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ABSTRACT

This paper presents an approach which takes advantages of both relational and de-
ductive databases. Although techniques of relational databases are well-developed, the
relational model still need a more natural user interface. Deductive databases (DDBs)
have then been suggested as alternative solutions; however, they suffer from high-cost
theorem provers. The proposed approach uses Horn-clauses as user interface and the
relational model as its intemal representation. This approach not only offers a more nat-
ural and flexible interface to users but also takes advantage of the developed relational
database techniques. Such an approach calls for an algorithm which converts Hom-
clauses into relational algebraic expressions and some extensions to the relational model

so as to capture the extra expressive power in Hom-clauses.
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1 Introduction

Every database is a model of some part of the real world. The design of a database application thus consists
of choosing appropriate data structures that would reflect the structure of the world being modeled. A
desired database model for general applications must satisfy requirements such as efficient manipulation of
large quantities of data, natural user interface, flexibility of modification, sharing and distribution of data,

and so on.

The relational model proposed by Codd has been well-developed. Relational database techniques which
include view definitions, query optimization, distributed databases, and database machines have achieved
satisfactory results. View definitions allow users to specify dynamic pictures of some parts of the database.
Query optimization reduces both the computation time and space of data manipulation. Distributed databases
distribute data among several different sites in order to obtain a high degree of data sharing with low cost.
Database machines are machines of special architectures (usually with parallel processing) such that they
can execute the database operations efficiently [3,4,5,12,23,24,25].

The manipulation system used by the relational database is basically relational algebra. 1t is an algebraic
system with a set of operations called relational operations. Usually a user uses DBMS primitives, i.e.,
relational operators, to specify queries or to construct virtual relations, i.e., views. These primitives force the
user to translate problems into detailed specifications. It burdens the user with the responsibility of finding
out the path and making the plan to retrieve data from database.

Deductive databases (DDBs), proposed by Chang [1,2], Kellogg, Klahr and Travis [11], Minker [16],
and Reiter [20], have been suggested as alternative solutions to the problem stated above. Concentrating
mainly on evaluations of queries, these approaches enroll automatic deduction, theorem prover, to derive
answers for nonprocedural queries [6]. All the derivation rules and facts are logic axioms which provide a
more natural and expressive representation.

Unfortunately, DDBs that are based on theorem prover can hardly achieve a good performance in cases
of large amount of data. On the other hand, relational databases, albeit not extremely efficient by all means,
have shown satisfactory performance in managing vast amount of data primarily due to the growing query

optimization techniques as well as efficient access methods. In addition, relational views, if defined by
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relational calculus [25], can be as nonprocedural and natural as their corresponding derivation rules. DDBs
may look more intelligent but their derivation rules must also be defined, just like the predefined views in
relational databases. So, why DDBs? The answer is clear that DDBs are capable of dealing with intensional
as well as indefinite facts through the use of derivation rules [20].

This paper presents an approach with advantages of both deductive and relational databases. This
approach uses Horn-clauses as user interface like most of the DDBs do and uses the relational model as
its internal representation. Therefore, the user interface is more natural and the well-developed relational
database techniques are still applicable to this model. Such an approach requires an algorithm which converts
Horn-clauses into relational algebraic expressions. It also needs some extensions to the relational model
since the logic domain of Horn-clauses can not be fully covered [13].

There are two main objectives in this paper. One is to identify possible logical extensions of relational
databases and of relational algebra so that not only the extended logic domain covers the same domain
of Horn-clause but also query optimization techniques remain applicable to the extended domain. The
other is to propose an algorithm that converts Horn-clauses into relational algebraic expressions. Section
2 gives a brief introduction of the relational model, deductive databases, and mathematical logic. It also
provides an analysis of all types of clauses so that possible logic extensions can be identified. Section 3
introduces two special values, namely, the exisrential and the universal values, and a partial order defined
on them. Together, they will allow intensional facts to be manipulated by relational operations and thus
benefit from query optimization techniques. Section 4 presents an algorithm which converts Horn-clauses,
used as derivation rules, into relational algebraic expressions. Thus, the extended relational database can
be enhanced to perform at least the same functions as Definite DDBs (DDDBs) can. Section 5 summarizes

our results and discusses some future work.

2 Background

A brief overview of relational databases, deductive databases, and mathematical logic is presented in this
section. The mathematical logic constructs a conceptual framework for database models. The database

concepts, which can be analyzed in terms of formal logic, forms a characterization of the hypothetical world
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on which database systems work.

It is known that, logically, the relational algebra can only represents a subset of the clauses in first-order
logic; some of the clauses have no corresponding relational algebraic expressions. These clauses will be
identified through the classification in Section 2.3. The method for relational databases to capture these

additional expressive power will be presented in Section 3.

2.1 Relational model

The relational model proposed by Codd has a tabular structure to describe a database. In this model, the
database is viewed as a collection of time-varying relations of assorted degrees. A relation can be viewed
as a table of a finite number of columns and rows. The table name is the relation name. Columns of
table are called attributes. Rows of the table correspond to tuples(records). Order of rows and columns of
the table are immaterial. Such a table is called a normalized relation if every entry of this table is atomic
(2,3,4,5,12,25].

(From logic point of view, a row in the relational database is actually a ground atomic formula in
first-order logic, and the database state can be viewed as a collection of formulas belonged to two classes

[10]: database intension (IDB) and database extension (EDB).

o Database intension corresponds to time invariant properties of database and usually consists of integrity

constraints and view definitions.

o Database extension reflects the current state of knowledge about the part of the modeled world and

is subject to frequent updates.

The relational model also provides a set of relational operations; renaming, selection, projection, join,
union, difference, and complement. These operations are implemented in the relational database management
system (DBMS) so that database users can use them to manipulate EDB.

2.2 Deductive databases

Logic was chosen as the principle of deductive database design since it is a effective way of representing

knowledge, and it constructs a mathematical basis both for reasoning with data and for sustaining the
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integrity of a database.

Several researchers apply the automatic deduction techniques of theorem proving on the process of query
manipulating [1,2,7,8,11,17,16,18,20,14]. Minker applies the theorem prover to both IDB and EDB while
Reiter and Chang apply it to IDB only. When applying theorem prover on both IDB and EDB, every single
tuple is considered as a predicate and is used to support the theorem proving as a fact. Since it is a pure
théorem prover rather than a DBMS, it is not efficient when EDB > IDB. The later strategy, applying
theorem prover only on IDB, assumes that every relation contains all possible tuples and thinks of each
relation as a predicate, in which all the terms are universal variables. After the success of theorem proving,
the relations represented by those predicates which are used to support this proof are then processed by a
relational DBMS to answer the query.

In Minker’s approach [16], queries to the system consist of well-formed formulas in first-order logic.
Knowledge is stored in a semantic network within the system. The semantic network consists of explicit
facts cumulated in EDB; general clauses, which permit new facts to be derived, are stored in IDB. EDB and
IDB are treated as one file; and, consequently, there is no distinction between them. The query specified
by a user is resolved together with this file by a theorem prover. An answer is immediately obtained from
the theorem proving procedure.

Chang’s approach [1,2] allows users to state queries, derivation rules and integrity constraints. A
user can make queries against virtual and base relations. If a query is free of virtual relations, it will
be evaluated directly by a relational DBMS. If it contains virtual relation, then it will be processed by
a deductive procedure before it is evaluated by the DBMS. This query is thus evaluated in two steps:
First, apply clauses to transform it into a query which contains only base relations. Second, check if the
transformed query can be answered from front-end intensional information, such as integrity constraints,
within a prespecified time limit. If it works, output the answer. Otherwise, evaluate the transformed query
by using a database system such as System R.

The approach taken by Reiter [20] is to equip a deductive component with the techniques for query
evaluation on relational databases in such a way that achieves definite and natural interfaces. This approach
is relatively more feasible for a large database, that is, a database with large EDB and comparatively small

IDB. In this approach, the task of question-answering is decomposed into a theorem prover solving on IDB
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and an extensional processor computing on EDB. The theorem prover “sweeps through” IDB, extracting
all information relevant to a given query. Exclusively, this theorem-prover never look at EDB. The end
result of this sweep is a set of queries, which will be evaluated individually and extensionally. The union of
answers returned from those individual queries forms a set of answers corresponding to the original query.

This task decomposition concludes with two important consequences:
o The extensional processor can be realized by a relational database management system.

o Since the theorem prover never accesses EDB, IDB can be compiled by using the theorem prover as

a once-only compiler.

Minker’s and Chang’s approaches are referred to as definite deductive databases (DDDBs), while Reiter’s
approach is called indefinite deductive database (IDDB). The difference between DDDB and IDDB is that
the former allows only Horn-clauses but the later allows all clauses. That is, only IDDB permits indefinite
rules, such as “If A is son of B, then B is either father or mother of A.” and “If C leads a project, then C
could be a manager, a senior engineer or a research fellow” .

One of the general advantages of DDBs is that they allows general statements, a set of facts, to be
specified in IDB. General statements provide the capability of storing general information, such as “Smirh
is the pilot for all the flights between Detroit and Cleveland.” and “John participates all the projects in the
Robotics Laboratory.” Since general statements are stored in IDB, facts in the system are now distributed
to both IDB and EDB instead of being confined in EDB.

Considering the formulation of databases in terms of logic, it is worthwhile mentioning some major
assumptions that govern the query evaluation (and integrity constraint) of databases. There are three as-
sumptions, made by most approaches described, which express a certain implicit representation of negative

facts and make precise the universe to which queries refer. [7]

o The close world assumption (CWA), which states that facts not known to be true are assumed to be

false. (Since Reiter’s approach involves indefinite fact, it requires generalized closed world assumption

[20,22].)
o The unique name assumption, which indicates that individuals with different names are different.
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o The domain closure assumption, which assumes that there are no other individuals existed except

those in the database [21].

2.3 Mathematical logic

Both the models above lay their basis on mathematical logic either implicitly or explicitly. The relational
model treats a database as a model for the given set of sentences. Deductive databases use logic as their
knowledge representation and manipulate the model as what mathematical logic does.

In order to analyze clauses, the definitions of sentences and clauses in first-order logic should be given.

The definition of sentences require that terms, atomic formulas, and formulas be introduced first.

[Definition 1] Terms are defined recursively as the following:
(1) a constant is a term;
(2) a variable is a term;

(3) if f is an n-ary function and ¢y, ...t, are terms, then f({y,...,¢,) is a term.

[Definition 2] Let P be an n-ary predicate (relation) (n > 0) and ¢y, ..., t, be terms, then P({y,...,t,)
is an atomic formula. An atomic formula or the negation of the atomic formula will be referred to as

a literal. Notice that predicates in first-order logic is similar to relations in the relational model.

[Definition 3] Formulas are defined by recursion as the following:
(1) atomic formula is formula;

(2) if A is a formula, then so is —A;

(3) if A and B are formulas, then so are AA B, AV B,and A — B;

(4) if A is a formula and z is an individual variable, then (Vz)A and (dz)A are formulas.

[Definition 4] A sentence is a formula without free variable. That is, every variable in this formula

is bound by either V or 3.

In order to analyze the sentences in first-order logic, we have to convert the sentences into a certain
class of formulas called clauses. A clause is defined as a formula consisting of a disjunction of literals.

Every sentence can be converted to a set of clauses by the following procedure [19]:
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(1) Eliminate implication symbols by making the substitution -A vV B for 4 — B.

(2) Reduce scapes of negation symbols such that each negation symbol, -, applies to at most one atomic

formula.
(3) Standardize variables such that in each sentence there is no variable being quantified twice.

(4) Eliminate existential quantifiers by converting it into Skolem form. For example, replace (Vy)((3z) P(z, y)

by (Vy) P(f(y), y), where function f is called a Skolem function.

(5) Convert to prenex form by moving all the quantifiers to the front of the sentence and let the scope
of each quantifier include the entire sentence. This sentence consists of a list of quantifiers called a

prefix followed by a quantifier-free formula called a matrix.
(6) Put matrix in conjunctive normal form, that is, the conjunction of a finite set of disjunctions of literals.
(7) Eliminate universal quantifiers.

(8) Eliminate A symbols by replacing expression of the form ¢ A g2 A ... A, with the set of conjunctions

of literals {¢1, 2, ..., ¥n}-

Although the clause is defined as a disjunction of literals, it can be written in an equivalent form. Thus,

the simplified general form of clauses
APLVaPV..VaPV..-P.VRIVRV..V RJ' V..V Rq

is
P[/\Pz/\.../\Pi/\.../\Pk——>R1VR2\/...\/RJ'\/...\/RQ
where P; and R; are positive literals.
Now, we follow the approach in [7] to analyze the clauses in first-order logic and classify them into
several types. Depending on the respective values of k and ¢ in the clause above, there are various types of

clauses, some of them being integrity constraints, intensional facts and indefinite assertion that are associated

with IDB while the rest are derivation rules that manipulate the facts in DDBs:
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e ypel: k=0,qg=1. — Ri(t1,t2,...,tm)
Since there is no "pre-condition”, R;(ti,t3,...,tm) is always true and considered as a fact. If
t1,t2,...,tm are constants, then it is a single fact like a tuple in a relational database. Otherwise,
it is called a general statement and is stored in IDB as an intensional fact of DDBs. A general

statement has no counter part in relational databases.

e Typel: k>1,q9g=1. PAN.ANP,—> R
This clause may be considered as either an integrity constraint or a definition of the predicate R, in
terms of the predicates Py, P,,..., P;. If considered as a definition of the predicate R, then this clause is
a derivation rule in DDB and may be considered as a query or view definition in a relational database
if every argument of predicate R is a variable which occurs in some of the predicates Py, P, ..., Pk.

Otherwise, it can not be interpreted in the relational model.

e Type3: k=1,g=0. Pi(t1,t2,....,tm) =
It is equivalent to the clause —(Pi(t1,%2,...,t,m)) and thus stands for either an integrity constraint or
negative fact. Since the negative fact can be implied by the absence of positive fact under closed

world assumption, we would like to consider it as an integrity constraint in this paper.

e Typed4: k>1,9=0. PPANPAN..ANP,—

Such clause is usually thought of as an integrity constraint by the same reason in Type 3.

eTweS:k=0,q>1. - RIVRV..VR,
This clause is an indefinite assertion, since we only know that some of the literals is true but do not

know exactly which one of them is true.

o Type6: k>1,¢> 1. P1/\.../\Pk—>R1\/R2V...VRq

The clause may be interpreted as either an integrity constraint or the definition of some indefinite data.

Type 1 through Type 4 are called Horn-clauses. Neither Type 5 nor Type 6 is allowed in DDDBs. The

only deductive databases that can handle these two types of clauses is IDDB [7].
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(1) Eliminate implication symbols by making the substitution -A vV B for 4 — B.

(2) Reduce scapes of negation symbols such that each negation symbol, —, applies to at most one atomic

formula.

(3) Standardize variables such that in each sentence there is no variable being quantified twice.

(4) Eliminate existential quantifiers by converting it into Skolem form. For example, replace (Vy)[(3z) P(z, y)

by (Vy) P(f(y), y), where function f is called a Skolem function.

(5) Convert to prenex form by moving all the quantifiers to the front of the sentence and let the scope
of each quantifier include the entire sentence. This sentence consists of a list of quantifiers called a

prefix followed by a quantifier-free formula called a matrix.
(6) Put matrix in conjunctive normal form, that is, the conjunction of a finite set of disjunctions of literals.
(7) Eliminate universal quantifiers.

(8) Eliminate A symbols by replacing expression of the form | A g2 A ... A p,, with the set of conjunctions

of literals {¢1, 2, ..., ¥n}-.

Although the clause is defined as a disjunction of literals, it can be written in an equivalent form. Thus,

1e simplified general form of clauses

“PLVaPV..VoPV..-P,VRIVRV..V Rjv..v R,

is
P[/\PQ/\.../\PZ'/\.../\PICHR|VR?_V.,.VR]'\/...\/RQ
where P; and R; are positive literals.
Now, we follow the approach in [7] to analyze the clauses in first-order logic and classify them into
several types. Depending on the respective values of k and g in the clause above, there are various types of

clauses, some of them being integrity constraints, intensional facts and indefinite assertion that are associated

with IDB while the rest are derivation rules that manipulate the facts in DDBs:
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3 Extension of Relational Model

The discussion in previous section has shown that intensional facts, which include general statements and
general clauses, are not taken care of by the relational model. A general clause is a clause of Type 2 with
some variables in R but not in any of Py, P, ..., P or with (Skolem) function in R;. The main purpose of
this section is thus to enhance the expressive power of the relational model by implementing the facilities
to manipulate these intensional facts. In order to do so, two special values are introduced, a partial order is

defined (to remove some redundancies), and some modifications of the relational operations are made.

3.1 Existential and universal values

Our approach to supporting the general statements is to define the universal value w and existential value A
S0 as to store the general statements as tuples in relations of database. In other word, the general statements,

which used to be in the IDB of DDBs, will be in the EDB of the extended relational databases. These two

values are defined as the following:

Define an universal value, w, in relational database to represent the variable in a general statement.
Under the Domain closure assumption, @ represents the set of all values that correspond to the same

attribute name.

Define an existential value, A, in relational database to represent the Skolem function. It is an

incomplete fact that denotes "there exists some value” but fails to indicate the exact value.

Accordingly, a predicate P(cy,ca,..., fi(z1), f2(22),...,21,22,...) can be represented by the tuple

(e1,¢2, .., A1, A2,y ..., @, T2, ...) as a single tuple of a relation.

3.2 Partially ordered sets and redundant tuples

In a multi-tuple relation with universal or existential value, a tuple might be subsumed by the fact that
represented by another tuple. For example: “John Smith takes course EECS 585 is implied by “John Smith

takes all courses”. The tuple which is covered by another tuple is called a redundant tuple of the relation.

The Relational Model xi
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In order to identify the redundant tuples of relations with universal and existential values, we have to
define a partially ordered set for the domain of each attribute. Let S = D (J{w, A} where D is the active
domain [15] of attribute A. The set S together with a partial ordering relation “<” is referred to as the
partially ordered set P. P is said to be the partially ordered set for attribute A. The partial ordering <
satisfies the following for every a, b and ¢ in S:

o Reflexive : a < a;

o Antisymmetric: a < b and b < a implies a = b;

o Transitive : if a<band b < e, then a < ec.

The partial ordering relation P is defined as: let a,b € S, then the ordered pair (a,b) € P if and only if

a=lorb=wora=5b

[Definition 5] Let P; be the partially ordered set for attribute A;. A tuple (ay,as, ..., a,) of relation
r[A1, Az, ..., An] is said to be redundant if there exists another tuple (b1, b2, ..., by) in the same relation
r such that

(a;,b;) € P;,1 <i<n

[Application] All the redundant tuples can be removed without changing the state of this database,

since the fact it represents is covered by some other tuple.

3.3 Modification of relational operations

Since values @ and A are different from other attribute values, some modifications of the relational operations
should be made to accommodate these two values based on the partial order defined above. Two methods
are proposed to modify the relational operations. One modifies every relational operation directly while the
other modifies the relational algebraic expression instead.

The first method is to modify the relational operations as the following:
¢ Renaming: No modification is made, since this operation has nothing to do with attribute values.

e Selection: If there is a w at the “selected” attribute, then expand it with respect to the selected attribute

as the following:

xii The Relational Model
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Replace tuple (ay,...,a;_1, @, ai+l, ..., an) by the set of tuples (ay,...,a;_|, @, a1, ..., a,),Va € D;.
If there is a A at the “selected” attribute, then remove this tuple.
After the conversion of all the tuples @ or A at the “selected” attribute, the selection is performed as

usual.

e Projection, union and Cartesian product work as usual at first and then remove all the redundant

tuples.

The method suggested above requires a modification to existing relational operations. This requirement
may appear to be costly and undesirable. The second method suggested below will modify, instead, the
relational algebraic expressions which are to be evaluated and involve some relations that contain .
Assuming that the relation r(R) has been defined with some value w in attribute A, r in the relational

algebraic expression will be replaced by

T’(R) A 7‘-R&A,tm.p4—tmp,A{7' X [({(w A)}x5tmp+—-A0'A#w7rA(r))UUtmp:A(a'A#wWA(r)x5tmp¢—A0'Ag(w7rA(r))]}

In a sense, the expanded relation r/(R) is nothing but a view constructed from r(R) and the augmented

active domain of A, which is a relation exactly as the following:

{{war), (w a2),...,(wan), (a1 a1), (a2 a2), ..., (an an)}.

The modified relational algebraic expression, albeit more complicated, can often be optimized as a query

tree.

4 Horn-Clauses as User Interface

The second goal of this paper is to support the Horn-clause as user interface. This section will first analyze
Horn-clauses and then propose an algorithm which converts a query or view definition specified in the
form of Horn-clause to an relational algebraic expression. It also provides an example to demonstrate the

proposed algorithm and then discusses the result of this section.
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4.1 Analysis of Horn-clauses

Since Horn-clauses in DDDBs cover the clauses of Type I through Type 4, we can find the logic domain
which is covered by DDDBs but is not dealt with by the relational model by examining the clauses of Type
I through Type 4. An investigation of Horn-clauses based on the classification of Section 2.3 first suggests

the following:

o All the clauses of Type 3, 4 and some clauses of Type 2 which are interpreted as integrity constraints

are enrolled in the control part of the database and are not to be manipulated or derived.

e Each clause of Type ! with no variable or function corresponds to nothing but a constant tuple in

relational algebra.

o The clauses of Type I with variables or functions are general statements stored in IDB. Such intensional
facts can not be treated by conventional relational operations that are performed on EDB only; and, as
a result, the intensional facts has no corresponding part in conventional relational databases. However,
with the existential and universal values, it can be stored as a “special” single tuple in EDB and be
manipulated by a similar manner. Therefore, general statements can be interpreted in the extended

relational model.

It turns out that clauses of Type 2, which are used as derivation rules in DDDBs, deserve a further study
in order to examine their distinctions from query or view definitions in relational algebra. The derivation

rules, clauses of Type 2, in DDDBs are of the form

1 1 k k
Pl(a:(l ), ey zzgl)) A A Pk(:c(l ), ...,:c( )) — R(y1, .., y;7)

ik
where, £ > 1 and each P, (1 < m < k) can be either of the forms z;0z; or z;0c, or corresponds to a
relation or view of the database.
Primarily dealing with the above derivation rules, an algorithm is proposed next to convert Horn-clauses
as a whole into relational algebraic expressions. It shows that the derivation rule above can be replaced

L1

by a view definition if all the arguments at the right-hand side (RHS) of “—" in the derivation rule are

variables and if all of them appear at the left-hand side (LHS) as well. The case that some RHS variables
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do not appear at LHS is very similar to the general statement of Type I and will also be taken care of with

the help of existential and universal values. Therefore, the extended relational model covers the entire logic

domain that can be represented by Horn-clauses [9,26,27].

4.2 Algorithm

Given a derivation rule, we can first manipulate the LHS in order to get a corresponding relational algebraic

expression, R, by the first four steps of the algorithm. Then, at Step 5 of the algorithm, we can process the

RHS, R(y1,¥2,...,9;), based on R to produce the equivalent view definition in relational algebra.

In the algorithm below, we assume that ¢ is constant, v is variable or function, A; is the corresponding

attribute name for the position v; is located and “«—” stands for “assignment”.

Algorithm:
Input: P;, P,..., P, R: predicates
Ry, Ry, ..., Ry,: relational schemes corresponding to Py, Py, ..., P, (1 < ) < ... < I, < k)
Output : R: relational algebraic expression
Step 1: Collect all the predicates of the set {Py, P, ..., P;} that correspond to some relations or

views of the database and convert them into relations or views by the following rules:

(Note: In the following, the notation *“—” means “convert to,” and the notation “«—" means

“represent the relational algebraic expression.”)

Let R_m(Al,...,Aim) be the relation corresponds to Py (z1,...,2;,,),
Pr(vi,v2,..,vi,) — Rm R—m(Al,Ag, oA

Pm(cl,.‘.7C[,'Ul+1,...,vi_m) = §Rm — T A, Aim0--41=C|y-~-1Al=ClRm(‘4l"42’""‘—17: )

’ m

If v; is exactly the same variable or function as some v; in P, then

Ren = Ty dicy, Ain o i T ai= 4 R

If there are more than one pair of v; and v;, then repeat this process until there is

duplicate variables or functions left.

The Relational Model
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For all the distinct variables or functions vy, , ..., m, of Pn, and their corresponding attribute

names Am,, ..., Am, in B, 1 <my < < my < iy,

ERm — 6Vm] ----- Vmp"‘Am,l yyyyy Amp ng

(The V; in this renaming is exactly the same “symbol” as v;. We use v; as a term in the

predicate and V; as an attribute name).

Step 2: Join (nature join) all the results from step 1 to form R.

Step 3: Collect the predicates left in step 1 except R, which is the predicate at RHS, to form the
set 5. This set would then consist of only predicates that are associated with “§”.

Step 4: For each s; =¢;0z; or sy =z;0cin S, [=1,...,| § | do the following:
R e— oxox;R

or

§R e O‘Xigc%

Step 5: Let R(f1,..., fg, U, ..., Up, €1, ..., C4, V1, ..., V) be the predicate at RHS and the corresponding
relation scheme of R is Ry[Fy,..., Fy, Uy, ..., U, Cy, ..., Cy, Ay, ..., A¢], where ¢ stands for
constant, f stands for Skolem function, u stands for variable which is absent from LHS and
v is variable that appears at LHS.

Depending on the respective values of ¢, 7, s and t in R, the result from Step 4, “R”, will
be manipulated by one of the following cases:
Casel: ¢q=r=0,5>0,t=0

All of the terms are constants.

R~ ey, .., C_,({(Cl, ...,c,)} x R)

This is a special view definition where the view, a single fact, is verified by checking
condition (P A ... A Pg) of the LHS. The result of R can be either {(ci,...,c,)} or ¢

depending on whether the condition is true or not.
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Case2: ¢=r=0,s=0,t >0

All of the terms are variables that appear at LHS.

§R - 6Vl,...,Vtﬁ—'Al ,...,Ag(”r‘/] ,...,Vt ge)

The relational algebraic expression R is a view definition on base relations and views
that correspond to predicate Py, ..., Py.
Case 3: q=r=0,s>0,t >0

Some of the terms are constants and the others are variables that appear at LHS.

R~ {(ct,..ca)} X 6wy, Vieay,...4.7v, . v, R)

It is a view definition similar to the one in Case 2, except that some attributes of the
view being defined are constants.
Case4: ¢>0o0rr>0

Some of the terms are variables that are absent from LHS or functions.

Predicate R can be thought of as being formed by two independent components:
Ry(vi,...,v) and Ry(fi,..., fg,u1,...,ur, C1, ..., ¢s). While the corresponding relational
algebraic expression for R, can be easily constructed by a process similar to Case 2,
R, is analogous to the general statement of Type / clause. Since R, has nothing to do
with the LHS, it can be represented by a tuple (A(,..., Ag, @y, ..., @-, 1, .., ¢y), Where
A is an existential value and @ is an universal value. Similar to Case 2, the relational

algebraic expression for R, is:

6vy, Vi dy, d TV R

The Cartesian product of the relational algebraic expression corresponding to R, and the
tuple representing the general statement R, is thus the relational algebraic expression

desired. That is,
R~ {<’\1) X ’\qv Ty ey Wry Chyoeny C_,)} X (5V1,...,V“—,h,.A.,Atﬂ'Vl,...,Vt%)
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In this algorithm, we have shown that most of the derivation rules have corresponding view definitions
in conventional relational algebra, while some derivation rules that involve general information must be

supported by existential and universal values.

4.3 Example

An example is provided in order to illustrate the proposed algorithm. Presumably, a set of examples, one
for each case in Step 5 of the algorithm, would be needed. However, Case 4, which is the most complicated

one, is general enough to cover others.

[Example 1]

Let Pi(u,v, f(w) A Py(v,w,“aaa”) A Ps(w,z,y,2) A(v > y) A(z =0) — R(f(u), z, w,“bbb”) be the
Homn-clause to be converted to relational algebraic expression. Let R\(Ay, Az, A3), Ra(By, B2, B3)
and R3(C|,C5,C3,Cy) be the relation schemes corresponding to Pj, P, and P; respectively. The

results of each step using this example are shown as the following:

Step 1: Py is converted t0 &,y f(uy A, 4,45 R15
P, is converted t0 8, . B, B,TB, B, 7 By="aaa” R2; and
P5 is converted t0 0y 2 y—C,,C,,Cs T Cy,C2,C:0C1=C R;.
Step 2: R is the join of results in Step 1. That is, (8,4, f(u)— 4,45, ASRl) X
(8v,weBy,B, T By, By O By="aaa” B2) X (6w 2,y C1,C1,0:TC1 02,03 0C1=Co B3).
Step3: S={v>y,z=0}
Step 41 R is 0,5y ,6[(8u v, fuy a1, 2,45 B1) X (8u,w B, B, TB, B, 0 By="aaa” R2) X
(Bus,2,y—C1,C1,C3TC1,C2,C T C1=Co RI).
Step 5: The result R is {(A, =)} X 7r'w{o-v>y_,r=()[(6u,l’,f(u)<—fll,Az,fl'sRl) X

(8y,weB,,B,™By,B, 0 Bs="aaa" R2) M (0w z.y—C, C1.C;7C,.C,C3TC,=C R3]} X {066 }.

4.4 Discussion

As mentioned earlier, cases in Step 5 of the proposed algorithm can be merged into one. It is for the purpose

of illustration to divide this step into four cases. Case 4, without the condition ¢ > 0 or r > 0, is actually
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general enough to cover all the cases.

Output of this algorithm can be stored as a view definition. Although the resulting relational algebraic
expression may be very complicated, it can often be simplified by query optimization techniques.

Clauses which are used as queries might lead to a new problem. Up to now, the clause that input to the
algorithm is thought of as a view definition, but it can also to be a query that inquires for information from
the database. Because of these special tuples, which represent either general statements in base relations or
clauses that fall into Case 4 of Step 5 in the algorithm, the result of this query may consist of existential
value A and universal value w. Since the universal value is used for internal representation only, it should
not be a part of the query output. Therefore, values of active domains should be collected to answer the
query.

Corresponding to each attribute, there is an active domain. The procedure to compute the active domain
can be defined as a view definition as in Section 3.3. The view definition will often be simplified by query
optimization techniques together with the relational algebraic expression. An active domain is most likely
associated with the same attribute of the same relation. If, for some special reason, the values of an active

domain are distributed in several different relations, they must be unioned to form the active domain.

5 Conclusions

Aiming at supporting Horn-clauses as user interface, our approach extends the conventional relational model
into a model that can deal with intensional facts by storing them in the EDB, via existential and universal
values. In addition to the existential and universal values that are introduced to the relational model as
attribute values for all attribute domains, a partial order is defined to identify and to remove redundancies.
Since these two special values are different from other attribute values, some modifications of the relational
operations are made to accommodate them based on the partial order defined. Although these intensional
facts are stored in EDB, they are logically equivalent to those in the IDB of DDBs.

The relational model with the proposed extension is therefore able to deal with the following types of

axioms, which are covered exactly by DDDBs.

¢ The single fact of Type I can be represented by a constant tuple.
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¢ The general statements of Type I can be treated in the EDB via two special values, existential and

universal values.
e The clause of Type 2 can be handled with regard to its interpretation.

(1) If it is used as an integrity constraint, then it is enrolled in the control part of a relational DBMS.
(2) If it is purely a derivation rule, then it corresponds to a view definition in the relational model.

(3) If it is a derivation rule that involves also general facts, then it is thought of as an extended view

definition via existential and universal values.

o The clauses of Type 3 as well as Type 4 can be represented as integrity constraints in the relational

DBMS.

In summary, this paper suggests that the relational model with the extension presented in this paper
have the same expressive power and underlying mathematic logic as DDDBs. The algorithm presented
can be implemented as a translator from Horn-clauses, nonprocedural derivation rules, to view definitions
in the relational database. The extension of the relational model requires only minor modifications to its
operations. The proposed approach not only offers a more natural and flexible interface to users but also
takes advantage of the developed relational database techniques. This paper however does not suggest how
to deal with indefinite facts, which are only handled by the IDDBs as proposed by Reiter [20]. The capability
of incorporating indefinite fécts is of high potential in expert systems and the like. It is anticipated that
the logical extension of relational databases to indefinite facts will be much more complicated and will be

studied in the future.
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