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Abstract

The locational uncertainty of a manipulator is largely due to the errors of the joint variables. But
these errors can not be easily compensated for because they are dependent on the operation (i.e., robot-
configuration). Motivated by the need to conduct precision engineering and the intellectual curiosity of
geometric uncertainty, the probabilistic tolerance volume due to joint errors is investigated.

By defining the locational uncertainty in Cartesian space as a tolerance volume, the investigation
focuses on the automatic generation of the tolerance volume from a given confidence level. For this
purpose, the linear mapping from Aq space to Ad space through Jacobian matrix is analyzed
probabilistically. Probabilistic approach is advantageous since the tolerance volume by the deterministic
approach is found to be unnecessarily large. With the assumption of normality of joint variables, this
paper begins with the computation of the confidence level for a given tolerance volume. A fast analytic
procedure, which gives a considerable time-reduction compared to the commonly used Monte-Carlo
simulation, is presented. Based on the monotonic relation between confidence level and tolerance volume,
the procedure is used to generate the tolerance volume covering the desired confidence level. The scheme is
tested with the six degrees-of-freedom Stanford manipulator and shows a significant (more than 5 times)

reduction in the size of the tolerance volume with a 0.3% probability of error.



1. Introduction

In the study of robotics, the location of a manipulator in the three-dimensional Cartesian space is
described by two attributes: position and orientation. Since position and orientation are each defined by
three degrees-of-freedom (DOF), a location is completely defined by six DOF. The location of a
manipulator is effected by kinematic parameters [1,12]. However, the actual location is often somewhat

different from the desired location due to errors in the kinematic parameters.

The location of an end-effector is determined by the accuracy of its kinematic parameters, of which
there are four: three being the geometric link parameters and one being the joint variable. Error in the
geometric link parameters is due to the variability in the machining of the geometric links. This source of
kinematic error is fixed as soon as the links are assembled. It can be identified by calibration [5,9,14] and
compensated for. Error in the joint variable is of a larger magnitude than those in the geometric link
parameters [15]. It is due to a number of control-related factors as well as bearing clearances and is
dependent on the particular robot configuration in space. As there are many possible robot configurations,

the "randomness"” of the joint error is examined in this paper.

Joint error and locational error are defined respectively as the deviations from the desired (nominal)
joint value and the corresponding location. They are represented in terms of the differential joint variable
vector Aq and the differential location vector Ad. The relationship between these two vectors is described by

the Jacobian matrix J [12]:
Ad=] Aq M

For an n DOF manipulator, Aq is a nx 1 vector which consists of the n differential joint variables

Aql,...,Aq“.'r The differential location vector Ad is always a 6x1 vector, composed of the 3x1 differential

position vector and the 3x1 differential orientation vector. The Jacobian matrix J is then a 6xn matrix and

T The variable for the j-th joint is represented by qj in this paper. For a revolute joint j, qj is the joint
angle parameter. For a prismatic joint j, qj is the link length parameter.



it represents the infinitesimal displacement of the end-effector due to an infinitesimal change in a joint
variable. Equation (1) describes the linear mapping from an n-dimensional vector space R” to a six-

dimensional vector space R®. This mapping is illustrated in Figure 1.

d = J Aq
/
-Aq SAgS Aqy
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inear mapping
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Figure 1. Linear Mapping by Jacobian Matrix

If the joint error were fixed, the locational error could be compensated for by equation (1). But
because the joint error is configuration dependent, it is difficult to prescribe all the possible errors. Usually

the joint error vector is specified by upper and lower limits as:

-Aq-<Aq<Aq’ @

The locational error due to joint errors (2) is then described by a certain volume in the six-dimensional
space, the three dimensions of which are for position errors and the other three are for orientation errors.

This volume is referred to as the tolerance volume V and the procedure for computing the tolerance

volume is referred to as joint error analysis.

Joint error analysis examines the tolerance volume Vr in the Cartesian space, as a linear mapping of

the domain Vq (in the Aq space). This analysis is relatively simple to perform if the joint errors Aq are



treated as deterministic variables. By so doing, the result of the analysis is for the worst case. To assess

the merit of a less pessimistic solution, the probabilistic approach is taken in this paper.

For comparison, the two approaches, deterministic and probabilistic, are examined here by taking a
two DOF planar manipulator of Figure 2 as an example. In probabilistic terms, the domain VQ and its
range Vr are understood as confidence intervals. The kinematic equation relating the end-effector position

(x,y) to the joint displacement (q, .q,) are given by

x(q,,9,) =1, cos q, +1, cos(q,+q,)
©)
¥(q,.q,) =1, sinq, +1,sin(q,+q,)

From equation (3), the Jacobian matrix of the planar manipulator can be computed as follows:

m axM -1, sinq, - 1, sin (q,+q,) -1, sin (q,+q,)

™ %
=l @) (a4,
aql aq2 ll cos ql + 12 cos (q1+q2) -12 cos (ql+q2)

G444

Figure 2. Two DOF Planar Manipulator
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Figure 3. Linear Mapping of a Planar Manipulator

Suppose that the link variables are 1,=1.0 and 1,=1.4142, and the joint variables are ql=O° and q2=135°.

Then,

-0.7071 - 0.7071
=l 07071 -0.70M1



The linear mapping by this Jacobian matrix corresponds to a rotation of the set V¢ by an amount of 135°

in the counter-clockwise direction around the origin. See Figure 3-(a) and 3-(b).

For this computation, Benhabib, et al [3] obtained a tolerance volume by taking the absolute values
of the Jacobian elements and the maximum absolute joint errors in equation (1). That is, the differential

location vector due to the joint errors of equation (2) is specified by the following inequalities.

-Ad% < Ad < AdY, for1<i<6 @)
where the limit value Ad‘;‘ is obtained by the following equation

*
At = Y 1. qu for1<i<é6 ®)]

where Aq; = max(qu.‘,Aq‘jJ). Using the same example, [3] produced the tolerance volume V3 in Figure 3-

(b). The resulting tolerance volume V7 from the deterministic approach of [3] covers V1 completely. But,
by permitting a small fraction of non-coverage, say, 0.3%, it may be possible to obtain a tolerance volume
V; much smaller than V{ as illustrated in Figures 3-(c) and 3-(d). (The intuition here is to sacrifice the
tail of a probability density function, which has a large range in the abscissa yet the area under it, i.e., the
probability, is very small.) To examine the potential pay-off, the probabilistic approach which treats the
joint variables as normally distributed random variables is adopted in this paper. The probabilistic approach
of this paper differs from other probabilistic approaches such as [10,13,15] in that the focus is on the

automatic generation of tolerance volume covering a given percentage.

An iterative scheme is developed in this paper to obtain a tolerance volume. The basic idea is as
follows: (i) generate a sufficiently large tolerance volume and then (ii) reduce it until it covers Vr at the
given confidence level. The iteration is based on the monotonic relation between the tolerance volume V
and the confidence level of its coverage, which is proven in Section 3. (Intuitively, monotonicity is easy to

see: as a tolerance volume shrinks from a 100% coverage, the confidence level of that volume also



decreases). Section 3 also details the ways of setting the initial tolerance volume and of reducing the

volume.

Before the overall algorithm is presented, a procedure for computing the confidence level of covering
a given tolerance volume is needed. For this computation, simulation or an analytic procedure can be used.
Monte-Carlo simulation [2,4], while powerful, is computationally intensive. As the computation of the
probability for coverage is an inner loop in the iterative scheme for generating the tolerance volume, speed
is essential. An analytic procedure, which requires only O(n) computation under the given Jacobian matrix
J, is given in Section 2 where n is the DOF. (It runs in less than 3 seconds on an IBM AT personal
computer.) Finally, in Section 4, the run time of the iterative scheme (in less than 20 seconds on an IBM

AT) is illustrated with a six-DOF Stanford manipulator.

2. Confidence Level of Tolerance Volume

A six-dimensional tolerance volume Vr is bounded by twelve hyperplanes: - Ad[i‘ < Adi < AdliJ for

1 <i<6. The probability of covering a given V, called the hit ratio HR, is defined as:
: L
HR=Pr{ﬂl(-AdiSAdiSAd[iJ)} ©

To compute (6), the intersection of twelve hyperplane is integrated through the probability density function
(p.d.f.) of the random variables Ad;, However, the p.d.f. is multivariate and involves dependent variables.

(The dependency can be seen from the example in Figure 2. In it, Ax = - 0.7071 Aq, - 0.7071 Aq, and Ay

=0.7071 Aq, - 0.7071 Aq,. Since Ax and Ay have the same random variables Aq, and Aq, , Ax and Ay are

not independent of each other.)

Using equation (1), the twelve hyperplanes can be rewritten as G, (") 2 0, for 1 <k < 12, where



n
G(Aq) =G, (A9)= 3 J Aq + adt 20 fork: oddand 1<i<6
=1

n
or G,(Aq) =G, (Aq) = - ) Jiquj + Ad[iJ >0 forkievenand 1<i<6
=1

Each of the twelve inequalities separate the Aq space into two half-spaces: hit region H,_and miss region
Mk, where

H ={Aq!G(8q)20} and

M, ={AqIG(Aq)<0}.
Thus, the computation for the hit ratio in the Aq space becomes

12
HR = Pr( {ll H,) M

While the computation of (7) still involves multiple integration, the p.d.f. for qu is more manageable.
The random variable qu obeys the Central Limit Theorem [8] as the joint error comes from a large number

of independent sources [4,15] such as inherent errors in the actuating motors, clearance between the gear
teeth, encoder resolutions, computer round-offs, etc. In other words, qu has a normal distribution with
mean zero and standard deviation o, Based on normality, a given limit of Aq;, i.e., Aqg‘ <AQ< qup, can be

related to S, For example, covering the limit of Aq?‘ <Ag < Aq}j with a probability of 99.73% would yield

Aqlf
cj=—3-‘- for 1<j<n ®)

where Aq?‘ is understood to be Aq?‘:Aq? by symmetry.

The hit ratio (7) can then be computed by

HR = / S / 0,(0s1) d(Aq,) ... d(Aq,) ©
NH
k=l K

where ¢ _(O;I) denotes the multivariate p.d.f. having the mean vector O and the identity correlation

matrix L.



2.1 Estimation of Hit Ratio

12
The intersection of the twelve hit regions, ﬂl H , forms a convex polytope in the Aq space. To
1=

compute the probability of covering such a convex polytope under the multivariate normal distribution,
techniques in numerical analysis or Monte-Carlo simulation may be used. While numerical integration
yields an exact solution, it demands intensive computations. Simulation on the other hand offers a solution
whose accuracy is proportional to the amount of computation time. Now, application to robotics demands
speed and accuracy. To achieve both, a bounding formula attributed to Ditlevsen (7] in his work on
reliability is adopted. This bounding formula uses only O(n) computations of univariate and bivariate

normal distribution where n is the DOF.

Lemma 1: (Ditlevsen's Formula) HR is bounded by HR"™ and HRY, i.c.,
HR" < HR < HRY (10)
where
12 12

HR" = 1- YPrM)+ % max Pr(M N M)
k=1 k=2  m<k k m

12 k-1
HR= 1-Pr(M))-3, max {Prv)- 3 Prv N M), 0}
= m=| m

[Proof]  The proof can be found in [7].

The rest of this section is devoted to finding the probabilities Pr(M,) and Pr(Mkﬂ M) for
1 <k, s < 12, in the problem domain of kinematics generated by equation (1). To find Pr(M,), first

examine the distribution of Gk(Aq) for1<k<12.

Lemma 2:

n
N(adk, 3 1%%) ifk: odd and i= ktl
1 =R 2

Gk(Aq) ~ . for1 <k< 12
N(Adl.J, Y 1%%) ifk:evenand =k
1 U 2

[Proof] See Appendix A.



Since Pr(M,) = Pr(Gk(Aq)<0), Lemma 2 induces the following:

Lemma 3
( L A
- Ad:
o(——=) ifk:oddand =3
DI Res
< 1
PrM,) = U ;Fofor 1<k<12 (12)
<D(——-‘-—-) if k : even and i=%
2
L ;Jij j J

where ®(*) is a cumulative standard normal distribution function.

(Proof] See Appendix B.

Now, Lemma 3 enables the looking up of Pr(Mk) from the standard normal distribution table. The
remaining work for the computation of HR" and HR" is to find the joint probabilities Pr(Mkﬂ M) for

1<k,s<12. First the correlations p, between the Gk(-)'s are derived.

Lemma 4:

N, *N, for k<stt
P, = {psk for k>s} for 1 <ks<12 (13)

1 for k=s

where ¢ is a dot product of two nx1 vectors and Nk vector is defined as follows:

J4c t 1 )
( ————) 1fkoddand1
P g S 1%
< ijj b >
N =
. ) J o, . J o, ¢ ) for 1<k<12 (14)
( ooy ) if k:even and i 1——
< 72
u J J_zl 11612 J

(Proof] See Appendix C.

1 In this case, provided additionally that s is an even number and s-k=1, then Py =0 since two
hyperplanes Gk(Aq) and G s(Aq) are parallel in Aq space.



Since it is known from Lemma 2 that Gk(Aq) for 1 < k < 12 follows the normal distribution and the

correlation among them is computed by (13) and (14), the joint probabilities Pr(Mkﬂ Ms) can be obtained

by using the bivariate normal p.d.f.

Lemma $:
Pr(Mkn M!)

Pr{Gk(Aq) <0,G (aq) < 0}
1<k, s<12 (195

J' 0 J’ O 0,,AB, C D, p)dxdy

where ¢x y(A, B, C, D, pks) signifies a bivariate normal p.d.f. of the two random variables x ~ N(A,B)

and y ~ N(C,D) having correlation P and the determination of A,B,C, and D are given in Table 1.

S
odd even
L 2 2 L o2 2
A=Ad", B= ZJ o° A=Ad;, B=Y % o*
g’ i 8 ~gj ]
g1 =1
odd C=ady, D= 212 o} C=ad/, D= 212 o}
1 Fl
whereg:kzi, h=sL-21- whereg=k;—l, =SE
k
U o2 2 U o2 2
Fl =1 ;
even| C=Ad, D= 212 o} C=Ad), D= 212 o}
Fl Fl
s+1 S
whereg-z, h= 3 whereg-z, h—2

Table 1. Parameters of the Bivariate Normal Distribution
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2.2 Computing the Bounds of Hit Ratio

The flow chart for computing the lower and upper bounds of HR is summarized in Figure 4. The
procedure consists of the three subroutines: the computation of hit ratio, the derivation of standard
deviations, and the computation of the Jacobian matrix. Notice that the subroutine for computing the hit
ratio needs twelve computations of the probability Pr(Mk) and (lg) = 66 computations of the joint

probabilities Pr(M, 1 M) 1< k,s <12.

" Limits of Joint Gmﬂ e Volume Nominal (Ideal)

Variable Errors Location

v

Setting the
Standard Deviations

9 by (8)
v ¥

Computation of Hit Ratio

Computation of
44— A g

Pr Mp by (12) Jacobian Matrix
Py by (13)

!

Pr (Mkf\ MS) by (15

!

Compute the bounds of
HR by (10) >

Figure 4. Flow-Chart for Computing the Lower
and Upper Bounds of HR
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In Figure 4, the tolerance volume as an input is determined by considering the characteristics of the
operation to be done. For example, spot welding or painting is usually concerned with the positional
tolerance of the end-effector across the work surface. In such a case, the orientation errors can be neglected
by assigning artificially large values for the upper and lower limits when setting the tolerance volume.
But, for operations requiring more delicate control of the six DOF, the specification of tolerance volume
becomes quite complex since the specification of each DOF is interrelated with the specification of the other
DOFs. In other words, for a complete specification of tolerance volume, the twelve interrelated limits of
©6) (Adli“ and AdliI for 1 <i<6) have to be decided simultaneously. To relieve this burden for input, the
automatic generation of tolerance volume is considered in the next section using the probabilistic

technique just presented.

3. Generation of Tolerance Volume

This section presents a procedure for generating a tolerance volume automatically, given the

confidence level of that volume. The tolerance volume to be generated will be represented by a six-

dimensional cuboid in Ad space such that AdIi‘ <Ad; < Ad[ij.

Among the twelve values, first consider only two, Ad%‘ and Ad[ij, for an arbitrarily chosen i from

1<i<6. If the confidence level of Ad. is given as @, the problem is to determine the values Ad[i‘ and AdliJ

for ensuring

U
f"di 6(Ad) d(Ad) = o,
-Adb

1

For uniqueness of the solution, it is assumed that Ad]i‘--quliJ ( i.e., the confidence interval is symmetric

around the mean value). This assumption is based on the fact that in the normal distribution the smallest

12



interval of covering a given confidence level is symmetric around the mean value. The value of Ad?(: Ad'i')

can then be derived as follows:

n
AdV:k_\/EJ?.o? for 1<i<6
1 i =i

1-a.
where the confidence coefficient k. is equal to oa- T‘)

[Proof] See Appendix D.

From Lemma 6, Ad[iJ can be determined from a given o, Hence, that which remains for the
automatic generation of the twelve values of Adli‘ and AdliJ (actually, six numbers under the assumption of
symmetric confidence interval) is to determine the values of o (1 €< 6) from the desired confidence level

o. To this end, the relationship between o and o is examined.

(h-a4)/2

- aebheeaeaeseaadeeeaeeaa-

0 k d>
\k. .
v y % D(ad;)
where SD(Ad)is a standard deviation of Ad

Figure 5. Relationship between k and o,

6
1-¥Q -ai) <o < min(al, ,a6) 16)

im]

[Proof] See Appendix E.
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Suppose that o is equally distributed into each DOF (i.e., o =0,= ... = &r)). Then, the inequality (16) can

be converted to

IN

a. (17

1

6ai-5 <o

From these inequalities of (17), the following can be observed: if o is assumed to be o for 1< i< 6, the

hit ratio of the tolerance volume is then upper bounded by c.; on the other hand, if o is determined by

o+ 5
6

, the hit ratio of the tolerance volume, a, is lower bounded by 60.-5. This observation implies

that the desired o, which generates the tolerance volume of covering the given confidence level o, lies

o+5 . o+5
between the values of o and -6-. That is, aiL < o, < a’;’ where aﬁ‘:a and on‘iJ =—6—-.

To find the desired a, bisection search is used with the two extreme values of oy and o, Bisection

is justified by the monotonic relations between o and Ad?.

Lemma 8: As the confidence interval for each DOF increases (or decreases), the hit ratio of the tolerance

volume also increases (or decreases). That is,

-—U20 for1<i<é6

[Proof] See Appendix F.

For example, in a two DOF manipulator, the polytope expands (or shrinks) in a way as illustrated in Figure

6. This expansion (or shrinkage) of polytope holds for n DOF. Hence, the probability of covering the

polytope, @, also increases (or decreases) with the increase (or decrease) of Ad?.

The iterative scheme for generating the tolerance volume is summarized in Figure 7. Note that the
computation of the hit ratio is an inner loop in step 5, which gives the two bounds, i.e., HR" and HR".
\

Fixing them to one value enables the comparison with ¢ in step 6 . (HRL is used in this paper such that

the resultant tolerance volume is a little larger than the one covering at the exact confidence level a..)

14



(a) as AdgJ increases (b) as Ad}I decreases

Figure 6. Monotonic Relationship between Ad?J and o

its of joint | nominal
o variable errors location

Setting the
Standard
Deviations

v v

Computation of
Jacobian Matrix

Step 1.
(1|U= (S+o)/6

a = a Step 8.

Step 3.
k=6 ()2

!

Step 4. Step 5.
MU =ki‘JzJij cj

Computation of
Hit Ratio

Figure 7. Flow Chart for Generating Tolerance Volume
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4. Example

The iterative scheme for joint error analysis has been programmed in IBM turbo-PASCAL and runs
on an IBM AT personal computer. Here, it is applied to the six DOF Stanford manipulator which consists
of five revolute joints and one prismatic joint as shown in Figure 8. The kinematic parameters of the
Stanford manipulator are listed in Table 2 based on the Denavit-Hartenberg notation [6], which is illustrated
in Figure 9 for the adjacent joint coordinate frames. In Figure 9, 6., 1,1, and a are the kinematic
parameters for the joint angle, link offset, link length, and link twist, respectively, of the i-th joint. In
Table 2, the joint variable q, for the third joint of the Stanford manipulator is the link offset r, since the
third joint is prismatic. The other joint variables q;, 9, 4, 95> and q, are the joint angles 6,, 6,, 8,,, 6, and

8, since the corresponding joints are revolute.

y
‘ 6
ne
X3 XX
2z
0z,
X, rigin - ¥
x zI
1 y,

Figure 8. The Stanford Manipulator



Joint i Kinematic Parameters Joint Vari-

a; 1 T 0; able (q;)

1 -90° 0 0 01 8,

2 o 0 r=200| 8, 0,

3 0° 0 Ty ] 0 r, ~

4 -90° 0 0 04 6,

5 @’ 0 0 0s 0

6 0° 0 0 0 6

Table 2. Kinematic Parameters of the Stanford Manipulator

joint i

jointi1  Link il

Figure 9. Denavit-Hartenberg Notation
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Suppose that the second link offset, r,, is set as 20.0 inches and that the errors of the joint variables

are given as follows:

1.0°
1.0°

-1.0°

= 1.0 S Aq3 1.0

-05° < Aq, 0.5°
-0.5° < Aqg < 0.5°
-0.5° Agg < 0.5°

IN
IN

Aq1

N IA

IN
IN

IN

Because of these joint errors, the actual location of the end-effector will deviate from the desired nominal
location. One hundred nominal locations are randomly selected in the reachable workspace and tested. For
each test, the deviation from the nominal location is computed as the tolerance volume according to the
procedure in Figure 7. The tolerance volume covers at least 99.73%, i.e., ®=0.9973. For comparison, the
deterministic approach of [4] is also implemented. From the one hundred tests, the tolerance volume by the
deterministic approach is on the average 5.04 times larger than the volume by the probabilistic approach.

Table 3 shows a sample of the one hundred test points and their comparisons.

sample 1 2 3 ... 21 28 .. 8 8 .. 100
Deterministic V2 | 22.1 65.1 1594 .. 1711 2927 .. 207.1 988 .. 230.7
Probabilistic VT | 64 129 342 .. 381 455 .. 350 250 .. 358
V{/ V1 35 50 47 .. 45 64 .. 59 40 .. 65

Note: Units of V and V7 are (inch)’ * (degree)’

Table 3. A Sample of One Hundred Test Points

To see the iterative scheme in detail, one specific test is taken here. The chosen nominal location is

described by using the following transformation operators:

L L4 (18)

V33

Trans(30.0, 6.0, 10.0)-Rot((

2

18



where "Trans(:,",;’)" operator denotes a translation operation in x-, y-, and z-axis directions and "Rot(b,8)"
operator is a rotational operation performing a rotation about the unit axis direction b by an amount of 8
degrees. Through inverse kinematics (the details of which is in [12]), the nominal location (18) can be

executed by the following joint variables:

q, = (-29.51°, 66.64°,25.22, 182.40°, 30.26°, 234.74%)",

The Jacobian matrix J for this nominal location turned out to be the following matrix. (Again, the

detailed procedure for computing Jacobian matrix can be found in [1,11,12]):

-6.000 8.702 0.799 0.000 0.000 0.000
30.000 -4.926 -0.452 0.000 0.000 0.000
0.000 -23.152 0.397 0.000 0.000 0.000
0.000 0.493 0.000 0.799 -0.478 0.506
0.000 0.870 0.000 -0.452 -0.878 -0.311
1.000 0.000 0.000 0.397 -0.038 0.805

This Jacobian matrix linearly transforms the given errors of the joint variables into a tolerance volume in

the Cartesian space. With the normality of the joint variables around qy;, the tolerance volume is obtained
by taking the steps of Figure 7. The result is summarized in Figure 10. o is obtained by averaging the

a? and a&' according to step 2 in Figure 7. o, is used to compute the confidence coefficient k; in step 3.

k; defines the tolerance volume in step 4. The generated tolerance volume is then examined by computing

the hit ratio HR in step 5 and by comparing HR with the desired confidence level of o in step 6. If HR is

not sufficiently close to a., the value of a‘ij is then adjusted based on bisection in order to reassign o;. The

desired tolerance volume is obtained in six iterations and the steps consume 17.3 CPU seconds.

Each side of the generated tolerance volume corresponds to the confidence interval of each DOF in the
Cartesian space. In the example, a confidence interval covers at least 99.95% (=0.99731/ 6). This
probabilistic approach is compared with the deterministic approach in terms of the side length of the cubic
tolerance volume. (Recall that the deterministic approach generates a volume V3 covering the actual
tolerance volume V1 completely.) The comparison is rendered as Figure 11, in which the length of the six-

sides is shown as a magnitude in the axis d?, 1 £1<6. For example, for the first DOF the width of the

19



cuboid obtained by the deterministic approach is 1.107 times larger than that by the probabilistic approach.
The entire tolerance volume by the deterministic approach V3 is 5.3 (= 1.107 x 1310 x 1216 x 1.645

X 1436 x 1.271) times larger than V;, the one by the probabilistic approach.

1.000
e

0.998 -

. & o
0.996 < ali]

! - i
0.994 - < HR
0.992
0.990 71 1 111 1

Iteration No.

Figure 10. Iterations in the Joint Error Analysis
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U
d2

(1.310)

deterministic
approach

>
(1.107) dV

probabilistic
approach

Figure 11. Probabilistic vs Deterministic Approaches

5. Conclusion

The ability of a robot to address a location repeatedly can now be evaluated accurately. Large
improvement (of several hundred percent) over the worst case analysis is made possible by the probabilistic

modeling of joint errors.

An n-dimensional tolerance volume, where n is the DOF of a manipulator, is computed not by

simulation but analytically. The speed makes this analysis a useful tool.
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Appendices

Appendix A. Proof of Lemma 2.

Gk(Aq) can be rewritten as
Ad.+ Ad- ifk : odd and i= k;—l
G (aq) = for 1 <k <12

- Adi+ AdliJ if k : even and i= %

Since Ad, is a linear function of normal random variables qu's, it also follows the normal distribution [8].

Its mean is then computed as the linear sum of the mean values of qu.'s, and its variance is the linear square

sum of the variances of qu's; Ad, ~N(0, 3] fof) Hence, Gk(Aq) follows the normal distribution as in (11)
o

since AdIi‘ and AdliJ are given constants. QE.D.

Appendix B. Proof of Lemma 3.

For simplicity, assume that k is an odd number (as the case of even numbers can be done in the same

way). Then,
Ad -
PrM) =Pr(G,(8q)<0)=Pr( e
\/ ‘\/ 1%
J-l U 1 1y )
G,(AQ) - Ad: Ad-

Since ————L= ~N(0,1), the above probability s equal to &(——=—). QE.D.
\/2‘,13& \/ Y 1%
=l 1) = ij j
Appendix C. Proof of Lemma 4.

The correlation between two hyperplanes G, (Aq) and G,(Aq) is computed based on the Ditlevsen's

observation (7]. In the standardized variable space it is equal to the dot product of the two outward unit

normal vectors of the hyperplanes. To do so, first transform the normal random vector Aq into the standard
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« Aq;
normal random vector Aq* by the operation of Aq ; = -G—J- for 1 <j < n. Then, the functions G(-) can be
i

rewritten in terms of Aq* as follows:

n
Gy.1(Aq) = Gyt (Aq*) = 2 Jjo0q% - Adli‘
PL for1<i<é6
* U
Gx(AQ) =G 4(Aq*) = - D, J;,0Aq; + Ad:
il

From these equations, the outward normal vector of G¥(*) in Aq* space, N, for 1 <k < 12, can be derived as

shown in (14). Q.E.D.

Appendix D. Proof of Lemma 6.

As mentioned in the proof for Lemma 2, Ad, follows the normal distribution N(0, ¥, Jfof ). As
1 Fl 1,

1-a
illustrated in Figure S, the confidence coefficient k, is chosen such that Ok)=1- T‘- Then, AdLiJ
amounts to k times the standard deviation of Ad?. Q.E.D.

Appendix E. Proof of Lemma 7.

The upper bound holds since the confidence level a of the convex polytope can not be greater than

the individual confidence level o, of the constituting half-spaces. The lower bound is based on the

observation that the failure rate of the convex polytope, 1-a, is less than or equal to the sum of the
individual failure rates 1-c. Q.E.D.
Appendix F. Proof of Lemma 8.

A geometric interpretation of the change of AdliJ is helpful here. Suppose the variable Aq; is

standardized through qus = Aq;/ o; such that Aq? ~N(,1) for 1 £ j < n. In the standardized space, the

distance B, from the origin to the transformed function is as follows:
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c L \

A
——L——  fork:odd andi=l%1-

« 2 2
2359

b= Tl P for1<k<12 (19)
Adi .k
= for k:even and1=§-

2 .2
. jgllij"j J

From (19), it becomes clear that the increase (or decrease) of Ad‘iJ makes the corresponding distance B

greater (or smaller). Therefore ;—AZUZ 0 since -g—g-:z 0. QE.D.
i
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