergence

From (B.7) we see that G(T ) = T log T
1−T

. Therefore,

∂G

∂T
= log

(
T

1− T

)
+

1

1− T
.(B.16)

Hence,

(B.17) T (1− T )
∂G

∂T
= T (1− T ) log

(
T

1− T

)
+ T.

For the symmetric KL divergence, (B.9) yields that G(T ) = (2T − 1) log T
1−T

.

Therefore,

∂G

∂T
= 2 log

(
T

1− T

)
+

2T − 1

T (1− T )
.

Hence,

(B.18) T (1− T )
∂G

∂T
= 2T (1− T ) log

(
T

1− T

)
+ 2T − 1.
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B.3 Matrix Gradient

We now specify our abstraction to the specific task for IPCA, which is cal-

culating the gradient of D w.r.t. the projection matrix A. First, let us derive

∂
∂θ

log f = ∂
∂A

log f(Ax) in which f̂(Ax) may be estimated with kernel density es-

timation methods described in Appendix A, with kernel locations x
(f)
j ∈ Xf .

∂

∂A
log f̂(Ax)|x(f) =

∂

∂A
log

(
1

nf

nf∑
j=1

1√|2πHf |
e−

1
2
(x−x

(f)
j )T AT H−1

f A(x−x
(f)
j ))

)

=

nf∑
j=1

W̄
(f)
j

(
−H−1

f A(x− x
(f)
j )(x− x

(f)
j )T

)

= −H−1
f AC(f)(x),(B.19)

where Hf is the kernel bandwidth for set Xf ,

W̄
(f)
j =

exp
(
−1

2
(x− x

(f)
j )T AT H−1

f A(x− x
(f)
j )

)

∑nf

l=1 exp
(
−1

2
(x− x

(f)
l )T AT H−1

f A(x− x
(f)
l )

) ,

and

C(f)(x) =

nf∑
j=1

W̄
(f)
j (x− x

(f)
j )(x− x

(f)
j )T

is the weighted sample covariance around x. In the same manner,

∂

∂A
log (ĝ(Ax))|x(g) = −H−1

g AC(g)(x),

by evaluating the KDE with points x
(g)
j ∈ Xg.

Finally, we may now define the gradient ∂
∂A

D̂ as follows

∂

∂A
D̂ =

1

nf

nf∑
i=1

T̂ (x
(f)
i )(1− T̂ (x

(f)
i ))

∂G

∂T
(x

(f)
i )

[
(−H−1

f AC(f)(x
(f)
i ))− . . .

−(−H−1
g AC(g)(x

(f)
i ))

]

+
1

ng

ng∑
i=1

T̂ (x
(g)
i )(1− T̂ (x

(g)
i ))

∂G

∂T
(x

(g)
i )

[
(−H−1

f AC(f)(x
(g)
i ))− . . .

−(−H−1
g AC(g)(x

(g)
i ))

]
.(B.20)
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B.4 Numerical Implementation

B.4.1 PDFs and T (x)

To estimate the PDFs f(x) and g(x), let us begin with the following definitions:

D
(f,g)
ij = (x

(f)
i − x

(g)
j )T H−1

f (x
(f)
i − x

(g)
j )

W
(f,g)
ij = e−D

(f,g)
ij /2

W (f,g) =
[
W

(f,g)
ij

]
,(B.21)

which in conjunction with the Gaussian KDE illustrated in Appendix A, yield the

density estimates:

f̂(x)|x(?) =
1

n?

1√|2πHf |
W (f,?)1

ĝ(x)|x(?) =
1

n?

1√|2πHg|
W (g,?)1,(B.22)

where 1 is the vector of all ones and ? is either f or g. Essentially, given the limited

support of each Xf and Xg, we approximate the densities and their derivatives

w.r.t. the samples in an appropriate set. Hence, f̂(x)|x(?) is an n? element vector with

elements equal to f̂(x(?)), x(?) ∈ X?. A similar interpretation holds for ĝ(x)|x(?) .

Plugging the density estimates (B.22) into (B.4), we calculate our final estimates

of T (x):

T̂ (x(f)) =
1√|2πHf |

W (f,f)1./

(
1√|2πHf |

W (f,f)1 +
1√|2πHg|

W (g,f)1

)

T̂ (x(g)) =
1√|2πHf |

W (f,g)1./

(
1√|2πHf |

W (f,g)1 +
1√|2πHg|

W (g,g)1

)

where the notation ./ signifies element-by-element vector division.
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B.4.2 Gradient

We now describe the implementation of (B.20). Specifically, let us numerically

calculate

Z(f, g) =
1

nf

nf∑
i=1

T̂ (x
(f)
i )(1− T̂ (x

(f)
i ))

∂G

∂T
(x

(f)
i )

(
H−1

g AC(g)(x
(f)
i )

)
,

and extend towards the 3 other similar formulations such that

(B.23)
∂

∂A
D̂ = Z(f, g)− Z(f, f) + Z(g, g)− Z(g, f).

Let us continue (B.21) with the following additional definitions:

W̄
(f,g)
ij = W

(f,g)
ij /(W

(f,g)
ij 11T )

S
(f,g)
ij = T̂ (1− T̂ )

∂G

∂T
|
x
(f)
i
· W̄ (f,g)

ij

S(f,g) =
[
S

(f,g)
ij

]
.(B.24)

The formulation continues as follows:

Z(f, g) =
1

nf

H−1
g A

nf∑
i=1

ng∑
j=1

T̂ (1− T̂ )
∂G

∂T
|
x
(f)
i
· W̄ (f,g)

ij (x
(f)
i − x

(g)
j )(x

(f)
i − x

(g)
j )T

=
1

nf

H−1
g A

nf∑
i=1

ng∑
j=1

S
(f,g)
ij (x

(f)
i − x

(g)
j )(x

(f)
i − x

(g)
j )T

=
1

nf

H−1
g A

[
Xfdiag(S(f,g)1)XT

f −XfS
(f,g)XT

g

− Xg(S
(f,g))T XT

f + Xgdiag((S(f,g))T1)XT
g

]
.(B.25)

Equation (B.25) and similar formulations (replacing f and g where appropriate)

may be substituted into (B.23) to obtain the final calculation of the gradient ∂
∂A

D̂.
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B.5 Gradient of T

Calculation of the gradient of T = f
f+g

w.r.t. some parameter θ. Let Fθ = ∂
∂θ

F

for some arbitrary function F .

∂T

∂θ
= T

∂

∂θ
log T

= T
∂

∂θ
(log f − log (f + g))

= T

(
fθ

f
− fθ + gθ

f + g

)

= T

(
fθg − gθf

f(f + g)

)

= T

(
(1− T )

fθ

f
− g

f + g

gθ

g

)

= T ((1− T )(log f)θ − (1− T )(log g)θ)

= T (1− T )

(
∂

∂θ
log f − ∂

∂θ
log g

)
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[63] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis
with kernels. In Proc. IEEE Neural Networks for Signal Processing Workshop, 1999.

[64] I. Pardoe, X. Yin, and R. D. Cook. Graphical tools for quadratic discriminant analysis.
Technometrics, 49(2), May 2007.

[65] A. P. Petland. Fractal-based description of natural scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6:661–674, 1984.

[66] R. Raich, J. A. Costa, S. B. Damelin, and A. O. Hero. Classification constrained dimensionality
reduction. IEEE Transactions on Signal Processing, 2008. to be submitted.

[67] R. Raich, J. A. Costa, and A. O. Hero. On dimensionality reduction for classification and its
applications. In Proc. IEEE Intl. Conference on Acoustic Speech and Signal Processing, May
2006.

[68] A. Ramachandran and N. Feamster. Understanding the network-level behavior of spammers.
In Proc. of ACM SIGCOMM, pages 291–302, Sept. 2006.

[69] M. Roederer and R. Hardy. Frequency difference gating: A multivariate method for identifying
subsets that differ between samples. Cytometry, 45(1):56–64, 2001.

[70] M. Roederer and R. Hardy. Probability binning comparison: A metric for quantitating multi-
variate distribution differences. Cytometry, 45(1):47–55, 2001.



168

[71] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Sci-
ence, 290(1):2323–2326, 2000.

[72] J. Salojarvi, S. Kaski, and J. Sinkkonen. Discriminative clustering in fisher metrics. In
Artificial Neural Networks and Neural Information Processing - Supplementary prodceedings
ICANN/ICONIP 2003, pages 161–164, June 2003.

[73] A. Srivastava, I.H. Jermyn, and S. Joshi. Riemannian analysis of probability density functions
with applications in vision. In Proceedings of IEEE Computer Vision and Pattern Recognition,
June 2007.

[74] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

[75] George Terrell. The maximal smoothing principle in density estimation. Journal of the Amer-
ican Statistical Association, 85(410):470–477, June 1990.

[76] M. Thangavelu and R. Raich. Multiclass linear dimension reduction via a generalized chernoff
bound. In IEEE Machine Learning for Signal Processing Workshop, Oct. 2008.

[77] Y. Vardi and C.-H Zhang. The multivariate L1-median and associated data depth. Proceedings
of the National Academy of Science USA, 97:1423–1426, 2000.

[78] E. Zamir, B. Geiger, N. Cohen, Z. Kam, and B. Katz. Resolving and classifying haematopoietic
bone-marrow cell populations by multi-dimensional analysis of flow-cytometry data. British
Journal of Haematology, 129:420–431, 2005.

[79] Q. T. Zeng, J. P. Pratt, J. Pak, D. Ravnic, H. Huss, and S. J. Mentzer. Feature-guided
clustering of multi-dimensional flow cytometry datasets. Journal of Biomedical Informatics,
40:325–331, 2007.

[80] S.K. Zhou and R. Chellappa. From sample similarity to ensemble similarity: Probabilistic
distance measures in reproducing kernel hilbert space. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(6):917–929, June 2006.


