

THE SEQUENCE STEP ALGORITHM
A SIMULATION-BASED SCHEDULING ALGORITHM FOR REPETITIVE

PROJECTS WITH PROBABILISTIC ACTIVITY DURATIONS

by

Chachrist Srisuwanrat

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Civil Engineering)

in The University of Michigan
2009

Doctoral Committee:

 Professor Photios G. Ioannou, Chair
 Lecturer John G. Everett
 Assistant Professor Vineet R. Kamat
 Assistant Professor Mark P. Van Oyen

© Chachrist Srisuwanrat 2009
All Rights Reserved

DEDICATION

To my wonderful Father, Warin Srisuwanrat, My beloved Grandmother, Sei-Ngek Lim

 and my family, Mas, Rasamee, Sumrit, and Rangson Srisuwanrat

For their love, understanding, encouragement, and support.

ii

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

My academic journey would not have been possible without my beloved and

respected advisor, Professor Photios G. Ioannou. Great indebtedness goes to his belief in

me and the opportunity he has offered to continue my academic journey at the University

of Michigan. It has been an honor to work under his direction. During the development of

this research, he has always reinforced to me that we can make a difference, a great one.

And here I am, with this research. His interesting guidance, valuable advice, and

constructive skepticism have contributed to the achievement of this research. I wish him

and his family a blissful and healthy life.

 The knowledge and input I learnt from my committee members and their courses

have provided profundity and richness to this research. I have combined all the

knowledge learnt from Professor Photios G. Ioannou in scheduling and simulation, Dr.

John G. Everett in construction management, Dr. Vineet R. Kamat in simulation

visualization, and Dr. Mark P. Van Oyen in simulation and simulation system

development. Therefore, I dedicate this research to all of my committee.

 One committee member, Dr. John G. Everett, has been the best teacher and also

friend that anyone could ask for. A great person and valuable asset to the Construction

Engineering and Management department at the University of Michigan, he has

iii

continuously supported and encouraged me through these years. His support, humor, and

kindness will always be remembered.

 I would like to express my sincere thanks to Vineet R. Kamat. An intelligent and

diligent researcher, he is a driving force in modern construction research. I believe his

hard work and vision will improve the construction industry and will be an excellent

example for others, including me. He has given me academic and life experience by

offering opportunities to prove and strengthen myself during the course of my journey at

the University of Michigan. It has been a privilege to have such opportunities.

 Special acknowledgement goes to Professor Julio C. Martinez for his technical

support in Stroboscope. His thesis and Stroboscope inspire both my thesis and my

application for this research, called “ChaStrobe.” Without his support and Stroboscope, I

may have taken a more difficult path in establishing the application. In addition, I would

like to thank the following researchers who have paved the foundations of repetitive

project scheduling, used to originate new ideas in this research: Robert B. Harris, Robert

I. Carr, I-Tung Yang, David W. Johnston, David B. Ashley, David Arditi, James D. Lutz,

Keith C. Crandall, Simaan M. AbouRizk, Onur B. Tokdemir, and Khaled A. El-Rayes.

Their works are valuable to this research and respected.

During the course of writing this thesis, it would have been difficult for this work

to come to fruition without assistance and advice from Krista Osborne, Robin Roots, and

Professor Leslie Olsen. Numerous hours of reviewing and editing on this thesis ensued

conception culminating in the finalization. I extend my heartfelt appreciation to them.

 I want to express my sincere gratitude towards my dad, Warin Srisuwanrat, my

grandmother, Sei-Ngek Lim, and the rest of my family. Without their encouragement, I

iv

v

could not have gone through this long journey. Especially for my dad, his kindness,

patience, and love significantly contribute to the accomplishment of this research as well

as my life.

 Many thanks go to the friends I met at the University of Michigan. Kittinun

Sirijaroonchai, one of my best friends and the nicest person I have ever met, has helped

me during these years. To Theerathon Tharachai and Visit Likhitruangsilp who were like

my brothers at the University of Michigan, I will always appreciate their company and

wisdom. Rita Awwad and Mustafa Saadi, two smart and kind people, have always

assisted me in reviewing my works and publications. Their friendship is appreciated. I

wish them all the success they pursue in both academia and life. Lastly, I want to thank

Kanyapat Pakdipadungdan for her love and encouragement. She is my oasis at the end of

the day.

TABLE OF CONTENTS

DEDICATION... ii

LIST OF FIGURES ... xi

LIST OF TABLES ... xix

LIST OF APPENDICES ... xxi

ABSTRACT ... xxii

CHAPTER 1 INTRODUCTION... 1

1.1 Repetitive Construction Projects ... 2

1.2 Resource Constraints .. 3

1.3 Characteristics of Repetitive Activities and Projects .. 6

1.3.1 Typical and Non-Typical Activities.. 6

1.3.2 Repetitive and Non-Repetitive Activities ... 7

1.3.3 Deterministic and Non-Deterministic Durations .. 9

1.3.4 Hard and Soft Logic Dependencies .. 10

1.3.5 Resource-Sharing Activities ... 12

1.4 Problem Description ... 13

1.5 Existing Scheduling Techniques ... 14

1.6 Challenges ... 15

1.7 Research Objectives .. 16

1.8 Conclusion .. 16

CHAPTER 2 LITERATURE REVIEW .. 19

2.1 Introduction ... 20

2.2 Existing Techniques .. 21

2.2.1 Critical Path Method (CPM) ... 21

2.2.2 Project Evaluation Review Technique (PERT) .. 24

2.2.3 Line-Of-Balance (LOB) .. 24

vi

2.2.4 Other Graphical Approaches ... 29

2.2.5 Linear Programming (LP) ... 35

2.2.6 Dynamic Programming (DP) .. 37

2.2.7 Simulation ... 41

2.3 Summary ... 45

CHAPTER 3 REPETITIVE SCHEDULING METHOD 48

3.1 Introduction ... 49

3.2 Maintaining Continuity in Graphical Methods ... 51

3.3 Critical Activities and Controlling Sequence ... 56

3.3.1 Critical Activities .. 57

3.3.2 Controlling Sequence .. 59

3.4 Summary ... 61

CHAPTER 4 SEQUENCE STEP ALGORITHM ... 64

4.1 Sequence Steps.. 65

4.1.1 Example 4.1 Determining sequence steps for a repetitive project with three

activities ... 65

4.2 Two Different Types of Idle Time in Repetitive Activities 66

4.3 Confidence Levels and Crew Lead Times .. 71

4.4 Overview of the Sequence Step Algorithm .. 72

4.4.1 Example 4.3 Determining crew lead time in a repetitive project with three

activities with probabilistic activity duration .. 73

4.5 Flow Chart of the Sequence Step Algorithm .. 79

4.5.1 Example 4.4 Scheduling a repetitive project with 7 activities 85

4.6 Discussion of Results from the Sequence Step Algorithm 94

4.7 Selection of Confidence Levels .. 97

4.8 Summary ... 101

CHAPTER 5 SIMULATION MODEL TEMPLATES ... 103

5.1 Simulation Model for Repetitive Projects ... 104

5.2 Simulation Model Templates .. 108

5.2.1 Work Flow Template .. 110

5.2.2 Resource Flow Template .. 114

vii

5.3 Example 5.1 Simulation code and model for a repetitive project 117

5.3.1 Simulation Code for Model Parameters (MP) .. 121

5.3.2 Simulation Code for Programming Objects (PO) 123

5.3.3 Simulation Code for Model Elements (CME) .. 130

5.3.4 Control Statements (CS) ... 137

5.4 Summary ... 145

CHAPTER 6 WORK BREAKS .. 149

6.1 Introduction of Work Breaks .. 150

6.2 Candidate Work Break Positions .. 155

6.2.1 Control Points and Controlling Sequences ... 155

6.2.2 Relative Production Rates ... 161

6.2.3 Determining Effective Work Break Positions .. 162

6.3 Determining Work Break Duration .. 164

6.4 Example 6.1 Repetitive project with work breaks .. 167

6.5 Simulation Model and Code for Example 6.1 .. 176

6.5.1 Simulation Code for Model Parameters (MP) .. 178

6.5.2 Simulation Code for Programming Objects (PO) 180

6.5.3 Simulation Code for Model Elements (CME) .. 190

6.5.4 Simulation Code for Controlling Statements (CS) 196

6.6 Summary ... 205

CHAPTER 7 RESOURCE-SHARING ACTIVITIES .. 208

7.1 Considerations in Scheduling Resource-Sharing Activities 210

7.2 Examples of Repetitive Projects with Resource-Sharing Activities X and Y 211

7.2.1 Example 7.1 .. 211

7.2.2 Example 7.2 .. 216

7.2.3 Example 7.3 .. 219

7.2.4 Example 7.4 .. 226

7.2.5 Example 7.5 .. 229

7.2.6 Example 7.6 .. 234

7.3 Summary ... 239

CHAPTER 8 CHASTROBE APPLICATION .. 243

viii

8.1 Overview of the ChaStrobe Application ... 244

8.1.1 Inputs for ChaStrobe ... 246

8.1.2 Simulation Output from ChaStrobe .. 255

8.1.3 Automation in ChaStrobe ... 256

8.1.4 Capabilities of ChaStrobe ... 257

8.2 Examples of Repetitive Projects in ChaStrobe ... 258

8.2.1 Example 8.1 Simple repetitive project .. 259

8.2.2 Example 8.2 Repetitive project with work breaks 266

8.2.3 Example 8.3 Repetitive project with resource-sharing activities 273

8.2.4 Example 8.4 Repetitive project with resource-sharing activities and work

breaks ... 283

8.3 ChaStrobe’s Output ... 288

8.3.1 Project Duration Graphs for each Processing SQS 289

8.3.2 Static Graphs ... 291

8.3.3 ChaStrobe’s Analyzer ... 294

8.3.4 Schedule in Microsoft Project ... 303

8.4 Summary ... 304

CHAPTER 9 OPTIMIZATION IN CHASTROBE .. 307

9.1 Overview of ChaStrobe’s Optimization .. 308

9.2 Optimization Input .. 311

9.2.1 Search Inputs ... 312

9.2.2 Dynamic Code Input ... 315

9.2.3 Additional Consistent Code .. 318

9.2.4 Search Parameters ... 319

9.3 Simulation Code and Model Manipulation ... 321

9.4 Search Output from ChaStrobe’s Optimization .. 324

9.5 Search Methods in ChaStrobe ... 325

9.5.1 The Exhaustive Search .. 325

9.5.2 The Genetic Algorithm ... 326

9.6 Example 9.1 Optimizing a Repetitive Project ... 331

9.7 Summary ... 341

ix

x

CHAPTER 10 CONCLUSTIONS AND RECOMMENDATIONS 346

10.1 Summary ... 346

10.2 Contributions... 349

10.3 Recommendations ... 351

APPENDICES ... 354

BIBLIOGRAPHY ... 412

LIST OF FIGURES

LIST OF FIGURES

Figure 1.1 Scheduling repetitive project with different types of constraints 4

Figure 1.2 Typical and non-typical activities ... 7

Figure 1.3 Repetitive and non-repetitive activities ... 8

Figure 1.4 A repetitive project with soft logic dependencies ... 11

Figure 3.1 CPM network for three repetitive units (from Harris and Ioannou 1998) 51

Figure 3.2 RSM Diagram for Three Units based on Precedence Constraints 52

Figure 3.3 Postponing activities with interruptions in Figure 3.2 to achieve continuous

resource utilization .. 53

Figure 3.4 Satisfying precedence and continuity constraints .. 55

Figure 3.5 Different critical activities between CPM and RSM 58

Figure 3.6 Production Diagram from RSM with controlling sequence 60

Figure 4.1 Precedence diagram for Example 4.1 .. 65

Figure 4.2 Precedence diagram for Example 4.2 .. 66

Figure 4.3 Production diagram showing a delay in Activity B by its Unit Idle Time 68

Figure 4.4 Arrival idle time between the arrival date and the start date of Resource B ... 69

Figure 4.5 SQS-AL’s assumption of resource arriving at the beginning of the project ... 71

Figure 4.6 Determining crew lead time from the collected crew idle time and user-

specified confidence level ... 72

Figure 4.7 The single unit precedence diagram for Example 4.3 73

Figure 4.8 Determining crew idle time of Resource B in processing SQS2 in Example 4.3

... 74

Figure 4.9 Changes in the resource arrival dates before and after processing SQS2 for

Example 4.3 .. 76

xi

Figure 4.10 Determining crew idle time for Resource C during processing SQS3 for

Example 4.3 .. 77

Figure 4.11 Changes in resource arrival dates before and after processing SQS3 for

Example 4.3 .. 78

Figure 4.12 Flow Chart of the Sequence Step Algorithm ... 80

Figure 4.13 Replication loop and sequence step loop in SQS-AL 81

Figure 4.14 The single unit precedence diagram for Example 4.4 85

Figure 4.15 The first replication production diagram from processing SQS2 (collecting

CITB and CITC) for Example 4.4 .. 87

Figure 4.16 The first replication production diagram from processing SQS3 (collecting

CITD, CITE, and CITF) for Example 4.4 ... 89

Figure 4.17 The first replication production diagram from processing SQS4 (collecting

CITG) for Example 4.4 .. 91

Figure 4.18 The first replication production diagram from processing SQS5 for Example

4.4.. 92

Figure 4.19 Cumulative distributions of project duration at an 80% confidence level 96

Figure 4.20 Decreasing idle time and increasing project duration as SQS-AL progresses

with 5 different confidence levels for Example 4.4 .. 98

Figure 4.21 Seven density functions of project duration for 5 different confidence levels,

CPM, and RSM ... 100

Figure 4.22 Seven different cumulative distributions of project duration from five

different confident levels, CPM, and RSM ... 100

Figure 5.1 A precedence diagram for a repetitive project .. 105

Figure 5.2 A single unit precedence diagram for the repetitive project in Figure 5.1 105

Figure 5.3 Models for activities and resources in a single unit precedence diagram 106

Figure 5.4 Separate models for activities and resources in a single unit precedence

diagram ... 107

Figure 5.5 Using separate models to model a repetitive project with resource-sharing

activities .. 108

Figure 5.6 Work Flow Template and Resource Flow Template 109

Figure 5.7 Work flow template (work flow sub-network for Activity ACT) 111

xii

Figure 5.8 Two work flow sub-networks for Activities A and B 113

Figure 5.9 Resource flow template (resource flow sub-network for Resource RES) 115

Figure 5.10 Single Unit Precedence Diagram ... 118

Figure 5.11 Simulation model for Example 5.1 .. 120

Figure 5.12 Assigning semaphore and duration for ResB_CLT Combi 132

Figure 5.13 Assigning semaphore and duration for B_Perform Combi 133

Figure 5.14 Assigning Strength for Link iResB_Stay .. 135

Figure 5.15 Assigning strength for iResB_Leave Link .. 136

Figure 5.16 Collecting CITB during processing SQS2 ... 137

Figure 6.1 The CPM schedule with 105-day project duration and 75-day idle time 151

Figure 6.2 RSM schedule with an increased project duration from 105 to 135 days 152

Figure 6.3 The work break B2-B3 reducing project duration from 135 to 115 days 154

Figure 6.4 The control point between Activities A and B at A3-B3 156

Figure 6.5 The control point between Activities A and B at A2-B2 156

Figure 6.6 The controlling sequence (A1 to A4, B3 to B2, C1 to C4, and D4) 157

Figure 6.7 Determining the controlling sequence for the 1st replication 158

Figure 6.8 Determining the controlling sequence for the 2nd replication 159

Figure 6.9 Determining the controlling Sequence for the 3rd replication 160

Figure 6.10 Single unit precedence diagram for Example 6.1 .. 168

Figure 6.11 CPM schedule with 277-day project duration and 438-day idle time 169

Figure 6.12 SQS-AL schedule without work breaks with 449-day project duration and 1-

day idle time .. 169

Figure 6.13 SQS-AL schedule with 2 work breaks with 376-day project duration for

Example 6.1 .. 171

Figure 6.14 SQS-AL schedule with 3 work breaks and 342-day project duration for

Example 6.1 .. 174

Figure 6.15 Simulation Model for the Example in Figure 6.10 177

Figure 7.1 Precedence diagram with independent resource-sharing 211

Figure 7.2 SQS2 Schedule where the simulation model for X is created before Y 212

Figure 7.3 SQS2 Schedule with additional X_Perform semaphore 213

Figure 7.4 SQS2 schedule with additional Y semaphore ... 214

xiii

Figure 7.5 Finalized schedule with additional Y semaphore from Figure 7.4 215

Figure 7.6 Finalized schedule with additional X semaphore .. 216

Figure 7.7 Finalized schedule with additional Y semaphore .. 216

Figure 7.8 Precedence diagram with independent resource-sharing activities in different

SQSs .. 217

Figure 7.9 SQS1 to SQS4 Schedules, given CLTXY has not been assigned 217

Figure 7.10 Finalized schedule after assigned CLTXY either at the end of processing

SQS2, SQS3, or SQS4, from Figure 7.9 ... 218

Figure 7.11 Precedence diagram with independent resource-sharing activities in different

SQSs .. 219

Figure 7.12 SQS2 schedule ... 220

Figure 7.13 Finalized SQS-AL schedule, given CLTXY is derived from the SQS2

schedule, idle time in RESXY is 1 week .. 221

Figure 7.14 SQS3 schedule without delaying Activity X in SQS2, developed from Figure

7.12.. 222

Figure 7.15 Finalized SQS-AL schedule using the CIT of RESXY from SQS3, developed

from Figure 7.14 ... 222

Figure 7.16 SQS2 shedule with additional Y semaphore ... 223

Figure 7.17 SQS3 schedule, developed from Figure 7.16 .. 223

Figure 7.18 Finalized schedule, developed from Figure 7.17 ... 224

Figure 7.19 SQS2 schedule with additional X semaphore ... 225

Figure 7.20 SQS3 and SQS4 schedules, developed from Figure 7.19 225

Figure 7.21 A precedence diagram with directly dependent resource-sharing activities X

and Y ... 226

Figure 7.22 SQS2 schedule ... 227

Figure 7.23 Modifying Activity A’s duration and comparing the duration to the combined

durations of X and Y ... 228

Figure 7.24 Decreasing project duration in the SQS2 schedule due to additional X

semaphore ... 228

Figure 7.25 Precedence diagram with indirectly dependent resource-sharing Activities X

and Y ... 229

xiv

Figure 7.26 SQS2 schedule ... 230

Figure 7.27 SQS3 schedule, developed from Figure 7.26 .. 231

Figure 7.28 Finalized schedule, developed from Figure 7.27 ... 231

Figure 7.29 SQS2 schedule with additional Y semaphore ... 232

Figure 7.30 SQS3 schedule with additional Y semaphore, from Figure 7.29 232

Figure 7.31 SQS4 schedule, developed from Figure 7.30 .. 233

Figure 7.32 Indirectly dependent resource-sharing Activities X and Y with a slower-

production-rate Activity B between them ... 234

Figure 7.33 SQS2 schedule ... 235

Figure 7.34 SQS3, SQS4, and the finalized schedule when using CITXY from SQS2 and

CITB from SQS3, developed from Figure 7.33 ... 236

Figure 7.35 Finalized schedule when using CLTB from SQS3 and CLTXY from SQS4,

developed from Figure 7.34 .. 237

Figure 7.36 Using dedicated resources or work break between Activities X and Y 238

Figure 7.37 Balancing production rates of Resource RESXY to achieve its continuous

resource utilization .. 239

Figure 8.1 ChaStrobe’s process of modeling and solving problems 245

Figure 8.2 ChaStrobe’s interface for Simulation Parameters ... 247

Figure 8.3 ChaStrobe’s Interface for activities’ names and precedence constraints on the

Precedence Input sheet .. 250

Figure 8.4 ChaStrobe’s interface for activities’ productivities and work amounts on the

Quantity Input Sheet ... 251

Figure 8.5 Resources’ names, confidence levels, amounts for each type, and continuity

constraints on the Resource Input Sheet ... 253

Figure 8.6 ChaStrobe’s interface for Utilization Input ... 254

Figure 8.7 ChaStrobe’s presentations, analyses, and optimization 256

Figure 8.8 Activating ChaStrobe .. 259

Figure 8.9 A single unit precedence diagram for Example 8.1 260

Figure 8.10 Simulation Parameters for Example 8.1 .. 261

Figure 8.11 Precedence Input for Example 8.1 ... 262

Figure 8.12 Quantity Input for Example 8.1 ... 263

xv

Figure 8.13 Resource Input for Example 8.1 .. 264

Figure 8.14 Utilization Input for Example 8.1 .. 265

Figure 8.15 Production diagram from the 1st replication in SQS5 for Example 8.1 266

Figure 8.16 Single unit precedence diagram for Example 8.2 267

Figure 8.17 Simulation Parameters for Example 8.2 .. 268

Figure 8.18 Precedence Input for Example 8.2 ... 268

Figure 8.19 Quantity Input for Example 8.2 ... 269

Figure 8.20 Utilization Input for Example 8.2 .. 269

Figure 8.21 Resource Inputs with a different number of work series in ResB, ResC, and

ResG for Example 8.2 ... 270

Figure 8.22 Production diagram from the 1st replication in SQS6 for Example 8.2 273

Figure 8.23 Single unit precedence diagram for Example 8.3 and 8.4 274

Figure 8.24 Single unit precedence diagram with resource nodes for Examples 8.3 and

8.4.. 274

Figure 8.25 Simulation Parameters for Examples 8.3 and 8.4 .. 276

Figure 8.26 Precedence Input for Examples 8.3 and 8.4 .. 277

Figure 8.27 Quantity Input for Examples 8.3 and 8.4 .. 277

Figure 8.28 Resource Input for Example 8.3 only .. 278

Figure 8.29 Utilization Input for Examples 8.3 and 8.4 ... 278

Figure 8.30 Production diagram from the 1st replication in SQS6 for Example 8.3 280

Figure 8.31 An unusual up-and-down pattern of average project idle time in scheduling

resource-sharing activities .. 283

Figure 8.32 Resource Input for Example 8.4, different from Example 8.3 285

Figure 8.33 CIT1M and CIT1MN (before work break at M5-N1) collected from the same

processing SQS2 ... 286

Figure 8.34 Additional code stipulating ResMN’s working sequence from M1 to M5 and

then N1 to N5, and ResXY’s working sequence from X1 to X5 and Y1 to Y5 286

Figure 8.35 A typical pattern of decreasing average project idle time in scheduling

repetitive projects using SQS-AL ... 287

Figure 8.36 Production diagram from the 1st replication in SQS6 for Example 8.4 288

Figure 8.37 ChaStrobe’s four output features ... 289

xvi

Figure 8.38 The average project duration and idle time from processing each SQS for

Example 8.1 .. 290

Figure 8.39 Probability density functions of project duration from processing each SQS

for Example 8.1 ... 290

Figure 8.40 Cumulative distribution functions of project duration from processing each

SQS for Example 8.1 .. 291

Figure 8.41 Creating and viewing Static Graphs .. 292

Figure 8.42 Static graph from the 1st replication of processing SQS5 for Example 8.1 . 294

Figure 8.43 Cumulative distributions of project duration derived from CPM, RSM, and

SQS-AL... 295

Figure 8.44 Probability density functions of project duration derived from CPM, RSM,

and SQS-AL .. 296

Figure 8.45 Comparing project duration of RSM and SQS-AL to CPM........................ 297

Figure 8.46 Comparing project duration of SQS-AL to RSM .. 300

Figure 8.47 Difference in project duration and idle time between RSM and CPM, SQS-

AL and CPM, and SQS-AL and RSM .. 301

Figure 8.48 The finalized SQS-AL Schedule in Microsoft Project 303

Figure 9.1 Nine steps of optimization process in ChaStrobe .. 309

Figure 9.2 Modifying inputs, updating inputs, and creating simulation code and model312

Figure 9.3 The Search Input sheet and the current decision variable cells in Row 2 313

Figure 9.4 Dynamic code input with cells in Column D reference to the decision variable

Cells on the Search Input sheet, shown in Figure 9.3 ... 316

Figure 9.5 Dynamic code indexes and dynamic code positions in the main code 317

Figure 9.6 Consistent additional code calculating objective function value, placed after

the Control Statements’ main code ... 319

Figure 9.7 Search Parameters with two main search methods, Exhaustive Search and

Genetic Algorithm .. 321

Figure 9.8 Output from optimization using the genetic algorithm 325

Figure 9.9 The Genetic Algorithm in ChaStrobe .. 327

Figure 9.10 Precedence diagram with resource nodes for Example 9.1 332

Figure 9.11 Simulation Parameters for Example 9.1 .. 333

xvii

xviii

Figure 9.12 Precedence Input for Example 9.1 ... 333

Figure 9.13 Quantity Input for Example 9.1 ... 334

Figure 9.14 Resource Input with cells referencing to decision variable cells for Example

9.1.. 335

Figure 9.15 Utilization Input for Example 9.1 .. 336

Figure 9.16 Dynamic Code Input for the initial decision variables in Figure 9.17 337

Figure 9.17 Initial decision variables for Dynamic Code in Figure 9.16 337

Figure 9.18 Dynamic Code for the initial decision variables in Figure 9.19 338

Figure 9.19 Initial decision variables for Dynamic Code in Figure 9.18 338

Figure 9.20 Objective function and user-specified additional output for Example 9.1 .. 339

Figure 9.21 Search Parameters for Example 9.1 ... 340

Figure 9.22 GA Results with three best solutions providing an objective value of 590 . 341

LIST OF TABLES

LIST OF TABLES

Table 4.1 Precedence relationships for Example 4.1 .. 65

Table 4.2 Precedence relationships for Example 4.2 .. 66

Table 4.3 Stochastic durations of repetitive activities for Example 4.3 74

Table 4.4 Cumulative frequency of crew idle time of Resource B during processing SQS2

for Example 4.3 ... 75

Table 4.5 Cumulative frequency of crew idle time for Resource C during processing

SQS3 for Example 4.3 .. 77

Table 4.6 Unit idle time, the selected Crew Lead Time, Average Project Duration, and

Average Total Idle Time ... 78

Table 4.7 Activities’ work amounts in each unit for Example 4.4 86

Table 4.8 Activities’ production rates for Example 4.4 .. 86

Table 4.9 Collected CITs from processing SQS2 and determining CLT for Activities B

and C for Example 4.4 .. 88

Table 4.10 Collected CITs from processing SQS3 and determining CLTs for Activities D,

E, and F for Example 4.4 .. 90

Table 4.11 Collecting CITs from processing SQS4 and determining CLT for Activity G

for Example 4.4 ... 92

Table 4.12 The finalized CITs from processing SQS5 for Example 4.4 93

Table 4.13 Assigned CLT and average CIT of activities from processing different

sequence steps for Example 4.4 .. 93

Table 4.14 The finalized UIT, average project duration, and average project idle time for

Example 4.4 .. 94

Table 5.1 Work amounts for each activity in each unit .. 118

xix

xx

Table 5.2 Daily Production Rates ... 119

Table 6.1 Scheduling methods, idle time, project duration, and work break 154

Table 6.2 Probability of activities on the controlling sequence 160

Table 6.3 Daily production rates and activity work amounts for Example 6.1 168

Table 6.4 CLT1 from the SQS-AL schedule without work breaks for Example 6.1 170

Table 6.5 CLT from the SQS-AL schedule with 2 work breaks for Example 6.1 172

Table 6.6 CLT from the SQS-AL schedule with 3 work breaks for Example 6.1 174

Table 6.7 Finalized project duration and idle time for Example 6.1 175

Table 8.1 Activities’ productivities and work amounts for Example 8.1 260

Table 8.2 Activities’ productivities and work amounts for Example 8.2 267

Table 8.3 Durations and variability for activities in Examples 8.3 and 8.4 275

LIST OF APPENDICES

LIST OF APPENDICES

Appendix A Determination of the Controlling Sequence ... 355

Appendix B Extension of Simulation Model Templates .. 374

Appendix C Flow Chart for the Chastrobe Application ... 383

Appendix D Graphical Formats for Static Graphs .. 406

xxi

ABSTRACT

ABSTRACT

The construction industry and academia have realized the critical path method and

other time-based methods were not suitable for repetitive projects, which were resource-

driven in nature. Both communities have been attempting to develop a better technique to

schedule repetitive projects. Many approaches have been proposed; however, they are

capable of solving the problems only to a certain degree of complication. Most of these

approaches were limited to deterministic problems. A few probabilistic scheduling

methods using simulation techniques were proposed with improvement in capturing the

stochastic nature of construction activities; however, none of them guaranteed continuous

resource utilization.

The Sequence Step Algorithm (SQS-AL) is a general scheduling algorithm for

minimizing the duration of repetitive projects with probabilistic activity durations while

achieving continuous resource utilization. SQS-AL consists of two main nested loops: the

sequence step loop and the replication loop. For each sequence step, each replication loop

is a simulation run that collects crew idle time for activities in that sequence step. The

collected crew idle times are, then, used to determine resource arrival dates for user-

specified confidence levels, i.e., probabilities of having zero idle time in corresponding

activities. The process of collecting the crew idle times and determining crew arrival

times for activities on a considered sequence step is repeated from the first to the last

xxii

xxiii

sequence step. The effect of scheduling activities on the crew idle times for following

activities is revealed step by step prior to scheduling the following activities. As a result,

SQS-AL can guarantee continuous resource utilization for the user-specified confidence

levels.

 This thesis also presents the application of work breaks, the determination of the

controlling sequence, and the scheduling of resource-sharing activities in repetitive

projects with probabilistic activity durations. An application, called “ChaStrobe,” was

developed on top of the Stroboscope Graphical User Interface to facilitate schedulers in

creating simulation model for repetitive projects and scheduling the projects using all

concepts presented in the thesis. In addition, ChaStrobe consists of two search methods,

the exhaustive search and the genetic algorithm. Using the proposed concepts, the

programmability in Stroboscope, and the search methods, ChaStrobe can optimize the

scheduling problems of repetitive projects effectively.

CHAPTER 1

 INTRODUCTION

CHAPTER 1 INTRODUCTION

 The ultimate goal of managing construction projects is completing the project

with the least amount of time and at the lowest possible cost. To achieve this objective,

establishing an attainable and practical schedule in terms of time, cost, and resource

utilization for the project is essential.

 The Critical Path Method (CPM), a scheduling method, has been used widely in

construction because 1) it offers great simplicity and 2) most scheduling software offers

CPM capabilities with an inexpensive price and ease of use. However, industry and

academia have realized the fallacies of the method over the past decades. While most

profit-driven projects are influenced by the quality of time management, cost

management, and resource management, CPM primarily focuses on time. Many heuristic

methods have been integrated within CPM to supplement the missing dimensions. Yet,

their capabilities are still limited by the underlying concept of CPM. Especially in

managing and maximizing resource utilization, CPM performs poorly since it is a pure

time-based scheduling approach, not a resource-based approach.

 Though several resource-based scheduling techniques have been proposed over

the years, many diverse topics of repetitive project scheduling need to be examined such

1

as probabilistic scheduling, the tradeoff between continuous resource utilization and

project duration, and resource allocation.

1.1 Repetitive Construction Projects

 Examples of repetitive projects are high-rise buildings, housing projects, tunnels,

and highways. High-rise buildings are made up of floors; housing projects are made up of

housing units; tunnel projects are made up of tunnel rings; highways are made up of road

sections. These projects require resources performing the same or similar activities

repetitively from floor to floor, from house to house, from tunnel ring to ring, or from

section to section. For example, the same crew installs drywall from floor to floor in a

multistory building. Floors, houses, tunnel rings, and sections are referred to as repetitive

units in such projects.

By definition, repetitive projects are projects that consist of a series of repetitive

activities requiring resources working and moving from one unit to another. These units

are usually identical or similar depending on the design.

 One of the main interests in scheduling repetitive projects is the ability to keep

resources working continuously without idle time. Idle time is the period that a resource

is being paid but not performing any work. Since resources are paid from the date they

start working to the date they finish the work, idle time during employment periods is

considered unproductive. Accordingly, activities should be scheduled in such a way that

idle time of resources is eliminated or minimized. To do so, resource constraints must be

incorporated into the schedule.

2

1.2 Resource Constraints

 There are two types of resource constraints, resource availability constraints and

resource continuity constraints. Availability constraints indicate the limited number of

resources available to activities during a particular period; therefore, they control the

output of those activities. Continuity constraints stipulate that resources, such as crews,

need to work continuously and without interruption from the time they first arrive to the

job site until they leave.

CPM generally assumes that there are unlimited resources and unconditional

utilization of resources. Instead of applying resource constraints on the schedule, only

precedence constraints are accounted for in scheduling resources. As a result, the derived

schedule from CPM is often impractical and inefficient. Resource availability constraints

and resource continuity constraints should not be omitted nor represented by precedence

constraints, and, of course, they are not inferior to precedence constraints. Thus, it is

necessary to impose availability and continuity constraints onto the schedule.

Figure 1.1 shows the benefits of imposing resource availability and continuity

constraints on a repetitive project consisting of 3 units with 3 activities in each unit. Their

dependencies are from A to B to C. Moreover, Activities A and C share the same limited

resources, allowing only one of them to be performed one at a time. Figure 1.1.a results

from applying only precedence constraints without resource constraints. As can be seen,

this schedule is feasible because an overlap in resource usage exists between Activities A

and C, which should be prevented by resource availability constraints. Moreover, it is

inefficient because there is an idle time of 20 days between units in Activity B. This idle

time is almost 60% of the entire employment period for Activity B.

3

Figure 1.1 Scheduling repetitive project with different types of constraints

4

The schedule shown in Figure 1.1.b satisfies both precedence and resource

availability constraints. The start of Activity C no longer occurs on Day 20 since A and C

share the same limited resource. Resource availability constraints resolve the conflict in

resource usage between Activities A and C. Now, the schedule becomes practical;

however, the schedule is still inefficient because of the remaining idle time in Activity B.

To eliminate idle time, in other words, to satisfy resource continuity constraints,

the sum of lags between units of a repetitive activity is calculated. Positive values of the

sum of the lags indicate that the continuity constraints are violated, while zero indicates

the constraints are satisfied. If the sum is greater than zero, the activity must be

postponed by the sum of the lags in order to eliminate the idle time so that the continuity

constraints are satisfied.

In Figure 1.1.c, the schedule satisfies precedence, resource availability and

resource continuity constraints. Continuity constraints force activities to be scheduled in

such a way that their resources work continuously, resulting in a shorter period of

employment and zero idle time. As can be seen from Figure 1.1.c, the start date of

Activity B is postponed by the sum of the lags (20 days in Figure 1.1.a). Moreover, the

employment period of Resource B is decreased from 35 days in Figure 1.1.a to 15 days in

Figure 1.1.c.

Figure 1.1 shows that applying resource constraints results in a practical and

efficient schedule especially for resource utilization. Nevertheless, project duration

increases from 65 to 90 days. If there is enough resource for both Activities A and C,

project duration is still increased from 65 to 85 days due to the continuity constraints.

5

From the example, it is necessary to consider whether to introduce resource continuity

constraints to the scheduling of a repetitive project.

The tradeoff between eliminating idle time and increasing project durations must

be analyzed to ensure the derived solution is the optimal project cost or close to it. To

achieve this goal, characteristics of repetitive activities must be analyzed so that

alternative schedules can be established and optimized.

1.3 Characteristics of Repetitive Activities and Projects

 Durations of repetitive activities in each unit are rarely identical. The differences

may come from design, productivity of resources, availability of resources, scheduling

techniques, etc. These factors contribute to activity and resource schedules, defining

characteristics of repetitive activities. Five characteristics of repetitive activities are

described below to show the need for a sophisticated scheduling technique and tool that

must be able to model these characteristics, and schedule the project under precedence

and resource constraints.

1.3.1 Typical and Non-Typical Activities

 A “typical activity” is defined as a series of sub-activities that have the same work

amount in each unit; and they have the same duration for each repetitive unit. In contrast,

a “non-typical activity” is a series of sub-activities having different work amounts and,

therefore, different durations in different units. Figures 1.2.a and 1.2.b demonstrate two

repetitive projects whose activities are typical and non-typical, respectively.

6

Figure 1.2 Typical and non-typical activities

 Many scheduling techniques assume that the durations of sub-activities are the

same (typical) so that it allows them to solve the problem easily. However, this

assumption is not always practical since activity durations are influenced by many factors

such as work amount in each unit and resource productivity for each activity. A

developed technique should be able to model both typical and non-typical activities.

1.3.2 Repetitive and Non-Repetitive Activities

 Repetitive activities are those activities that need to be performed in every unit in

the project. Whether typical or non-typical, if an activity exists in every unit, it is

considered a repetitive activity. On the other hand, non-repetitive activities are those

activities whose sub-activities do not exist in every unit. The most common situation is

when an activity exists only in the beginning of the project (before starting the first unit)

and/or in the first unit. For example, excavation is considered a non-repetitive activity for

high-rise buildings in which it is only required prior to the construction of the first unit

(the 1st floor). Figure 1.3.a is an example of a non-repetitive activity that only exists in

7

the first unit. Figure 1.3.a1 is the node network for the case and Figure 1.3.a2 is its

corresponding production diagram.

Figure 1.3 Repetitive and non-repetitive activities

 A complicated situation arises when sub-activities exist in most units but are

omitted in a few (Figure 1.3.b Activities B and C). Precedence and resource constraints

for this non-repetitive activity are harder to model using only one unit to represent all the

units and to show all dependencies between activities because of their unique

dependencies between the non-repetitive activity and other activities. In Figure 1.3.b2,

Activities B and C are examples of this case. Moreover, the start date of Activity D3 is

8

not controlled by its direct predecessor, Activity C, as in Units 1 and 2, because Activity

C does not exist in Unit 3. Consequently, Activity D in Unit 3 is controlled by its indirect

predecessor (B).

1.3.3 Deterministic and Non-Deterministic Durations

 From a modeling perspective, probabilistic scheduling problems are some of the

most complicated problems. Both industry and academia have realized the importance of

capturing the stochastic nature of construction projects. The difficulty starts from

estimating the probabilistic durations of activities, modeling the flows of resources and

materials, simulating the dynamic nature of construction activities, and solving the

problem probabilistically. Consequently, very few techniques have been proposed to

solve repetitive project scheduling problems in a probabilistic manner.

 Focusing on resource continuity and non-deterministic parts of repetitive project

scheduling problems, prior attempts have failed to solve the problem because: 1) they are

based on inappropriate concepts such as CPM and 2) computational limitations such as

linear programming. For example, the Program Evaluation Review Technique (PERT)

cannot maintain continuity since it schedules activities at their early start date in the same

way CPM does. Techniques based on linear and dynamic programming are not effective

in solving non-deterministic problems. Simulation cannot ensure continuity because they

cannot control or postpone the start date of activities. The deficiencies of these methods

are explained in detail in Chapter 2.

 Another issue introduced by stochastic activity durations is the need to establish

an indicator determining activity criticality. This requires a totally new approach because

the traditional concept of a critical path as in CPM does not exist under the continuity

9

constraints (Harris and Ioannou 1998). The impact of an activity on repetitive projects

with regards to project duration and continuity must be studied. The concept of the

controlling sequence as defined by Harris and Ioannou (1998) is based on deterministic

activity durations. Thus, a modified version of the controlling sequence must be

established for the non-deterministic case.

1.3.4 Hard and Soft Logic Dependencies

 In most scheduling techniques (e.g. CPM, PERT, LOB, and LSM), precedence

constraints between activities are defined as hard logic. This means, by applying hard

logic to two repetitive activities (e.g., A and C in Figure 1.4), a succeeding sub-activity

(e.g., C2) is constrained by 1) the same activity in the previous unit (e.g., C1) and 2) its

predecessors in the same unit (e.g., A2).

 If activities’ interrelationships are defined as hard logic, they are considered to be

technically dependent. CPM, PERT, LOB, and LSM are examples of those methods that

use hard logic dependency. Unfortunately, this type of dependency in some cases is not a

good representative of activity interrelationships, and may unnecessarily limit the

flexibility in scheduling activities and allocating resources. For example, in Figure 1.4, a

housing project consisting of 3 houses, the order of construction for these 3 houses is not

constrained by technical constraints. The construction of these houses can be scheduled

in many orders such as Units 1, 2, and 3 as shown in Figure 1.4.b or Units 2, 3, and 1 as

shown in Figure 1.4.c. In such a case, constraining repetitive units with hard logic

(forcing the order of the Housing Unit 1 to 3) would be unnecessary. Thus, the

dependency between repetitive units should be defined in such a way that it allows a

10

switch in sub-activity orders, when possible. This type of dependency is called “soft

logic.”

Figure 1.4 A repetitive project with soft logic dependencies

11

 Soft logic is the ability of a crew to define its own orders of units for performing

the repetitive work. The comparison of Figures 1.4.b and 1.4.c shows a benefit of

applying soft logic constraints to the project. As shown in Figure 1.4.c, reordering the

housing units from Units 1, 2, and 3 to Units 2, 3, and 1 results in a shorter project

duration by 2 weeks. Accordingly, the idea of soft logic and its benefits need to be

studied further.

1.3.5 Resource-Sharing Activities

 In CPM and other methods such as LOB and RSM, resource availability

constraints are modeled by using precedence constraints. They assume that activities

require only one resource each; a resource serving only one activity is called a “dedicated

resource.” In practice, however, activities may share the same resources; the resource is

called “shared resource” and the activities are called “resource-sharing activities.” In the

latter case, precedence constraints would not be able to additionally present the resource

availability constraints for the shared resource.

 Sharing resources between activities can be highly dynamic and truly resource-

driven. Simple scheduling methods such as CPM and graphical methods such as LOB

cannot include this activity characteristic into their calculations due to the high dynamic

utilization of resources. For mathematical approaches, although it is possible to use

dynamic programming to model behaviors of a resource that is shared by many activities,

it is more cumbersome and ineffective than using simulation. Resource-driven simulation

offers a great advantage when it comes to modeling this characteristic. Moreover,

allocating shared resources may be performed promptly by using a conditioning node

provided in most simulation systems (e.g., Fork node in Stroboscope). Further studies of

12

resource-sharing activities and allocating shared resources must be investigated regarding

repetitive construction projects.

1.4 Problem Description

Repetitive project planning and scheduling problems confront every construction

company. Different companies may employ different strategies to manage their projects;

however, one common objective is maximizing the efficiency of resource utilization.

This issue of resource efficiency can be viewed in two dimensions: scheduling

perspective and operational perspective. This research focuses on the schedule

perspective because it determines “how an operation is going to perform,” “when that

task is going to be executed,” and “how resources (labor, machine, and money) of the

operation are going to be managed.” Even before projects start, schedules could dictate

the success or failure of the project; poor schedules result in project loss and delay

regardless of how effective the operation may be, since skilled laborers will become idle

(waste in time and money), while waiting for another operation to complete. This

unproductiveness (caused by ineffective schedule, rather than the operation itself) could,

in fact, be avoided. Thus, this research focuses on eliminating the avoidable idle time and

unproductive costs, stemming from an ineffective schedule.

Repetitive projects tend to have an avoidable unproductiveness because

operations in each unit are influenced by many activities (including sub-activities),

resources (including laborers, equipment, and space), and other factors such as funding.

Examples of these constraints can be grouped as: 1) technical constraints, 2) resource

constraints, and 3) financial constraints. This research focuses on technical constraints

and resource constraints in order to achieve a schedule that could eliminate or minimize

13

idle time in resource utilization. Consequently, this research employs idle time

elimination to optimize and balance project time and cost.

In this research, uncertainty in work amount and resource productivity is taken

into account when scheduling projects since uncertainty and construction are inseparable.

However, this research will not consider the uncertainties in operational accidents,

machine breakdown, supplying material delay, disastrous phenomena, financial crises,

and other unforeseeable circumstances.

In conclusion, this research can be defined as the problem of probabilistic

repetitive project scheduling. The main objective is to develop a tool to assist

construction companies to schedule repetitive projects under uncertainty in order to

eliminate the avoidable unproductive time and cost.

1.5 Existing Scheduling Techniques

 Many techniques have been proposed to solve the problem of scheduling

repetitive projects. However, until now, no techniques have effectively and realistically

captured all the aforementioned characteristics of repetitive activities and solved the

problem. Those that are considered to be advanced techniques are only capable of

modeling non-typical and non-repetitive activities, but not probabilistic activity durations

and soft logic dependencies. Furthermore, many of those techniques fail to control

(maintaining and relaxing) continuity constraints. The limitations of existing techniques

are discussed in Chapter 2, Literature Review.

14

1.6 Challenges

 The true challenges of this research stem from the desire to create a well

conceptualized and designed mechanism that offers as much flexibility as possible,

besides the ability to solve repetitive project scheduling problems. Even though the

author recognizes that such a desired flexibility comes with a great cost, he still believes

that the challenge is achievable and worth exploring. Theoretically, the challenges are:

1) How to establish a generalized algorithm that can be applied to discrete-event

simulation systems in order to solve a stochastic repetitive project scheduling

problem. While many techniques require a customized tool to solve the

problem, the generalized algorithm should be untied to a particular tool. It

should be applicable to most discrete-event simulation systems such as

Stroboscope, GPSS, and ProModel.

2) How to establish a simulation model template that can capture all

aforementioned four characteristics of repetitive activities, especially the

stochastic nature of repetitive construction activities.

3) How to provide flexibility in modifying the model template in (2) so that this

proposed technique (the algorithm and the model) can be extended to solve a

more complicated problem. The proposed technique must be designed for

current and future development.

15

1.7 Research Objectives

 The following are the primary objectives of this research:

1) To establish a generalized algorithm that empowers discrete-event simulation

to solve the problem of scheduling and planning repetitive construction

projects.

2) To design a universal simulation model template that can capture the

characteristics of repetitive activities and their resources.

3) To develop a heuristic algorithm for ordering repetitive units and/or sub-

activities in order to benefit from soft logic dependent activities.

4) To develop a search algorithm that seeks an optimal (or near optimal) solution

according to (1), (2), and (3).

5) To develop an application that automates and facilitates the scheduling of

repetitive projects according to the proposed (1), (2), (3) and (4).

1.8 Conclusion

 This chapter discusses several aspects of repetitive projects. Repetitive projects

are commonly found in construction where similar units require repetitive activities from

unit to unit. Repetitive activities and their resources are the essence of repetitive project

scheduling because their constraints impose directly on project schedules. The constraints

in repetitive projects are:

1) Precedence constraints

2) Resource availability constraints

3) Resource continuity constraints

16

While precedence constraints specify the technological orders of work, resource

availability and continuity constraints control the utilization of resources in the project.

To obtain a practical and efficient schedule, the above three constraints must be

accounted for in project scheduling. They and their application are discussed in this

chapter focusing on the resource continuity constraints.

One of the main focuses in scheduling repetitive projects is to maximize resource

utilization by keeping resources working continuously without interruption. Resource

continuity constraints normally enforce delay in activities to improve continuous resource

utilization. Nevertheless, delaying repetitive activities could adversely prolong project

duration. Thus, the tradeoff between increasing project duration and decreasing idle time

must be considered in order to obtain a practical and efficient schedule. The tradeoff can

be analyzed by performing sensitivity analysis between enforcing and relaxing resource

continuity constraints. To obtain the most efficient schedule, it is suggested that the

analysis of the tradeoff must be incorporated with the fundamental characteristics of

repetitive activities.

Four characteristics of repetitive activities are discussed in this chapter to

illustrate their potential benefit in optimizing repetitive projects. These characteristics

are:

1) Typical and non-typical repetitive activities

2) Repetitive and non-repetitive activities

3) Deterministic and non-deterministic activity durations

4) Sharing or non-sharing resources with other activities.

17

18

To achieve an optimal schedule, schedulers must truly understand the four

characteristics of repetitive activities and carefully analyze the tradeoff between imposing

and relaxing resource continuity constraints. This research will coordinate all of these

factors in the proposed algorithm to effectively solve the problems of repetitive project

scheduling.

CHAPTER 2

LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW

 This chapter presents advantages and disadvantages of techniques used in

scheduling repetitive projects. These techniques are:

1) Mathematic Approach. Examples of this approach are:

a. Critical Path Method (CPM)

b. Program Evaluation and Review Technique (PERT)

c. Vertical Production Method (VPM)

2) Graphical Approach. Examples of this approach are:

a. Line-of-Balance (LOB)

b. Linear Scheduling Method (LSM)

c. Repetitive Scheduling Method (RSM)

3) Linear Programming (LP)

4) Dynamic Programming (DP)

5) Simulation

These techniques are compared in various aspects of scheduling specifically for

repetitive projects based on many researchers’ recommendations. At the end, these

techniques are summarized.

19

2.1 Introduction

 Many scheduling techniques have been developed for planning and scheduling.

Some are for general construction projects, while others are specifically for repetitive

projects. The Critical Path Method (CPM) and Program Evaluation and Review

Technique (PERT) are examples of techniques suitable for general projects, but not

repetitive construction projects. CPM and PERT cannot produce an effective schedule for

repetitive projects. On the other hand, many scheduling techniques are designed

specifically to schedule repetitive projects. These techniques range from a basic graphical

approach, such as Line-of-Balance (LOB), to a more complex approach, such as linear

and dynamic programming. Integrations between techniques are commonly established to

mutually improve the original concepts such as the integration between LOB and CPM.

 The chronological development of repetitive project scheduling techniques can be

viewed in these orders:

1) Graphical Approach

2) Mathematic Approach

3) An integration between (1) and (2)

4) Advanced mathematical approach (e.g., Linear Programming and Dynamic

Programming Simulation

5) An integration between (1) and (4)

6) An integration between (1), (4), and (5)

These developments are influenced by the incremental understanding toward the

problems of repetitive project scheduling, the need from the industry, and technological

changes in computing capability.

20

2.2 Existing Techniques

 The following discussions concentrate on the advantages and disadvantages of the

existing techniques and their underlying concepts. Various aspects of repetitive project

scheduling and their ultimate objectives are assessed to verify their practical usages and

their realistic representatives of construction projects. Comments and suggestions from

the original authors and others are presented to emphasize the subjects that need to be

improved or included to achieve an effective technique.

2.2.1 Critical Path Method (CPM)

The Critical Path Method (CPM) was developed in the 1950s by James Kelly and

Morgan Walker (Senior 1993). The method offers an easy calculation to derive a project

schedule and to assess the criticality of activities using its proposed concepts of floats and

the critical path, focusing on time. Activities and their interrelationships are depicted in a

network by nodes and arrows. Nodes represent the activities and activity information

such as title, duration, etc. Arrows represent the interrelationships (precedence

constraints) between activities and the lead time between them. After the network is

constructed and the activity durations are given, the calculation of critical path, critical

activities, and floats can be performed straightforwardly. The derived information

informs project managers of the criticality of activities, which allows them to plan in

advance how to schedule the activities and manage the project effectively, based on the

current schedule. On the other hand, the managers may decide to alter the original

schedule to suit the project deadline, the company resources, and so forth.

21

Most scheduling software (Microsoft Project, Primavera, etc.) offers automation

of CPM calculation and network drawing, within seconds after inputting data. These

programs facilitate schedulers in altering and updating the schedule purposely for

planning and controlling. Accordingly, CPM has been widely used in the construction

industry.

 However, CPM has been criticized for its incapability of taking resource

consideration into account in its calculations. This usually leads to an unfeasible schedule

due to the unawareness of resource constraints such as resource availability constraints

(Selinger 1980; Kavanagh 1985).

From the perspective of repetitive project scheduling, CPM is incapable of

capturing the realistic and stochastic nature of repetitive projects (Selinger 1980; Stradal

and Cacha 1982; Chrzanowski and Johnston 1986, Reda 1990; Rahbar and Rowings

1992; Suhail and Neale 1994, Harris and Ioannou 1998. The reasons for such incapability

are:

1) CPM does not take resources into account in calculating schedules. It is

designed primarily for scheduling and monitoring activity and project

duration; CPM is a pure time-based schedule technique. CPM cannot ensure

the continuous resource utilization of a crew from unit to unit (Senior 1993;

Onur 2003). Therefore, it cannot maximize efficiency in resource utilization

(Birrell 1980; Stradel and Cacha 1982; Rowings and Rahbar 1992; and Senior

1993).

2) CPM calculation does not include nor is it concerned with the imbalanced

production rate of resources resulting in inefficient resource utilization.

22

3) CPM is not applicable to non-deterministic activity duration. It is important to

recognize that CPM, as a deterministic scheduling method, would schedule

projects only to the level of reliability of the input values of the duration of

activities. For reliable representation, the productivity data must be expressed

in some probabilistic measure (Dhanasekar 2000).

4) CPM cannot eliminate idle time, since it schedules activities based on their

earliest start dates, (Reda 1990, Huang and Halpin 2000). If a predecessor has

a lower production rate than its successor, the successor must wait until the

predecessor completes, which results in idle time.

5) CPM and its graphical presentation are considered ineffective when applied to

repetitive projects having a large number of units. Its calculation becomes

tedious and labor intensive (Yang 2002). For example, a repetitive project

consisting of 7 activities for 1000 units will require 7000 nodes to represent

the network. A network of this size is confusing and unmanageable (Carr and

Mayer 1974; Chrzanowski and Johnston 1986; Reda 1990; Yang 2002).

 To alleviate the mentioned deficiencies of CPM, the integrations of CPM and

other techniques such as Line-Of-Balance (LOB) have been developed during the last

couple of decades. Nevertheless, they still cannot handle the stochastic nature in the

repetitive projects.

23

2.2.2 Project Evaluation Review Technique (PERT)

The Project Evaluation and Review Technique (PERT) was introduced to the

construction industry in the 1950s. It is a probabilistic scheduling technique using three

point estimates of activity durations to determine an estimated project duration. The

difference between CPM and PERT is that PERT is capable of scheduling non-

deterministic activity durations while CPM cannot.

However, PERT has not been widely used in the construction industry compared

to CPM as it requires more data of activity durations, which is often difficult to obtain

and justify. Moreover, PERT requires intensive computation compared to CPM. Since the

technology of personal computers has been improved in the last couple of decades, the

improved technology causes simulation method to supersede PERT (Senior 1993). From

a repetitive project perspective, PERT and CPM have the same limitations due to their

underlying time-based scheduling calculation and their graphical presentation in

precedence networks (Senior 1993; Yang 2002).

2.2.3 Line-Of-Balance (LOB)

 The Line-Of-Balance method (LOB) was developed at the Goodyear Company by

George E. Fouch in the early 1940’s for the purpose of managing and controlling

production processes in industrial manufacturing where tasks are repetitive. Then, LOB

was applied in the Navy (Miller 1963). LOB’s main objective is to balance the size of

labors and machines based on their production rates so that their resources are employed

at full capacities.

24

 The major benefit of LOB to construction scheduling is that it conveys important

production rate and duration information in a graphical format (Onur 2003). LOB shows

progress of activities against time in graphical presentation. The accumulated work

completed is plotted with work progress on the Y-axis and time on the X-axis. The line

representing completed work is termed the “Production Line”. It is evident that LOB

offers a better visual presentation than the precedence network, especially for repetitive

projects, because the comparisons between activities and between units can be easily

perceived in the diagram. The easily interpreted graphics format enhances the viewers

understanding of the project and also individual activities. It allows the viewers to detect

a potential bottlenecks (Lutz 1990; Onur 2003) by simply observing the production lines.

 LOB allows schedulers to observe and adjust the production rate of activities in a

production diagram to maximize resource utilization. This process of adjusting

production rate is known as “balancing production rates.” LOB provides a means of

selecting crew size in order to minimize inefficiency and waste in resource utilization

(Lutz 1990). To balance unit production rates, activities are assigned to work at the

minimum unit production rate among activities. For example, Activities A, B, and C have

unit production rates of 2, 1, and 3 units/day. Thus, to balance these activities, production

rates of A, B, and C should be set at a rate of 1 unit/day. If the scheduler desires to

expedite the project furthermore, more resources could be assigned to Activities A and B

so that they progress as fast as Activity C. For this example, additional resources must be

assigned to Activities A and B to speed up their unit production rates to 3 units/day.

 The application and graphical presentation (production diagram) of LOB facilitate

schedulers in constructing a schedule that satisfies precedence constraints, resource

25

availability constraints, and resource continuity constraints. The concepts of continuous

resource utilization and balancing production rates benefit repetitive projects in several

ways. First, the former maximizes the efficiency of resource utilization by eliminating

idle time. Since resources are scheduled to work continuously, the project will benefit

from the learning phenomenon especially in labor-intensive activities.

 Secondly, balancing production rates keeps all activities working at the same pace

and possibly reduces project duration. According to the advantages of LOB, many

researchers have adopted and adapted these concepts in order to optimize project duration

and project cost. The tradeoff between project duration and cost can be analyzed by

various techniques, such as integer programming, linear programming, and dynamic

programming.

 However, the fundamental principal of LOB has several drawbacks, which need

to be attuned and improved in order to suit the nature of construction projects. The

limitations of LOB and solutions are described below. One of the unrealistic assumptions

of LOB is the assumption of activities’ constant production rates of activities are constant

(Carr and Meyer 1974; Johnston 1981; O'Brien 1985; Arditi and Albulak 1986; Lutz

1990; Russell and Wong 1993; Yang 2002). This assumption implies that 1) work

amounts in each unit are identical and 2) productivity of resources in each activity is a

constant.

 For repetitive construction projects, the amount of works in each unit could be

different from unit to unit; it is rarely the same. For example, high-rise buildings

consisting of several floors usually have various types of interior finishing on different

26

floors. Another example is highway projects. Excavation at different locations is likely to

result in diverse amounts of soil, according to an existing ground profile.

 Senior (1993) stated that the inability to incorporate varying amount of works in

repetitive sub-activities is another limitation of LOB. Repetitive projects usually consist

of non-typical activities and non-repetitive activities. Non-typical activities are activities

having different work amounts in each unit. Non-repetitive activities are activities

existing only in a few units. Details of non-typical and non-repetitive activities are

discussed in Chapter 1.

 In addition, Halpin and Woodhead (1976) stated that construction operations are

stochastic by nature; thus, assuming production rates are constant may be erroneous. This

unrealistic assumption of constant production rates limits the application of LOB to

certain degree of realism and complexity (Neale and Neale 1989; Rowings and Rahbar

1992; Yang 2002). To alleviate the deficiency in LOB, the calculation of LOB must be

modified in order for it to be applicable to repetitive projects with non-typical repetitive

activities (difference in work amounts) and non-repetitive activities (work not existing in

all units).

 From a resource utilization perspective, Yang (2002) pointed out the assumption

of constant production rates limits LOB in two ways. First, each activity must be

performed by the same crew. At a project level, this may not be a serious issue, but at a

company level this assumption eliminates the possibility of allocating resources among

projects. Second, the hard-logic precedence constraints used in LOB may unnecessarily

restrain repetitive activities to work in the same sequence from one unit to another. For

example, an interior finishing activity of Unit 1 must perform before the activity of Unit

27

2. This hard-logic precedence constraint eliminates the flexibility in managing the project

at an activity level where sequences of units could be altered to achieve a better balanced

production rate. Carr and Mayer (1974) suggested that the working sequence of units

within activities, not constrained by resource or technological constraints, should be “a

matter of choice rather than dependency”. In other words, the dependency between

activities should be modeled by “soft logic” constraints when possible.

 Ironically, the benefit of maintaining continuous resource utilization in LOB has

also been argued to be a disadvantage of LOB because of the inability to relax the

continuity constraints. In a time-cost optimization problem, the tradeoff between

continuity and interruption in work must be analyzed and balanced to achieve the

minimum project cost. Without the ability to relax the resource continuity constraints, the

project duration may be excessively delayed; as a result, the increased indirect cost (from

the delay) exceeds the savings in the direct cost (from eliminated idle time).

 Since LOB schedules activities in such a way that activities must work

continuously, the benefit from allowing the interruption cannot be obtained. It is a fact

that idle time in resource utilization is considered waste at the activity level. However,

with no consideration of project cost, this may always be valid at the project level (Reda

1990; Lutz 1990). Focusing on continuous resource utilization and project duration, a

schedule derived from LOB may increase project cost, although project duration is

reduced. This is a time-cost tradeoff problem. While maintaining 100 percent work

continuity results in much greater project duration and consequently indirect cost,

allowing interruption (relaxing continuity constraints) could reduce the project duration

and indirect cost significantly with a negligible penalty costs from allowing idle time.

28

 From a company stand point, dynamically allocating resources among projects

may incur idle time or waste at a project level; however, this would provide better

resource utilization and cost efficiency at the company level (Lutz 1990). Thus, allowing

interruption in resource utilization should also be considered as an option (Yang 2002).

 Another shortcoming of LOB is that its graphical presentation becomes confusing

when many concurrent activities take place in a particular period. It is designed to model

simple repetitive works; thus, LOB’s graphical presentation is not readily fit to the

complexity of construction projects (Kavanagh 1985; Neale and Raju 1988). Arditi and

Albulak (1996) suggested using colored graphics may lessen the problem.

 While many suggested the modification of graphics, on the other hand, Sarraj

(1990) argues that the diagram is not necessary for the scheduling purpose. He

computerizes the LOB algorithm using a mathematic approach that provides all

scheduling-related information. Since all information is derived from his program, he

claims there is no need to draw any diagram to derive schedules.

 An additional concern about LOB in construction was that it has not been used

widely because it is not as readily computerized as network methods (Chrzanowski and

Johnson 1986; Lutz 1990; Yang 2003). However, this has changed because of the great

improvement in computation over the last decades. Examples of computerized LOB

combining graphical and analytical methods to solve repetitive project scheduling

problems are works from Yang (2002).

2.2.4 Other Graphical Approaches

 Similar to LOB, many graphical approaches provide a simple means to schedule

repetitive projects. Most of them have similar advantages and disadvantages as does

29

LOB. Relying heavily on scheduler’s judgments and efforts, their uses are limited to a

small and simple problem. The differences among existing graphical methods stem from

their objectives to solve a specific type of construction project, such as highway, high-

rise, and housing projects.

 Improved from the original LOB, many graphical methods modified LOB so that

they are able to model non-repetitive and non-typical activities in repetitive projects.

However, the capability of these LOB-modified graphical methods is still limited to a

simplified scheduling problem. Beyond their capability, these methods can not perform a

sensitivity analysis nor solve a probabilistic scheduling problem. Consequently, the need

to improve and computerize graphical methods has been brought into awareness.

 The following sections discuss many existing graphical methods and focus on the

concepts. They are introduced in chronological order along with recommendations made

by the original authors and others. Rather criticizing the limitations of their methods, it

should be understood that these graphical methods were established in the early

development of repetitive project scheduling for construction. Their efforts and

recommendations are valuable and indispensable for developing a new approach solving

repetitive project scheduling problems.

 Peer (1974) gave a general idea of construction planning. He suggested activities

should be categorized into 4 groups: 1) preparatory (such as approval and planning

procedures), 2) main repetitive, 3) interlinked (equivalent to non-critical and/or non-

controlling), and 4) external (not considered as a repetitive activity such as fences and

site development). These four types of activities give schedulers a mindset of activity

30

criticality and the span of works (repetitive or non-repetitive). The idea of prioritizing

activities in repetitive projects still needs to be studied further.

 Peer (1974) suggested that it is not a problem of finding a critical path, but rather

specifying a critical path, in other words, determining what should be made critical. Thus,

the four categorized sets of activities and their associated costs must be taken into

consideration when defining critical activities and balancing production lines. Peer

recommended that construction planning input should be based on quantities of work,

production rates, and other production characteristics. Moreover, activity durations

should be non-deterministic in order to reflect realism of construction activities.

 O’Brien (1975) introduced the Vertical Production Method (VPM), a graphical

approach similar to LSM. Its main application is scheduling high-rise buildings by

considering each floor as a repetitive unit. He addressed the necessity of integrating

between non-repetitive and repetitive works for high-rise buildings. VPM employs a node

network to represent non-repetitive activities such as excavation existing only in the first

floor of a building. For repetitive activities, cumulative production is plotted on the Y-

axis while time is plotted on the X-axis, similar to most graphical approaches.

Accordingly, two separate schedule formats are used to present a repetitive project.

According to Senior (1993), a drawback of VPM is that it requires planners to manually

combine CPM to LOB. Therefore, VPM is not suitable for big scale or complex projects.

 The Linear Scheduling Method (LSM) was first introduced by Johnston (1981).

Its graphical presentation, linear scheduling diagram, is very similar to line-of-balance

diagram. The main difference between an LOB diagram and an LSM diagram is that an

LOB diagram usually presents a discrete cumulative progress (e.g., floors) while LSM

31

diagram presents continuous cumulative progress (e.g., miles). Moreover, activities in an

LOB diagram are presented by horizontal lines from the start to the finish of the activities

while activities in an LSM diagram are presented by production lines with the slope of

activity unit production rates. However, since many researchers have adopted the concept

of LOB but using LSM diagrams (according to Johnston’s work) to present activities,

LOB diagrams and LSM diagrams are referred and used interchangeably in construction.

 Besides the graphical presentations, Johnston noted a difference between LSM

and LOB is in their emphasis. While the application of LOB focuses on balancing

production lines, LSM concentrates on planning the activities (Johnston 1981). In his

paper, Johnston applied LSM to a highway project. He showed that time-cost

optimization can be accomplished by a simple calculation incorporating with the LSM

diagram. Comparing to a node network and a bar chart, a LSM diagram provides richer

information (such as production rate and production line) allowing schedulers to visualize

the process of optimization.

 Moreover, Johnston (1981) suggested that seasonal adjustments should be

included into LSM diagrams, because holidays and bad weather adversely affect activity

productivity. During the course of constructing an LSM diagram, either reduction in

production rates or work interruptions must be introduced to the affected activities in

order to reflect a realistic schedule.

 After the introduction of LOB and LSM, variations between LOB and LSM were

developed to improve the means of scheduling repetitive projects. The following works

are considered as a new generation of graphical methods. Most of these works are

computerized and designed to solve a sophisticated repetitive project scheduling problem.

32

 Thabet (1992) proposed a method called “Horizontal and Vertical Logic

Scheduling method” (HVLS), which combines graphical, knowledge-based, and

analytical methods in order to schedule multistory buildings. The HVLS application is

considered the very first LOB- computerized extension that provides a full benefit of

construction information system. It is user-friendly and database-driven and utilizes

information extracted from a 3D CAD model.

 In Thabet’s thesis, he included space constraints into scheduling in addition to

precedence, resource availability, and resource continuity constraints. Thabet suggested

that 1) activities in multistory buildings are performed within a limited space and 2)

material requires storage area. Ignoring the requirements of work and storage areas may

incur a conflict among different trades, decrease productivity, impact safety, and lengthen

project duration (Thabet 1992; Thabet and Beliveau 1994).

 Effectively incorporating the space and continuity constraints into technical

constraints, Thabet grouped technical constraints into 2 categories: horizontal and vertical

constraints. The vertical and continuity constraints impose on activities in different units,

while the horizontal and space constraints impose on activities in the same unit. During

the course of scheduling, these constraints must be satisfied.

 The drawbacks of Thabet’s work are 1) not considering non-typical activities and

2) not considering non-repetitive activities (Yang 2002). His solution can solve only a

problem with constant production rates and the same work quantity in all units. In reality,

production rates are varied and work quantity among units is unlikely exact the same.

According to the drawbacks, his work is limited to simplified problems of repetitive

project scheduling.

33

 Harris and Ioannou (1998) introduced the concept of the repetitive scheduling

method (RSM) and the concept of controlling sequence. Even though Harris and Ioannou

did not computerize RSM, their valuable and pioneering thoughts have influenced many

others such as Yang (2002) and also this research. RSM is a graphical method that

combines graphical and analytical approaches to schedule repetitive projects. It can be

applied to a repetitive project consisting of typical, non-typical, repetitive, and non-

repetitive activities. Distinctions between controlling activity and critical activity are

made based on the introduced concept of controlling sequence and the original concept of

critical activity in CPM. Harris and Ioannou pointed out 2 important facts. First, a critical

activity may or may not be a part of controlling sequence. Second, a critical path do not

exist anymore (Yang 2002) because activities are delayed (resulting in increased floats)

to maintain the continuity in resource utilization. Consequently, different critical levels of

for activities are established, including controlling-critical, controlling-not-critical,

critical-not-controlling, and not-controlling-not-critical activities.

 Yang (2002) developed a sophisticated application, named “Repetitive Project

Planner,” employing graphical and analytical approaches. Under Ioannou’s supervision,

Yang (2002) integrated the concept of RSM to activity graphics formats (lines, bars, and

blocks) to model the following realistic characteristics of repetitive project scheduling.

• Variable production rates and variable work quantities.

• Composition of crew size, tools, and equipment.

• Changing in work direction (east-to-west, top-to-bottom, etc.).

• Different precedence relationships (finish-to-start, start-to-start, etc.).

• Specified buffer in time (lead-time) and space (lead-space).

34

• Allowed interruption if desired.

 Yang (2002) explicitly pointed out the similarities and differences in scheduling

discrete and continuous repetitive projects. Moreover, criticality of an activity is given

based on controlling sequence and the set of critical activities according to RSM.

2.2.5 Linear Programming (LP)

 Linear Programming (LP) can be described as a mathematical procedure for

minimizing or maximizing a linear function of multiple variables with a defined set of

constraints for these variables. LP problems consist of two components: 1) an objective

function to be maximized or minimized and 2) constraints defining linear relationships

between variables. Given linear relationships between variables, a time-cost tradeoff

problem or resource allocation problem can be solved effectively by using LP.

 However, the limitation of LP is the assumption of linear relationships among

variables (Lutz 1990). Existing linear programming models often simplify the complexity

of repetitive projects. According to El-Rayes (1997), most methods employing linear

programming assume that all activities are typical activities. For example, these methods

often assume that durations of interior activities from the first to the last floor are the

same. This assumption is not practical. Since duration is influenced by crew productivity,

different work amounts, and so on, the durations of sub-activities (for the same repetitive

activity) in different units are rarely the same.

 Based on the aforementioned, it can be concluded that linear programming does

not suit complex situations common in construction. Senior-Brown (1993) agrees with

the conclusion that construction situations are too complex for straightforward

mathematical formulation.

35

 The following section presents the applications of LP for repetitive project

scheduling proposed by many researchers from different perspectives. Studying the pros

and cons of these applications and their objective functions provides insightful

information and the possibility of employing LP to search for an optimum solution.

 Perera (1983) used LP to determine the maximum rate of construction. The model

consists of three main constraints: limited resource constraints, material constraints, and

financial constraints. After all constraints are established, the rate of completion is

maximized to derive the optimum number of crews for all activities. Since the objective

function is maximizing the rate of completion, it does not provide the optimum project

cost which in fact should be considered as the main objective (El-Rayes 1997).

Moreover, Perera’ model cannot model non-typical activities because it assumes identical

duration among units of an activity (El-Rayes 1997).

 Most importantly, from a resource utilization perspective, Perera’s model does not

consider the continuity in resource usage (Yang 2002) nor allow work interruption (El-

Rayes 1997).

 Reda (1990) used LP to optimize the time-cost tradeoff problem for repetitive

projects. The proposed model was named the “Repetitive Project Model” (RPM).

Compared to other linear programming models, the advantage of Reda’s model is that it

includes cost as q decision variable in the optimization process (Moselhi and El-Rayes

1993).

 The objective of Reda’s RPM is minimizing project direct cost for feasible project

duration while satisfying the following constraints:

1) Maintain a constant production rate for each crew

36

2) Maintain a continuity of work for each crew

3) Allow for a time buffer between activities on the same stage

4) Allow for a stage buffer between concurrent activities

5) Specify feasible project duration

 Reda’s model guarantees continuity in work flow by using a time buffer between

activities, postponing the start date of the succeeding activity. Based on continuity

constraints and buffer constraints, work interruption is not allowed; the benefit of

allowing interruption is neglect. The lack of considering deliberate interruptions is one of

Reda’s model drawbacks. The inflexibility in continuous resource utilization and the

unrealistic assumption of a constant production rate are the major disadvantages of RPM

(Yang 2002).

 In addition, the process of formulation in Reda’s model could be cumbersome as

the number of units increases because the number of constraints depends on the number

of repetitive activities. Thus, it is limited by the complexity of establishing the constraints

(El-Rayes 1997).

2.2.6 Dynamic Programming (DP)

 Dynamic Programming (DP) is a mathematical technique for solving sequential

decisions where the next stage is determined by the current stage. DP does not have a

specific formulation. The technique aims to find an optimal substructure by dividing the

problem at-hand into sub-problems to find an optimal solution in each sub-problem, and

thus leading to the optimal solution for the overall problem. Recursive computations are

used to inter-relate these stages to resolve the last stage as the optimal solution for the

problem.

37

 Two advantages of dynamic programming are: 1) it is not constrained by linear

assumptions and 2) it can be easily computerized. DP has been developed to overcome

the limitation of linear programming so that the calculation is not constrained by the

linear assumption. Thus, DP offers a more realistic model and results (Lutz 1990). Since

DP can be easily computerized, the optimizing process and sensitivity analysis are less

labor-intensive than presented with graphical approaches.

 The following paragraphs discuss the proposed models by various researchers

employing dynamic programming (DP). Attention is given to their perspectives of using

computerized algorithms and establishing formulas in order to solve or optimize

repetitive project scheduling problems. Limitations of their models are also presented.

 In 1980, Selinger proposed the “Construction Planning Technique” (CPT) using

dynamic programming to minimize project durations. His model is able to maintain

continuity in resource usage, and to optimize project durations. Moreover, Selinger’s

model can model non-typical activities and different types of activity relationships, such

as start-to-start and finish-to-start.

 The main disadvantage of Selinger’s model is it only solves problems with serial

activities, where activities have only one predecessor and one successor (Yang 2002).

This disadvantage limits the usability of his model. Without simplifying construction

operations, his model cannot solve repetitive construction projects such as housing

projects and high-rise buildings in which activities perform works concurrently. In

addition, his model does not consider minimizing project cost.

 Yang (2002) pointed out that Selinger’s model can be improved in many ways.

Firstly, Selinger (1980) did not consider the potential benefit of allowing interruption.

38

Secondly, as Yang argues, dynamic programming is not a suitable tool solve and model

stochastic problems. Thirdly, the model was designed only for dedicated resources.

Fourthly, the learning effect should be formulated and applied to activities whose work

continuity is maintained. It is important to understand that these four suggestions could

be achieved by modifying Selinger’s model; however, the modification would be very

complicated and cumbersome, which is the shortcoming of using mathematical

approaches when solving a scheduling problem at this level of complication.

 Without respect to project cost, Selinger’s model was designed to optimize only

project duration. Since minimizing project duration may increase project cost, the main

objective should be minimizing project cost rather than project duration.

 Russell and Caselton (1988) proposed a two-stage variable dynamic programming

formulation to schedule repetitive projects. Their model included a set of interrupted

durations in the second stage variables, where the first state variables consider possible

durations. Consequently, their model offers a more flexible schedule and shorter project

duration than Selinger’s model does (Yang 2002).

 However, it cannot be concluded that Russell and Caselton’s solution is better

than Selinger’s. Since both models are time minimization approaches, neither of their

solutions guarantee the minimum project cost, possibly leading to a higher project cost

(Moselhi and El-Rayes 1993). Forcing resources to work continuously (not allowing any

interruption) without an incorporation of cost (direct and indirect cost) could result in an

inefficient outcome. Actually, Russell and Caselton’s model does not even guarantee the

minimum project duration. In their paper, the solution was mentioned as a “near-optimal

solution” (Russell and Caselton 1980). Suggestions for their model are similar to

39

Selinger’s, except for the addition of allowing interruptions. The main disadvantage is

still the assumption of serial activities (Russell and Caselton 1988).

 Moselhi and El-Rayes (1993) proposed a dynamic programming formulation

incorporating cost in optimization processes. Their model minimizes overall project cost

by choosing crew formations that provides an optimal project cost. The process of

identifying the best crew formation is accomplished by enumerating all the possible

combinations between crew formation of predecessor and successor activities, one pair at

a time. After accumulated costs are calculated through the completion of the successor

activities, crew formation of the predecessor activity that provides the least overall cost is

considered the optimum crew formation for the activity. Then, the process moves to the

next pair of predecessors and successors. This process is called “finding local optimum

predecessor” in their paper. It starts from the first to the last activity, called the “forward

stage.” After finishing the last activity, the process traces backwards through the

previously identified optimum formations to determine the best formation of all the

crews. This process is called the “backward stage.” For further detail and examples see

Moselhi and El-Rayes (1993).

 Moselhi and El-Rayes’s model is capable of scheduling repetitive projects

consisting of both typical and non-typical repetitive activities. Different interrelationships

between activities can be defined, as shown in their paper. Overtime cost and allowance

of work interruptions (relaxing continuity constraints) are also included in their models.

 However, Moselhi and El-Rayes’s dynamic programming formulation is limited

only to projects with serial activities, and does not consider sharing resources between

activities. Only deterministic problems can be solved by their models.

40

The difficulties in using mathematical optimization techniques are concluded

below:

1) It is impractical to request schedulers to specify all the possible sets of

decision variables (e.g., crew sizes and work interruptions) before project start

date (Yang 2002).

2) Site managers usually do not have the training to compose hundreds of

mathematical constraints, and similarly do not have the training to analyze the

numerical outcomes (Yang 2002)

3) Mathematic approaches do not provide a generalized form of solution; they

require customized input for each new problem (Lutz 1990).

4) It is ineffective and, sometimes, infeasible to use LP and DP solving repetitive

project scheduling problems with probabilistic activity durations, which are a

better representative of the construction activities due to their stochastic

nature.

2.2.7 Simulation

 Simulation is an analytical technique involving designing and experimenting with

an established mathematical-logical model. When relationships between variables are not

linear and/or random variables are included in the problem, simulation is a preferable tool

to model the relationships and solve the problem. Simulation enables schedulers to study

the behaviors of a process without the necessity of formulating a mathematical function

of an unpredictable behavior input (Hijazi 1989). In other words, if the problem is too

complex for mathematical formulation, it is best analyzed by simulation (Senior 1993).

For an example, weather conditions and planning decisions can be modeled in simulation

41

and evaluated via the outcomes of the simulation. Although the outcomes from

simulation are not guaranteed as optimum, since simulation is not an optimization tool,

simulation still can be used to derive an optimal or near optimal solution by altering the

input and searching for a satisfactory result (Lutz 1990).

 The non-deterministic nature of construction projects is one of the most

complicated factors that are often simplified or neglected by modelers. Many

deterministic approaches such as linear and dynamic programming fail to provide a result

with confidence because of the simplification (Yang 2002). On the other hand, simulation

is considered an excellent tool for the stochastic problems because the effect of

uncertainties in construction projects can be modeled and assessed by using simulation

(Halpin and Woodhead 1976; Lutz 1990; Martinez 1996; Yang 2002).

 Nevertheless, simulation by itself cannot control or eliminate idle times (Yang

2002; Ioannou and Likhitruangsilp 2005). Therefore, an external algorithm must be

developed and implemented in the simulation model in order to effectively solve the

problem of repetitive project scheduling (Lutz 1990; Yang 2002).

 The following studies have attempted to use simulation to schedule repetitive

projects. Their advantages and disadvantages are discussed, focusing on improving the

means of scheduling repetitive projects using simulation.

 Ashley (1980) used simulation to study the planning of housing projects. His

example was carried out by GPSS simulation language. The study optimized the

minimum project duration by altering inputs in the simulation. Various simulation runs

were executed and then the results were compared. The inputs, decision variables, were

42

1) the number of machines, 2) the size of crews, 3) the allocation of crew and equipment

(Ashley 1980).

 Nevertheless, Ashley’s model did not consider eliminating idle time. There is no

external algorithm implemented in the simulation to achieve continuous resource

utilization. Accordingly, Ashley’s model schedules the project in the same way as PERT

and CPM, based on activities’ early start dates.

 Kavanagh (1985) developed a scheduling system called SIREN (Simulation of

Repetitive Networks). He combined two concepts of the network scheduling technique

and the queuing technique into a simulation system (GPSS) to solve repetitive project

scheduling problems. Activities (customers) are queued for their resources (servers). This

is used as resource constraint. Another type of constraint is precedence constraint.

Activity can start when these two constraints are satisfied.

 Limitations of Kavanagh’s model are discussed in the order of his suggestions on

future enhancements for his model as followings:

• Allowing changes in the number of repetitive networks

• Allow changes in crew size

• Control the beginning of each activity

• Model the effect of weather on activity

• Allow users to impose priorities and plan of work on the system.

Kavanagh’s suggestions are the primary focus for the Sequence Step Algorithm

(SQS-AL) proposed in this research. The enhancement due to the suggestions will

improve the efficiency of resource utilization. Since Kavanagh’s model cannot control

43

the start date of an activity, his model has the same limitation as Ashley’s; it fails to

maintain resource continuity.

 Lutz (1990) is another research using simulation to solve scheduling problems of

repetitive projects. His work focuses on applying learning phenomenon, cycle

monitoring, and buffer monitoring. For the effect of learning phenomenon, Lutz modified

Hijazi’s work and coded it in MicroCYCLONE to improve the usability of Hijazi’s

original work.

 Lutz’s buffer monitoring is used to control the pace of construction processes.

Additional queues are introduced into the network to determine when a succeeding

process should start, continue working, or wait. The queues are placed between

construction processes, preceding process and succeeding process. When a buffer queue

(e.g., Buffer A-B) is empty, it indicates the preceding activity (e.g., Activity A) cannot

keep up with its succeeding activity (e.g., Activity B). Thus, the succeeding activity will

become idle until the queue is not empty.

 Nevertheless, Lutz’s method does not automatically determine the delay duration

needed to achieve continuity in resource utilization. It requires users to provide the

maximum numbers of units in the buffer queues prior to the simulation execution.

Repeated trial-and-errors in simulation runs are required to derive a satisfactory number

of units in the buffer queues. Relying on user input of the specified number of units in a

buffer queue, Lutz’s model does not guarantee continuity in resource utilization (Yang

2002).

44

 In addition, the means of delaying activities based on the number of units may

result in a remaining idle time or an unnecessary delay. The delay (buffer) is better

defined in units of time rather than in units of work.

 Many researchers have proposed other techniques employing simulation to solve

the problems of repetitive project scheduling since 1990. They offer user-friendly

interface tools that facilitate the means of constructing simulation models. However, most

of these techniques fail to control activity start dates, and thus cannot 1) maintain

resource continuity, 2) allow work interruption, and 3) analyze the tradeoff between the

first two to optimized project duration and cost.

 In order to use simulation to solve repetitive project problems, it is mandatory to

consider the problems in the sense of scheduling concepts and underlying nature of

repetitive projects rather than the processes of modeling and inputting data.

2.3 Summary

Many approaches have been proposed to solve the problems of scheduling

repetitive projects since 1960. Although the Critical Path Method (CPM) can be applied

to repetitive projects, it cannot schedule repetitive projects effectively. Because CPM is

designed for optimizing project duration, it does not suit the resource-driven nature of

repetitive projects. Moreover, constructing a CPM network for a repetitive project can be

tedious and cumbersome when the project consists of many repetitive units. Similarly, the

Program Evaluation and Review Technique (PERT) has the same limitations as does

CPM. Moreover, simulation has superseded PERT due to ease of use and richer

information in simulation systems.

45

Ever since the Line-Of-Balance technique (LOB) was introduced to the

construction industry, it has been influencing many researchers to improve the means of

scheduling repetitive construction projects. In the early development of graphical

techniques, many researchers have adopted the concept of LOB, and focused on

balancing crew production and maintaining continuity of work flow. However, since

LOB was originated from the manufacturing industry, simplifications were required in

order to enable these graphical methods to solve scheduling problems of repetitive

construction projects. Consequently, many assumptions of LOB for industrial projects

conflict with the nature of construction projects. The main conflict is the assumption of

constant production rates, which applies only to typical activities.

After the advent of the personal computer and the improvement in computing

capability, many mathematic approaches have been established to solve repetitive project

scheduling problems. Sophisticated mathematic models were developed to optimize

project duration and cost problems. Advancement of these models was established to

mathematically model complicated and realistic construction operations. However, the

usability of these methods is only effective to a certain extent. Their limitations are in

capturing the stochastic nature of construction activities. Using linear and dynamic

programming techniques (LP and DP) in optimizing probabilistic scheduling problems is

difficult. As a result, most LP and DP approaches assume activity durations are

deterministic.

In contrast to graphical and mathematical methods, simulation has the ability to

model variability and uncertainty, inevitable parts of construction. Even more beneficial,

since repetitive projects are resource-driven projects, resource-driven simulation systems

46

47

are probably one of the most promising tools to solve the problems. Its already-included

resource constraints reduce users’ effort in constructing resource availability constraints.

However, simulation by itself cannot solve repetitive project scheduling problems

effectively; it cannot ensure the resource continuity constraints, and cannot control the

degree of continuity in resource utilization. Without implementing an external algorithm

to a simulation system, simulation leads to the same results as CPM, where activities are

scheduled at their early start dates, and interruptions exist among units. Thus, an external

algorithm must be designed to assist the simulation system in order to solve the problems.

Finally, there is a need to establish a comprehensive generalized technique that

can 1) effectively capture the realistic characteristics of repetitive construction projects,

2) flexibly maintain and relax the resource continuity constraints, 3) sophisticatedly

optimize project cost, and 4) practically offer an ease of use to users.

CHAPTER 3

REPETITIVE SCHEDULING METHOD

CHAPTER 3 REPETITIVE SCHEDULING METHOD

 This chapter discusses the fundamental concepts of repetitive project scheduling.

The Repetitive Scheduling Method (RSM), a graphical approach developed by Harris and

Ioannou (1998), is used to clarify and emphasize important aspects of repetitive project

scheduling as follows:

1) Satisfying precedence and resource availability constraints

2) Maintaining continuous resource utilization

3) Scheduling and re-scheduling repetitive activities to achieve (1) and (2)

4) Determining critical activities

5) Identifying controlling sequences and controlling activities

 The concepts and aspects of repetitive project scheduling are a prerequisite to

development of a new scheduling method. The scheduling processes RSM, a graphical

approach, contribute significantly to the establishment of the Sequence Step Algorithm

(SQS-AL), a simulation approach, proposed in this research. To schedule repetitive

projects with probabilistic activity durations, SQS-AL adopts the RSM sequential process

of calculating idle time and determining activity start date, discussed in Chapter 4

Sequence Step Algorithm.

48

Moreover, the idea of the controlling sequence in RSM, originally for repetitive

project scheduling problems with deterministic activity durations, is adapted to suit

problems with probabilistic durations in SQS-AL. SQS-AL employ the underlying

concept of controlling sequence to determine effective work break positions in repetitive

activities, used to reduce project duration.

3.1 Introduction

 Construction often involves repetitive projects where several identical (typical) or

similar (non-typical) units require resources to perform their activities in specified

sequences repeatedly from the first to the last unit. Precedence constraints and resource

availability constraints determine both activity start dates and resource arrival dates;

activities can start only when their preceding activities in the same unit are completed and

the required resources are available. The Critical Path Method (CPM) satisfies these

conditions by using precedence constraints to represent both precedence and resource

availability constraints. As shown in Figure 3.1, the precedence network presented by

Harris and Ioannou (1998) illustrates the application of CPM to a repetitive project

consisting of three non-typical units. The precedence constraints among activities in the

same unit are technical constraints. For example in Figure 3.1, Activity A1 must be

completed before Activity B1 can begin. This precedence constraint specifies that A1 and

B1 are technically dependent, but not resource dependent. On the other hand, the

precedence constraints among units of the same activity are resource availability

constraints and/or technical constraints. For example in Figure 3.1, A1 and A2, sub-

activities of Activity A, require the same resource. If the resource required to perform

49

Activity A, Resource A, is limited, Resource A must finish A1 before starting A2. As

shown in Figure 3.1, precedence relationships are used to constrain these conditions.

 It should be noted that if sub-activities are technically dependent they are imposed

by hard logic relationships requiring both technical and resource constraints to be

satisfied. For example, structural work of the first floor must be completed and resources

must be available before work in the second floor can start. On the other hand, if sub-

activities are not technically dependent, they should be modeled by soft logic

relationships requiring only resource constraints to be satisfied. For example in a housing

project, excavation activities for the second house can start before the first house if

resources are available. The order of the units and the order of construction are not

necessarily the same.

Because resource continuity constraints are not included in CPM, CPM cannot

prevent interruptions and idle time in resource utilization. From Figure 3.1, Resource B

will become idle from day 5 to 7 because Activity B1 is scheduled from day 3 to 4, and

B3 from day 8 to 9. Thus, it is necessary to introduce resource continuity constraints to

eliminate idle time. Harris and Ioannou (1998) proposed the Repetitive Scheduling

Method (RSM), a graphical method that incorporates three types of constraints:

precedence, resource availability, and resource continuity constraints. As a result, RSM is

able to eliminate idle time and achieve continuous resource utilization.

50

Figure 3.1 CPM network for three repetitive units (from Harris and Ioannou 1998)

3.2 Maintaining Continuity in Graphical Methods

 The Repetitive Scheduling Method (RSM) is a graphical method that ensures

continuity of resource utilization. Like Line-Of-Balance (LOB), discussed in Chapter 2,

RSM uses production lines to represent activities instead of using nodes as the CPM

network does. For discrete repetitive projects (e.g., high-rise buildings), construction

units are shown on the Y axis and time is shown on the X axis. Figure 3.2 displays

production diagram of the repetitive project in Figure 3.1, using the early start dates

51

imposed by precedence constraints. In Figure 3.2, solid lines indicate activities for which

resource continuity constraints have been satisfied.

Figure 3.2 RSM Diagram for Three Units based on Precedence Constraints

 As shown in Figure 3.2, precedence constraints do not ensure continuous resource

utilization in the activities. Interruptions and idle time exist in Activities B, D, and E.

There is an interruption of 4 days between B1 and B3, 1 day between D1 and D2, and so

forth. In order to eliminate these interruptions, the sub-activities in the first unit (e.g., B1)

must be postponed for the period of the sum of all the lags between sub-activities. Thus,

activity B1 must be postponed for the amount of duration equal to LagB1, B3; Activity D1

for LagD1, D2; Activity E1 for LagE1, E2 plus LagE2, E3. Figure 3.3 exhibits the result of

postponing the discontinuous Activities B, D, and E in Figure 3.2.

52

Figure 3.3 Postponing activities with interruptions in Figure 3.2 to achieve continuous

resource utilization

 After the first sub-activities in B, D, and E are postponed by the sum of lags, as

shown in Figure 3.2, their continuities are achieved in Figure 3.3. Clearly, duration of

lags must be calculated before determining how many days an activity (the first sub-

activity) must be postponed to achieve its continuous resource utilization.

 However, postponing activities for the amount of lags originally derived from the

early start date schedule may violate precedence constraints. Another example, shown in

Figure 3.4, demonstrates this situation. Figure 3.4.a shows the result of using CPM to

schedule the example. Interruptions exist between B1 and B3, between E1 and E2, and

between E2 and E3.

 According to the previous example, continuity constraints can be satisfied by

postponing the first sub-activity for the sum of lags between sub-activities. Doing so

satisfies resource continuity constraints; however, the precedence constraint between B1

and D1 is violated, as depicted in Figure 3.4.b. Thus, it is necessary to re-check the

precedence constraints. Rescheduling activities to rectify precedence constraints may be

53

necessary. To correct the precedence constraints after activities are postponed, the

successor whose precedence constraint is violated must be postponed while its

predecessor remains the same. In this example, Activity D1 is postponed and,

consequently, D2 and D3 are also postponed on the basis of precedence constraints.

Figure 3.4.c shows the result from correcting the violation.

After activities are postponed in Figure 3.4.b, and precedence constraints are

corrected in Figure 3.4.c, activities may become discontinuous again. Figure 3.4.c shows

that Activity E now has idle time between Units 2 and 3 (LagE2, E3). Thus, activity E1

must be postponed for the amount of the lag to eliminate the interruption. Figure 3.5.d is

the finalized schedule for the example where precedence, resource availability, and

resource continuity constraints are satisfied.

 The example in Figure 3.4 demonstrates that the process of scheduling repetitive

activities requires repetitions of postponing activities to satisfy resource continuity

constraints. As shown in Figure 3.4, it is difficult to predetermine how many times

exactly a repetitive project needs to be scheduled and re-scheduled.

 To alleviate the difficulty, RSM schedules activities (e.g., A and B) in a

precedence order, one activity at a time. Thus, activities in Figure 3.4 should be

scheduled in the order of A, B, C, and so forth. During scheduling an activity (e.g., A),

continuity constraints (e.g., between A1 and A2, and between A2 and A3) must be

achieved before scheduling its succeeding activities (e.g., B). This process guarantees the

satisfaction in precedence and continuity constraints. Moreover, the process of scheduling

one activity at a time also eliminates the redundancy in re-scheduling activities, whose

work interruptions may be incurred because of the process of scheduling.

54

Figure 3.4 Satisfying precedence and continuity constraints

55

 Importantly, the aforementioned idea, a graphical approach, must be improved

and systemized in order to derive an algorithm that is applicable to repetitive projects

with probability activity durations. The algorithm, namely “Sequence Step Algorithm”

(SQS-AL), is a generalized algorithm using sequence steps to systematically schedule

repetitive activities. The algorithm is designed based on the current applicability and

capability of discrete-event simulation; moreover, the characteristics of repetitive projects

are always a concern during the designing stage. Further discussion regarding SQS-AL is

provided in Chapter 4.

3.3 Critical Activities and Controlling Sequence

 One important and widely used piece of information is the criticality of activities.

To successfully manage a construction project, project managers and site engineers must

realize the criticality of activities. The criticality indicates the impact of an activity on

project duration. If delaying an activity delays project completion, the activity is

considered a critical activity (see more detailed discussion in section 3.3.1 Critical

Activities). A sequence of critical activities from the project start to finish is called the

“critical path.” The sum of activities on a critical path equals the minimum project

duration. Accordingly, attention is given to critical activities and critical path to ensure

the project will finish on time.

 However, in repetitive projects, critical activities do not provide sufficient

information for controlling and monitoring. In repetitive projects, the critical path do not

determine the minimum project duration because postponing activities to maintain the

continuity constraints usually incurs floats between repetitive activities. Accordingly, the

critical path does not exist in repetitive projects after the postponement (Harris and

56

Ioannou 1998). In response to the insufficient information of activity criticality in

repetitive projects under continuity constraints, Harris and Ioannou (1998) introduced the

concept of the “Controlling Sequence.”

3.3.1 Critical Activities

 Critical activities are those activities, if delayed during construction, will delay

project completion. In CPM, the calculation of total float is used to determine critical

activities. If an activity has zero total float, it is considered a critical activity. The

calculation is a backward calculation because it proceeds from the last activity in

precedence order to the first. The calculation of float can be applied to any project

schedule. For example, in CPM the calculation is performed when activities are at their

earliest start positions. On the other hand, in RSM the calculation is performed when

activities are in the positions where their continuity constraints are maintained.

It is important to realize that different scheduling methods may result in different

sets of critical activities. Comparison between Figure 3.5.a and Figure 3.5.b illustrates

critical activities derived from CPM are different from those derived from RSM. Figure

3.5.a is a production diagram where activities are scheduled using CPM; critical activities

from CPM are A1, C1, D1, D2, D3, and E3. Figure 3.5.b is an RSM diagram for the same

project. Critical activities from RSM as indicated with heavy solid lines in Figure 3.5.b

are B1, D1, D2, D3, E1, E2, and E3.

57

Figure 3.5 Different critical activities between CPM and RSM

(Critical activities are indicated by solid heavy lines)

Another difference between CPM and RSM is the implication of critical activities

for minimum project duration (Harris and Ioannou 1998). In CPM, the sum of critical

activity durations on a critical path equals minimum project duration; however, this is not

the case in RSM. As the number of sequence steps increases, critical activities from RSM

tend to appear only in the later sequence steps. Figure 3.5.b shows most critical activities

are in sequence steps 3, and 4. Typically in RSM, activities in the early sequence steps

are not critical because of the floats incurred from postponing activities in RSM. The

predecessors of the postponed activities gain float and become non-critical activities. For

58

example in Figure 3.5, critical activity A1 in CPM becomes non-critical in RSM because

postponing activity B1 results in float in activity A1.

Moreover, since critical activities cannot be used to determine minimum project

duration for repetitive projects, it can be concluded that critical activities in repetitive

projects do not provide sufficient information for planning and control purposes.

Consequently, another way of determining the criticality of activity and minimum project

duration is needed.

3.3.2 Controlling Sequence

 The concept of controlling sequence, developed by Harris and Ioannou (1998),

addresses the deficiency of critical activity information in repetitive projects. They

realized that the traditional concept of critical activities could not determine the minimum

project duration in repetitive projects under resource continuity during planning. Harris

and Ioannou introduced two new concepts: Control Points and Controlling Sequence.

These are “pre-construction” concepts used in planning and scheduling the project.

A control point between two activities is the precedence constraint that

determines the start date of the successor under continuity constraints. For example, in

Figure 3.6, the control point between Activities A and B is the precedence constraint in

Unit 3. To eliminate idle time in an activity (e.g., B in Figure 3.6), its sub-activities (e.g.,

B1) are pulled toward the control point (e.g., the start date of B3).

A controlling sequence is an uninterrupted sequence of activities that navigates

through activities and control points from the project start to the project finish that

determines the planned project duration while ensuring resource continuity (Harris and

Ioannou 1998). Figure 3.6 shows the controlling sequence from the previous example in

59

Figure 3.5.b by using heavy solid lines to represent activities on the controlling sequence,

which are E3, D3 to D1, and A3 to A1. This sequence of activities determines the

minimum project duration while maintaining continuity constraints of resource

utilization. Delaying the start date of an activity on the controlling sequence will either

postpone project completion date if resource continuity can still be maintained or

interruption in resource utilization if resource continuity cannot be maintained. For

example in Figure 3.6, if A1 is delayed, B3 will be delayed, and B1 must be postponed in

order to maintain the continuity in Activity B. This is the case where the continuity in B

can be maintained. Thus, D1 will be delayed because of the precedence constraints

between B1 and D1. Consequently, project completion date is delayed. On the other

hand, if A3 is delayed and B1 finishes on time (Day 8), interruption in Activity B is

inevitable. Schedulers should realize that activities on a controlling sequence have an

impact on both project completion and continuous resource utilization of repetitive

projects.

Figure 3.6 Production Diagram from RSM with controlling sequence

(The controlling sequence is indicated by bold lines)

60

From the planning and scheduling perspective, the controlling sequence provides

valuable information, which determines project duration, and provides insight into how to

expedite the project. Consider the diagram in Figure 3.6, altering a production rate of an

activity on the controlling sequence will change the project duration. For an example,

shortening duration of a controlling activity (e.g., A1 in Figure 3.6) results in shorter

project duration. On the other hand, shortening duration of a non-controlling activity

(e.g., C1 in Figure 3.6) does not affect the project duration.

 It is important to realize that accelerating production rates of activities on

controlling sequence does not necessarily result in shorter project duration. Because

resource continuity constraints are maintained in the RSM, altering production rate of a

controlling activity could either allow its successor to start earlier or delay its successor.

This is a very complicated issue. Besides, precedence, resource availability, and resource

continuity constraints, relative production rates between two dependent activities also

contribute to the minimum project duration of a repetitive project. It is recommended to

use trial-and-error approach to check whether accelerating an activity produces a shorter

project duration or not.

3.4 Summary

 In this chapter, the concepts of repetitive project scheduling have been discussed.

A graphical method called the "Repetitive Scheduling Method” (RSM) is used to

illustrate the processes of deriving a repetitive project schedule that satisfies precedence,

resource availability, and resource continuity constraints.

 Critical activities are activities that, if delayed, will be delayed. Critical path is a

series of critical activities from the start to the finish of the project. While project

61

duration of non-repetitive projects can be determined by the sum of activities on the

critical path, project duration of repetitive projects cannot be calculated by the same

method. Critical path does not exist in RSM schedule because of the continuity

constraints. Accordingly, Harris and Ioannou (1998) introduced the concepts of control

point and controlling sequence to resolve the informative deficiency of critical path in

repetitive projects. Controlling sequence in a repetitive project determines the minimum

duration of the project. Controlling sequence is a set of sub-activities (e.g., A1, A2)

navigating from the project finish date to the project start date through control points.

Control point is the point that a predecessor’s finish date controls its successor’s start date

under the continuity constraints.

 RSM is an effective and simple method to schedule repetitive projects.

Nevertheless, there is a need for improvement. Many subjects need to be taken into

account of scheduling repetitive projects as discussed in Chapter 2 Literature Review.

RSM and other non-computerized methods should be computerized to lessen human

effort in inputting data, updating schedule, and analyzing schedules in terms of project

cost. A newly developed method should be capable of capturing the stochastic nature of

repetitive projects under the constraints (precedence, resource availability, and resource

continuity).

 In the next chapter, a new algorithm and technique are proposed; it is called

“Sequence Step Algorithm” (SQS-AL). After the algorithm is discussed in Chapter 4

Sequence Step Algorithm, Chapter 5 Simulation Model Templates presents a suggested

simulation model for modeling repetitive projects in discrete-event simulation system.

The integration between SQS-AL and the proposed simulation model templates provides

62

63

a comprehensive approach that is able to solve the complicated scheduling problems of

stochastic repetitive projects.

CHAPTER 4

SEQUENCE STEP ALGORITHM

CHAPTER 4 SEQUENCE STEP ALGORITHM

This chapter presents the proposed Sequence Step Algorithm (SQS-AL) and

discusses the comparison between SQS-AL, the Critical Path Method (CPM), and the

Repetitive Scheduling Method (RSM). SQS-AL is a generalized methodology for

scheduling repetitive projects. It is capable of solving both deterministic and stochastic

repetitive project scheduling problems. The beginning of this chapter discusses two

important components of the algorithm: sequence steps and idle time. SQS-AL uses

sequence steps to orderly determine idle time of repetitive activities and schedules the

activities.

After the discussion of sequence steps and idle time, an overview of SQS-AL is

given along with an example; the purpose of the overview is to show the simplicity of the

algorithm. Then, different types of idle time are introduced prior to the discussion of the

SQS-AL implementation in simulation. Modeled in Stroboscope, a discrete-event

simulation system, an example of a repetitive project with stochastic activity durations is

used to demonstrate the application of SQS-AL. In the end, the results derived from SQS-

AL are compared to those of CPM and RSM.

64

4.1 Sequence Steps

Sequence steps are visual columns in a precedence diagram on which activities

are placed; they are used mainly for graphical presentation. In a precedence diagram,

activities are presented by nodes (circular or rectangular shapes), whereas precedence

relationships between activities are presented by links (connecting lines). Positioning

nodes (activities) in sequence steps results in an organized precedence diagram.

In a precedence diagram, every activity belongs to a particular sequence step. It is

defined to be the left-most visual column in which an activity may be placed and still

maintain left-to-right precedence relationships. For example, activities in Figure 4.1 are

placed in three sequence steps, from Sequence Step 1 (SQS1) to Sequence Step 3 (SQS3).

4.1.1 Example 4.1 Determining sequence steps for a repetitive project with three

activities

Activity Name Predecessors
A -
B A
C B

Table 4.1 Precedence relationships for Example 4.1

Figure 4.1 Precedence diagram for Example 4.1

Another example is illustrated below. Activities in Figure 4.2 are placed in four

sequence steps from SQS1 to SQS4.

65

4.1.2 Example 4.2 Determining sequence steps for a repetitive project with seven

activities

Activity Name Predecessors
A -
B A
C A
D B and C
E B
F C
G D, E, and F

 Table 4.2 Precedence relationships for Example 4.2

Figure 4.2 Precedence diagram for Example 4.2

Sequence steps are an important property of a precedence diagram. Indeed, the

CPM calculation for precedence networks can be performed very easily by using

sequence step order: i.e., left-to-right for the forward pass and right-to-left for the

backward pass. As explained later, this property is at the heart of SQS-AL. It is used to

specify the order in which idle times of repetitive activities are collected.

4.2 Two Different Types of Idle Time in Repetitive Activities

Idle time is the duration that a crew performs no work during their employment

period, i.e., getting paid but not producing any output. In SQS-AL, idle time is

66

categorized into two main types, idle time between units (UIT) and idle time at arrival

(AIT). The sum of these two types of idle time for a resource is its total idle time, called

“Crew Idle Time” (CIT). From the number of simulation replications, CITs for each

resource are collected. After the statistical data of CITs of resources are obtained, SQS-

AL uses the statistical data to determine resources’ arrival dates that minimize their idle

time. As a result, continuous resource utilization for the resources is improved.

Unit Idle Time (UIT) is the sum of idle time (or duration of lags) between units of

a repetitive activity. As can be seen in Figure 4.3.a, UIT of Activity B is the lag between

B1 and B2 (UITB1,B2 = LagB1,B2 = 2 weeks), and between B2 and B3 (UITB2,B3 = LagB2,B3

= 2 weeks). The sum of UITB1,B2 and UITB2,B3 equals UITB (UITB = 4 weeks).

Postponing the start date of B from its earliest start date (ESD) by UITB (4 weeks) results

in zero idle time in B. Given that activity durations are deterministic, ESD and UIT are

constant; the calculation of UIT is sufficient to determine the postponement period of an

activity in order to eliminate its idle time, specifically UIT. However, this is not the case

for projects with stochastic activity durations.

67

Figure 4.3 Production diagram showing a delay in Activity B by its Unit Idle Time

In probabilistic scheduling problems, activity durations are stochastic, resulting in

varying finish dates of activities and therefore varying start dates of their successors. It is

possible that resources may arrive to the site as they are scheduled, but not be able to start

the work because their predecessors have not yet finished. This situation incurs idle time

between the arrival date of the resource and its actual start date in the first unit. This type

of idle time is called “Arrival Idle Time” (AIT). An example of AIT is shown in Figure

4.4.

68

Figure 4.4.a shows what happens to Figure 4.3.a if by chance Activity A1 does

not takes 4 weeks as planned but actually takes 6 weeks. As shown in Figure 4.4.a, the

resource serving Activity B is scheduled to arrive at the end of the fourth week; however,

the resource cannot work since A1 has taken longer to do and has not been completed.

Figure 4.4 Arrival idle time between the arrival date and the start date of Resource B

69

For this particular example in Figure 4.4, the resource arrival date for Activity B

must be postponed by the sum of UIT and AIT, which is CIT. Figure 4.4.b shows that

delaying the arrival date of B from its preliminary scheduled arrival by 6 weeks, which is

its crew idle time (CITB), will eliminate the entire idle time in B. More precisely, when

the start date of an activity varies from the original schedule, both arrival idle time (AIT)

and unit idle time (UIT) must be accounted for in crew idle time (CIT).

Note that AIT does exist in CIT for deterministic scheduling problems because in

the absence of randomness the idle time between resources’ arrival dates and resources’

actual start dates is always zero.

In probabilistic scheduling problems, since activity durations vary, it is most

convenient that activity start dates and resource arrival dates are measured from the

project start date. Accordingly, SQS-AL assumes that all resources, for which no specific

arrival date have been scheduled yet, arrive to the site at the beginning of the project (i.e.,

time zero). This assumption in SQS-AL is very important for calculation purposes, as

explained in detail later.

As shown in Figure 4.5, the arrival date of Resource B is assumed to be at the

beginning of the project. This assumed arrival date will be changed later to finalize the

arrival date of B by using the collected CITB and user-desired confidence level, explained

later. The finalized arrival date of a resource is called the “Crew Lead Time” (CLT), a

duration measured from project start to the arrival date of the resource.

70

Figure 4.5 SQS-AL’s assumption of resource arriving at the beginning of the project

4.3 Confidence Levels and Crew Lead Times

Confidence levels are user-desired parameters in percent specifying degree of

confidence that a particular resource will work continuously without interruptions. In

other words, a confidence level is a user-specified probability that a particular resource

will have zero idle time based on the data set (i.e., distribution) of that crew’s idle time

(CIT), collected from simulation runs. The collected CITs are used to construct a

cumulative frequency of the CITs for that particular crew as shown in Figure 4.5. Using

the constructed cumulative frequency of CITs (Figure 4.5) and user-desired confidence

levels (e.g., 50% and 100% in Figure 4.5), crew lead time (CLT) is chosen from the

constructed cumulative frequency of CITs and the corresponding value of the confidence

level. Essentially, CLT is the finalized arrival date (e.g., 13 days for 50% confidence

level and 22 days for 100% confidence level in Figure 4.5) of the resource measured from

the project start date. Clearly, higher confidence levels lead to longer crew lead times.

Figure 4.6 shows an example of cumulative frequency of CITB, which is collected

from N replications. If Resource B is scheduled to arrive at the site at the end of Day 13

71

(CLTB = 13 days), then there is 50% probability that its crew idle time (sum of idle time,

AIT+UIT) will be less than 13 days and its continuous utilization (zero idle time) will be

achieved 50% of the time. On the other hand, if CLTB is set to 22 days, then its crew idle

time is guaranteed to be entirely eliminated (based on the collected CITs) and thus its

continuous utilization is 100% guaranteed; there is no idle time. Clearly, the accuracy of

these predictions depends on the variability of activity durations and the number of

replications.

Cumulative Distribution Function

0

10

20

30

40

50
60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Crew Idle Time (day)

Pe
rc

en
t

CIT of Resource B

At 50% Confidence Level,
 CLT = 13 days

At 100% Confidence Level, CLT = 22 days

Figure 4.6 Determining crew lead time from the collected crew idle time and user-

specified confidence level

4.4 Overview of the Sequence Step Algorithm

Four main components of SQS-AL, 1) sequence steps, 2) idle time, 3) confidence

levels, and 4) crew lead time, have been presented in the previous section. This section

presents an overview of the concepts of SQS-AL by solving a scheduling problem of a

repetitive project with 3 activities consisting of 3 units. The purpose of SQS-AL is to

72

determine the arrival date for each resource, so it may work continuously without

interruption. To determine crew lead time (CLT) of a resource, SQS-AL performs the

following four main steps:

1) Collect crew idle time (CITs)

2) Construct a cumulative frequency distribution of the collected CITs

3) Select a confidence level and use it in item (4)

4) Determine crew lead time (CLT) from the cumulative CIT using a user-

specified confidence level in item (3)

These four steps are combined as “processing a sequence step.” These four steps

are repeated for the number of sequence steps in the precedence diagram (to determine

arrival dates) plus one extra sequence step (to obtain the finalized idle time, not the

arrival dates). To demonstrate SQS-AL’s processing sequence steps, an example of a

repetitive project consisting of 3 units with 3 activities in each unit is demonstrated. The

node network represents a single unit of the example project shown in Figure 4.3.

Activity durations are given in Table 4.3. The formula shown in the table is in

Stroboscope language where the first and the second numbers in the bracket are means

and standard deviation, respectively.

4.4.1 Example 4.3 Determining crew lead time in a repetitive project with three

activities with probabilistic activity duration

Figure 4.7 The single unit precedence diagram for Example 4.3

73

Activity Duration
A Uniform[20,2]
B Uniform[10,1]
C Uniform[15,1.5]

Table 4.3 Stochastic durations of repetitive activities for Example 4.3

In the first step, 3000 replications of the simulation are executed to collect 3000

CITs of activities belonging to the considered sequence step. For this example, it is not

necessary to collect CITs for Activity A because Activity A in the first sequence step

does not have predecessors or idle time. Thus, the algorithm starts collecting CITs for the

activity in Sequence Step 2 (SQS2), which is CITs for Activity B (CITB).

In the second step, after 3000 replications are executed, cumulative frequency of

CITB is constructed using the collected CITB in the previous step. For example, Table 4.4

shows the samples of CITB collected from 3000 replications. The “Hit” Column shows

the number of samples where CITB is less than the value in the “CIT” Column. The “%

Hit” Column shows the percentage of CIT that is less than the value in the “CIT”

Column.

Cumulative Distribution Function

0

10

20

30

40

50
60

70

80

90

100

0 10 20 30 40 50

Crew Idle Time (day)

Pe
rc

en
t

CITs of Resource B from
performing Steps 1 and 2
in SQS2

Step 3, selecting a 50%
confidence level to determine,
Step 4, the corresponding CLT for
Resource B, which is 23 days

Figure 4.8 Determining crew idle time of Resource B in processing SQS2 in Example 4.3

74

CITB
 (Days) Hit %Hit

CITB
 (Days) Hit %Hit

CITB
 (Days) Hit %Hit

< 2 0 0 < 19 1059 35.3 < 36 2785 92.83
< 3 11 0.37 < 20 1179 39.3 < 37 2831 94.37
< 4 24 0.8 < 21 1302 43.4 < 38 2867 95.57
< 5 39 1.3 < 22 1426 47.53 < 39 2899 96.63
< 6 57 1.9 < 23 1553 51.77 < 40 2931 97.7
< 7 93 3.1 < 24 1680 56 < 41 2950 98.33
< 8 133 4.43 < 25 1790 59.67 < 42 2959 98.63
< 9 180 6 < 26 1893 63.1 < 43 2968 98.93

< 10 229 7.63 < 27 2006 66.87 < 44 2977 99.23
< 11 292 9.73 < 28 2111 70.37 < 45 2988 99.6
< 12 359 11.97 < 29 2248 74.93 < 46 2991 99.7
< 13 431 14.37 < 30 2360 78.67 < 47 2995 99.83
< 14 518 17.27 < 31 2448 81.6 < 48 2996 99.87
< 15 613 20.43 < 32 2535 84.5 < 49 2998 99.93
< 16 719 23.97 < 33 2609 86.97 < 50 2999 99.97
< 17 826 27.53 < 34 2671 89.03 < 51 2999 99.97
< 18 932 31.07 < 35 2735 91.17 < 52 3000 100

Table 4.4 Cumulative frequency of crew idle time of Resource B during processing SQS2
for Example 4.3

In the third step, CLTB is selected from the constructed cumulative distribution

function by using a user-specified confidence level. From Table 4.4 and Figure 4.8, if the

user- specified confidence level is 50%, the corresponding CLTB will be 23 days. Figure

4.9 shows CLTs of resources before and after processing SQS2. As explained earlier,

SQS-AL assumes resources arrive to the site at the beginning of the project. These arrival

dates at time zero are temporary arrival dates, which will be finalized after the sequence

steps to which they belong are processed.

75

Figure 4.9 Changes in the resource arrival dates before and after processing SQS2 for

Example 4.3

After determining CLTB (the only activity in SQS2), SQS-AL moves onto the

next sequence step, and repeats the three steps again, only this time to collect the crew

idle time of Activity C (CITC).

 For SQS3, the first step, collecting CITs, is repeated; another 3000 replications

are executed. In the second step, the cumulative distribution function of CITC is

constructed as shown in Table 4.5. Then, a 50% confidence level is selected in the third

step to select the corresponding CLTC of 31 days in the forth step.

It is very important to notice that that the cumulative frequency distribution of

CITC will be different if a different confidence level for Activity B is used.

76

CITC
(days) Hit %Hit

CITC
(days) Hit %Hit

23 0 0 42 2910 97
24 0 0 43 2924 97.47
25 140 4.67 44 2947 98.23
26 312 10.4 45 2962 98.73
27 519 17.3 46 2969 98.97
28 730 24.33 47 2974 99.13
29 1004 33.47 48 2985 99.5
30 1257 41.9 49 2990 99.67
31 1549 51.63 50 2993 99.77
32 1881 62.7 51 2993 99.77
33 2206 73.53 52 2994 99.8
34 2329 77.63 53 2997 99.9
35 2462 82.07 54 2998 99.93
36 2574 85.8 55 2998 99.93
37 2669 88.97 56 2998 99.93
38 2753 91.77 57 2998 99.93
39 2805 93.5 58 2998 99.93
40 2854 95.13 59 2999 99.97
41 2889 96.3 60 3000 100

Table 4.5 Cumulative frequency of crew idle time for Resource C during processing
SQS3 for Example 4.3

Cumulative Distribution Function

0

10

20

30

40

50
60

70

80

90

100

20 30 40 50 60

Crew Idle Time (day)

Pe
rc

en
t

CIT of Resource C from
performing Steps 1 and 2
in SQS3 giving that B uses
a 50% confidence level

Step 3, select a 50% confidence
level to determine, Step 4, the
corresponding CLT of Resource C,
which is 31 days

Figure 4.10 Determining crew idle time for Resource C during processing SQS3 for

Example 4.3

77

Figure 4.11 Changes in resource arrival dates before and after processing SQS3 for

Example 4.3

After CLTs for all activities are determined, the finalized CITs are derived by

running an additional 3000 replications (this is an extra SQS). In these replications,

Resources A, B, and C are scheduled to the site at the end of Days 0, 23, and 31,

respectively. The final results from SQS-AL are shown in Table 4.6.

 Crew Lead Time
(CLT) in days for a

50% Confidence Level

Sum of Idle Time
Between Units (UIT)

in days

Average
Project

Duration
in days

Average
Total

Idle Time
in days SQS A B C A B C

1 0 0 0 0 23 25 50 47
2 0 0 0 0 23 25 50 47
3 0 23 0 0 3 31 56 34

4 (Final) 0 23 31 0 3 2 58 5
Table 4.6 Unit idle time, the selected Crew Lead Time, Average Project Duration, and

Average Total Idle Time

As shown in Table 4.6, the average project duration is increased from 50 to 58

days; however, the average idle time significantly decreased from 47 to 5 days. The

implication of the results from SQS-AL will be discussed in detail later.

78

4.5 Flow Chart of the Sequence Step Algorithm

 The flow chart of SQS-AL is presented in Figure 4.12 showing SQS-AL’s steps in

collecting crew idle times (CITs) and determining crew lead time (CLT) in simulation.

As displayed in the flow chart, the algorithm contains two nested loops. The inner loop is

the replication loop (shown in Figure 4.13.a) whereas the outer loop is the sequence step

loop (shown in Figure 4.13.b). According to the overview in Section 4.3, Step 1,

collecting CITs, is in the replication loop, while Step 2, constructing cumulative

frequency of CITs, Step 3, selecting confidence levels, and Step 4, determining CLT, are

in the sequence step loop. Figure 4.12 presents the complete mechanism of SQS-AL

including:

1) Initializing parameters (such as number of sequence steps)

2) Collecting simulation output (such as crew idle time)

3) Determining and updating parameters in the simulation model (such as crew

lead time)

4) Proceeding from one sequence step to the next sequence step

 Note that, some simulation parameters and components are introduced here with

a brief explanation. They will be explained in more detail in the next chapter. In this

section, understanding the complete process of SQS-AL is essential.

79

Figure 4.12 Flow Chart of the Sequence Step Algorithm

80

Figure 4.13 Replication loop and sequence step loop in SQS-AL

81

In the initialization of SQS-AL parameters, the following parameters must be

determined prior to simulation execution.

1. The total number of sequence step (nSQS).

2. Sequence step for each resource. Determining in which processing sequence

steps that CITs of resources must be collected (e.g., CITB in SQS2 and CITC

in SQS3 from Example 4.3).

3. The total number of replications (nRep), a constant value specified by users of

how many simulation replications will be executed in order to collect the data

set of CITs.

4. Current sequence step (ithSQS), an index indicating the current processing

sequence step. In the beginning of SQS-AL, it is set to 0 (ithSQS=1), and

increased by one after finishing processing each sequence step.

5. Crew lead times (CLT), the arrival dates for resources such as CLTB, CLTC,

etc. In the beginning of SQS-AL, all CLTs are set to zero, assuming resources

arrive to the site at the project start date.

After the initialization of SQS-AL parameters, SQS-AL sets the replications index

(ithRep) to 1, which is also at the beginning of each replication loop, as shown in Figure

4.13. In the replication loop, for each simulation run, the simulation model parameters are

initialized as shown in Figure 4.13 in a hexagon titled “Initialize Simulation Model

Parameters.” This means that at the beginning of each simulation run the following

parameters must be initialized. Note that the names for graphical simulation elements

such as Queues, Combis, and SaveValues are in simulation model templates, which will

82

be discussed later in Chapter 5. These names are included here as references in this

section and also between Chapters 4 and 5.

1. The number of repetitive units for each activity (the number of resources

assigned in ACT_Remain Queues). The current value of resources in

ACT_Remain Queues is the remaining work for that activity (ACT).

2. The number of resources for each type (the number of resources assigned in

RES_Offsite Queues). This is the number of crews for a resource (RES) that

can work simultaneously.

3. The temporary recorded idle time (svRES_Idle SaveValues)

Before starting a new replication (a simulation run), the number of repetitive units

(i.e., the remaining work) in ACT_Remain Queues must be reinitialized. Otherwise, the

project will be completed at time zero since all the works are completed from the

previous simulation run; therefore there is no amount of work in ACT_Remain Queues.

The temporary idle times of resources (svRES_Idle) are recorded and used only

within one replication. At the end of each replication (simulation run), svRES_Idle values

for each resource are collected in a permanent storage collector, which is called

RES_IdleSQS$<ithSQS>$, where “$<ithSQS>$” is the current processing step

(“$<…>$” is Stroboscope’s language which will be explained in Chapter 5). Thus, idle

time for each resource (e.g., Resource B) from each sequence step is recorded in

RES_IdleSQSi (e.g., B_IdleSQS1, B_IdleSQS2, etc.) for the further calculation.

After simulation initialization, the simulation is executed for one replication. At

the end of the execution, svRES_Idle values are assigned to their RES_IdleSQSi and to

RES_CIT (crew idle time) of the resources that belong to the current processing step

83

(ithSQS). Then, ithRep is increased by 1. These processes (simulation initialization,

simulation execution, and data collecting and updating) are repeated for nRep

replications. As discussed in Section 4.4, Overview of the Sequence Step Algorithm,

these processes, called the “replication loop,” are the first step in determining CLTs of

resources, which is collecting CITs of the resources in the current sequence step.

After the replication loop is completed (ithRep > nRep), SQS-AL performs two

main steps in order to determine CLTs of resources belonging to the current sequence

step (ithSQS). These two steps are Steps 2 and 3, discussed in Section 4.4 constructing

the cumulative distribution function of CITs and selecting the corresponding CLT. At this

point, the crew idle times (CITs) for the resource belonging to the current sequence step

(ithSQS) are already collected from nRep replications. Then these CITs are arranged into

intervals based on relative frequency, and cumulative frequency of CITs for the resource

is constructed. Based on user-specified confidence levels and the constructed cumulative

frequency of CIT, crew lead time of the resource is selected and used as the arrival date

for the resource.

After CLTs for resources in the current sequence step (ithSQS) are determined,

SQS-AL moves to the next sequence step by, first, increasing ithSQS by one, and then

goes back to the replication loop again. By repeating the replication loop and the

sequence step loop, SQS-AL collects samples of crew idle times (CITs), affected by the

already chosen crew lead time (CLTs) for all activities in the previous sequence steps.

These CITs for the resources in the current sequence step are used to select their CLTs.

84

In the next section, another example is used to demonstrate the application of

SQS-AL. Additionally, several important aspects of SQS-AL, such as collecting CITs

and determining CLTs, are reviewed along with the example.

4.5.1 Example 4.4 Scheduling a repetitive project with 7 activities

An example of a repetitive project consisting of 4 units requiring 7 repetitive

activities is used to demonstrate the application of the sequence step algorithm. Each

activity is performed by a different crew. The precedence diagram for each of the

repetitive units appears in Figure 4.14. As exhibited in Figure 4.14, Activity A is in

Sequence Step 1 (SQS1); Activities B and C in SQS2, etc. The amount of work for each

activity in each of the 4 units is different as displayed in Table 4.7. For example, the work

amounts for Activity A in Units 1, 2, 3, and 4 are 100, 250, 150, and 200 work units,

respectively.

Figure 4.14 The single unit precedence diagram for Example 4.4

85

 Activity
 A B C D E F G

Unit Work Amount (Quantity/Unit)
1 100 150 200 150 100 150 50
2 250 100 150 200 150 250 200
3 150 200 50 100 50 50 50
4 200 150 200 150 100 100 150

Table 4.7 Activities’ work amounts in each unit for Example 4.4

In each of the 4 repetitive units, crew production rates (in work amounts per day)

for each of the 7 activities are assumed to follow normal distributions with the means and

standard deviations shown in Table 4.8. Consequently, the duration for each activity in

each of the 4 repetitive units varies because of the different work amounts and the

varying production rates.

Activity Mean SD
A 10 1.0
B 20 2.0
C 15 1.5
D 15 1.5
E 25 2.5
F 15 1.5
G 20 2.0

Table 4.8 Activities’ production rates for Example 4.4

 Figure 4.15 displays the first replication result from processing SQS2. At this

point, none of the resources’ CLTs are assigned to values other than zero. Therefore,

activities start at their early start date and resources arrive at time zero. The result in

Figure 4.15 derived from processing SQS2 is equivalent to a result from using simulation

to schedule this repetitive project without incorporating any algorithm. Again, note that in

processing SQS2, all resources have been scheduled to arrive at the site at the beginning

of the project (time zero) for calculation purposes as explained in Sections 4.3 and 4.4.

86

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time

U
ni

t

A B C D E F G

Figure 4.15 The first replication production diagram from processing SQS2 (collecting
CITB and CITC) for Example 4.4

For this example, 10,000 replications were simulated within replication loop for

each sequence step. Ten thousand data points of the crew idle times for Activities B and

C each were collected by the end of processing SQS2. These 10,000 samples of CITB and

CITC were then arranged by relative frequency in cumulative bins using an interval of 5

time units (arbitrarily selected by the modeler) as shown in Table 4.9. Each row of this

table shows a time value, and the percent of the 10,000 crew idle times for activities. For

example, out of a total of 10,000 CITB samples, 9,427 of them are less than 55 days.

Thus, if Activity B is scheduled to start at the end of Day 55 (CLTB = 55 days), the

probability of continuous resource utilization for Activity B will be 94.27%. On the other

hand, If CLTB is set to 75, then, continuous resource utilization would be 100%.

Notice that even though the CITs for all activities are shown in Table 4.9, only

those for Activities B and C, which are in SQS2, will be used since the current processing

sequence step is SQS2. This is why the columns for Activities B and C appear in bold

outline.

87

CITB
Range
(days)

Frequency
(%)

< 35 0.01
< 40 1.26
< 45 19.37
< 50 65.92
< 55 94.27
< 60 99.40
< 65 99.95
< 70 99.99
< 75 100.00

CITC
Range
(days)

Frequency
(%)

< 25 0.01
< 30 0.03
< 35 0.09
< 40 15.33
< 45 57.92
< 50 90.67
< 55 98.94
< 60 99.92
< 65 100.00

CITD
Range
(days)

Frequency
(%)

< 35 0.00
< 40 0.11
< 45 1.57
< 50 16.93
< 55 57.04
< 60 90.10
< 65 98.66
< 70 99.88
< 75 99.98

CITE
Range
(days)

Frequency
(%)

< 50 0.00
< 55 0.04
< 60 3.85
< 65 35.64
< 70 80.39
< 75 97.19
< 80 99.77
< 85 99.98
< 90 100.00

CITF
Range
(days)

Frequency
(%)

< 40 0.01
< 45 1.59
< 50 17.11
< 55 56.31
< 60 89.84
< 65 98.43
< 70 99.86
< 75 99.97
< 80 100.00

CITG
Range
(days)

Frequency
(%)

< 65 0.01
< 70 1.26
< 75 14.22
< 80 54.52
< 85 88.30
< 90 98.38
< 95 99.89
< 100 99.99
< 105 100.00

Table 4.9 Collected CITs from processing SQS2 and determining CLT for Activities B
and C for Example 4.4

For this example project, an 80% confidence level has been selected to determine

the crew lead times for various resources. Hence, CLTB is set to 55 days (the first value

in Table 4.9 that exceeds 80%). Thus, Activity B cannot start sooner than the end of Day

55, because its resource will not arrive to the site until the end of Day 55. Similarly, at an

80% confidence level, the duration for CLTC is set to 50 days. Once CLTB and CLTC are

set to 55 and 50 days, respectively, they are not changed again. Now that the CLTs for

the resources utilized by activities SQS2 are determined, SQS-AL moves to the next

sequence step, SQS3.

88

 In SQS3, the algorithm collects 10,000 samples of crew idle times (CIT) for

resources whose activities are in SQS3; these activities are D, E, and F. Therefore, CITD,

CITE, and CITF are collected during processing SQS3. It is important to realize that the

collected CITs for Activities D, E, and F reflect:

1) The effect of the chosen CLTB (55 days) and CLTC (50 days) from the

previous processing SQS2.

2) The variability of activity durations (A, B, C, D, E, and F).

Figure 4.16 shows the schedule resulting from the first replication in processing

SQS3. As shown in Figure 4.16, Activities B and C no longer start at their earliest start

date, since their resources have been deliberately delayed by 55 and 50 days from the

beginning of the project start date, respectively (CITB = 55 days and CITC = 50 days).

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time

U
ni

t

A B C D E F G

Figure 4.16 The first replication production diagram from processing SQS3 (collecting
CITD, CITE, and CITF) for Example 4.4

 Executing 10,000 replications in SQS3, the algorithm collects 10,000 samples of

each CITD, CITE, and CITF, and then organizes them in cumulative frequency as shown

in Table 4.10. At the end of processing SQS3, CLTD, CLTE, and CLTF are set to 70, 80,

89

and 70 days, respectively according to an 80% confidence level. This means Activities D,

E, and F cannot start until the end of days 70, 80, and 70 due to resource availability

constraints and the selected crew lead times.

CITB
Range
(days)

Frequency
(%)

< 0 0.00
< 5 99.48
< 10 99.97
< 15 100.00

CITC
Range
(days)

Frequency
(%)

< 0 0.00
< 5 98.92
< 10 99.95
< 15 100.00

CITD
Range
(days)

Frequency
(%)

< 60 0.00
< 65 62.14
< 70 99.50
< 75 99.99
< 80 100.00

CITE
Range
(days)

Frequency
(%)

< 65 0.00
< 70 1.84
< 75 74.66
< 80 99.67
< 85 99.99
< 90 100.00

CITF
Range
(days)

Frequency
(%)

< 55 0.00
< 60 0.05
< 65 63.24
< 70 99.39
< 75 99.99
< 80 100.00

CITG
Range
(days)

Frequency
(%)

< 80 0.00
< 85 0.31
< 90 38.85
< 95 94.31
< 100 94.89
< 105 99.99
< 110 100.00

Table 4.10 Collected CITs from processing SQS3 and determining CLTs for Activities D,
E, and F for Example 4.4

Compared to Table 4.9, CITB and CITC in Table 4.10 decrease significantly due to

the assigned CLTB and CLTC in the previous processing SQS2. For both Resources B and

C, there is approximately 99% chance that their idle time will be less than 5 days, shown

in Table 4.10, compared to 55 days in Table 4.9.

 It is important to note that if CLTD, CLTE, and CLTF were assigned at the end of

processing SQS2, their values would be 60, 70, and 60 days (from Table 4.9, processing

SQS2), instead of 70, 80, and 70 days (from Table 4.10, processing SQS3).

Consequently, their idle time would be most likely to exceed the corresponding idle time

90

to the user-specified confidence level of 80%. As explained, delaying activities at the end

of processing a SQS is likely to change the CITs of resources in the subsequent SQS.

Therefore, CITs and CLT for each resource must be collected and determined in the order

of SQS in which their activities belong. Figure 4.18 presents the first replication

production diagram from processing SQS4, after CLTD, CLTE, and CLTF were assigned.

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time

U
ni

t

A B C D E F G

Figure 4.17 The first replication production diagram from processing SQS4 (collecting
CITG) for Example 4.4

In Figure 4.17, there is no interruption of work for Resources B, C, D, E, and F (at

least for this replication). Activities whose CLT is already assigned have idle time close

to zero. The already-assigned-CLT resources work continuously from the day they arrive

to the day they complete their work. At this current SQS4, only Activity G has idle time

(between G1 and G2 in Figure 4.17), since CITG and CLTG have not yet been collected

and determined. Table 4.11 shows the current CITs of resources collected from

processing SQS4.

91

CITB

Range
%

Frequency
< 0 0.00
< 5 99.52
< 10 99.98
< 15 100.00

CITC

Range
%

Frequency
< 0 0.00
< 5 99.06
< 10 99.92
< 15 100.00

CITD

Range
%

Frequency
< 5 0.00
< 10 100.00

CITE

Range
%

Frequency
< 0 0.00
< 5 100.00

CITF

Range
%

Frequency
< 0 0.00
< 5 100.00

CITG

Range
%

Frequency
< 90 0.00
< 95 21.44
< 100 93.09
< 105 99.92
< 110 100.00

Table 4.11 Collecting CITs from processing SQS4 and determining CLT for Activity G
for Example 4.4

Table 4.11 shows the CITs of activities after the algorithm finishes processing

SQS4. At the end of processing SQS4, samples of CITG are collected and arranged as

shown in Table 4.11. CLTG is set to 100 days according to the user-specified 80%

confidence level. Thus, CLTs for all activities are determined. Then, an extra sequence

step is processed to collect statistics of the finalized CITs, as shown in Table 4.12.

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time

U
ni

t

A B C D E F G

Figure 4.18 The first replication production diagram from processing SQS5 for Example
4.4

92

CITB
Range
(days)

Frequency
(%)

< 0 0.00
< 5 99.39
< 10 99.95
< 15 100.00

CITC
Range
(days)

Frequency
(%)

< 0 0.00
< 5 99.11
< 10 99.94
< 15 100.00

CITD
Range
(days)

Frequency
(%)

< 5 0.00
< 10 100.00

CITE
Range
(days)

Frequency
(%)

< 0 0.00
< 5 100.00

CITF
Range
(days)

Frequency
(%)

< 0 0.00
< 5 100.00

CITG
Range
(days)

Frequency
(%)

< 0 0.00
< 5 99.90
< 10 100.00

Table 4.12 The finalized CITs from processing SQS5 for Example 4.4

Table 4.13 shows the assigned crew lead time and the average crew idle time

(average CIT from 10,000 samples in each sequence step) each resource spends on the

site from the arrival date. Notice that before processing, SQS2, Resources B and C arrive

at the site at time 0 (CLT = 0) and thus have average total idle times of 48 and 44 days

respectively. After processing SQS2, resources B and C are assigned to arrive at the end

of Day 55 (CLTB) and 50 (CLTC), respectively, and thus have zero average idle time

from then on. As the algorithm proceeds through sequence steps, crew idle time of

activities become 0 in the sequence step order (1 to 5) as indicated in Table 4.13.

 Assigned Crew Lead Time
(CLT in days)

Average Crew Idle Time
(CIT in days)

SQS B C D E F G A B C D E F G
1 0 0 0 0 0 0 0 48 44 54 66 54 79
2 0 0 0 0 0 0 0 48 44 54 66 54 79
3 55 50 0 0 0 0 0 0 0 64 73 64 90
4 55 50 70 80 70 0 0 0 0 0 0 0 96
5 55 50 70 80 70 100 0 0 0 0 0 0 0
Table 4.13 Assigned CLT and average CIT of activities from processing different

sequence steps for Example 4.4

93

 Sum of Lags Between Units
(UIT in days)

Average
Project

Duration

Average
Project

Idle Time SQS B C D E F G
1 38 34 30 48 30 45 102 225
2 38 34 30 48 30 45 102 225
3 0 0 1 11 1 16 113 29
4 0 0 0 0 0 12 119 12
5 0 0 0 0 0 0 123 0

Table 4.14 The finalized UIT, average project duration, and average project idle time for
Example 4.4

4.6 Discussion of Results from the Sequence Step Algorithm

 Table 4.13 shows the average crew idle time (CIT) of each crew during its

employment period. Table 4.14, on the other hand, shows the average idle time between

units (UIT). The difference is that CIT values in Table 4.13 include not just, but also the

idle time from resource arrival dates to the start date of the first unit, which is the arrival

idle time (AIT).

 It is interesting to note that in Table 4.13, the average CIT for resources drops to

zero once their crew lead times are assigned. As some crew lead times are assigned from

one SQS to the next, the average CIT for succeeding activities increases. In contrast, in

Table 4.14 the average idle time between units (UIT) actually decreases. This is as

expected, because the assignment of crew lead times to predecessor activities delays the

first start of successor activities further (increasing their AIT), but also reduces idle time

between units (decreasing their UIT).

 Table 4.14 shows that, as the sequence step algorithm proceeds, the average

project duration increases from 102 days to 123 days. The corresponding cumulative

distributions for project duration for each sequence step in the algorithm are shown in

Figure 4.19. The greatest horizontal time shift in project duration between successive

94

distributions occurs between SQS2 and SQS3 (Figure 4.19), which gives an increase in

average project duration from 102 to 113 days (Table 4.14). The reason for this can be

observed in Figure 4.15. Activity A, the slowest activity in the project, contributes the

most to discontinuities in the other activities. Thus, to eliminate the discontinuities, it is

necessary to shift their resource arrival dates significantly, which in turn increases project

duration the most. Figure 4.16 shows that once the crew lead times for Activities B and C

have been assigned, the rest of the activities (except G) have almost no work interruption

between units, at least in the first replication of the project.

 Figure 4.17 shows the result from postponing the start dates of activities in SQS3

(D, E, and F) by their CLTs. As expected, the continuities in the activities are improved

while the average project duration increases from 113 days to 119 days.

 Finally, crew lead time for Activity G in the last sequence step (SQS5) is assigned

(CLTG=100). As shown in Figure 4.18, the continuities in resource utilization of all

activities are now maintained, at least in the first replication of SQS5. The final average

project duration is 123 days (Table 4.14).

95

0

10

20

30

40

50

60

70

80

90

100

80 85 90 95 100 105 110 115 120 125 130 135

Project Duration

C
um

ul
at

iv
e

Pe
rc

en
t

SQS2
SQS3
SQS4
SQS5

Figure 4.19 Cumulative distributions of project duration at an 80% confidence level

 Insightful information of what activity in which sequence steps controls project

duration can be revealed by:

1) Indicating the greatest shift in the average project duration from one sequence

step to the next (SQS2 in Figure 4.19)

2) Indicating activities in the sequence step in (1), which are Activities B and C

3) Indicating controlling sequence activities in the sequence step in (1) from the

final schedule, which is Activity C, and its direct predecessor on the same

sequence step, which is Activity A

4) Studying production rates of activities in the sequence steps in (3)

5) Studying crew idle time of resources before and after assigning crew lead

time

96

Then, the decision of which activities to accelerate could be made with a selected

confidence level of resource continuity in order to reduce the project duration.

 As shown in Figure 4.20, it is interesting that as the algorithm proceeds from one

sequence step to another, most samples of project duration fit into a smaller number of

intervals: 6 intervals in SQS2, 4 intervals in SQS3, 3 intervals in SQS4, and 2 intervals in

SQS5. The variability in activity duration has become less impacting on project duration

because successor activities have been postponed and result in more floats for

predecessor activities. Consequently, project duration is only influenced by those

activities in the later sequence steps (e.g., SQS3 and SQS4). For this example at an 80%

confidence level, project duration is dominated by Activities F1 and F2 in SQS3 and G1

to G4 in SQS4.

4.7 Selection of Confidence Levels

 An important question in the optimal use of the sequence step algorithm is how to

select an appropriate confidence level for the occurrence of crew work interruptions to

balance the increase in project duration. This is an important issue because high

confidence levels (to virtually eliminate idle time) can lead to a significant increase in

project duration.

 To address this issue, Figure 4.20 shows 5 lines that relate average total crew idle

time (total CIT in crew-days) to average project duration (in days). Each line corresponds

to a different confidence level: 20%, 40%, 60%, 80%, and 100%. Moreover, each line

consists of four points that correspond, from left to right (or top to bottom), to the four

sequence steps (SQS2 to SQS5). Thus, the expected total idle times between units

decrease as the algorithm proceeds from one sequence step to the next. Clearly, selecting

97

a greater confidence level decreases the expected crew idle time, but it also increases the

expected project duration. Thus, allowing the possibility of some interruption can

decrease the project duration. The idea of allowing or scheduling interruption is discussed

in Chapter 6, Work Breaks.

0

50

100

150

200

250

100 120 140 160 180

Average Project Duration

A
ve

ra
ge

 I
dl

e
T

im
e 20%

40%

60%

80%

100%

Figure 4.20 Decreasing idle time and increasing project duration as SQS-AL progresses

with 5 different confidence levels for Example 4.4

 For all confidence levels in Figure 4.20, the most dramatic reduction in average

total crew idle time occurs between SQS2 and SQS3 from the first point to the second

point of each line. From that point on, the reduction in average idle time from SQS3 to

SQS4 is relatively small, and results in even higher increases in average project duration

as the confidence level increases. It is only the case for a confidence level of 100% that

the project duration increases significantly from processing SQS3 to SQS4, and from

SQS4 to SQS5.

98

 It is very important to notice that irrespective of confidence levels, the average

total idle times at the completion of the algorithm (bottom point in each line) are very

small. In particular, the expected idle time for confidence levels of 60%, 80%, and 100%

is practically zero. Yet, the expected project durations for confidence levels of 60%, 80%,

and 100% increase from 118 to 123 to 158 days. It is likely that an optimal confidence

level is between 40% and 80%.

 Figure 4.21 shows the corresponding probability density functions for project

duration for different confidence levels. It is confirmed in this figure that there is little

difference between confidence levels of 60% and 80%, but there is substantial difference

between 80% and 100%. Figure 4.22 shows the cumulative distributions of project

duration when the project is scheduled using CPM, RSM, and SQS-AL at different

confidence levels. For the CPM case, activities in each replication are allowed to start as

early as their predecessors allow. Thus, project duration from CPM tends to be the

shortest with a large span of distribution. For the RSM case, activities in each replication

are scheduled with perfect hindsight so as to eliminate crew idle time. This produces a

slight increase in expected project duration over the CPM case, but completely eliminates

idle time. The difference between the RSM expected project duration and that for an 80%

confidence level of SQS-AL represents the value of perfect information about the true

activity durations that will be experienced during construction. If these were known

ahead of time or were effectively controlled, then the project could be scheduled with

even shorter crew lead times and have even shorter project duration.

99

Figure 4.21 Seven density functions of project duration for 5 different confidence levels,

CPM, and RSM

 Figure 4.22 Seven different cumulative distributions of project duration from five

different confident levels, CPM, and RSM

100

4.8 Summary

The Sequence Step Algorithm (SQS-AL) is a generalized algorithm that solves

scheduling problems of probabilistic repetitive projects. It can be implemented in

discrete-event simulation systems, programming environments such as Visual Studio dot

Net, or in spreadsheet applications like MS Excel.

SQS-AL consists of two nested loops: the replication loop (inner loop) and the

sequence step loop (outer loop). Within the inner replication loop, three different types of

idle time are collected in order to determine arrival dates of resources that provide

continuous resource utilization for each resource. These three types of idle time are:

1) Unit idle time (UIT), which is the idle time between units in the same activity.

2) Arrival idle time (AIT), which is the idle time between resource arrival date

and the start date in the first unit.

3) Crew idle time, which is the sum of UIT and AIT for each resource,

representing total idle time for that resource.

Crew idle times (CITs) for each resource are collected from simulation

replications in order to construct the cumulative distribution function of the CITs. Then,

resource arrival date can be determined by selecting the corresponding CITs to user-

specified confidence levels. This determined resource arrival date is called “Crew Lead

Time” (CLT) measured from project start date. CLT is used to postpone the start date of

activities (the arrival date of their resources) to achieve continuous resource utilization

via resource availability constraints.

When to determine crew lead time (CLT) is crucial. CLT of a resource must be

determined in the order of sequence steps, because delaying the arrival date of resources

101

102

changes the crew idle time (CIT) for activities in subsequent sequence steps.

Accordingly, the processes of collecting CITs and determining CLT must be performed

in sequence step order. These processes, called “processing sequence step,” moves from

one sequence step to the next sequence step. This is performed in the outer sequence step

loop. When the algorithm completes processing the last sequence step, CLTs for all

resources are determined. Then, an extra processing sequence step is executed in order to

obtain the final schedule and idle time in resources.

In the next chapter, two simulation model templates are introduced. These

simulation templates are a composed set of simulation model elements used to represent

repetitive activities and their resources with respect to SQS-AL. The templates can be

implemented in most discrete-event simulation applications such as Stroboscope and

GPSS. For the purpose of demonstration, the repetitive project example used in this

chapter is modeled and implemented in Stroboscope using the simulation model

templates.

CHAPTER 5

SIMULATION MODEL TEMPLATES

CHAPTER 5 SIMULATION MODEL TEMPLATES

 Simulation modeling for repetitive projects is complicated and involves many

components. To model repetitive projects successfully, the following components must

be taken into account when constructing the simulation model.

1) Precedence constraints

2) Variability in activity durations

3) Resource availability constraints

4) Resource continuity constraints, or computational algorithm solving the

problem of resource continuity constraints

5) Collection of statistical outputs from simulation, such as idle time

This chapter introduces simulation model templates used to model repetitive

projects in compliance with discrete-event simulation. These templates and their concepts

can be applied to most discrete-event simulation systems. Using the templates results in

an organized simulation model and also eases and expedites the processes of constructing

and modifying simulation models for repetitive projects. Considering the aforementioned

components of modeling repetitive projects, two simulation model templates, 1) Work

Flow template and 2) Resource Flow template, are designed to systematically model the

constraints and realistically capture the nature of activities and resources in repetitive

103

projects. The work flow template is for modeling precedence constraints, variability in

activity duration, and work in repetitive units. On the other hand, the resource flow

template is for modeling resource availability constraints and collecting data related to

resource continuity constraints. Collecting resource-related data, the resource flow

provides the data to the Sequence Step Algorithm (SQS-AL) in order to solve scheduling

problems of repetitive projects.

To demonstrate the application of the work flow and resource flow templates,

Example 4.2 from the previous chapter is modeled in Stroboscope. The simulation model

and code are shown in detail with discussion of the usability, flexibility, and extensibility

of the templates.

5.1 Simulation Model for Repetitive Projects

One benefit of simulation is the capability of modeling repetitive activities using

only one or several simulation elements to represent the entire number of repetitive units

for the activities. Different units of the same activity are simulated repeatedly by the

same simulation elements. Therefore, repetitive projects consisting of multiple units can

be represented by a single unit model. For example, the precedence diagram shown in

Figure 5.1 can be replaced by the model in Figure 5.2. As can be seen, the greater the

number of repetitive units, the larger the precedence diagram in Figure 5.1 becomes. On

the other hand, the size of the single-unit model in Figure 5.2 is not subject to the number

of repetitive units.

Another advantage of using a single unit model is that it facilitates the processes

of constructing and modifying a simulation model. Since multiple units of the same

repetitive activity commonly share the same attributes such as productivity, work

104

condition, resources, they can be represented by a single unit model. Accordingly, it is

recommended to model repetitive projects using single unit model as shown in Figure

5.2, instead of Figure 5.1.

Figure 5.1 A precedence diagram for a repetitive project

Figure 5.2 A single unit precedence diagram for the repetitive project in Figure 5.1

105

As shown in Figure 5.2, repetitive activities are represented effectively by a single

unit model. Nevertheless, the model in Figure 5.2 only focuses on activities; information

or model of resources is missing in the figure. When resource utilization is a concern,

resources must be taken into account for scheduling repetitive projects. As mentioned

earlier, different resource statuses must be distinguishable, and a model for resources

should promptly provide this information. Hence, separating a model for resources from

the model for activities is recommended. By doing so, tracking the progress of activities

and distinguishing resource statuses should be modeled and coded by two separate sets,

but dependent (or connected) models. Figure 5.3 shows a single unit precedence diagram

with separate models for resources and work for each activity. In the figure, rounded

rectangles of work flow are used primarily for tracking work progress where as rounded

rectangles of resource flow are used primarily for distinguishing the status of resources.

As shown in Figure 5.4, the simulation models for resources can be removed from the

simulation models for activities.

Figure 5.3 Models for activities and resources in a single unit precedence diagram

After the simulation models for activities and resources are separated into two

sets: 1) work flow and 2) resource flow, constraints belonging to each set of the

106

simulation model (activities and resources) can become separate and distinct. Precedence

constraints are modeled in work flow sub-networks, whereas resource availability and

continuous constraints are modeled in resource flow sub-networks. As a result, the

simulation model becomes more organized and systematic.

Figure 5.4 Separate models for activities and resources in a single unit precedence

diagram

To illustrate the possibilities, Figure 5.5 shows an example of a repetitive project

where same activities within the same repetitive unit share the same resource (e.g.,

Activity B and C) or require more than one resource. Using separate models for activities

and resources allows the construction of complicated relationships between repetitive

activities and resources easily. For example, in Figure 5.5, Activities B and C (work flow

sub-networks for B and C) require the same Resource R2. Activity D requires resource

R3 and shares Resource R6 with Activity G. Modeling multiple resource utilization and

sharing resources, called “shared resource,” between activities are discussed later in

107

Chapter 7. At this point, the following discussion will concentrate on models where each

repetitive activity requires its own unique resource (or crew), called “dedicated resource.”

Figure 5.5 Using separate models to model a repetitive project with resource-sharing

activities

5.2 Simulation Model Templates

To apply SQS-AL, a simulation model must be able to track work progress, and to

distinguish the different states of the resources. It is important to track the current

progress of repetitive activities so that precedence constraints between activities and units

are not violated. Similarly, distinguishing different statuses of resources provides useful

information of resource utilization, which is used to determine crew lead time (CLT). The

different states of resources are:

1) Unemployment period (not on jobsite, not getting paid)

2) Employment period (on jobsite, getting paid)

108

3) Unproductive period (on jobsite, getting paid, but not working, which is idle)

4) Productive period (on jobsite, getting paid, working)

The above different states are represented in the work flow template and resource

flow template, as explained later. In Figure 5.6, the work flow template and the resource

flow template represent Activity ACT and Resource RES, respectively. The self-

explanatory labels on simulation elements (Queues, Combis, etc) show that the work flow

template tracks work progress via ACT_Remain and ACT_Complete Queues. Activity

duration is simulated by ACT_Perform Combi. On the other hand, the resource flow

template distinguishes resource status via RES_Idle and RES_Offsite Queues. Duration

of crew lead time (CLT) is represented by RES_CLT Combi.

In Figure 5.6, Activity ACT requires Resource RES; thus, the resource flow sub-

networks for RES is linked to the work flow sub-networks by iRES_ACT and

iiRES_ACT Links. Figure 5.6 shows a simple relationship between one activity and one

resource, where the resource is dedicated to only one activity.

Figure 5.6 Work Flow Template and Resource Flow Template

109

5.2.1 Work Flow Template

 The main functionalities of the work flow template are:

1) Tracking work progress of repetitive activities

2) Modeling precedence constraints

3) Simulating activity durations.

The work flow template can be modeled and coded using two queues

(ACT_Remain and ACT_Complete), and one Combi (ACT_Perform). In the work flow

template, there are two types of simulation resources: rq_ACT and RES. Resource

rq_ACT could be considered as an entity indicating flow of work or permission to

perform the work, or it could also be considered a “unit” (i.e., a repetitive unit, such as a

floor.)

Resource RES is the resources required to perform the work such as labor and

equipment. The rq_ACT resource is the main entity moving in the work flow template,

while Resource RES moves back and forth between work flow and resource templates.

The model for Resource RES will be discussed later in Section 5.2.2, Resource Flow

Template. It suffices to mention that for a repetitive activity to start, it requires 1)

permission to start, which is Resource rq_ACT, and 2) resources such as labor and

equipment, which is Resource RES.

110

Figure 5.7 Work flow template (work flow sub-network for Activity ACT)

Tracking work progress in the work flow sub-network can be accomplished by

examining:

1) The number of rq_ACT resources in ACT_Remain Queue

2) The number of rq_ACT resources in ACT_Complete Queue

3) The number of instances in ACT_Perform Combi

Whereas the number of rq_ACT resources in ACT_Remain Queue represents the

remaining units of work, the number of rq_ACT in ACT_Complete Queue represents the

completed units of work (units). For example, if Activity ACT represents laying dry wall

in a 10-story building, 10 units of rq_ACT will be initiated in ACT_Remain at the start of

simulation representing the 10 stories. In other words, there are 10 remaining units of

work for ACT. At the end of each replication, the number of rq_ACT in ACT_Remain

will become zero, because all the work units in Activity ACT have already been

completed.

111

In contrast, the number of rq_ACT in ACT_Complete is zero in the beginning of

simulation, since no work has been completed. Then, at the end of simulation, the number

of rq_ACT in ACT_Complete will be equal to the total number of units, or 10 units for

the given example above. For ACT_Perform Combis, the presence of rq_ACT resource

and RES resource together in ACT_Perform indicates an on-going unit (e.g., Resource

RES is working on a particular unit of Activity ACT.) An on-going unit in ACT_Perform

is an instance of the ACT_Perform. Thus, the number of instances in ACT_Perform

Combis is the number of on-going units of work.

 Activity durations are coded in ACT_Perform combi in work flow template.

ACT_Perform is a conditional activity that controls the start of works and durations.

ACT_Perform Combi represents the performance of activity ACT in a particular unit or

one rq_ACT resource. Every time ACT_Perform starts, it draws one rq_ACT resource

from ACT_Remain Queue, holds the resource for the duration of the activity, and at the

completion releases the rq_ACT resource to ACT_Complete Queue. Thus, each rq_ACT

resource moves from ACT_Remain (not started), to ACT_Perform combi (in process),

and finally to ACT_Complete (completed).

Precedence constraints in the work flow template are implemented through

simulation code. Although it is possible to use links to model precedence constraints,

using simulation code reduces the number of links in the simulation model, and keeps the

model organized. Moreover, it provides flexibility in coding constraints. Figure 5.8

shows two sub-networks conforming to the work flow template for Activity A and its

successor Activity B. Notice that these two sub-networks are not connected by any links.

The precedence relationship between A and B is implemented in B_Perform Combi

112

through a “semaphore.” Used in Stroboscope, the semaphore is a logical start control or

conditional statement. Thus, the semaphore for B_Perform combi prevents Activity B

from starting until its predecessor Activity A, in the same unit, has been completed. As

mentioned earlier, the number of completed work units for Activity A is the number of

resource rq_A in A_Complete Queue.

Figure 5.8 Two work flow sub-networks for Activities A and B

 In particular, the logical expression for the semaphore for Activity B in Figure 5.8

compares the number of Resource rq_B in B_Complete Queue (completed units of B)

and the number of instances in B_Perform (on-going work units of B) to the number of

Resource rq_A in A_Complete Queue (completed units of A). The simulation code in

Stroboscope language for this semaphore is

B_Complete.CurCount + B_Perform.CurInst < A_Complete.CurCount

CurCount is a predefined Stroboscope variable that returns the number of

resources currently residing in the referred-to queue; CurInst returns the current number

113

of instances (on-going work) in the referred-to Combi. Thus, the above statement is true

when the number of completed units in Activity A is greater than the completed units of

B plus the number of on-going units in B. If 1) semaphore is true, 2) B_Remain Queue is

not empty, and 3) all resources required by Activity B are available, B_Perform Combi

will draw one Resource rq_B from B_Remain Queue and one Resource B from the

resource flow sub-network for Resource B via iRES2_B link in order to start work. As a

result, an instance of B_Perform will be created at this particular moment with duration

that equals the time required to finish this particular work unit.

5.2.2 Resource Flow Template

The main functionalities of the resource flow template are distinguishing different

states of resources and collecting the statistical data of the resources. To be specific, the

resource work template is able to:

1) Present the idle state of resources during employment

2) Present the idle state of resources during unemployment

3) Record the period of crew idle time (CIT)

4) Postpone resource arrival date (using the determined crew lead time, CLT)

5) Determine whether to keep or lay off the resource so that (1) and (2) are

distinguishable

Resource flow template is shown in Figure 5.9. It consists of two queues

(RES_Offsite and RES_Idle), one combi (RES_CLT), and one fork (RES_LeaveOrStay).

There is only one type of resource circulating in the resource flow, which is Resource

RES.

114

Figure 5.9 Resource flow template (resource flow sub-network for Resource RES)

RES_Offsite is a queue where RES resource resides when not on site

(unemployed). At the start of simulation, RES resource is initialized in the RES_Offsite

Queue, and will return to this queue after all work units have been completed.

Importantly, the time resources spend in RES_Offsite is not considered as idle time

because resources in it are unemployed. In contrast, the time resources spend in RES_Idle

is considered idle time. Crew idle time (CIT) represents the sum of arrival idle time (AIT)

and unit idle time (UIT).

 RES_Idle is a queue where RES resource is on the site waiting, not performing

any work. This situation occurs when its activity ACT_Perform cannot start because its

predecessors in the same repetitive unit have not finished yet. The total time resource

RES spends in RES_Idle Queue is the crew idle time (CIT) for the RES resource. This

duration (CIT) represents the sum of arrival idle time (AIT) and unit idle time (UIT). The

total time RES spends in RES_Idle, (CIT), is given by:

RES_Idle.AveWait x RES_Idle.TotCount

115

 AveWait and TotCount are predefined Stroboscope variables. AveWait is the

average visit time (duration) spent by resources in the referred-to queue. TotCount is the

number of times that resources entered the queue. Accordingly, the product of these two

variables is the total idle time resources spend in the referred-to queue.

 Note that the total time a resource on the site is the sum of duration the resource

spends in RES_Idle and its corresponding activity in ACT_Perform.

 RES_CLT Combi, representing an abstract activity, is included in the resource

flow template to postpone the arrival of a resource by using a determined duration of

RES_CLT, crew lead time. As a result, the duration of RES_CLT (CLT) delays the start

date of the corresponding activity. As discussed in Chapter 4, Sequence Step Algorithm,

CLT of resources is set to zero at the start of SQS-AL; all resources are assumed to arrive

to the site at the beginning of the project. Accordingly, the duration of RES_CLT Combi,

which is CLT, is initially set to zero, before processing its activity’s sequence step.

From one replication to the next, SQS-AL collects CITs of resources belonging to

that particular sequence step. From one sequence step to the next, SQS-AL constructs

cumulative frequency of the collected CITs, determines CLT, and assigns the CLT to the

duration of RES_CLT. The CLT value assigned to duration of RES_CLT is the time to

hold resource RES in the simulation in order to postpone the resource arrival date to the

site. Therefore, the postponement of the activity start date is stipulated by the resource

availability constraints for Resource RES.

Note that the unemployment period for the RES is the total time the RES spends

in RES_Offsite Queue and RES_CLT Combi.

116

To determine whether a resource should be kept on site or laid off, a Stroboscope

simulation element, called “Fork,” is used. RES_LeaveOrStay (or RES_F) Fork is a

decision point determining either to send RES resource to RES_Idle Queue (holding the

resource) or to send it to RES_Offsite Queue (laying off the resource). Whether to keep

or lay off the resource depends on whether there is any remaining work (rq_ACT) in

ACT_Remain Queue. If the following statement is true, the RES_LeaveOrStay fork will

send the RES back to RES_Idle Queue.

ACT_Remain.CurCount > 0

On the other hand, if the above statement is false, meaning all the work is

completed, the RES_LeaveOrStay Fork will send RES to RES_Offsite.

After a resource is laid off, it is not allowed to re-enter the site, achieved by

comparing between 1) the current number of completed units (CurCount) in

ACT_Complete Queue and 2) the total number of units. Resources are allow to enter the

site only if the CurCount of their corresponding activities is not equal to the total number

of units. This condition is shown below.

ACT_Complete.CurCount != the total number of units

5.3 Example 5.1 Simulation code and model for a repetitive project

 Example 4.2 from Chapter 4 is used to demonstrate the application of the

discussed model templates and SQS-AL. The example is implemented in Stroboscope.

The simulation model and code in Stroboscope language are given with explanation.

Several important aspects of the simulation model and SQS-AL are re-deliberated along

with the given simulation code.

117

The example is a repetitive project consisting of 4 units with 7 activities in each.

Each activity is performed by a dedicated resource named after that activity. Figure 5.10

presents a single unit precedence diagram for this example, showing that repetitive

activities in Sequence Steps 1 to 4 (SQS1 to SQS4). For example, Activity A is in SQS1;

B and C are in SQS2, etc.

Figure 5.10 Single Unit Precedence Diagram

Table 5.1 presents the work amount of each activity in each of the 4 units,

whereas Table 5.2 presents the production rates of each particular activity. Production

rates of activities are assumed to follow a normal distribution with the means and

standard deviations displayed in Table 5.2.

 Activity
 A B C D E F G

Unit Work Amount (Quantity/Unit)
1 100 150 200 150 100 150 50
2 250 100 150 200 150 250 200
3 150 200 50 100 50 50 50
4 200 150 200 150 100 100 150

Table 5.1 Work amounts for each activity in each unit

118

Activity Mean SD
A 10 1.0
B 20 2.0
C 15 1.5
D 15 1.5
E 25 2.5
F 15 1.5
G 20 2.0

Table 5.2 Daily Production Rates

Figure 5.11 is the simulation model for this example. As can be seen, Figure 5.11

resembles Figure 5.10, a single unit precedence diagram. Simulation model templates are

used to represent activities and resources, instead of nodes, in Figure 5.10.

119

Figure 5.11 Simulation model for Example 5.1

120

5.3.1 Simulation Code for Model Parameters (MP)

 The Simulation code in the following sections is encoded in Stroboscope GUI’s

Model Parameters (MP).

5.3.1.1 Variables controlling replication and sequence step loops (MP.Loops)

Variables that controls SQS-AL’s replication loop and sequence step loop are

stored in SaveValue, which is a storage class in Stroboscope language. “nRep” is the total

number of replications executed in processing each sequence step, whereas “nSQS” is

the total number of sequence steps. The ithRep and ithSQS indicate the current

replication and processing sequence step, respectively.

SAVEVALUE nRep 3000;

SAVEVALUE nSQS 4;

SAVEVALUE ithRep* 1;

SAVEVALUE ithSQS* 1;

Note that in Stroboscope the asterisk sign “*” indicates that the referred-to

SaveValue (e.g., ithRep and ithSQS) is persistent throughout simulation runs, meaning

the SaveValue with an asterisk sign will not be reset to its initial value (e.g., 1 for ithRep

and ithSQS for the code above) at the beginning of each replication. Since it is necessary

to track the current replication (ithRep) and current sequence step (ithSQS), these

SaveValues must be persistent and are declared so by the asterisk sign at the end of their

names.

5.3.1.2 Work amounts (MP.ACT.Quantity)

For each activity, the work amount in each repetitive unit is stored in one-

dimensional arrays. The number 4 in the code below is the total number of units in this

121

project; it defines the size of the array. The figures in parenthesis are the work amount for

each activity in each unit; these figures initialize the member of the array. So each of the

following statements defines and initializes the arrays holding the work amount for each

activity.

ARRAY A_Quantity 4 {100 250 150 200};

ARRAY B_Quantity 4 {150 100 200 150};

ARRAY C_Quantity 4 {200 150 50 200};

ARRAY D_Quantity 4 {150 200 100 150};

ARRAY E_Quantity 4 {100 150 50 100};

ARRAY F_Quantity 4 {150 250 50 100};

ARRAY G_Quantity 4 {50 200 50 150};

 Note that indexing arrays in the Stroboscope language is zero-based. Thus, the

index of the first value in an array is zero, which is the same as in the C language.

5.3.1.3 Confidence levels (MP.RES.ConfidenceLevel)

 Confidence levels for determining the CLT for each resource are stored in the

SaveValues shown below. For this example, a 50 percent confidence level is used for all

resources.

SAVEVALUE ResA_ConfidenceLevel 0.5 ;

SAVEVALUE ResB_ConfidenceLevel 0.5 ;

SAVEVALUE ResC_ConfidenceLevel 0.5 ;

SAVEVALUE ResD_ConfidenceLevel 0.5 ;

SAVEVALUE ResE_ConfidenceLevel 0.5 ;

SAVEVALUE ResF_ConfidenceLevel 0.5 ;

SAVEVALUE ResG_ConfidenceLevel 0.5 ;

122

5.3.1.4 Additional variables (MP.AdditionVariable)

There are two additional variables, which include iSQS and nthBinInterval used

later. iSQS is used to automatically generate Stroboscope code, whereas nthBinInterval

is used to determine the corresponding crew lead time (CLT). Both additional variables

are stored in SaveValues. Note that iSQS is used for coding purpose, while ithSQS is

used to track the current index of sequence step.

SAVEVALUE iSQS 1;

SAVEVALUE nthBinInterval 0;

5.3.2 Simulation Code for Programming Objects (PO)

The simulation code in the following subsections is encoded in Stroboscope

GUI’s Programming Objects.

5.3.2.1 Permission to the site (PO.RES.Semaphore)

One important decision (i.e., RES_CLT_Semapore) is whether to allow resources

to enter the site (i.e., letting resources in RES_CLT Combis) or to keep them off the site

(i.e. holding resources in RES_Offsite Queues). Resources are allowed to enter the site

only if their corresponding activities must not yet have been completed. For example, the

number of units in ACT_Complete Queues must not equal the total number of units (4

units for this example). Without this decision (or condition), resources will always re-

enter the site, even though all the work has been completed, and rest in RES_Idle until

the simulation ends because there is no work left for them to work. The condition

(RES_CLT_Semaphore) of allowing a resource to enter the site is stored in Variables,

updated automatically by Stroboscope. It is encoded in Programming Objects, and used

in RES_CLT’s semaphore in resource flow sub-networks.

123

VARIABLE ResA_CLT_Semaphore ' A_Complete.CurCount != 4' ;

VARIABLE ResB_CLT_Semaphore ' B_Complete.CurCount != 4' ;

VARIABLE ResC_CLT_Semaphore ' C_Complete.CurCount != 4' ;

VARIABLE ResD_CLT_Semaphore ' D_Complete.CurCount != 4' ;

VARIABLE ResE_CLT_Semaphore ' E_Complete.CurCount != 4' ;

VARIABLE ResF_CLT_Semaphore ' F_Complete.CurCount != 4' ;

VARIABLE ResG_CLT_Semaphore ' G_Complete.CurCount != 4' ;

5.3.2.2 Precedence constraints (PO.ACT.Semaphore)

 Precedence constraints (e.g., B_Perform_Semaphore) are stored in Variables and

used in ACT_Perform’s semaphore work flow sub-networks. Due to precedence

constraints, an activity can start only if its current number of completed units (e.g.,

B_Complete.CurCount) plus its current number of on-going units (e.g.,

B_Perform.CurInst) is less than its predecessor’s number of completed units (e.g.,

A_Complete.CurCount). For this example, all precedence constraints are shown below:

VARIABLE B_Perform_Semaphore

'B_Complete.CurCount + B_Perform.CurInst

< A_Complete.CurCount';

VARIABLE C_Perform_Semaphore

'C_Complete.CurCount + C_Perform.CurInst

< A_Complete.CurCount';

VARIABLE D_Perform_Semaphore

'D_Complete.CurCount + D_Perform.CurInst

< B_Complete.CurCount

& D_Complete.CurCount + D_Perform.CurInst

< C_Complete.CurCount';

VARIABLE E_Perform_Semaphore

'E_Complete.CurCount+ E_Perform.CurInst

124

< B_Complete.CurCount';

VARIABLE F_Perform_Semaphore

'F_Complete.CurCount +F_Perform.CurInst

< C_Complete.CurCount';

VARIABLE G_Perform_Semaphore

'G_Complete.CurCount+G_Perform.CurInst

< D_Complete.CurCount

&

G_Complete.CurCount+G_Perform.CurInst

< E_Complete.CurCount

&

G_Complete.CurCount+G_Perform.CurInst

<F_Complete.CurCount';

5.3.2.3 Activity Duration (PO.ACT.Duration)

 Activity durations (e.g., A_Perform_Duration) are stored in Variables and used in

ACT_Perform’s duration in the work flow sub-networks. ACT_Perform’s duration varies

from unit to unit due to amount of works in each unit and variability in production rates.

Therefore, activity durations are a function of work amount of the current unit and

production rate. The duration of ACT_Perform Combis is essentially the work amount in

a unit divided by the production rate of that activity. Duration variables of activities are

shown below:

VARIABLE A_Perform_Duration

A_Quantity[4-A_Remain.CurCount]*1/Normal[10,1];

VARIABLE B_Perform_Duration

B_Quantity[4-B_Remain.CurCount]*1/Normal[10,1];

VARIABLE C_Perform_Duration

125

C_Quantity[4-C_Remain.CurCount]*1/Normal[15,1.5];

VARIABLE D_Perform_Duration

D_Quantity[4-D_Remain.CurCount]*1/Normal[15,1.5];

VARIABLE E_Perform_Duration

E_Quantity[4-E_Remain.CurCount]*1/Normal[25,2.5];

VARIABLE F_Perform_Duration

F_Quantity[4-F_Remain.CurCount]*1/Normal[15,1.5];

VARIABLE G_Perform_Duration

G_Quantity[4-G_Remain.CurCount]*1/Normal[20,2];

5.3.2.4 Decision of keeping or laying off resource (PO.RES.Strength)

The decisions of keeping or laying off resources are stored in variables (e.g.,

ResA_Leave_Strength) and used in resource flow sub-networks. After a resource

completes one unit of work, it will consider whether to leave the site. If there is no

remaining work for the resource, it will leave. The resources’ decisions whether to leave

or stay are shown below:

VARIABLE ResA_Leave_Strength '(A_Remain.CurCount == 0)? 1:0';

VARIABLE ResB_Leave_Strength '(B_Remain.CurCount == 0)? 1:0';

VARIABLE ResC_Leave_Strength '(C_Remain.CurCount == 0)? 1:0';

VARIABLE ResD_Leave_Strength '(D_Remain.CurCount == 0)? 1:0';

VARIABLE ResE_Leave_Strength '(E_Remain.CurCount == 0)? 1:0';

VARIABLE ResF_Leave_Strength '(F_Remain.CurCount == 0)? 1:0';

VARIABLE ResG_Leave_Strength '(G_Remain.CurCount == 0)? 1:0';

Note that these decision variables are used in the Strengths of two links,

iRES_Leave and iRES_Stay in the resource flow sub-networks. See Section 5.3.3.5,

CME.RES.Stay.Strength, and Section 5.3.3.6, CME.RES.Leave.Strength for more detail.

126

5.3.2.5 Temporary SaveValues for crew idle time (PO.RES.TempIdleTime)

The following SaveValues are for temporarily recording the total idle time in each

resource in each replication. They are defined in Programming Objects and reset at the

beginning of each replication.

SAVEVALUE svResB_Idle 0;

SAVEVALUE svResC_Idle 0;

SAVEVALUE svResD_Idle 0;

SAVEVALUE svResE_Idle 0;

SAVEVALUE svResF_Idle 0;

SAVEVALUE svResG_Idle 0;

These svRES_Idle SaveValues (temporary storages) of idle time will be assigned

to their corresponding BinCollectors (permanent storages), declared in Section 5.3.2.8

PO.RES.CIT.SQS, for a specific sequence step, at the end of each replication (see Section

5.3.4.5 CS.RES.CIT.SQS). After the assignment, these SaveValues are, then, reset prior

to the execution of a new replication.

5.3.2.6 Crew idle time (PO.RES.CIT)

Samples of crew idle time (CIT) used to determine crew lead time (CLT) are

stored in BinCollectors. BinCollectors are data holders that keep statistics of the numbers

they receive in intervals, specified by users. Every resource that is scheduled by SQS-AL

in order to achieve continuous resource utilization must have at least one RES_CIT

BinCollector, which is RES_CIT1.

BINCOLLECTOR statement requires 4 arguments, which are: 1) the name of the

collector, 2) the number of intervals, 3) the lower bound of the collected data, and 4) the

upper bound of the collected data. For this example in Figure 5.11, RES_CIT1

127

BinCollectors collect CITs from a range of 0 to 300 days. This range is divided into 60

intervals, meaning that CIT samples are grouped on a five-day basis from 0 to 5 days, 5

to 10 days, etc., assuming five work days per week.

Since crew idle time of resources is collected from one replication to another, the

data in RES_CIT1 BinCollectors must be persistent, and thus an asterisk, “*”, is required

when their names are declared.

BINCOLLECTOR ResB_CIT1* 60 0 300;

BINCOLLECTOR ResC_CIT1* 60 0 300;

BINCOLLECTOR ResD_CIT1* 60 0 300;

BINCOLLECTOR ResE_CIT1* 60 0 300;

BINCOLLECTOR ResF_CIT1* 60 0 300;

BINCOLLECTOR ResG_CIT1* 60 0 300;

5.3.2.7 Crew lead time (PO.RES.CLT.Duration)

The crew lead time (CLT) for each resource is stored in a persistent SaveValue

(requiring an asterisk sign “*” after its name), and used to set the duration RES_CLT

Combi in resource flow sub-network. The initial value for CLT is zero according to the

sequence step algorithm. The RES_CLT_Duration Variables are created mainly to

systemize the simulation code. They are used in RES_CLT Combis, discussed in section

5.3.3.1 CME.RES.CLT.Duration.

SAVEVALUE ResB_CLT1* 0;

SAVEVALUE ResC_CLT1* 0;

SAVEVALUE ResD_CLT1* 0;

SAVEVALUE ResE_CLT1* 0;

SAVEVALUE ResF_CLT1* 0;

SAVEVALUE ResG_CLT1* 0;

128

VARIABLE ResB_CLT_Duration ResB_CLT1;

VARIABLE ResC_CLT_Duration ResC_CLT1;

VARIABLE ResD_CLT_Duration ResD_CLT1;

VARIABLE ResE_CLT_Duration ResE_CLT1;

VARIABLE ResF_CLT_Duration ResF_CLT1;

VARIABLE ResG_CLT_Duration ResG_CLT1;

Note that the number one at the end of RES_CLT1 indicates the first lead time

measured from the project start date. In Chapter 6 where work breaks in resource

schedules are discussed, a resource with one work break will have RES_CLT1 (measured

from project start date) and RES_CLT2 (measured from the time the resource takes the

break).

5.3.2.8 Crew idle time for each sequence step (PO.RES.CIT.SQS)

The code below of BinCollectors for crew idle time (CIT) associated with

sequence steps (SQS) is for the purpose of recording the changes in CITs from one SQS

to another. Note that the iSQS in the below code is used with “$<…>$” (explained later)

to automatically create simulation code, while ithSQS is used to track the current index of

sequence step.

ASSIGN iSQS 1;

WHILE 'iSQS<=nSQS+1';

BINCOLLECTOR bcltResA_IdleSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltResB_IdleSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltResC_IdleSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltResD_IdleSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltResE_IdleSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltResF_IdleSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltResG_IdleSQS$<iSQS>$* 60 0 300;

129

BINCOLLECTOR bcltProjectDurationSQS$<iSQS>$* 60 0 300;

BINCOLLECTOR bcltProjectIdleTimeSQS$<iSQS>$* 60 0 300;

ASSIGN iSQS iSQS+1;

WEND; /iSQS

Note that the “$<Argument>$” is a preprocessor operator of Stroboscope used to

automatically generate simulation code. The Stroboscope evaluates the argument in the

operator, and replaces the operator and argument before executing the statement. This

preprocessor operator is useful when there is a consistent pattern of simulation code

(Martinez 1995). For more information about the “$<Argument>$” operator, see The

Stroboscope Simulation Language, Chapter 15, Statement Preprocessing and Automatic

Code Generation.

5.3.3 Simulation Code for Model Elements (CME)

The simulation code in this section (CME) can be easily encoded in simulation

model elements (Visio shapes) such as Combis and Links on drawings in Stroboscope

GUI. To enter the following code, users can double click on a shape of Combis or Links

(e.g., Figure 5.12 is the GUI for ResB_CLT Combi) and enter the code as shown in this

section. The following statements specify attributes of simulation elements (i.e., Combis

and Links) in Stroboscope GUI where the code is stored. These statements are:

1) SEMAPHORE for Semaphore Combis

2) DURATION for Duration in Combis

3) STRENGTH for Strength in Links

4) ONFLOW for OnFlow in Links

130

5.3.3.1 Semaphore in RES_CLT Combis (CME.RES.Semaphore)

 The Semaphores of RES_CLT Combis are shown below. They are stored in

simulation model elements (Visio shapes for Combis in Stroboscope GUI), as shown in

Figure 5.12. When using the Stroboscope GUI for simulation model elements as shown

in Figure 5.12, certain statements of Stroboscope must be omitted because Stroboscope

GUI will automatically create those statements such as in Figure 5.12 for the

SEMEPHORE statement in this section and DURATION statement in the next section.

Details of this semaphore are given in Section 5.3.2.1, PO.RES.Semaphore.

SEMAPHORE ResB_CLT ResB_CLT_Semaphore;

SEMAPHORE ResC_CLT ResC_CLT_Semaphore;

SEMAPHORE ResD_CLT ResD_CLT_Semaphore;

SEMAPHORE ResE_CLT ResE_CLT_Semaphore;

SEMAPHORE ResF_CLT ResF_CLT_Semaphore;

SEMAPHORE ResG_CLT ResG_CLT_Semaphore;

SEMAPHORE ResH_CLT ResH_CLT_Semaphore;

SEMAPHORE ResJ_CLT ResJ_CLT_Semaphore;

131

Figure 5.12 Assigning semaphore and duration for ResB_CLT Combi

5.3.3.2 Duration in RES_CLT Combis (CME.RES.CLT.Duration)

Durations of RES_CLT Combis in resource flow are shown below, stored in

simulation model elements (Visio shapes for Combis in Stroboscope GUI), as shown in

Figure 5.12. Details of these durations are given in Section 5.3.2.7,

PO.RES.CLT.Duration.

DURATION ResA_CLT ResA_CLT_Duration;

DURATION ResB_CLT ResB_CLT_Duration;

DURATION ResC_CLT ResC_CLT_Duration;

DURATION ResD_CLT ResD_CLT_Duration;

DURATION ResE_CLT ResE_CLT_Duration;

DURATION ResF_CLT ResF_CLT_Duration;

DURATION ResG_CLT ResG_CLT_Duration;

DURATION ResH_CLT ResH_CLT_Duration;

132

DURATION ResJ_CLT ResJ_CLT_Duration;

5.3.3.3 Semaphore in ACT_Perform Combis (CME.ACT.Semaphore)

Semaphores of ACT_Perform Combis in work flow are shown below. They are

stored in simulation model elements, as shown in Figure 5.13. Details of these

semaphores are given in Section 5.3.2.7, PO.RES.CLT.Duration.

SEMAPHORE A_Perform A_Perform_Semaphore;

SEMAPHORE B_Perform B_Perform_Semaphore;

SEMAPHORE C_Perform C_Perform_Semaphore;

SEMAPHORE D_Perform D_Perform_Semaphore;

SEMAPHORE E_Perform E_Perform_Semaphore;

SEMAPHORE F_Perform F_Perform_Semaphore;

SEMAPHORE G_Perform G_Perform_Semaphore;

Figure 5.13 Assigning semaphore and duration for B_Perform Combi

133

5.3.3.4 Duration in ACT_Perform Combis (CME.ACT.Duration)

Durations of ACT_Perform Combis in work flow sub-networks are shown below.

These ACT_Perform_Duration Variables are stored in simulation model elements, as

shown in Figure 5.13. Details of these durations are given in Section 5.3.2.3,

PO.ACT.Duration.

DURATION A_Perform A_Perform_Duration;

DURATION B_Perform B_Perform_Duration;

DURATION C_Perform C_Perform_Duration;

DURATION D_Perform D_Perform_Duration;

DURATION E_Perform E_Perform_Duration;

DURATION F_Perform F_Perform_Duration;

DURATION G_Perform G_Perform_Duration;

5.3.3.5 Strength in iRES_Stay Links (CME.RES.Stay.Strength)

Strengths of iRES_Stay links in work flow sub-networks are shown below. They

are stored in simulation model elements, as shown in Figure 5.14. Details of these

strengths are given in Section 5.3.2.4 PO.RES.Strength. Notice, the RES_Leave_Strength

Variables are preceded by an exclamation sign returning the opposite value of the

Variables. Accordingly, the opposite of resource leaving the site is resource staying on

the site.

 STRENGTH iResA_Stay !ResA_Leave_Strength;

STRENGTH iResB_Stay !ResB_Leave_Strength;

STRENGTH iResC_Stay !ResC_Leave_Strength;

STRENGTH iResD_Stay !ResD_Leave_Strength;

STRENGTH iResE_Stay !ResE_Leave_Strength;

STRENGTH iResF_Stay !ResF_Leave_Strength;

STRENGTH iResG_Stay !ResG_Leave_Strength;

134

Figure 5.14 Assigning Strength for Link iResB_Stay

5.3.3.6 Strength in iRES_Leave (CME.RES.Leave.Strength)

As opposed to the strength in iRES_Stay Link, the Strength of iRES_Leave is

RES_Leave_Strength Variable. Details of these strengths are given in Section 5.3.2.4,

PO.RES.Strength.

STRENGTH iResA_Leave ResA_Leave_Strength;

STRENGTH iResB_Leave ResB_Leave_Strength;

STRENGTH iResC_Leave ResC_Leave_Strength;

STRENGTH iResD_Leave ResD_Leave_Strength;

STRENGTH iResE_Leave ResE_Leave_Strength;

STRENGTH iResF_Leave ResF_Leave_Strength;

STRENGTH iResG_Leave ResG_Leave_Strength;

135

Figure 5.15 Assigning strength for iResB_Leave Link

5.3.3.7 OnFlow in iRES_Leave Links (CME.RES.Leave.OnFlow)

Crew idle time of resources is collected only when SQS-AL is processing the

sequence step of the activities they serve. For example, CITs for Resource B is collected

from simulation runs during processing SQS2 because Activity B is in SQS2.

ONFLOW iResB_Leave COLLECT ResB_CIT1

PRECOND 'ithSQS==2' ResB_Idle.AveWait*ResB_Idle.TotCount;

ONFLOW iResC_Leave COLLECT ResC_CIT1

PRECOND 'ithSQS==2' ResC_Idle.AveWait*ResC_Idle.TotCount;

ONFLOW iResD_Leave COLLECT ResD_CIT1

PRECOND 'ithSQS==3' ResD_Idle.AveWait*ResD_Idle.TotCount;

ONFLOW iResE_Leave COLLECT ResE_CIT1

PRECOND 'ithSQS==3' ResE_Idle.AveWait*ResE_Idle.TotCount;

ONFLOW iResF_Leave COLLECT ResF_CIT1

PRECOND 'ithSQS==3' ResF_Idle.AveWait*ResF_Idle.TotCount;

136

ONFLOW iResG_Leave COLLECT ResB_CIT1

PRECOND 'ithSQS==4' ResG_Idle.AveWait*ResG_Idle.TotCount;

Figure 5.16 Collecting CITB during processing SQS2

5.3.4 Control Statements (CS)

Simulation code in the following sections is encoded in Stroboscope GUI’s

Control Statements.

5.3.4.1 Sequence step and replication loops (CS.Loops)

The following two While-Loops statements control SQS-AL’s sequence step loop

and replication loop, respectively. As discussed in Chapters 4 and 5, the replication loop

is for collecting crew idle time of resources whose activities are in the current processing

sequence step (ithSQS). The sequence step loop is for determining crew lead time for the

resources. An extra sequence step is added to obtain the final results of project duration,

project idle time, and idle time in resource utilization.

137

WHILE 'ithSQS <= nSQS+1'; / Start Sequence Step Loops.

WHILE 'ithRep <= nRep '; / Start Replication Loops.

CLEAR; / Clear temporary data.

Crew lead times for all resources are determined when SQS-AL finishes

processing the last sequence step. Nevertheless, an extra sequence step is added to obtain

the final results of project duration, project idle time, and idle time in resource utilization.

The CLEAR statement is executed at the beginning of each replication to clear the

results from a previous simulation run. This statement sets all non-persistent SaveValues

to their initial values and clears all data and statistics from non-persistent Collectors and

BinCollectors.

5.3.4.2 Initializing work amounts (CS.ACT.INIT)

 At the beginning of each replication, the work amount in units for each activity is

initialized in ACT_Remain Queues in Work Flow Networks. INIT is a Stroboscope’s

statement used to create and place resources in specified Queues. As discussed in Section

5.2.1, Work Flow Template, the amount of Resources rq_ACT, in ACT_Remain Queue

is the number of remaining units needed to be completed, which is 4, as shown in the

code below.

INIT A_Remain 4; / The resource name in this Queue is “rq_A”.

INIT B_Remain 4; / The resource name in this Queue is “rq_B”.

INIT C_Remain 4; / The resource name in this Queue is “rq_C”.

INIT D_Remain 4; / The resource name in this Queue is “rq_D”.

INIT E_Remain 4; / The resource name in this Queue is “rq_E”.

INIT F_Remain 4; / The resource name in this Queue is “rq_F”.

INIT G_Remain 4; / The resource name in this Queue is “rq_G”.

138

5.3.4.3 Initialization of resources (CS.RES.INIT)

 At the beginning of each replication, resources are initialized in RES_Offsite

Queues in resource flow sub-networks. As discussed in Section 5.2.2, Resource Flow

Template, resources in RES_Offsite Queues are considered unemployed, prior to the start

of the first unit and after the end of the last unit.

INIT ResA_Offsite 1; / The resource name in this Queue is “ResA”.

INIT ResB_Offsite 1; / The resource name in this Queue is “ResB”.

INIT ResC_Offsite 1; / The resource name in this Queue is “ResC”.

INIT ResD_Offsite 1; / The resource name in this Queue is “ResD”.

INIT ResE_Offsite 1; / The resource name in this Queue is “ResE”.

INIT ResF_Offsite 1; / The resource name in this Queue is “ResF”.

INIT ResG_Offsite 1; / The resource name in this Queue is “ResG”.

5.3.4.4 Executing simulation (CS.Simulate)

After initializing the work amount in ACT_Remain and the resources in

RES_Offsite, the simulation starts after Stroboscope executes the SIMULATE statement.

Then, the simulation replication will end when all activities are completed, i.e., when

there is no rq_ACT resource in each and every one of the ACT_Remain Queues.

SIMULATE; /Run one replication

Note that the crew idle time for each resource is collected at the end of each

replication during simulation runs, while crew lead time is determined at the end of

processing each sequence step. Therefore, the simulation code collecting crew idle time is

encoded in simulation model elements, discussed in Section 5.3.3.7,

CME.RES.Leave.OnFlow, while the code determining crew lead time is coded in Control

Statements, discussed in Section 5.3.4.6, CS.RES.CLT.

139

5.3.4.5 Recording CITs in bcltRES_IdleSQS BinCollectors (CS.RES.CIT.SQS)

 At the end of the specified number of replications for each sequence step, the

following data are collected.

1) Crew idle time of resources from processing the current sequence step

2) Project duration from processing the current sequence step

3) Sum of crew idle time and project idle time from processing the current

sequence step

These collected data are for tracking changes in crew idle time, project duration,

and project idle time. They are valuable for analysis of the impact of an assigned crew

lead time on activities, resources, and the project. The following code is for calculating

the crew idle time (e.g., svResB_Idle) for each resource (e.g., Resource B) responding to

each sequence step processing. The svRES_Idle SaveValues are temporary storage for

crew idle time, declared in Programming Object (5.3.2.5 PO.RES.TempIdleTime). The

bcltRES_IdleSQS$<iSQS>$ BinCollectors (e.g., bcltResB_IdleSQS1) are permanent

storage for crew idle time from each sequence step.

ASSIGN svResB_Idle ResB_Idle.AveWait*ResB_Idle.TotCount;

ASSIGN svResC_Idle ResC_Idle.AveWait*ResC_Idle.TotCount;

ASSIGN svResD_Idle ResD_Idle.AveWait*ResD_Idle.TotCount;

ASSIGN svResE_Idle ResE_Idle.AveWait*ResE_Idle.TotCount;

ASSIGN svResF_Idle ResF_Idle.AveWait*ResF_Idle.TotCount;

ASSIGN svResG_Idle ResG_Idle.AveWait*ResG_Idle.TotCount;

ASSIGN iSQS 1;

WHILE 'iSQS<=nSQS+1';

IF 'ithSQS==$<iSQS>$';

COLLECT bcltResB_IdleSQS$<iSQS>$ svResB_Idle;

140

COLLECT bcltResC_IdleSQS$<iSQS>$ svResC_Idle;

COLLECT bcltResD_IdleSQS$<iSQS>$ svResD_Idle;

COLLECT bcltResE_IdleSQS$<iSQS>$ svResE_Idle;

COLLECT bcltResF_IdleSQS$<iSQS>$ svResF_Idle;

COLLECT bcltResG_IdleSQS$<iSQS>$ svResG_Idle;

COLLECT bcltProjectDurationSQS$<iSQS>$ SimTime;

COLLECT bcltProjectIdleTimeSQS$<iSQS>$

'svResA_Idle+ svResB_Idle+ svResC_Idle

+svResD_Idle+ svResE_Idle+ svResF_Idle

+svResG_Idle';

ENDIF;

ASSIGN iSQS iSQS+1;

WEND; /iSQS

ASSIGN ithRep ithRep+1; / Increase ithRep by 1

WEND; /ithRep

Remember that iSQS is used for coding purpose, while ithSQS is used to track the

current index of sequence step. For the code above, the small nested loop controlled by

iSQS is not the sequence step loop.

The last line of the code is the end of SQS-AL’s replication loop. When

Stroboscope reaches this line, it will check whether the current replication index (ithRep)

is less than or equal to the total number of replications (nRep). The corresponding

WHILE statement for this WEND of ithRep (replication loop) is in Section 5.3.4.1,

CS.Loops. SQS-AL exits the replication loop when ithRep equals to nRep, and enters the

sequence step loop.

141

5.3.4.6 Determining crew lead time for activities belonging to ithSQS (CS.RES.CLT)

 After SQS-AL exits the replication loop and enters the sequence step loop, the

crew lead time of resources serving activities in the current processing sequence step will

be determined. For example, after the total number of replications is executed in

processing SQS2, SQS-AL determines CLTs of Resources ResB and ResC serving

Activities B and C in SQS2, respectively. The code below shows the determination of the

crew lead time for Resource Res_B.

IF 'ithSQS==2'; / Resource Res_B serves activity B in SQS2.

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResB_CIT1,nthBinInterval]

<ResB_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResB_CLT1 BinHigh[ResB_CIT1,nthBinInterval];

ENDIF;

As shown in the code above, if the current sequence step is SQS2 (ithSQS==2),

SQS-AL will determine CLTB. The nthBinInterval SaveValue is used to indicate the

current index of ResB_CIT1 BinCollector. The nthBinInterval is increased by 1 until the

cumulative frequency value of the indexed element is greater than the user-specified

confidence level for that particular resource. To obtain the cumulative frequency,

PctAtOrBelowBin function is used; it returns the percentage of values collected in the

indexed element and all lower elements. To obtain the value of crew lead time, BinHigh

function is used; it returns the upper bound of the indexed element.

For the example in Table 4.4, the element in ResB_CIT1 BinCollector having a

PctAtOrBelowBin[ResB_CIT1,nthBinInterval] greater than 80% is in the range of 55

142

days. Accordingly, PctAtOrBelowBin[ResB_CIT1, nthBinInterval] returned 94.27%,

whereas BinHigh[ResB_CIT1, nthBinInterval] returned 55 days. The following

simulation code is for obtaining the crew lead time for Resources ResC, ResD, ResE,

ResF, and ResG.

 The code below is for determining CLTC (ResC_CIT1) of Resource ResC serving

Activity C in SQS2.

IF 'ithSQS==2'; / Resource Res_C serves activity C in SQS2.

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResC_CIT1,nthBinInterval]

<ResC_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResC_CLT1 BinHigh[ResC_CIT1,nthBinInterval];

ENDIF;

The code below is for determining CLTD (ResD_CIT1) of Resource ResD serving

Activity D in SQS3.

IF 'ithSQS==3'; / Resource Res_D serves activity D in SQS3.

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResD_CIT1,nthBinInterval

<ResD_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResD_CL1 BinHigh[ResD_CIT1, nthBinInterval];

ENDIF;

The code below is for determining CLTE (ResE_CIT1) of Resource ResE serving

Activity E in SQS3.

143

IF 'ithSQS==3 ';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResE_CIT1 , nthBinInterval]

<ResE_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResE_CLT1 BinHigh[ResE_CIT1,nthBinInterval];

ENDIF;

 The code below is for determining CLTF (ResF_CIT1) of Resource ResF serving

Activity F in SQS3.

IF 'ithSQS==3 ';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResF_CIT1 ,

nthBinInterval]<ResF_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResF_CLT1 BinHigh[ResF_CIT1,nthBinInterval];

ENDIF;

The code below is for determining CLTG (ResG_CIT1) of Resource ResG serving

Activity G in SQS4.

IF 'ithSQS==4’;

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResG_CIT1,nthBinInterval]

<ResG_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResG_CLT1 BinHigh[ResG_CIT1,nthBinInterval];

ENDIF;

144

ASSIGN ithSQS ithSQS+1;

WEND; / ithSQS

 The last line of the code is the end of the sequence step loop. When Stroboscope

reaches this line, it will check whether the current index of the sequence step (ithSQS) is

greater than the total number of sequence steps plus one (nSQS+1). If ithSQS is not

greater than nSQS+1, SQS-AL will begin processing the next sequence step. On the other

hand, if ithSQS is greater than nSQS+1, SQS-AL will stop. At the end of SQS-AL, crew

lead times for all resources are determined, and the schedule is finalized. Project duration

and project idle time are recorded from the processing of every sequence step, as well as

the idle time of all resources. Results from SQS-AL are comprehensively discussed in

Chapter 8, ChaStrobe Application.

5.4 Summary

 This chapter discusses two simulation model templates and a comprehensive

simulation model and code for the Sequence Step Algorithm (SQS-AL). First, the

proposed simulation model templates are introduced in details related to repetitive

projects. The advantages of the simulation model templates are also discussed. The

implementation of SQS-AL in simulation and cooperation between SQS-AL and the

templates is presented. An example of a repetitive project is used to demonstrate the

application of SQS-AL in simulation and also the proposed simulation model templates.

To facilitate the means of collecting simulation data for SQS-AL, the two

templates are established: 1) Work Flow template, and 2) Resource Flow template. The

Work Flow template is for modeling repetitive activities, whereas the Resource Flow

template is for modeling utilization of resources. The design of the two templates

145

facilitates the creation of organized and systemized simulation models for applying the

Sequence Step Algorithm (SQS-AL) to repetitive projects. The two templates also

provide users with the simulation outputs produced by SQS-AL.

 The Work Flow template is designed to produce an efficient and effective

simulation model of repetitive activities. The use of the Work Flow template results in

the following:

• Tracking work progress of repetitive activities. Different work statuses of

repetitive activities in each unit are categorized in:

a. Remaining work, represented by ACT_Remain Queues

ACT_Remain.CurCount indicates the number of uncompleted units.

b. On-going work, represented by ACT_Perform Combis

ACT_Perform.CurInst indicates the number of in-progress units.

c. Completed work, represented by ACT_Complete Queues

ACT_Complete.CurCount indicates the number of completed units.

• Modeling precedence constraints. The precedence constraints for each

repetitive activity are modeled through its semaphore by comparing its work

progress to those of its preceding activities, promptly derived from tracking

activities’ work progress

• Simulating activity durations

The Resource Flow template is designed to represent the simulation model of

resources serving repetitive activities. The use of the Resource Flow template results in

the following:

146

• Differentiating states of resources. Different states of resources are

categorized in:

a. Unemployed. Resources are unemployed, and thus they are not on the

construction site, represented by RES_Offsite Queues. During the period

of unemployment, resources are not considered idle.

b. Being Idle during employment. The duration that resources are employed

but performing no work is considered idle time. The idle time of resources

is presented by the time resources spend in RES_Idle Queues.

c. Being productive during employment. The duration that resources perform

work is considered productive time. The productive time of resources is

presented by the time resources spend in ACT_Perform Combis.

• Recording the duration of crew idle time (CIT). Crew idle time of resources is

derived from the total duration resources spend in RES_Idle Queues, which is

RES_Idle.AveWait x RES_Idle.TotCount

• Postponing resource arrival date. Resources are scheduled to the site

according to their calculated crew lead time (CLT), which is the duration of

RES_CLT Combis.

• Determining when to lay off resources. The decision whether to lay off a

resource is determined by checking the number of incomplete units of its

activity, represented by ACT_Remain.CurCount.

As stated above, the proposed simulation model templates offer the ability of

collecting data and distinguishing different statuses of activities and resources. The

proposed simulation model templates provide instantaneous data required by SQS-AL.

147

148

The last example in this chapter shows the application of the templates, and also explains

the simulation code and model for SQS-AL.

CHAPTER 6

 WORK BREAKS

CHAPTER 6 WORK BREAKS

To minimize idle time and achieve continuous resource utilization, the Sequence

Step Algorithm (SQS-AL) postpones the arrival date of resources. Results from the

postponement are 1) cost reduction from minimizing resource idle time and 2)

productivity improvement from the learning-curve phenomenon. However, minimizing

idle time comes at the cost of prolonged project duration; as a result, penalty cost is

incurred from the increased project duration.

Penalty cost from the increased project duration could exceed the savings from

the minimized resource idle time. To mitigate this problem, relaxation of resource

continuity constraints should be considered. Carefully examining and balancing the

tradeoff between satisfying and relaxing continuity constraints can optimize both project

duration and cost. Chapter 4 demonstrates that the tradeoff can be analyzed using

different confidence levels of resources. Relaxing continuity constraints using lower

confidence levels results in a shorter project duration. However, this approach is effective

only to a certain extent. Relaxing continuity constraints using confidence levels may not

effectively reduce idle time and project duration simultaneously. Thus, introducing

another form of relaxation focusing on reducing the increased project duration without

incurring idle time is necessary.

149

This chapter introduces the application of work breaks within repetitive activities,

which is another form of relaxation of resource continuity constraints. A work break is a

deliberate interruption in the work of a resource which specifies when resources should

leave the site and for how long. With work breaks, resources will leave the site at the

beginning of the work break and return at the end of the work break. It is essentially a

predetermined interruption, intentionally scheduled in a resource calendar. This

deliberate interruption in resource utilization (work break) can be used to relax continuity

constraints. Applying work breaks properly in repetitive activities could result in an

earlier start date of the repetitive activities, which in turn shortens project duration.

The application and the calculation of work breaks in this chapter focus on

reducing project duration. The calculation of work breaks uses the concepts from the

Repetitive Scheduling Method (RSM) and the Sequence Step Algorithm (SQS-AL). The

concept of controlling sequence in RSM is used to determine work break position. In this

chapter, the calculation is shown in detail with an example, including simulation model

and code.

6.1 Introduction of Work Breaks

Scheduling repetitive activities with the Repetitive Scheduling Method (RSM) or

the Sequence Step Algorithm (SQS-AL) is likely to increase project duration. These

methods postpone repetitive activities from their early start date in order to keep

resources working continuously, without interruption. These methods provide a schedule

with minimized idle time.

Nevertheless, these methods result in lengthened project durations. In certain

cases, cost savings from maintaining continuous resource utilization might not favorably

150

compensate for the penalty cost from the lengthened duration. Extending project duration

from an early schedule should be carefully analyzed.

Figure 6.1 is a production diagram showing the early schedule for four activities

(A, B, C, and D) that repeat over 4 identical units. The resource performing Activity B

has a total idle time of 30 days from 3 interruptions (LagB1,B2, LagB2,B3, and LagB3,B4).

Similarly, Activity D has a total idle time of 45 days, caused by 3 interruptions.

Therefore, this early schedule (CPM) results in 75 days of total idle time, where project

duration is 105 days.

Figure 6.1 The CPM schedule with 105-day project duration and 75-day idle time

Figure 6.2 displays a schedule using RSM eliminating idle time by postponing

Activities B and D from their early start dates. A comparison between Figure 6.1 (derived

from CPM) and Figure 6.2 (derived from RSM) shows the resource continuity constraints

in the RSM schedule eliminate all 75 days of resource idle time but increase project

duration from 105 to 135 days.

151

D
2

D
1

D
3

A1

A2

A4

A3

B1

B4

B2
B3

D
4

 Figure 6.2 RSM schedule with an increased project duration from 105 to 135 days

Typically, the cost savings due to the elimination of resource idle time is far

greater than the additional cost from the increased project duration. Yet, in certain cases

this generalization is not always true. Delaying project completion may increase indirect

project costs, lead to lost opportunities, and result in a lower overall profit. Accordingly,

the tradeoff between eliminating resource idle time and increasing project duration must

be analyzed thoroughly. The same holds for the possibility of eliminating idle time

without increasing project duration.

One of the approaches that can be applied to RSM and SQS-AL in order to

minimize cost and project duration is introducing work breaks in repetitive activities. A

work break is a time period when a resource is scheduled to temporarily leave the project;

resources do not earn wages during the work break. Remember, a work break is a

scheduled interruption, while idle time is not.

During idle time, resources are on site and being paid, although they do not

produce output. Accordingly, the costs associated with work breaks and idle time are

completely different, as well as their resulting discontinuities. Work breaks usually incur

152

cost of transporting resources (labor and equipment), cost of hiring and firing labor, cost

of setting up and dismantling equipment, etc. Additionally, the impact of setup time after

work breaks must also be evaluated. This chapter focuses on the underlying tradeoff

between project idle time and project duration.

Figure 6.3 illustrates the tradeoff between project idle time and project duration

by introducing one work break in Activity B. In Figure 6.3, introducing a 20-day work

break between B2 and B3 reduces project duration from 135 days (Figure 6.2) to 115

days (Figure 6.3). Notice that in order to maintain resource continuity between B1 and

B2, the start of B1 must be postponed from its early start date of day 15 (Figure 6.1) to

day 25 (Figure 6.3). Overall, the introduction of a 20-day work break in activity B

reduces project duration also by 20 days, from 135 days in Figure 6.2 (the RSM schedule

without a work break) to 115 days in Figure 6.3 (the RSM schedule with one work

break). This schedule is only 10 days longer than the project duration of 105 days in the

CPM schedule, while at the same time it eliminates the 75 days of resource idle time.

Thus, the schedule with the work break results in a better solution, summarized in Table

6.1.

153

Figure 6.3 The work break B2-B3 reducing project duration from 135 to 115 days

Method Project Duration
(days)

Total Resource Idle Time
(days)

Work
Break

Position
CPM 105 75 None
RSM 135 0 None
RSM 115 0 B2-B3

Table 6.1 Scheduling methods, idle time, project duration, and work break

From this example the following questions must be answered prior to scheduling

work breaks:

• Which activities should be considered for the introduction of a work break

(e.g., B)?

• Between which repetitive units should the work break be introduced (e.g., B2-

B3)?

• What should be the start date of that activity in the first unit (e.g. B1)?

• How long should the duration of the work break be?

These questions will be answered in this chapter for both deterministic and

probabilistic activity durations. An example project consisting of 9 activities with

154

probabilistic durations repeating over 10 similar work units is used for the purpose of

demonstration.

6.2 Candidate Work Break Positions

 Work break positions (e.g., B2-B3 in Figure 6.3) specify when resources will

leave the site (e.g., the completion of B2 in Figure 6.3), and then return (e.g., the start of

B3) to continue the work. To determine candidate work break positions, the following

concepts derived from repetitive scheduling method (RSM) are used:

1) Control points and controlling sequences

2) Relative production rates

6.2.1 Control Points and Controlling Sequences

A control point between two repetitive activities is the precedence constraint that

determines the start date of a succeeding repetitive activity under resource continuity

constraints. In Figure 6.4, the control point between A and B is at the end of A3 and the

start of B3 because it is the point that specifies the earliest start of repetitive Activity B,

(day 35) under resource continuity constraints.

155

Figure 6.4 The control point between Activities A and B at A3-B3

Another example is shown in Figure 6.5. In the figure, the control point between

A and B is at the end of A2 and the start of B2 since it specifies the earliest start date of

repetitive Activity B (day 15 in Figure 6.5.b) under resource continuity constraints.

Figure 6.5 The control point between Activities A and B at A2-B2

A controlling sequence is a series of activities that controls project duration under

resource continuity constraints. It can be determined visually in a production diagram by

navigating from project completion to project start through control points. Figure 6.6

shows the control points and controlling sequence (in bold lines) from the example in

156

Figure 6.1. Identifying a controlling sequence of a repetitive project when activity

durations are deterministic is relative easy. However, for activities with probabilistic

durations, the means of identifying a controlling sequence is slightly complicated.

D
2

D
1

D
3

C2

C3

C4

A1

A2

A4

A3
B1

B4

B2
B3

D
4

Figure 6.6 The controlling sequence (A1 to A4, B3 to B2, C1 to C4, and D4)

The implication of the controlling sequence, shown in Figure 6.6, reveals that the

durations of activities on the controlling sequence determine the minimum project

duration under resource continuity constraints. To shorten the project duration, work

breaks are introduced in these activities to relax the continuity constraints. The

conclusion from this observation is that only repetitive activities on controlling sequences

should be considered as candidates for introducing work breaks. Activities not on the

controlling sequences can be ignored.

For a project with probabilistic activity durations, lags between activities must be

calculated before navigating from project completion to project start through the

minimum lags between activities in order to identify controlling sequence. Figure 6.7,

6.8, and 6.9 are the results from three replications of an example project with

157

probabilistic activity durations. These results and explanations demonstrate the use of

minimum lags in identifying controlling sequence and candidate work break positions.

Controlling sequence activities in Figure 6.7 are A1 to A4, B3 to B2, C1 to C4,

and D4. Therefore, the candidate work break position for Activity A are A1-A2, A2-

A3,A3-A4;for Activity B are B1-B2,B2-B3, B3-B4; for Activity C are C1-C2,C2-C3,

C3-C4; and for activity D are D3-D4. Thus, there are 10 possible work break positions.

Work break position B1-B2 is considered a possible work break since activity B2 is on

the controlling sequence. This is also the same for position B3-B4 due to B3 and for

position D3-D4 due to D4.

These work break positions are the candidate work breaks considering they are on

controlling sequence. However, not all of them are effective work break positions.

Effective work break positions will be discussed in Section 6.2.2, Relative Production

Rates.

Figure 6.7 Determining the controlling sequence for the 1st replication

158

In Figure 6.8, controlling-sequence activities are A1 to A4, B3 to B2, C1 to C3,

and D3 to D4. Therefore, the candidate work breaks are on Activity A are A1-A2, A2-

A3,A3-A4;on Activity B are B1-B2,B2-B3, B3-B4; on Activity C are C1-C2,C2-C3, C3-

C4; and on Activity D are D2-D3, D3-D4. Thus, there are 11 possible work break

positions.

Unit

4

3

2

1

Day

10 30 60 70 90 130110 12020 50 80 100400

D
2

D
1

D3

C1

C2

C3

C4

A1

A2

A4

A3

B1

B4

B2

B3

D
4

140

LagA3,B3

LagA2,B2

LagA1,B1

Min(LagB,C) = LagB1,C1 = 0

Min(LagA,B) = LagA4,B4 = 0 days

LagB2,C2

LagB3,C3

LagB4,C4

LagC1,D1

LagC2,D2

LagC3,D3

LagC4,D4

Min(LagC,D) = LagC3,D3 = 10 days

Figure 6.8 Determining the controlling sequence for the 2nd replication

In Figure 6.9, controlling-sequence activities are A1 to A2, B2, C2, and D2 to D4.

Therefore, the candidate work breaks on Activity A are A1-A2, A2-A3, A3-A4;on

Activity B are B1-B2 and B2-B3; on Activity C are C1-C2 and C2-C3; and on Activity

D are D1-D2, D2-D3, D3-D4. Thus, there are 10 possible work break positions.

159

Figure 6.9 Determining the controlling Sequence for the 3rd replication

According to these three replications (Figures 6.7 to 6.9), the probability that

activities will be on the controlling sequence are determined, shown in Table 6.2. Then,

these probabilities can be used in order to determine work break positions.

Activity # Controlling Sequence
(out of 3 replications)

% Controlling Sequence

A1 3 100
A2 3 100
A3 3 100
A4 3 100
B1 0 0
B2 3 100
B3 2 66.66
B4 0 0
C1 2 66.66
C2 3 100
C3 2 66.66
C4 1 33.33
D1 0 0
D2 1 33.33
D3 2 66.66
D4 3 100

Table 6.2 Probability of activities on the controlling sequence

160

From Table 6.2, Activities A1 to A4, B2, C2, and D4 are always on the

controlling sequence. Based on the probability that activities might be on the controlling

sequence, the number of possible work break positions is reduced. Considering only

controlling-sequence activities significantly reduces the number of candidate work break

positions. Nevertheless, not every work break position on controlling-sequence activities

could shorten project duration. Figure 6.6 validates this claim; introducing a work break

on either controlling-sequence Activity A or C will lengthen rather than shorten the

project. On the other hand, the introduction of a work break in Activity B does shorten

project duration as shown in Figure 6.6.

The effectiveness of work breaks in shortening project duration depends on the

relative production rates between activities on the controlling sequence as explained

below.

6.2.2 Relative Production Rates

 Positions of control points in the Repetitive Scheduling Method (RSM) are

subject to the relative value of production rates between activities. According to RSM,

the relative value of production rates between predecessors and successors is

characterized as either converging or diverging.

A converging relationship occurs when the production rate of a successor is

greater than that of its predecessor. The control point between the two repetitive activities

is at the completion of the predecessor’s last unit and the start of the successor’s last unit.

For example, in Figure 6.6, the production rate of B is greater than that of A, meaning

Activities A and B have a converging relationship. Therefore, the control point between

A and B is at the end of A4 and the start of B4.

161

A diverging relationship, on the other hand, occurs when the production rate of a

successor is less than its predecessor. The control point between the two activities is at

the end of the predecessor’s first unit and the start of the successor’s first unit. For

example in Figure 6.6, the production rate of Activity C is less than that of B, meaning

they have a diverging relationship. Therefore, the control point between B and C is at the

end of B1 and the start of C1. The concepts of controlling sequence and relative

production rates will be discussed further to identify and validate the effectiveness of

candidate work break positions.

6.2.3 Determining Effective Work Break Positions

To confirm whether introducing a work break in a controlling-sequence activity

can shorten the project, it is necessary to compare the production rate of that activity to

the production rates of its direct predecessor and successor. Considering, for example,

Activity B in Figure 6.6, the converging relationship between A and B and the diverging

relationship between B and C enable a work break in B to shorten project duration.

Therefore, a controlling-sequence activity having a converging relationship to its

predecessor and a diverging relationship to its successor are the critical criteria in

determining an effective work break in shortening project duration, given that the three

activities (Activities A, B, and C in Figure 6.6) are on the same controlling sequence.

As shown in Figure 6.6, the converging relationship between Activities A and B

allows Activities B1 and B2 to start earlier if a work break is introduced at the end of B2.

Clearly, the relative production rate between A1-A2 and B1-B2 is still converging. The

control point between A and B is at the end of A2 and the start of B2. Thus, the

introduction of the work break in B creates a new control point that allows B1 to start

162

earlier. However, the fact that B1 is now scheduled earlier does not guarantee that the

work break in B will result in shorter project duration. It is necessary to check the relative

production rates between B and its successor on the same controlling sequence, i.e.,

Activity C.

The second requirement is the diverging relationship between B and C which

enables Activity C to start and finish earlier if a work break is introduced to Activity B.

Since the control point between B and C is at the start date of C1, starting B1 earlier

moves the control point toward the project start date, resulting in an earlier start date for

C1. Consequently, Activity C would finish sooner, resulting in shorter project duration.

It is important to realize that work breaks do not shorten the project duration

directly; instead, they relax the continuity constraints, allowing controlling-sequence

activities to start and finish sooner. For example in Figures 6.2 and 6.3, project duration

is shortened because the controlling sequence Activity C starts earlier in Figure 6.3 than

it does in Figure 6.2. Clearly, the reduction in project duration is due to the earlier start

and finish date of Activity C, the successor to the activity to which the work break is

introduced (i.e. Activity B).

In summary, an activity to which work break should be introduced must meet the

following criteria.

1) It must be on a controlling sequence.

2) It must have a converging relationship with its direct predecessor on the same

controlling sequence.

3) It must have a diverging relationship with its direct successor on the same

controlling sequence.

163

The application of these rules reduces the number of candidate work break

positions to just a handful. The next step is to determine work break duration for each

work break position that fits the aforementioned criteria.

6.3 Determining Work Break Duration

 After all the possible work break positions are filtered down to only those that

may indeed shorten project duration, each candidate work break must be analyzed in

order to derive a new schedule and project duration. For an activity with a work break, a

new schedule must include 1) activity start date in the first unit and either 2.1) work

break duration or 2.2) work break end date.

Work break duration specifies a fixed duration for work break. The sooner the

resource completes the last unit before the break, the sooner it will return to the site; the

later it completes the last unit, the later it will return.

On the other hand, work break end date specifies a fixed date when the work

break is to end. A resource will always return on the same date. Accordingly, the work

break duration for a fixed-date work break varies, depending on when the resource

finishes the last unit prior to the break.

To construct a new project schedule for a particular work break position, the

resource continuity constraints for that activity must be split into two sets: one before the

work break and one after the work break. For example, in Figure 6.3, a work break is

introduced at the end of B2. This means that Resource B is scheduled to work

continuously from B1 to B2 and then takes a break at the end of B2. After the break,

Resource B will return and work continuously from B3 to B4. Thus, for a deterministic

problem,

164

Arrival date = {ESD} + {sum of idle times (lags) strictly before the work break}

Work break duration = {sum of idle times (lags) at and after the work break}

Therefore, Activity B1 must be postponed from its early start date by the sum of

idle times before the work break (LagB1,B2) in order to achieve continuous resource

utilization from Activity B1 to B2, as shown in Figure 6.3. After the completion of B2,

the resource will take a break for a period equal to the sum of idle times at and after the

work break location (LagB2,B3 + LagB3,B4) to achieve continuity between Activities B3 and

B4.

As a result from introducing a work break between Activities B2 and B3 (B2-B3),

the increased project duration decreases from 135 days (Figure 6.2) to 115 days (Figure

6.3). For the example shown in Figure 6.2, it is obvious that the B2-B3 work break

position minimizes project duration the most. However, each work break position must

be tested individually. This is usually the case for projects with probabilistic activity

durations.

To model probabilistic duration activities with a work break, crew idle time (CIT)

is split into two: CIT before the break (CIT1) and CIT after the break (CIT2). CIT1

equals the sum of arrival idle time (AIT) and unit idle time before the break (UIT1), and

CIT2 equals unit idle time at and after the break (UIT2). Therefore, the calculation for a

fixed-duration work break is

CIT1 = {idle time between arrival date and start date in the first unit}

 + {sum of idle times (lags) strictly before the work break}

which is

 CIT1 = AIT + UIT1

165

For the duration of the work break (CIT2)

CIT2 (fixed duration) = {sum of idle times (lags) at and after the work break}

which is

 CIT2 (fixed duration) = UIT2

After CIT1 and CIT2 are collected from a number of replications, the

corresponding crew lead times (CLT1 and CLT2 respectively) can be determined. These

modifications of CIT and CLT are required in order to model work breaks and resource

continuity constraints under the variability in probabilistic activity durations.

For example, assuming that the durations of activities in the previous example are

probabilistic durations, when the Sequence Step Algorithm (SQS-AL) is processing

SQS2, CIT1B and CIT2B are collected from each replication. These CITs are different

from one replication to the next because of the variability in activity durations. After a

user-specified number of replications are simulated, the collected samples of CIT1 and

CIT2 are summarized in histograms based on relative frequency. At this point, the user

does not have a single deterministic value of CIT1 and CIT2, which is used to determine

CLT1 and CLT2, respectively. Instead the user must choose a desired confidence level

(discussed in Chapter 4) to select the corresponding crew lead times for before and after

the break (CLT1 and CLT2) from the corresponding histograms for CIT1 and CIT2.

For a fixed-duration work break, CLT1 is the start date of the activity in the first

unit (e.g., B1), whereas CLT2 is the selected work break duration. After the completion

of the last unit prior to the break (e.g. the finish date of B2), Resource B will take a break

for a duration of CLT2B. Delaying the work in the unit right after the break by CLT2B,

166

ensures that when Resource B returns it should be able to work continuously and without

idle time with probability equal to a chosen confidence level.

Using the calculation of fixed-duration work breaks, the work break has a fixed

duration equal to CLT2, but the start and end of the break are uncertain. Nevertheless, in

certain cases, it may be desirable to define CIT2 as a specific end date of work break. In

order to determine such a specific return date, the calculation of CIT2 for a fixed-date

work break is

CIT2 (fixed date) = {idle time between arrival date and start date in the first unit}

+ {sum of all idle times (lags) } + {durations of activity before the break}

which is

CIT2 (fixed date) = AIT + UIT1 + UIT2 + T1

where, T1 is the sum of activity durations before the break.

6.4 Example 6.1 Repetitive project with work breaks

The methodology for the optimal introduction of work breaks will be

demonstrated using an example project comprised of 9 activities with probabilistic

durations that repeat over 10 non-identical work units. The simulation model, the

sequence step algorithm, and the introduction of work breaks have been implemented

using the Stroboscope, discrete-event simulation system.

The precedence network for each of the 10 work units in the example project is

shown in Figure 6.10. The quantities of work for each activity, however, are different in

each unit as shown in Table 6.3. Moreover, each activity is performed by a different crew

that has its own uncertain production rate. The production rate for each crew follows a

normal distribution with the mean and standard deviation shown in Table 6.3. Thus,

167

activity durations vary from unit to unit because of different work quantities and because

of the variability in production rates.

Figure 6.10 Single unit precedence diagram for Example 6.1

Activity
Name

Resource
Production Rate

Repetitive Unit
1 2 3 4 5 6 7 8 9 10

Mean SD Work Amount
A 20 2.0 200 200 200 200 200 200 400 400 400 400
B 30 3.0 150 150 100 100 100 100 100 100 100 100
C 30 3.0 250 200 200 250 300 200 350 400 200 350
D 15 1.5 300 400 400 450 300 300 250 250 250 400
E 20 2.0 150 150 150 150 150 150 200 200 200 200
F 25 2.5 350 400 300 350 150 200 400 250 300 250
G 30 3.0 150 150 150 150 300 250 300 300 300 450
H 20 2.0 200 300 300 200 250 400 300 400 300 250
J 15 1.5 200 200 200 200 200 200 300 300 300 300

 Table 6.3 Daily production rates and activity work amounts for Example 6.1

For this example, 1000 replications were simulated for processing each SQS. A

confidence level of 80% was used to choose CLT1 for activities without a work break

and CLT1 and CLT2 for activities with a work break. In this example, CLT2, if required,

represents a specific return date after a work break.

Figure 6.11 shows the production diagram of an early start schedule from the first

replication (out of 1000 replications). Crews are assumed to arrive and start work in the

first unit exactly when needed (no idle time) and activities begin as soon as their

168

predecessors in the same unit are completed. This produces the shortest possible average

project duration of 277 days. As expected, allowing activities to start as early as possible

results in a large average idle time, 438 days in Figure 6.11.

0

1

2

3

4

5

6

7

8

9

10

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Time

U
ni

t

A B C D E F G H J

Average Total Idle Time = 438 days
Average Project Duration = 277 days

Figure 6.11 CPM schedule with 277-day project duration and 438-day idle time

0

1

2

3

4

5

6

7

8

9

10

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Time

U
ni

t

A B C D E F G H J

Average Total Idle Time = 1 day
Average Project Duration = 449 days

Controlling Sequence

Figure 6.12 SQS-AL schedule without work breaks with 449-day project duration and 1-
day idle time

169

Activity

Crew
Arrival

Date
(CLT1)

Work
Break

Location

Crew
Return
Date

(CLT2)
A 0 - -
B 114 - -
C 68 - -
D 120 - -
E 120 - -
F 78 - -
G 282 - -
H 102 - -
J 288 - -

Table 6.4 CLT1 from the SQS-AL schedule without work breaks for Example 6.1

Figure 6.12 shows the project schedule derived from SQS-AL. To eliminate idle

time, start dates of activities are delayed by their respective CLT1, as shown in Table 6.4,

using a confidence level of 80%. The resulting average total idle time for the project is

only 1 day but the average project duration has increased to 449 days. Thus, to eliminate

resource idle time, project duration increased by 172 days or about 60%. It may be hard

to justify to management or the project owner to delay project completion that much in

order to eliminate idle time.

The decrease in project duration due to the introduction of one or more work

breaks will now be investigated. As shown in Figure 6.12, there are 5 repetitive activities

on the controlling sequence (A, B, D, G, and J) and only these activities are candidates

for work breaks. Once the activities on the controlling sequence are identified, their

relative production rates are compared to indicate activities that fit the aforementioned

criteria. According to the criteria, only Activities B and G (in Figure 6.12) satisfy the two

necessary conditions for shortening project duration, i.e., a converging relationship with

their predecessor and a diverging relationship with their successor. Activity B, for

170

example, has a converging relationship with Activity A (its predecessor) and a diverging

relationship with Activity C (its successor).

To determine the best work break position for Activity B, yielding the greatest

decrease in project duration, nine possible positions are evaluated, which are at the finish

dates of B1, B2, and so on until B9. For each candidate work break position, crew idle

times before and after the prospective work break (CLT1 and CLT2) are calculated to

determine the start date of B1 and the specific return date for the resource after the break.

The same process is performed for Activity G at the finish dates of G1, G2, and so

on until G9. After all the candidate break positions (in Activities B and G) are evaluated,

the results indicate that the two best work break locations in B and G are at the

completion of B5 and G7, as shown in Figure 6.13. A work break at the completion of G7

shortens project duration by 39 days, whereas a work break at the completion of B5

shortens project duration by 34 days.

0

1

2

3

4

5

6

7

8

9

10

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
Time

U
ni

t

A B C D E F G H J

Average Total Idle Time = 3 days
Average Project Duration = 376 days

Controlling Sequence

Figure 6.13 SQS-AL schedule with 2 work breaks with 376-day project duration for
Example 6.1

171

Activity

Crew
 Arrival

Date
(CLT1)

Work
Break

Location

Crew
Return
Date

(CLT2)
A 0 - -
B 38 B5-B6 134
C 68 - -
D 78 - -
E 102 - -
F 78 - -
G 208 G7-G8 288
H 102 - -
J 214 - -

Table 6.5 CLT from the SQS-AL schedule with 2 work breaks for Example 6.1

Applying the two work breaks together shortens the average project duration by

73 days, from 449 to 376 days. The average total idle time increases slightly from 1 to 3

days. Table 6.5 shows CLT1 and CLT2 for each activity after introducing the B5-B6 and

G7-G8 work breaks.

It is important to note that introducing a work break in Activity G does not change

the status of Activity B on the controlling sequence, and vice versa. Consequently, work

break positions satisfying the criteria remain the same, either applying a break in B or G

first. Therefore, it is allowable to introduce work breaks in both activities in one step,

without re-determining the controlling sequence. Otherwise, after introducing a break in

Activity G only (as the most effective in reducing project duration), it is necessary to

identify new candidate work break positions on the new controlling sequence.

In Figure 6.13, Resource B is scheduled to work continuously from B1 to the end

of B5 and then take a break. After the break ends, Resource B will return to the site to

start work on B6 on day 134. Resource G is scheduled to work continuously from G1 to

the end of G7. Then resource G should take a break and come back on day 288. The work

172

break durations for B and G are not fixed, but depend on when the activities finish the

unit prior to their respective breaks.

A comparison between Figures 6.12 and 6.13 shows Activity B is no longer on

the controlling sequence after the introduction of the two work breaks. On the other hand,

Activity G is still on the controlling sequence. For the new schedule, Activity C becomes

an activity on the new controlling sequence, as shown in Figure 6.13.

A comparison of the relative production rates of the five activities on the new

controlling sequence in Figure 6.13 indicates that only activities C and G have

converging relationships with their predecessors and diverging relationships with their

successors. Only candidate work break positions on Activity C are tested, since Activity

G has just been evaluated for a work break in the previous step.

At this point it should be noted that sometimes the converging or diverging

relationships between activities on the controlling sequence are not evident. For example

in Figure 6.13, the converging relationship between Activity C and its predecessor,

Activity A, is not apparent. In such cases, it is necessary to test the work breaks in C in

order to determine whether they would shorten the project duration.

In Figure 6.13, there are nine possible work break locations for Activity C, i.e., at

the end of C1, C2, and so on to the end of C9. The best work break position is at the

completion of C4, shortening the project duration by 34 days. The resulting project

schedule with work breaks in Activities B5, C4, and G7, is shown in Figure 6.14. The

crew lead times, CLT1 and CLT2, for the three work break positions are displayed in

Table 6.6. In summary, the three work breaks reduce the average project duration to 342

days with an average total idle time of 3 days. It should be noted that CLT2G changes

173

from 288 days (Table 6.5) to 254 days (Table 6.6) due to the work break in Activity C.

The work break at C4-C5 allows its successor activities (including G8) to start earlier,

which in turn reduces project duration by 34 days.

0

1

2

3

4

5

6

7

8

9

10

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Time

U
ni

t

A B C D E F G H J

Average Total Idle Time = 3 days
Average Project Duration = 342 days

Controlling Sequence
Figure 6.14 SQS-AL schedule with 3 work breaks and 342-day project duration for

Example 6.1

Activity

Crew
Arrival
Date

(CLT1)

Work
Break

Location

Crew
Return
Date

(CLT2)
A 0 - -
B 38 B5-B6 134
C 22 C4-C5 98
D 44 - -
E 102 - -
F 60 - -
G 174 G7-G8 254
H 84 - -
J 180 - -

Table 6.6 CLT from the SQS-AL schedule with 3 work breaks for Example 6.1

174

Method
Average

 Project duration
Average

 Project Idle Time
Work Break

Positions
CPM 277 438 -

SQS-AL 449 1 -
SQS-AL 410 3 G7
SQS-AL 376 3 G7,B5
SQS-AL 342 3 G7,B5,C4
Table 6.7 Finalized project duration and idle time for Example 6.1

Table 6.7 is a summary of the average project duration and the average total idle

time from CPM, and SQS-AL with zero, one, two and three work breaks. Clearly, SQS-

AL is effective in reducing the average crew idle time from 444 days to 1 day to save the

cost associated with resource idle time. However, satisfying continuity constraints also

increases project duration significantly from 277 to 449 days (from 9 to 15 months).

To reduce the increased project duration, relaxation of the continuity constraints

using work breaks is an option. As illustrated in the example, applying work breaks

reduces project duration significantly, while the change in project idle time is negligible.

The introductions of work breaks at the end of G7, B5, and C4, reduce average project

duration by 39, 34, and 34 days, respectively. In the final schedule, the three work breaks

result in an average project duration of 342 days (11.5 months) with idle time of just 3

days. In other words, the average project duration increases by 2.5 months from the CPM

schedule while the 15 months of average crew idle time is almost completely eliminated.

Moreover, a comparison between the schedules without work breaks (Table 6.4

and Figure 6.12) and the schedule with three work breaks (Table 6.6 and Figure 6.12)

shows that the introduction of the work breaks favorably decreases the project duration

by 3.5 months. Thus, the optimal introduction of work breaks is an effective strategy for

shortening the increased project duration that results from resource continuity constraints.

175

6.5 Simulation Model and Code for Example 6.1

The finalized schedule with 3 work breaks from Example 6.1 is used to

demonstrate the implementation of work breaks in SQS-AL and simulation. The example

is implemented in Stroboscope; the simulation model and code in Stroboscope language

are given with explanation. Several important aspects of the simulation model and SQS-

AL are explained along with the given simulation code. The precedence diagram is

presented in Figure 6.10, and activities’ work amounts in each unit are given in Table 6.3.

Production rates of activities are assumed to follow a normal distribution with the means

and standard deviations displayed in Table 6.3. Figure 6.11 is the simulation model for

this example. As can be seen, Figure 6.15 resembles Figure 6.10, a single unit precedence

diagram. Simulation model templates are used to represent activities and resources,

instead of nodes as in Figure 6.10.

176

Figure 6.15 Simulation Model for the Example in Figure 6.10

177

6.5.1 Simulation Code for Model Parameters (MP)

The Simulation code in the following sections is encoded in Stroboscope GUI’s

Model Parameters (MP).

6.5.1.1 Variables controlling replication and sequence step loops (MP.Loops)

Variables that controls SQS-AL’s replication loop and sequence step loop are

stored in SaveValue, which is a storage class in Stroboscope language. The nRep is the

total number of replications executed in processing each sequence step, whereas nSQS is

the total number of sequence steps. ithRep and ithSQS indicate the current replication and

processing sequence step, respectively.

SAVEVALUE nRep 1000;

SAVEVALUE nSQS 5;

SAVEVALUE ithSQS* 1;

SAVEVALUE ithRep* 1;

Note that in Stroboscope the asterisk sign “*” indicates that the referred-to

SaveValue (e.g., ithRep and ithSQS) is persistent throughout simulation runs, meaning

the SaveValue with asterisk sign will not be reset to its initial value at the beginning of

each replication. Since it is necessary to track the current replication (ithRep) and current

sequence step (ithSQS), there SaveValues must be persistent and are declared so by the

asterisk sign at the end of their names.

6.5.1.2 Work amounts (MP.ACT.Quantity)

For each activity, the work amount in each repetitive unit is stored in one-

dimensional arrays. The number 10 in the code below is the total number of units in this

project. The figures in parenthesis are the work amounts for each activity in each unit;

178

there figures initialize the member of the array. So each of the following statement

defines and initializes the arrays holding the work amount for each activity.

ARRAY A_Quantity 10 {200 200 200 200 200 200 400 400 400 400};

ARRAY B_Quantity 10 {150 150 100 100 100 100 100 100 100 100};

ARRAY C_Quantity 10 {250 200 200 250 300 200 350 400 200 350};

ARRAY D_Quantity 10 {300 400 400 450 300 300 250 250 250 400};

ARRAY E_Quantity 10 {150 150 150 150 150 150 200 200 200 200};

ARRAY F_Quantity 10 {350 400 300 350 150 200 400 250 300 250};

ARRAY G_Quantity 10 {150 150 150 150 300 250 300 300 300 450};

ARRAY H_Quantity 10 {200 300 300 200 250 400 300 400 300 250};

ARRAY J_Quantity 10 {200 200 200 200 200 200 300 300 300 300};

Note that indexing arrays in the Stroboscope language is zero-based. Thus, the

index of the first member in an array is zero, which is the same as in the C language.

6.5.1.3 Confidence levels (SMC.RES.ConfidenceLevel)

Confidence levels for each resource are stored in SaveValues shown below. For

this example, an 80 percent confidence level is used for all resources.

SAVEVALUE ResA_ConfidenceLevel 0.8;

SAVEVALUE ResB_ConfidenceLevel 0.8;

SAVEVALUE ResC_ConfidenceLevel 0.8;

SAVEVALUE ResD_ConfidenceLevel 0.8;

SAVEVALUE ResE_ConfidenceLevel 0.8;

SAVEVALUE ResF_ConfidenceLevel 0.8;

SAVEVALUE ResG_ConfidenceLevel 0.8;

SAVEVALUE ResH_ConfidenceLevel 0.8;

SAVEVALUE ResJ_ConfidenceLevel 0.8;

179

6.5.1.4 Additional variables (MP.AdditionalVariable)

Two additional SaveValues are included and used later, iSQS and nthBinInterval.

The iSQS is used to automatically generate Stroboscope code, whereas the nthBinInterval

is used to determine corresponding crew lead time (CLT).

SAVEVALUE iSQS 1;

SAVEVALUE nthBinInterval 0;

6.5.2 Simulation Code for Programming Objects (PO)

The Simulation code in the following subsections is encoded in Stroboscope

GUI’s Programming Objects (PO).

6.5.2.1 Permission to enter the site (PO.RES.Semaphore)

One important decision (i.e., RES_CLT_Semaphore) is whether to allow

resources to enter the site (i.e., letting them in RES_CLT Combis) or keep them off the

site (i.e., holding them in RES_Offsite Queues). Resources are allowed to enter the site

only if their corresponding activities must not yet have been completed. For example, the

number of units in ACT_Complete Queues must not equal the total number of units (4

units for this example). Without this decision (or condition), resources will always re-

enter the site, even though all the work has been completed, and rest in RES_Idle until

the simulation ends because there is no work left for them to work. The condition

(RES_CLT_Semaphore) of allowing a resource to enter the site is stored in Variables,

updated automatically by Stroboscope. It is encoded in Programming Objects, and used

in RES_CLT’s semaphore in resource flow sub-networks.

VARIABLE ResA_CLT_Semaphore ' A_Complete.CurCount != 10' ;

VARIABLE ResB_CLT_Semaphore ' B_Complete.CurCount != 10' ;

180

VARIABLE ResC_CLT_Semaphore ' C_Complete.CurCount != 10' ;

VARIABLE ResD_CLT_Semaphore ' D_Complete.CurCount != 10' ;

VARIABLE ResE_CLT_Semaphore ' E_Complete.CurCount != 10' ;

VARIABLE ResF_CLT_Semaphore ' F_Complete.CurCount != 10' ;

VARIABLE ResG_CLT_Semaphore ' G_Complete.CurCount != 10' ;

VARIABLE ResH_CLT_Semaphore ' H_Complete.CurCount != 10' ;

VARIABLE ResJ_CLT_Semaphore ' J_Complete.CurCount != 10' ;

6.5.2.2 Precedence constraints (PO.ACT.Semaphore)

 Precedence constraints (i.e., RES_Perform_Semaphore) are stored in Variables

and used in ACT_Perform’s semaphore work flow sub-networks. Due to precedence

constraints, an activity (e.g., Activity B) can start only if its current number of completed

units (e.g., B_Complete.CurCount) plus its current number of on-going units (e.g.,

B_Perform.CurInst) is less than its predecessor’s number of completed units (e.g.,

A_Complete.CurCount). For this example, all precedence constraints are shown below:

VARIABLE B_Perform_Semaphore

'B_Complete.CurCount + B_Perform.CurInst

< A_Complete.CurCount';

VARIABLE C_Perform_Semaphore

 'C_Complete.CurCount + C_Perform.CurInst

< A_Complete.CurCount;

VARIABLE D_Perform_Semaphore

'D_Complete.CurCount + D_Perform.CurInst

< B_Complete.CurCount

&

D_Complete.CurCount + D_Perform.CurInst

< C_Complete.CurCount';

VARIABLE E_Perform_Semaphore

181

'E_Complete.CurCount + E_Perform.CurInst

< B_Complete.CurCount';

VARIABLE F_Perform_Semaphore

'F_Complete.CurCount + F_Perform.CurInst

< C_Complete.CurCount';

VARIABLE G_Perform_Semaphore

'G_Complete.CurCount + G_Perform.CurInst

< D_Complete.CurCount

& G_Complete.CurCount + G_Perform.CurInst

< E_Complete.CurCount';

VARIABLE H_Perform_Semaphore

'H_Complete.CurCount + H_Perform.CurInst

< F_Complete.CurCount';

VARIABLE J_Perform_Semaphore

'J_Complete.CurCount + J_Perform.CurInst

< G_Complete.CurCount

&

J_Complete.CurCount + J_Perform.CurInst

< H_Complete.CurCount';

6.5.2.3 Activity duration (PO.ACT.Duration)

 Activity durations (e.g., A_Perform_Duration) are stored in Variables, and used in

ACT_Perform’s duration in work flow sub-networks. ACT_Perform’s duration varies

from unit to unit due to amount of work in each unit and variability in production rates.

Therefore, activity durations are a function of work amount of the current unit and

production rate. The duration of ACT_Perform Combis is essentially the work amount in

a unit divided by the production rate of that activity. Duration variables of activities are

shown below:

182

VARIABLE A_Perform_Duration

A_Quantity[10-A_Remain.CurCount]*1/Normal[20,2];

VARIABLE B_Perform_Duration

B_Quantity[10-B_Remain.CurCount]*1/Normal[30,3];

VARIABLE C_Perform_Duration

C_Quantity[10-C_Remain.CurCount]*1/Normal[30,3];

VARIABLE D_Perform_Duration

D_Quantity[10-D_Remain.CurCount]*1/Normal[15,1.5];

VARIABLE E_Perform_Duration

E_Quantity[10-E_Remain.CurCount]*1/Normal[20,2];

VARIABLE F_Perform_Duration

F_Quantity[10-F_Remain.CurCount]*1/Normal[25,2.5];

VARIABLE G_Perform_Duration

G_Quantity[10-G_Remain.CurCount]*1/Normal[30,3];

VARIABLE H_Perform_Duration

H_Quantity[10-H_Remain.CurCount]*1/Normal[20,2];

VARIABLE J_Perform_Duration

J_Quantity[10-J_Remain.CurCount]*1/Normal[15,1.5];

6.5.2.4 Decision of keeping or laying off resource (PO.RES.Strength)

Decisions of keeping or laying off resources are stored in variables (i.e.,

RES_Leave_Strength) and used in resource flow sub-networks. After a resource

completes one unit of work, it will consider whether to leave the site. If there is no

remaining work for the resource, it will leave. The resources’ decision whether to leave

or stay of resources is shown below:

VARIABLE ResA_Leave_Strength '(A_Remain.CurCount == 0) ? 1:0 ' ;

VARIABLE ResD_Leave_Strength ‘(D_Remain.CurCount == 0) ? 1:0 ' ;

VARIABLE ResE_Leave_Strength '(E_Remain.CurCount == 0) ? 1:0 ' ;

183

VARIABLE ResF_Leave_Strength '(F_Remain.CurCount == 0) ? 1:0 ' ;

 For resources with work breaks, additional variables (e.g., ResB_nthBreak) below

are required to track how many times the resources have already left the site. These

variables are used to determine 1) when resources are allowed to leave the site and 2)

which crew lead time (CLT1 or CLT2) will be used, if the resources enter the site.

SAVEVALUE ResB_nthBreak 0;

SAVEVALUE ResC_nthBreak 0;

SAVEVALUE ResG_nthBreak 0;

For resources with work breaks, the decisions of keeping or laying off resources

are shown below. For example, ResB is allowed to leave the site when:

1) Five units of B have been completed. Then ResB will take the break.

2) Ten units of B have been completed. Then ResB will leave the site. At this

point, ResB has already taken one break (ResB_nthBreak = 1) after

completing B5.

VARIABLE ResB_Leave_Strength

'(B_Complete.CurCount == 5 & ResB_nthBreak == 0)

| (B_Remain.CurCount == 0)

 ? 1:0 ' ;

For ResC, it will take a break at the completion of Activity C in Unit 4, and it will

permanently leave the project at the end of Activity C in Unit 10.

VARIABLE ResC_Leave_Strength

' (C_Complete.CurCount == 4 & ResC_nthBreak == 0)

 | (C_Remain.CurCount == 0)

 ? 1:0 ' ;

For ResG, it will take a break at the completion of Activity G in Unit 7, and it will

permanently leave the project at the end of Activity G in Unit 10.

184

VARIABLE ResG_Leave_Strength

' (G_Complete.CurCount == 7 & ResG_nthBreak == 0)

 | (G_Remain.CurCount == 0)

 ? 1:0 ' ;

6.5.2.5 Temporary SaveValues for crew idle time (PO.RES.TempIdleTime)

The following SaveValues are for temporarily recording the total idle time in each

resource in each replication.

SAVEVALUE svResB_Idle 0;

SAVEVALUE svResC_Idle 0;

SAVEVALUE svResD_Idle 0;

SAVEVALUE svResE_Idle 0;

SAVEVALUE svResF_Idle 0;

SAVEVALUE svResG_Idle 0;

SAVEVALUE svResH_Idle 0;

SAVEVALUE svResJ_Idle 0;

At the end of each replication, these SaveValues (temporary storages) of idle time

will be assigned to their corresponding BinCollectors (permanent storages) for a specific

sequence step (see 6.5.2.8 PO.RES.CIT.SQS). After the assignment, these SaveValues

are, then, reset prior to the execution of a new replication.

6.5.2.6 Crew idle time (PO.RES.CIT)

Samples of crew idle time (CLTs) used to determine CLT are stored in

BinCollectors. BinCollectors are data holders that keep statistics of the numbers they

receive in intervals, specified by users. Every resource that is scheduled by SQS-AL to

achieve continuous utilization must have at least one BinCollector, which is RES_CLT1.

185

 BINCOLLECTOR statement requires 4 arguments, which are: 1) the name of the

collector, 2) the number of intervals, 3) the lower bound of the collected data, and 4) the

upper bound of the collected data. For this example, RES_CIT1 BinCollectors collect

CITs from a range of 0 to 300 days. This range is divided into 300 intervals, meaning that

CIT samples are grouped on a daily basis.

Since crew idle time of resources is collected from one replication to another, the

data in RES_CIT1 and RES_CIT2 BinCollectors must be persistent, and thus an asterisk,

“*”, is required when their names are declared. Resources without work breaks (ResA,

ResD, ResE, ResF, ResH, and ResJ) have only CIT1 BinCollector, used to determine

CLT1, as shown below.

BINCOLLECTOR ResD_CIT1* 300 0 300;

BINCOLLECTOR ResE_CIT1* 300 0 300;

BINCOLLECTOR ResF_CIT1* 300 0 300;

BINCOLLECTOR ResG_CIT1* 300 0 300;

BINCOLLECTOR ResH_CIT1* 300 0 300;

BINCOLLECTOR ResJ_CIT1* 300 0 300;

Resources with work breaks (ResB, ResC, and ResG) have CIT1 and CIT2

BinCollectors that are used to determined their CLT1 and CLT2, respectively. Moreover,

the last time resources leave the site must be recorded for calculation purposes in order to

determine CLT2. See Section 6.5.3.7 (CME.RES.Leave.OnFlow) for the calculation of

CLT2.

For ResB,

BINCOLLECTOR ResB_CIT1* 300 0 300 ;

BINCOLLECTOR ResB_CIT2* 300 0 300 ;

SAVEVALUE tempResB_CIT1 0 ;

186

SAVEVALUE tempResB_CIT2 0 ;

SAVEVALUE ResB_LastTimeLeaveSite 0 ;

For ResC,

BINCOLLECTOR ResC_CIT1* 300 0 300;

BINCOLLECTOR ResC_CIT2* 300 0 300;

SAVEVALUE tempResC_CIT1 0 ;

SAVEVALUE tempResC_CIT2 0 ;

SAVEVALUE ResC_LastTimeLeaveSite 0 ;

For ResG,

BINCOLLECTOR ResG_CIT1* 300 0 300 ;

BINCOLLECTOR ResG_CIT2* 300 0 300 ;

SAVEVALUE tempResG_CIT1 0 ;

SAVEVALUE tempResG_CIT2 0 ;

SAVEVALUE ResG_LastTimeLeaveSite 0 ;

6.5.2.7 Crew lead time (PO.RES.CLT.Duration)

The crew lead time (CLT) for each resource is stored in a persistent SaveValue

(requiring an asterisk sign after its name), and used to set the duration of RES_CLT

Combis in resource flow sub-network. CLT’s initial value is zero according to the

sequence step algorithm. The RES_CLT_Duration Variables are created mainly to

systemize the simulation code. They are used in RES_CLT Combis, discussed in Section

6.5.3.2, CME.RES.CLT.Duration.

The arrival date of resources without work breaks equals their CLT1, shown in

the simulation code below.

SAVEVALUE ResD_CLT1* 0;

SAVEVALUE ResE_CLT1* 0;

187

SAVEVALUE ResF_CLT1* 0;

SAVEVALUE ResH_CLT1* 0;

SAVEVALUE ResJ_CLT1* 0;

VARIABLE ResD_CLT_Duration ResD_CLT1;

VARIABLE ResE_CLT_Duration ResE_CLT1;

VARIABLE ResF_CLT_Duration ResF_CLT1;

VARIABLE ResH_CLT_Duration ResG_CLT1;

VARIABLE ResJ_CLT_Duration ResG_CLT1;

Crew lead times (CLT1 or CLT2) for resources with work breaks are chosen,

based on their RES_nthBreak Variables (e.g., ResB_nthBreak), to delay the arrival of the

resources. For example, if ResB has never taken a break (ResB_nthBreak = 0), CLT1B

will be chosen to delay the arrival of ResB, when ResB attempts to enter the site. On the

other hand, if ResB has already taken one work break (ResB_nthBreak = 1), CLT2B will

be chosen to delay the 2nd arrival of ResB.

VARIABLE ResB_CLT_Duration

'ResB_nthBreak == 0 ? ResB_CLT1 :

 ResB_nthBreak == 1 ? ResB_CLT2 : 0' ;

VARIABLE ResC_CLT_Duration

'ResC_nthBreak == 0 ? ResC_CLT1 :

 ResC_nthBreak == 1 ? ResC_CLT2 : 0' ;

VARIABLE ResG_CLT_Duration

'ResG_nthBreak == 0 ? ResG_CLT1 :

 ResG_nthBreak == 1 ? ResG_CLT2 : 0' ;

6.5.2.8 Crew idle time for each sequence step (PO.RES.CIT.SQS)

The code below for BinCollectors for crew idle times (CITs) associated with

sequence steps (SQS) is for the purpose of recording the changes in CITs from one SQS

188

to another. Note that the iSQS in the code below is used with “$<…>$” (explained later)

to automatically create simulation code.

ASSIGN iSQS 1;

WHILE 'iSQS<=nSQS+1';

BINCOLLECTOR bcltResA_IdleSQS$<iSQS>$*300 0 300 ;

BINCOLLECTOR bcltResB_IdleSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltResC_IdleSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltResD_IdleSQS$<iSQS>$*300 0 300 ;

BINCOLLECTOR bcltResE_IdleSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltResF_IdleSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltResG_IdleSQS$<iSQS>$*300 0 300 ;

BINCOLLECTOR bcltResH_IdleSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltResJ_IdleSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltProjectDurationSQS$<iSQS>$* 300 0 300 ;

BINCOLLECTOR bcltProjectIdleTimeSQS$<iSQS>$* 300 0 300 ;

ASSIGN iSQS iSQS+1;

WEND; /iSQS

ASSIGN iSQS 1;

Note that the “$<Argument>$” is a preprocessor operator of Stroboscope used to

automatically generate simulation code. The Stroboscope evaluates the argument in the

operator, and replaces the operator and argument before executing the statement. This

preprocessor operator is useful when there is a consistent pattern of simulation code

(Martinez 1995). For more information about the “$<Argument>$” operator, see The

Stroboscope Simulation Language, Chapter 15, Statement Preprocessing and Automatic

Code Generation.

189

6.5.3 Simulation Code for Model Elements (CME)

The simulation code in this section 5.3.3 is encoded in graphical model elements

in Stroboscope GUI. For the code in this section, the statements specify attributes of

simulation elements in Stroboscope GUI where the code is stored. These statements are:

• SEMAPHORE for Semaphore Combis

• DURATION for Duration in Combis

• STRENGTH for Strength in links

• ONFLOW for OnFlow in links

6.5.3.1 Semaphore in RES_CLT Combis (CME.RES.Semaphore)

 The Semaphores of RES_CLT Combis are shown below. They are stored in

simulation model elements, as shown in Figure 5.12. Details for these semaphores are

given in Section 6.5.2.1 PO.RES.Semaphore.

SEMAPHORE ResB_CLT ResB_CLT_Semaphore;

SEMAPHORE ResC_CLT ResC_CLT_Semaphore;

SEMAPHORE ResD_CLT ResD_CLT_Semaphore;

SEMAPHORE ResE_CLT ResE_CLT_Semaphore;

SEMAPHORE ResF_CLT ResF_CLT_Semaphore;

SEMAPHORE ResG_CLT ResG_CLT_Semaphore;

SEMAPHORE ResH_CLT ResH_CLT_Semaphore;

SEMAPHORE ResJ_CLT ResJ_CLT_Semaphore;

6.5.3.2 Duration in RES_CLT Combis (CME.RES.CLT.Duration)

Durations of RES_CLT Combis in resource flow are shown below. Details of

these durations are given in section 6.5.2.7, PO.RES.CLT.Duration.

DURATION ResA_CLT ResA_CLT_Duration;

190

DURATION ResB_CLT ResB_CLT_Duration;

DURATION ResC_CLT ResC_CLT_Duration;

DURATION ResD_CLT ResD_CLT_Duration;

DURATION ResE_CLT ResE_CLT_Duration;

DURATION ResF_CLT ResF_CLT_Duration;

DURATION ResG_CLT ResG_CLT_Duration;

DURATION ResH_CLT ResH_CLT_Duration;

DURATION ResJ_CLT ResJ_CLT_Duration;

6.5.3.3 Semaphore in ACT_Perform Combis (CME.ACT.Semaphore)

Semaphores of ACT_Perform Combis in work flow are shown below. They are

stored in graphical simulation elements, as shown in Figure 5.13. Details of these

semaphores are given in Section 6.5.2.7, PO.RES.CLT.Duration.

SEMAPHORE A_Perform A_Perform_Semaphore;

SEMAPHORE B_Perform B_Perform_Semaphore;

SEMAPHORE C_Perform C_Perform_Semaphore;

SEMAPHORE D_Perform D_Perform_Semaphore;

SEMAPHORE E_Perform E_Perform_Semaphore;

SEMAPHORE F_Perform F_Perform_Semaphore;

SEMAPHORE G_Perform G_Perform_Semaphore;

SEMAPHORE H_Perform H_Perform_Semaphore;

SEMAPHORE J_Perform J_Perform_Semaphore;

6.5.3.4 Duration in ACT_Perform Combis (CME.ACT.Duration)

Durations of ACT_Perform Combis in work flow sub-networks are shown below.

These ACT_Perform_Duration Variables are stored in simulation model elements, as

shown in Figure 5.13. Details of these duration Variables are given in section 6.5.2.3

PO.ACT.Duration.

191

DURATION A_Perform A_Perform_Duration;

DURATION B_Perform B_Perform_Duration;

DURATION C_Perform C_Perform_Duration;

DURATION D_Perform D_Perform_Duration;

DURATION E_Perform E_Perform_Duration;

DURATION F_Perform F_Perform_Duration;

DURATION G_Perform G_Perform_Duration;

DURATION H_Perform H_Perform_Duration;

DURATION J_Perform J_Perform_Duration;

6.5.3.5 Strength in iRES_Stay Links (CME.RES.Stay.Strength)

Strengths of iRES_Stay links in work flow sub-networks are shown below. They

are stored in simulation model elements, as shown in Figure 5.14. Details of these

strengths are given in Section 5.3.2.4, PO.RES.Strength. Note that RES_Leave_Strength

Variables are preceded by an exclamation sign returning the opposite value of the

Variables. Accordingly, the opposite of a resource leaving the site is the resource staying

on the site.

 STRENGTH iResA_Stay !ResA_Leave_Strength;

STRENGTH iResB_Stay !ResB_Leave_Strength;

STRENGTH iResC_Stay !ResC_Leave_Strength;

STRENGTH iResD_Stay !ResD_Leave_Strength;

STRENGTH iResE_Stay !ResE_Leave_Strength;

STRENGTH iResF_Stay !ResF_Leave_Strength;

STRENGTH iResG_Stay !ResG_Leave_Strength;

STRENGTH iResH_Stay !ResH_Leave_Strength;

STRENGTH iResJ_Stay !ResJ_Leave_Strength;

192

6.5.3.6 Strength in iRES_Leave Links (CME.RES.Leave.Strength)

As opposed to the strength in iRES_Stay Links, strength of iRES_Leave is

RES_Leave_Strength Variable. Details of these strengths are given in Section 6.5.2.4,

PO.RES.Strength.

STRENGTH iResA_Leave ResA_Leave_Strength;

STRENGTH iResB_Leave ResB_Leave_Strength;

STRENGTH iResC_Leave ResC_Leave_Strength;

STRENGTH iResD_Leave ResD_Leave_Strength;

STRENGTH iResE_Leave ResE_Leave_Strength;

STRENGTH iResF_Leave ResF_Leave_Strength;

STRENGTH iResH_Leave ResH_Leave_Strength;

STRENGTH iResJ_Leave ResJ_Leave_Strength;

6.5.3.7 OnFlow in iRES_Leave (CME.RES.Leave.OnFlow)

Crew idle time of resources is collected when SQS-AL is processing the sequence

step of the activities they serve. For example, CIT1 of Resource D is collected from

simulation runs during processing SQS3 because Activity D is in SQS2.

The simulation code, determining CLT, for resources without work breaks (ResD,

ResE, ResF, and ResJ) is similar to Section 5.3.3.7 (CME.RES.Leave.OnFlow)

ONFLOW iResD_Leave COLLECT ResD_CIT1

PRECOND 'ithSQS==3' ResD_Idle.AveWait*ResD_Idle.TotCount;

ONFLOW iResE_Leave COLLECT ResE_CIT1

PRECOND 'ithSQS==3' ResE_Idle.AveWait*ResE_Idle.TotCount;

ONFLOW iResF_Leave COLLECT ResF_CIT1

PRECOND 'ithSQS==3' ResF_Idle.AveWait*ResF_Idle.TotCount;

ONFLOW iResH_Leave COLLECT ResH_CIT1

PRECOND 'ithSQS==4' ResH_Idle.AveWait*ResH_Idle.TotCount;

193

ONFLOW iResJ_Leave COLLECT ResJ_CIT1

PRECOND 'ithSQS==4' ResJ_Idle.AveWait*ResJ_Idle.TotCount;

The simulation code for the resources with work breaks (ResB, ResC, and ResG)

are modified as follows.

 For ResB,

ONFLOW iResB_Leave ASSIGN ResB_nthBreak ResB_nthBreak+1;

/CLT for Break B-5

ONFLOW iResB_Leave COLLECT ResB_CIT1

PRECOND 'ithSQS==ResB_CLT1_SQS & ResB_nthBreak ==1'

ResB_Idle.AveWait*ResB_Idle.TotCount ;

ONFLOW iResB_Leave ASSIGN tempResB_CIT1

PRECOND 'ithSQS==ResB_CLT1_SQS & ResB_nthBreak ==1'

ResB_Idle.AveWait*ResB_Idle.TotCount ;

/CLT for Break B-10

ONFLOW iResB_Leave COLLECT ResB_CIT2

PRECOND 'ithSQS==ResB_CLT2_SQS & ResB_nthBreak==2'

'ResB_Idle.AveWait*ResB_Idle.TotCount -

tempResB_CIT1+ResB_LastTimeLeaveSite' ;

ONFLOW iResB_Leave ASSIGN tempResB_CIT2

PRECOND 'ithSQS==ResB_CLT2_SQS & ResB_nthBreak==2'

'ResB_Idle.AveWait*ResB_Idle.TotCount - tempResB_CIT1' ;

ONFLOW iResB_Leave ASSIGN ResB_LastTimeLeaveSite SimTime;

For ResC,

/CLT for ARRIVAL of ResC

ONFLOW iResC_Leave ASSIGN ResC_nthBreak ResC_nthBreak+1;

/CLT for Break C-4

ONFLOW iResC_Leave COLLECT ResC_CIT1

194

PRECOND 'ithSQS==ResC_CLT1_SQS & ResC_nthBreak ==1'

ResC_Idle.AveWait*ResC_Idle.TotCount ;

ONFLOW iResC_Leave ASSIGN tempResC_CIT1

PRECOND 'ithSQS==ResC_CLT1_SQS & ResC_nthBreak ==1'

ResC_Idle.AveWait*ResC_Idle.TotCount ;

/CLT for Break C-10

ONFLOW iResC_Leave COLLECT ResC_CIT2

PRECOND 'ithSQS==ResC_CLT2_SQS & ResC_nthBreak==2'

'ResC_Idle.AveWait*ResC_Idle.TotCount -

tempResC_CIT1+ResC_LastTimeLeaveSite' ;

ONFLOW iResC_Leave ASSIGN tempResC_CIT2

PRECOND 'ithSQS==ResC_CLT2_SQS & ResC_nthBreak==2'

'ResC_Idle.AveWait*ResC_Idle.TotCount - tempResC_CIT1' ;

ONFLOW iResC_Leave ASSIGN ResC_LastTimeLeaveSite SimTime;

For ResG,

/CLT for ARRIVAL of ResG

ONFLOW iResG_Leave ASSIGN ResG_nthBreak ResG_nthBreak+1;

/CLT for Break G-7

ONFLOW iResG_Leave COLLECT ResG_CIT1

PRECOND 'ithSQS==ResG_CLT1_SQS & ResG_nthBreak ==1'

ResG_Idle.AveWait*ResG_Idle.TotCount ;

ONFLOW iResG_Leave ASSIGN tempResG_CIT1

PRECOND 'ithSQS==ResG_CLT1_SQS & ResG_nthBreak ==1'

ResG_Idle.AveWait*ResG_Idle.TotCount ;

/CLT for Break G-10

ONFLOW iResG_Leave COLLECT ResG_CIT2

195

PRECOND 'ithSQS==ResG_CLT2_SQS & ResG_nthBreak==2'

'ResG_Idle.AveWait*ResG_Idle.TotCount -

tempResG_CIT1+ResG_LastTimeLeaveSite' ;

ONFLOW iResG_Leave ASSIGN tempResG_CIT2

PRECOND 'ithSQS==ResG_CLT2_SQS & ResG_nthBreak==2'

'ResG_Idle.AveWait*ResG_Idle.TotCount - tempResG_CIT1' ;

ONFLOW iResG_Leave ASSIGN ResG_LastTimeLeaveSite SimTime;

6.5.4 Simulation Code for Controlling Statements (CS)

Simulation code in the following sections is encoded in Stroboscope GUI’s

Controlling Statements (CS).

6.5.4.1 Sequence step and replication loops (CS.Loops)

The following two While-Loops statements control SQS-AL’s sequence step loop

and replication loop, respectively. As discussed in Chapters 4 and 5, the replication loop

is for collecting crew idle times of resources whose activities are in the current processing

sequence step (ithSQS). The sequence step loop is for determining crew lead time for the

resources. An extra sequence step is added to obtain the final results of project duration,

project idle time, and idle time in resource utilization.

WHILE 'ithSQS <= nSQS+1'; / Start Sequence Step Loop.

WHILE 'ithRep <= nRep '; / Start Replication Loop.

CLEAR; / Clear temporary data.

Crew lead times for all resources are determined when SQS-AL finishes

processing the last sequence step. Nevertheless, an extra sequence step is added to obtain

the final results of project duration, project idle time, and idle time in resource utilization.

196

The CLEAR statement is executed at the beginning of each replication to clear the

results from a previous simulation run. This statement sets all non-persistent SaveValues

to their initial values and clears all data and statistics from non-persistent Collectors and

BinCollectors.

6.5.4.2 Initializing work amounts (CS.ACT.INIT)

 At the beginning of each replication, the work amount in units for each activity is

initialized in ACT_Remain Queues in Work Flow Networks. INIT is a Stroboscope’s

statement used to create and place resources in specified Queues. As discussed in section

5.2.1 Work Flow Template, the amount of Resource rq_ACT in ACT_Remain is the

number of remaining units needed to be completed, which is 10 as shown in the code

below.

INIT A_Remain 10;

INIT B_Remain 10;

INIT C_Remain 10;

INIT D_Remain 10;

INIT E_Remain 10;

INIT F_Remain 10;

INIT G_Remain 10;

INIT H_Remain 10;

INIT J_Remain 10;

6.5.4.3 Initializing resources (CS.RES.INIT)

At the beginning of each replication, resources are initialized in RES_Offsite

Queues in resource flow sub-networks.

INIT ResA_Offsite 1;

INIT ResB_Offsite 1;

197

INIT ResC_Offsite 1;

INIT ResD_Offsite 1;

INIT ResE_Offsite 1;

INIT ResF_Offsite 1;

INIT ResG_Offsite 1;

INIT ResH_Offsite 1;

INIT ResJ_Offsite 1;

6.5.4.4 Executing simulation (CS.Simulate)

After initializing the work amount in ACT_Remain and the resources in

RES_Offsite, the simulation starts after Stroboscope executes the SIMULATE statement.

Then, the simulation replication will end when all activities are completed, i.e., when

there is no rq_ACT resource in each and every one of the ACT_Remain Queues.

SIMULATE; /Run one replication

Note that crew idle times of resources are collected during simulation runs, while

crew lead time is determined after the end of processing each sequence step.

6.5.4.5 Recording CIT in bcltRES_IdleSQS BinCollectors(CS.RES.CIT.SQS)

 At the end of the specified number of replications for each sequence step, the

following data is collected.

1) Crew idle times of resources for processing each sequence step

2) Project duration for processing each sequence step

3) Sum of crew idle times and project idle time for processing each sequence

step

The collected data are for tracking changes in crew idle times, project durations,

and project idle times. These data are valuable for analysis of the impact of an assigned

198

crew lead time on activities, resources, and the project. The following code is for

collecting the data responding to each sequence step processing.

ASSIGN svResB_Idle ResB_Idle.AveWait*ResB_Idle.TotCount;

ASSIGN svResC_Idle ResC_Idle.AveWait*ResC_Idle.TotCount;

ASSIGN svResD_Idle ResD_Idle.AveWait*ResD_Idle.TotCount;

ASSIGN svResE_Idle ResE_Idle.AveWait*ResE_Idle.TotCount;

ASSIGN svResF_Idle ResF_Idle.AveWait*ResF_Idle.TotCount;

ASSIGN svResG_Idle ResG_Idle.AveWait*ResG_Idle.TotCount;

ASSIGN svResH_Idle ResH_Idle.AveWait*ResH_Idle.TotCount;

ASSIGN svResJ_Idle ResJ_Idle.AveWait*ResJ_Idle.TotCount;

ASSIGN iSQS 1;

WHILE 'iSQS<=nSQS+1';

IF 'ithSQS==$<iSQS>$';

COLLECT bcltResB_IdleSQS$<iSQS>$ svResB_Idle;

COLLECT bcltResC_IdleSQS$<iSQS>$ svResC_Idle;

COLLECT bcltResD_IdleSQS$<iSQS>$ svResD_Idle;

COLLECT bcltResE_IdleSQS$<iSQS>$ svResE_Idle;

COLLECT bcltResF_IdleSQS$<iSQS>$ svResF_Idle;

COLLECT bcltResG_IdleSQS$<iSQS>$ svResG_Idle;

COLLECT bcltProjectDurationSQS$<iSQS>$ SimTime;

COLLECT bcltProjectIdleTimeSQS$<iSQS>$

'svResA_Idle+ svResB_Idle+ svResC_Idle

+svResD_Idle+ svResE_Idle+ svResF_Idle

+svResG_Idle';

ENDIF;

ASSIGN iSQS iSQS+1;

WEND; /iSQS

ASSIGN ithRep ithRep+1; / Increase ithRep by 1

199

WEND; /ithRep

The last line of the code is the end of SQS-AL’s replication loop. When

Stroboscope reaches this line, it will check whether the current replication index (ithRep)

is less than or equal to the total number of replications (nRep), explained in section

6.5.4.1, CS.Loops. SQS-AL exits the replication loop, and enters the sequence step loop,

when the ithRep SaveValue is greater than nRep SaveValue.

Remember that iSQS is used for coding purpose, while ithSQS is used to track the

current index of sequence step. For the code above, the small nested loop controlled by

iSQS is not the sequence step loop.

6.5.4.6 Determining crew lead time for activities belonging to ithSQS (CS.RES.CLT)

 After SQS-AL exits replication loop and enters sequence step loop, the crew lead

time of the resources serving activities in the current processing sequence step will be

determined. For example, after the total number of replications is executed in processing

SQS2, SQS-AL determines CLT of Resource B serving Activity B in SQS2, respectively.

See Section 5.3.4.6 in Chapter 5 for the explanation of the simulation code.

The following simulation code is for the resources with work breaks (ResB, ResC,

and ResG). Each of these resources has two CLTs, CLT1 (for the arrival date) and CLT2

(for the return date after the break). Therefore, there are two set of loops, determining

CLT1 and CLT2.

For CLT1B,

IF 'ithSQS==2';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResB_CIT1,nthBinInterval]

<ResB_ConfidenceLevel;

200

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResB_CLT1 BinHigh[ResB_CIT1,nthBinInterval];

ENDIF;

For CLT2B,

IF 'ithSQS==2';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResB_CIT2,nthBinInterval]

<ResB_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResB_CLT2 BinHigh[ResB_CIT2,nthBinInterval];

ENDIF;

For CLT1C,

IF 'ithSQS==2';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResC_CIT1,nthBinInterval]

<ResC_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResC_CLT1 BinHigh[ResC_CIT1,nthBinInterval];

ENDIF;

For CLT2C,

IF 'ithSQS==2';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResC_CIT2,nthBinInterval]

<ResC_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

201

WEND;

ASSIGN ResC_CLT2 BinHigh[ResC_CIT2,nthBinInterval];

ENDIF;

For CLT1G,

IF 'ithSQS==4;

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResG_CIT1,nthBinInterval]

<ResG_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResG_CLT1 BinHigh[ResG_CIT1,nthBinInterval];

ENDIF;

For CLT2G,

IF 'ithSQS==4';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResG_CIT2,nthBinInterval]

<ResG_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResG_CLT2 Round[BinHigh[ResG_CIT2,nthBinInterval],0];

ENDIF;

The following simulation code is for resources without work breaks (ResD, ResE,

ResF, ResH, and ResJ), having only CLT1. Detail of the code is explained in Section

5.3.4.6, CS.RES.CLT.

For CLT1D,

IF 'ithSQS==3';

ASSIGN nthBinInterval 0;

202

WHILE PctAtOrBelowBin[ResD_CIT,nthBinInterval]

<ResD_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResD_CLT BinHigh[ResD_CIT,nthBinInterval];

ENDIF;

For CLT1E,

IF 'ithSQS==3;

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResE_CIT,nthBinInterval]

<ResE_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResE_CLT BinHigh[ResE_CIT1,nthBinInterval];

ENDIF;

For CLT1F,

IF 'ithSQS==3';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResF_CIT,nthBinInterval]

<ResF_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResF_CLT BinHigh[ResF_CIT1,nthBinInterval];

ENDIF;

For CLT1H,

IF 'ithSQS==4';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResH_CIT,nthBinInterval]

203

<ResH_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResH_CLT BinHigh[ResH_CIT,nthBinInterval];

ENDIF;

For CLT1J,

IF 'ithSQS==5';

ASSIGN nthBinInterval 0;

WHILE PctAtOrBelowBin[ResJ_CIT,nthBinInterval]

<ResJ_ConfidenceLevel;

ASSIGN nthBinInterval nthBinInterval+1;

WEND;

ASSIGN ResJ_CLT BinHigh[ResJ_CIT,nthBinInterval];

ENDIF;

ASSIGN ithSQS ithSQS+1;

WEND; / ithSQS

REPORT;

The last line of the code is the end of sequence step loop. When Stroboscope

reaches this line, it will check whether the current index of the sequence step (ithSQS) is

greater than the total number of sequence steps plus one (nSQS+1). If ithSQS is not

greater than nSQS+1, SQS-AL will begin processing the next SQS. In addition, this

example project with work breaks is also modeled using ChaStrobe, presented in Chapter

8, Example 8.2.

204

6.6 Summary

To minimize idle time, the Sequence Step Algorithm (SQS-AL) postpones the

arrival date of resources. Results from minimizing idle time usually provide cost

reduction and productivity improvement. However, project duration may be lengthened

significantly by scheduling resources to work continuously. Therefore, tradeoffs between

maintaining and relaxing resource continuity constraints must be carefully studied in

terms of project cost and duration.

This chapter presents an application and calculation of work breaks in repetitive

projects. Work breaks can be used to relax resource continuity constraints in repetitive

activities, which in turn may shorten project duration. Work breaks, deliberate

interruptions, are not considered idle time, since work breaks are carefully predetermined

as part of the project schedule. Resources are informed of the breaks in advance;

therefore, they can be allocated to other projects at the beginning of the breaks and return

when the breaks end.

Under uncertainty, work breaks relax the resource continuity constraints, while

still minimizing crew idle time. Optimal work breaks relaxing resource continuity

constraints can be determined by using the concepts of control points, the controlling

sequence, and relative production rates, proposed by Harris and Ioannou (1998). The

concepts are discussed in this chapter and also in Chapter 3, Repetitive Scheduling

Method.

To determine effective work breaks, positions and durations of work breaks must

be carefully analyzed and calculated. The following rules offer useful guidance in

determining candidate positions of work breaks:

205

1) Controlling Sequences and activities on the sequence must be determined

prior to considering applying a work break.

2) Only repetitive activities on the controlling sequence are considered as

candidates for work break positions.

3) The repetitive activities in (2) must have a converging relationship with their

direct predecessor on the same controlling sequence.

4) The repetitive activities in (2) must have a diverging relationship with their

direct successor on the same controlling sequence.

5) When there is more than one possible work break position, it is necessary to

test all the possible positions.

To test the effectiveness of a work break position, SQS-AL is applied with the

split activity treated as two separate activities, and duration for each candidate work

break position is calculated. Then, each work break (position and duration) is applied to

the project schedule to check the changes in project duration and idle time. The best work

break position should result in the greatest decrease in project duration and a small

increase project idle time.

For an activity with a work break, a new schedule must include both 1) activity

start date in the first unit and either 2.1) a work break duration or 2.2) a work break end

date. Fixed-duration work breaks are used when schedulers want resources to take a

break for a certain period. On the other hand, fixed-date work breaks are used when

schedulers want resources to return to the site on a specific date.

206

207

To schedule an activity with a work break, resource continuity constraints are

split into two sets: before the work break and after the work break. The crew lead time

before work break (CLT1) can be derived from

CIT1 = {idle time between arrival date and start date in the first unit}

 + {sum of idle times (lags) strictly before the work break}

For crew lead time after work break, two calculations for two types of work

breaks are presented below.

For a fixed-duration work break,

CIT2 (fixed duration) = {sum of idle times (lags) at and after the work break}

For a fixed-date work break,

CIT2 (fixed date) = {idle time between arrival date and start date in the first unit}

+ {sum of all idle times (lags) } + {durations of activity before the break}

In this chapter, an application of work breaks in repetitive projects is presented

with examples. The examples provide evidence that applying work breaks could shorten

project duration while maintaining resource continuity constraints. The implementation

of work breaks in simulation using the concepts of SQS-AL is demonstrated and attests

the versatility of SQS-AL and the simulation model templates.

CHAPTER 7

RESOURCE-SHARING ACTIVITIES

CHAPTER 7 RESOURCE-SHARING ACTIVITIES

This chapter discusses the scheduling of resources that serve more than one

activity in a repetitive project. These types of resources serving many activities are called

“shared resources,” while resources serving only one activity are called “dedicated

resources.” Activities sharing one or more resources are called “resource-sharing

activities.” Shared resources can be scheduled in various ways depending on the activities

they serve. It is possible that a resource-sharing activity might use one dedicated

resource solely for itself and also share a shared resource with another activity. Without

shared resources in the simulation model, the dedicated resource can be scheduled using

the Sequence Step Algorithm (SQS-AL) discussed so far to satisfy resource continuity

constraints. However, when shared resources are included in the simulation model,

violations in resource continuity constraints for both dedicated and shared resources may

be incurred.

Satisfying resource continuity constraints for shared resources is quite

complicated. The continuity constraints of shared resources are not affected only by the

resource-sharing activities’ precedence constraints. They could also be compromised by

the precedence and continuity constraints of the predecessors and successors of the

resource-sharing activities. This includes both direct and indirect predecessors and

208

successors. Apparently, the calculation of crew idle time and crew lead time may not

adequately tackle this highly dynamic and complicated utilization of shared resources

under continuity constraints. Many considerations and careful analysis are required to

solve this challenging problem.

To schedule resource-sharing activities and shared resources effectively,

relationships between resource-sharing activities and their predecessors and successors

must be accounted for in scheduling. The order of which activities are scheduled first

among resource-sharing activities and their dependents may result in different schedules,

as well as efficiency. These additional considerations of scheduling order must be

incorporated in the schedule in order to successfully maintain continuous utilization of

resources in the project. In many cases, maintaining resource continuous utilization of

shared resources may not be possible, depending on the relationships and relative

production rates between resource-sharing activities and their dependents.

This chapter uses several examples to explore many possible situations that exist

in scheduling repetitive projects with resource-sharing activities. Suggestions and

solutions are given and vary from case to case. There is no substitute for careful analysis

and sound judgment. Examining and testing variation of schedules are mandatory so that

potential problems, ineffectiveness and conflict in the schedules are foreseen and

corrected. Especially for repetitive projects with resource-sharing activities, corrective

modification in project schedules is usually required to improve the schedules or alleviate

existing problems and ineffectiveness.

209

7.1 Considerations in Scheduling Resource-Sharing Activities

Many characteristics of activities, resources, and discrete-event simulation have a

great influence on the effectiveness of the sequence step algorithm in scheduling

repetitive projects with resource-sharing activities. The following characteristics outline

imperative considerations that must be taken into account in scheduling such projects:

• The precedence relationships between activities sharing the same resource,

either directly or indirectly dependent.

• The sequence steps of resource-sharing activities, either in the same or

different sequence steps.

• The sequence steps of resource-sharing activities’ direct predecessors and

successors.

• The order in which each activity is modeled in the simulation model.

• The processing sequence step in which resources’ crew lead time (CLT) is

determined.

• The relative order that CLT of shared resources serving resource-sharing

activities and the order that CLT of dedicated resources serving the

dependents of the resource-sharing activities are determined.

• The idle time in the early start date schedule and the changes in the idle time

as SQS-AL proceeds from the first to the last sequence step.

• The impact from assigning shared resources’ CLT on the idle time and start

date of their activities and their activities’ dependents.

210

7.2 Examples of Repetitive Projects with Resource-Sharing Activities X and Y

The following examples demonstrate different problems that schedulers may

encounter when using the sequence step algorithm to schedule repetitive projects with

resource-sharing activities.

Activities X and Y in the following examples are resource-sharing activities,

sharing the same Resource RESXY. For brevity, a schedule derived during processing a

sequence step is referred to as the SQS Schedule. For example, the schedule derived

during processing sequence step 2 is “SQS2 Schedule.”

7.2.1 Example 7.1

 Figure 7.1 displays a single unit precedence diagram of a repetitive project

consisting of 3 units requiring 4 activities in each unit. Activities A and B require

dedicated Resource RESA and RESB, respectively, while Activities X and Y share the

same Resource RESXY.

A
2

X
1

Y
3

B
2

Figure 7.1 Precedence diagram with independent resource-sharing

 Activities X and Y in the same SQS

Figure 7.2 is a production diagram of the project in Figure 7.1, presenting the

SQS2 schedule. Crew lead times (CLT) and crew idle times (CIT) of activities during

processing SQS2 are shown in the dialog box. The values of CLT indicate the current

211

value of CLT (CLTA), and the dash sign indicates an unassigned value of CLT (CLTB

and CLTXY). The values of CIT indicate the idle time.

Figure 7.2 shows the SQS2 Schedule, which is the same as the SQS1 Schedule,

because Activity A does not have predecessors and thus has no idle time. Activities X

and Y compete for the same Resource RESXY. The bold lines emphasize the work order

for RESXY. In Figure 7.2, after A1 finishes, Activity X1 starts. The reasons that X1 starts

before Y1, in other words X1 successfully obtains RESXY, are:

1) The simulation model of Activity X was created before the model of Activity

Y; thus, by default, Activity X has a higher priority than Y and is first activity

to obtain RESXY.

2) Only one RESXY is available; thus, Activities X and Y cannot work on the

same day.

Figure 7.2 SQS2 Schedule where the simulation model for X is created before Y

In contrast to the schedule in Figure 7.2, if Activity Y is modeled before Activity

X, the production diagram would appear like Figure 7.3. In Figure 7.2, the working

sequence of RESXY is less organized than that in Figure 7.3. In Figure 7.2, RESXY works

212

on Activities X and Y for one unit each, then works for two units of X, and finally works

for two units of Y. This schedule is considered unorganized and may cause some

confusion to RESXY. On the other hand, the schedule in Figure 7.3 is more organized and

simpler; RESXY is scheduled to finish Activity Y for all units before starting Activity X.

Idle time and project duration in Figures 7.2 and 7.3 are different in many ways:

1) the work order of RESXY, 2) the idle time in Activity B, and 3) project duration. The

idle time of RESB is 4 weeks in Figure 7.2, while it is zero in Figure 7.3. The project

duration is 16 weeks in Figure 7.2, while it is 18 weeks in Figure 7.3. The important issue

to learn here is that the priority with which resource-sharing activities are modeled in

simulation software affects the schedule, project duration, and idle time in ways that may

not be obvious.

Figure 7.3 SQS2 Schedule with additional X_Perform semaphore

As opposed to Figure 7.3, Figure 7.4 stipulates RESXY to finish Activity X in all

units before starting on Y. This additional constraint prohibits RESXY from serving Y1

before three units of Activity X have been completed. As a result, idle times of RESXY

and RESB in the SQS2 Schedule are 2 weeks.

213

To eliminate idle time in RESXY, crew idle time of RESXY must be collected

during processing SQS2, which is the sequence step of Activities X and Y. In Figure 7.4,

CIT of RESXY is 4 weeks. (Remember, SQS-AL assumes resources arrive to the site at

the beginning of the project.) Since this is a deterministic example, CLT equals CIT.

Therefore, RESXY is scheduled to arrive at the site at the end of the 4th week.

Figure 7.4 SQS2 schedule with additional Y semaphore

Figure 7.5 is the final schedule developed from Figure 7.4. Project duration in

Figure 7.5 is 18 weeks. For this project, project duration is the same, either stipulating

RESXY to finish Activity X first or Y first. This situation may occur when resource-

sharing activities are not technically dependent; however it is not always true depending

on the precedence constraints between resource-sharing activities and their dependents

(both direct and indirect predecessors and successors.) When switching the working

sequence of resource-sharing activities does not affect the project duration, schedulers

can benefit from the variations of resource allocation in many different ways. Schedulers

should consider the variations as an opportunity to improve the project schedule and to

maximize resource utilization.

214

It is important to notice that even though the schedules in Figures 7.3 and 7.5

result in exactly the same duration of 18 weeks, they require the presence of Resource

XY at the site in different time intervals, i.e., Weeks 2 to 14 for Figure 7.3 and Week 4 to

16 for Figure 7.5. So, the two schedules are not interchangeable and one may be preferred

over the other because of other work elsewhere for RESXY (e.g., in other projects).

Figure 7.5 Finalized schedule with additional Y semaphore from Figure 7.4

Figures 7.6 and 7.7 show two alternative schedules by conditioning RESXY to

work alternately between X and Y. The differences between Figures 7.6 and 7.7 are from

1) the sequences of which the models for Activities X or Y are created, and 2) the

additional semaphore.

215

Unit

3

2

1

Y2

Y3

B2

B3

A2 X
2

X
3

2 6 12 14 184 10 16 280 0

Week

A1 Y1X
1

B1

CLTA = 0
CLTB = 10
CLTXY = 2

X semaphore is X_Complete.CurCount-Y_Complete.CurCount == 0

A3

CITA = 0
CITB = 0
CITXY = 0

Figure 7.6 Finalized schedule with additional X semaphore

Unit

3

2

1

2 6 12 14 184 10 16 280 0

Week

CLTA = 0
CLTB = -
CLTXY = -

Y semaphore is Y_Complete.CurCount-X_Complete.CurCount == 0

CITA = 0
CITB = 10
CITXY = 2

Figure 7.7 Finalized schedule with additional Y semaphore

7.2.2 Example 7.2

Figure 7.8 is a precedence diagram of a project with resource-sharing Activities X

and Y that are independent of each other and are in different sequence steps. Discussion

in this example and the next example illustrates an adverse impact of the orders of

activities’ sequence steps on SQS-AL’s effectiveness.

216

A
2

B
4

X
1

Y
2

FIN

Figure 7.8 Precedence diagram with independent resource-sharing activities in different

SQSs

Figure 7.9 is the SQS2 Schedule for Example 7.2. In this figure, RESXY has idle

time. To eliminate the idle time, SQS-AL collects CITXY during processing the sequence

step to which activities served by RESXY belong. However in Example 2, RESXY serves

two Activities X and Y that are in 2 different sequence steps, SQS2 and SQS4. Thus, it is

essential to answer this question: “In which processing sequence step should resource’s

crew idle time be collected and its crew lead time be determined when its resource-

sharing activities are in different sequence steps?”

Figure 7.9 SQS1 to SQS4 Schedules, given CLTXY has not been assigned

217

Given CLT of RESXY has not been assigned in Figure 7.9, crew idle time

collected from processing SQS2, SQS3, and SQS4 are the same, since there is no

postponement in RESB at the end of processing SQS2. Accordingly, CITXY from SQS2,

SQS3, and SQS4 are the same. Note that Activities A and B are already in their final

position, since there is no idle time existing in their resource schedule. Moreover,

delaying the arrival of RESXY does not affect their schedule.

Figure 7.10 Finalized schedule after assigned CLTXY either at the end of processing

SQS2, SQS3, or SQS4, from Figure 7.9

 Even though Example 7.2 does not depict the problem in choosing a processing

sequence step to collect CIT, it shows collecting CITs and determining CLT in different

sequence steps can result in the same outcome, for this example. However, in the next

example, choosing different sequence steps will result in a different outcome. Therefore,

the answer to which sequence step is the best for processing sequence step of the shared

resource serving resource-sharing activities in different sequence steps can not be easily

determined. The answer to this question requires schedulers to study the relationships

between resource-sharing activities and their dependents.

218

7.2.3 Example 7.3

Figure 7.11 is another example of scheduling resource-sharing activities that are

in different sequence steps. The precedence diagram shown in Figure 7.11 is similar to

Figure 7.8 in Example 7.2 except the production rates of A and B are changed. The slow

production rate of A relative to B and X incurs idle time in B and X. It is interesting that

the change in a predecessor (Activity A) of resource-sharing Activities X and Y has a

great impact on the schedule and effectiveness of SQS-AL in solving this problem.

Figure 7.11 Precedence diagram with independent resource-sharing activities in different

SQSs

Figure 7.12 shows a production diagram for Example 7.3. Comparing between

Figures 7.10 and 7.12, a significant difference between Examples 7.2 and 7.3 is that in

Activity B, the predecessor of resource-sharing Activity Y, has idle time. Postponing B at

the end of processing SQS2 is likely to affect Activity Y in the next sequence step, SQS3.

219

Unit

3

2

1

2 6 12 14 184 10 16 280 0

Week

CLTA = 0
CLTB = -
CLTXY = -

CITA = 0
CITB = 8
CITXY = 7

Figure 7.12 SQS2 schedule

In the SQS2 Schedule shown in Figure 7.12, the CITXY is 7 weeks. The idle time

between the arrival date and first unit for RESXY is 5 weeks (AIT = 5 week), and the idle

time between units is 2 weeks (UIT = 2 weeks). If CITXY is collected in processing

SQS2, CLTXY will be 7 weeks; therefore, RESXY will be scheduled to arrive at the site on

the 7th
 week. However, this CLTXY of 7 weeks does not eliminate idle time in RESXY

completely. It results in a remaining idle time of 1 week (UIT = 1 week), as shown in

Figure 7.13. Figure 7.13 shows the result of scheduling RESXY at the end of processing

SQS2. CITXY from processing SQS2 is not effective, because postponing X delays

Activity B in SQS2, which in turn delays the start date of Y to the end of the 10th week,

causing idle time in RESXY in the 9th week.

220

Y2

Y3

B2

B3

X
2

X
3

X
1

B1 Y1

Figure 7.13 Finalized SQS-AL schedule, given CLTXY is derived from the SQS2

schedule, idle time in RESXY is 1 week

Figure 7.14 is the SQS3 Schedule with no postponement in RESXY at the end of

processing SQS2. In the SQS3 Schedule under the given condition shown in Figure 7.14,

CITXY is 8 weeks. Comparing between Figures 7.12 and 7.14 shows postponing Activity

B at the end of processing SQS2 induces more idle time in RESXY. Accordingly, it can be

concluded that CITXY should not be collected during processing SQS2, but during

processing SQS3 instead. If CITXY is collected from processing SQS3 (Figure 7.14),

RESXY will be scheduled to the site at the beginning of the 9th week resulting in zero idle

time in RESXY, as shown in Figure 7.15.

221

Y2

Y3

B2

B3

A2

A3

X
2

X
3

X
1

B1 Y1A1

Figure 7.14 SQS3 schedule without delaying Activity X in SQS2, developed from Figure

7.12

Y2

Y3

B1

B2

B3

A2

A3

X
2

X
3

X
1

Y1A1

Figure 7.15 Finalized SQS-AL schedule using the CIT of RESXY from SQS3, developed

from Figure 7.14

Examples 7.2 and 7.3 illustrate the effect of choosing the sequence step at which

to collect the CIT of shared resources when resource-sharing activities are in different

sequence steps. In Example 7.2, it does not matter whether the earlier sequence step

(SQS2) or the later sequence step (SQS4) of resource-sharing Activities X and Y

222

respectively is chosen. In contrast, in Example 7.3, choosing the earlier sequence step

(SQS2) would result in idle time of 1 week in the shared RESXY.

 Figures 7.16 to 7.18 display an alternative schedule that uses an additional Y

semaphore for Activity Y to specify the working sequence of RESXY. The Y semaphore

conditions RESXY to finish three units of X before starting on Activity Y. As a result of

applying the additional Y semaphore, the finalized schedule in Figure 7.18 shows zero

idle time with project duration of 19 weeks.

Figure 7.16 SQS2 schedule with additional Y semaphore

Figure 7.17 SQS3 schedule, developed from Figure 7.16

223

Figure 7.18 Finalized schedule, developed from Figure 7.17

Note that the schedule with an additional semaphore (i.e., Figure 7.18) is two

weeks longer than that of the schedule without one (i.e., Figure 7.15). However, the

schedule with the stipulated working sequence of RESXY in Figure 7.18 is straightforward

and easy to manage the resource. On the other hand, the schedule in Figure 7.15 may

incur confusion especially when the number of repetitive units is large.

Figures 7.19 and 7.20 display another alternative schedule by applying an

additional X semaphore to specify the working sequence of RESXY. The semaphore in

this schedule forces RESXY to finish three units of Y before starting on Activity X. The

finalized schedule in Figure 7.20 shows zero idle time with a project duration of 19

weeks, the same as in the previous alternative schedule shown in Figure 7.18. Applying

an additional semaphore in resource-sharing activities could alleviate the problems of

choosing between different sequence steps of resource-sharing activities, as exhibited in

Figures 7.18 and 7.20.

224

Figure 7.19 SQS2 schedule with additional X semaphore

Y2

Y3

B2

B3A3

X
2

X
3

B1 Y1

X
1

Figure 7.20 SQS3 and SQS4 schedules, developed from Figure 7.19

 Note that the two alternative schedules shown in Figure 7.18 and 7.20 result in the

same project duration and the hiring period for RESXY. However, the schedule in Figure

7.20 has a higher probability of having interruptions in RESXY when working on Activity

Y due to the parallel production diagram between Activities B and Y. There are three

possible interruption points. Whenever the production rate of Y (e.g., Y1) is higher than

B (e.g., B2), it will incur an interruption in Activity Y. Another case is that if Activity

225

B1 is not completed at the end of Week 10, RESXY has to wait before working on

Activity Y.

7.2.4 Example 7.4

Figure 7.21 is a precedence diagram of a repetitive project with four repetitive

activities. Activities A and B use dedicated Resources RESA and RESB, respectively;

Activities X and Y share the same resource RESXY. These two resource-sharing activities

X and Y are directly dependent.

Figure 7.21 A precedence diagram with directly dependent resource-sharing activities X

and Y

Figure 7.22 is the production diagram of the project before processing any

sequence steps. The simulation model of Activity X in SQS2 is modeled first before the

simulation model of Activity Y; therefore, Activity X has higher priority than Activity Y.

For this example, it is unnecessary to postpone any activities in order to eliminate idle

time because there is no idle time in any resources. Nevertheless, it is beneficial to study

this example to gather insightful information regarding activity duration and idle time.

As shown in Figure 7.21, each unit of Activities A and X takes 3 weeks to

complete. Since the production rates of A and X are the same, there is no idle time in

Activity X. Comparing Activities X and Y, the production rate of X is slower than Y,

which should cause idle time in Y. However, this is not the case, since they share the

same Resource RESXY, and they are directly dependent. When there is an idle time or

226

interruption between units (e.g., X1 and X2), RESXY will work on another resource-

sharing activity (e.g., Y1).

Unit

3

2

1

Y
2

Y
3

B2

A3

X2

X3

2 6 12 14 184 10 16 208

Week

22 24

A1 X1 Y
1

B1

B3

CLTA = 0
CLTB = -
CLTXY = 3

CITA = 0
CITB = 13
CITXY = 0

A2

0

Figure 7.22 SQS2 schedule

For this example, idle time in RESXY is always zero as long as the combined

production rate of X and Y (4 weeks) is equal to or slower than the production rate of A.

When comparing between Figure 7.22 and Figure 7.23, if production rate of Activity A is

slower than X as in Figure 7.23, Activity Y will get the resource RESXY whenever

activity X cannot start. As a result, the idle time of RESXY between units in Activity X is

eliminated by the work in Activity Y.

227

B2X2

X3

X1 Y
1 B1

B3

Y
2

Y
3

Figure 7.23 Modifying Activity A’s duration and comparing the duration to the combined

durations of X and Y

Figure 7.24 is an alternative schedule from the original duration shown in Figure

7.22. Figure 7.24 illustrates that project duration is reduced significantly from 22 to 18

weeks by introducing additional precedence constrains (X semaphore) between X and Y,

forcing RESXY to work alternately between X and Y.

Figure 7.24 Decreasing project duration in the SQS2 schedule due to additional X

semaphore

228

7.2.5 Example 7.5

Figure 7.25 is a precedence diagram of a repetitive project consisting of 3 units

requiring 4 repetitive activities. Activities A and B utilize two dedicated resources RESA

and RESB; X and Y use the same Resource RESXY. Resource-sharing Activities X and Y

are indirectly dependent having Activity B between them as shown in Figure 7.25.

As explained below, this is an interesting example because it illustrates that the

working sequence of resource-sharing activities (i.e., X and Y) could be affected by

another activity (i.e., Activity B) whose precedence places it between the two resource-

sharing activities.

Figure 7.25 Precedence diagram with indirectly dependent resource-sharing Activities X

and Y

Figure 7.26 is the SQS2 Schedule of the project, where CITXY is 5 weeks. Figure

7.27 is the SQS3 Schedule, where CLTXY is 5 weeks from the previous processing SQS2,

and CITB is 15 weeks. As shown in Figures 7.26 and 7.27, Activity Y1 takes place

between X2 and X3, and thus absorbs the idle time between X2 and X3. However, it is

likely that RESXY will follow a different working sequence after CLTB is determined due

to precedence constraints between Activities B and Y. Postponing the arrival date of

RESB will delay Activity B’ successor, Activity Y.

229

B2

B3

B1

Figure 7.26 SQS2 schedule

Comparing Figures 7.27 to 7.28, the working sequence of RESXY changes from

X1, X2, Y1, X3, Y2, Y3 in the SQS3 Schedule to X1, X2, X3, Y1, Y2, Y3 in the SQS4

Schedule. Hence, CLTB (15 weeks) derived from the SQS3 Schedule (Figure 7.27) may

not be the best, because assigning CLTB of 15 weeks changes the working sequence of

the shared resource RESXY serving Activity B’s dependents. The difference in working

sequence of RESXY adversely results in: 1) idle time in RESXY and 2) an unnecessary

delay in RESB, as shown in Figure 7.28. Thus, the blind application of SQS-AL results in

a suboptimal schedule.

230

B2 Y2
B3X3

X1 B1

X2

Y1

Y3

Figure 7.27 SQS3 schedule, developed from Figure 7.26

Unit

3

2

1

Y2A2

A3 X3

2 6 12 14 184 10 16 208

Week

22 24

X1

X2

Y1

CLTA = 0
CLTB = 15
CLTXY = 5

CITA = 0
CITB = 0
CITXY = 2

Y3

A1

CITXY of 2 weeks and activity B’s unnecessary delay of 2 weeks are the result
 from the different work order in RESXY from the SQS2 to SQS3 schedules

B could
start here.

Y could start here.
0

Figure 7.28 Finalized schedule, developed from Figure 7.27

Figure 7.29 is the SQS2 Schedule with an additional semaphore for Activity Y

that prevents Y from starting unless all units of X are finished; the resulting schedule in

shown in Figure 7.29. The working sequence for RESXY is fixed, and Activity Y cannot

absorb the idle time between X2 and X3 in SQS3, as it does in Figure 7.27. As a result of

adding the additional semaphore in Figure 7.29, CITXY increases to 6 weeks for the SQS2

Schedule, compared to 5 weeks in Figure 7.26.

231

Figure 7.29 SQS2 schedule with additional Y semaphore

Figure 7.30 is the SQS3 Schedule with the additional semaphore and CLTXY is 6

weeks. CITB in the SQS3 Schedule with the semaphore is 13 weeks (Figure 7.30), which

is different from CITB in the SQS2 Schedule (15 weeks) without the semaphore (Figure

7.27).

Figure 7.30 SQS3 schedule with additional Y semaphore, from Figure 7.29

A comparison between the finalized schedules with the semaphore (Figure 7.31)

and without the semaphore (Figure 7.28) shows that allowing RESXY to start work in Y

as early as possible results in an unfavorable impact on the schedule derived by SQS-AL.

232

This is caused by the unexpected change in working sequence for RESXY from processing

one sequence step (Figure 7.27) to another (Figure 7.28). By introducing the additional Y

semaphore, the working sequence for RESXY is fixed ensuring consistency in the working

sequence from processing one sequence step (Figure 7.29) to another (Figure 7.30). As a

result, CITXY from the SQS2 Schedule (Figure 7.29) is compatible to the working

sequence for RESXY in the finalized schedule (Figure 7.31).

Comparing between the finalized schedule in Figure 7.31 where RESXY has a

specified working sequence and in Figure 7.28 where RESXY has an unspecified working

sequence, the schedule from Figure 7.31 is preferable because its project duration is

shorter by 1 week. Moreover, CITXY in Figure 7.31 is zero, while CITXY in Figure 7.28 is

2 weeks. Project duration in Figure 7.31 is less susceptible to delay in B1 than that in

Figure 7.28. There is a buffer of 1 week between Activities B and Y. As long as an

unexpected delay in B1 is less than 1 week, project duration should be completed on the

deadline. On the other hand in Figure 7.28, if there is an unexpected delay in RESB from

its CLTXY (Week 15), project duration will most likely be delayed.

B2
B3

X2

X3

X1 B1

Figure 7.31 SQS4 schedule, developed from Figure 7.30

233

 As discussed above, the schedule shown in Figure 7.31 is more favorable than

Figure 7.28. However, the schedule shown in Figure 7.28 has one advantage; it provides

a higher confidence level in Activity B due to the buffer between Activities X and B. In

most circumstance, the schedule in Figure 7.31 should be chosen. An exception is when

the penalty cost from an interruption (or idle time) in Activity B or Resource RESB is far

more significant than penalty cost from 1) delaying project completion and/or 2) idle time

in resource RESXY.

7.2.6 Example 7.6

 Example 6 is similar to Example 5, except the production rates of the four

activities are changed to demonstrate the adverse effect of idle time in resource-sharing

activities on their dependents. Figure 7.32 shows a precedence diagram and activity

durations, and Figure 7.33 shows the production diagram from the SQS2 Schedule.

Figure 7.32 Indirectly dependent resource-sharing Activities X and Y with a slower-

production-rate Activity B between them

In Figure 7.33, the production rates of resource-sharing Activities X and Y are

faster than that for Activity B between them. In other words, resource-sharing Activities

X and Y are indirectly dependent separated by Activity B whose production rate is

relatively slow compared to that of X and Y. As a result, there is idle time in Activity Y.

234

Figure 7.33 SQS2 schedule

Figure 7.34 is the SQS3, SQS4, and the finalized schedules, where CITXY of 4

weeks is derived from processing SQS2, in Figure 7.33. That is at the end of processing

SQS2, RESXY is scheduled to arrive at the site at the end of the 6th week, resulting in

CITB of 8 weeks in SQS3. Therefore, at the end of processing SQS3, a CLTB of 8 weeks

is assigned. In SQS4, there is no resource that has not yet been assigned crew lead time.

Accordingly, there is no change in the schedule from SQS3 to SQS5 (final schedule),

although there is idle time of 4 weeks in Activity Y. In addition, it is obvious that the

project duration is unnecessarily delayed without eliminating any idle time between units

in Activity Y.

235

Figure 7.34 SQS3, SQS4, and the finalized schedule when using CITXY from SQS2 and

CITB from SQS3, developed from Figure 7.33

As shown in Figure 7.34, delaying the arrival date of RESXY does not have the

intended effect of eliminating interruptions in Activity Y, since delaying Activity X will

also delay its successor Activity B which causes the idle time and interruption in Y. As a

result, Activity Y is delayed and has the same idle time as before (Figure 7.34).

In this case, the idle time of 4 weeks in RESXY cannot be eliminated because of:

1) Precedence constraints among Activities X, B, and Y

2) The relatively slower production rate of Activity B compared to X and Y

3) Continuity constraints between resource-sharing Activities X and Y

Figure 7.35 is an alternative schedule for Example 7.6, showing the finalized

schedule, where CLTXY is derived from processing SQS4 (not SQS2), after CLTB in

processing SQS3. Remember, CLTB could be derived from either SQS2 (before CLTB) or

SQS4 (after CLTB). Consequently, postponing the arrival of RESXY delays Activity X,

after already scheduling RESB, causes AITB of 4 weeks. This AITB of 4 weeks exists

between RESB’s arrival date and the first start date of B1, as shown in Figure 7.35.

236

Figure 7.35 Finalized schedule when using CLTB from SQS3 and CLTXY from SQS4,

developed from Figure 7.34

In accordance with the finalized schedules in Figures 7.34 and 7.35, it can be

concluded that the idle time in the shared Resource RESXY cannot be eliminated, as long

as Activities X and Y still share the same resource or continuity constraints of RESXY

remains the same. To eliminate idle time in RESXY, three alternatives can be applied.

The first alternative is to assign dedicated resources to Activity X and Activity Y,

as shown in Figure 7.36.a. A dedicated RESX is assigned to Activity X, whereas another

dedicated RESY is assigned to Activity Y. The second alternative is to introduce a work

break of 4 weeks between Activities X and Y, as shown in Figure 7.36.b.

237

Unit

3

2

1

B3

2 6 12 14 184 10 16 2080

Week

22 24

B1

CLTA = 0
CLTB = 4
CLTXY = 6

CITB = 0
CITXY = 2
BreakXY = 4

Work
Break

 X3-Y1

Work
Break

 X3-Y1

B2

4 weeks

Unit

3

2

1

B3

2 6 12 14 184 10 16 2080

Week

22 24

B1

CLTA = 0
CLTB = 4
CLTX = 2
CLTY = 12

CITB = 0
CITX = 0
CITY = 0

B2

(a) Assigning dedicated RESX for Activity X and dedicated RESY for Activity Y

(b) Introducing a work break of 4 weeks in RESXY, after RESXY completes X3

Figure 7.36 Using dedicated resources or work break between Activities X and Y

The third alternative is to balance the production rates for Activities X, B, and Y

as shown in Figure 7.37. Figure 7.37.a illustrates that the production rate for RESB is

increased in order to balance the production rates between RESB and RESXY. On the

other hand, Figure 7.37.b illustrates that the production rate of RESXY is decreased in

order to balance the production rates between RESXY and RESB.

238

X3

Unit

3

2

1

Y2

Y3B3

A2 X2

2 6 12 14 184 10 16 2080

Week

22 24

A1 X1 B1 Y1

A3

CLTA = 0
CLTB = 5
CLTXY = 2

CITA = 0
CITB = 0
CITXY = 0

B2

Unit

3

2

1

Y2

Y3

B3

A2 X2

X3

2 6 12 14 184 10 16 2080

Week

22 24

A1 X1 B1 Y1

A3

CLTA = 0
CLTB = 4
CLTXY = 2

CITA = 0
CITB = 0
CITXY = 0

B2

(a) Increasing production rate of RESB to balance the production rates of RESB and RESXY

(b) Decreasing production rate of RESXY to balance the production rates of RESB and RESXY

Figure 7.37 Balancing production rates of Resource RESXY to achieve its continuous

resource utilization

7.3 Summary

This chapter discusses various topics and complexity in scheduling repetitive

projects consisting of resource-sharing activities. Examples in this chapter demonstrate

the difficulty in maintaining continuous resource utilization in such projects. The

239

complicated relationships and interactions among precedence, resource availability, and

resource continuity constraints diminish the effectiveness of SQS-AL when used blindly.

For SQS-AL to effectively schedule repetitive projects with resource-sharing

activities, schedulers must imperatively consider the following questions:

• Are resource-sharing activities directly or indirectly dependent?

• Are there any activities between the resource-sharing activities? What are

their production rates compared to the resource-sharing activities’ production

rates?

• Are resource-sharing activities in the same sequence step? If they are not in

the same sequence step, in which processing sequence step should their shared

resources’ crew lead time be determined?

• What is the order of which simulation models for resource-sharing activities

are created in the simulation? Does the order affect resource idle time and

schedule?

• Could the working sequence of resources be changed because of

determination of resources’ CLT? Does the change impact the effectiveness of

the already determined CLT?

• Is it possible to eliminate idle time in resource utilization?

• Could a work break be introduced to relax the resource continuity constraints?

• Is it necessary to replace a shared resource by many dedicated resources?

The questions above are a good start in analyzing repetitive projects with

resource-sharing activities. Many examples are used to point out different problems

associated with the above questions in scheduling such projects. The examples and their

240

solutions in this chapter show how to tackle the difficulties in scheduling resource-

sharing activities and shared resources, case by case. However, neither the above

questions nor the example in this chapter are exhaustive. The combinations of these

questions and examples result in even larger number of possibilities.

Using SQS-AL to solve scheduling problems of repetitive projects consisting of

resource-sharing activities definitely requires thorough analysis of the aforementioned

considerations and careful examination of the simulation results. The trial-and-error

approach may be necessary to derive an optimal schedule; different scheduling scenarios

must be tested to improve both activity and resource schedules. To do so, certain

decisions (e.g., considering different sequence steps for shared resources) must be first

outlined and their options (e.g., SQS2, SQS3, and SQS4) must be listed prior to the

testing in simulation and optimization. The following suggestions should be treated as

decision variables in scheduling resource-sharing activities.

• It is recommended to use only dedicated resources first in order to study the

proximity (i.e., start dates and working period) of activities sharing the same

resource and their interaction in the schedule with their dependents.

• Activities, both resource-sharing and not-sharing, should be modeled in the

order of their precedence relationships. Then, the decision of which resource-

sharing activities to start first should be determined later after studying the

production diagram carefully.

• Working sequence should be specified so that the order of which activities are

performed is certain, not by chance. This also prevents an unexpected

outcome in the schedule such as idle time from probabilistic activity durations

241

242

and their impact on the effectiveness of SQS-AL. Examples of specifying

working sequence for shared resources are 1) finishing one resource-sharing

activity at a time (e.g., X1, X2, X3, and then Y1, Y2, and Y3) and 2) working

alternately between resource-sharing activities (e.g., X1, Y1, X2, Y2, X3, and

Y3), given that Activities X and Y share the same resource and are not

dependent.

• When resource-sharing activities are in different sequence steps (e.g., X is in

SQS2 and Y is in SQS4), it is important to check their effect on the schedule.

If using different sequence steps results in different schedule, all sequence

steps from the SQS of the earlier-SQS activity (i.e., SQS2) to the later-SQS

activity (i.e., SQS4) must be tested for the shared resource.

• When there is a slow-production-rate activity between resource-sharing

activities, it is recommended to consider assigning work breaks or balancing

the production rates. If the proximity between resource-sharing activities is

close (their schedules overlap each other or almost), balancing production rate

among activities are recommended. On the other hand, if the proximity is

large, introducing work breaks between resource-sharing activities is

suggested.

Chapter 8 presents the ChaStrobe application, which facilitates the trial-and-error

approach by expediting the processes of simulation code and model creation. In addition,

the application offers comprehensive analysis of simulation results.

CHAPTER 8

CHASTROBE APPLICATION

CHAPTER 8 CHASTROBE APPLICATION

 Commencing with Chapters 4 to 7, the Sequence Step Algorithm (SQS-AL) and

various topics of repetitive project scheduling have been discussed. In Chapter 4, the

fundamental concepts of SQS-AL are introduced. The chapter shows that repetitive

activities should be scheduled in sequence step order so that the effect of postponing an

activity on its successors’ idle time and interruption are unveiled, and thus taken into the

account of scheduling the successors. Accordingly, SQS-AL is involved in the repetitive

processes of executing simulation, collecting data, and scheduling activities. These

repetitions are demonstrated in Chapters 4 and 5. In Chapter 5, the implementation of

SQS-AL in simulation system, Stroboscope, is discussed. At the end of Chapter 5, it

becomes apparent that it is beneficial to create an application automating SQS-AL’s

systematic process in solving the problems of repetitive project scheduling.

 In Chapters 6 and 7, two advanced ideas of scheduling repetitive projects are

discussed: work breaks in repetitive activities (Chapter 6) and resource-sharing activities

(Chapter7). Chapter 6 shows benefits of applying work breaks (deliberated interruptions)

in repetitive activities to shorten increased project duration due to the assigned crew lead

times. Suggestions of which activities into which a work break should be introduced are

given; however, trial-and-error approach of scheduling work breaks between units in a

243

repetitive activity is apparently inevitable. The modifying simulation model and code is

required and repeated several times in order to derive an optimal schedule.

Chapter 7 shows that scheduling resource-sharing activities could be extremely

complicated. The complexity of scheduling repetitive projects with resource-sharing

activities varies from case to case depending on 1) relationships between activities

sharing the same resource and 2) relationships between the resource-sharing activities

and their dependents. Similar to the trial-and-error approach in Chapter 6, the repetition

of modifying simulation models and code is mandatory in order to derive an optimal

schedule for repetitive projects with resource-sharing activities.

 From Chapters 6 and 7, it is recommended to establish an application that

facilitates the means of generating and modifying simulation models and code

conforming to SQS-AL (Chapter 4) and the suggested simulation model templates

(Chapter 5). The application must be able to facilitate the trial-and-error approach so that

modifying simulation models and executing the simulation to optimize a schedule

become easier. According to the aforementioned needs and goals, ChaStrobe has been

developed.

8.1 Overview of the ChaStrobe Application

ChaStrobe is an application that automates the process of creating simulation code

and models conforming to the concepts of the Sequence Step Algorithm (SQS-AL) and

the simulation model templates, discussed in Chapters 4 and 5. ChaStrobe is programmed

in Visual Basic for Applications (VBA) for Microsoft Visio. It takes input from users,

and generates the simulation model in a Stroboscope Graphic User Interface file

(Stroboscope GUI), which is a Visio file with Stroboscope add-ons. When users execute

244

the generated simulation model, the Stroboscope add-ons will convert the simulation

model in Stroboscope GUI to Stroboscope code. Then, the converted code is combined

with the simulation code in the Stroboscope GUI and send to the Stroboscope Integrated

Development Environment (Stroboscope IDE) for simulation execution. Figure 8.1

shows the processes of using ChaStrobe and Stroboscope to model repetitive projects and

solve repetitive project scheduling problems using SQS-AL and Stroboscope.

ChaStrobe

Stroboscope
GUI

Stroboscope
IDE

2) Generates simulation
code and models

4) Executes the converted
and combined simulation
code

Users
1) Enter inputs for
simulation parameters,
activities, and resources

3) Converts the simulation
models in (2) to code and
combines all the code

Simulation code and
models in Visio objects

Inputs for simulation,
activities, and resources

Converted and combined
Simulation Code

Simulation results

5) Store the simulation
results

Output
Text Files Output data from specifie

text files, when
requested by ChaStrobe.

Figure 8.1 ChaStrobe’s process of modeling and solving problems

As shown in Figure 8.1, a user enters inputs for simulation parameters, activities,

and resources in ChaStrobe. Then, the user asks ChaStrobe to create a simulation model

and code inside the Stroboscope GUI. This process of creating simulation code and

245

model in Stroboscope GUI normally takes seconds depending on the size of the

simulation model (e.g., the number of activities and the number of sequence steps) and

the complexity of the repetitive project (e.g., the existence of work breaks and resource-

sharing activities). After the model is created, both the graphical model and code can be

examined by the user within the Stroboscope GUI. At this point, the simulation code and

model can be modified by the user prior to simulation execution.

As depicted in Figure 8.1, between the Stroboscope GUI and IDE, after a user

requests to execute the simulation from within the Stroboscope GUI, the graphical

simulation elements such as Queues, Combis, and Links are converted to simulation code

and then combined to the simulation code, created by ChaStrobe and the code added by

users before simulation execution. Then, the combined code is sent to and executed by

the Stroboscope IDE. Results from the execution are stored in various text files for

further analysis.

8.1.1 Inputs for ChaStrobe

There are four main types of inputs in the ChaStrobe application: 1) simulation

parameters, 2) project inputs, 3) optimization parameters, and 4) graphical presentation

parameters. Simulation parameters (e.g., the number of replications) and project inputs

(e.g., activities and resources) are the most important inputs used to construct simulation

code and model. Accordingly, this chapter focuses on simulation parameters and project

inputs, while Chapter 9, Optimization in ChaStrobe, focuses on optimization parameters.

Graphical presentation parameters for ChaStrobe’s Static Graphs are explained in detail

in Appendix D.

The following is a description of ChaStrobe’s inputs.

246

1) Simulation Parameters are simulation setup input, variables, and constants for

establishing and running simulation, not related to specific activities and

resources. Figure 8.2 shows ChaStrobe’s user interface for the Simulation

Parameters.

Figure 8.2 ChaStrobe’s interface for Simulation Parameters

The Simulation Parameters in Figure 8.2 are described below:

a. “Number of Replications” specifies the total number of replications for

each SQS-AL processing sequence step. This number is assigned to nRep

to control SQS-AL replication loop, discussed in Section 5.3.1.1

(MP.Loops).

b. “Expected Maximum Value of CIT” specifies the upper bound of

BinCollectors such as RES_CIT1, discussed in Section 5.3.2.6

(PO.RES.CIT).

247

c. “Number of Intervals for CIT” determines the number of intervals in

BinCollectors in (b), discussed in Section 5.3.2.6 (PO.RES.CIT).

d. “Rounding Digit” specifies the number of decimals used in Stroboscope’s

Round function to round decimal places.

e. “Static Graph” option informs ChaStrobe whether to create Static Graphs

at the end of simulation. When this option is checked (true), ChaStrobe

generates simulation code storing data, which is used later to create Static

Graphs. Details for constructing a Static Graphs are given in Appendix D.

f. “Dynamic Graph” option informs ChaStrobe whether to create production

diagrams during simulation runs. When this option is checked (true),

ChaStrobe creates simulation code for the Dynamic Graph.

g. “Number of (Dynamic) Graphs in Each SQS” indicates how many

dynamic graphs will be plotted during processing each sequence step. The

data for each dynamic graph are derived from each replication, starting

from the first replication. Note that ChaStrobe uses this parameter only if

the option of Dynamic Graph in item (f) is checked.

h. “Number of (Dynamic) Graphs in Last SQS” indicates how many dynamic

graphs will be plotted in the last sequence step. Similar to “Number of

Graphs in Each SQS,” ChaStrobe uses this parameter only if the option of

Dynamic Graph is checked.

i. “Plot Cumulative Frequency of Project Duration” option informs

ChaStrobe whether to create simulation code used in plotting the

cumulative frequency of project durations from processing each SQS.

248

j. “Using optimized INIT Activities based on their SQS” option is for

optimizing SQS-AL’s processing sequence steps in simulation. When this

option is checked, only activities in all previous and the current sequence

steps are initiated with the number of units, while activities in the later

SQS than the current SQS are not initialized. This option is used to

expedite SQS-AL, when there is no desire to study changes in crew idle

time, project duration, project idle time etc., between different processing

sequence steps.

2) Project Inputs are data related to activities and resources used to create

simulation code and model. Activity data are activities’ names, precedence

constraints, production rates, and work amounts. Resource data are resources’

names, resource utilization, resource continuity constraints, and work breaks.

Figures 8.3 to 8.6 show ChaStrobe’s user interface for Project Input.

a. The Precedence Input sheet (Figure 8.3) collects 1) the number of

activities, 2) activities’ names, and 3) precedence constraints. ChaStrobe

determines the number of activities in the Precedence Input sheet by

counting non-blank cells in Column A, starting from Row 2. Then, it

collects activities’ names, used to create work flow sub-networks for each

activity. For precedence constraints, ChaStrobe determines the number of

predecessors by counting non-blank cells in the column direction, starting

from Column 2 in the same row of each particular activity.

249

Figure 8.3 ChaStrobe’s Interface for activities’ names and precedence constraints on the

Precedence Input sheet

b. The Quantity Input sheet in Figure 8.4 collects 1) conversion of

productivity of activities in the unit of time per the unit of work (e.g.,

hr/m), and 2) work amount for each repetitive unit and each activity in

units of work per repetitive unit (e.g., m/floor). Therefore the unit of their

product is in the unit of time (e.g., hr). On the Quantity Input sheet,

ChaStrobe counts the number of non-blank cells in Row 1 in the column

direction, starting from Column C, to determine the number of units in the

project. Therefore, the project in Figure 8.4 consists of 4 units. ChaStrobe

uses the number of units to: 1) create arrays of work amount in simulation

code and 2) initialize the number of work units. The conversion of

250

productivity in Column B (e.g., in Cell B2, 1/Normal[10,1]) must be

Stroboscope’s expression. Activity durations are derived from the product

of the conversion in Column B and the work amount in Columns C, D, E,

and F. For more information about simulation code generated from data

in the Quantity Input sheet, see Section 5.3.1.2 (MP.ACT.Quantity) for

arrays of work amounts, Section 5.3.4.2 (CS.ACT.INIT) for initializing

the number of repetitive units, and Section 5.3.2.3 (PO.ACT.Duration) for

activities’ durations.

Figure 8.4 ChaStrobe’s interface for activities’ productivities and work amounts on the

Quantity Input Sheet

c. The Resource Input sheet (Figure 8.5) collects data related to resources in

repetitive projects. Resource-related inputs for each resource in Resource

251

Input sheet are 1) resources’ names, 2) confidence levels, 3) the total

number of resources for each type, and 4) continuity constraints.

ChaStrobe first determines the number of resources by counting non-blank

cells in Column A starting from Row 2. Then, it records the resources’

names in Column A and stores resource’s properties in different columns.

Confidence levels and the number of resources for each resource type are

collected from Columns B and C, respectively.

Continuity constraints for each resource are constructed using

notation of Break. Breaks indicate series of continuous utilization of

resources. For example, in Figure 8.5, resource ResB’s Break 1 in Column

H is B-4, meaning that ResB is scheduled to work continuously from the

day it arrives to the day it finishes Activity B4. On the other hand, blank

cells in Column H indicate resources are not constrained by continuity

constraints; therefore, the early start date is used to schedule the

unconstrained resources. ChaStrobe determines the number of breaks by

counting non-blank cells in the column direction, starting from Column H.

Simulation code for confidence levels is discussed in Section

5.3.1.3 (MP.RES.ConfidenceLevel) and Section 5.3.4.6 (CS.RES.CLT).

For work breaks in continuous resource utilization, see simulation code in

Section 5.3.3.7 (CME.RES.Leave.OnFlow) for a project without work

breaks, and Section 6.5.3.7 for the project with work breaks.

252

Figure 8.5 Resources’ names, confidence levels, amounts for each type, and continuity

constraints on the Resource Input Sheet

d. The Utilization Input sheet is used to assign resource(s) to activities.

ChaStrobe uses row index in identifying activities in the Utilization Input

and Precedence Input sheets; therefore, the order of activities on both

sheets must be the same. Column A on the Utilization Input sheet is only

for reference purposes; omitting activities’ names in Column A on the

Utilization Input sheet does not result in an error. For example, as shown

in Figure 8.6, after ChaStrobe reads resource’s name (ResA) in Row 2

Column B on the Utilization Input sheet, it assigns Resource ResA to an

activity declared in Row 2 on the Precedence Input sheet, which is

Activity A as shown in Figure 8.4. Then, ChaStrobe moves to Row 2

Column C on the Utilization Input sheet; however, since there is no

253

resource’s name in Row 2 Column C, ChaStrobe will move to Row 3

Column B. Then, it will assign Resource ResB to an activity declared in

the same row index, which is Row 3, on the Precedence Input sheet, which

is Activity B as shown in Figure 8.4.

Figure 8.6 ChaStrobe’s interface for Utilization Input

Note that the Dynamic Code Input and Search Input sheets are for optimization,

discussed in Chapter 9, Optimization in ChaStrobe.

After Simulation Parameters and Project Input (Precedence, Quantity, Resource,

and Utilization Input) are entered, simulation code and model for the problem are ready

to be created. To generate the simulation model, users click the “GENERATE” button

(Figure 8.6). To execute the simulation, users click the “RUN MODEL” button.

254

8.1.2 Simulation Output from ChaStrobe

ChaStrobe stores simulation results related to activities, resources, and projects in

six different text files. After simulation execution, the six text files are ready for viewing.

Their main functions are explained below.

1) tempChaStrobe_Analyzer.txt stores simulation results related to activities,

such as start date and duration, for the finalized schedule in each replication.

ChaStrobe uses the activity data in tempChaStrobe_Analyzer to analyze and

compare the results among SQS-AL, CPM, and RSM. Details of ChaStrobe

Analyzer are discussed in Section 8.10.

2) tempChaStrobe_CLT.txt stores resources’ crew lead times.

3) tempChaStrobe_GA.txt stores objective function values and user-specified

output from simulation execution, used for optimization, discussed in detail in

Chapter 9, Optimization in ChaStrobe.

4) tempChaStrobe_StaticGraph.txt stores data of activities from the first

replication when processing each sequence step. ChaStrobe’s Analyzer uses

this data to create example production diagrams.

5) tempChaStrobe_StaticGraphProb.txt stores simulation results of probability of

project duration for processing each sequence step. ChaStrobe uses this data to

create cumulative frequency of project duration from processing each

sequence step.

6) tempChaStrobe_StaticGraphSQS.txt stores simulation results of project

duration and project idle time from processing each sequence step.

255

8.1.3 Automation in ChaStrobe

ChaStrobe uses Visual Basic for Applications (VBA) and Object and Linking

Embedding Automation (OLE) in order to control MS Visio, MS Excel, and MS Project,

to 1) create graphical presentations, 2) execute computational analyses, and 3) perform

optimization. Upon users’ requests, ChaStrobe retrieves the data stored in output text

files, performs the necessary tasks, and returns the results when it finishes. Figure 8.7

explains the processes of analyzing the data from output files, and also applications used

to present the results.

ChaStrobe

Presentations Analysis Optimization

Output

Text Files

MS Visio

MS Excel

MS Project

MS Excel

MS Visio

ChaStrobe

Users

1) Request (a), (b), or (c)

a) Creating b) Executing c) Performing

2) Retrieves data

Figure 8.7 ChaStrobe’s presentations, analyses, and optimization

Figure 8.7 indicates that the graphical presentations are displayed in MS Visio,

MS Excel, and MS Project, depending on the type of presentation. Analysis in MS Excel

focuses on the comparison of results among CPM, RSM, and SQS-AL. For the

optimization in ChaStrobe, both ChaStrobe and MS Visio with Stroboscope GUI are

256

required as shown in Figure 8.7; it is a recursive procedure of creating simulation models,

executing the models in Stroboscope GUI, retrieving output from tempChaStrobe_GA,

and then performing optimization-related calculations in ChaStrobe. ChaStrobe’s

Optimization and ChaStrobe’s Automation are discussed in Chapter 9.

8.1.4 Capabilities of ChaStrobe

 According to the aforementioned ChaStrobe’s features, the ChaStrobe application

is capable of:

1) Generating simulation model and code conforming to SQS-AL for repetitive

projects with:

a. Probabilistic activity durations (Chapters 4 to 7)

b. Dedicated resources (Chapters 4 and 5)

c. Work breaks (Chapter 6)

d. Resource-sharing activities (Chapter 7)

2) Automatically and dynamically modifying simulation code and model by

using Dynamic Simulation Modeling and Dynamic Coding features in

ChaStrobe, discussed in Chapter 9.

3) Retrieving output from specified text files to:

a. Create graphical presentations from the output

b. Perform comparison analyses of the Critical Path Method (CPM), the

Repetitive Scheduling Method (RSM), and the Sequence Step Algorithm

(SQS-AL)

c. Obtain objective function values for optimization in ChaStrobe: 1) Genetic

Algorithm Optimization, and 2) Exhaustive Search

257

4) Creating graphical presentations as follows:

a. Production diagrams from different processing sequence steps

b. Cumulative distribution function of project duration based on CPM, RSM,

and SQS-AL

c. Density functions of project durations from CPM, RSM, and SQS-AL

d. Comparisons among CPM, RSM, and SQS-AL in project duration, and

project idle time

5) Performing optimization using:

a. Genetic Algorithm

b. Exhaustive Search

8.2 Examples of Repetitive Projects in ChaStrobe

 Four examples of repetitive projects demonstrate the use of the ChaStrobe

application. Ordered from simple to complicated, the four examples are:

1) Example 8.1 Simple repetitive project. In this example, each activity utilizes

one dedicated resource. There are no work breaks or resource-sharing

activities.

2) Example 8.2 Repetitive project with work breaks. This example focuses on

using ChaStrobe to model repetitive activities with work breaks. There is no

resource-sharing activity.

3) Example 8.3 Repetitive project with resource-sharing activities. This example

focuses on using ChaStrobe to model resource-sharing activities. In this

example, the difficulty in scheduling repetitive projects with resource-sharing

activities is shown.

258

To solve Example 8.3 effectively, the inputs in Example 8.3 must be modified as

shown in Example 8.4. However, Example 8.3 is shown for the purposes of

comparison between two schedules derived from the input in Examples 3 and 4.

4) Example 8.4 Repetitive project with work breaks and resource-sharing

activities. This is a very complicated scheduling problem of repetitive

projects, since both work breaks and resource-sharing activities are included

in the simulation model.

To activate ChaStrobe, right click on the Visio drawing with ChaStrobe macro.

Then, select CHASTROBE, as shown in Figure 8.8 below.

Figure 8.8 Activating ChaStrobe

8.2.1 Example 8.1 Simple repetitive project

 Example 8.1 is the example used in Section 5.3. Each activity requires only one

dedicated resource, and there is no work break. This example shows how to use

259

ChaStrobe to model a simple repetitive project. The comparison between the simulation

code in section 5.3 and the input in the following section should be beneficial to users

when they desire to modify the default code and model created by ChaStrobe.

 Figure 8.9 displays a single unit precedence diagram for Example 8.1, whereas

Table 8.1 shows each activity’s productivity and work amount in each unit.

Figure 8.9 A single unit precedence diagram for Example 8.1

Activity Productivity
Unit

1 2 3 4
Work Amount

A Normal[10,1] 100 250 150 200
B Normal[20,2] 150 100 200 150
C Normal[15,1.5] 200 150 50 200
D Normal[15,1.5] 150 200 100 150
E Normal[25,2.5] 100 150 50 100
F Normal[15,1.5] 150 250 50 100
G Normal[20,2.0] 50 200 50 150

Table 8.1 Activities’ productivities and work amounts for Example 8.1

The following sections show the input for Example 8.1 in ChaStrobe. Figure 8.10

shows Simulation Parameters for the example. The total number of replications is 3000;

therefore, nRep SaveValue equals 3000 as shown in Section 5.3.1.1 (MP.Loops). The

Maximum Value in RES_CIT is set at 300, meaning the upper bound of RES_CIT

BinCollectors is set to 300 days. The number of intervals in these BinCollectors is 60 as

260

shown in the Intervals in RES_CIT bincollector in Figure 8.10. The Maximum Value in

RES_CIT and the Intervals in RES_CIT bincollector are used in the BinCollectors’

declaration in Programming Objects. See Sections 5.3.2.6 (PO.RES.CIT) and 5.3.2.8

(PO.RES.CIT.SQS) for more detail.

 In Figure 8.10, the option of Static Graph is checked (true) so that ChaStrobe will

create simulation code for storing data necessary to construct Static Graphs in

tempChaStrobe_StaticGraph.txt.

Figure 8.10 Simulation Parameters for Example 8.1

Note that, the total number of processing sequence steps is automatically

determined by ChaStrobe, which is 4 in this example. Thus, nSQS SaveValue is 4 as

shown in Section 5.3.1.1 (MP.Loops).

 Figure 8.11 shows the input of activities’ names and predecessors entered in

ChaStrobe’s Precedence Input sheet. Activities’ names are entered in Column A starting

from Row 2, while predecessors of activities are entered in the row direction starting

261

from Column B. ChaStrobe interprets the input on the Precedence Input sheet to create

work flow sub-networks for each activity and also their precedence constraints. Note that

precedence constraints are encoded in activities’ semaphores, as shown in Section 5.3.2.2

(PO.ACT.Semaphore).

Figure 8.11 Precedence Input for Example 8.1

 Figure 8.12 shows the input of activities’ production rates and work amounts in

each unit; the input is entered in the Quantity Input sheet. The data on the Quantity Input

sheet is used mainly for 1) determining the total number of units, 2) creating Arrays

storing activities’ work amounts in each unit, and 3) constructing simulation code for

activities’ durations. On the Precedence Input sheet, ChaStrobe collects the inverse value

of productivity from Column B. It is mandatory to enter the input of activities in the same

order as activities in the Precedence Input sheet, because ChaStrobe uses the row index as

a reference to collect activities’ properties (production rates and work amounts).

262

For the work amount, ChaStrobe collects data in the row direction starting from

Column C. In order to determine the number of units, ChaStrobe counts non-blank cells

in Row 1, starting from Column C. Hence, ChaStrobe recognizes 4 units in this example.

Note that the simulation code for the work amount is explained in Section 5.3.1.2

(MP.ACT.Quantity), and the simulation code for activities’ productivity is explained in

Section 5.3.2.3 (PO.ACT.Duration).

Figure 8.12 Quantity Input for Example 8.1

 Figure 8.13 shows the resource-related input on the Resource Input sheet. The

Resource Input sheet is one of the most important input sheets, since it collects resource

data and resource continuity constraints. Starting from Row 2, ChaStrobe collects

resources’ names and confidence levels from Columns A and B, respectively. For

Example 8.1, there are 7 resources, as shown in Figure 8.13. The confidence level for

each resource is 80%. The number of resources for each resource type is in Column C.

For Example 8.1, there is only one set of resource for each type, as shown in Figure 8.13.

263

To model continuity constraints, ChaStrobe collects user-specified breaks in

activities and units, defined in “Activity’s Name - Unit’s ID”. The breaks in Column H

inform ChaStrobe how to model the continuity constraints for each resource. The breaks

indicate when resources are scheduled to leave the site. During each period that resources

remain on the site, resource continuity constraints are applied. Consequently, the breaks

implicitly indicate a series of continuous resource utilization for the resource. For more

explanation about breaks and series of continuous resource utilization, see Chapter 7,

Work Breaks.

Figure 8.13 Resource Input for Example 8.1

Note that simulation code for collecting CIT and determining CLT are discussed

in Section 5.3.3.7 (CME.RES.Leave.OnFlow) and Section 5.3.4.6 (CS.RES.CLT).

Simulation code for confidence levels is explained in Section 5.3.1.3

(MP.RES.ConfidenceLevel), and simulation code for the number of resources for each

type is explained in Section 5.3.2.7 (CS.RES.INIT).

264

 Figure 8.14 shows data of resource utilization in the Utilization Input sheet for

Example 8.1. These data in the Utilization Input sheet are used to connect work flow sub-

networks to resource flow sub-networks. ChaStrobe links sub-networks of activities in

Column A to sub-networks of resources in Columns B, C, and so forth.

Figure 8.14 Utilization Input for Example 8.1

 After entering Simulation Input and Project Input, the entered inputs are ready for

the generation of simulation code and model. To generate simulation model and code,

users click the “GENERATE” button. To execute the simulation, users click the “RUN

MODEL” button. Figure 8.15 is the production diagram from the first replication in

SQS5. As shown in the figure, all activities have no interruption between units at least in

this replication. More details about this example, solution, and simulation model can be

found in Chapters 4 and 5.

265

Figure 8.15 Production diagram from the 1st replication in SQS5 for Example 8.1

8.2.2 Example 8.2 Repetitive project with work breaks

 Example 8.2 demonstrates how to use ChaStrobe to model repetitive projects with

multiple work breaks. Example 8.2 is the same example in Chapter 6, which the final

schedule consists of three work breaks at the end of Activities B in Unit 5, C in Unit 4,

and G in Unit 7. Entering project inputs for Example 8.2 is done in the same way as

shown in Example 8.1, except for the input for work breaks on the Resource Input sheet.

Figure 8.16 presents a single unit precedence diagram for Example 8.2;

precedence relationships from the figure are entered in the Precedence Input sheet as

shown in Figure 8.18. Table 8.2 displays the work amount for each unit and the

productivity; these two sets of data are entered in the Quantity Input sheet as shown in

Figure 8.19. Figure 8.20 presents input for resource utilization on the Utilization Input

sheet for Example 8.2. Simulation parameters for Example 8.2 are shown in Figure 8.17.

266

Figure 8.16 Single unit precedence diagram for Example 8.2

Act Resource
Production Rate

Unit
1 2 3 4 5 6 7 8 9 10

Work Amount
A Normal[20,2] 200 200 200 200 200 200 400 400 400 400
B Normal[30,3] 150 150 100 100 100 100 100 100 100 100
C Normal[30,3] 250 200 200 250 300 200 350 400 200 350
D Normal[15,1.5] 300 400 400 450 300 300 250 250 250 400
E Normal[20,2] 150 150 150 150 150 150 200 200 200 200
F Normal[25,2.5] 350 400 300 350 150 200 400 250 300 250
G Normal[30,3.0] 150 150 150 150 300 250 300 300 300 450
H Normal[20,2] 200 300 300 200 250 400 300 400 300 250
J Normal[15,1.5] 200 200 200 200 200 200 300 300 300 300

Table 8.2 Activities’ productivities and work amounts for Example 8.2

267

Figure 8.17 Simulation Parameters for Example 8.2

Figure 8.18 Precedence Input for Example 8.2

268

Figure 8.19 Quantity Input for Example 8.2

Figure 8.20 Utilization Input for Example 8.2

 Figures 8.21.a and 8.21.b present two different inputs on the Resource Input sheet

for Example 8.2, one with workout work breaks (Figure 8.21.a) and another one with

work breaks (Figure 8.21.b). Figure 8.21.a is present here to show the difference between

the inputs for resources with and without work breaks. The schedule derived from the

269

Resource Input sheet in Figure 8.21.a does not have work breaks, while the schedule

derived from the Resource Input sheet in Figure 8.21.b has three work breaks. In Figure

8.21.a, resources are scheduled to work continuously from the start of their activities in

Unit 1 to the completion in Unit 10. There is no work break specified in Figure 8.21.a.

The solid borders in Figure 8.21.a indicate cells that will be modified in order to include

work breaks into their resource schedule, as shown in Figure 8.21.b.

(a) One continuous work series for each resource

(b) Two continuous work series for Resources ResB, ResC, and ResG

Figure 8.21 Resource Inputs with a different number of work series in ResB, ResC, and
ResG for Example 8.2

270

In contrast to Figure 8.21.a, Resource Input in Figure 8.21.b specifies three work

breaks at the end of Activities B5, C4, and G7. The solid borders in Figure 8.21.b

emphasize cells modified from Figure 8.21.a in order to specify work breaks in the

resource schedule. According to the input on the Resource Input sheet in Figure 8.21.b,

Resource ResB is scheduled to work continuously from the start of B1 to the completion

of B5, and then takes a break. After the break, ResB will return to the site to work on a

specified-return date, which will be determined by SQS-AL. After the break, ResB will

work continuously from the start of B6 to the completion of B10. Resources ResC and

ResG are scheduled to work and take a break in the same way as ResB; ResC will take a

break at the completion of C4; ResG will take a break at the completion of G7.

Accordingly, there are three work breaks and three specified-return dates.

There are two types of work breaks in ChaStrobe: 1) a work break with a fixed

return date and 2) a work break with a fixed duration (see Chapter 6, Work Breaks, for

more detail). A work break with a fixed return date determines when the resource returns

to the site after the break (e.g., returning back on May 20). Using this fixed-return-date

option, resources will return to the site on the same date. Therefore, work break duration

for a fixed-return-date work break itself varies depending on when the resource finishes

the unit before the break and the fixed return date after the break. To inform ChaStrobe to

construct simulation code and model for a fixed-return-date work break, users must

include the keyword “date” after activities’ names and units’ IDs, as shown in Figure

8.21.b (i.e., Cells I2, I3 and I9).

Note that the keyword for work break types must be included in the cells

specifying the continuous series of sub-activities after the break (e.g., B10 in Cell I3 in

271

Figure 8.21.b), since the break determines when the resource will return to work on the

next unit (e.g., B6). The first continuous series of sub-activities for Activity B in Figure

8.21.b is from B1 to B5, and the second continuous series is from B6 to B10.

A work break with a fixed duration specifies how long the resource will take a

break (e.g., taking a break for 15 days). Using the fixed-duration work break option,

resources always take the exact same work break duration. The later resources finish the

unit before the break, the later the resources return to the site. To specify a fixed duration

of a work break in ChaStrobe, users include the keyword “duration” after activities’

names and units’ IDs.

Note that if users do not include either keyword “date” or “duration,” ChaStrobe

will use the fixed-duration work break option, since the simulation code and model for

the fixed-duration option is similar to those for repetitive projects without work breaks.

For more detail about work breaks and calculation, see Chapter 6, Work Breaks.

After entering Simulation Input and Project Input, the entered inputs are ready for

simulation code and model generation. To generate the simulation model, users click the

“GENERATE” button. To execute the simulation, users click the “RUN MODEL”

button. Figure 8.22 is the production diagram from the first replication in SQS5. As

shown in the figure, all activities have no interruption between units at least in this

replication. The three specified work breaks the lags between B5 and B6, between C4 and

C5, and between G7 and G8 in the figure. More details about this example, solution, and

simulation model can be found in Chapter 6.

272

 Figure 8.22 Production diagram from the 1st replication in SQS6 for Example 8.2

8.2.3 Example 8.3 Repetitive project with resource-sharing activities

Example 8.3 demonstrates how to use ChaStrobe to model repetitive projects with

resource-sharing activities. ChaStrobe can model, solve, and optimize scheduling

problems of repetitive projects with resource-sharing activities and probabilistic activity

durations. Nevertheless, schedulers should be aware of complicated situations that may

arise due to the existence of resource-sharing activities, as discussed in Chapter 7,

Resource-Sharing Activities. Example 8.3 illustrates how the complexity of resource-

sharing activities could diminish the effectiveness of SQS-AL, discussed in detail in

Chapter 7.

Figure 8.23, a single unit precedence diagram, is not a good representative for

repetitive projects with resource-sharing activities, because the information of resource

utilization is missing; the relationships between shared resources and resource-sharing

activities are not presented in Figure 8.23. Therefore, Figure 8.24, a precedence diagram

273

with resource nodes, is established to present the missing information of resource

utilization.

Figure 8.23 Single unit precedence diagram for Example 8.3 and 8.4

Figure 8.24 Single unit precedence diagram with resource nodes for Examples 8.3 and

8.4

274

Table 8.3 displays activity durations and variability in the durations. For

Examples 8.3 and 8.4, each activity duration is the product of duration and variability

following a normal distribution with a standard deviation of 10% (e.g., Normal[1,0.1] in

Table 8.3, which 1 is a mean value and 0.1 is a standard deviation).

ACT Variability
Unit

1 2 3 4 5
Duration

A Normal[1,0.1] 40 45 40 40 45
M Normal[1,0.1] 15 15 10 10 10
B Normal[1,0.1] 50 40 50 50 40
X Normal[1,0.1] 20 30 25 20 20
U Normal[1,0.1] 15 20 15 25 20
V Normal[1,0.1] 40 40 45 45 40
C Normal[1,0.1] 15 15 15 15 15
N Normal[1,0.1] 20 25 30 20 25
Y Normal[1,0.1] 20 20 20 20 20
D Normal[1,0.1] 45 35 40 40 30
A Normal[1,0.1] 40 45 40 40 45

Table 8.3 Durations and variability for activities in Examples 8.3 and 8.4

Figure 8.25 presents Simulation Parameters for Examples 8.3 and 8.4. Notice that

the options of Static Graphs and Dynamic Graphs are checked, because it is necessary to

analyze the final solution as well as changes in project duration and project idle time

from processing one sequence step to another.

275

Figure 8.25 Simulation Parameters for Examples 8.3 and 8.4

Figures 8.26, 8.27, and 8.28 present the Precedence Input, Quantity Input, and

Utilization Input for Examples 8.3 and 8.4. The differences in the inputs between

Examples 8.3 and 8.4 are how resources are scheduled. In Example 8.3, resource work

orders are not fixed, and there is no work break. On the other hand, working sequences of

resource-sharing activities in Example 8.4 are fixed, and there are scheduled three work

breaks. The fixed work orders in Example 8.4 ensure that the resource performs work in

the same working sequence from processing its sequence step to the final sequence step.

The three work breaks in Example 8.4 eliminate idle time in ResMN serving Activities M

and N, which are separated by Activity U having a slower production rate, compared to

M and N.

276

Figure 8.26 Precedence Input for Examples 8.3 and 8.4

Figure 8.27 Quantity Input for Examples 8.3 and 8.4

277

Figure 8.28 Resource Input for Example 8.3 only

Figure 8.29 Utilization Input for Examples 8.3 and 8.4

After entering Simulation Input and Project Input, the entered inputs are ready for

simulation model and code generation. To create the simulation, users click the

278

“GENERATE” button. To execute the simulation, users click the “RUN MODEL”

button.

It is important to realize that the inputs for Example 8.3 are not effective because

idle time still remains after solving the problem using SQS-AL with the given inputs. The

main three reasons are:

1) Working sequences of resources are not consistent from the processing SQS

which their CITs are collected, to later SQS which their corresponding CLTs

are employed. Accordingly, the collected CITs do not provide an effective

CLT that can eliminate idle time. The problem of inconsistency in working

sequences and solutions are presented in Chapter 7. Note that this problem

could exist in repetitive projects with or without resource-sharing activities.

2) Idle time in shared resources cannot be completely eliminated due to a slow

production rate of a dependent activity (e.g., Activity U in Figure 8.24)

between two indirectly dependent resource-sharing activities (e.g., Activities

M and N in Figure 8.24). The problem of insistence of idle time due to a slow

production rate of an activity between two resource-sharing activities is

discussed in Chapter 7 along with examples and solutions. This problem only

exists in repetitive projects with indirectly dependent resource-sharing

activities having a slow-production-rate dependent activity between the

resource-sharing activities.

3) Crew lead times (CLT) of Resources ResM and ResMN, serving Activities M

are determined in different processing sequence steps. Idle time will be

incurred in the resource that arrives to the site first (ResM in this case),

279

because ResM and ResM must be available in order to perform resource-

sharing Activity M. By default, ChaStrobe collect CITs and determines CLT

for shared resources in the latest SQS in which their activities belong.

Accordingly, ChaStrobe determines CLT for ResM in SQS2, in which

Activity M belongs, while CLT for ResMN is determined in SQS4, in which

Activity N belongs. Therefore, Activity M cannot start until ResMN arrives;

as a result, ResM has to wait for ResMN.

To solve Example 8.3 effectively, the inputs in Example 8.3 must be modified as

explained later in Example 8.4. However, the ineffective inputs for Example 8.3 are

shown for the purposes of comparison between two schedules derived from different

inputs in Examples 8.3 and 8.4. The production diagram from the 1st replication in the

SQS6 is shown in Figure 8.30.

Figure 8.30 Production diagram from the 1st replication in SQS6 for Example 8.3

 In Figure 8.30, descriptions are given to point out problems of using SQS-AL to

schedule repetitive projects with resource-sharing activities. As discussed in detail in

280

Chapter 7 and earlier, the difference in processing sequence steps for ResM (i.e., SQS2)

and ResMN (i.e., SQS4) causes the idle time in ResM. As shown in Figure 8.30, CLT for

ResM is determined after processing SQS2, assigning CLTM of 170 days, while CLT for

ResMN is still undetermined. After processing SQS4, SQS-AL determines CLTMN of 355

days, causing a further delay in the start date of Activity M from CLTM to CLTMN due to

the availability of ResMN. As a result, ResM arrives to the site on its CLTM (170 days),

and must wait until ResMN arrives on CLTMN (355 days), adversely resulting in 185 days

of idle time in ResM.

 Similar to the idle time in ResM, the idle time in ResUV is caused by the fact that

CLT for ResUV and ResMN are determined after processing two different sequence

steps. CLTUV is determined after processing SQS2, and is set to 190 days. However, after

processing SQS4, SQS-AL determines CLTMN of 355 days, causing a further delay in

Activity U due to the precedence constraints between Activities M and U. As a result,

ResUV arrives to the site on its CLTUV (190 days), and must wait until ResMN arrives on

CLTMN (355 days), causing 165 days of unnecessary idle time in ResUV.

 It is important to point out that the idle times in ResM and ResUV are caused by

the impact of processing sequence steps for resource-sharing activities and their

dependents on the effectiveness of SQS-AL. This impact changes the working sequence

of resources and activity start dates from which CLTs are determined. Changing in

working sequence and activity start dates incur change in the idle time; as a result, the

collected CITs prior to the change are not a good representative for the “new” idle time

after the change. Therefore, the CLTs determined earlier cannot effectively eliminate the

new idle time.

281

 Another complication of scheduling resource-sharing activities is exhibited in

Figure 8.30 between indirectly dependent resource-sharing Activities M and N, and their

dependent activities U and V. It is important to realize that Activity U, having a slow

production rate, causes 1) the lags between Activities M and N and 2) idle time in

ResMN, as shown in Figure 8.30. This idle time between M5 and N1 is inevitable.

Delaying ResMN’s arrival date further will result in the same amount of idle time in

ResMN, since Activities U and V are direct successors of Activity M and direct

predecessors of Activity N. Moreover, the slow production rate of Activity U also causes

idle time in ResMN serving Activity N.

Figure 8.31 presents the average project duration versus idle time from processing

each sequence step (SQS1 to SQS6) for Example 8.3. Figure 8.31 shows an unusual up-

and-down average project idle time, which indicates difficulty in solving Example 8.3. In

a typical case, the average project idle time should decrease as SQS-AL proceeds from

one sequence step to the next. However, Figure 8.31 shows the average project idle time

increases after processing SQS2 (assigning CLTB and CLTM) and processing SQS4

(assigning CLTMN and CLTXY). The reasons for the increase in the idle time are the

complication of scheduling resource-sharing activities using SQS-AL. To solve this

complication, the inputs in Example 8.3 must be modified as presented later in Example

8.4.

282

Figure 8.31 An unusual up-and-down pattern of average project idle time in scheduling

resource-sharing activities

8.2.4 Example 8.4 Repetitive project with resource-sharing activities and work

breaks

Example 8.4 is the same problem as Example 8.3. However, several modifications

are made so that SQS-AL can effectively solve the problem. To alleviate the difficulties

of scheduling the resource-sharing activities in Example 8.3, the following additional

conditions are included in the schedule and simulation model for Example 8.4:

• A work break for Resource ResMN is scheduled between M5 and N1,

meaning ResMN will work continuously from M1 to M5 (Cell H7 in Figure

8.32), and then take a break. Next, ResMN will return to the site, and work

continuously from N1 to N5 (Cell I7). Figure 8.32 presents the modified

inputs on the Resource Input sheet, which is different from Example 8.3. A

283

work break is scheduled right after M5, as shown in the solid border cells in

Figure 8.32.

• The CIT1 for ResM and ResMN (before the break at M5-N1) are specified to

be collected from processing the same SQS; CIT1M and CIT1MN are collected

during processing SQS2, while CIT2MN (the crew idle time for Resource MN

after the break) is collected during processing SQS4. Figure 8.31 shows the

simulation code in Model Parameters specifying the processing SQS for

CIT1M and CIT1MN.

• The consistency in ResMN’s working sequence from processing one SQS to

another is guaranteed. An additional semaphore for ResMN stipulating its

working sequence is included, which is N_Perform_Additional_Semaphore

shown in Figure 8.34. This additional semaphore prevents ResMN from

serving Activity N, unless five units of Activity M have been completed. This

Activity N’s additional semaphore is encoded in ChaStrobe’s Additional Code

for Programming Objects.

• The consistency in ResXY’s work orders from one processing SQS to another

is guaranteed. An additional semaphore for ResXY, stipulating ResXY’s

working sequence, is included which is Y_Perform_Additional_Semaphore.

This additional semaphore, shown in Figure 8.34, prevents ResXY from

serving Activity Y, unless five units of Activity X have been completed. This

Activity Y’s additional semaphore is encoded in ChaStrobe’s Additional Code

for Programming Objects.

284

Note that Precedence Input, Quantity Input, and Utilization Input for Example 8.4

are the same as in Example 8.3. Hence, for the inputs in Example 8.4, see Figure 8.26 for

Precedence Input, Figure 8.27 for Quantity Input and Figure 8.29 for Utilization Input.

Figure 8.32 Resource Input for Example 8.4, different from Example 8.3

285

Figure 8.33 CIT1M and CIT1MN (before work break at M5-N1) collected from the same

processing SQS2

Figure 8.34 Additional code stipulating ResMN’s working sequence from M1 to M5 and

then N1 to N5, and ResXY’s working sequence from X1 to X5 and Y1 to Y5

286

After modifying the input, the simulation model is ready to be created. To create

the simulation model, users click the “GENERATE” button. To execute the simulation,

users click the “RUN” button.

Figure 8.35 presents the average project duration and idle time from processing

each SQS. As shown in the figure, project idle time decreases as SQS-AL proceeds from

one SQS to another, which is a typical pattern of decreasing idle time that should be

achieved from SQS-AL, not the up-and-down pattern shown in Figure 8.31. Therefore,

the additional conditions included in the input for Example 8.4 resolve the ineffectiveness

of the input in Example 8.3. Figure 8.36 is the production diagram from the first

replication in SQS6. As shown in the figure, all activities have no interruption between

units at least in this replication, excepting for Activity C between Units 4 and 5.

Figure 8.35 A typical pattern of decreasing average project idle time in scheduling

repetitive projects using SQS-AL

287

Figure 8.36 Production diagram from the 1st replication in SQS6 for Example 8.4

8.3 ChaStrobe’s Output

 After simulation execution, ChaStrobe offers four output features used to create a

graphical presentation and to analyze the output from the simulation. As shown in Figure

8.37, the four features are:

1) Creating graphs for project duration and its probabilities from processing each

SQS

2) Creating static graphs from processing each SQS

3) Analyzing the output by comparing the results from SQS-AL to CPM and

RSM, regarding project duration and idle time

4) Creating a schedule in MS Project using the analyzed data from SQS-AL

schedule in (3)

288

Figure 8.37 ChaStrobe’s four output features

8.3.1 Project Duration Graphs for each Processing SQS

 At the end of simulation execution, ChaStrobe stores the simulation outputs for 1)

the probability of project duration from processing each SQS in a text file titled

tempChaStrobe_StaticGraphProb.txt and 2) project durations and project idle times in a

text file titled tempChaStrobe_StaticGraphSQS.txt. To create a graphical presentation

from the text files, users click the “Draw Proj-Dur Graphs from each SQS” button, and

then ChaStrobe will generate three graphs, related to project duration and idle time from

processing each SQS in an automatically-created Excel file, called Analyzer.xls. The

three graphs, shown in Figures 8.38 to 8.40, are generated automatically from the stored

data in tempChaStrobe_StaticGraphProb.txt and tempChaStrobe_StaticGraphSQS.txt.

289

Figure 8.38 The average project duration and idle time from processing each SQS for

Example 8.1

Figure 8.39 Probability density functions of project duration from processing each SQS
for Example 8.1

290

Figure 8.40 Cumulative distribution functions of project duration from processing each

SQS for Example 8.1

8.3.2 Static Graphs

 During a simulation run in the first replication of each SQS, ChaStrobe stores the

data of activities’ start dates and durations in tempChaStrobe_StaticGraph.txt. This data

is used for creating Static graphs, which are the production diagrams of the 1st replication

from processing each SQS. To create the Static graphs, users first specify the data from

which processing SQS will be used, as shown in Figure 8.41.a. Then, users click the

“Draw Static Graphs” button. Next, ChaStrobe will request a filename for the Static

Graphs in the Visio file from the users.

From the Static Graphs input in Figure 8.41.a, ChaStrobe creates the production

diagrams of the 1st replication from SQS1 to SQS5. To view the available created

production diagram files, users click on the empty dialog box next to the “View Static

291

Graphs” button, and then ChaStrobe will show the available files in ChaStrobe’s Static

Graphs, as shown in Figure 8.41.b.

 (a) Creating Static Graphs by clicking the “Draw Static Graphs” button

(b) Selecting and viewing Static Graphs

Figure 8.41 Creating and viewing Static Graphs

292

After a file for Static Graphs is selected, as shown in Figure 8.41.b, users click the

“View Static Graphs” button to view the selected file. Figures 8.42.a to 8.42.c show

three production diagrams (different in the timeframe selected by the users) created from

the last SQS. Users use the “Viewing Static Graphs” form to manipulate the timeframe as

shown in Figure 8.42. The timeframe for the production diagram in Figure 8.42.a is at the

beginning of the project (Time = 0). The timeframe in Figure 8.42.b is at the beginning of

the 10th activity (D1). The timeframe in Figure 8.42.c is at the beginning of the 28th

activity (G4). Users can use Static Graphs to study the work orders of repetitive activities

in the project, and also compare the changes in the activities’ working sequences from

one processing SQS to another. By clicking the “Change Page” button, ChaStrobe will

show a different production diagram from a different processing SQS.

293

(a) Production diagram at the beginning of the project

(b) Production diagram at the beginning of the 10th activity (D1)

(c) Production diagram at the beginning of the 28th activity (G4)

Figure 8.42 Static graph from the 1st replication of processing SQS5 for Example 8.1

8.3.3 ChaStrobe’s Analyzer

 While processing the last sequence step, ChaStrobe stores activities’ start dates

and durations from each replication in tempChaStrobe_Analyzer.txt. This data is then

used by ChaStrobe’s Analyzer to analyze and compare the results from SQS-AL, CPM,

and RSM, regarding project duration and idle time. To activate ChaStrobe’s Analyzer,

users click the “Run Analyzer” button as shown in Figure 8.38. After ChaStrobe analyzes

the data in tempChaStrobe_Analyzer.txt, the following graphical presentations are

created:

294

1) Cumulative Distributions of Project Duration, shown in Figure 8.43

2) Probability Density Functions of Project Duration, shown in Figure 8.44

3) Comparing Project Duration of RSM and SQS-AL to CPM, shown in Figure

8.45

4) Comparing Project Duration of SQS-AL to RSM, shown in Figure 8.46

5) Difference in Project Duration and Idle Time between RSM and CPM,

between SQS-AL and CPM, and between SQS-AL and RSM, shown in Figure

8.47

Note that the discussion for cumulative distributions (Figure 8.43) and probability

density function (Figure 8.44) of project duration derived from CPM, RSM, and SQS-AL

is given in Chapter 4.

Figure 8.43 Cumulative distributions of project duration derived from CPM, RSM, and

SQS-AL

295

Figure 8.44 Probability density functions of project duration derived from CPM, RSM,

and SQS-AL

 Note that the explanations (in texts and shapes) in Figures 8.45 to 4.46 are added

into the figures in order to discuss about the application of CPM, RSM, and SQS-AL;

they are not automatically created by ChaStrobe’s Analyzer. The discussions provide

insight information and how to interpret the corresponding figure.

Figure 8.45 shows the duration derived from CPM on the X axis and that from

RSM and SQS-AL on the Y axis. It is important to remember that schedules and their

project durations derived from RSM are based on perfect hindsight, i.e., it is assumed that

activity durations are known before scheduling the project. With such perfect hindsight,

project duration from RSM changes according to the sampled activity durations and the

resulting necessary delays in activity start dates to achieve continuity. When activity

durations and the idle time (existing in the CPM schedule for the same replication)

happen to be small, project duration from RSM also turns out small; when the activity

durations and the idle time happen to be large, project duration from RSM also turns out

large. According to the assumption of perfect hindsight and variability in this example

296

project, project durations from RSM ranges from 97 to 117 days, approximately, as

shown in Figure 8.45.

Figure 8.45 Comparing project duration of RSM and SQS-AL to CPM

It is important to notice that all “CPM,RSM” points are above or on the diagonal

line in the figure. This is as expected because CPM produces an early start schedule

which is guaranteed to be the shortest. RSM, on the other hand, delays the start date of

some activities to achieve continuity. Hence, RSM produce greater project duration than

does CPM, in most cases. In some cases, it happens by chance that CPM and RSM

produce the same project duration as shown by “CPM,RSM” points on the diagonal line;

297

however, this does not mean they result in the exactly same schedule. It is possible that

schedules from CPM on a “CPM,RSM” point on the diagonal line result idle time, while

schedules from RSM on the same point do not. The same project duration from CPM and

RSM does not necessarily mean they result in neither the same schedule nor the same

amount of idle time.

In general, the vertical distance between “CPM,RSM” points the diagonal line in

Figure 8.45 is the necessary delay in project completion determined by RSM in order to

eliminate idle time with the shortest project duration. It is apparent that the delays caused

by resource continuity in RSM follow the same distribution for any value of CPM

duration.

As opposed to RSM, SQS-AL schedules projects without perfect hindsight. Thus,

it includes floats (time buffers) into the schedule by using crew lead times (CLTs) in

order to eliminate idle time with a certain degree of confidence (i.e., a given confidence

level). CLT for a resource is a fixed arrival date of that resource (or its activity’s start

date) which is determined without knowing activity durations in advance. With an 80%

confidence level, used for this example in Figure 8.45, SQS-AL postpones activities from

their early start dates and results in project durations ranging of 119 to 127 days,

approximately. The project duration from SQS-AL do not vary as a function of CPM

duration due to the chosen CLTs. The project duration from SQS-AL fits into a smaller

range than that of RSM because SQS-AL with the selected 80% confidence level delays

activity start dates (creating floats) to prevent idle time 80% of the time. Therefore, the

already-delayed project completion from SQS-AL schedule is not affected as much by

activity durations or idle time existing in CPM as the RSM schedule. The vertical

298

distance between “CPM,RSM” points and the diagonal line is the remaining part of CLTs

(unused buffers) that cannot be removed. As variability increases, the greater activity

durations and idle time in the CPM schedule, the greater amount of the chosen CLTs is

used, the smaller the vertical distance between “CPM,SQS” points and the diagonal line

is.

Figure 8.46 shows the comparison of project duration derived from RSM and

SQS-AL. The vertical distance between “RSM,SQS” points and the diagonal line is

caused by the fact that RSM delays activities knowing the exact activity durations for

individual schedule (each point in the figure), whereas SQS-AL has to choose one set of

CLT values to be used for all schedules (all points in the figure). In other words, the

vertical distance is a part of the float included into the schedule by SQS-AL in order to

prevent idle time for a certain degree of confidence, which may be lager than necessary.

This vertical distance can also be interpreted as an unnecessary delay (waste in time) in

the project duration that is included because of variability. Without variability in project

durations, RSM and SQS-AL will results in the same project duration.

It is interesting to note that the difference between the vertical distance between

“CPM,SQS” points and the diagonal line in Figure 8.45 and the vertical distance between

“RSM,SQS” points in Figure 8.46 is that the vertical distance for “CPM,SQS” includes

both necessary and unnecessary delay in the project duration, while the vertical distance

for “RSM,SQS” only presents the unnecessary delay.

299

Figure 8.46 Comparing project duration of SQS-AL to RSM

 The data points for “RSM,SQS” (e.g., P1 and P2 in Figure 8.46) below the

diagonal line indicate that the chosen CLTs are not large enough for these schedules. As a

result, it is certain that there is idle time in these schedules. Remember, the project

duration derived from RSM is the minimum project duration without idle time.

Therefore, it is impossible to have a shorter project duration than that of RSM without

idle time. Note that the opposite of this claim is not always true. It is possible that idle

time exists in the SQS-AL schedule even though its project duration is greater than that

of the RSM schedule.

300

Figure 8.47 shows the difference in project duration on the X axis and the

difference in idle time on the Y axis. This figure provides insightful comparison among

CPM, RSM, and SQS-AL in terms of 1) project duration, 2) idle time, and 3) the

relationships between project duration and idle time.

Figure 8.47 Difference in project duration and idle time between RSM and CPM, SQS-

AL and CPM, and SQS-AL and RSM

The data points for “RSM-CPM” in Figure 8.47 shows that this example project

requires necessary delay in project duration ranging from 0 to 10 days in order to

eliminate the idle time in the CPM schedule ranging from 175 to 285 days,

approximately. As shown clearly by the scatter of the data points, the relationship

between 1) the difference in project duration and 2) the difference in idle time from CPM

and RSM do not exhibit any linear dependence (covariance).

301

Regarding to project duration, the project duration derived from CPM is the

shortest project duration (without eliminating idle time) since CPM schedules activities to

start as early as possible. Hence, it is impossible to have data points of “RSM-CPM” or

“SQS-CPM” on the negative side of the X axis. Similarly, project duration derived from

RSM is the minimum project duration without idle time. Since there is no idle time in the

RSM schedule, the difference in idle time between RSM and CPM, “RSM-CPM,” is the

idle time in the CPM schedule. Accordingly, the difference in project duration between

RSM and CPM is the necessary increase in project duration in order to eliminate all idle

time (which is the difference in idle time between RSM and CPM).

The data points for “SQS-CPM” in Figure 8.47 show that as variability increases,

the performance of SQS-AL schedules improve relatively to that of CPM schedules. As

clearly shown in the figure by the white arrow, there is a linear dependency (covariance)

between the difference in project duration and the difference in idle time from CPM and

SQS-AL. Scheduling this example project with SQS-AL causes increase in project

duration ranging from 10 to 30 days (also shown in the vertical distance between

“CPM,SQS” points and the diagonal line in Figure 8.45) in order to eliminate the idle

time in the CPM schedule ranging from 175 to 285 days.

 The data points for “SQS-RSM” shows that as variability increases, the difference

in project durations derived from RSM and SQS-AL becomes smaller, while the idle time

in SQS-AL schedule becomes larger. Since there is no idle time in the RSM schedule, the

difference in the idle time between SQS-AL and RSM is the idle time in the SQS-AL

schedule. The horizontal distance between “SQS-RSM” points and the Y axis in Figure

302

8.47 is an unnecessary delay in SQS-AL schedule as also shown in Figure 8.46, discussed

earlier.

8.3.4 Schedule in Microsoft Project

 After ChaStrobe’s Analyzer performs the analyses and records the results in

Analyzer.xls, users can create a schedule in Microsoft Project by clicking the “Create

output in MS Project” button. Figure 8.48 shows the finalized SQS-AL schedule for

Example 8.1 in a MS Project file, created automatically. For each activity in the created

schedule, the name of the activity is placed inside the bar, whereas the name(s) of

resource(s) serving that activity is placed on the left side. The number on the right side of

the bar indicates the probability of the activity being on the controlling sequence.

Figure 8.48 The finalized SQS-AL Schedule in Microsoft Project

303

8.4 Summary

 This chapter presents the ChaStrobe application, which is built on top of the add-

on that serves as the Stroboscope Graphical User Interface (Stroboscope GUI).

ChaStrobe takes input from users, and creates simulation model and code based on the

sequence step algorithm (SQS-AL) and the simulation model. After the simulation

creation, simulation model and code can be viewed or modified by users prior to

simulation execution, which is performed by the Stroboscope Integrated Development

Environment (Stroboscope IDE) via either Stroboscope GUI or ChaStrobe.

 To model and solve problems of repetitive project scheduling, ChaStrobe takes

two main types of input, Simulation Parameters and Project Input. Simulation Parameters

are variables and constants used in simulation code in order to control the mechanism of

the simulation, such as the number of replications and sequence steps, and BinCollectors’

intervals.

Project inputs are activity-related and resource-related data used to create

simulation model for repetitive projects, conforming to SQS-AL and the simulation

model templates. Accordingly, Project Input consists of four main input types:

1) Precedence Input collects activities’ names and predecessors.

2) Quantity Input collects activities’ production rates and work amounts in each

unit.

3) Resource Input collects resources’ names, confidence levels, number of

resources, and continuity constraints (including work breaks).

4) Utilization Input collects activities’ resource utilization.

304

Four examples of repetitive projects are used to demonstrate how to enter data in

ChaStrobe and solve the problem of repetitive projects with probabilistic activity

durations. The main characteristics of these four example projects are:

• Example 8.1 Simple repetitive project (no work breaks nor resource-sharing

activities)

• Example 8.2 Repetitive project with work breaks (no resource-sharing

activities)

• Example 8.3 Repetitive project with resource-sharing activities (no work

breaks)

• Example 8.4 Repetitive project with work breaks and resource-sharing

activities

As presented in Section 8.3, ChaStrobe offers four features to create graphical

presentations and analyze the simulation results. Changes in project duration and idle

time from one processing SQS to another can be analyzed, as well as the probability of

project duration. Moreover, the simulation results derived from SQS-AL are compared to

CPM and RSM. The graphical presentations created by ChaStrobe after simulation

execution are:

• Average project duration and idle time from each SQS

• Probability density functions of project duration from each SQS

• Cumulative distribution functions of project duration from each SQS

• Production diagram in Static Graphs

• Cumulative distributions of project duration, derived from CPM, RSM, SQS-

AL

305

306

• Probability density functions of project duration, derived from CPM, RSM,

SQS-AL

• Comparison between the project duration of RSM and SQS-AL to CPM

• Comparison between the project duration of SQS-AL to RSM

• Difference in project duration and idle time between RSM and CPM, between

SQS-AL and CPM, and between SQS-AL and RSM.

• Activity and resource schedule in Microsoft Project

The ChaStrobe application is a powerful tool used to solve scheduling problems

of repetitive projects with probability activity durations. ChaStrobe provides a systematic

and automatic simulation code and model generation for repetitive projects, modeled in

Stroboscope GUI. Employing ChaStrobe’s capabilities and automation, schedulers

benefit from the application in both the early (generating simulation model and code) and

late (creating and analyzing simulation results) stages of problem solving.

In the following chapter, optimization of repetitive projects is presented. The

optimization processes are performed automatically by ChaStrobe’s optimization

features. When many alternatives of activity and resource schedules are available, users

can use ChaStrobe’s optimization to test a large number of combined alternatives in order

to optimize the problem.

CHAPTER 9

OPTIMIZATION IN CHASTROBE

CHAPTER 9 OPTIMIZATION IN CHASTROBE

In the previous chapter, the ChaStrobe application and the collaboration between

ChaStrobe and Stroboscope are presented. ChaStrobe’s simulation code and model

generation reduces users’ time and effort in modeling and solving the problems of

repetitive project scheduling. By modifying Project Input in ChaStrobe, users can

examine various alternative schedules in order to improve their projects.

Nevertheless, when there are many alternatives in scheduling activities and

resources, the combinations of these alternatives may result in a large number of possible

simulation model and code. Manually entering, modifying, and executing the input for

such large combinations can become time-consuming, tedious, and cumbersome, even

using the ChaStrobe application. Consequently, the large number of alternative schedules

prohibits schedulers to test all the possibilities; as a result, a selected schedule may defer

greatly from an optimum schedule.

In response to the difficulty, automation of simulation code and model

manipulation is implemented in ChaStrobe with two search methodologies, the

exhaustive search and the genetic algorithm. These search methodologies are used to

optimize problems, modeled in Stroboscope Graphical User Interface (Stroboscope GUI).

To manipulate the simulation code and model in Stroboscope GUI, ChaStrobe offers

307

three levels of simulation code and model manipulation. These three levels of simulation

manipulation range from simple simulation code modification to complicated code and

model modification. With ChaStrobe’s automation, simulation code and model are

automatically created, modified, and executed. Then, ChaStrobe retrieves the simulation

results (stored in tempChaStrobe_GA.txt) and employs either the exhaustive search or the

genetic algorithm to optimize the problem.

9.1 Overview of ChaStrobe’s Optimization

 The optimization process in ChaStrobe consists of nine steps, shown in Figure

9.1. In order to optimize a problem of repetitive project scheduling in ChaStrobe, users

must first complete Step 1, entering project-related inputs (Simulation Parameters and

Project Inputs are discussed in Chapter 8) and Step 2, entering optimization-related inputs

(discussed in this chapter). In Step 1, users provide inputs about the repetitive project

(such as precedence constraints), and also determine how simulation code and model will

be constructed (such as the number of replications). These inputs are Project-Related

Inputs, including ChaStrobe’s Simulation Parameters and Project Input, explained in

Chapter 8. After users enter the project-related inputs, ChaStrobe and Stroboscope should

be able to create a valid simulation code and model from the inputs and execute the

simulation without an error.

In Step 2, users provide ChaStrobe information about the considered alternatives

(such as different confidence levels for resource utilization), additional simulation code

(such as an additional precedence constraint for a specific scenario), and how to optimize

the problem (such as objective functions). These inputs are optimization-related inputs,

308

including ChaStrobe’s Dynamic Code Input, Search Input, an objective function, and

Search Parameters. Details of optimization-related inputs are discussed in Section 9.2.

In Step 3, after entering the project-related and optimization-related inputs, users

choose between the exhaustive search and the genetic algorithm (discussed in

Section 9.5) to initiate the optimization process.

Figure 9.1 Nine steps of optimization process in ChaStrobe

 In Step 4, ChaStrobe generates simulation model from Project Input and

Simulation Parameters given by the users. The simulation generation for optimizing a

problem is performed in the same as for simply solving a problem with two additional

crucial parts, updating values of decision variables and including dynamic code. Prior to

the simulation generation in optimization, ChaStrobe updates the values in the decision

309

variable cells on the Search Input sheet based on a selected search method. Then, cells on

the Dynamic Code Input sheet referencing the decision variables cells will be updated

automatically to derive new updated dynamic simulation code. After the simulation code

on the Dynamic Code Input sheet is updated, ChaStrobe will include this code, called

“dynamic code,” into various positions in the main simulation code. The positions in

which the dynamic code is added are based on a user-specified dynamic code index

(discussed in Section 9.2.2).

Steps 5 to 6 for optimizing a problem are performed in the same way as in simply

solving the problem, as discussed in Chapter 8.

In Step 7, the resulting objective function value from the simulation must be

stored in tempChaStrobe_GA.txt, when using GA. Figure 9.6 shows how to store the

objective function value by using Stroboscope PRINT statement. Users must ensure that

the objective function value is stored and is the first number in tempChaStrobe_GA.txt.

Note that tempChaStrobe_GA.txt is only a temporary storage for the results from

simulation. After ChaStrobe retrieves the data (the objective function values and other

user-specified outputs) in the text file, at the end of simulation for each alternative, and

stores them in ChaStrobe, it will delete the data in the text file.

In Step 8, at the end of simulation for each alternative, ChaStrobe automatically

retrieves the simulation results of the objective value from tempChaStrobe_GA.txt, and

stores the results on the Search Output sheet. ChaStrobe uses the first number in the text

file as the objective function value for GA.

In Step 9, ChaStrobe changes the values of the decision variables in Row 2 on the

Search Input sheet (these cells are called “decision variable cells”) in order to modify the

310

Project Input, which in turn will change the simulation code and model when created in

Step 4. These decision variable cells in Row 2 on the Search Input sheet can be

referenced by various cells on other sheets in the Project Input, such as cells on the

Precedence Input and Resource Utilization sheets. Changing values in decision variable

cells on the Search Input sheet will automatically change values in those referencing cells

on other input sheets. After the values in decision variable cells are changed and the cells

referencing to them are updated, ChaStrobe repeats Steps 4 to 9. These six steps are

repeated many times depending on search methods. For the exhaustive search, ChaStrobe

repeats these steps for the number of all possible alternatives, a combination of decision

variables given by the user on the Search Input sheet. For GA search, ChaStrobe repeats

the steps for a number of times equal to the product of the number of generations and the

number of populations.

9.2 Optimization Input

 As shown in Figure 9.2, optimizing simulation model in Stroboscope GUI

requires ChaStrobe to change the values in the decision variable cells (Step1) in order to

change Project Input (Step 2) based on the inputs specified by users on the Search Input

sheet and to create a new simulation model (Step 3). Then, the new simulation model is

executed to derive the objective function value. For GA, the objective function value is

used to evaluate the inputs specifying the simulation code and model modification.

311

Search Input
on the Search Input
sheet with decision

variable cells in
Row 2 and their
domain values

(Figure 9.3)

Updated
Precedence Input

Updated Quantity
Input

Updated Resource
Input

Updated Utilzation
Input

Updated Dynamic
Code Input
(Figure 9.4)

New Simulation
Model and Code

1) ChaStrobe alters
decision variables cells on
the Search Input sheet.

Automatic
updating

Automatic
updating

Automatic
updating

Automatic
updating

2) ChaStrobe automatically
updates Project Inputs.

Additional Code
Input

(Figure 9.6)

3) ChaStrobe creates
a new simulation
model and code.

Creating

Creating

Creating

Creating

Creating

Figure 9.2 Modifying inputs, updating inputs, and creating simulation code and model

9.2.1 Search Inputs

Search Inputs are the inputs, given by users before optimization, specifying the

current values of decision variables and their domain values. The names of decision

variables are defined by the users in Row 1 on the Search Input sheet, as shown in Row 1

in Figure 9.3. These names specified by users are used only as a reference for the users

on the Search Input sheet; they are not used for any other purposes. Accordingly, the

names of decision variables in Row 1 on the Search Input sheet can be omitted.

The current values of decision variables are placed in the decision variable cells in

Row 2 on the Search Input sheet, as shown in Row 2 in Figure 9.3. During optimization,

ChaStrobe changes the values of the decision variables in decision variable cells in order

to change Project Input, thus resulting in a different simulation model.

312

Figure 9.3 is an example of optimizing a repetitive project scheduling problem by

considering the confidence levels for resources. Domain values of the decision variables

(e.g., confidence levels) range from 0 to 1 with a step of 0.1, as shown in Rows 4 to 14

in Figure 9.3.

Figure 9.3 The Search Input sheet and the current decision variable cells in Row 2

To collect decision variables and their domain values on the Search Input,

ChaStrobe determines 1) the number of decision variables and 2) the number of domain

values for each decision variable. First, ChaStrobe determines the number of decision

variables by counting non-blank cells in Row 2 on the Search Input sheet, starting from

Column A. ChaStrobe will stop counting when it reaches a blank cell in Row 2 (e.g., Cell

G2 in Figure 9.3). For the example in Figure 9.3, there are six decision variables (non-

blank cells in Row 2 from Columns A to F). ChaStrobe uses the column index to indicate

each decision variable. Therefore, the first decision variable is specified in Column A,

and the second variable is in Column B, and so forth.

Second, ChaStrobe determines the number of domain values for each decision

variable (one decision variable has on column) by counting non-blank cells in the row

313

direction, starting from Row 4. For the example in Figure 9.3, decision variable index 1,

as shown in Column A, “B_Conf Level”, has 11 domain values. Each domain value is

indexed by the row order in which it is placed. For example, the indexes of domain

values in Column A for 0, 0.1, 0.2 and 0.3 are 1, 2, 3, and 4, respectively. After the

number of decision variables and the number of domain values for each decision

variables are determined, ChaStrobe creates a two-dimensional array to store them. For

example in Figure 9.3, there are 6 decision variables with 11 domain values for each of

them. Note that each decision variable can have a different number of domain values. See

Figure 9.17 for example.

 The currently selected values for the decision variables are in decision variable

cells, which are cells in Row 2 on the Search Input sheet, as shown in Figure 9.3. The

values of these decision variable cells are referenced by other cells on other input sheets

in ChaStrobe, which are used to create a new simulation model. During optimization,

ChaStrobe alters the values of the decision variable cells using the domain values given

by the users on the Search Input sheet. The means of selecting new values of each

decision variable depends on the given domain values on the Search Input sheet and the

chosen search method. Since the values in decision variable cells are referenced by other

cells on Project Input, changing the values in decision variable cells (e.g., Figure 9.3 in

Row 2) will change the input for the project used to create the simulation code and model

(e.g., Figure 9.4 in Column D). Referencing cells within the spreadsheets in

ChaStrobe is done in the same way as in Excel spreadsheet, because the spreadsheets in

ChaStrobe are actually Excel components.

314

In the beginning, users can specify any initial values for the decision variable cells

so that they can see and verify that the value of the cells on other input sheets that

reference back to these decision variable cells is correct. For example, Cell D2 on the

Dynamic Code Input sheet in Figure 9.4 is referenced to Cell A2 on the Search Input

sheet in Figure 9.3.

9.2.2 Dynamic Code Input

 Dynamic code is simulation code whose part of the code changes according to the

currently selected values for the decision variables. Users create dynamic code on the

Dynamic Code Input sheet. For the changing parts of the dynamic code, users reference

the decision variable cells on the Search Input sheet showing the currently selected values

for the decision variables. In Figure 9.4, for example, the changing part of the code in

Row 2 is the confidence level for ResB (Column D). An Excel formula must be entered

in Cell D2 on the Dynamic Code Input sheet that references Cell A2 on the Search Input

sheet (Figure 9.3). For this example, similar formulas, referencing decision variable cells

on the Search Input sheet, need to be entered in all cells in Column D on the Dynamic

Code Input sheet to obtain the currently selected values for the SaveValues specified in

Column C on the Dynamic Code Input sheet. Another example of dynamic code is shown

in Figures 9.16 and 9.17.

315

Figure 9.4 Dynamic code input with cells in Column D reference to the decision variable

Cells on the Search Input sheet, shown in Figure 9.3

To establish dynamic code, ChaStrobe collects simulation code in the column

direction starting from Column B until reaching a blank cell. The code collected from

cells in the same row is separated by a space. ChaStrobe considers each row on the

Dynamic Code Input sheet as one line of simulation code. For example, ChaStrobe

collects code in Cells B2, C2, D2, E2, and stops, since Cell F2 is a blank cell.

Accordingly, the dynamic code derived from Row 2 in Figure 9.4 is

“ASSIGN ResB_ConfidenceLevel 0.2;”

Figure 9.5 displays code positions in the combined code between the main code

and dynamic code. On the left-hand side of Figure 9.5, the main code is presented. The

main code is the code created by Stroboscope GUI, consisting of: 1) the simulation code

in Model Parameters, Programming Objects, and Control Statements, and 2) the code

converted from graphical simulation elements such as Queues and Combis in

Stroboscope GUI.

316

To determine the position where each line of the dynamic code will be inserted

into the main simulation code, users must specify a dynamic code index (1 to 6) in

Column A for each row on the Dynamic Code Input sheet. For example, dynamic code in

Row 2 in Figure 9.4 is given a dynamic code index of 2, meaning that it will be inserted

into the main code after the code for Model Parameter in the main code, as shown in

Figure 9.5.

Besides specifying an index for each dynamic code on the Dynamic Code Input

sheet, users must ensure that the order in which simulation code will be presented to

Stroboscope is valid. Since Stroboscope reads and interprets simulation code sequentially

line by line, names of model elements (e.g., Queues and Combis), resources, and

variables must be declared before they can be referred elsewhere in the simulation code.

Figure 9.5 Dynamic code indexes and dynamic code positions in the main code

Four parts of the main code, generated by ChaStrobe through the Stroboscope

GUI, are the simulation code for Model Parameters, Programming Objects, Model

317

Properties, and Control Statements. They are stored in the simulation in the Stroboscope

GUI in the form of simulation code. These four parts of the main code are shown in the

gray rectangles on the left side in Figure 9.5. On the other hand, the main code for Model

Declaration, generated by the Stroboscope GUI, is stored in the simulation in the form of

graphical simulation elements (e.g., Queues, Combis, and Links). Before executing a

simulation model in optimization, ChaStrobe creates the four part of the main code,

updates the dynamic code, and inserts the dynamic code into the four part of the main

code. Then, upon the execution, Stroboscope GUI creates the simulation code for the

graphical simulation elements (converting them to code) and combines all the code for

simulation execution in Stroboscope GUI.

Note that the main code generated by ChaStrobe is derived from the inputs on the

four main project input sheets: Precedence Input, Quantity Input, Resource Input, and

Utilization Input, as discussed in Chapter 8.

9.2.3 Additional Consistent Code

 Additional consistent code is the code that does not change throughout the

optimization and is not subject to changes in the decision variables. Users enter the

additional consistent code in the Additional Code tab, as shown in Figure 9.6. On the

Additional Code tab, there are five sub-tabs indicating five different positions where the

additional consistent code will be placed in the main code after the part specified by the

name of the sub-tabs.

Prior to dynamic code insertion and simulation execution, ChaStrobe collects the

additional consistent code and inserts it into the main code. For example, in Figure 9.6,

additional consistent code on the sub-tab of Control Statements in the Additional Code

318

tab will be placed after Control Statements’ main code. This code is for calculating

objective function value and storing the value on the tempChaStrobe_GA output. Since

the objective function in Figure 9.6 is consistent throughout the optimization, it can be

encoded in the Additional Code tab. Otherwise, it should be encoded in the Dynamic

Code Input sheet, if the code or part of the code changes according to decision variables,

specified on the Search Input sheet.

Note that the tempChaStrobe_GA output is automatically created by ChaStrobe

referring to tempChaStrobe_GA text file in the same folder as the ChaStrobe file.

Figure 9.6 Consistent additional code calculating objective function value, placed after

the Control Statements’ main code

9.2.4 Search Parameters

 ChaStrobe offers two search methodologies to optimize scheduling problems of

repetitive projects modeled in Stroboscope GUI by ChaStrobe. The two search methods

are Exhaustive Search and Genetic Algorithm. These two search methods are used to

319

alter decision variables in the simulation, which in turn modify the simulation code

and/or model. The modified simulation, then, is executed to derive an objective function

value for optimization purposes, as discussed so far.

The exhaustive search is for testing all the possibilities of combinations of

decision variables. It is recommended when the number of the possibilities is small.

Details of the exhaustive search are given in Section 9.5.1. To start the exhaustive search,

users click on the “Run Exhaustive Search” button on the tab of Search Parameters, as

shown in Figure 9.7.

The genetic algorithm (GA) is a search technique based on the mechanism of

natural selection. GA uses the objective function value from simulation results (stored in

tempChaStrobe_GA.txt) to evaluate the selection rate of each combination of decision

variables. To use the genetic algorithm, users enter GA parameters, shown in Figure 9.7,

and click the “Run GA Search” button. Details of GA and GA parameters are discussed

in Section 9.5.2.

320

Figure 9.7 Search Parameters with two main search methods, Exhaustive Search and

Genetic Algorithm

 In Figure 9.7, there are two options for simulation manipulation: 1) Perform

dynamic coding and 2) Perform dynamic simulation modeling. The option of dynamic

coding is used when optimization requires changes in simulation code, whereas the

option of dynamic modeling is used when optimization requires changes in simulation

model (graphical simulation elements and the code in them). Details of Dynamic Coding

and Modeling are discussed in Section 9.3.

9.3 Simulation Code and Model Manipulation

ChaStrobe offers three levels of simulation model and code manipulation in order

to optimize problems. These three levels are used to answer the need in modifying either

simulation code and/or simulation model. After the specification, users can properly enter

Project Input and select necessary options of dynamic coding and modeling.

321

First, Parameter manipulation is for altering values of variables in simulation code

in order to optimize problems. Variables in Stroboscope’s language that can be altered

must be stored in SaveValues. Examples of decision variables in the SQS-AL simulation

code are: 1) confidence levels, 2) resources’ sequence steps, and 3) the number of

resources for each type.

To employ parameter manipulation, users must create dynamic code for the

parameters on the Dynamic Code Input sheet. The part of the dynamic code that changes

according to the values of the decision variables must reference the decision variable

cells on the Search Input sheet. Then, users must select the option of dynamic coding

before initiating a search method, either the exhaustive search or the genetic algorithm

(GA) in Figure 9.7. An example of optimization using GA is shown in Section 9.6.

Most simulation software with optimization offers this capability of parameter

manipulation. It is a simple means of optimizing problems by altering certain parameters

in the simulation model. However, parameter manipulation limits users to optimizing a

problem by changing the value of decision variables, which may not be sufficient to

optimize problems with various scenarios. Accordingly, ChaStrobe offers simulation

code manipulation, an extended version of the parameter manipulation that allows

additional code such as conditional statements to be added to or altered in the simulation,

in addition to variables.

Secondly, code manipulation involves altering simulation code upon decision

variables in order to optimize problems. It is used to add additional code into the main

code or change part of the additional code. Simulation code manipulation is a superset of

parameter manipulation. Examples of simulation code manipulation in the SQS-AL

322

simulation code are: adding additional precedence constraints, specifying working

sequence for resources, and changing objective function based on different scenarios.

Simulation code manipulation is very useful and not time consuming. To employ

simulation code manipulation, users must select the option of dynamic coding, shown

in Figure 9.7. An example of optimizing a problem requiring dynamic coding is

demonstrated in Section 9.6.

However, parameter and code manipulation are strictly for simulation code

modification. They cannot modify a simulation model in order to optimize problems.

Thirdly, model manipulation involves changes in the four parts of the main code

generated by ChaStrobe in order to optimize the problem. It is used when there are many

simulation model alternatives that require adding, removing, or changing graphical

simulation elements (such as Combis and Queues) or modifying the main code generated

by ChaStrobe (such as adding simulation code for work breaks). Examples of simulation

model manipulation are adding a repetitive activity (adding a work flow sub-network),

removing a resource (removing a resource flow sub-network), changing resource

utilization (changing links between work flow and resource flow sub-networks), and

applying work breaks (adding or removing the simulation code for work breaks). These

examples require both simulation code and model modification. Accordingly, ChaStrobe

offers an automation of simulation code and model manipulation used to serve such need

in optimizing repetitive project scheduling problems.

When a cell on the four main input sheets (Precedence Input, Quantity Input,

Resource Input, and Utilization Input sheets) references a cell on the Search Input sheet

or Dynamic Code Input sheet, simulation model manipulation is required. Changes in the

323

values of the decision variables that change the inputs on the four main input sheets

require a re-construction of the simulation including the simulation code and graphical

simulation elements created by ChaStrobe. If the changes can be accomplished without

referencing cells the four main input sheets to cells on the Search Input sheets or the

Dynamic Code Input sheet, simulation code manipulation should instead be used. When

simulation model manipulation is required, users must select the option of Dynamic

Modeling (the checkbox of “Perform dynamic simulation modeling” in Figure 9.7. An

example of optimizing a problem requiring dynamic coding is demonstrated in

Section 9.6.

9.4 Search Output from ChaStrobe’s Optimization

 Figure 9.8 displays an intermediate result from optimization on the Search Output

sheet, which is terminated by the user before the simulation for the alternative shown in

Row 14 has been completed. Each row on the Search Output sheet represents one

alternative for the simulation model created by different values of decision variables. The

outputs on the Search Output sheet can be categorized into three sets: 1) the values of

decision variables (Columns A to F), 2) the resulting objective function values (Column

H), and 3) the user-specified additional outputs (Columns L to O).

Firstly, the selected values of decision variables are placed in cells starting from

Column A in the same order that users setup the decision variable cells on the Search

Input sheet. For example, in Figure 9.8, the value in Cell A3 is the confidence level for

ResB, Cell B3 is the confidence level for ResC, and so forth. Secondly, the resulting

objective function value from the simulation is placed two cells away (Column H

in Figure 9.8) from the last cell for the decision variables (Column F). Thirdly, user-

324

specified additional outputs are placed four cells way (Column L) from the objective

function value cell (Column F). The data in Columns I and J in Figure 9.8 are calculated

and shown only when users use the genetic algorithm (GA) to optimize problems.

Figure 9.8 Output from optimization using the genetic algorithm

9.5 Search Methods in ChaStrobe

ChaStrobe offers two search methods to optimize problems modeled by

ChaStrobe in the Stroboscope GUI: the exhaustive search and the genetic algorithm

(GA).

9.5.1 The Exhaustive Search

The exhaustive search is a procedure of testing all possible combinations of

decision variables in order to find the best solution. For the exhaustive search, ChaStrobe

creates all possible combinations, generates the simulation from the combinations, and

executes the simulation. After all the possibilities are tested, then the best combination

can be identified. The exhaustive search is suggested only when the number of

325

possibilities is small or there is no time constraint. Otherwise, it may be inefficient or

impossible to test all the possibilities. It also provides a baseline for evaluating the

effectiveness of GA, which will be discussed next.

9.5.2 The Genetic Algorithm

The genetic algorithm (GA) is a search algorithm based on the mechanism of

natural selection and genetics that healthy creatures are most likely to survive from one

generation to another, while unhealthy creatures will become extinct. Birthing a new

generation, the survivors mate and produce offspring whose chromosomes are inherited

from their parents. Occasionally, the offspring may genetically mutate (Goldenberg

2004).

Imitating the natural mechanism, the genetic algorithm weighs the selection rate

of combinations (creatures) of decision variables (chromosomes) based on their resulting

objective function value (healthy or unhealthy); a combination is a vector of decision

variable values, where as its resulting objective function value is the degree of fitness.

Then, the selected combinations (survivors) are paired, and exchange their variables

(mate) in order to derive a new combination (offspring). In a new generation, new

combinations with mixed decision variables (inherited) from their predecessors (parents)

are likely to improve the selection rate, in other words, the objective function value. In

addition, decision variables of the new combinations are occasionally altered (mutated) to

prevent a local optimum.

As stated above, GA in ChaStrobe is composed of six main processes:

Initialization, Simulation, Evaluation, Reproduction, Crossover, and Mutation. Figure 9.9

depicts GA’s six main processes for the example shown in Section 9.2.

326

Figure 9.9 The Genetic Algorithm in ChaStrobe

327

Initialization is the process of creating the initial generation that does not have a

preceding generation. To create the initial generation, ChaStrobe uses the uniform

distribution to randomly select values for each of the decision variable. As shown

in Figure 9.9.a, the combinations for the decision variables for the initial generation are

those assigned by the user on the Search Input sheet in Figure 9.3.

 Execution is the process of creating and executing the simulation. The execution

process for GA involves 3 steps:

Execution.1) Create the simulation for the currently selected values of decision

variables, which is the simulation for the current combination. Figure 9.9

shows that the current combination is No 4 in the initial generation. Note that,

if users only select dynamic coding, as shown in Figure 9.7, ChaStrobe will

create one version of original main code that will be used without changing

(being consistent) throughout the GA process. Then, the dynamic code is

created based on the currently selected values of decision variables for the

current combination and added to the original main code.

Execution.2) Executing the simulation. After the simulation for the current

combination is created, ChaStrobe automatically submits it to Stroboscope for

simulation execution.

Execution.3) Retrieving simulation results. After the simulation execution,

ChaStrobe retrieves the simulation results by reading the data stored in an

automatically created text file called tempChaStrobe_GA.txt.

These three steps are repeated until all combinations for the current generation are

executed. Then, ChaStrobeGA will start the GA evaluation process.

328

Evaluation is the process of calculating the chance of survival of each

combination based on each combination’s relative performance within the same

generation. The relative performance of a combination of decision variables is the ratio

between its resulting objective function value and the sum of all objective function values

for all combinations in the same generation. The greater this ratio for a particular

combination is, the better chance the combination has to survive and be chosen for the

next generation. Figure 9.9.e shows the relative performance of all combinations in

percent based on their objective function value. For example in Figure 9.9.e,

Combination 1 has only a 3% chance to be chosen for the next generation, while

Combination 2 has an 11% chance. Hence, combinations’ relative performance reflects

the probability of that combination being chosen for the reproduction process.

Reproduction is the process of selecting combinations for a new generation by

using a biased roulette wheel whose slot size is proportional to combinations’ relative

performance. Figure 9.9.f depicts the biased roulette wheel for the initial generation. To

produce the next generation, the wheel is spun 10 times to get 10 combinations for the

new generation. Figure 9.9.g shows examples of five selected combinations from the

previous generation to the next generation. After reproduction finishes, the crossover

process starts.

Crossover is the process of exchanging values of decision variables between

combinations. Crossover consists of two steps.

Crossover.1) Pairing two combinations. Two combinations are randomly

selected and paired. Figure 9.9.h shows the reproduced Combinations 2 and 4

are paired, as well as for Combinations 1 and 5.

329

Crossover.2) Then, GA determines whether to exchange decision variables

between combinations by using the crossover probability given by users

in Figure 9.7. The decision is made by using a uniform distribution, randomly

creating a number between 0 and 1. If the random number is less than the

crossover probability, GA will, then, unbiased and randomly select a position

of decision variable, and exchanges the decision variables in the position

between the two paired combinations Figure 9.9.h shows Combinations 2 and

4 exchange a decision variable in Position 5, while Combinations 1 and 5 do

not.

These two steps of crossover are repeated until each combination has its pair, and

has been determined whether to exchange its decision variables with its paired

combination. After the crossover operation finishes, the mutation operation begins.

Mutation is the process of altering decision variables in order to prevent

premature loss of important notions (Goldberg 2004). Mutation ensures that results from

GA are not limited by a local optimum. To decide whether to mutate a combination, GA

randomly generates a number from 0 to 1 for the combination. Then, GA compares the

random number to the user-specified mutation probability (see Figure 9.7). If the random

number is less than the mutation probability, the combination will be mutated. To select a

decision variable (position) for mutation (assigning a new value for the decision

variable), ChaStrobe uses the uniform distribution. Figure 9.9.i shows that Combinations

3 and 5 are mutated in the 2nd and 6th positions, respectively.

These processes of simulation execution, evaluation, reproduction, crossover, and

mutation are repeated until the total number of generations given by the users has been

330

reached. Then, the results from all generations are arranged in the same table and sorted

by the objective function values, which is project profit in this case, to derive the

optimum solution according to GA.

9.6 Example 9.1 Optimizing a Repetitive Project

 The example repetitive project with resource-sharing activities and work breaks

from Chapter 8 is used to demonstrate how to optimize the problem using ChaStrobe.

Figure 9.10 is a precedence diagram with resource nodes for the example. For this

example, GA is used to optimize the problem with parameter, code, and model

manipulations as follows:

• Decision variables using “parameter” manipulation are the confidence levels for

resources. (See Figure 9.16)

• Decision variables using “code” manipulation are additional semaphores for

Activities N, Y, and U. (See Figure 9.16)

• One decision variable requiring “model” manipulation is whether to schedule

ResMN’s work break position at the end of M5. (See Figure 9.14)

331

Figure 9.10 Precedence diagram with resource nodes for Example 9.1

Figure 9.11 is the Simulation Input for the example. Notice that the number of

replications is set at 100. Since many alternatives of simulation models will be tested, the

number of replications should be low, yet still appropriate. Otherwise, it will be too time-

consuming. A low number of replications can be used to scope down the possible

decision variables and estimate a probable optimum solution in the initial test.

332

Figure 9.11 Simulation Parameters for Example 9.1

 Figure 9.12 and Figure 9.13 display the Precedence Input sheet and the Quantity

Input sheet for the example, respectively. The inputs for precedence constraints, work

amounts, and production rates shown in the figures remain the same throughout the

optimization processes.

Figure 9.12 Precedence Input for Example 9.1

333

Figure 9.13 Quantity Input for Example 9.1

 Figure 9.14 presents the Resource Input sheet for Example 9.1. On the Resource

Input sheet, Cells H7 and I7 reference Cell G2 on the Search Input sheet (Figure 9.17)

with different conditional statements, as shown in Rows 11 and 12 in the figure. Cells H7

and I7 specify a work break in Resource ResMN. Cell G2 (on the Search Input sheet in

Figure 9.17) is a decision variable with domain values of {0, 1} determining whether to

include a work break at the end of M5. If Cell G2 on the Search Input Sheet is set to 0,

Cell H7 and Cell I7 on the Resource Input sheet will be “N-5” and empty, respectively.

This means there is no work break in ResMN’s schedule (Cell G2=0). Without a work

break, ResMN will stay on the site until it completes both Activities M and N. On the

other hand, if Cell G2 is set to 1, Cell H7 will be “M-5” and Cell I7 will be “N-5”,

meaning ResMN will take a break after completing M5 and then return later to finish

Activity N.

Changing the value in the decision variable cell in Cell G2 on the Search Input

sheet will change the inputs in Cells H7 and I7 on the Resource Input sheet and will

change how ChaStrobe creates simulation code, stored within graphical simulation

334

elements. Since cells (Cells H7 and I7 on the Resource Input sheet for this example) in

one of the four main input sheets (Precedence Input, Quantity Input, Resource Input, and

Utilization Input sheets) reference to cells on the Search Input sheet, this optimization

requires model manipulation. Therefore, users must inform ChaStrobe to perform

Dynamic Modeling by checking the option of “Perform dynamic simulation modeling”

on the “Search Parameters” tab, as shown in Figure 9.21.

Figure 9.14 Resource Input with cells referencing to decision variable cells for Example

9.1

Note that inputs in Figure 9.14 remain the same throughout the optimization

process except for the inputs in Cells H7 and I7, which reference Cell G2 on the Search

Input sheet. Solid cell borders indicate the varying cells.

Figure 9.15 displays the Utilization Input sheet for the example. The inputs on the

Utilization Input sheet remain the same throughout the optimization processes. In this

project, there are six resource-sharing activities. Activities M and N require the same

Resource ResMN; X and Y require ResXY; and U and V require ResUV.

It is important to mention that Activity M utilizes two types of resources: one

dedicated resource, ResM, and one shared resource, ResMN. Since ResM serves only

335

Activity M in SQS2, ResM’s crew lead time (CLT1M) will be determined in processing

SQS2. On the other hand, ResMN’s crew lead time could be determined in either

processing SQS2 or SQS4 depending on whether a work break at the end of M5 is

scheduled. When there is no work break in ResMN’s schedule, there will be only one

crew lead time for ResMN, CLT1MN. When there is one work break, there will be two

crew lead times for ResMN, CLT1MN and CLT2MN. Without a work break, CLT1MN will,

by default, be determined at the end of processing SQS4, which is Activity N’s SQS.

With a work break at M5, CLT1MN will be determined when processing SQS2, which is

Activity M’s SQS, and CLT2MN will be determined when processing SQS4, which is

Activity N’s SQS.

Figure 9.15 Utilization Input for Example 9.1

 Figure 9.16 presents the dynamic code on the Dynamic Code Input sheet

corresponding to the decision variable cells on the Search Input sheet, shown in Figure

9.17. Cells D2 to D8, D10 to D11, and B13 to B15 on the Dynamic Code Input sheet

reference the decision variable cells in Row 2 on the Search Input sheet and are

automatically updated to reflect the current values of decision variables.

336

Figure 9.16 Dynamic Code Input for the initial decision variables in Figure 9.17

Figure 9.17 Initial decision variables for Dynamic Code in Figure 9.16

Showing an updated version for the dynamic code in Figure 9.16, Figure 9.18

presents the Dynamic Code Input sheet corresponding to the decision variable cells

in Figure 9.19. Notice that many decision variables have changed from Figure 9.16

to Figure 9.18. In Figure 9.16 and Figure 9.18, the dynamic code in Rows 1 to 11

involves parameter manipulation, while the code in Rows 13 to 15 involves simulation

code manipulation.

337

Figure 9.18 Dynamic Code for the initial decision variables in Figure 9.19

Figure 9.19 Initial decision variables for Dynamic Code in Figure 9.18

Figure 9.20 presents the objective function for this example, encoded in the sub-

tab Control Statements in the Additional Code tab. The objective function, measured in

days, is 1200 minus expected project duration and expected sum of idle time in resources

from the simulation. The expected project duration is presented in the code in Figure 9.20

by bcltProjectDurationSQS6 BinCollector, whereas the expected sum of idle time in

resources is presented by bcltProjectIdletimeSQS6 BinCollector. Note that the number of

1200 in the formula is arbitrarily selected by the user to ensure that the objective function

338

is always positive. The greater the resulting objective function value is, resulting from a

particular set of values of the decision variables, the better the selected values for

decision variables are. For the purpose of demonstration, the objective function used

herein is very simple and easy to understand; it is stored in a variable called “ObjFunc,”

shown in Figure 9.20.

Figure 9.20 Objective function and user-specified additional output for Example 9.1

The value of the ObjFunc variable in Figure 9.20, calculating the objective

function value, will be stored (printed) in tempChaStrobe_GA.txt at the end of the

simulation run for each set of decision variables. As stated earlier, ChaStrobe always

treats the first number in tempChaStrobe_GA.txt as an objective function value, which is

very important for the calculation and optimization in GA. The rest of the numbers are

339

considered user-specified additional output, collected for the purposes of presentation

only.

 Figure 9.21 illustrates Search Parameters for Example 9.1. As shown in the figure,

both options of Dynamic Coding and Dynamic Simulation Modeling are checked to

modify simulation code and model. For this example, the genetic algorithm is used since

the total number of the possible alternatives is tremendously large, 4,478,976 (from

66x25x3). The number of populations and generations are set to 100 and 40, respectively.

The probabilities of crossover and mutation are set to 0.6 and 0.1, respectively.

 Figure 9.21 Search Parameters for Example 9.1

Figure 9.22 displays the results from the GA optimization. The data is sorted by

the objective function values in Column M from maximum to minimum. As shown in the

figure, there are three solutions returning the objective function value of 590 days.

According to the formula for the objective function (1200-bcltProjectDurationSQS6-

bcltProjectIdleTimeSQS6), greater objective function value means lower project duration

340

and idle time in the project. The confidence levels from these three solutions are close,

but not exactly the same. The results in Figure 9.22 show that the work break at the end

of M5 (Column G) and the specified working sequence for ResMN (Column J) are

mandatory in achieving an optimum result for this project. Optimum project duration

should be about 600 days (Column N), and total idle time should be within a range of 5 to

30 days. Although not shown, it should be noted that the objective function values ranged

from 102 to 590 days; project duration from 419 to 826; total idle time from 3 to 499

days.

Figure 9.22 GA Results with three best solutions providing an objective value of 590

9.7 Summary

 This chapter presents optimization in ChaStrobe. The optimization components of

ChaStrobe are explained in detail with examples, focusing on optimization-related

inputs. These inputs are Search Input, Dynamic Code Input, Additional Code, and

Search Parameters. Search Input collects the decision variables and their domain

341

values for the optimization. ChaStrobe’s Search Input allows users to optimize

problems with any number of decision variables and their domain values.

 After the input on the Search Input sheet is established, it is used as a reference

for Dynamic Code Input. Dynamic Code Input is the simulation code that changes to

reflect the current values of the decision variables, which are altered by ChaStrobe’s

search methods in order to optimize problems. The code or part of the code in Dynamic

Code Input references the decision variable cells (the current decision variables) on the

Search Input sheet. The code on the Dynamic Code Input sheet is updated automatically

every time ChaStrobe selects new values for decision variables. After the update,

ChaStrobe creates simulation based on Simulation Parameters, Project Input (including

Dynamic Code Input), and Additional Code.

Additional Code tab stores the simulation code that remains the same throughout

the process of optimization; the code in Additional Code tab is called “additional

consistent code.” Normally, user-specified objective function is encoded in the

Additional Code tab. Nevertheless, if the equation for the objective function is subjected

to change based on the current values of the decision variables. The equation must be

encoded in Dynamic Code Input and references to the decision variable cells on the

Search Input sheet. The objective function specified by users to optimize problems can

be:

• Maximizing project profit (e.g., contract prize minus direct cost minus indirect

cost including cost associated with idle time, penalty cost from delaying the

project, etc.)

342

• Minimizing project duration and idle time (e.g., 1200 minus project duration

minus the sum of idle time)

• Maximizing resource utilization (e.g., project duration minus the sum of idle

time)

 To optimize problems with the user-specified objective function, ChaStrobe is

able to modify simulation code and model in three different levels. The three levels of

simulation code and model manipulation are:

1) Parameter manipulation, altering values of variables in simulation code, such

as changing resources’ confidence levels

2) Simulation code manipulation, adding and altering simulation code, such as

stipulating additional precedence constraints

3) Simulation model manipulation, modeling different scenarios to optimize the

problem, such as modeling a shared resource with two or more dedicated

resources

Employing the simulation model and code manipulation to modify the simulation,

examples of decision variables and their suggested manipulation types are:

• Activities’ work amounts, using parameter manipulation

• Resources’ confidence levels, using parameter manipulation

• The number of resources for each type, using parameter manipulation

• Resources’ processing sequence steps, using parameter manipulation

• Additional constraints, using code manipulation

• Resources’ working sequence, using code manipulation

• Whether to use a work break, using model manipulation

343

• The number of work breaks, using model manipulation

• The positions of work breaks, using model manipulation

• Whether to use dedicated resources or shared resources, using model

manipulation

ChaStrobe offers two search methods to find an optimum schedule for repetitive

projects. Two search methods are:

1) The Exhaustive Search, which tests all possible combinations of decision

variables in order to find the best solution.

2) The Genetic Algorithm, which imitates the mechanism of natural selection

and selectively tests combinations of decision variables based on their

objective function values.

With the three types of modification and two search methods, users can use the

optimization in ChaStrobe to optimize repetitive projects effectively and intelligently. An

example of a repetitive project with resource-sharing activities (Example 9.1) is

demonstrated how to setup optimization inputs in ChaStrobe and optimize the project. In

the example, there are 12 decision variables with a different number of domain values,

resulting in 4,478,976 possibilities. These decision variables are resources’ confidence

levels, position and the number of work breaks, resources’ sequence steps, and additional

constraints of working sequences for the resource-sharing activities. Due to the large

number of alternatives, GA is employed to optimize this example. The objective function

is maximizing the value of 1200 days minus project duration and idle time. Data from

optimization shows that the objective values could range from 102 to 590 days; project

duration from 419 to 826; and idle time from 3 to 499 days. In the end, there are three

344

345

optimum solutions providing the objective function value of 590 days, compared to 564

days from a non-optimized solution, shown in Example 8.4.

As presented in this chapter, the concepts of the sequence step algorithm, the idea

of using confidence levels and work breaks to relax the continuity constraints, and the

suggestion of scheduling resource-sharing activities can be cooperatively employed to

optimize repetitive projects. The means of optimization in ChaStrobe and the results

attests the effectiveness, usability, flexibility, and extensibility of the ChaStrobe

application.

CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

CHAPTER 10 CONCLUSTIONS AND RECOMMENDATIONS

10.1 Summary

 This dissertation presents the Sequence Step Algorithm (SQS-AL), a simulation-

based scheduling algorithm for repetitive construction projects with deterministic and/or

probabilistic activity durations. SQS-AL is capable of scheduling repetitive projects

under variability and uncertainty while maintaining continuous resource utilization. To

solve scheduling problems of repetitive projects, SQS-AL consists of two nested loops:

1) replication loop to collect crew idle time (inner loop) and 2) sequence step loop to

assign crew lead time for each resource serving an activity in the current sequence step

(outer loop). Using the concepts of SQS-AL, risk analysis can be performed, and project

duration and project cost can be optimized.

 The development and testing of SQS-AL was performed using the Stroboscope,

discrete-event simulation system. Designed in the system, two simulation model

templates are proposed: 1) Work Flow Template and 2) Resource Flow Template. These

templates simplify and standardize the development of simulation model for repetitive

projects within Stroboscope, which otherwise could be complicated and involve many

simulation elements representing activities and resources. Using these templates,

346

simulation models are easy to create and understand, systematically organized, and

effective. The work flow template models repetitive work and the flow of work in

activities, whereas the resource flow template models dynamic resource utilization and

allocation. Activities’ precedence constraints are modeled in the work flow template

using semaphore, a conditional statement in Stroboscope. Resource availability

constraints are modeled in the resource flow template and through links to the work flow

template. Resource continuity constraints are modeled in and satisfied by SQS-AL and

the data collected from the resource flow templates.

The proposed SQS-AL and the two simulation model templates have been

implemented in Visio on top of the Stroboscope Graphical User Interface (Stroboscope

GUI) to form a Visio add-on called “ChaStrobe.” ChaStrobe has been programmed in

Visual Basic for Applications (VBA) within Visio. ChaStrobe creates simulation model

and code, for a repetitive project, conforming to SQS-AL. The process of creating the

simulation and solving the problem in ChaStrobe takes only minutes depending on the

number of repetitive activities and sequence steps. Without ChaStrobe, this process could

be lengthy and laborious. Moreover, after the graphical simulation elements and code are

created, users can customize them within the Stroboscope GUI to fit additional

requirements prior to submitting the model to the Stroboscope Simulation Engine.

Currently, the integration of SQS-AL, ChaStrobe, and Stroboscope is the most powerful

tool for scheduling repetitive projects under uncertainty. The usability, flexibility, and

extensibility of the system establish a vigorous foundation for continuous development in

the scheduling field for both repetitive and non-repetitive projects with deterministic and

probabilistic activity durations.

347

SQS-AL minimizes idle time and promotes continuous resource utilization by

controlling the arrival dates of resources to the site. As expected, project duration is

sometimes extended due to the imposed resource continuity constraints. SQS-AL ensures

that project duration is minimized for a given probability of achieving resource

continuity. Clearly, there is a tradeoff between imposing and relaxing the continuity

constraints which must be carefully examined and balanced. To mitigate the prolonged

project duration while maintaining continuity constraints, a lower confidence level of

resources can be employed. With a lower confidence level, SQS-AL will relax the

continuity constraints, resulting in shorter project duration, but greater expected idle time.

The prudent selection of confidence levels is effective enough to optimize a

problem. However, there is a need to employ another form of relaxation of continuity

constraints, which is the introduction of deliberate “work breaks” to mitigate the

prolonged project duration resulting from achieving resource continuity. A work break is

the deliberate interruption of the work of a resource during which the resource is directed

to leave the site and for how long. Thus, work breaks are essentially predetermined idle

time in activity schedule, but not in a resource schedule, since the resource is unemployed

and not getting paid. Applying a work break in a resource’s schedule splits the resource’

continuity constraints; as a result, it allows the sub-activities served by the resource to

start sooner. In turn, the prolonged project duration from SQS-AL should become shorter.

Nevertheless, to effectively reduce the project duration by using work breaks, the activity

served by the resource whose continuity is spitted must have the following

characteristics:

• The activity must be on the controlling sequence.

348

• The activity must have a converging relationship with its direct predecessor on

the same controlling sequence.

• The activity must have a diverging relationship with its direct successor on the

same controlling sequence.

The joint use of proper confidence levels and work breaks immensely improve

resource utilization and project duration. To improve project cost, users can set both

confidence levels and work breaks as decision variables and establish an objective

function in terms of project cost in ChaStrobe’s optimization to optimize the problem.

For optimization, ChaStrobe offers three levels of simulation model and code

modification: 1) parameters, 2) simulation code, and 3) simulation model. Using these

three levels of simulation modification, ChaStrobe automatically modifies the simulation

(parameters, code, and model) and employs either the exhaustive search or the genetic

algorithm to optimize a problem.

10.2 Contributions

 The development of SQS-AL and ChaStrobe has allowed for the first time to

solve the problems of scheduling repetitive projects with probabilistic activity durations.

Both SQS-AL and ChaStrobe have broadened the field of repetitive project scheduling in

the construction industry today in several ways:

• SQS-AL is a generalized algorithm that can be implemented in most

simulation applications or even Excel spreadsheet to solve either deterministic

or probabilistic scheduling problems of repetitive projects. Since SQS-AL is a

generalized algorithm, it is applicable to most construction projects.

349

Moreover, SQS-AL does not rely on particular tools, as other techniques limit

themselves to, for example, linear or dynamic programming.

• SQS-AL is a simple and effective algorithm requiring two nested loops,

replication loop and sequence step loop, and the data collection of resources’

idle time in order to calculate resources’ arrival dates. (The data collection of

idle time is required only when solving probabilistic problems.)

• SQS-AL can maintain continuous resource utilization and control idle time via

resources’ confidence levels. As a result, idle time in resources and

interruptions in activities are minimized and managed.

• SQS-AL’s concept of confidence levels allows a repetitive project scheduling

problem to be optimized by altering confidence levels for each resource. The

results from the alteration can be analyzed further to evaluate the benefit of

satisfying resource continuity constraints at a different confidence level for

each resource.

• SQS-AL’s proposed work flow template can represent the realistic nature of

repetitive construction activities having variability in production rates and

varying work amounts in each unit.

• SQS-AL’s proposed resource flow template can represent the realistic and

dynamic nature of resources in repetitive activities by modeling a separated

resource flow sub-network for each resource, from the work flow sub-

network. The separated resource flow sub-network allows the model to

realistically simulate repetitive tasks and dynamically serve more than one

activity.

350

• The concept of introducing deliberate work breaks to shorten the prolonged

project duration (due to resource continuity constraints) while maintaining

continuous resource utilization and controlling idle time and interruptions is

original. The determination of which activities to test for work breaks using

SQS-AL’s crew lead time and RSM’s controlling sequence is also new.

• SQS-AL and the two proposed simulation model templates can model and

solve a scheduling problem of repetitive projects having activities sharing

resource(s). Significant insight has been provided into the problem of

scheduling resource-scheduling activities to allow for proper exploration and

analysis in practice.

For the first time, the problem of scheduling repetitive construction projects is

addressed and analyzed at this extremely complex level. Variability in activity durations,

differences in work amounts of activities in each unit, maintenance of continuous

resource utilization, application of work breaks, and existence of resource-sharing

activities contribute to the high complexity. For the construction industry, SQS-AL and

ChaStrobe are now available to solve a very complicated scheduling problem. Using

SQS-AL and ChaStrobe, activities are effectively scheduled with less interruption, and

resources are efficiently utilized with less idle time. Risk analysis and optimization can

be performed to maximize project profitability.

10.3 Recommendations

The development of this research investigate has been comprehensive. Even so,

the impact of weather and other global factors on the repetitive projects is one of the

351

subjects that needs to be studied in order to more realistically model repetitive activities

and their resources, and more effectively schedule repetitive projects, even further.

 To maintain continuous resource utilization, repetitive activities are delayed.

Delaying activities, resulting in longer project duration, does not change activities’

durations. In this investigation, the activity durations are assumed to be given and remain

constant. This is a general assumption made by most, if not all, repetitive project

scheduling techniques, including SQS-AL. However, delaying a weather-sensitive

activity from one season to another could result in a longer or shorter activity duration.

Decreasing and increasing activity durations results in new idle times. Therefore, the re-

calculation of resources’ arrival dates is required. This means an additional loop for re-

calculating resources’ arrival dates is necessary due to the new activities’ durations,

effected by the weather.

 To account for the impact of weather on repetitive activities’ durations or

production rates, an additional weather loop should be implemented between the

replication loop and sequence step loop. After the certain number of simulation

replications is executed and resources in that sequence step are scheduled, activity

durations must be updated. If there is a slight change or no change in activity duration,

there is no need to re-calculate the idle time for the resources, which have just been

delayed. On the other hand, if activity duration changes, idle time of the resource must be

recollected from the simulation to check whether it is in the acceptable range of user-

specified confidence levels (upper bound and lower bound). Thus, the replication loop for

this particular sequence step must be repeated more than once to re-determine the new

crew idle time.

352

 Scheduling repetitive projects with weather-sensitive activities is an interesting

and challenging topic, especially when activities’ durations are probabilistic. As

discussed earlier, the suggested idea of updating idle time and re-determining resources’

arrival dates can be implemented in SQS-AL by adding weather-impact loops between

replication loop and sequence step loop. Considering the impact of weather on activity

durations makes the derived schedule more realistic and accurate. Moreover, it could

reveal a hidden benefit or detriment of scheduling repetitive activities differently,

espicially in a region where severe weather is common.

353

354

APPENDICES

APPENDICES

APPENDIX A

DETERMINATION OF THE CONTROLLING SEQUENCE

APPENDIX A Determination of the Controlling Sequences

This section demonstrates how to determine the controlling sequence and

controlling sequence activities in repetitive projects under variability and uncertainty.

According to the Sequence Step Algorithm (SQS-AL), activities are postponed from their

early start date in order to satisfy continuity constraints. Under variability and

uncertainty, the postponement period for each activity is not determined by a fixed sum

of its idle time, but by the cumulative distribution of the sum of idle time and a user-

specified confidence level for the activity. Accounting for idle time, variability, and

uncertainty, the postponement period incurs free floats between activities on control

points in the project. Consequently, a control point between two directly dependent

activities is not exactly vertical from the predecessor’s finish date to the successor’s start

date; there is usually a free float between the activities. Therefore, there is a need for

modifying the determination of control points and controlling sequences suggested by

Harris and Ioannou (1998).

A control point between two repetitive activities is the precedence constraint that

determines the start date of a succeeding repetitive activity under resource continuity

constraints. In deterministic scheduling problems of repetitive projects, the predecessor’s

finish date on a control point is exactly (vertically) the same as the successor’s start date

355

on the same control point; there is no free float between two activities on a control point.

Thus, schedulers can easily identify the control point between the two activities. After all

the control points between activities in the project are identified, schedulers simply

navigate through the control points from the last activity’s finish date to the first

activity’s start date to determine the controlling sequence for the project. This

straightforward process of identifying control points and navigating through the points to

in order to determine the controlling sequence is applicable only to repetitive projects

with deterministic activity durations.

In probabilistic scheduling problems of repetitive projects, however, identifying

control points is not as simple as in deterministic problems because floats between

activities with probabilistic durations on the controlling sequence usually exist and vary.

Under variability and uncertainty, activity durations vary, resulting in different idle times

from one simulation replication to another. Therefore, activities are scheduled beyond

their start dates in the RSM schedule to account for such variability and uncertainty. For

example, SQS-AL schedules activities by their crew lead times, which are determined

from collected crew idle times and user-specified confidence levels. The determined crew

lead times from SQS-AL result in near-continuous resource utilization and provide

sufficient floats between activities to prevent interruptions. These crew lead times result

in floats at a control point between two activities.

A.1 Determination of Control Points and the Controlling Sequence

 The determination of control points and the controlling sequence(s) addressed in

this section is applicable to both deterministic and probabilistic problems. An example of

a repetitive project consisting of 4 units requiring 7 activities in Figure A.1 is used to

356

present the means of determining control points and the controlling sequences. Two

tables are given, one for deterministic activity durations in Table A.1 and another one for

probabilistic activity durations in Table A.2.

A

B

C

D

E

F

G

SQS1 SQS2 SQS3 SQS4

Figure A.1 Single unit precedence diagram for Examples A.1 and A.2

 To determine control points and the controlling sequence in repetitive projects,

the following steps are required:

Step 1: Schedule activities using RSM for deterministic problems or SQS-AL

for probabilistic problems to obtain start and finish dates of activities in each

unit. For probabilistic problems, the state and finish dates from each

replication from processing the final sequence step are collected.

Step 2: Determine all possible paths in the project. For example in Figure A.1,

there are 4 possible paths: A-B-D-G, A-B-E-G, A-C-D-G, and A-C-F-G. Each

path is called an “Activity Path.”

Step 3: Identify the minimum lags between any two directly dependent activities

and the repetitive units with the minimum lags. The unit(s) resulting in the

minimum lag between two activities is the control point(s) between the

activities. The total number of the minimum lags that must be determined in a

357

repetitive project is equal to the number of precedence constraints in a single

unit precedence diagram. In Figure A.1, there are 9 precedence constraints

(links); as a result, 9 minimum lags (one each for any two directly dependent

activities) must be determined: A-B, A-C, B-D, B-E, C-D, C-F, D-G, E-G,

and F-G. Moreover, the repetitive units in which the minimum lags locate

must also be identified.

Step 4: Calculate the sum of the determined minimum lags for each activity

path. This sum of minimum lags for each activity path is called “Path Idle

Time” (PIT). For example, in Figure A.2.b, PITs for Activity Paths A-B-D-G,

A-B-E-G, A-C-D-G, and A-C-F-G are 2, 8, 0, 0 days, respectively.

Step 5: Determine the activity path(s) with the minimum PIT and identify the

units with the minimum lags on the path(s). The activity path with the

minimum PIT is called the “Controlling Activity Path” for the project. In

Example A.1, shown in Figure A.2, there are two controlling activity paths:

A-C-D-G and A-C-F-G with zero-day PIT.

Step 6: Navigate through the minimum-lag units (control points) on the

controlling activity path from project finish to start. The activities on this

controlling activity path connected by the control points are controlling

sequence activities. In Example A.1, controlling sequence activities are A1 to

A4, B2 to B3, D1 to D4, F1 to F2, and G2 to G4.

For deterministic problems, Steps 1 to 6 are performed only once to determine

control points and the controlling sequences for the project, since activity durations are

deterministic. On the other hand, for probabilistic problems, Steps 2 to 6 must be

358

repeated for each replication to determine the probability that each activity may be on the

controlling sequence, given that the start and finish dates from each replication are

already collected from Step 1 using SQS-AL. Therefore, additional steps for probabilistic

problems are:

Step 7: Repeat Steps 2 to 6 for the number of user-specified replications and

record the controlling sequence activities for each replication from processing

the finalized sequence step.

Step 8: Calculate the number of times an activity is a controlling sequence

activities. This is an estimate of the probability of being on the controlling

sequence.

The next two sections demonstrate how to determine control points and

controlling sequences for deterministic problems and probabilistic problems.

A.2 Example A.1 Repetitive project with deterministic activity durations

 Table A.1 displays constant production rate and work amounts for activities in

each unit. As a result of using a constant production rate for each activity, activity

durations are deterministic. The duration for each activity in each unit is the ratio

between the work amount in a particular unit and its production rate.

Activity Resource
Production Rate

Quantity of Work in Repetitive Units
1 2 3 4

A 10 100 250 150 200
B 20 150 100 200 150
C 15 200 150 50 200
D 15 150 200 100 150
E 25 100 150 50 100
F 15 150 250 50 100
G 20 50 200 50 150

Table A.1 Resource production rate and quantity of work for Example A.1

359

After the final schedule is derived, the minimum lags between two directly

dependent activities are determined, as shown in Figure A.2.a in the top-left corner. The

lag between activities is the free float derived from the difference between the

successor’s start date (e.g., Activity B1’s start date is 44) and the predecessor’s finish

date (e.g., Activity A1’s finish date is 10) in the same unit. Therefore, the lag between

Activities A1 and B1 is 34 days. The minimum lag between Activities A and B in Figure

A.2 is zero in Unit 5 (B5’s start date is 70 days, and A5’s finish date is 70 days.)

Note that it is possible for two directly dependent activities to have more than one

unit with the minimum lag. This is valid for both deterministic and probabilistic

problems. For example, in Figure A.2.a, Activities C and D have two units providing the

minimum lag of zero, which are Units 1 and 2.

After the minimum lags are determined, path idle times (PIT) for each activity

path are calculated as shown in Figure A.2.b in the top-left corner. Activity paths with the

minimum PIT, the controlling activity paths, in Figure A.2.b are A-C-D-G and A-C-F-G,

giving the minimum lag of zero Therefore, there are two controlling sequences in this

project.

It is important to note that one controlling activity path may consist of one or

more controlling sequences. Moreover, the minimum PIT for deterministic and

probabilistic problems can be zero or non-zero, depending on scheduling methods. If

there is no additional buffer assigned between activities, the minimum PIT for

deterministic problems is zero, as shown in Figure A.2 using RSM to schedule the

project. Nevertheless, the minimum PIT for deterministic problems is a constant, while it

is a variable for probabilistic problems.

360

(a) Final schedule for Example A.1 with deterministic durations

(b) Controlling sequences for Example A.1 with deterministic durations

Figure A.2 Control points and controlling sequences for Example A.1 with deterministic
activity durations

The next step is to determine the controlling sequence activities on the identified

controlling activity path. To do so, schedulers navigate through activities on the

controlling activity path via the specified minimum lags from project finish to project

start. For the example in Figure A.2.b, activities on the Controlling Activity Path A-C-D-

G are Activities A1 to A4, C3 to C2, D1 to D4, and G4. The bold dashed lines in Figure

A.2.b indicate the controlling sequence activities.

361

A.3 Example A.2 Repetitive project with probabilistic activity durations

 Table A.2 displays activity productivities and work amounts in each unit using a

normal distribution. As a result of using a normal distribution for productivity for each

activity, activity durations are probabilistic. The duration for each activity in each unit is

the ratio between the work amount in a particular unit and its probabilistic productivity,

which is randomly generated according to a given distribution.

Activity Resource
Production Rate

Quantity of Work in Repetitive Units
1 2 3 4

A Normal[10,1] 100 250 150 200
B Normal[20,2] 150 100 200 150
C Normal[15,1.5] 200 150 50 200
D Normal[15,1.5] 150 200 100 150
E Normal[25,2.5] 100 150 50 100
F Normal[15,1.5] 150 250 50 100
G Normal[20,2.0] 50 200 50 150

Table A.2 Probabilistic productivity and work amounts for Example A.2

 Assuming that SQS-AL has been performed and that the CLTs for all resources

have been determined, Figures A.3 to A.7 are five schedules resulting from 5

replications. To determine the controlling sequences for Example A.2 with probabilistic

durations, the controlling sequence activities for each of these replications must be

determined, as shown in the previous section. Then, the probability of activities being on

the controlling sequence is the ratio between the number of times an activity is on a

controlling sequence and the number of replications.

 Figures A.3 to A.7 are five production diagrams (schedules) derived from SQS-

AL using an 80% confidence level at the end of SQS-AL. As shown in the figures,

activities have been postponed from their earliest start date under continuity constraints

362

due to the cumulative distribution of idle time and the user-specified confidence level of

80%. Figure A.3 is the production diagram from the first replication.

(a) Final schedule for Example A.2 from the 1st replication

(b) Controlling sequence in Example A.2 from the 1st replication

Figure A.3 Control points and controlling sequence for Example A.2 Replication 1 with

probabilistic activity durations

As shown in the top-left corner of Figure A.3.a, the minimum lags between any

two directly dependent activities are greater than zero; as a result, the minimum PIT is

greater than zero. For the first replication, the activity path with the minimum PIT, the

controlling activity path, is A-C-D-G, as show in Figure A.3.b, and activities on the

controlling sequence are A1 to A4, C3, D2 to D4, and G5 with PIT of 16 days.

363

As can be seen, the controlling sequence in the first replication (Figure A.3)

differs from the controlling sequence in the deterministic case (Figure A.2) and from the

controlling sequence in the second replication (Figure A.4). Therefore, identifying the

individual activity on the controlling sequence(s) for each replication is necessary, before

calculating the probability of activities being on controlling sequences for the project.

The probability of activities being on the controlling sequence(s) is the ratio between the

number of times an activity is on a controlling sequence and the total number of

replications.

 Figure A.4 is the production diagram from the second replication, using SQS-AL

with an 80% confidence level. Figure A.4.b shows there are two activity paths resulting

in a minimum PIT of 23 days, A-B-D-G and A-C-D-G. For this replication, the two

controlling activity path result in two controlling sequences: 1) A1 to A4, B3 to B2, D1 to

D4, and G4, and 2) A1 to A4, C3 to C2, D1 to D4 and G4.

It is interesting to note that changes in different activities on the controlling

sequences might have a different impact on the controlling sequences for the project. For

example, in Figure A.4, Activities A1 to A4, D1 to D4, and G4 are on both controlling

sequences, while B2 to B3 and C2 to C3 are on different controlling sequences.

Therefore, changes in Activities A (A1 to A4), D (D1 to D4), and G4 may not result in a

different controlling sequence. However, changes in Activities C2, C3, B3, and B4 are

likely to change the controlling sequences for this replication, shown in Figure A.4.

364

(a) Final schedule for Example A.2 from the 2nd replication

(b) Controlling sequences in Example A.2 from the 2nd replication

Figure A.4 Control points and controlling sequences for Example A.2 Replication 2 with

probabilistic activity durations

 Figure A.5 is the production diagram from the third replication. Figure A.5.b

shows there is one activity path with the minimum PIT of 19 days, A-C-F-G.

Nevertheless, since there are two positions providing the minimum lag between Activities

C and F, which are in Units 1 and 2 (Figure A.5.a), there are two controlling sequences

(Figure A.5.b) within Activity Path A-C-F-G, which are 1) Activities A1 to A4, C3, F2,

and G2 to G4, and 2) Activities A1 to A4, C3 to C2, F1 to F2, and G2 to G4. Therefore,

365

changes in Activities B2 and F1 are likely to have more impact on the controlling

sequences than other activities on the controlling sequences.

(a) Final schedule for Example A.2 from the 3rd replication

(b) Two controlling sequences in Example A.2 from the 3rd replication

Figure A.5 Control points and controlling sequences for Example A.2 Replication 3 with
probabilistic activity durations

 Figure A.6 is the production diagram from the fourth replication. The controlling

sequence from the fourth replication is the same as from the first replication; however,

the minimum PITs from the two replications are different. The same controlling sequence

from different replications may have a different sum of minimum lags (minimum PIT).

Therefore, collecting the statistical data of PIT for each controlling activity path from

different replications reveals the criticality and floats of activity paths. Moreover, the

366

statistical data of minimum PIT, such as its average value, shows the number of days

additionally included in the project to prevent the idle time stemming from variability and

uncertainty.

(a) A final schedule for Example A.2 from the 4th replication

(b) The controlling sequence in Example A.2 from the 4th replication

Figure A.6 Control points and controlling sequences for Example A.2 Replication 4 with
probabilistic activity durations

 Figure A.7 is the production diagram from the fifth replication. For this

replication, the minimum PIT is only 12 days, without any interruption within each

activity between its units; there is not unit idle time (UIT) in this replication. As shown in

Figure A.7.a, the duration of Activity A in the 5th replication is relatively longer than in

367

any other previous replications. However, the time buffers (floats) between Activities A

and B, and between A and C are able to prevent an interruption in Activities B4 and C4.

 (a) Final schedule for Example A.2 from the 5th replication

(b) Controlling sequence for Example A.2 from the 5th replication

Figure A.7 Control points and controlling sequences for Example A.2 Replication 5 with
probabilistic activity durations

 From five replications, Tables A.3 to A.5 are constructed to display the statistical

data of activities, activity paths, and also controlling sequences. Table A.3 shows the

probability that an activity is on a controlling sequence. The “Y” in Table A.3 indicates

that an activity is on a controlling sequence in the particular replication. Column “Hit” is

the number of times an activity is on a controlling sequence, whereas Column “%Hit”

368

presents the probability of the activity being on a controlling sequence, based on the five

replications (Figures A.3 to A.7).

Activity
On a Controlling Sequence in

Replication (Y=Yes) Hit % Hit
1 2 3 4 5

A1 Y Y Y Y Y 5 100
A2 Y Y Y Y Y 5 100
A3 Y Y Y Y Y 5 100
A4 Y Y Y Y Y 5 100
B1 0 0
B2 Y 1 20
B3 Y 1 20
B4 0 0
C1 0 0
C2 Y Y Y 3 60
C3 Y Y Y Y Y 5 100
C4 0 0
D1 Y Y 2 40
D2 Y Y Y Y 4 80
D3 Y Y Y Y 4 80
D4 Y Y Y Y 4 80
E1 0 0
E2 0 0
E3 0 0
E4 0 0
F1 Y 1 20
F2 Y 1 20
F3 0 0
F4 0 0
G1 0 0
G2 Y 1 20
G3 Y 1 20
G4 Y Y Y Y Y 5 100

Table A.3 Probability of activities being on controlling sequences

For example, in Table A.3, Activity A has a 100% chance of being on a

controlling sequence, while Activity E has a 0% chance. It is common that sub-activities

(e.g., C1, C2, C3, and C4) of an activity (e.g., C) may have different probabilities of

being on a controlling sequence. For example, Activities C1 and C4 have a 0% chance of

369

being on a controlling sequence, while Activities C2 and C3 have a 60% and 100%

chance, respectively. Table A.3 also shows Activities A1, A2, A3, A4, C2, C3, D2, D3,

D4, and G4 having greater than 50% probability of being on controlling sequences

greater than 50%. Schedulers should pay attention to these activities since they influence

project duration under the resource continuity constraints.

Tables A.4 and A.5 present statistical data of activity paths from five replications.

Table A.5 shows the probability that an activity path is the controlling activity path for

that particular replication. As shown in the table, Activity Path A-C-D-G has an 80%

probability of being the controlling activity path for the project, based on the five

replications. On the other hand, Activity Path A-B-E-G has a 0% chance.

Activity
Path

On a Controlling Sequence in
Replication (Y=Yes) Hit %Hit

1 2 3 4 5
A-B-D-G Y 1 20
A-B-E-G 0
A-C-D-G Y Y Y Y 4 80
A-C-F-G Y 1 20

Table A.4 Probability of activity path being the controlling activity path

Table A.5 presents statistical data of PIT, average (Avg), standard deviation (Std),

maximum, and minimum values of each activity path. The bold numbers indicate activity

paths providing the minimum PIT for a corresponding replication. Activity Path A-B-E-

G, having an 80% probability of being a controlling sequence, has an average PIT value

of 17.6 days. Approximately 18 days of buffers (floats) are included between activities in

order to prevent interruptions under variability and uncertainty. If RSM was used to

schedule this project with perfect hindsight, these 18 days would become zero without

interruptions or idle time, because activity durations would have been determined and

known before scheduling. This means that the difference in project duration between

370

assuming perfect information (idealistic or deterministic cases) and imperfect information

(realistic or probabilistic cases) is 18 days. As the effectiveness in construction operation

and project control increases, the project should be scheduled toward the idealistic cases

(perfect information) from the realistic cases by thoughtfully lowering variability in

activity durations.

In addition, in Table A.5, it is interesting to note that the maximum value of the

PIT for Activity Path A-C-D-G is lower than the minimum value of the PIT for A-B-E-G.

Accordingly, A-B-E-G has the least impact on the project duration. Nevertheless, it is

important to realize activities on the same controlling activity path also have a different

impact on the project duration.

Activity
Path

PIT in each Replication (day) Avg. Std. Max Min 1 2 3 4 5
A-B-D-G 19 23 25 20 16 20.6 3.51 25 16
A-B-E-G 29 33 30 26 25 28.6 3.21 33 25
A-C-D-G 16 23 20 17 12 17.6 4.15 23 12
A-C-F-G 24 26 19 20 15 20.8 4.32 26 15

Table A.5 PIT of each activity path with its statistical data

A.4 Computerized Procedure of Determining Controlling Activity

As shown in the previous section, identifying the controlling sequence(s) after the

controlling activity path(s) and its PIT is specified is relatively simple. Yet, it is tedious

and cumbersome to manually calculate and determine the controlling sequence,

especially when the number of units is large and activity durations are stochastic,

resulting in different possible controlling sequences for each simulation replication. Thus,

the process of determining controlling sequences should be computerized to reduce

human effort and time. The following steps present a programmatic means of identifying

activities on controlling sequences.

371

Step 1) Determine all activity paths in the project.

Step 2) Create a one-dimensional array for each activity path with a size twice as

large as the total number of units (1 x 8 for Example A.2). Each member of the

array represents possible control points on the activity start and finish dates, as

shown in Table A.6.

Step 3) Assign a value of 1 to start date of the first activity in the first unit (e.g.,

SD1 of A) and the finish date of the last activity (e.g., FD4 of G).

Step 4) Determine the minimum lag between activities and calculate PIT for each

activity path.

Step 5) Identify the controlling activity path, which is the activity path with the

minimum PIT. For example, the activity path providing the minimum PIT in

Figure A.7.b is A-C-D-G.

Step 6) Assign the value of 1 for the predecessors and the successors having

minimum lags between activities on the controlling activity path in Step 5. As

shown in Table A.6.a, each member in the array with value of 1 indicates a

control point on the controlling activity path. The arrow indicates the predecessor

and the successor of the control point. For example, since the minimum lag

between A and C is 13 days from A4’s finish date (FD4 of A) to C4’s start date

(SD4 of C), as indicated in Table A.6.a, FD4 of A and SD4 of C are the

predecessor and the successor of the control point (i.e., CPAC), respectively.

Step 7) Connect the navigating path in each activity by assigning a value of 1

from the first dimension to the last dimension having the value of 1 in the same

372

activity (in the same row in Table A.6.a). Table A.6.b shows the updated array of

activities after connecting the navigating path.

 SD1 FD1 SD2 FD2 SD3 FD3 SD4 FD4
A 1* 1
B
C 1 1
D 1 1
E
F
G 1 1*

(a) Array indicating control points on the controlling activity path (minimum PIT)

 SD1 FD1 SD2 FD2 SD3 FD3 SD4 FD4
A 1* 1 1 1 1 1 1 1
B
C 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E
F
G 1 1*

(b) Array indicating controlling sequence activities

Table A.6 Arrays determining activities on controlling sequences

Step 8) Determine whether an activity is on the controlling sequence by checking

the values in the established arrays. If the values in the updated array for both SD

and FD in the same unit of an activity are 1, the activity is a controlling sequence

activity (being on the controlling sequence). For example, in Table A.6.b, since

the values in the updated members for SD2 and FD2 of Activity C are 1, Activity

C2 is a controlling sequence activity. In contrast, because the values of SD1 and

FD1 for Activity C are 1 and 0 respectively, Activity C1 is not a controlling

sequence activity (not being on the controlling sequence). After finishing Step 8,

activities on the controlling sequence are A1 to A4, C2 to C3, D1 to D4, and G4.

373

APPENDIX B

EXTENSION OF SIMULATION MODEL TEMPLATES

Appendix B Extension of Simulation Model Templates

This section examines variations of simulation model templates discussed in

Chapter 5, Simulation Model Templates. Suggestions and examples of how to modify the

work flow and resource flow templates to model a more complicated repetitive activity

are given. Two modifications of simulation model templates shown in Appendix B are:

• Modeling different types of precedence relationships

• Modeling repetitive activities at an operational level

One of the main concerns in modifying the simulation model templates is how to

keep the simulation model simple, organized, and functional. The modified templates

should not change the functionality for each part of the suggested templates. For

example, any modification relevant to how an activity is performed or simulated should

be made in or replace the Act_Perform Combi in the work flow template. Another

example is that any modification relevant to resources should be made in the resource

flow template. It is recommended to study Chapter 5 carefully before modifying the

simulation model generated by ChaStrobe.

B.1 Modeling Different Types of Precedence Constraints

In scheduling, there are four types of precedence relationships, which are Finish-

To-Start (FTS), Start-To-Start (STS), Start-To-Finish (STF), and Finish-To-Finish (FTF).

374

In many cases, a composed set of FTS relationships, activities, and lead times can be used

to model STS, STF, and FTF relationships. When possible and practical, FTS

relationships should be preferred due to the simplicity. Modeling STF and FTF

relationships in simulation should always be avoided, since the start dates of the

successors of STF and FTF relationships are unconstrained. Instead of modeling STF and

FTF, additional activities and FTS relationships should be used.

To model different types of precedence relationships, three main components are

necessarily added in the work flow template:

• Triggering event

• Lead time duration

• Tracking mechanism

Firstly, since discrete-event simulation advances the simulation clock from one

event to the next closest event, the simulation model must ensure that events related to

the precedence constraints, such as the start date of a successor, are registered in the

future event list by creating a triggering event. In the original work flow template with

FTS and zero lead time, the triggering event for a successor’s start date is the completion

of its predecessor (the end of an instance in ACT_Perform Combi). This is

straightforward. However, when different types of precedence relationships are modeled,

additional simulation elements, such as Combis and Queues, are required to trigger the

events. For example, FTS relationships with lead time can be modeled by adding a

Normal (a simulation model element in Stroboscope) to simulate the lead time. This is to

ensure that the simulation clock will advance to the completion of the lead-time activity,

and then the successor may start.

375

Secondly, lead time duration is recommended to be modeled as an activity with

the duration of the lead time. At the completion of a lead-time activity, which is

registered in the future event list of the simulation (FEL), the scanning process of

discrete-event simulation will determine which activities can start, including the

successors of the lead-time activity.

Thirdly, it is necessary to separate the number of completed works in predecessor

activities with a lead time from the number of completed works without a lead time. For

example, Activity A has two successors, B and C. Activities A and B have a FTS

relationship without lead time, while Activities A and C have an FTS relationship with

lead time. Therefore, the completed work in A should be tracked using two different sets:

completed work after A is completed and completed work after the lead time.

Figure B.1 is an example of modeling FTS relationships with lead time. Figure

B.1.a is a precedence diagram showing Activity A has four successors, B, C, D, and E.

The precedence relationships between A and B and between A and D are FTS without

lead time, while the precedence relationships between A and C and between A and E are

FTS with different lead times. Figure B.1.b shows a work flow sub-network for Activity

A having two different lead times for its successors. As shown in the figure, The

A_LT_C and A_LT_E Normals are used to model the FTS lead times between Activities

A and C, and between Activities A and E. The completions of A_LT_C and A_LT_E

Normals are the triggering events, ensuring the simulation clock will advance to the

events. The durations of A_LT_C and A_LT_E Normals simulate the duration of the lead

times. Since lead times between Activities A and C and between Activities A and E are

different, the two lead times are modeled separately using two Normals.

376

(a) Precedence diagram with activities with FTS with different lead

(b) A work flow sub-network with FTS with different lead

Figure B.1 Modeling Finish-To-Start relationships with different lead times

In Figure B.1.b, the number of Resource rq_RES in A_LT_C_Complete and

A_LT_E_Complete Queues is used to determine whether successors C and E can start, by

coding the semaphores of Activities C and E in C_Perform and E_Perform Combis,

377

respectively. For more detail about the semaphores of ACT_Perform, see Section 5.2.1,

Work Flow Template.

Figure B.2 is an example of modeling FTS relationships without lead time and

STS relationships with lead time. Figure B.2.a is a precedence diagram showing Activity

A has four successors, B, C, D, and E, with different precedence relationships. The

precedence relationships between A and B and between A and D are FTS without lead

time, while the precedence relationships between A and C and between A and E are STS

with different lead times. Figure B.1.b shows a work flow sub-network for Activity A

having two different lead times for its successors. As shown in the figure, A_Trigger

Combi is added in the work flow template as a trigger for the start of Activity A; the

duration of A_Trigger Combi is zero. After the completion of A_Trigger (duration of

zero), three activities start (i.e., A_Perform, A_LT_C, and A_LT_E). Normals A_LT_C

and A_LT_E are used to model the STS lead times between Activities A and C, and

between Activities A and E. The completion of A_LT_C and A_LT_E Normals is also a

triggering event, ensuring that simulation clock will advance to the events. The durations

of A_LT_C and A_LT_E Normals simulate the duration of the lead times. Since lead

times between Activities A and C and between Activities A and E are different, the two

lead times are modeled separately using two Normals.

378

Figure B.2.a Precedence diagram with activities with FTS and STS with different lead

times

(b) A work flow sub-network with FTS and STS with different lead times

Figure B.2 Modeling Start-To-Start relationships with different lead times

379

B.2 Modeling Operational Level of Activities

 Although the Sequence Step Algorithm (SQS-AL) and the simulation model

templates are designed to solve and model repetitive projects at an activity level, it is

possible to modify the templates to model the project at an operational level. As shown

Figure B.3, there are two types of resources here, activity resources and operational

resources. The activity resource is modeled by using the resource flow template, while

the operational resource is not. Only queue and resource are specified for the use of the

operational resource, and their data are not taken into account by SQS-AL.

The operational activities and operational resources can be modeled in the work

flow template by adding queues and combis, as shown in Figure B.3. Operations 1 and 2,

modeled by Operation 1 Combi and Operation 2 Normal in Activity A requires

operational resource residing in the “operational resource” Queue to perform the

operation. After Activity A starts, which is determined by precedence constraints and

resource available constraints of Resource X in the resource flow sub-network, Operation

1 draws an operational resource from the queue. Then, both work and operational

resource will be passed to Operation 2 to complete this unit. After Operation 2

completes, the operational resource returns to its queue, whereas completed work is sent

to “finish perform” Normal and “work done” Queue.

380

Figure B.3 Modeling an activity at an operational level

In certain circumstances, one might want to model an operational resource that

serves several operations belong to different activities. This can be done in traditional

simulation modeling way. However, sequence of activities may change and possibly

complicate the schedule. Imagine that an operational resource is utilized among several

operations within two different activities, and it causes both activities to start and stop

due to the lack of the operation resource. Accordingly, the idle times of the main

resources for both activities are disguised by the fact that activities have started, yet not

finished. Remember, sub-operation and operational resources in this discussion are

relatively insignificant compared to activity resource. If the operational resources are

significant or desired to model, one solution to this is modeling the sub-operation by

381

382

using work flow template and modeling the operational resource by using resource flow

template. Although this is viable, it is recommended to keep the simulation model simple.

APPENDIX C

FLOW CHART FOR THE CHASTROBE APPLICATION

Appendix C Flow Chart for the Chastrobe Application

Appendix C presents the flow charts of ChaStrobe. These flow charts provide

information of how ChaStrobe collects data and create simulation. Explanations,

references, and simulation code examples are given to clarity each process in the flow

charts.

383

Flowchart 1 Main procedure

384

Start

Store Simulation
Parameters in ChaStrobe’s
Simulation Parameter page

Store inputs in Visio

Store
Project Input

Store
Additional Code

Store
Static Graphs Patterns

Finish storing inputs in
Visio

Including the following,
Number of replications
Expected maximum value of CIT
Number of intervals for CIT
Rounding digit
Options of static graph
Options of dynamic graph
Number of graphs in each SQS
Number of graphs in the last SQS
Options of cumulative frequency of
project duration
Option of using optimized INIT
activities based on their SQS

See Section 8.3.2 for an example
of Static Graphs, and Appendix
D for Graphical Formats for
Static Graphs

See Section 9.2.3 for explanation
and example of Additional Code

See Section 8.1.1 for
explanations of how ChaStrobe
collects Project Input

See Section 8.1.1 for
explanations of Simulation
Parameters

Flowchart 2 Storing inputs in Visio

385

Start

Store Precedence Input in
ChaStrobe’s Precedence

Input sheet

Store
Project Input

Store Quantity Input in
ChaStrobe’s Quantity Input

sheet

Store Resource Input in
ChaStrobe’s Resource

Input sheet

Store Utilization Input in
ChaStrobe’s Utilization

Input sheet

Store Dynamic Code Input
in ChaStrobe’s Dynamic

Input sheet

Finish storing Project Input

See Section 8.1.1 for
explanations of how ChaStrobe
collects Precedence Input,
Quantity Input, Resource Input,
and Utilization Input.

See Section 9.2.2 for detail about
Dynamic Code Input and
explanations of how ChaStrobe
collects the input.

See hidden sheets in ChaStrobe
Visio file by right click on the
drawing and select Show/Hide
Page Tab

Flowchart 3 Storing Project Input

386

Flowchart 4 Storing Additional Code

387

Store
Static Graph and

 Analyzer Patterns
Start

Store user-specified Static
Graph patterns

Store user-assigned
patterns for activities

Finish storing
Static Graph and Analyzer

Patterns

See Section 8.3.2 for an example
of Static Graphs, and Appendix
D for Graphical Formats for
Static Graphs

See hidden sheets in ChaStrobe
Visio file by right click on the
drawing and select Show/Hide
Page Tab

Flowchart 5 Storing Static Graph and Analyzer Patterns

388

Start

Collect
Precedence Input

Collect
Quantity Input

Collect
Resource Input

Collect
Utilization Input

Collect
Dynamic Code Input

Finish collecting inputs

Including work amounts and
productivities for each activity

Including activities’ names, ID,
predecessors, sequence steps (column),
and sequence step rows (rows)

Collect
Simulation Paramters

Including the number of replications,
expected max CIT, the number of
intervals for CIT BinCollectors,
rounding digit, options of Static Graphs
and Dynamic Graphs, and options of
optimized INIT

Including user-specified confidence
levels, the number of resources for each
type, work breaks’ positions and type

Including resource utilization for each
activity

Collect inputs for the
creation of simulation

models and code

See Section 8.1.1 for
explanations of how ChaStrobe
collects Simulation Parameters,
Precedence Input, Quantity
Input, Resource Input, and
Utilization Input.

See Section 9.2.2 for detail about
Dynamic Code Input and
explanations of how ChaStrobe
collects the input.

Flowchart 6 Collecting inputs for the creation of simulation model and code

389

Start

Determine the number of
activities

Counting un-blank cells in Column A on
the Precedence Input sheet, starting
from Row 2

Collect activities’ names
and ID

Determine the number of
predecessors for each

activity

Counting un-blank cells in the row
direction starting from Column B for
each activity (each row)

Recording activities’ names from un-
blank cells in Column A, on the
Precedence Input sheet

Collect predecessors’names
for each activity

Recording predecessors’names from un-
blank cells in the row direction starting
from Column B for each activity (each
row)

Determine activities’
sequence steps (columns)

Determine the total number
of sequence steps

Determine activities’
sequence step rows

Finish collecting
Precedence Input

Collect
Precedence Input

See Section 8.1.1 for
explanations of how ChaStrobe
collects Precedence Input

Flowchart 7 Collecting Precedence Input

390

Flowchart 8 Collecting Quantity Input

391

Start

Determine the number of
resources

Counting un-blank cells in Column A on
the Resource Input sheet, starting from
Row 2

Collect resources’ names
and ID

Recording resources’ names from the
un-blank cells in Column A

Record user-specified
confidence levels for each

resource

Recording break positions, in the format
of ACT-UNIT and break types, “date”
or “period,” in the row direction,
starting from Column H, for each
resource (each row on the Resource
Input sheet)

Recording resources’ confidence levels
from the un-blank cells in Column B for
each resource (each row)

Collect the number of work
breaks (continuous series
of resource utilization)

Recording the number of resources in
Column B for each resource (each row)

Collect the number of
resources for each resource

type

Finish collecting
Resource Input

Collect
Resource Input

See Section 5.3.1.3
(CS.ACT.INIT) for simulation
code

See Section 5.3.4.3
(CS.RES.INIT) for simulation
code

See Section 8.1.1 for
explanations of how ChaStrobe
collects Resource Input

Flowchart 9 Collecting Resource Input

392

Start

Collect activities’ resources
Assigning resources to activities by
recording the resources’ names in the
row direction starting from Column B
for each activity (each row) on the
Utilization Input sheet

Determine resources’
drawing sequence steps

(columns)

Determine resources’
drawing sequence step

rows

Using the earliest sequence steps of
activities utilizing the resources as
resources’ drawing sequence steps

Determining the number of already
assigned-position sub-networks (work
flow and resource flow) in a drawing
sequence step, and then adding a new
resource sub-network.

Determine resources’
calculation sequence steps

Using the latest sequence steps of
activities utilizing the resources as
resources’ calculation sequence steps

Finish collecting
Utilization Input

Collect
Utilization Input

See Section 8.1.1 for
explanations of how ChaStrobe
collects Utilization Input

Note: Drawing sequence steps
are positions in which simulation
models for activities and
resources are placed in the
drawing.

Note: Calculation sequence steps
are resources’ sequence steps in
which their CITs and CLTs are
collected and determined,
respectively.

Flowchart 10 Collecting Utilization Input

393

Clear existing
simulation models and

code
Start

Clear simulation code in
Model Parameters

Deleting simulation code stored on the
Model Parameters page

Clear simulation code in
Programming Objects

Deleting simulation code stored on the
Programming Objects page

Clear simulation code in
Control Statments

Deleting simulation code stored on the
Control Statements page

Set the Model Network
page as the active page

Selecting the Model Network page

Clear existing simulation
models on the Model

Network page

Clear resources

Deleting existing simulation models in
Stroboscope GUI

Deleting existing user-specified
resources in Stroboscope GUI

Finish clearing existing
simulation models and

code

Flowchart 11 Clearing existing simulation model and code

394

Flowchart 12 Collecting Dynamic Code Input

Flowchart 13 Creating simulation code

395

Create simulation code
for Model Parameters

Start

Code OUTFILEs
Including tempChaStrobe_GA,
tempChaStrobe_StaticGraph,
tempChaStrobe_StaticGraphProb,
tempChaStrobe_Analyzer,
tempChaStrobe_StaticGraphSQS, and
tempChaStrobe_CLT

Code simulation-related
SAVEVALUEs

Including PrintAnalyzer, nRep, nSQS,
MaxValue_RES_CIT,
NumInterval_RES_CIT,
DurationBinInterval, nthSQS, nthRep,
iSQS, nthBinterval, and RoundingDigit

Code activities’ work
amounts

Code the number of
resources for each type

Code resources’ confidence
levels

Code resources’ sequence
steps

For example,
ARRAY A_Quantity 4 {100 250 150 200};
ARRAY B_Quantity 4 {150 100 200 150};

For example,
SAVEVALUE ResB_InitNumber 1;

For example,
SAVEVALUE ResB_ConfidenceLevel 0.8;

For example,
SAVEVALUE ResB_CLT1_SQS 2;
SAVEVALUE ResD_CLT1_SQS 3;

Add Additional Code for
Model Parameters

Adding Additional Code for Model Parameters
encoded in ChaStrobe Additional Code

Finish creating code for
Model Parameters

See Section 8.3 for details about
output from ChaStrobe

Flowchart 14 Creating code for Model Parameters

396

Flowchart 15 Creating code for Programming Objects

397

Flowchart 16 Creating PO code for activities

398

Start

Code timestamps when
resource start working and

counters for continuity
breaks

Code the decision whether
to keep or lay for

Resource(i)

Code crew idle times and
crew lead times for

Resource(i)

For example,
VARIABLE ResC_Leave_Strength
'(C_Remain.CurCount == 0)
| (C_Complete.CurCount == 4 &
ResC_nthBreak == 0)? 1 : 0 ' ;

An example for the timestamps,
COLLECTOR ResB_StartFirstUnit*;
An example for the counters,
SAVEVALUE ResB_nthBreak 0;

For example,
SAVEVALUE ResC_CLT1* 0;
BINCOLLECTOR ResC_CIT1*
$<NumInterval_RES_CIT>$ 0
$<MaxValue_RES_CIT>$;
SAVEVALUE tempResC_CIT1 0 ;

Code the decision whether
to enter the site for

Resource(i)

For example,
VARIABLE ResB_CLT_Semaphore '
B_Complete.CurCount != 4' ;

Code timestamps when
resources leave the site

An example for the timestamps,
SAVEVALUE ResB_LastTimeLeaveSite 0 ;

Code crew lead times’
durations

Create PO code for
resources

An example for CLT’s duration,
VARIABLE ResB_CLT_Duration
'ResB_nthBreak == 0 ? ResB_CLT1 : 0' ;

Finish creating OP code for
resources

See Section 5.3.2 (PO) for
simulation code and explanation

See Sections 5.3.2.6
(PO.RES.CIT) and 5.3.2.7
(PO.RES.CLT.Duration) for
simulation code and explanation

See Sections 5.3.2.4 and 6.5.2.4
(PO.RES.Strength) for
simulation code and explanation

See Sections 5.3.2.1
(PO.RES.Semaphore) for
simulation code and explanation

See Sections 6.5.2.6
(PO.RES.CIT) for simulation
code and explanation

See Sections 6.5.2.7
(PO.RES.CLT.Duration) for
simulation code and explanation

Flowchart 17 Creating PO code for resources

399

Start

Code While-Loops for the
sequence step and
replication loops

Create simulation code
for Control Statements

For example,
WHILE 'nthSQS <= nSQS+1' ;
WHILE 'nthRep <= nRep ' ;

Code clear temporary
statistical simulation data

For example,
CLEAR ;

Code activity initialization
An example for activity initialization,
INIT B_Remain 4;

Code simulation execution
For example,
SIMULATE;

Code data collection for
resources’ idle times

An example for temporary storage for idle time,
ASSIGN svResB_Idle
ResB_Idle.AveWait*ResB_Idle.TotCount;
An example for permanent storage for idle time
in different sequence steps,
COLLECT bcltResB_IdleSQS$<iSQS>$
svResB_Idle;

Code the end of the
replication loop

Including, bcltProjectDurationSQS$<iSQS>$,
bcltProjectIdleTimeSQS$<iSQS>$, and
bcltProjectCrewIdleTimeSQS$<iSQS>$,

Code data collection for the
project

For example,
WEND; /nthRep
ASSIGN nthRep 1;

Code the determination of
crew lead times

Code the end of the
sequence loop

For example,
ASSIGN nthSQS nthSQS+1;
WEND; / nthSQS

Finish creating code for
Control Statements

Add Additional Code for
Simulation Statements

Adding Additional Code for Simulation
Statements encoded in ChaStrobe Additional
Code

Add Additional Code for
Control Statements

See Section 5.3.4.1 (CS.Loops)
for simulation code and
explanation

See Section 5.3.4.1 (CS.Loops)
for explanation

See Section 5.3.4.2
(CS.ACT.INIT) for explanation

Code resource initialization
An example for activity initialization,
INIT ResB_Offsite ResB_InitNumber;

See Section 5.3.4.3
(CS.RES.INIT) for explanation

See Section 5.3.4.4
(CS.Simulate) for explanation

See Section 5.3.4.4
(CS.RES.CIT.SQS) for
simulation code and explanation

See Section 5.3.4.4
(CS.RES.CIT.SQS) for
simulation code and explanation

See Section 5.3.4.6
(CS.RES.CLT) for simulation
code and explanation

See Section 9.2.3 for explanation
and example of Additional Code

Flowchart 18 Creating code for Control Statements

400

Start

Setup page size for the
project

Add resources in
Stroboscope GUI

Including activity resource (circulating in work
flow sub-networks) such as rq_B, and resources
(circulating in resource flow sub-networks) such
as ResB

Add simulation models
for work flow sub-

networks

Code in work flow sub-
networks

Add simulation models
for resource flow sub-

networks

Code in resource flow
sub-networks

Finish creating simulation
models

Create simulation models
and code in them

See Section 5.3.3 (CME) for
simulation code and explanation

See Section 5.3.3 (CME) for
simulation code and explanation

See Section 5.2.1 for simulation
models and explanation

See Section 5.2.2 for simulation
models and explanation

Flowchart 19 Creating simulation model

401

Start

Add ACT_Remain Queues
and specify their name and

their resource name

Add simulation models
for work flow sub-

networks

Add ACT_Perform Combis
and specify their names

Add ACT_Complete Queues
and specify their name and

their resource name

Add Links between
ACT_Remain Queues and

ACT_Perform Combis

Add Links between
ACT_Perform Combis and

ACT_Complete Queues

Finish adding
simulation models for

 work flow sub-networks

Determine positions to
place activities’ work flow

sub-networks

See Section 5.2.1 for simulation
models and explanation

Flowchart 20 Adding simulation model for work flow sub-networks

402

Flowchart 21 Coding in resource flow sub-networks

403

Start

Add RES_Idle Queues and
specify their name and

their resource name

Add simulation models
for resource flow

 sub-networks

Add RES_F Dynaforks and
specify their names

Add RES_Offsite Queues
and specify their name and

their resource name

Add RES_CLT Combis
and specify their names

Add Links between
RES_Offsite Queues and

RES_CLT Combis

Add Links between
RES_CLT Combis and
RES_Setup Normals

Add RES_Setup Normals
and specify their names

Add Links between
RES_Setup Normals and

RES_Idle Queues

Add Links between
RES_Idle Queues and

RES_F Dynaforks

Add Links between
RES_F Dynaforks and
RES_Offsite Queues

Add Links between
ACT_Perform Combis and

RES_F Dynaforks

Add Links between
RES_Idle Queues and
ACT_Perform Combis

Determine positions to
place resources’ resource

flow sub-networks

Finish adding simulation models
for resource flow sub-networks

See Section 5.2.2 for simulation
models and explanation

Flowchart 22 Adding simulation model for resource flow sub-networks

404

Flowchart 23 Coding in resource flow sub-networks

405

APPENDIX D

GRAPHICAL FORMATS FOR STATIC GRAPHS

Appendix D Graphical Formats for Static Graphs

 Appendix D presents a key to numerical indicators for graphical formats for Static

Graphs in the ChaStrobe application. As explained in Section 8.3.2, users can create a

production diagram using the data recorded in tempChaStrobe_StaticGraph.txt, after

ChaStrobe schedules the project. Each line in the created production diagram in Static

Graphs is formatted by user-specified patterns. Users first create Static Graph patterns in

ChaStrobe’s Static Graph and Analyzer tab, as shown in Figure D.1, and then assign a

created pattern to each sub-activity, as shown in Figure D.2.

406

Figure D.1.a Creating line patterns for Static Graphs

Figure D.1.b Assigning line patterns to sub-activities

Figure D.1 Creating and assigning line patterns to production diagrams in Static Graphs

407

To create a pattern, users must specify the following parameters in the Creating

Patterns sheet:

1. Pattern ID, used to assign a pattern to an activity. Users specify Pattern ID in

Column A, as shown in Figure B.1.

2. Line options, 0 and 1, specifying whether to draw a line or not. If this option

is set to1, the line for the corresponding pattern will be drawn. If it is set to 0,

the line will not be drawn. Users specify Line options in Column B.

3. Act Name options, 0 and 1, specifying whether to label a line with its activity

name. If this option is set to 1, the line for the corresponding pattern will be

labeled with its activity name. If it is set to 0, the line will not be labeled.

Users specify Act Name options in Column C.

4. Unit Name options, 0 and 1, specifying whether to label a line for an activity

with its unit name (e.g., ID1, House 1, or just 1). If this option is set to 1, the

line for the corresponding pattern will be labeled with its unit name. If it is set

to 0, the line will not be labeled. Users specify Unit Name options in Column

D.

5. Line Weight parameters, specifying the weight or thickness of the line. Users

specify Line Weight parameters in Column E.

6. L-Pattern parameters (Line Pattern), specifying line patterns, such as doted

lines and dashed lines. Users specify Line Pattern in Column F. Examples of

L-Patterns numerical indicators are given in Table D.1.

408

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Line Pattern ID Example

0 No Line

Table D.1 Line pattern ID for Static Graphs

409

7. L-Color parameters (Line Color), specifying line colors, such as red or green.

Users specify Line Pattern in Column G. Examples of L-Color numerical

indicators are given in Table D.2:

Line Color ID Color
0 Black
1 White
2 Red
3 Bright Green
4 Blue
5 Yellow
6 Pink
7 Turquoise
8 Dark Red
9 Green
10 Dark Blue
11 Dark Yellow
12 Violet
13 Teal
14 Gray-25%

Table D.2 Line color IDs for Static Graphs

8. L-Start parameters (Line Start), specifying line starts, such as arrows and

circulars. Users specify line starts for each pattern in Column H. Examples of

L-Color numerical indicators are given in Table D.3.

9. L-End parameters (Line End), specifying line ends for each pattern, such as

arrows or circulars. Users specify Line Pattern in Column I. Examples of L-

Color numerical indicators are shown in Table D.3, the same as for L-Start

parameters.

After patterns are specified on the Creating Patterns sheet (Figure D.1.a) in the

Static Graph and Analyzer tab, users assign a specified pattern to activities on the

Assigning Patterns sheet as shown in Figure D.1.b.

410

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Line Start and
End Pattern ID

(at the start)
Example

0

C1

C2

D1

C3

E1

C4

B4

E2

D2

E3

E4

D3

D4

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Line Start and
End Pattern ID

(at the end)

20

Table D.3 Line start and end pattern IDs for Static Graphs

411

BIBLIOGRAPHY

BIBLIOGRAPHY

AbouRizk, S. M., and Halpin, D. W. (1990), “Probabilistic Simulation Studies for
Repetitive Construction Processes”, Journal of Construction Engineering and
Management, ASCE, 116(4), 575-594.

Ashley, D. B. (1980), “Simulation of Repetitive-Unit Construction”, Journal of the
Construction Division, ASCE, 106(CO2), 185-194.

Birrell, G. S. (1980), “Construction Planning – Beyond the Critical Path”, Journal of the
Construction Division, ASCE, 106(CO3), 389-407.

Carr, R. I., and Meyer, W. L. (1983), “Planning Construction of Repetitive Building
Units”, Journal of the Construction Division, ASCE, 100(CO3), 403-412.

Caselton, W.F., and Russell, A. D. (1988), “Extensions to Linear Scheduling
Optimization”, Journal of Construction Engineering and Management, ASCE, 114(1),
36-52.

Chehayeb, N. N., and AbouRizk, S. M. (1998), “Simulation-Based Scheduling with
Continuous Activity Relationships”, Journal of Construction Engineering and
Management, ASCE, 124(2), 107-115.

Chrzanowski, E. N., and Johnston, D. W. (1987), “Application of Linear Scheduling”,
Journal of Construction Engineering and Management, ASCE, 112(4), 476-491.

Crandall K.C. (1976), “Probabilistic Time Scheduling”, Journal of the Construction
Division, ASCE, 102(CO3), 415-423.

Crandall K.C. (1977), “Analysis of Schedule Simulations”, Journal of the Construction
Division, ASCE, 103(CO3), 387-394.

El-Rayes, K. (2001), “Object-Oriented Model for Repetitive Construction Scheduling”,
Journal of Construction Engineering and Management, ASCE, 127(3), 199-205.

El-Rayes, K. A. (1997), Optimized Scheduling for Repetitive Construction Projects,
Ph.D. Thesis, Concordia University, Montreal, Quebec, Canada.

412

El-Rayes, K., and Moselhi, O. (2001) “Optimizing Resource Utilization for Reptitive
Construction Projects”, Journal of Construction Engineering and Management, ASCE,
127(1), 18-27.

Handa, V.K., and Barcia, R.M. (1987), “Linear Scheduling Using Optimal Control
Theory”, Journal of Construction Engineering and Management, ASCE, 112(3), 387-393.

Harris, R.B. (1978). Precedence and Arrow Networking Techniques for Construction,
John Wiley & Sons. New York, NY.

Harris, R. B., and Ioannou, P. G. (1998), “Scheduling Projects with Repeating
Activities”, Journal of Construction Engineering and Management, ASCE, 124(4), 269-
278.

Hijazi, A. M. (1989), Simulation Analysis of Linear Construction Processes, Ph.D.
Thesis, Purdue University, West Lafayette, IN.

Johnston, D.W. (1981), “Linear Scheduling Method for Highway Construction”, Journal
of the Construction Division, ASCE, 107(CO2), 247-261.

Law, A.M., and Kelton, D.K. (2000) Simulation Modeling and Analysis, International
Edition. McGraw-Hill, New York, NY.

Leu, S., and Hwang, S. (2001), “Optimal Repetitive Scheduling Model with Shareable
Resource Constraint”, Journal of Construction Engineering and Management, ASCE,
127(4), 270-280.

Lutz, J. D. (1990), Planning of Linear Construction Projects using Simulation and Line
Of Balance, Ph.D. Thesis, Purdue University, West Lafayette, IN.

Lutz, J.D., and Halpin, D.W. (1994), “Simulation of Learning Development in Repetitive
Construction”, Journal of Construction Engineering and Management, ASCE, 120(4),
753-773.

Martinez, J. C. (1996), STROBOSCOPE: State and Resource Based Simulation of
Construction Process, Ph.D. Dissertation, University of Michigan, Ann Arbor, MI.

Mattila, K. G. and Park, A. (2003), “Comparison of Linear Scheduling Model and
Repetitive Scheduling Method”, Journal of Construction Engineering and Management,
ASCE, 129(1), 56-64.

Miller, R.W., (1963), “Schedule, Cost, and Profit Control with PERT” McGraw-Hill,
New York, NY.

Moselhi, O., El-Rayes, K., (1993) “Scheduling of Repetitive Projects with Cost
Optimization”, Journal of Construction Engineering and Management, ASCE, 119(2),
681-697.

413

O’Brien, D.P. (1985), “SIREN: A Repetitive Construction Simulation Model”, Journal of
Construction Engineering and Management, ASCE, 111(3), 308-323.

O’Brien, J.J. (1975), “VPM Scheduling for High-Rise Building”, Journal of the
Construction Division, ASCE, 101(CO4), 895-905.

O’Brien, J.J., Kreitzerg, F.C., and Mikes, W.F. (1985), “Network Scheduling Variations
for Repetitive Work”, Journal of Construction Engineering and Management, ASCE,
111(2), 105-116.

Peer, S. (1974), “Network Analysis and Construction Planning”, Journal of the
Construction Division, ASCE, 100(CO3), 203-210.

Perera, S. (1980), “Linear Programming Solution to Network Compression”, Journal of
the Construction Division, ASCE, 106(CO2), 315-326.

Perera, S. (1983), “Resource Sharing in Linear Construction”, Journal of Construction
Engineering and Management, ASCE, 109(1), 102-111.

Reda, R. M., (1990), “RPM: Repetitive Project Modeling”, Journal of Construction
Engineering and Management, ASCE, 116(2), 316-330.

Russell, A. D., and Wong, C.M., (1993), “New Generation of Planning Structures”,
Journal of Construction Engineering and Management, ASCE, 119(2), 196-214.

Selinger, S. (1980), “Construction Planning for Linear Projects”, Journal of the
Construction Division, ASCE, 106(CO2), 195-205.

Senior, B. A. (1993), A Study of The Planning and Integrated Cyclic Analysis of Serial
System Operations, Ph.D. Thesis, Purdue University, West Lafayette, IN.

Senior, B. A. (1995) “Late-Time Computation for Task Chains Using Discrete-Event
Simulation”, Journal of Construction Engineering and Management, ASCE, 121(4), 397-
403.

Stradal, O., and Cacha, J. (1982), “Time Space Scheduling Method”, Journal of the
Construction Division, ASCE, 108(CO3), 445-457.

Suhail, S.A., and Neale, R.H., (1994) “CPM/LOB: New Methodology to Integrate CPM
and Line of Balance”, Journal of Construction Engineering and Management, ASCE,
120(3), 667-684.

Thabet, W.Y., and Beliveau, Y.J. (1994), “HVLS: Horizontal and Vertical Logic
Scheduling for Multistory Projects”, Journal of Construction Engineering and
Management, ASCE, 120(4), 875-892.

414

415

Thabet, W.Y., and Beliveau, Y.J. (1994), “Modeling Work Space to Schedule Repetitive
Floors in Multistory Buildings”, Journal of Construction Engineering and Management,
ASCE, 120(1), 62-116.

Tokdemir, O. B. (2003), ALISS: Advance Linear Scheduling System, Ph.D. Dissertation,
Illinois Institute of Technology, Chicago, IL.

Tovakoli A. (1985), “Productivity Analysis of Construction Operations”, Journal of
Construction Engineering and Management, ASCE, 111(1), 31-39.

Yang, I. (2002), Repetitive Project Planner Resource-Driven Scheduling for Repetitive
Construction Projects, Ph.D. Dissertation, University of Michigan, Ann Arbor, MI.

	DEDICATION
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	CHAPTER 1 INTRODUCTION
	1.1 Repetitive Construction Projects
	1.2 Resource Constraints
	1.3 Characteristics of Repetitive Activities and Projects
	1.3.1 Typical and Non-Typical Activities
	1.3.2 Repetitive and Non-Repetitive Activities
	1.3.3 Deterministic and Non-Deterministic Durations
	1.3.4 Hard and Soft Logic Dependencies
	1.3.5 Resource-Sharing Activities

	1.4 Problem Description
	1.5 Existing Scheduling Techniques
	1.6 Challenges
	1.7 Research Objectives
	1.8 Conclusion

	CHAPTER 2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Existing Techniques
	2.2.1 Critical Path Method (CPM)
	2.2.2 Project Evaluation Review Technique (PERT)
	2.2.3 Line-Of-Balance (LOB)
	2.2.4 Other Graphical Approaches
	2.2.5 Linear Programming (LP)
	2.2.6 Dynamic Programming (DP)
	2.2.7 Simulation

	2.3 Summary

	CHAPTER 3 REPETITIVE SCHEDULING METHOD
	3.1 Introduction
	3.2 Maintaining Continuity in Graphical Methods
	3.3 Critical Activities and Controlling Sequence
	3.3.1 Critical Activities
	3.3.2 Controlling Sequence

	3.4 Summary

	CHAPTER 4 SEQUENCE STEP ALGORITHM
	4.1 Sequence Steps
	4.1.1 Example 4.1 Determining sequence steps for a repetitive project with three activities

	4.2 Two Different Types of Idle Time in Repetitive Activities
	4.3 Confidence Levels and Crew Lead Times
	4.4 Overview of the Sequence Step Algorithm
	4.4.1 Example 4.3 Determining crew lead time in a repetitive project with three activities with probabilistic activity duration

	4.5 Flow Chart of the Sequence Step Algorithm
	4.5.1 Example 4.4 Scheduling a repetitive project with 7 activities

	4.6 Discussion of Results from the Sequence Step Algorithm
	4.7 Selection of Confidence Levels
	4.8 Summary

	CHAPTER 5 SIMULATION MODEL TEMPLATES
	5.1 Simulation Model for Repetitive Projects
	5.2 Simulation Model Templates
	5.2.1 Work Flow Template
	5.2.2 Resource Flow Template

	5.3 Example 5.1 Simulation code and model for a repetitive project
	5.3.1 Simulation Code for Model Parameters (MP)
	5.3.1.1 Variables controlling replication and sequence step loops (MP.Loops)
	5.3.1.2 Work amounts (MP.ACT.Quantity)
	5.3.1.3 Confidence levels (MP.RES.ConfidenceLevel)
	5.3.1.4 Additional variables (MP.AdditionVariable)

	5.3.2 Simulation Code for Programming Objects (PO)
	5.3.2.1 Permission to the site (PO.RES.Semaphore)
	5.3.2.2 Precedence constraints (PO.ACT.Semaphore)
	5.3.2.3 Activity Duration (PO.ACT.Duration)
	5.3.2.4 Decision of keeping or laying off resource (PO.RES.Strength)
	5.3.2.5 Temporary SaveValues for crew idle time (PO.RES.TempIdleTime)
	5.3.2.6 Crew idle time (PO.RES.CIT)
	5.3.2.7 Crew lead time (PO.RES.CLT.Duration)
	5.3.2.8 Crew idle time for each sequence step (PO.RES.CIT.SQS)

	5.3.3 Simulation Code for Model Elements (CME)
	5.3.3.1 Semaphore in RES_CLT Combis (CME.RES.Semaphore)
	5.3.3.2 Duration in RES_CLT Combis (CME.RES.CLT.Duration)
	5.3.3.3 Semaphore in ACT_Perform Combis (CME.ACT.Semaphore)
	5.3.3.4 Duration in ACT_Perform Combis (CME.ACT.Duration)
	5.3.3.5 Strength in iRES_Stay Links (CME.RES.Stay.Strength)
	5.3.3.6 Strength in iRES_Leave (CME.RES.Leave.Strength)
	5.3.3.7 OnFlow in iRES_Leave Links (CME.RES.Leave.OnFlow)

	5.3.4 Control Statements (CS)
	5.3.4.1 Sequence step and replication loops (CS.Loops)
	5.3.4.2 Initializing work amounts (CS.ACT.INIT)
	5.3.4.3 Initialization of resources (CS.RES.INIT)
	5.3.4.4 Executing simulation (CS.Simulate)
	5.3.4.5 Recording CITs in bcltRES_IdleSQS BinCollectors (CS.RES.CIT.SQS)
	5.3.4.6 Determining crew lead time for activities belonging to ithSQS (CS.RES.CLT)

	5.4 Summary

	CHAPTER 6 WORK BREAKS
	6.1 Introduction of Work Breaks
	6.2 Candidate Work Break Positions
	6.2.1 Control Points and Controlling Sequences
	6.2.2 Relative Production Rates
	6.2.3 Determining Effective Work Break Positions

	6.3 Determining Work Break Duration
	6.4 Example 6.1 Repetitive project with work breaks
	6.5 Simulation Model and Code for Example 6.1
	6.5.1 Simulation Code for Model Parameters (MP)
	6.5.1.1 Variables controlling replication and sequence step loops (MP.Loops)
	6.5.1.2 Work amounts (MP.ACT.Quantity)
	6.5.1.3 Confidence levels (SMC.RES.ConfidenceLevel)
	6.5.1.4 Additional variables (MP.AdditionalVariable)

	6.5.2 Simulation Code for Programming Objects (PO)
	6.5.2.1 Permission to enter the site (PO.RES.Semaphore)
	6.5.2.2 Precedence constraints (PO.ACT.Semaphore)
	6.5.2.3 Activity duration (PO.ACT.Duration)
	6.5.2.4 Decision of keeping or laying off resource (PO.RES.Strength)
	6.5.2.5 Temporary SaveValues for crew idle time (PO.RES.TempIdleTime)
	6.5.2.6 Crew idle time (PO.RES.CIT)
	6.5.2.7 Crew lead time (PO.RES.CLT.Duration)
	6.5.2.8 Crew idle time for each sequence step (PO.RES.CIT.SQS)

	6.5.3 Simulation Code for Model Elements (CME)
	6.5.3.1 Semaphore in RES_CLT Combis (CME.RES.Semaphore)
	6.5.3.2 Duration in RES_CLT Combis (CME.RES.CLT.Duration)
	6.5.3.3 Semaphore in ACT_Perform Combis (CME.ACT.Semaphore)
	6.5.3.4 Duration in ACT_Perform Combis (CME.ACT.Duration)
	6.5.3.5 Strength in iRES_Stay Links (CME.RES.Stay.Strength)
	6.5.3.6 Strength in iRES_Leave Links (CME.RES.Leave.Strength)
	6.5.3.7 OnFlow in iRES_Leave (CME.RES.Leave.OnFlow)

	6.5.4 Simulation Code for Controlling Statements (CS)
	6.5.4.1 Sequence step and replication loops (CS.Loops)
	6.5.4.2 Initializing work amounts (CS.ACT.INIT)
	6.5.4.3 Initializing resources (CS.RES.INIT)
	6.5.4.4 Executing simulation (CS.Simulate)
	6.5.4.5 Recording CIT in bcltRES_IdleSQS BinCollectors(CS.RES.CIT.SQS)
	6.5.4.6 Determining crew lead time for activities belonging to ithSQS (CS.RES.CLT)

	6.6 Summary

	CHAPTER 7 RESOURCE-SHARING ACTIVITIES
	7.1 Considerations in Scheduling Resource-Sharing Activities
	7.2 Examples of Repetitive Projects with Resource-Sharing Activities X and Y
	7.2.1 Example 7.1
	7.2.2 Example 7.2
	7.2.3 Example 7.3
	7.2.4 Example 7.4
	7.2.5 Example 7.5
	7.2.6 Example 7.6

	7.3 Summary

	CHAPTER 8 CHASTROBE APPLICATION
	8.1 Overview of the ChaStrobe Application
	8.1.1 Inputs for ChaStrobe
	8.1.2 Simulation Output from ChaStrobe
	8.1.3 Automation in ChaStrobe
	8.1.4 Capabilities of ChaStrobe

	8.2 Examples of Repetitive Projects in ChaStrobe
	8.2.1 Example 8.1 Simple repetitive project
	8.2.2 Example 8.2 Repetitive project with work breaks
	8.2.3 Example 8.3 Repetitive project with resource-sharing activities
	8.2.4 Example 8.4 Repetitive project with resource-sharing activities and work breaks

	8.3 ChaStrobe’s Output
	8.3.1 Project Duration Graphs for each Processing SQS
	8.3.2 Static Graphs
	8.3.3 ChaStrobe’s Analyzer
	8.3.4 Schedule in Microsoft Project

	8.4 Summary

	CHAPTER 9 OPTIMIZATION IN CHASTROBE
	9.1 Overview of ChaStrobe’s Optimization
	9.2 Optimization Input
	9.2.1 Search Inputs
	9.2.2 Dynamic Code Input
	9.2.3 Additional Consistent Code
	9.2.4 Search Parameters

	9.3 Simulation Code and Model Manipulation
	9.4 Search Output from ChaStrobe’s Optimization
	9.5 Search Methods in ChaStrobe
	9.5.1 The Exhaustive Search
	9.5.2 The Genetic Algorithm

	9.6 Example 9.1 Optimizing a Repetitive Project
	9.7 Summary

	CHAPTER 10 CONCLUSTIONS AND RECOMMENDATIONS
	10.1 Summary
	10.2 Contributions
	10.3 Recommendations

	APPENDICES
	A.1 Determination of Control Points and the Controlling Sequence
	A.2 Example A.1 Repetitive project with deterministic activity durations
	A.3 Example A.2 Repetitive project with probabilistic activity durations

	BIBLIOGRAPHY

