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ABSTRACT 

ABSTRACT 

The construction industry and academia have realized the critical path method and 

other time-based methods were not suitable for repetitive projects, which were resource-

driven in nature. Both communities have been attempting to develop a better technique to 

schedule repetitive projects. Many approaches have been proposed; however, they are 

capable of solving the problems only to a certain degree of complication. Most of these 

approaches were limited to deterministic problems. A few probabilistic scheduling 

methods using simulation techniques were proposed with improvement in capturing the 

stochastic nature of construction activities; however, none of them guaranteed continuous 

resource utilization.  

The Sequence Step Algorithm (SQS-AL) is a general scheduling algorithm for 

minimizing the duration of repetitive projects with probabilistic activity durations while 

achieving continuous resource utilization. SQS-AL consists of two main nested loops: the 

sequence step loop and the replication loop. For each sequence step, each replication loop 

is a simulation run that collects crew idle time for activities in that sequence step. The 

collected crew idle times are, then, used to determine resource arrival dates for user-

specified confidence levels, i.e., probabilities of having zero idle time in corresponding 

activities. The process of collecting the crew idle times and determining crew arrival 

times for activities on a considered sequence step is repeated from the first to the last 
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sequence step. The effect of scheduling activities on the crew idle times for following 

activities is revealed step by step prior to scheduling the following activities. As a result, 

SQS-AL can guarantee continuous resource utilization for the user-specified confidence 

levels. 

 This thesis also presents the application of work breaks, the determination of the 

controlling sequence, and the scheduling of resource-sharing activities in repetitive 

projects with probabilistic activity durations. An application, called “ChaStrobe,” was 

developed on top of the Stroboscope Graphical User Interface to facilitate schedulers in 

creating simulation model for repetitive projects and scheduling the projects using all 

concepts presented in the thesis. In addition, ChaStrobe consists of two search methods, 

the exhaustive search and the genetic algorithm. Using the proposed concepts, the 

programmability in Stroboscope, and the search methods, ChaStrobe can optimize the 

scheduling problems of repetitive projects effectively. 

 
 
 



 

CHAPTER 1 

 INTRODUCTION 

CHAPTER 1 INTRODUCTION 

 The ultimate goal of managing construction projects is completing the project 

with the least amount of time and at the lowest possible cost. To achieve this objective, 

establishing an attainable and practical schedule in terms of time, cost, and resource 

utilization for the project is essential. 

 The Critical Path Method (CPM), a scheduling method, has been used widely in 

construction because 1) it offers great simplicity and 2) most scheduling software offers 

CPM capabilities with an inexpensive price and ease of use. However, industry and 

academia have realized the fallacies of the method over the past decades. While most 

profit-driven projects are influenced by the quality of time management, cost 

management, and resource management, CPM primarily focuses on time. Many heuristic 

methods have been integrated within CPM to supplement the missing dimensions. Yet, 

their capabilities are still limited by the underlying concept of CPM. Especially in 

managing and maximizing resource utilization, CPM performs poorly since it is a pure 

time-based scheduling approach, not a resource-based approach.      

 Though several resource-based scheduling techniques have been proposed over 

the years, many diverse topics of repetitive project scheduling need to be examined such 
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as probabilistic scheduling, the tradeoff between continuous resource utilization and 

project duration, and resource allocation. 

1.1 Repetitive Construction Projects 

 Examples of repetitive projects are high-rise buildings, housing projects, tunnels, 

and highways. High-rise buildings are made up of floors; housing projects are made up of 

housing units; tunnel projects are made up of tunnel rings; highways are made up of road 

sections. These projects require resources performing the same or similar activities 

repetitively from floor to floor, from house to house, from tunnel ring to ring, or from 

section to section. For example, the same crew installs drywall from floor to floor in a 

multistory building. Floors, houses, tunnel rings, and sections are referred to as repetitive 

units in such projects.  

By definition, repetitive projects are projects that consist of a series of repetitive 

activities requiring resources working and moving from one unit to another. These units 

are usually identical or similar depending on the design.  

 One of the main interests in scheduling repetitive projects is the ability to keep 

resources working continuously without idle time. Idle time is the period that a resource 

is being paid but not performing any work. Since resources are paid from the date they 

start working to the date they finish the work, idle time during employment periods is 

considered unproductive. Accordingly, activities should be scheduled in such a way that 

idle time of resources is eliminated or minimized. To do so, resource constraints must be 

incorporated into the schedule. 
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1.2 Resource Constraints 

 There are two types of resource constraints, resource availability constraints and 

resource continuity constraints. Availability constraints indicate the limited number of 

resources available to activities during a particular period; therefore, they control the 

output of those activities. Continuity constraints stipulate that resources, such as crews, 

need to work continuously and without interruption from the time they first arrive to the 

job site until they leave.  

CPM generally assumes that there are unlimited resources and unconditional 

utilization of resources. Instead of applying resource constraints on the schedule, only 

precedence constraints are accounted for in scheduling resources. As a result, the derived 

schedule from CPM is often impractical and inefficient.  Resource availability constraints 

and resource continuity constraints should not be omitted nor represented by precedence 

constraints, and, of course, they are not inferior to precedence constraints. Thus, it is 

necessary to impose availability and continuity constraints onto the schedule.  

Figure 1.1 shows the benefits of imposing resource availability and continuity 

constraints on a repetitive project consisting of 3 units with 3 activities in each unit. Their 

dependencies are from A to B to C. Moreover, Activities A and C share the same limited 

resources, allowing only one of them to be performed one at a time. Figure 1.1.a results 

from applying only precedence constraints without resource constraints. As can be seen, 

this schedule is feasible because an overlap in resource usage exists between Activities A 

and C, which should be prevented by resource availability constraints. Moreover, it is 

inefficient because there is an idle time of 20 days between units in Activity B. This idle 

time is almost 60% of the entire employment period for Activity B. 
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Figure 1.1 Scheduling repetitive project with different types of constraints 
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The schedule shown in Figure 1.1.b satisfies both precedence and resource 

availability constraints. The start of Activity C no longer occurs on Day 20 since A and C 

share the same limited resource.  Resource availability constraints resolve the conflict in 

resource usage between Activities A and C. Now, the schedule becomes practical; 

however, the schedule is still inefficient because of the remaining idle time in Activity B.  

To eliminate idle time, in other words, to satisfy resource continuity constraints, 

the sum of lags between units of a repetitive activity is calculated.  Positive values of the 

sum of the lags indicate that the continuity constraints are violated, while zero indicates 

the constraints are satisfied. If the sum is greater than zero, the activity must be 

postponed by the sum of the lags in order to eliminate the idle time so that the continuity 

constraints are satisfied.  

In Figure 1.1.c, the schedule satisfies precedence, resource availability and 

resource continuity constraints. Continuity constraints force activities to be scheduled in 

such a way that their resources work continuously, resulting in a shorter period of 

employment and zero idle time. As can be seen from Figure 1.1.c, the start date of 

Activity B is postponed by the sum of the lags (20 days in Figure 1.1.a). Moreover, the 

employment period of Resource B is decreased from 35 days in Figure 1.1.a to 15 days in 

Figure 1.1.c. 

Figure 1.1 shows that applying resource constraints results in a practical and 

efficient schedule especially for resource utilization. Nevertheless, project duration 

increases from 65 to 90 days. If there is enough resource for both Activities A and C, 

project duration is still increased from 65 to 85 days due to the continuity constraints. 
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From the example, it is necessary to consider whether to introduce resource continuity 

constraints to the scheduling of a repetitive project.  

The tradeoff between eliminating idle time and increasing project durations must 

be analyzed to ensure the derived solution is the optimal project cost or close to it. To 

achieve this goal, characteristics of repetitive activities must be analyzed so that 

alternative schedules can be established and optimized. 

1.3  Characteristics of Repetitive Activities and Projects 

 Durations of repetitive activities in each unit are rarely identical. The differences 

may come from design, productivity of resources, availability of resources, scheduling 

techniques, etc. These factors contribute to activity and resource schedules, defining 

characteristics of repetitive activities. Five characteristics of repetitive activities are 

described below to show the need for a sophisticated scheduling technique and tool that 

must be able to model these characteristics, and schedule the project under precedence 

and resource constraints. 

1.3.1 Typical and Non-Typical Activities 

 A “typical activity” is defined as a series of sub-activities that have the same work 

amount in each unit; and they have the same duration for each repetitive unit. In contrast, 

a “non-typical activity” is a series of sub-activities having different work amounts and, 

therefore, different durations in different units. Figures 1.2.a and 1.2.b demonstrate two 

repetitive projects whose activities are typical and non-typical, respectively.  
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Figure 1.2 Typical and non-typical activities 

 
 Many scheduling techniques assume that the durations of sub-activities are the 

same (typical) so that it allows them to solve the problem easily. However, this 

assumption is not always practical since activity durations are influenced by many factors 

such as work amount in each unit and resource productivity for each activity. A 

developed technique should be able to model both typical and non-typical activities. 

1.3.2 Repetitive and Non-Repetitive Activities 

 Repetitive activities are those activities that need to be performed in every unit in 

the project. Whether typical or non-typical, if an activity exists in every unit, it is 

considered a repetitive activity. On the other hand, non-repetitive activities are those 

activities whose sub-activities do not exist in every unit. The most common situation is 

when an activity exists only in the beginning of the project (before starting the first unit) 

and/or in the first unit. For example, excavation is considered a non-repetitive activity for 

high-rise buildings in which it is only required prior to the construction of the first unit 

(the 1st floor). Figure 1.3.a is an example of a non-repetitive activity that only exists in 
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the first unit. Figure 1.3.a1 is the node network for the case and Figure 1.3.a2 is its 

corresponding production diagram. 

 
Figure 1.3 Repetitive and non-repetitive activities 

 

 A complicated situation arises when sub-activities exist in most units but are 

omitted in a few (Figure 1.3.b Activities B and C). Precedence and resource constraints 

for this non-repetitive activity are harder to model using only one unit to represent all the 

units and to show all dependencies between activities because of their unique 

dependencies between the non-repetitive activity and other activities. In Figure 1.3.b2, 

Activities B and C are examples of this case. Moreover, the start date of Activity D3 is 
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not controlled by its direct predecessor, Activity C, as in Units 1 and 2, because Activity 

C does not exist in Unit 3. Consequently, Activity D in Unit 3 is controlled by its indirect 

predecessor (B). 

1.3.3 Deterministic and Non-Deterministic Durations 

 From a modeling perspective, probabilistic scheduling problems are some of the 

most complicated problems. Both industry and academia have realized the importance of 

capturing the stochastic nature of construction projects. The difficulty starts from 

estimating the probabilistic durations of activities, modeling the flows of resources and 

materials, simulating the dynamic nature of construction activities, and solving the 

problem probabilistically. Consequently, very few techniques have been proposed to 

solve repetitive project scheduling problems in a probabilistic manner. 

 Focusing on resource continuity and non-deterministic parts of repetitive project 

scheduling problems, prior attempts have failed to solve the problem because: 1) they are 

based on inappropriate concepts such as CPM and 2) computational limitations such as 

linear programming. For example, the Program Evaluation Review Technique (PERT) 

cannot maintain continuity since it schedules activities at their early start date in the same 

way CPM does. Techniques based on linear and dynamic programming are not effective 

in solving non-deterministic problems. Simulation cannot ensure continuity because they 

cannot control or postpone the start date of activities. The deficiencies of these methods 

are explained in detail in Chapter 2. 

 Another issue introduced by stochastic activity durations is the need to establish 

an indicator determining activity criticality. This requires a totally new approach because 

the traditional concept of a critical path as in CPM does not exist under the continuity 
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constraints (Harris and Ioannou 1998). The impact of an activity on repetitive projects 

with regards to project duration and continuity must be studied. The concept of the 

controlling sequence as defined by Harris and Ioannou (1998) is based on deterministic 

activity durations. Thus, a modified version of the controlling sequence must be 

established for the non-deterministic case. 

1.3.4 Hard and Soft Logic Dependencies 

 In most scheduling techniques (e.g. CPM, PERT, LOB, and LSM), precedence 

constraints between activities are defined as hard logic. This means, by applying hard 

logic to two repetitive activities (e.g., A and C in Figure 1.4), a succeeding sub-activity 

(e.g., C2) is constrained by 1) the same activity in the previous unit (e.g., C1) and 2) its 

predecessors in the same unit (e.g., A2). 

 If activities’ interrelationships are defined as hard logic, they are considered to be 

technically dependent. CPM, PERT, LOB, and LSM are examples of those methods that 

use hard logic dependency. Unfortunately, this type of dependency in some cases is not a 

good representative of activity interrelationships, and may unnecessarily limit the 

flexibility in scheduling activities and allocating resources. For example, in Figure 1.4, a 

housing project consisting of 3 houses, the order of construction for these 3 houses is not 

constrained by technical constraints. The construction of these houses can be scheduled 

in many orders such as Units 1, 2, and 3 as shown in Figure 1.4.b or Units 2, 3, and 1 as 

shown in Figure 1.4.c. In such a case, constraining repetitive units with hard logic 

(forcing the order of the Housing Unit 1 to 3) would be unnecessary. Thus, the 

dependency between repetitive units should be defined in such a way that it allows a 
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switch in sub-activity orders, when possible. This type of dependency is called “soft 

logic.”  

 
Figure 1.4 A repetitive project with soft logic dependencies 
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 Soft logic is the ability of a crew to define its own orders of units for performing 

the repetitive work. The comparison of Figures 1.4.b and 1.4.c shows a benefit of 

applying soft logic constraints to the project. As shown in Figure 1.4.c, reordering the 

housing units from Units 1, 2, and 3 to Units 2, 3, and 1 results in a shorter project 

duration by 2 weeks. Accordingly, the idea of soft logic and its benefits need to be 

studied further. 

1.3.5 Resource-Sharing Activities 

 In CPM and other methods such as LOB and RSM, resource availability 

constraints are modeled by using precedence constraints. They assume that activities 

require only one resource each; a resource serving only one activity is called a “dedicated 

resource.” In practice, however, activities may share the same resources; the resource is 

called “shared resource” and the activities are called “resource-sharing activities.” In the 

latter case, precedence constraints would not be able to additionally present the resource 

availability constraints for the shared resource. 

 Sharing resources between activities can be highly dynamic and truly resource-

driven. Simple scheduling methods such as CPM and graphical methods such as LOB 

cannot include this activity characteristic into their calculations due to the high dynamic 

utilization of resources. For mathematical approaches, although it is possible to use 

dynamic programming to model behaviors of a resource that is shared by many activities, 

it is more cumbersome and ineffective than using simulation. Resource-driven simulation 

offers a great advantage when it comes to modeling this characteristic. Moreover, 

allocating shared resources may be performed promptly by using a conditioning node 

provided in most simulation systems (e.g., Fork node in Stroboscope).  Further studies of 
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resource-sharing activities and allocating shared resources must be investigated regarding 

repetitive construction projects.  

1.4 Problem Description 

Repetitive project planning and scheduling problems confront every construction 

company. Different companies may employ different strategies to manage their projects; 

however, one common objective is maximizing the efficiency of resource utilization. 

This issue of resource efficiency can be viewed in two dimensions: scheduling 

perspective and operational perspective. This research focuses on the schedule 

perspective because it determines “how an operation is going to perform,” “when that 

task is going to be executed,” and “how resources (labor, machine, and money) of the 

operation are going to be managed.” Even before projects start, schedules could dictate 

the success or failure of the project; poor schedules result in project loss and delay 

regardless of how effective the operation may be, since skilled laborers will become idle 

(waste in time and money), while waiting for another operation to complete. This 

unproductiveness (caused by ineffective schedule, rather than the operation itself) could, 

in fact, be avoided. Thus, this research focuses on eliminating the avoidable idle time and 

unproductive costs, stemming from an ineffective schedule. 

Repetitive projects tend to have an avoidable unproductiveness because 

operations in each unit are influenced by many activities (including sub-activities), 

resources (including laborers, equipment, and space), and other factors such as funding. 

Examples of these constraints can be grouped as: 1) technical constraints, 2) resource 

constraints, and 3) financial constraints. This research focuses on technical constraints 

and resource constraints in order to achieve a schedule that could eliminate or minimize 
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idle time in resource utilization. Consequently, this research employs idle time 

elimination to optimize and balance project time and cost. 

In this research, uncertainty in work amount and resource productivity is taken 

into account when scheduling projects since uncertainty and construction are inseparable. 

However, this research will not consider the uncertainties in operational accidents, 

machine breakdown, supplying material delay, disastrous phenomena, financial crises, 

and other unforeseeable circumstances.  

In conclusion, this research can be defined as the problem of probabilistic 

repetitive project scheduling. The main objective is to develop a tool to assist 

construction companies to schedule repetitive projects under uncertainty in order to 

eliminate the avoidable unproductive time and cost. 

1.5 Existing Scheduling Techniques 

 Many techniques have been proposed to solve the problem of scheduling 

repetitive projects. However, until now, no techniques have effectively and realistically 

captured all the aforementioned characteristics of repetitive activities and solved the 

problem. Those that are considered to be advanced techniques are only capable of 

modeling non-typical and non-repetitive activities, but not probabilistic activity durations 

and soft logic dependencies. Furthermore, many of those techniques fail to control 

(maintaining and relaxing) continuity constraints. The limitations of existing techniques 

are discussed in Chapter 2, Literature Review.  
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1.6 Challenges 

 The true challenges of this research stem from the desire to create a well 

conceptualized and designed mechanism that offers as much flexibility as possible, 

besides the ability to solve repetitive project scheduling problems. Even though the 

author recognizes that such a desired flexibility comes with a great cost, he still believes 

that the challenge is achievable and worth exploring. Theoretically, the challenges are: 

1) How to establish a generalized algorithm that can be applied to discrete-event 

simulation systems in order to solve a stochastic repetitive project scheduling 

problem. While many techniques require a customized tool to solve the 

problem, the generalized algorithm should be untied to a particular tool. It 

should be applicable to most discrete-event simulation systems such as 

Stroboscope, GPSS, and ProModel.  

2) How to establish a simulation model template that can capture all 

aforementioned four characteristics of repetitive activities, especially the 

stochastic nature of repetitive construction activities.  

3) How to provide flexibility in modifying the model template in (2) so that this 

proposed technique (the algorithm and the model) can be extended to solve a 

more complicated problem. The proposed technique must be designed for 

current and future development. 
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1.7 Research Objectives 

 The following are the primary objectives of this research: 

1) To establish a generalized algorithm that empowers discrete-event simulation 

to solve the problem of scheduling and planning repetitive construction 

projects.   

2) To design a universal simulation model template that can capture the 

characteristics of repetitive activities and their resources. 

3) To develop a heuristic algorithm for ordering repetitive units and/or sub-

activities in order to benefit from soft logic dependent activities. 

4) To develop a search algorithm that seeks an optimal (or near optimal) solution 

according to (1), (2), and (3). 

5) To develop an application that automates and facilitates the scheduling of 

repetitive projects according to the proposed (1), (2), (3) and (4). 

1.8 Conclusion 

 This chapter discusses several aspects of repetitive projects. Repetitive projects 

are commonly found in construction where similar units require repetitive activities from 

unit to unit. Repetitive activities and their resources are the essence of repetitive project 

scheduling because their constraints impose directly on project schedules. The constraints 

in repetitive projects are: 

1) Precedence constraints 

2) Resource availability constraints 

3) Resource continuity constraints 
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While precedence constraints specify the technological orders of work, resource 

availability and continuity constraints control the utilization of resources in the project. 

To obtain a practical and efficient schedule, the above three constraints must be 

accounted for in project scheduling. They and their application are discussed in this 

chapter focusing on the resource continuity constraints. 

One of the main focuses in scheduling repetitive projects is to maximize resource 

utilization by keeping resources working continuously without interruption. Resource 

continuity constraints normally enforce delay in activities to improve continuous resource 

utilization. Nevertheless, delaying repetitive activities could adversely prolong project 

duration. Thus, the tradeoff between increasing project duration and decreasing idle time 

must be considered in order to obtain a practical and efficient schedule. The tradeoff can 

be analyzed by performing sensitivity analysis between enforcing and relaxing resource 

continuity constraints. To obtain the most efficient schedule, it is suggested that the 

analysis of the tradeoff must be incorporated with the fundamental characteristics of 

repetitive activities.  

Four characteristics of repetitive activities are discussed in this chapter to 

illustrate their potential benefit in optimizing repetitive projects. These characteristics 

are: 

1) Typical and non-typical repetitive activities 

2) Repetitive and non-repetitive activities 

3) Deterministic and non-deterministic activity durations 

4) Sharing or non-sharing resources with other activities. 
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To achieve an optimal schedule, schedulers must truly understand the four 

characteristics of repetitive activities and carefully analyze the tradeoff between imposing 

and relaxing resource continuity constraints. This research will coordinate all of these 

factors in the proposed algorithm to effectively solve the problems of repetitive project 

scheduling. 



 

 
CHAPTER 2 

LITERATURE REVIEW 

CHAPTER 2 LITERATURE REVIEW 

 This chapter presents advantages and disadvantages of techniques used in 

scheduling repetitive projects. These techniques are: 

1) Mathematic Approach. Examples of this approach are: 

a. Critical Path Method (CPM) 

b. Program Evaluation and Review Technique (PERT) 

c. Vertical Production Method (VPM) 

2) Graphical Approach. Examples of this approach are: 

a. Line-of-Balance (LOB) 

b. Linear Scheduling Method (LSM) 

c. Repetitive Scheduling Method (RSM) 

3) Linear Programming (LP) 

4) Dynamic Programming (DP) 

5) Simulation 

These techniques are compared in various aspects of scheduling specifically for 

repetitive projects based on many researchers’ recommendations. At the end, these 

techniques are summarized. 
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2.1 Introduction 

 Many scheduling techniques have been developed for planning and scheduling. 

Some are for general construction projects, while others are specifically for repetitive 

projects. The Critical Path Method (CPM) and Program Evaluation and Review 

Technique (PERT) are examples of techniques suitable for general projects, but not 

repetitive construction projects. CPM and PERT cannot produce an effective schedule for 

repetitive projects. On the other hand, many scheduling techniques are designed 

specifically to schedule repetitive projects. These techniques range from a basic graphical 

approach, such as Line-of-Balance (LOB), to a more complex approach, such as linear 

and dynamic programming. Integrations between techniques are commonly established to 

mutually improve the original concepts such as the integration between LOB and CPM.  

 The chronological development of repetitive project scheduling techniques can be 

viewed in these orders: 

1) Graphical Approach  

2) Mathematic Approach  

3) An integration between (1) and (2) 

4) Advanced mathematical approach (e.g., Linear Programming and Dynamic 

Programming Simulation 

5) An integration between (1) and (4) 

6) An integration between (1), (4), and (5) 

These developments are influenced by the incremental understanding toward the 

problems of repetitive project scheduling, the need from the industry, and technological 

changes in computing capability.  
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2.2 Existing Techniques 

 The following discussions concentrate on the advantages and disadvantages of the 

existing techniques and their underlying concepts. Various aspects of repetitive project 

scheduling and their ultimate objectives are assessed to verify their practical usages and 

their realistic representatives of construction projects. Comments and suggestions from 

the original authors and others are presented to emphasize the subjects that need to be 

improved or included to achieve an effective technique.  

2.2.1 Critical Path Method (CPM)  

The Critical Path Method (CPM) was developed in the 1950s by James Kelly and 

Morgan Walker (Senior 1993). The method offers an easy calculation to derive a project 

schedule and to assess the criticality of activities using its proposed concepts of floats and 

the critical path, focusing on time. Activities and their interrelationships are depicted in a 

network by nodes and arrows. Nodes represent the activities and activity information 

such as title, duration, etc. Arrows represent the interrelationships (precedence 

constraints) between activities and the lead time between them. After the network is 

constructed and the activity durations are given, the calculation of critical path, critical 

activities, and floats can be performed straightforwardly. The derived information 

informs project managers of the criticality of activities, which allows them to plan in 

advance how to schedule the activities and manage the project effectively, based on the 

current schedule. On the other hand, the managers may decide to alter the original 

schedule to suit the project deadline, the company resources, and so forth. 
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Most scheduling software (Microsoft Project, Primavera, etc.) offers automation 

of CPM calculation and network drawing, within seconds after inputting data. These 

programs facilitate schedulers in altering and updating the schedule purposely for 

planning and controlling. Accordingly, CPM has been widely used in the construction 

industry. 

 However, CPM has been criticized for its incapability of taking resource 

consideration into account in its calculations. This usually leads to an unfeasible schedule 

due to the unawareness of resource constraints such as resource availability constraints 

(Selinger 1980; Kavanagh 1985).  

From the perspective of repetitive project scheduling, CPM is incapable of 

capturing the realistic and stochastic nature of repetitive projects (Selinger 1980; Stradal 

and Cacha 1982; Chrzanowski and Johnston 1986, Reda 1990; Rahbar and Rowings 

1992; Suhail and Neale 1994, Harris and Ioannou 1998. The reasons for such incapability 

are: 

1) CPM does not take resources into account in calculating schedules. It is 

designed primarily for scheduling and monitoring activity and project 

duration; CPM is a pure time-based schedule technique. CPM cannot ensure 

the continuous resource utilization of a crew from unit to unit (Senior 1993; 

Onur 2003). Therefore, it cannot maximize efficiency in resource utilization 

(Birrell 1980; Stradel and Cacha 1982; Rowings and Rahbar 1992; and Senior 

1993).  

2) CPM calculation does not include nor is it concerned with the imbalanced 

production rate of resources resulting in inefficient resource utilization. 
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3) CPM is not applicable to non-deterministic activity duration. It is important to 

recognize that CPM, as a deterministic scheduling method, would schedule 

projects only to the level of reliability of the input values of the duration of 

activities. For reliable representation, the productivity data must be expressed 

in some probabilistic measure (Dhanasekar 2000). 

4) CPM cannot eliminate idle time, since it schedules activities based on their 

earliest start dates, (Reda 1990, Huang and Halpin 2000). If a predecessor has 

a lower production rate than its successor, the successor must wait until the 

predecessor completes, which results in idle time.  

5) CPM and its graphical presentation are considered ineffective when applied to 

repetitive projects having a large number of units. Its calculation becomes 

tedious and labor intensive (Yang 2002). For example, a repetitive project 

consisting of 7 activities for 1000 units will require 7000 nodes to represent 

the network. A network of this size is confusing and unmanageable (Carr and 

Mayer 1974; Chrzanowski and Johnston 1986; Reda 1990; Yang 2002). 

 To alleviate the mentioned deficiencies of CPM, the integrations of CPM and 

other techniques such as Line-Of-Balance (LOB) have been developed during the last 

couple of decades. Nevertheless, they still cannot handle the stochastic nature in the 

repetitive projects. 
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2.2.2 Project Evaluation Review Technique (PERT) 

The Project Evaluation and Review Technique (PERT) was introduced to the 

construction industry in the 1950s. It is a probabilistic scheduling technique using three 

point estimates of activity durations to determine an estimated project duration. The 

difference between CPM and PERT is that PERT is capable of scheduling non-

deterministic activity durations while CPM cannot.  

However, PERT has not been widely used in the construction industry compared 

to CPM as it requires more data of activity durations, which is often difficult to obtain 

and justify. Moreover, PERT requires intensive computation compared to CPM. Since the 

technology of personal computers has been improved in the last couple of decades, the 

improved technology causes simulation method to supersede PERT (Senior 1993). From 

a repetitive project perspective, PERT and CPM have the same limitations due to their 

underlying time-based scheduling calculation and their graphical presentation in 

precedence networks (Senior 1993; Yang 2002). 

2.2.3 Line-Of-Balance (LOB) 

 The Line-Of-Balance method (LOB) was developed at the Goodyear Company by 

George E. Fouch in the early 1940’s for the purpose of managing and controlling 

production processes in industrial manufacturing where tasks are repetitive. Then, LOB 

was applied in the Navy (Miller 1963). LOB’s main objective is to balance the size of 

labors and machines based on their production rates so that their resources are employed 

at full capacities.  
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 The major benefit of LOB to construction scheduling is that it conveys important 

production rate and duration information in a graphical format (Onur 2003). LOB shows 

progress of activities against time in graphical presentation. The accumulated work 

completed is plotted with work progress on the Y-axis and time on the X-axis. The line 

representing completed work is termed the “Production Line”. It is evident that LOB 

offers a better visual presentation than the precedence network, especially for repetitive 

projects, because the comparisons between activities and between units can be easily 

perceived in the diagram. The easily interpreted graphics format enhances the viewers 

understanding of the project and also individual activities. It allows the viewers to detect 

a potential bottlenecks (Lutz 1990; Onur 2003) by simply observing the production lines. 

 LOB allows schedulers to observe and adjust the production rate of activities in a 

production diagram to maximize resource utilization. This process of adjusting 

production rate is known as “balancing production rates.” LOB provides a means of 

selecting crew size in order to minimize inefficiency and waste in resource utilization 

(Lutz 1990). To balance unit production rates, activities are assigned to work at the 

minimum unit production rate among activities. For example, Activities A, B, and C have 

unit production rates of 2, 1, and 3 units/day. Thus, to balance these activities, production 

rates of A, B, and C should be set at a rate of 1 unit/day. If the scheduler desires to 

expedite the project furthermore, more resources could be assigned to Activities A and B 

so that they progress as fast as Activity C.  For this example, additional resources must be 

assigned to Activities A and B to speed up their unit production rates to 3 units/day. 

 The application and graphical presentation (production diagram) of LOB facilitate 

schedulers in constructing a schedule that satisfies precedence constraints, resource 
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availability constraints, and resource continuity constraints. The concepts of continuous 

resource utilization and balancing production rates benefit repetitive projects in several 

ways. First, the former maximizes the efficiency of resource utilization by eliminating 

idle time. Since resources are scheduled to work continuously, the project will benefit 

from the learning phenomenon especially in labor-intensive activities.  

 Secondly, balancing production rates keeps all activities working at the same pace 

and possibly reduces project duration. According to the advantages of LOB, many 

researchers have adopted and adapted these concepts in order to optimize project duration 

and project cost. The tradeoff between project duration and cost can be analyzed by 

various techniques, such as integer programming, linear programming, and dynamic 

programming. 

 However, the fundamental principal of LOB has several drawbacks, which need 

to be attuned and improved in order to suit the nature of construction projects. The 

limitations of LOB and solutions are described below. One of the unrealistic assumptions 

of LOB is the assumption of activities’ constant production rates of activities are constant 

(Carr and Meyer 1974; Johnston 1981; O'Brien 1985; Arditi and Albulak 1986; Lutz 

1990; Russell and Wong 1993; Yang 2002). This assumption implies that 1) work 

amounts in each unit are identical and 2) productivity of resources in each activity is a 

constant.  

 For repetitive construction projects, the amount of works in each unit could be 

different from unit to unit; it is rarely the same. For example, high-rise buildings 

consisting of several floors usually have various types of interior finishing on different 
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floors. Another example is highway projects. Excavation at different locations is likely to 

result in diverse amounts of soil, according to an existing ground profile. 

 Senior (1993) stated that the inability to incorporate varying amount of works in 

repetitive sub-activities is another limitation of LOB. Repetitive projects usually consist 

of non-typical activities and non-repetitive activities. Non-typical activities are activities 

having different work amounts in each unit. Non-repetitive activities are activities 

existing only in a few units. Details of non-typical and non-repetitive activities are 

discussed in Chapter 1. 

 In addition, Halpin and Woodhead (1976) stated that construction operations are 

stochastic by nature; thus, assuming production rates are constant may be erroneous. This 

unrealistic assumption of constant production rates limits the application of LOB to 

certain degree of realism and complexity (Neale and Neale 1989; Rowings and Rahbar 

1992; Yang 2002).  To alleviate the deficiency in LOB, the calculation of LOB must be 

modified in order for it to be applicable to repetitive projects with non-typical repetitive 

activities (difference in work amounts) and non-repetitive activities (work not existing in 

all units).  

 From a resource utilization perspective, Yang (2002) pointed out the assumption 

of constant production rates limits LOB in two ways. First, each activity must be 

performed by the same crew. At a project level, this may not be a serious issue, but at a 

company level this assumption eliminates the possibility of allocating resources among 

projects.  Second, the hard-logic precedence constraints used in LOB may unnecessarily 

restrain repetitive activities to work in the same sequence from one unit to another. For 

example, an interior finishing activity of Unit 1 must perform before the activity of Unit 
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2. This hard-logic precedence constraint eliminates the flexibility in managing the project 

at an activity level where sequences of units could be altered to achieve a better balanced 

production rate.  Carr and Mayer (1974) suggested that the working sequence of units 

within activities, not constrained by resource or technological constraints, should be “a 

matter of choice rather than dependency”. In other words, the dependency between 

activities should be modeled by “soft logic” constraints when possible.  

 Ironically, the benefit of maintaining continuous resource utilization in LOB has 

also been argued to be a disadvantage of LOB because of the inability to relax the 

continuity constraints. In a time-cost optimization problem, the tradeoff between 

continuity and interruption in work must be analyzed and balanced to achieve the 

minimum project cost. Without the ability to relax the resource continuity constraints, the 

project duration may be excessively delayed; as a result, the increased indirect cost (from 

the delay) exceeds the savings in the direct cost (from eliminated idle time).   

 Since LOB schedules activities in such a way that activities must work 

continuously, the benefit from allowing the interruption cannot be obtained. It is a fact 

that idle time in resource utilization is considered waste at the activity level. However, 

with no consideration of project cost, this may always be valid at the project level (Reda 

1990; Lutz 1990). Focusing on continuous resource utilization and project duration, a 

schedule derived from LOB may increase project cost, although project duration is 

reduced. This is a time-cost tradeoff problem. While maintaining 100 percent work 

continuity results in much greater project duration and consequently indirect cost, 

allowing interruption (relaxing continuity constraints) could reduce the project duration 

and indirect cost significantly with a negligible penalty costs from allowing idle time. 
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 From a company stand point, dynamically allocating resources among projects 

may incur idle time or waste at a project level; however, this would provide better 

resource utilization and cost efficiency at the company level (Lutz 1990). Thus, allowing 

interruption in resource utilization should also be considered as an option (Yang 2002). 

 Another shortcoming of LOB is that its graphical presentation becomes confusing 

when many concurrent activities take place in a particular period. It is designed to model 

simple repetitive works; thus, LOB’s graphical presentation is not readily fit to the 

complexity of construction projects (Kavanagh 1985; Neale and Raju 1988). Arditi and 

Albulak (1996) suggested using colored graphics may lessen the problem.  

 While many suggested the modification of graphics, on the other hand, Sarraj 

(1990) argues that the diagram is not necessary for the scheduling purpose. He 

computerizes the LOB algorithm using a mathematic approach that provides all 

scheduling-related information. Since all information is derived from his program, he 

claims there is no need to draw any diagram to derive schedules. 

 An additional concern about LOB in construction was that it has not been used 

widely because it is not as readily computerized as network methods (Chrzanowski and 

Johnson 1986; Lutz 1990; Yang 2003). However, this has changed because of the great 

improvement in computation over the last decades. Examples of computerized LOB 

combining graphical and analytical methods to solve repetitive project scheduling 

problems are works from Yang (2002).  

2.2.4 Other Graphical Approaches 

 Similar to LOB, many graphical approaches provide a simple means to schedule 

repetitive projects. Most of them have similar advantages and disadvantages as does 
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LOB. Relying heavily on scheduler’s judgments and efforts, their uses are limited to a 

small and simple problem. The differences among existing graphical methods stem from 

their objectives to solve a specific type of construction project, such as highway, high-

rise, and housing projects.    

 Improved from the original LOB, many graphical methods modified LOB so that 

they are able to model non-repetitive and non-typical activities in repetitive projects. 

However, the capability of these LOB-modified graphical methods is still limited to a 

simplified scheduling problem. Beyond their capability, these methods can not perform a 

sensitivity analysis nor solve a probabilistic scheduling problem. Consequently, the need 

to improve and computerize graphical methods has been brought into awareness. 

 The following sections discuss many existing graphical methods and focus on the 

concepts. They are introduced in chronological order along with recommendations made 

by the original authors and others.  Rather criticizing the limitations of their methods, it 

should be understood that these graphical methods were established in the early 

development of repetitive project scheduling for construction. Their efforts and 

recommendations are valuable and indispensable for developing a new approach solving 

repetitive project scheduling problems.  

 Peer (1974) gave a general idea of construction planning. He suggested activities 

should be categorized into 4 groups: 1) preparatory (such as approval and planning 

procedures), 2) main repetitive, 3) interlinked (equivalent to non-critical and/or non-

controlling), and 4) external (not considered as a repetitive activity such as fences and 

site development). These four types of activities give schedulers a mindset of activity 
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criticality and the span of works (repetitive or non-repetitive). The idea of prioritizing 

activities in repetitive projects still needs to be studied further.   

 Peer (1974) suggested that it is not a problem of finding a critical path, but rather 

specifying a critical path, in other words, determining what should be made critical. Thus, 

the four categorized sets of activities and their associated costs must be taken into 

consideration when defining critical activities and balancing production lines. Peer 

recommended that construction planning input should be based on quantities of work, 

production rates, and other production characteristics. Moreover, activity durations 

should be non-deterministic in order to reflect realism of construction activities. 

 O’Brien (1975) introduced the Vertical Production Method (VPM), a graphical 

approach similar to LSM. Its main application is scheduling high-rise buildings by 

considering each floor as a repetitive unit. He addressed the necessity of integrating 

between non-repetitive and repetitive works for high-rise buildings. VPM employs a node 

network to represent non-repetitive activities such as excavation existing only in the first 

floor of a building. For repetitive activities, cumulative production is plotted on the Y-

axis while time is plotted on the X-axis, similar to most graphical approaches. 

Accordingly, two separate schedule formats are used to present a repetitive project.  

According to Senior (1993), a drawback of VPM is that it requires planners to manually 

combine CPM to LOB. Therefore, VPM is not suitable for big scale or complex projects.  

 The Linear Scheduling Method (LSM) was first introduced by Johnston (1981). 

Its graphical presentation, linear scheduling diagram, is very similar to line-of-balance 

diagram. The main difference between an LOB diagram and an LSM diagram is that an 

LOB diagram usually presents a discrete cumulative progress (e.g., floors) while LSM 
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diagram presents continuous cumulative progress (e.g., miles). Moreover, activities in an 

LOB diagram are presented by horizontal lines from the start to the finish of the activities 

while activities in an LSM diagram are presented by production lines with the slope of 

activity unit production rates. However, since many researchers have adopted the concept 

of LOB but using LSM diagrams (according to Johnston’s work) to present activities, 

LOB diagrams and LSM diagrams are referred and used interchangeably in construction.  

 Besides the graphical presentations, Johnston noted a difference between LSM 

and LOB is in their emphasis. While the application of LOB focuses on balancing 

production lines, LSM concentrates on planning the activities (Johnston 1981). In his 

paper, Johnston applied LSM to a highway project. He showed that time-cost 

optimization can be accomplished by a simple calculation incorporating with the LSM 

diagram. Comparing to a node network and a bar chart, a LSM diagram provides richer 

information (such as production rate and production line) allowing schedulers to visualize 

the process of optimization.  

 Moreover, Johnston (1981) suggested that seasonal adjustments should be 

included into LSM diagrams, because holidays and bad weather adversely affect activity 

productivity. During the course of constructing an LSM diagram, either reduction in 

production rates or work interruptions must be introduced to the affected activities in 

order to reflect a realistic schedule.   

 After the introduction of LOB and LSM, variations between LOB and LSM were 

developed to improve the means of scheduling repetitive projects. The following works 

are considered as a new generation of graphical methods. Most of these works are 

computerized and designed to solve a sophisticated repetitive project scheduling problem. 
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 Thabet (1992) proposed a method called “Horizontal and Vertical Logic 

Scheduling method” (HVLS), which combines graphical, knowledge-based, and 

analytical methods in order to schedule multistory buildings. The HVLS application is 

considered the very first LOB- computerized extension that provides a full benefit of 

construction information system. It is user-friendly and database-driven and utilizes 

information extracted from a 3D CAD model. 

 In Thabet’s thesis, he included space constraints into scheduling in addition to 

precedence, resource availability, and resource continuity constraints. Thabet suggested 

that 1) activities in multistory buildings are performed within a limited space and 2) 

material requires storage area. Ignoring the requirements of work and storage areas may 

incur a conflict among different trades, decrease productivity, impact safety, and lengthen 

project duration (Thabet 1992; Thabet and Beliveau 1994). 

 Effectively incorporating the space and continuity constraints into technical 

constraints, Thabet grouped technical constraints into 2 categories: horizontal and vertical 

constraints.  The vertical and continuity constraints impose on activities in different units, 

while the horizontal and space constraints impose on activities in the same unit. During 

the course of scheduling, these constraints must be satisfied.   

 The drawbacks of Thabet’s work are 1) not considering non-typical activities and 

2) not considering non-repetitive activities (Yang 2002). His solution can solve only a 

problem with constant production rates and the same work quantity in all units. In reality, 

production rates are varied and work quantity among units is unlikely exact the same. 

According to the drawbacks, his work is limited to simplified problems of repetitive 

project scheduling. 
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 Harris and Ioannou (1998) introduced the concept of the repetitive scheduling 

method (RSM) and the concept of controlling sequence. Even though Harris and Ioannou 

did not computerize RSM, their valuable and pioneering thoughts have influenced many 

others such as Yang (2002) and also this research. RSM is a graphical method that 

combines graphical and analytical approaches to schedule repetitive projects. It can be 

applied to a repetitive project consisting of typical, non-typical, repetitive, and non-

repetitive activities. Distinctions between controlling activity and critical activity are 

made based on the introduced concept of controlling sequence and the original concept of 

critical activity in CPM. Harris and Ioannou pointed out 2 important facts. First, a critical 

activity may or may not be a part of controlling sequence. Second, a critical path do not 

exist anymore (Yang 2002) because activities are delayed (resulting in increased floats) 

to maintain the continuity in resource utilization. Consequently, different critical levels of 

for activities are established, including controlling-critical, controlling-not-critical, 

critical-not-controlling, and not-controlling-not-critical activities.    

 Yang (2002) developed a sophisticated application, named “Repetitive Project 

Planner,” employing graphical and analytical approaches. Under Ioannou’s supervision, 

Yang (2002) integrated the concept of RSM to activity graphics formats (lines, bars, and 

blocks) to model the following realistic characteristics of repetitive project scheduling.  

• Variable production rates and variable work quantities. 

• Composition of crew size, tools, and equipment. 

• Changing in work direction (east-to-west, top-to-bottom, etc.). 

• Different precedence relationships (finish-to-start, start-to-start, etc.). 

• Specified buffer in time (lead-time) and space (lead-space). 

34 



• Allowed interruption if desired. 

 Yang (2002) explicitly pointed out the similarities and differences in scheduling 

discrete and continuous repetitive projects. Moreover, criticality of an activity is given 

based on controlling sequence and the set of critical activities according to RSM. 

2.2.5 Linear Programming (LP) 

 Linear Programming (LP) can be described as a mathematical procedure for 

minimizing or maximizing a linear function of multiple variables with a defined set of 

constraints for these variables. LP problems consist of two components: 1) an objective 

function to be maximized or minimized and 2) constraints defining linear relationships 

between variables. Given linear relationships between variables, a time-cost tradeoff 

problem or resource allocation problem can be solved effectively by using LP. 

 However, the limitation of LP is the assumption of linear relationships among 

variables (Lutz 1990). Existing linear programming models often simplify the complexity 

of repetitive projects. According to El-Rayes (1997), most methods employing linear 

programming assume that all activities are typical activities. For example, these methods 

often assume that durations of interior activities from the first to the last floor are the 

same. This assumption is not practical. Since duration is influenced by crew productivity, 

different work amounts, and so on, the durations of sub-activities (for the same repetitive 

activity) in different units are rarely the same. 

 Based on the aforementioned, it can be concluded that linear programming does 

not suit complex situations common in construction. Senior-Brown (1993) agrees with 

the conclusion that construction situations are too complex for straightforward 

mathematical formulation.  
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 The following section presents the applications of LP for repetitive project 

scheduling proposed by many researchers from different perspectives. Studying the pros 

and cons of these applications and their objective functions provides insightful 

information and the possibility of employing LP to search for an optimum solution. 

 Perera (1983) used LP to determine the maximum rate of construction. The model 

consists of three main constraints: limited resource constraints, material constraints, and 

financial constraints. After all constraints are established, the rate of completion is 

maximized to derive the optimum number of crews for all activities. Since the objective 

function is maximizing the rate of completion, it does not provide the optimum project 

cost which in fact should be considered as the main objective (El-Rayes 1997). 

Moreover, Perera’ model cannot model non-typical activities because it assumes identical 

duration among units of an activity (El-Rayes 1997). 

 Most importantly, from a resource utilization perspective, Perera’s model does not 

consider the continuity in resource usage (Yang 2002) nor allow work interruption (El-

Rayes 1997).  

 Reda (1990) used LP to optimize the time-cost tradeoff problem for repetitive 

projects. The proposed model was named the “Repetitive Project Model” (RPM). 

Compared to other linear programming models, the advantage of Reda’s model is that it 

includes cost as q decision variable in the optimization process (Moselhi and El-Rayes 

1993). 

 The objective of Reda’s RPM is minimizing project direct cost for feasible project 

duration while satisfying the following constraints: 

1) Maintain a constant production rate for each crew 
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2) Maintain a continuity of work for each crew 

3) Allow for a time buffer between activities on the same stage 

4) Allow for a stage buffer between concurrent activities 

5) Specify feasible project duration 

 Reda’s model guarantees continuity in work flow by using a time buffer between 

activities, postponing the start date of the succeeding activity.  Based on continuity 

constraints and buffer constraints, work interruption is not allowed; the benefit of 

allowing interruption is neglect. The lack of considering deliberate interruptions is one of 

Reda’s model drawbacks. The inflexibility in continuous resource utilization and the 

unrealistic assumption of a constant production rate are the major disadvantages of RPM 

(Yang 2002).   

 In addition, the process of formulation in Reda’s model could be cumbersome as 

the number of units increases because the number of constraints depends on the number 

of repetitive activities. Thus, it is limited by the complexity of establishing the constraints 

(El-Rayes 1997). 

2.2.6 Dynamic Programming (DP) 

 Dynamic Programming (DP) is a mathematical technique for solving sequential 

decisions where the next stage is determined by the current stage. DP does not have a 

specific formulation. The technique aims to find an optimal substructure by dividing the 

problem at-hand into sub-problems to find an optimal solution in each sub-problem, and 

thus leading to the optimal solution for the overall problem. Recursive computations are 

used to inter-relate these stages to resolve the last stage as the optimal solution for the 

problem.  
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 Two advantages of dynamic programming are: 1) it is not constrained by linear 

assumptions and 2) it can be easily computerized. DP has been developed to overcome 

the limitation of linear programming so that the calculation is not constrained by the 

linear assumption. Thus, DP offers a more realistic model and results (Lutz 1990). Since 

DP can be easily computerized, the optimizing process and sensitivity analysis are less 

labor-intensive than presented with graphical approaches.  

 The following paragraphs discuss the proposed models by various researchers 

employing dynamic programming (DP). Attention is given to their perspectives of using 

computerized algorithms and establishing formulas in order to solve or optimize 

repetitive project scheduling problems.  Limitations of their models are also presented.  

 In 1980, Selinger proposed the “Construction Planning Technique” (CPT) using 

dynamic programming to minimize project durations. His model is able to maintain 

continuity in resource usage, and to optimize project durations. Moreover, Selinger’s 

model can model non-typical activities and different types of activity relationships, such 

as start-to-start and finish-to-start. 

 The main disadvantage of Selinger’s model is it only solves problems with serial 

activities, where activities have only one predecessor and one successor (Yang 2002). 

This disadvantage limits the usability of his model. Without simplifying construction 

operations, his model cannot solve repetitive construction projects such as housing 

projects and high-rise buildings in which activities perform works concurrently. In 

addition, his model does not consider minimizing project cost. 

 Yang (2002) pointed out that Selinger’s model can be improved in many ways. 

Firstly, Selinger (1980) did not consider the potential benefit of allowing interruption. 
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Secondly, as Yang argues, dynamic programming is not a suitable tool solve and model 

stochastic problems. Thirdly, the model was designed only for dedicated resources. 

Fourthly, the learning effect should be formulated and applied to activities whose work 

continuity is maintained.  It is important to understand that these four suggestions could 

be achieved by modifying Selinger’s model; however, the modification would be very 

complicated and cumbersome, which is the shortcoming of using mathematical 

approaches when solving a scheduling problem at this level of complication. 

 Without respect to project cost, Selinger’s model was designed to optimize only 

project duration. Since minimizing project duration may increase project cost, the main 

objective should be minimizing project cost rather than project duration. 

 Russell and Caselton (1988) proposed a two-stage variable dynamic programming 

formulation to schedule repetitive projects. Their model included a set of interrupted 

durations in the second stage variables, where the first state variables consider possible 

durations. Consequently, their model offers a more flexible schedule and shorter project 

duration than Selinger’s model does (Yang 2002).  

 However, it cannot be concluded that Russell and Caselton’s solution is better 

than Selinger’s. Since both models are time minimization approaches, neither of their 

solutions guarantee the minimum project cost, possibly leading to a higher project cost 

(Moselhi and El-Rayes 1993). Forcing resources to work continuously (not allowing any 

interruption) without an incorporation of cost (direct and indirect cost) could result in an 

inefficient outcome. Actually, Russell and Caselton’s model does not even guarantee the 

minimum project duration. In their paper, the solution was mentioned as a “near-optimal 

solution” (Russell and Caselton 1980). Suggestions for their model are similar to 
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Selinger’s, except for the addition of allowing interruptions. The main disadvantage is 

still the assumption of serial activities (Russell and Caselton 1988). 

 Moselhi and El-Rayes (1993) proposed a dynamic programming formulation 

incorporating cost in optimization processes. Their model minimizes overall project cost 

by choosing crew formations that provides an optimal project cost. The process of 

identifying the best crew formation is accomplished by enumerating all the possible 

combinations between crew formation of predecessor and successor activities, one pair at 

a time. After accumulated costs are calculated through the completion of the successor 

activities, crew formation of the predecessor activity that provides the least overall cost is 

considered the optimum crew formation for the activity. Then, the process moves to the 

next pair of predecessors and successors. This process is called “finding local optimum 

predecessor” in their paper. It starts from the first to the last activity, called the “forward 

stage.” After finishing the last activity, the process traces backwards through the 

previously identified optimum formations to determine the best formation of all the 

crews. This process is called the “backward stage.”  For further detail and examples see 

Moselhi and El-Rayes (1993).  

 Moselhi and El-Rayes’s model is capable of scheduling repetitive projects 

consisting of both typical and non-typical repetitive activities. Different interrelationships 

between activities can be defined, as shown in their paper. Overtime cost and allowance 

of work interruptions (relaxing continuity constraints) are also included in their models. 

 However, Moselhi and El-Rayes’s dynamic programming formulation is limited 

only to projects with serial activities, and does not consider sharing resources between 

activities. Only deterministic problems can be solved by their models.  
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The difficulties in using mathematical optimization techniques are concluded 

below: 

1) It is impractical to request schedulers to specify all the possible sets of 

decision variables (e.g., crew sizes and work interruptions) before project start 

date (Yang 2002). 

2) Site managers usually do not have the training to compose hundreds of 

mathematical constraints, and similarly do not have the training to analyze the 

numerical outcomes (Yang 2002) 

3) Mathematic approaches do not provide a generalized form of solution; they 

require customized input for each new problem (Lutz 1990). 

4) It is ineffective and, sometimes, infeasible to use LP and DP solving repetitive 

project scheduling problems with probabilistic activity durations, which are a 

better representative of the construction activities due to their stochastic 

nature.  

2.2.7 Simulation 

 Simulation is an analytical technique involving designing and experimenting with 

an established mathematical-logical model. When relationships between variables are not 

linear and/or random variables are included in the problem, simulation is a preferable tool 

to model the relationships and solve the problem. Simulation enables schedulers to study 

the behaviors of a process without the necessity of formulating a mathematical function 

of an unpredictable behavior input (Hijazi 1989). In other words, if the problem is too 

complex for mathematical formulation, it is best analyzed by simulation (Senior 1993). 

For an example, weather conditions and planning decisions can be modeled in simulation 
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and evaluated via the outcomes of the simulation. Although the outcomes from 

simulation are not guaranteed as optimum, since simulation is not an optimization tool, 

simulation still can be used to derive an optimal or near optimal solution by altering the 

input and searching for a satisfactory result (Lutz 1990).  

 The non-deterministic nature of construction projects is one of the most 

complicated factors that are often simplified or neglected by modelers. Many 

deterministic approaches such as linear and dynamic programming fail to provide a result 

with confidence because of the simplification (Yang 2002). On the other hand, simulation 

is considered an excellent tool for the stochastic problems because the effect of 

uncertainties in construction projects can be modeled and assessed by using simulation 

(Halpin and Woodhead 1976; Lutz 1990; Martinez 1996; Yang 2002).  

 Nevertheless, simulation by itself cannot control or eliminate idle times (Yang 

2002; Ioannou and Likhitruangsilp 2005). Therefore, an external algorithm must be 

developed and implemented in the simulation model in order to effectively solve the 

problem of repetitive project scheduling (Lutz 1990; Yang 2002). 

 The following studies have attempted to use simulation to schedule repetitive 

projects. Their advantages and disadvantages are discussed, focusing on improving the 

means of scheduling repetitive projects using simulation.   

 Ashley (1980) used simulation to study the planning of housing projects. His 

example was carried out by GPSS simulation language. The study optimized the 

minimum project duration by altering inputs in the simulation. Various simulation runs 

were executed and then the results were compared. The inputs, decision variables, were 
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1) the number of machines, 2) the size of crews, 3) the allocation of crew and equipment 

(Ashley 1980).  

 Nevertheless, Ashley’s model did not consider eliminating idle time. There is no 

external algorithm implemented in the simulation to achieve continuous resource 

utilization. Accordingly, Ashley’s model schedules the project in the same way as PERT 

and CPM, based on activities’ early start dates.  

 Kavanagh (1985) developed a scheduling system called SIREN (Simulation of 

Repetitive Networks). He combined two concepts of the network scheduling technique 

and the queuing technique into a simulation system (GPSS) to solve repetitive project 

scheduling problems. Activities (customers) are queued for their resources (servers). This 

is used as resource constraint. Another type of constraint is precedence constraint. 

Activity can start when these two constraints are satisfied. 

 Limitations of Kavanagh’s model are discussed in the order of his suggestions on 

future enhancements for his model as followings: 

• Allowing changes in the number of repetitive networks 

• Allow changes in crew size 

• Control the beginning of each activity 

• Model the effect of weather on activity 

• Allow users to impose priorities and plan of work on the system. 

Kavanagh’s suggestions are the primary focus for the Sequence Step Algorithm 

(SQS-AL) proposed in this research. The enhancement due to the suggestions will 

improve the efficiency of resource utilization. Since Kavanagh’s model cannot control 

43 



the start date of an activity, his model has the same limitation as Ashley’s; it fails to 

maintain resource continuity.  

 Lutz (1990) is another research using simulation to solve scheduling problems of 

repetitive projects. His work focuses on applying learning phenomenon, cycle 

monitoring, and buffer monitoring. For the effect of learning phenomenon, Lutz modified 

Hijazi’s work and coded it in MicroCYCLONE to improve the usability of Hijazi’s 

original work. 

 Lutz’s buffer monitoring is used to control the pace of construction processes. 

Additional queues are introduced into the network to determine when a succeeding 

process should start, continue working, or wait. The queues are placed between 

construction processes, preceding process and succeeding process. When a buffer queue 

(e.g., Buffer A-B) is empty, it indicates the preceding activity (e.g., Activity A) cannot 

keep up with its succeeding activity (e.g., Activity B). Thus, the succeeding activity will 

become idle until the queue is not empty.  

 Nevertheless, Lutz’s method does not automatically determine the delay duration 

needed to achieve continuity in resource utilization. It requires users to provide the 

maximum numbers of units in the buffer queues prior to the simulation execution. 

Repeated trial-and-errors in simulation runs are required to derive a satisfactory number 

of units in the buffer queues. Relying on user input of the specified number of units in a 

buffer queue, Lutz’s model does not guarantee continuity in resource utilization (Yang 

2002).  
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 In addition, the means of delaying activities based on the number of units may 

result in a remaining idle time or an unnecessary delay. The delay (buffer) is better 

defined in units of time rather than in units of work.  

 Many researchers have proposed other techniques employing simulation to solve 

the problems of repetitive project scheduling since 1990. They offer user-friendly 

interface tools that facilitate the means of constructing simulation models. However, most 

of these techniques fail to control activity start dates, and thus cannot 1) maintain 

resource continuity, 2) allow work interruption, and 3) analyze the tradeoff between the 

first two to optimized project duration and cost.   

 In order to use simulation to solve repetitive project problems, it is mandatory to 

consider the problems in the sense of scheduling concepts and underlying nature of 

repetitive projects rather than the processes of modeling and inputting data. 

2.3 Summary 

Many approaches have been proposed to solve the problems of scheduling 

repetitive projects since 1960. Although the Critical Path Method (CPM) can be applied 

to repetitive projects, it cannot schedule repetitive projects effectively. Because CPM is 

designed for optimizing project duration, it does not suit the resource-driven nature of 

repetitive projects. Moreover, constructing a CPM network for a repetitive project can be 

tedious and cumbersome when the project consists of many repetitive units. Similarly, the 

Program Evaluation and Review Technique (PERT) has the same limitations as does 

CPM. Moreover, simulation has superseded PERT due to ease of use and richer 

information in simulation systems. 
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Ever since the Line-Of-Balance technique (LOB) was introduced to the 

construction industry, it has been influencing many researchers to improve the means of 

scheduling repetitive construction projects. In the early development of graphical 

techniques, many researchers have adopted the concept of LOB, and focused on 

balancing crew production and maintaining continuity of work flow. However, since 

LOB was originated from the manufacturing industry, simplifications were required in 

order to enable these graphical methods to solve scheduling problems of repetitive 

construction projects. Consequently, many assumptions of LOB for industrial projects 

conflict with the nature of construction projects. The main conflict is the assumption of 

constant production rates, which applies only to typical activities.  

After the advent of the personal computer and the improvement in computing 

capability, many mathematic approaches have been established to solve repetitive project 

scheduling problems. Sophisticated mathematic models were developed to optimize 

project duration and cost problems. Advancement of these models was established to 

mathematically model complicated and realistic construction operations. However, the 

usability of these methods is only effective to a certain extent. Their limitations are in 

capturing the stochastic nature of construction activities. Using linear and dynamic 

programming techniques (LP and DP) in optimizing probabilistic scheduling problems is 

difficult. As a result, most LP and DP approaches assume activity durations are 

deterministic.  

In contrast to graphical and mathematical methods, simulation has the ability to 

model variability and uncertainty, inevitable parts of construction. Even more beneficial, 

since repetitive projects are resource-driven projects, resource-driven simulation systems 
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are probably one of the most promising tools to solve the problems. Its already-included 

resource constraints reduce users’ effort in constructing resource availability constraints.  

However, simulation by itself cannot solve repetitive project scheduling problems 

effectively; it cannot ensure the resource continuity constraints, and cannot control the 

degree of continuity in resource utilization. Without implementing an external algorithm 

to a simulation system, simulation leads to the same results as CPM, where activities are 

scheduled at their early start dates, and interruptions exist among units. Thus, an external 

algorithm must be designed to assist the simulation system in order to solve the problems. 

Finally, there is a need to establish a comprehensive generalized technique that 

can 1) effectively capture the realistic characteristics of repetitive construction projects, 

2) flexibly maintain and relax the resource continuity constraints, 3) sophisticatedly 

optimize project cost, and 4) practically offer an ease of use to users. 



 

CHAPTER 3 

REPETITIVE SCHEDULING METHOD 

CHAPTER 3 REPETITIVE SCHEDULING METHOD 

 This chapter discusses the fundamental concepts of repetitive project scheduling. 

The Repetitive Scheduling Method (RSM), a graphical approach developed by Harris and 

Ioannou (1998), is used to clarify and emphasize important aspects of repetitive project 

scheduling as follows:  

1) Satisfying precedence and resource availability constraints 

2) Maintaining continuous resource utilization 

3) Scheduling and re-scheduling repetitive activities to achieve (1) and (2) 

4) Determining critical activities 

5) Identifying controlling sequences and controlling activities 

 The concepts and aspects of repetitive project scheduling are a prerequisite to 

development of a new scheduling method. The scheduling processes RSM, a graphical 

approach, contribute significantly to the establishment of the Sequence Step Algorithm 

(SQS-AL), a simulation approach, proposed in this research. To schedule repetitive 

projects with probabilistic activity durations, SQS-AL adopts the RSM sequential process 

of calculating idle time and determining activity start date, discussed in Chapter 4 

Sequence Step Algorithm. 
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Moreover, the idea of the controlling sequence in RSM, originally for repetitive 

project scheduling problems with deterministic activity durations, is adapted to suit 

problems with probabilistic durations in SQS-AL. SQS-AL employ the underlying 

concept of controlling sequence to determine effective work break positions in repetitive 

activities, used to reduce project duration. 

3.1 Introduction 

 Construction often involves repetitive projects where several identical (typical) or 

similar (non-typical) units require resources to perform their activities in specified 

sequences repeatedly from the first to the last unit. Precedence constraints and resource 

availability constraints determine both activity start dates and resource arrival dates; 

activities can start only when their preceding activities in the same unit are completed and 

the required resources are available. The Critical Path Method (CPM) satisfies these 

conditions by using precedence constraints to represent both precedence and resource 

availability constraints. As shown in Figure 3.1, the precedence network presented by 

Harris and Ioannou (1998) illustrates the application of CPM to a repetitive project 

consisting of three non-typical units. The precedence constraints among activities in the 

same unit are technical constraints. For example in Figure 3.1, Activity A1 must be 

completed before Activity B1 can begin. This precedence constraint specifies that A1 and 

B1 are technically dependent, but not resource dependent. On the other hand, the 

precedence constraints among units of the same activity are resource availability 

constraints and/or technical constraints. For example in Figure 3.1, A1 and A2, sub-

activities of Activity A, require the same resource. If the resource required to perform 
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Activity A, Resource A, is limited, Resource A must finish A1 before starting A2. As 

shown in Figure 3.1, precedence relationships are used to constrain these conditions. 

 It should be noted that if sub-activities are technically dependent they are imposed 

by hard logic relationships requiring both technical and resource constraints to be 

satisfied. For example, structural work of the first floor must be completed and resources 

must be available before work in the second floor can start. On the other hand, if sub-

activities are not technically dependent, they should be modeled by soft logic 

relationships requiring only resource constraints to be satisfied. For example in a housing 

project, excavation activities for the second house can start before the first house if 

resources are available. The order of the units and the order of construction are not 

necessarily the same. 

Because resource continuity constraints are not included in CPM, CPM cannot 

prevent interruptions and idle time in resource utilization. From Figure 3.1, Resource B 

will become idle from day 5 to 7 because Activity B1 is scheduled from day 3 to 4, and 

B3 from day 8 to 9. Thus, it is necessary to introduce resource continuity constraints to 

eliminate idle time. Harris and Ioannou (1998) proposed the Repetitive Scheduling 

Method (RSM), a graphical method that incorporates three types of constraints: 

precedence, resource availability, and resource continuity constraints. As a result, RSM is 

able to eliminate idle time and achieve continuous resource utilization. 
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Figure 3.1 CPM network for three repetitive units (from Harris and Ioannou 1998) 

 

3.2 Maintaining Continuity in Graphical Methods 

 The Repetitive Scheduling Method (RSM) is a graphical method that ensures 

continuity of resource utilization. Like Line-Of-Balance (LOB), discussed in Chapter 2, 

RSM uses production lines to represent activities instead of using nodes as the CPM 

network does. For discrete repetitive projects (e.g., high-rise buildings), construction 

units are shown on the Y axis and time is shown on the X axis. Figure 3.2 displays 

production diagram of the repetitive project in Figure 3.1, using the early start dates 
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imposed by precedence constraints. In Figure 3.2, solid lines indicate activities for which 

resource continuity constraints have been satisfied. 

 
Figure 3.2 RSM Diagram for Three Units based on Precedence Constraints 

 

 As shown in Figure 3.2, precedence constraints do not ensure continuous resource 

utilization in the activities.  Interruptions and idle time exist in Activities B, D, and E. 

There is an interruption of 4 days between B1 and B3, 1 day between D1 and D2, and so 

forth. In order to eliminate these interruptions, the sub-activities in the first unit (e.g., B1) 

must be postponed for the period of the sum of all the lags between sub-activities. Thus, 

activity B1 must be postponed for the amount of duration equal to LagB1, B3; Activity D1 

for LagD1, D2; Activity E1 for LagE1, E2 plus LagE2, E3. Figure 3.3 exhibits the result of 

postponing the discontinuous Activities B, D, and E in Figure 3.2. 
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Figure 3.3 Postponing activities with interruptions in Figure 3.2 to achieve continuous 

resource utilization 
 

 After the first sub-activities in B, D, and E are postponed by the sum of lags, as 

shown in Figure 3.2, their continuities are achieved in Figure 3.3. Clearly, duration of 

lags must be calculated before determining how many days an activity (the first sub- 

activity) must be postponed to achieve its continuous resource utilization.   

 However, postponing activities for the amount of lags originally derived from the 

early start date schedule may violate precedence constraints. Another example, shown in 

Figure 3.4, demonstrates this situation. Figure 3.4.a shows the result of using CPM to 

schedule the example. Interruptions exist between B1 and B3, between E1 and E2, and 

between E2 and E3.  

 According to the previous example, continuity constraints can be satisfied by 

postponing the first sub-activity for the sum of lags between sub-activities. Doing so 

satisfies resource continuity constraints; however, the precedence constraint between B1 

and D1 is violated, as depicted in Figure 3.4.b. Thus, it is necessary to re-check the 

precedence constraints. Rescheduling activities to rectify precedence constraints may be 
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necessary. To correct the precedence constraints after activities are postponed, the 

successor whose precedence constraint is violated must be postponed while its 

predecessor remains the same. In this example, Activity D1 is postponed and, 

consequently, D2 and D3 are also postponed on the basis of precedence constraints. 

Figure 3.4.c shows the result from correcting the violation. 

After activities are postponed in Figure 3.4.b, and precedence constraints are 

corrected in Figure 3.4.c, activities may become discontinuous again. Figure 3.4.c shows 

that Activity E now has idle time between Units 2 and 3 (LagE2, E3). Thus, activity E1 

must be postponed for the amount of the lag to eliminate the interruption. Figure 3.5.d is 

the finalized schedule for the example where precedence, resource availability, and 

resource continuity constraints are satisfied. 

 The example in Figure 3.4 demonstrates that the process of scheduling repetitive 

activities requires repetitions of postponing activities to satisfy resource continuity 

constraints. As shown in Figure 3.4, it is difficult to predetermine how many times 

exactly a repetitive project needs to be scheduled and re-scheduled. 

 To alleviate the difficulty, RSM schedules activities (e.g., A and B) in a 

precedence order, one activity at a time. Thus, activities in Figure 3.4 should be 

scheduled in the order of A, B, C, and so forth. During scheduling an activity (e.g., A), 

continuity constraints (e.g., between A1 and A2, and between A2 and A3) must be 

achieved before scheduling its succeeding activities (e.g., B). This process guarantees the 

satisfaction in precedence and continuity constraints. Moreover, the process of scheduling 

one activity at a time also eliminates the redundancy in re-scheduling activities, whose 

work interruptions may be incurred because of the process of scheduling. 
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Figure 3.4 Satisfying precedence and continuity constraints 
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  Importantly, the aforementioned idea, a graphical approach, must be improved 

and systemized in order to derive an algorithm that is applicable to repetitive projects 

with probability activity durations. The algorithm, namely “Sequence Step Algorithm” 

(SQS-AL), is a generalized algorithm using sequence steps to systematically schedule 

repetitive activities. The algorithm is designed based on the current applicability and 

capability of discrete-event simulation; moreover, the characteristics of repetitive projects 

are always a concern during the designing stage. Further discussion regarding SQS-AL is 

provided in Chapter 4.     

3.3 Critical Activities and Controlling Sequence 

  One important and widely used piece of information is the criticality of activities. 

To successfully manage a construction project, project managers and site engineers must 

realize the criticality of activities. The criticality indicates the impact of an activity on 

project duration. If delaying an activity delays project completion, the activity is 

considered a critical activity (see more detailed discussion in section 3.3.1 Critical 

Activities). A sequence of critical activities from the project start to finish is called the 

“critical path.” The sum of activities on a critical path equals the minimum project 

duration. Accordingly, attention is given to critical activities and critical path to ensure 

the project will finish on time. 

 However, in repetitive projects, critical activities do not provide sufficient 

information for controlling and monitoring. In repetitive projects, the critical path do not 

determine the minimum project duration because postponing activities to maintain the 

continuity constraints usually incurs floats between repetitive activities. Accordingly, the 

critical path does not exist in repetitive projects after the postponement (Harris and 
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Ioannou 1998). In response to the insufficient information of activity criticality in 

repetitive projects under continuity constraints, Harris and Ioannou (1998) introduced the 

concept of the “Controlling Sequence.”  

3.3.1 Critical Activities 

 Critical activities are those activities, if delayed during construction, will delay 

project completion. In CPM, the calculation of total float is used to determine critical 

activities. If an activity has zero total float, it is considered a critical activity. The 

calculation is a backward calculation because it proceeds from the last activity in 

precedence order to the first. The calculation of float can be applied to any project 

schedule. For example, in CPM the calculation is performed when activities are at their 

earliest start positions. On the other hand, in RSM the calculation is performed when 

activities are in the positions where their continuity constraints are maintained. 

It is important to realize that different scheduling methods may result in different 

sets of critical activities. Comparison between Figure 3.5.a and Figure 3.5.b illustrates 

critical activities derived from CPM are different from those derived from RSM. Figure 

3.5.a is a production diagram where activities are scheduled using CPM; critical activities 

from CPM are A1, C1, D1, D2, D3, and E3. Figure 3.5.b is an RSM diagram for the same 

project. Critical activities from RSM as indicated with heavy solid lines in Figure 3.5.b 

are B1, D1, D2, D3, E1, E2, and E3.  
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Figure 3.5 Different critical activities between CPM and RSM 

(Critical activities are indicated by solid heavy lines) 
 

Another difference between CPM and RSM is the implication of critical activities 

for minimum project duration (Harris and Ioannou 1998). In CPM, the sum of critical 

activity durations on a critical path equals minimum project duration; however, this is not 

the case in RSM. As the number of sequence steps increases, critical activities from RSM 

tend to appear only in the later sequence steps. Figure 3.5.b shows most critical activities 

are in sequence steps 3, and 4. Typically in RSM, activities in the early sequence steps 

are not critical because of the floats incurred from postponing activities in RSM. The 

predecessors of the postponed activities gain float and become non-critical activities. For 
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example in Figure 3.5, critical activity A1 in CPM becomes non-critical in RSM because 

postponing activity B1 results in float in activity A1. 

Moreover, since critical activities cannot be used to determine minimum project 

duration for repetitive projects, it can be concluded that critical activities in repetitive 

projects do not provide sufficient information for planning and control purposes. 

Consequently, another way of determining the criticality of activity and minimum project 

duration is needed. 

3.3.2 Controlling Sequence 

 The concept of controlling sequence, developed by Harris and Ioannou (1998), 

addresses the deficiency of critical activity information in repetitive projects. They 

realized that the traditional concept of critical activities could not determine the minimum 

project duration in repetitive projects under resource continuity during planning. Harris 

and Ioannou introduced two new concepts: Control Points and Controlling Sequence. 

These are “pre-construction” concepts used in planning and scheduling the project.  

A control point between two activities is the precedence constraint that 

determines the start date of the successor under continuity constraints. For example, in 

Figure 3.6, the control point between Activities A and B is the precedence constraint in 

Unit 3. To eliminate idle time in an activity (e.g., B in Figure 3.6), its sub-activities (e.g., 

B1) are pulled toward the control point (e.g., the start date of B3).  

A controlling sequence is an uninterrupted sequence of activities that navigates 

through activities and control points from the project start to the project finish that 

determines the planned project duration while ensuring resource continuity (Harris and 

Ioannou 1998). Figure 3.6 shows the controlling sequence from the previous example in 
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Figure 3.5.b by using heavy solid lines to represent activities on the controlling sequence, 

which are E3, D3 to D1, and A3 to A1. This sequence of activities determines the 

minimum project duration while maintaining continuity constraints of resource 

utilization. Delaying the start date of an activity on the controlling sequence will either 

postpone project completion date if resource continuity can still be maintained or 

interruption in resource utilization if resource continuity cannot be maintained. For 

example in Figure 3.6, if A1 is delayed, B3 will be delayed, and B1 must be postponed in 

order to maintain the continuity in Activity B. This is the case where the continuity in B 

can be maintained. Thus, D1 will be delayed because of the precedence constraints 

between B1 and D1. Consequently, project completion date is delayed. On the other 

hand, if A3 is delayed and B1 finishes on time (Day 8), interruption in Activity B is 

inevitable. Schedulers should realize that activities on a controlling sequence have an 

impact on both project completion and continuous resource utilization of repetitive 

projects. 

 
Figure 3.6 Production Diagram from RSM with controlling sequence 

(The controlling sequence is indicated by bold lines) 
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From the planning and scheduling perspective, the controlling sequence provides 

valuable information, which determines project duration, and provides insight into how to 

expedite the project. Consider the diagram in Figure 3.6, altering a production rate of an 

activity on the controlling sequence will change the project duration. For an example, 

shortening duration of a controlling activity (e.g., A1 in Figure 3.6) results in shorter 

project duration. On the other hand, shortening duration of a non-controlling activity 

(e.g., C1 in Figure 3.6) does not affect the project duration. 

 It is important to realize that accelerating production rates of activities on 

controlling sequence does not necessarily result in shorter project duration. Because 

resource continuity constraints are maintained in the RSM, altering production rate of a 

controlling activity could either allow its successor to start earlier or delay its successor. 

This is a very complicated issue. Besides, precedence, resource availability, and resource 

continuity constraints, relative production rates between two dependent activities also 

contribute to the minimum project duration of a repetitive project. It is recommended to 

use trial-and-error approach to check whether accelerating an activity produces a shorter 

project duration or not. 

3.4 Summary 

 In this chapter, the concepts of repetitive project scheduling have been discussed. 

A graphical method called the "Repetitive Scheduling Method” (RSM) is used to 

illustrate the processes of deriving a repetitive project schedule that satisfies precedence, 

resource availability, and resource continuity constraints.  

 Critical activities are activities that, if delayed, will be delayed. Critical path is a 

series of critical activities from the start to the finish of the project. While project 
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duration of non-repetitive projects can be determined by the sum of activities on the 

critical path, project duration of repetitive projects cannot be calculated by the same 

method. Critical path does not exist in RSM schedule because of the continuity 

constraints. Accordingly, Harris and Ioannou (1998) introduced the concepts of control 

point and controlling sequence to resolve the informative deficiency of critical path in 

repetitive projects. Controlling sequence in a repetitive project determines the minimum 

duration of the project. Controlling sequence is a set of sub-activities (e.g., A1, A2) 

navigating from the project finish date to the project start date through control points. 

Control point is the point that a predecessor’s finish date controls its successor’s start date 

under the continuity constraints.   

 RSM is an effective and simple method to schedule repetitive projects. 

Nevertheless, there is a need for improvement. Many subjects need to be taken into 

account of scheduling repetitive projects as discussed in Chapter 2 Literature Review.  

RSM and other non-computerized methods should be computerized to lessen human 

effort in inputting data, updating schedule, and analyzing schedules in terms of project 

cost. A newly developed method should be capable of capturing the stochastic nature of 

repetitive projects under the constraints (precedence, resource availability, and resource 

continuity). 

 In the next chapter, a new algorithm and technique are proposed; it is called 

“Sequence Step Algorithm” (SQS-AL).  After the algorithm is discussed in Chapter 4 

Sequence Step Algorithm, Chapter 5 Simulation Model Templates presents a suggested 

simulation model for modeling repetitive projects in discrete-event simulation system. 

The integration between SQS-AL and the proposed simulation model templates provides 
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a comprehensive approach that is able to solve the complicated scheduling problems of 

stochastic repetitive projects. 



 

CHAPTER 4 

SEQUENCE STEP ALGORITHM 

CHAPTER 4 SEQUENCE STEP ALGORITHM 

This chapter presents the proposed Sequence Step Algorithm (SQS-AL) and 

discusses the comparison between SQS-AL, the Critical Path Method (CPM), and the 

Repetitive Scheduling Method (RSM). SQS-AL is a generalized methodology for 

scheduling repetitive projects. It is capable of solving both deterministic and stochastic 

repetitive project scheduling problems. The beginning of this chapter discusses two 

important components of the algorithm: sequence steps and idle time. SQS-AL uses 

sequence steps to orderly determine idle time of repetitive activities and schedules the 

activities. 

After the discussion of sequence steps and idle time, an overview of SQS-AL is 

given along with an example; the purpose of the overview is to show the simplicity of the 

algorithm. Then, different types of idle time are introduced prior to the discussion of the 

SQS-AL implementation in simulation. Modeled in Stroboscope, a discrete-event 

simulation system, an example of a repetitive project with stochastic activity durations is 

used to demonstrate the application of SQS-AL. In the end, the results derived from SQS-

AL are compared to those of CPM and RSM.  
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4.1 Sequence Steps 

Sequence steps are visual columns in a precedence diagram on which activities 

are placed; they are used mainly for graphical presentation. In a precedence diagram, 

activities are presented by nodes (circular or rectangular shapes), whereas precedence 

relationships between activities are presented by links (connecting lines). Positioning 

nodes (activities) in sequence steps results in an organized precedence diagram.  

In a precedence diagram, every activity belongs to a particular sequence step. It is 

defined to be the left-most visual column in which an activity may be placed and still 

maintain left-to-right precedence relationships. For example, activities in Figure 4.1 are 

placed in three sequence steps, from Sequence Step 1 (SQS1) to Sequence Step 3 (SQS3).  

4.1.1 Example 4.1 Determining sequence steps for a repetitive project with three 

activities 

Activity Name Predecessors 
A - 
B A 
C B 

Table 4.1 Precedence relationships for Example 4.1 
 

 

Figure 4.1 Precedence diagram for Example 4.1 
 

Another example is illustrated below. Activities in Figure 4.2 are placed in four 

sequence steps from SQS1 to SQS4.  
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4.1.2 Example 4.2 Determining sequence steps for a repetitive project with seven 

activities 

Activity Name Predecessors 
A - 
B A 
C A 
D B and C 
E B 
F C 
G D, E, and F 

 Table 4.2 Precedence relationships for Example 4.2 
 

 

Figure 4.2 Precedence diagram for Example 4.2 
 

Sequence steps are an important property of a precedence diagram. Indeed, the 

CPM calculation for precedence networks can be performed very easily by using 

sequence step order: i.e., left-to-right for the forward pass and right-to-left for the 

backward pass. As explained later, this property is at the heart of SQS-AL. It is used to 

specify the order in which idle times of repetitive activities are collected. 

4.2 Two Different Types of Idle Time in Repetitive Activities 

Idle time is the duration that a crew performs no work during their employment 

period, i.e., getting paid but not producing any output. In SQS-AL, idle time is 
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categorized into two main types, idle time between units (UIT) and idle time at arrival 

(AIT). The sum of these two types of idle time for a resource is its total idle time, called 

“Crew Idle Time” (CIT). From the number of simulation replications, CITs for each 

resource are collected. After the statistical data of CITs of resources are obtained, SQS-

AL uses the statistical data to determine resources’ arrival dates that minimize their idle 

time. As a result, continuous resource utilization for the resources is improved. 

Unit Idle Time (UIT) is the sum of idle time (or duration of lags) between units of 

a repetitive activity. As can be seen in Figure 4.3.a, UIT of Activity B is the lag between 

B1 and B2 (UITB1,B2 = LagB1,B2 = 2 weeks), and between B2 and B3 (UITB2,B3 = LagB2,B3 

= 2 weeks). The sum of UITB1,B2 and UITB2,B3 equals UITB  (UITB = 4 weeks). 

Postponing the start date of B from its earliest start date (ESD) by UITB (4 weeks) results 

in zero idle time in B. Given that activity durations are deterministic, ESD and UIT are 

constant; the calculation of UIT is sufficient to determine the postponement period of an 

activity in order to eliminate its idle time, specifically UIT. However, this is not the case 

for projects with stochastic activity durations. 
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Figure 4.3 Production diagram showing a delay in Activity B by its Unit Idle Time 

 

In probabilistic scheduling problems, activity durations are stochastic, resulting in 

varying finish dates of activities and therefore varying start dates of their successors. It is 

possible that resources may arrive to the site as they are scheduled, but not be able to start 

the work because their predecessors have not yet finished. This situation incurs idle time 

between the arrival date of the resource and its actual start date in the first unit. This type 

of idle time is called “Arrival Idle Time” (AIT). An example of AIT is shown in Figure 

4.4. 
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Figure 4.4.a shows what happens to Figure 4.3.a if by chance Activity A1 does 

not takes 4 weeks as planned but actually takes 6 weeks. As shown in Figure 4.4.a, the 

resource serving Activity B is scheduled to arrive at the end of the fourth week; however, 

the resource cannot work since A1 has taken longer to do and has not been completed.  

 
Figure 4.4 Arrival idle time between the arrival date and the start date of Resource B 
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For this particular example in Figure 4.4, the resource arrival date for Activity B 

must be postponed by the sum of UIT and AIT, which is CIT. Figure 4.4.b shows that 

delaying the arrival date of B from its preliminary scheduled arrival by 6 weeks, which is 

its crew idle time (CITB), will eliminate the entire idle time in B. More precisely, when 

the start date of an activity varies from the original schedule, both arrival idle time (AIT) 

and unit idle time (UIT) must be accounted for in crew idle time (CIT). 

Note that AIT does exist in CIT for deterministic scheduling problems because in 

the absence of randomness the idle time between resources’ arrival dates and resources’ 

actual start dates is always zero.  

In probabilistic scheduling problems, since activity durations vary, it is most 

convenient that activity start dates and resource arrival dates are measured from the 

project start date. Accordingly, SQS-AL assumes that all resources, for which no specific 

arrival date have been scheduled yet, arrive to the site at the beginning of the project (i.e., 

time zero). This assumption in SQS-AL is very important for calculation purposes, as 

explained in detail later.  

As shown in Figure 4.5, the arrival date of Resource B is assumed to be at the 

beginning of the project. This assumed arrival date will be changed later to finalize the 

arrival date of B by using the collected CITB and user-desired confidence level, explained 

later. The finalized arrival date of a resource is called the “Crew Lead Time” (CLT), a 

duration measured from project start to the arrival date of the resource. 
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Figure 4.5 SQS-AL’s assumption of resource arriving at the beginning of the project 

 

4.3 Confidence Levels and Crew Lead Times 

Confidence levels are user-desired parameters in percent specifying degree of 

confidence that a particular resource will work continuously without interruptions. In 

other words, a confidence level is a user-specified probability that a particular resource 

will have zero idle time based on the data set (i.e., distribution) of that crew’s idle time 

(CIT), collected from simulation runs. The collected CITs are used to construct a 

cumulative frequency of the CITs for that particular crew as shown in Figure 4.5. Using 

the constructed cumulative frequency of CITs (Figure 4.5) and user-desired confidence 

levels (e.g., 50% and 100% in Figure 4.5), crew lead time (CLT) is chosen from the 

constructed cumulative frequency of CITs and the corresponding value of the confidence 

level. Essentially, CLT is the finalized arrival date (e.g., 13 days for 50% confidence 

level and 22 days for 100% confidence level in Figure 4.5) of the resource measured from 

the project start date. Clearly, higher confidence levels lead to longer crew lead times. 

Figure 4.6 shows an example of cumulative frequency of CITB, which is collected 

from N replications. If Resource B is scheduled to arrive at the site at the end of Day 13 
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(CLTB = 13 days), then there is 50% probability that its crew idle time (sum of idle time, 

AIT+UIT) will be less than 13 days and its continuous utilization (zero idle time) will be 

achieved 50% of the time. On the other hand, if CLTB is set to 22 days, then its crew idle 

time is guaranteed to be entirely eliminated (based on the collected CITs) and thus its 

continuous utilization is 100% guaranteed; there is no idle time. Clearly, the accuracy of 

these predictions depends on the variability of activity durations and the number of 

replications.   
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Figure 4.6 Determining crew lead time from the collected crew idle time and user-

specified confidence level 
 

4.4 Overview of the Sequence Step Algorithm 

Four main components of SQS-AL, 1) sequence steps, 2) idle time, 3) confidence 

levels, and 4) crew lead time, have been presented in the previous section. This section 

presents an overview of the concepts of SQS-AL by solving a scheduling problem of a 

repetitive project with 3 activities consisting of 3 units. The purpose of SQS-AL is to 
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determine the arrival date for each resource, so it may work continuously without 

interruption. To determine crew lead time (CLT) of a resource, SQS-AL performs the 

following four main steps: 

1) Collect crew idle time (CITs) 

2) Construct a cumulative frequency distribution of the collected CITs 

3) Select a confidence level and use it in item (4) 

4) Determine crew lead time (CLT) from the cumulative CIT using a user-

specified confidence level in item (3) 

These four steps are combined as “processing a sequence step.” These four steps 

are repeated for the number of sequence steps in the precedence diagram (to determine 

arrival dates) plus one extra sequence step (to obtain the finalized idle time, not the 

arrival dates). To demonstrate SQS-AL’s processing sequence steps, an example of a 

repetitive project consisting of 3 units with 3 activities in each unit is demonstrated. The 

node network represents a single unit of the example project shown in Figure 4.3. 

Activity durations are given in Table 4.3. The formula shown in the table is in 

Stroboscope language where the first and the second numbers in the bracket are means 

and standard deviation, respectively. 

4.4.1 Example 4.3 Determining crew lead time in a repetitive project with three 

activities with probabilistic activity duration  

 
Figure 4.7 The single unit precedence diagram for Example 4.3 
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Activity Duration 
A Uniform[20,2] 
B Uniform[10,1] 
C Uniform[15,1.5]

Table 4.3 Stochastic durations of repetitive activities for Example 4.3 
 

In the first step, 3000 replications of the simulation are executed to collect 3000 

CITs of activities belonging to the considered sequence step. For this example, it is not 

necessary to collect CITs for Activity A because Activity A in the first sequence step 

does not have predecessors or idle time. Thus, the algorithm starts collecting CITs for the 

activity in Sequence Step 2 (SQS2), which is CITs for Activity B (CITB). 

In the second step, after 3000 replications are executed, cumulative frequency of 

CITB is constructed using the collected CITB in the previous step. For example, Table 4.4 

shows the samples of CITB collected from 3000 replications. The “Hit” Column shows 

the number of samples where CITB is less than the value in the “CIT” Column. The “% 

Hit” Column shows the percentage of CIT that is less than the value in the “CIT” 

Column. 
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Figure 4.8 Determining crew idle time of Resource B in processing SQS2 in Example 4.3 
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CITB 
 (Days) Hit %Hit 

CITB 
 (Days) Hit %Hit 

CITB 
 (Days) Hit %Hit 

< 2 0 0 < 19 1059 35.3 < 36 2785 92.83 
< 3 11 0.37 < 20 1179 39.3 < 37 2831 94.37 
< 4 24 0.8 < 21 1302 43.4 < 38 2867 95.57 
< 5 39 1.3 < 22 1426 47.53 < 39 2899 96.63 
< 6 57 1.9 < 23 1553 51.77 < 40 2931 97.7 
< 7 93 3.1 < 24 1680 56 < 41 2950 98.33 
< 8 133 4.43 < 25 1790 59.67 < 42 2959 98.63 
< 9 180 6 < 26 1893 63.1 < 43 2968 98.93 

< 10 229 7.63 < 27 2006 66.87 < 44 2977 99.23 
< 11 292 9.73 < 28 2111 70.37 < 45 2988 99.6 
< 12 359 11.97 < 29 2248 74.93 < 46 2991 99.7 
< 13 431 14.37 < 30 2360 78.67 < 47 2995 99.83 
< 14 518 17.27 < 31 2448 81.6 < 48 2996 99.87 
< 15 613 20.43 < 32 2535 84.5 < 49 2998 99.93 
< 16 719 23.97 < 33 2609 86.97 < 50 2999 99.97 
< 17 826 27.53 < 34 2671 89.03 < 51 2999 99.97 
< 18 932 31.07 < 35 2735 91.17 < 52 3000 100 

Table 4.4 Cumulative frequency of crew idle time of Resource B during processing SQS2 
for Example 4.3 

 

In the third step, CLTB is selected from the constructed cumulative distribution 

function by using a user-specified confidence level. From Table 4.4 and Figure 4.8, if the 

user- specified confidence level is 50%, the corresponding CLTB will be 23 days. Figure 

4.9 shows CLTs of resources before and after processing SQS2. As explained earlier, 

SQS-AL assumes resources arrive to the site at the beginning of the project. These arrival 

dates at time zero are temporary arrival dates, which will be finalized after the sequence 

steps to which they belong are processed.  
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Figure 4.9 Changes in the resource arrival dates before and after processing SQS2 for 

Example 4.3 
  

After determining CLTB (the only activity in SQS2), SQS-AL moves onto the 

next sequence step, and repeats the three steps again, only this time to collect the crew 

idle time of Activity C (CITC). 

 For SQS3, the first step, collecting CITs, is repeated; another 3000 replications 

are executed. In the second step, the cumulative distribution function of CITC is 

constructed as shown in Table 4.5. Then, a 50% confidence level is selected in the third 

step to select the corresponding CLTC of 31 days in the forth step. 

It is very important to notice that that the cumulative frequency distribution of 

CITC will be different if a different confidence level for Activity B is used. 
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CITC 
(days) Hit %Hit 

CITC 
(days) Hit %Hit 

23 0 0 42 2910 97 
24 0 0 43 2924 97.47 
25 140 4.67 44 2947 98.23 
26 312 10.4 45 2962 98.73 
27 519 17.3 46 2969 98.97 
28 730 24.33 47 2974 99.13 
29 1004 33.47 48 2985 99.5 
30 1257 41.9 49 2990 99.67 
31 1549 51.63 50 2993 99.77 
32 1881 62.7 51 2993 99.77 
33 2206 73.53 52 2994 99.8 
34 2329 77.63 53 2997 99.9 
35 2462 82.07 54 2998 99.93 
36 2574 85.8 55 2998 99.93 
37 2669 88.97 56 2998 99.93 
38 2753 91.77 57 2998 99.93 
39 2805 93.5 58 2998 99.93 
40 2854 95.13 59 2999 99.97 
41 2889 96.3 60 3000 100 

Table 4.5 Cumulative frequency of crew idle time for Resource C during processing 
SQS3 for Example 4.3 
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Figure 4.10 Determining crew idle time for Resource C during processing SQS3 for 

Example 4.3 
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Figure 4.11 Changes in resource arrival dates before and after processing SQS3 for 

Example 4.3 
 

After CLTs for all activities are determined, the finalized CITs are derived by 

running an additional 3000 replications (this is an extra SQS). In these replications, 

Resources A, B, and C are scheduled to the site at the end of Days 0, 23, and 31, 

respectively. The final results from SQS-AL are shown in Table 4.6.  

 Crew Lead Time 
(CLT) in days for a 

50% Confidence Level 

Sum of Idle Time 
Between Units (UIT) 

in days 

Average 
Project 

Duration 
in days 

Average 
Total 

Idle Time 
in days SQS A B C A B C 

1 0 0 0 0 23 25 50 47 
2 0 0 0 0 23 25 50 47 
3 0 23 0 0 3 31 56 34 

4 (Final) 0 23 31 0 3 2 58 5 
Table 4.6 Unit idle time, the selected Crew Lead Time, Average Project Duration, and 

Average Total Idle Time 
 

As shown in Table 4.6, the average project duration is increased from 50 to 58 

days; however, the average idle time significantly decreased from 47 to 5 days. The 

implication of the results from SQS-AL will be discussed in detail later. 
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4.5 Flow Chart of the Sequence Step Algorithm 

 The flow chart of SQS-AL is presented in Figure 4.12 showing SQS-AL’s steps in 

collecting crew idle times (CITs) and determining crew lead time (CLT) in simulation. 

As displayed in the flow chart, the algorithm contains two nested loops. The inner loop is 

the replication loop (shown in Figure 4.13.a) whereas the outer loop is the sequence step 

loop (shown in Figure 4.13.b). According to the overview in Section 4.3, Step 1, 

collecting CITs, is in the replication loop, while Step 2, constructing cumulative 

frequency of CITs, Step 3, selecting confidence levels, and Step 4, determining CLT, are 

in the sequence step loop. Figure 4.12 presents the complete mechanism of SQS-AL 

including: 

1) Initializing parameters (such as number of sequence steps) 

2) Collecting simulation output (such as crew idle time) 

3) Determining and updating parameters in the simulation model (such as crew 

lead time) 

4) Proceeding from one sequence step to the next sequence step 

 Note that, some simulation parameters and components are introduced here with 

a brief explanation. They will be explained in more detail in the next chapter. In this 

section, understanding the complete process of SQS-AL is essential. 
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Figure 4.12 Flow Chart of the Sequence Step Algorithm 
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Figure 4.13 Replication loop and sequence step loop in SQS-AL 
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In the initialization of SQS-AL parameters, the following parameters must be 

determined prior to simulation execution. 

1. The total number of sequence step (nSQS). 

2. Sequence step for each resource. Determining in which processing sequence 

steps that CITs of resources must be collected (e.g., CITB in SQS2 and CITC 

in SQS3 from Example 4.3). 

3. The total number of replications (nRep), a constant value specified by users of 

how many simulation replications will be executed in order to collect the data 

set of CITs. 

4. Current sequence step (ithSQS), an index indicating the current processing 

sequence step. In the beginning of SQS-AL, it is set to 0 (ithSQS=1), and 

increased by one after finishing processing each sequence step. 

5. Crew lead times (CLT), the arrival dates for resources such as CLTB, CLTC, 

etc. In the beginning of SQS-AL, all CLTs are set to zero, assuming resources 

arrive to the site at the project start date. 

After the initialization of SQS-AL parameters, SQS-AL sets the replications index 

(ithRep) to 1, which is also at the beginning of each replication loop, as shown in Figure 

4.13. In the replication loop, for each simulation run, the simulation model parameters are 

initialized as shown in Figure 4.13 in a hexagon titled “Initialize Simulation Model 

Parameters.” This means that at the beginning of each simulation run the following 

parameters must be initialized. Note that the names for graphical simulation elements 

such as Queues, Combis, and SaveValues are in simulation model templates, which will 
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be discussed later in Chapter 5. These names are included here as references in this 

section and also between Chapters 4 and 5.  

1. The number of repetitive units for each activity (the number of resources 

assigned in ACT_Remain Queues). The current value of resources in 

ACT_Remain Queues is the remaining work for that activity (ACT).  

2. The number of resources for each type (the number of resources assigned in 

RES_Offsite Queues). This is the number of crews for a resource (RES) that 

can work simultaneously. 

3. The temporary recorded idle time (svRES_Idle SaveValues) 

Before starting a new replication (a simulation run), the number of repetitive units 

(i.e., the remaining work) in ACT_Remain Queues must be reinitialized. Otherwise, the 

project will be completed at time zero since all the works are completed from the 

previous simulation run; therefore there is no amount of work in ACT_Remain Queues. 

The temporary idle times of resources (svRES_Idle) are recorded and used only 

within one replication. At the end of each replication (simulation run), svRES_Idle values 

for each resource are collected in a permanent storage collector, which is called 

RES_IdleSQS$<ithSQS>$, where “$<ithSQS>$” is the current processing step 

(“$<…>$” is Stroboscope’s language which will be explained in Chapter 5). Thus, idle 

time for each resource (e.g., Resource B) from each sequence step is recorded in 

RES_IdleSQSi (e.g., B_IdleSQS1, B_IdleSQS2, etc.) for the further calculation. 

After simulation initialization, the simulation is executed for one replication. At 

the end of the execution, svRES_Idle values are assigned to their RES_IdleSQSi and to 

RES_CIT (crew idle time) of the resources that belong to the current processing step 
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(ithSQS). Then, ithRep is increased by 1. These processes (simulation initialization, 

simulation execution, and data collecting and updating) are repeated for nRep 

replications. As discussed in Section 4.4, Overview of the Sequence Step Algorithm, 

these processes, called the “replication loop,” are the first step in determining CLTs of 

resources, which is collecting CITs of the resources in the current sequence step. 

After the replication loop is completed (ithRep > nRep), SQS-AL performs two 

main steps in order to determine CLTs of resources belonging to the current sequence 

step (ithSQS). These two steps are Steps 2 and 3, discussed in Section 4.4 constructing 

the cumulative distribution function of CITs and selecting the corresponding CLT. At this 

point, the crew idle times (CITs) for the resource belonging to the current sequence step 

(ithSQS) are already collected from nRep replications. Then these CITs are arranged into 

intervals based on relative frequency, and cumulative frequency of CITs for the resource 

is constructed. Based on user-specified confidence levels and the constructed cumulative 

frequency of CIT, crew lead time of the resource is selected and used as the arrival date 

for the resource.  

After CLTs for resources in the current sequence step (ithSQS) are determined, 

SQS-AL moves to the next sequence step by, first, increasing ithSQS by one, and then 

goes back to the replication loop again. By repeating the replication loop and the 

sequence step loop, SQS-AL collects samples of crew idle times (CITs), affected by the 

already chosen crew lead time (CLTs) for all activities in the previous sequence steps. 

These CITs for the resources in the current sequence step are used to select their CLTs.  
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In the next section, another example is used to demonstrate the application of 

SQS-AL. Additionally, several important aspects of SQS-AL, such as collecting CITs 

and determining CLTs, are reviewed along with the example. 

4.5.1 Example 4.4 Scheduling a repetitive project with 7 activities 

An example of a repetitive project consisting of 4 units requiring 7 repetitive 

activities is used to demonstrate the application of the sequence step algorithm. Each 

activity is performed by a different crew. The precedence diagram for each of the 

repetitive units appears in Figure 4.14. As exhibited in Figure 4.14, Activity A is in 

Sequence Step 1 (SQS1); Activities B and C in SQS2, etc. The amount of work for each 

activity in each of the 4 units is different as displayed in Table 4.7. For example, the work 

amounts for Activity A in Units 1, 2, 3, and 4 are 100, 250, 150, and 200 work units, 

respectively.  

 
Figure 4.14 The single unit precedence diagram for Example 4.4 
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 Activity 
 A B C D E F G 

Unit Work Amount (Quantity/Unit) 
1 100 150 200 150 100 150 50 
2 250 100 150 200 150 250 200 
3 150 200 50 100 50 50 50 
4 200 150 200 150 100 100 150 

Table 4.7 Activities’ work amounts in each unit for Example 4.4 
 

In each of the 4 repetitive units, crew production rates (in work amounts per day) 

for each of the 7 activities are assumed to follow normal distributions with the means and 

standard deviations shown in Table 4.8. Consequently, the duration for each activity in 

each of the 4 repetitive units varies because of the different work amounts and the 

varying production rates. 

Activity Mean SD 
A 10 1.0 
B 20 2.0 
C 15 1.5 
D 15 1.5 
E 25 2.5 
F 15 1.5 
G 20 2.0 

Table 4.8 Activities’ production rates for Example 4.4 
 

 Figure 4.15 displays the first replication result from processing SQS2. At this 

point, none of the resources’ CLTs are assigned to values other than zero. Therefore, 

activities start at their early start date and resources arrive at time zero. The result in 

Figure 4.15 derived from processing SQS2 is equivalent to a result from using simulation 

to schedule this repetitive project without incorporating any algorithm. Again, note that in 

processing SQS2, all resources have been scheduled to arrive at the site at the beginning 

of the project (time zero) for calculation purposes as explained in Sections 4.3 and 4.4. 
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Figure 4.15 The first replication production diagram from processing SQS2 (collecting 
CITB and CITC) for Example 4.4 

 

For this example, 10,000 replications were simulated within replication loop for 

each sequence step. Ten thousand data points of the crew idle times for Activities B and 

C each were collected by the end of processing SQS2. These 10,000 samples of CITB and 

CITC were then arranged by relative frequency in cumulative bins using an interval of 5 

time units (arbitrarily selected by the modeler) as shown in Table 4.9. Each row of this 

table shows a time value, and the percent of the 10,000 crew idle times for activities. For 

example, out of a total of 10,000 CITB samples, 9,427 of them are less than 55 days. 

Thus, if Activity B is scheduled to start at the end of Day 55 (CLTB = 55 days), the 

probability of continuous resource utilization for Activity B will be 94.27%. On the other 

hand, If CLTB is set to 75, then, continuous resource utilization would be 100%. 

Notice that even though the CITs for all activities are shown in Table 4.9, only 

those for Activities B and C, which are in SQS2, will be used since the current processing 

sequence step is SQS2. This is why the columns for Activities B and C appear in bold 

outline. 
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CITB 
Range 
(days) 

Frequency 
(%) 

< 35 0.01 
< 40 1.26 
< 45 19.37 
< 50 65.92 
< 55 94.27 
< 60 99.40 
< 65  99.95 
< 70 99.99 
< 75 100.00 

 

CITC 
Range 
(days) 

Frequency 
(%) 

< 25 0.01 
< 30 0.03 
< 35 0.09 
< 40 15.33 
< 45 57.92 
< 50 90.67 
< 55  98.94 
< 60 99.92 
< 65 100.00 

 

CITD 
Range 
(days) 

Frequency 
(%) 

< 35 0.00 
< 40 0.11 
< 45 1.57 
< 50 16.93 
< 55 57.04 
< 60 90.10 
< 65  98.66 
< 70 99.88 
< 75 99.98 

 

CITE 
Range 
(days) 

Frequency 
(%) 

< 50 0.00 
< 55 0.04 
< 60 3.85 
< 65 35.64 
< 70 80.39 
< 75 97.19 
< 80  99.77 
< 85 99.98 
< 90 100.00 

CITF 
Range 
(days) 

Frequency 
(%) 

< 40 0.01 
< 45 1.59 
< 50 17.11 
< 55 56.31 
< 60 89.84 
< 65 98.43 
< 70  99.86 
< 75 99.97 
< 80 100.00 

CITG 
Range 
(days) 

Frequency 
(%) 

< 65 0.01 
< 70 1.26 
< 75 14.22 
< 80 54.52 
< 85 88.30 
< 90 98.38 
< 95  99.89 
< 100 99.99 
< 105 100.00 

 

Table 4.9 Collected CITs from processing SQS2 and determining CLT for Activities B 
and C for Example 4.4 

 

For this example project, an 80% confidence level has been selected to determine 

the crew lead times for various resources. Hence, CLTB is set to 55 days (the first value 

in Table 4.9 that exceeds 80%). Thus, Activity B cannot start sooner than the end of Day 

55, because its resource will not arrive to the site until the end of Day 55. Similarly, at an 

80% confidence level, the duration for CLTC is set to 50 days. Once CLTB and CLTC are 

set to 55 and 50 days, respectively, they are not changed again. Now that the CLTs for 

the resources utilized by activities SQS2 are determined, SQS-AL moves to the next 

sequence step, SQS3. 
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 In SQS3, the algorithm collects 10,000 samples of crew idle times (CIT) for 

resources whose activities are in SQS3; these activities are D, E, and F. Therefore, CITD, 

CITE, and CITF are collected during processing SQS3. It is important to realize that the 

collected CITs for Activities D, E, and F reflect: 

1) The effect of the chosen CLTB (55 days) and CLTC (50 days) from the 

previous processing SQS2.  

2) The variability of activity durations (A, B, C, D, E, and F).  

Figure 4.16 shows the schedule resulting from the first replication in processing 

SQS3. As shown in Figure 4.16, Activities B and C no longer start at their earliest start 

date, since their resources have been deliberately delayed by 55 and 50 days from the 

beginning of the project start date, respectively (CITB = 55 days and CITC = 50 days). 
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Figure 4.16 The first replication production diagram from processing SQS3 (collecting 
CITD, CITE, and CITF) for Example 4.4 

 

 Executing 10,000 replications in SQS3, the algorithm collects 10,000 samples of 

each CITD, CITE, and CITF, and then organizes them in cumulative frequency as shown 

in Table 4.10. At the end of processing SQS3, CLTD, CLTE, and CLTF are set to 70, 80, 
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and 70 days, respectively according to an 80% confidence level. This means Activities D, 

E, and F cannot start until the end of days 70, 80, and 70 due to resource availability 

constraints and the selected crew lead times.  

CITB 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 99.48 
< 10 99.97 
< 15 100.00 

 

 

CITC 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 98.92 
< 10 99.95 
< 15 100.00 

 

CITD 
Range 
(days) 

Frequency 
(%) 

< 60 0.00 
< 65 62.14 
< 70 99.50 
< 75 99.99 
< 80 100.00 

 

CITE 
Range 
(days) 

Frequency 
(%) 

< 65 0.00 
< 70 1.84 
< 75 74.66 
< 80 99.67 
< 85 99.99 
< 90 100.00 

 

CITF 
Range 
(days) 

Frequency 
(%) 

< 55 0.00 
< 60 0.05 
< 65 63.24 
< 70 99.39 
< 75 99.99 
< 80 100.00 

 

CITG 
Range 
(days) 

Frequency 
(%) 

< 80 0.00 
< 85 0.31 
< 90 38.85 
< 95 94.31 
< 100 94.89 
< 105 99.99 
< 110  100.00 

Table 4.10 Collected CITs from processing SQS3 and determining CLTs for Activities D, 
E, and F for Example 4.4 

 

Compared to Table 4.9, CITB and CITC in Table 4.10 decrease significantly due to 

the assigned CLTB and CLTC in the previous processing SQS2. For both Resources B and 

C, there is approximately 99% chance that their idle time will be less than 5 days, shown 

in Table 4.10, compared to 55 days in Table 4.9. 

 It is important to note that if CLTD, CLTE, and CLTF were assigned at the end of 

processing SQS2, their values would be 60, 70, and 60 days (from Table 4.9, processing 

SQS2), instead of 70, 80, and 70 days (from Table 4.10, processing SQS3). 

Consequently, their idle time would be most likely to exceed the corresponding idle time 
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to the user-specified confidence level of 80%. As explained, delaying activities at the end 

of processing a SQS is likely to change the CITs of resources in the subsequent SQS. 

Therefore, CITs and CLT for each resource must be collected and determined in the order 

of SQS in which their activities belong. Figure 4.18 presents the first replication 

production diagram from processing SQS4, after CLTD, CLTE, and CLTF were assigned. 
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Figure 4.17 The first replication production diagram from processing SQS4 (collecting 
CITG) for Example 4.4  

 

In Figure 4.17, there is no interruption of work for Resources B, C, D, E, and F (at 

least for this replication). Activities whose CLT is already assigned have idle time close 

to zero. The already-assigned-CLT resources work continuously from the day they arrive 

to the day they complete their work.  At this current SQS4, only Activity G has idle time 

(between G1 and G2 in Figure 4.17), since CITG and CLTG have not yet been collected 

and determined. Table 4.11 shows the current CITs of resources collected from 

processing SQS4.  
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CITB 

Range 
% 

Frequency 
< 0 0.00 
< 5 99.52 
< 10 99.98 
< 15 100.00 

 

CITC 

Range 
% 

Frequency 
< 0 0.00 
< 5 99.06 
< 10 99.92 
< 15 100.00 

 

CITD 

Range 
% 

Frequency 
< 5 0.00 
< 10 100.00 

 

 

CITE 

Range 
% 

Frequency 
< 0 0.00 
< 5 100.00 

 

CITF 

Range 
% 

Frequency 
< 0 0.00 
< 5 100.00 

 

CITG 

Range 
% 

Frequency 
< 90 0.00 
< 95 21.44 
< 100 93.09 
< 105 99.92 
< 110 100.00 

Table 4.11 Collecting CITs from processing SQS4 and determining CLT for Activity G 
for Example 4.4 

 

Table 4.11 shows the CITs of activities after the algorithm finishes processing 

SQS4.  At the end of processing SQS4, samples of CITG are collected and arranged as 

shown in Table 4.11. CLTG is set to 100 days according to the user-specified 80% 

confidence level. Thus, CLTs for all activities are determined. Then, an extra sequence 

step is processed to collect statistics of the finalized CITs, as shown in Table 4.12. 
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Figure 4.18 The first replication production diagram from processing SQS5 for Example 
4.4 
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CITB 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 99.39 
< 10 99.95 
< 15 100.00 

 

CITC 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 99.11 
< 10 99.94 
< 15 100.00 

 

CITD 
Range 
(days) 

Frequency 
(%) 

< 5 0.00 
< 10 100.00 

 

CITE 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 100.00 

 

CITF 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 100.00 

 

CITG 
Range 
(days) 

Frequency 
(%) 

< 0 0.00 
< 5 99.90 
< 10 100.00 

Table 4.12 The finalized CITs from processing SQS5 for Example 4.4 
 

Table 4.13 shows the assigned crew lead time and the average crew idle time 

(average CIT from 10,000 samples in each sequence step) each resource spends on the 

site from the arrival date. Notice that before processing, SQS2, Resources B and C arrive 

at the site at time 0 (CLT = 0) and thus have average total idle times of 48 and 44 days 

respectively. After processing SQS2, resources B and C are assigned to arrive at the end 

of Day 55 (CLTB) and 50 (CLTC), respectively, and thus have zero average idle time 

from then on. As the algorithm proceeds through sequence steps, crew idle time of 

activities become 0 in the sequence step order (1 to 5) as indicated in Table 4.13. 

 Assigned Crew Lead Time 
(CLT in days) 

Average Crew Idle Time 
(CIT in days) 

SQS B C D E F G A B C D E F G 
1 0 0 0 0 0 0 0 48 44 54 66 54 79 
2 0 0 0 0 0 0 0 48 44 54 66 54 79 
3 55 50 0 0 0 0 0 0 0 64 73 64 90 
4 55 50 70 80 70 0 0 0 0 0 0 0 96 
5 55 50 70 80 70 100 0 0 0 0 0 0 0 
Table 4.13 Assigned CLT and average CIT of activities from processing different 

sequence steps for Example 4.4 
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  Sum of Lags Between Units 
(UIT in days) 

Average 
Project 

Duration

Average 
Project 

Idle Time SQS B C D E F G 
1 38 34 30 48 30 45 102 225 
2 38 34 30 48 30 45 102 225 
3 0 0 1 11 1 16 113 29 
4 0 0 0 0 0 12 119 12 
5 0 0 0 0 0 0 123 0 

 
 
 

 

 

 

Table 4.14 The finalized UIT, average project duration, and average project idle time for 
Example 4.4 

 

4.6 Discussion of Results from the Sequence Step Algorithm 

 Table 4.13 shows the average crew idle time (CIT) of each crew during its 

employment period. Table 4.14, on the other hand, shows the average idle time between 

units (UIT). The difference is that CIT values in Table 4.13 include not just, but also the 

idle time from resource arrival dates to the start date of the first unit, which is the arrival 

idle time (AIT). 

 It is interesting to note that in Table 4.13, the average CIT for resources drops to 

zero once their crew lead times are assigned. As some crew lead times are assigned from 

one SQS to the next, the average CIT for succeeding activities increases. In contrast, in 

Table 4.14 the average idle time between units (UIT) actually decreases. This is as 

expected, because the assignment of crew lead times to predecessor activities delays the 

first start of successor activities further (increasing their AIT), but also reduces idle time 

between units (decreasing their UIT). 

 Table 4.14 shows that, as the sequence step algorithm proceeds, the average 

project duration increases from 102 days to 123 days. The corresponding cumulative 

distributions for project duration for each sequence step in the algorithm are shown in 

Figure 4.19. The greatest horizontal time shift in project duration between successive 
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distributions occurs between SQS2 and SQS3 (Figure 4.19), which gives an increase in 

average project duration from 102 to 113 days (Table 4.14). The reason for this can be 

observed in Figure 4.15. Activity A, the slowest activity in the project, contributes the 

most to discontinuities in the other activities. Thus, to eliminate the discontinuities, it is 

necessary to shift their resource arrival dates significantly, which in turn increases project 

duration the most. Figure 4.16 shows that once the crew lead times for Activities B and C 

have been assigned, the rest of  the activities (except G) have almost no work interruption 

between units, at least in the first replication of the project. 

 Figure 4.17 shows the result from postponing the start dates of activities in SQS3 

(D, E, and F) by their CLTs. As expected, the continuities in the activities are improved 

while the average project duration increases from 113 days to 119 days.  

 Finally, crew lead time for Activity G in the last sequence step (SQS5) is assigned 

(CLTG=100). As shown in Figure 4.18, the continuities in resource utilization of all 

activities are now maintained, at least in the first replication of SQS5. The final average 

project duration is 123 days (Table 4.14). 
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Figure 4.19 Cumulative distributions of project duration at an 80% confidence level 

 

 Insightful information of what activity in which sequence steps controls project 

duration can be revealed by: 

1) Indicating the greatest shift in the average project duration from one sequence 

step to the next (SQS2 in Figure 4.19) 

2) Indicating activities in the sequence step in (1), which are Activities B and C 

3) Indicating controlling sequence activities in the sequence step in (1) from the 

final schedule, which is Activity C, and its direct predecessor on the same 

sequence step, which is Activity A 

4) Studying production rates of activities in the sequence steps in (3) 

5) Studying crew idle time of resources before and after assigning  crew lead 

time 
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Then, the decision of which activities to accelerate could be made with a selected 

confidence level of resource continuity in order to reduce the project duration.  

 As shown in Figure 4.20, it is interesting that as the algorithm proceeds from one 

sequence step to another, most samples of project duration fit into a smaller number of 

intervals: 6 intervals in SQS2, 4 intervals in SQS3, 3 intervals in SQS4, and 2 intervals in 

SQS5. The variability in activity duration has become less impacting on project duration 

because successor activities have been postponed and result in more floats for 

predecessor activities. Consequently, project duration is only influenced by those 

activities in the later sequence steps (e.g., SQS3 and SQS4). For this example at an 80% 

confidence level, project duration is dominated by Activities F1 and F2 in SQS3 and G1 

to G4 in SQS4.  

4.7 Selection of Confidence Levels 

 An important question in the optimal use of the sequence step algorithm is how to 

select an appropriate confidence level for the occurrence of crew work interruptions to 

balance the increase in project duration. This is an important issue because high 

confidence levels (to virtually eliminate idle time) can lead to a significant increase in 

project duration. 

 To address this issue, Figure 4.20 shows 5 lines that relate average total crew idle 

time (total CIT in crew-days) to average project duration (in days). Each line corresponds 

to a different confidence level: 20%, 40%, 60%, 80%, and 100%.  Moreover, each line 

consists of four points that correspond, from left to right (or top to bottom), to the four 

sequence steps (SQS2 to SQS5). Thus, the expected total idle times between units 

decrease as the algorithm proceeds from one sequence step to the next. Clearly, selecting 
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a greater confidence level decreases the expected crew idle time, but it also increases the 

expected project duration. Thus, allowing the possibility of some interruption can 

decrease the project duration. The idea of allowing or scheduling interruption is discussed 

in Chapter 6, Work Breaks. 
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Figure 4.20 Decreasing idle time and increasing project duration as SQS-AL progresses 

with 5 different confidence levels for Example 4.4 
 

 For all confidence levels in Figure 4.20, the most dramatic reduction in average 

total crew idle time occurs between SQS2 and SQS3 from the first point to the second 

point of each line. From that point on, the reduction in average idle time from SQS3 to 

SQS4 is relatively small, and results in even higher increases in average project duration 

as the confidence level increases. It is only the case for a confidence level of 100% that 

the project duration increases significantly from processing SQS3 to SQS4, and from 

SQS4 to SQS5. 
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 It is very important to notice that irrespective of confidence levels, the average 

total idle times at the completion of the algorithm (bottom point in each line) are very 

small. In particular, the expected idle time for confidence levels of 60%, 80%, and 100% 

is practically zero. Yet, the expected project durations for confidence levels of 60%, 80%, 

and 100% increase from 118 to 123 to 158 days. It is likely that an optimal confidence 

level is between 40% and 80%. 

 Figure 4.21 shows the corresponding probability density functions for project 

duration for different confidence levels. It is confirmed in this figure that there is little 

difference between confidence levels of 60% and 80%, but there is substantial difference 

between 80% and 100%. Figure 4.22 shows the cumulative distributions of project 

duration when the project is scheduled using CPM, RSM, and SQS-AL at different 

confidence levels. For the CPM case, activities in each replication are allowed to start as 

early as their predecessors allow. Thus, project duration from CPM tends to be the 

shortest with a large span of distribution. For the RSM case, activities in each replication 

are scheduled with perfect hindsight so as to eliminate crew idle time. This produces a 

slight increase in expected project duration over the CPM case, but completely eliminates 

idle time. The difference between the RSM expected project duration and that for an 80% 

confidence level of SQS-AL represents the value of perfect information about the true 

activity durations that will be experienced during construction. If these were known 

ahead of time or were effectively controlled, then the project could be scheduled with 

even shorter crew lead times and have even shorter project duration.  
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Figure 4.21 Seven density functions of project duration for 5 different confidence levels, 

CPM, and RSM 
 

 
 Figure 4.22 Seven different cumulative distributions of project duration from five 

different confident levels, CPM, and RSM 
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4.8 Summary 

The Sequence Step Algorithm (SQS-AL) is a generalized algorithm that solves 

scheduling problems of probabilistic repetitive projects. It can be implemented in 

discrete-event simulation systems, programming environments such as Visual Studio dot 

Net, or in spreadsheet applications like MS Excel.   

SQS-AL consists of two nested loops: the replication loop (inner loop) and the 

sequence step loop (outer loop). Within the inner replication loop, three different types of 

idle time are collected in order to determine arrival dates of resources that provide 

continuous resource utilization for each resource. These three types of idle time are: 

1) Unit idle time (UIT), which is the idle time between units in the same activity. 

2) Arrival idle time (AIT), which is the idle time between resource arrival date 

and the start date in the first unit. 

3) Crew idle time, which is the sum of UIT and AIT for each resource, 

representing total idle time for that resource. 

Crew idle times (CITs) for each resource are collected from simulation 

replications in order to construct the cumulative distribution function of the CITs. Then, 

resource arrival date can be determined by selecting the corresponding CITs to user-

specified confidence levels. This determined resource arrival date is called “Crew Lead 

Time” (CLT) measured from project start date. CLT is used to postpone the start date of 

activities (the arrival date of their resources) to achieve continuous resource utilization 

via resource availability constraints. 

When to determine crew lead time (CLT) is crucial. CLT of a resource must be 

determined in the order of sequence steps, because delaying the arrival date of resources 
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changes the crew idle time (CIT) for activities in subsequent sequence steps. 

Accordingly, the processes of collecting CITs and determining CLT must be performed 

in sequence step order. These processes, called “processing sequence step,” moves from 

one sequence step to the next sequence step. This is performed in the outer sequence step 

loop. When the algorithm completes processing the last sequence step, CLTs for all 

resources are determined. Then, an extra processing sequence step is executed in order to 

obtain the final schedule and idle time in resources. 

In the next chapter, two simulation model templates are introduced. These 

simulation templates are a composed set of simulation model elements used to represent 

repetitive activities and their resources with respect to SQS-AL. The templates can be 

implemented in most discrete-event simulation applications such as Stroboscope and 

GPSS. For the purpose of demonstration, the repetitive project example used in this 

chapter is modeled and implemented in Stroboscope using the simulation model 

templates. 



 

CHAPTER 5 

SIMULATION MODEL TEMPLATES 

CHAPTER 5 SIMULATION MODEL TEMPLATES 

 Simulation modeling for repetitive projects is complicated and involves many 

components. To model repetitive projects successfully, the following components must 

be taken into account when constructing the simulation model. 

1) Precedence constraints 

2) Variability in activity durations 

3) Resource availability constraints 

4) Resource continuity constraints, or computational algorithm solving the 

problem of resource continuity constraints 

5) Collection of statistical outputs from simulation, such as idle time 

This chapter introduces simulation model templates used to model repetitive 

projects in compliance with discrete-event simulation. These templates and their concepts 

can be applied to most discrete-event simulation systems. Using the templates results in 

an organized simulation model and also eases and expedites the processes of constructing 

and modifying simulation models for repetitive projects. Considering the aforementioned 

components of modeling repetitive projects, two simulation model templates, 1) Work 

Flow template and 2) Resource Flow template, are designed to systematically model the 

constraints and realistically capture the nature of activities and resources in repetitive 
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projects. The work flow template is for modeling precedence constraints, variability in 

activity duration, and work in repetitive units. On the other hand, the resource flow 

template is for modeling resource availability constraints and collecting data related to 

resource continuity constraints. Collecting resource-related data, the resource flow 

provides the data to the Sequence Step Algorithm (SQS-AL) in order to solve scheduling 

problems of repetitive projects. 

To demonstrate the application of the work flow and resource flow templates, 

Example 4.2 from the previous chapter is modeled in Stroboscope. The simulation model 

and code are shown in detail with discussion of the usability, flexibility, and extensibility 

of the templates. 

5.1 Simulation Model for Repetitive Projects 

One benefit of simulation is the capability of modeling repetitive activities using 

only one or several simulation elements to represent the entire number of repetitive units 

for the activities. Different units of the same activity are simulated repeatedly by the 

same simulation elements. Therefore, repetitive projects consisting of multiple units can 

be represented by a single unit model. For example, the precedence diagram shown in 

Figure 5.1 can be replaced by the model in Figure 5.2. As can be seen, the greater the 

number of repetitive units, the larger the precedence diagram in Figure 5.1 becomes. On 

the other hand, the size of the single-unit model in Figure 5.2 is not subject to the number 

of repetitive units.  

Another advantage of using a single unit model is that it facilitates the processes 

of constructing and modifying a simulation model. Since multiple units of the same 

repetitive activity commonly share the same attributes such as productivity, work 
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condition, resources, they can be represented by a single unit model. Accordingly, it is 

recommended to model repetitive projects using single unit model as shown in Figure 

5.2, instead of Figure 5.1. 

 
Figure 5.1 A precedence diagram for a repetitive project 

 

 
Figure 5.2 A single unit precedence diagram for the repetitive project in Figure 5.1 
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As shown in Figure 5.2, repetitive activities are represented effectively by a single 

unit model. Nevertheless, the model in Figure 5.2 only focuses on activities; information 

or model of resources is missing in the figure. When resource utilization is a concern, 

resources must be taken into account for scheduling repetitive projects. As mentioned 

earlier, different resource statuses must be distinguishable, and a model for resources 

should promptly provide this information. Hence, separating a model for resources from 

the model for activities is recommended. By doing so, tracking the progress of activities 

and distinguishing resource statuses should be modeled and coded by two separate sets, 

but dependent (or connected) models. Figure 5.3 shows a single unit precedence diagram 

with separate models for resources and work for each activity. In the figure, rounded 

rectangles of work flow are used primarily for tracking work progress where as rounded 

rectangles of resource flow are used primarily for distinguishing the status of resources. 

As shown in Figure 5.4, the simulation models for resources can be removed from the 

simulation models for activities.   

 
Figure 5.3 Models for activities and resources in a single unit precedence diagram 

 

After the simulation models for activities and resources are separated into two 

sets: 1) work flow and 2) resource flow, constraints belonging to each set of the 
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simulation model (activities and resources) can become separate and distinct. Precedence 

constraints are modeled in work flow sub-networks, whereas resource availability and 

continuous constraints are modeled in resource flow sub-networks. As a result, the 

simulation model becomes more organized and systematic.  

 
Figure 5.4 Separate models for activities and resources in a single unit precedence 

diagram 
 

To illustrate the possibilities, Figure 5.5 shows an example of a repetitive project 

where same activities within the same repetitive unit share the same resource (e.g., 

Activity B and C) or require more than one resource. Using separate models for activities 

and resources allows the construction of complicated relationships between repetitive 

activities and resources easily. For example, in Figure 5.5, Activities B and C (work flow 

sub-networks for B and C) require the same Resource R2. Activity D requires resource 

R3 and shares Resource R6 with Activity G. Modeling multiple resource utilization and 

sharing resources, called “shared resource,” between activities are discussed later in 
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Chapter 7. At this point, the following discussion will concentrate on models where each 

repetitive activity requires its own unique resource (or crew), called “dedicated resource.” 

 
Figure 5.5 Using separate models to model a repetitive project with resource-sharing 

activities 
 

5.2 Simulation Model Templates 

To apply SQS-AL, a simulation model must be able to track work progress, and to 

distinguish the different states of the resources. It is important to track the current 

progress of repetitive activities so that precedence constraints between activities and units 

are not violated. Similarly, distinguishing different statuses of resources provides useful 

information of resource utilization, which is used to determine crew lead time (CLT). The 

different states of resources are: 

1) Unemployment period (not on jobsite, not getting paid) 

2) Employment period (on jobsite, getting paid) 
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3) Unproductive period (on jobsite, getting paid, but not working, which is idle) 

4) Productive period (on jobsite, getting paid, working) 

The above different states are represented in the work flow template and resource 

flow template, as explained later. In Figure 5.6, the work flow template and the resource 

flow template represent Activity ACT and Resource RES, respectively. The self-

explanatory labels on simulation elements (Queues, Combis, etc) show that the work flow 

template tracks work progress via ACT_Remain and ACT_Complete Queues. Activity 

duration is simulated by ACT_Perform Combi. On the other hand, the resource flow 

template distinguishes resource status via RES_Idle and RES_Offsite Queues. Duration 

of crew lead time (CLT) is represented by RES_CLT Combi.  

In Figure 5.6, Activity ACT requires Resource RES; thus, the resource flow sub-

networks for RES is linked to the work flow sub-networks by iRES_ACT and 

iiRES_ACT Links. Figure 5.6 shows a simple relationship between one activity and one 

resource, where the resource is dedicated to only one activity. 

 
Figure 5.6 Work Flow Template and Resource Flow Template 
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5.2.1 Work Flow Template 

 The main functionalities of the work flow template are: 

1) Tracking work progress of repetitive activities 

2) Modeling precedence constraints 

3) Simulating activity durations. 

The work flow template can be modeled and coded using two queues 

(ACT_Remain and ACT_Complete), and one Combi (ACT_Perform). In the work flow 

template, there are two types of simulation resources: rq_ACT and RES. Resource 

rq_ACT could be considered as an entity indicating flow of work or permission to 

perform the work, or it could also be considered a “unit” (i.e., a repetitive unit, such as a 

floor.) 

Resource RES is the resources required to perform the work such as labor and 

equipment. The rq_ACT resource is the main entity moving in the work flow template, 

while Resource RES moves back and forth between work flow and resource templates. 

The model for Resource RES will be discussed later in Section 5.2.2, Resource Flow 

Template. It suffices to mention that for a repetitive activity to start, it requires 1) 

permission to start, which is Resource rq_ACT, and 2) resources such as labor and 

equipment, which is Resource RES. 
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Figure 5.7 Work flow template (work flow sub-network for Activity ACT) 

 

Tracking work progress in the work flow sub-network can be accomplished by 

examining: 

1) The number of rq_ACT resources in ACT_Remain Queue 

2) The number of rq_ACT resources in ACT_Complete Queue 

3) The number of instances in ACT_Perform Combi  

Whereas the number of rq_ACT resources in ACT_Remain Queue represents the 

remaining units of work, the number of rq_ACT in ACT_Complete Queue represents the 

completed units of work (units). For example, if Activity ACT represents laying dry wall 

in a 10-story building, 10 units of rq_ACT will be initiated in ACT_Remain at the start of 

simulation representing the 10 stories. In other words, there are 10 remaining units of 

work for ACT.  At the end of each replication, the number of rq_ACT in ACT_Remain 

will become zero, because all the work units in Activity ACT have already been 

completed.  
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In contrast, the number of rq_ACT in ACT_Complete is zero in the beginning of 

simulation, since no work has been completed. Then, at the end of simulation, the number 

of rq_ACT in ACT_Complete will be equal to the total number of units, or 10 units for 

the given example above. For ACT_Perform Combis, the presence of rq_ACT resource 

and RES resource together in ACT_Perform indicates an on-going unit (e.g., Resource 

RES is working on a particular unit of Activity ACT.) An on-going unit in ACT_Perform 

is an instance of the ACT_Perform. Thus, the number of instances in ACT_Perform 

Combis is the number of on-going units of work. 

 Activity durations are coded in ACT_Perform combi in work flow template. 

ACT_Perform is a conditional activity that controls the start of works and durations. 

ACT_Perform Combi represents the performance of activity ACT in a particular unit or 

one rq_ACT resource. Every time ACT_Perform starts, it draws one rq_ACT resource 

from ACT_Remain Queue, holds the resource for the duration of the activity, and at the 

completion releases the rq_ACT resource to ACT_Complete Queue. Thus, each rq_ACT 

resource moves from ACT_Remain (not started), to ACT_Perform combi (in process), 

and finally to ACT_Complete (completed). 

Precedence constraints in the work flow template are implemented through 

simulation code. Although it is possible to use links to model precedence constraints, 

using simulation code reduces the number of links in the simulation model, and keeps the 

model organized. Moreover, it provides flexibility in coding constraints. Figure 5.8 

shows two sub-networks conforming to the work flow template for Activity A and its 

successor Activity B. Notice that these two sub-networks are not connected by any links. 

The precedence relationship between A and B is implemented in B_Perform Combi 
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through a “semaphore.” Used in Stroboscope, the semaphore is a logical start control or 

conditional statement. Thus, the semaphore for B_Perform combi prevents Activity B 

from starting until its predecessor Activity A, in the same unit, has been completed. As 

mentioned earlier, the number of completed work units for Activity A is the number of 

resource rq_A in A_Complete Queue. 

 
Figure 5.8 Two work flow sub-networks for Activities A and B 

 

 In particular, the logical expression for the semaphore for Activity B in Figure 5.8 

compares the number of Resource rq_B in B_Complete Queue (completed units of B) 

and the number of instances in B_Perform (on-going work units of B) to the number of 

Resource rq_A in A_Complete Queue (completed units of A). The simulation code in 

Stroboscope language for this semaphore is 

B_Complete.CurCount + B_Perform.CurInst < A_Complete.CurCount 

 

CurCount is a predefined Stroboscope variable that returns the number of 

resources currently residing in the referred-to queue; CurInst returns the current number 
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of instances (on-going work) in the referred-to Combi. Thus, the above statement is true 

when the number of completed units in Activity A is greater than the completed units of 

B plus the number of on-going units in B. If 1) semaphore is true, 2) B_Remain Queue is 

not empty, and 3) all resources required by Activity B are available, B_Perform Combi 

will draw one Resource rq_B from B_Remain Queue and one Resource B from the 

resource flow sub-network for Resource B via iRES2_B link in order to start work. As a 

result, an instance of B_Perform will be created at this particular moment with duration 

that equals the time required to finish this particular work unit.   

5.2.2 Resource Flow Template 

The main functionalities of the resource flow template are distinguishing different 

states of resources and collecting the statistical data of the resources. To be specific, the 

resource work template is able to: 

1) Present the idle state of resources during employment 

2) Present the idle state of resources during unemployment  

3) Record the period of crew idle time (CIT) 

4) Postpone resource arrival date (using the determined crew lead time, CLT) 

5) Determine whether to keep or lay off the resource so that (1) and (2) are 

distinguishable 

Resource flow template is shown in Figure 5.9. It consists of two queues 

(RES_Offsite and RES_Idle), one combi (RES_CLT), and one fork (RES_LeaveOrStay). 

There is only one type of resource circulating in the resource flow, which is Resource 

RES.  
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Figure 5.9 Resource flow template (resource flow sub-network for Resource RES) 

 

RES_Offsite is a queue where RES resource resides when not on site 

(unemployed). At the start of simulation, RES resource is initialized in the RES_Offsite 

Queue, and will return to this queue after all work units have been completed. 

Importantly, the time resources spend in RES_Offsite is not considered as idle time 

because resources in it are unemployed. In contrast, the time resources spend in RES_Idle 

is considered idle time. Crew idle time (CIT) represents the sum of arrival idle time (AIT) 

and unit idle time (UIT). 

 RES_Idle is a queue where RES resource is on the site waiting, not performing 

any work. This situation occurs when its activity ACT_Perform cannot start because its 

predecessors in the same repetitive unit have not finished yet. The total time resource 

RES spends in RES_Idle Queue is the crew idle time (CIT) for the RES resource. This 

duration (CIT) represents the sum of arrival idle time (AIT) and unit idle time (UIT). The 

total time RES spends in RES_Idle, (CIT), is given by: 

RES_Idle.AveWait x RES_Idle.TotCount 
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 AveWait and TotCount are predefined Stroboscope variables. AveWait is the 

average visit time (duration) spent by resources in the referred-to queue. TotCount is the 

number of times that resources entered the queue. Accordingly, the product of these two 

variables is the total idle time resources spend in the referred-to queue. 

 Note that the total time a resource on the site is the sum of duration the resource 

spends in RES_Idle and its corresponding activity in ACT_Perform. 

 RES_CLT Combi, representing an abstract activity, is included in the resource 

flow template to postpone the arrival of a resource by using a determined duration of 

RES_CLT, crew lead time. As a result, the duration of RES_CLT (CLT) delays the start 

date of the corresponding activity. As discussed in Chapter 4, Sequence Step Algorithm, 

CLT of resources is set to zero at the start of SQS-AL; all resources are assumed to arrive 

to the site at the beginning of the project. Accordingly, the duration of RES_CLT Combi, 

which is CLT, is initially set to zero, before processing its activity’s sequence step. 

From one replication to the next, SQS-AL collects CITs of resources belonging to 

that particular sequence step. From one sequence step to the next, SQS-AL constructs 

cumulative frequency of the collected CITs, determines CLT, and assigns the CLT to the 

duration of RES_CLT. The CLT value assigned to duration of RES_CLT is the time to 

hold resource RES in the simulation in order to postpone the resource arrival date to the 

site. Therefore, the postponement of the activity start date is stipulated by the resource 

availability constraints for Resource RES. 

Note that the unemployment period for the RES is the total time the RES spends 

in RES_Offsite Queue and RES_CLT Combi. 
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To determine whether a resource should be kept on site or laid off, a Stroboscope 

simulation element, called “Fork,” is used. RES_LeaveOrStay (or RES_F) Fork is a 

decision point determining either to send RES resource to RES_Idle Queue (holding the 

resource) or to send it to RES_Offsite Queue (laying off the resource). Whether to keep 

or lay off the resource depends on whether there is any remaining work (rq_ACT) in 

ACT_Remain Queue. If the following statement is true, the RES_LeaveOrStay fork will 

send the RES back to RES_Idle Queue.  

ACT_Remain.CurCount > 0 

 

On the other hand, if the above statement is false, meaning all the work is 

completed, the RES_LeaveOrStay Fork will send RES to RES_Offsite.  

After a resource is laid off, it is not allowed to re-enter the site, achieved by 

comparing between 1) the current number of completed units (CurCount) in 

ACT_Complete Queue and 2) the total number of units. Resources are allow to enter the 

site only if the CurCount of their corresponding activities is not equal to the total number 

of units. This condition is shown below. 

ACT_Complete.CurCount != the total number of units 
 

5.3 Example 5.1 Simulation code and model for a repetitive project 

 Example 4.2 from Chapter 4 is used to demonstrate the application of the 

discussed model templates and SQS-AL. The example is implemented in Stroboscope. 

The simulation model and code in Stroboscope language are given with explanation. 

Several important aspects of the simulation model and SQS-AL are re-deliberated along 

with the given simulation code. 
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The example is a repetitive project consisting of 4 units with 7 activities in each. 

Each activity is performed by a dedicated resource named after that activity. Figure 5.10 

presents a single unit precedence diagram for this example, showing that repetitive 

activities in Sequence Steps 1 to 4 (SQS1 to SQS4). For example, Activity A is in SQS1; 

B and C are in SQS2, etc. 

 
Figure 5.10 Single Unit Precedence Diagram 

 

Table 5.1 presents the work amount of each activity in each of the 4 units, 

whereas Table 5.2 presents the production rates of each particular activity. Production 

rates of activities are assumed to follow a normal distribution with the means and 

standard deviations displayed in Table 5.2. 

 Activity 
 A B C D E F G 

Unit Work Amount (Quantity/Unit) 
1 100 150 200 150 100 150 50 
2 250 100 150 200 150 250 200 
3 150 200 50 100 50 50 50 
4 200 150 200 150 100 100 150 

Table 5.1 Work amounts for each activity in each unit 
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Activity Mean SD 
A 10 1.0 
B 20 2.0 
C 15 1.5 
D 15 1.5 
E 25 2.5 
F 15 1.5 
G 20 2.0 

Table 5.2 Daily Production Rates 
 

Figure 5.11 is the simulation model for this example. As can be seen, Figure 5.11 

resembles Figure 5.10, a single unit precedence diagram. Simulation model templates are 

used to represent activities and resources, instead of nodes, in Figure 5.10.  
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Figure 5.11 Simulation model for Example 5.1 
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5.3.1 Simulation Code for Model Parameters (MP) 

 The Simulation code in the following sections is encoded in Stroboscope GUI’s 

Model Parameters (MP). 

5.3.1.1 Variables controlling replication and sequence step loops (MP.Loops) 

Variables that controls SQS-AL’s replication loop and sequence step loop are 

stored in SaveValue, which is a storage class in Stroboscope language. “nRep” is the total 

number of replications executed in processing each sequence step, whereas “nSQS” is 

the total number of sequence steps. The ithRep and ithSQS indicate the current 

replication and processing sequence step, respectively. 

SAVEVALUE nRep 3000; 

SAVEVALUE nSQS 4; 

SAVEVALUE ithRep* 1; 

SAVEVALUE ithSQS* 1; 

Note that in Stroboscope the asterisk sign “*” indicates that the referred-to 

SaveValue (e.g., ithRep and ithSQS) is persistent throughout simulation runs, meaning 

the SaveValue with an asterisk sign will not be reset to its initial value (e.g., 1 for ithRep 

and ithSQS for the code above) at the beginning of each replication. Since it is necessary 

to track the current replication (ithRep) and current sequence step (ithSQS), these 

SaveValues must be persistent and are declared so by the asterisk sign at the end of their 

names. 

5.3.1.2 Work amounts (MP.ACT.Quantity) 

For each activity, the work amount in each repetitive unit is stored in one-

dimensional arrays. The number 4 in the code below is the total number of units in this 
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project; it defines the size of the array. The figures in parenthesis are the work amount for 

each activity in each unit; these figures initialize the member of the array. So each of the 

following statements defines and initializes the arrays holding the work amount for each 

activity. 

ARRAY A_Quantity 4 {100 250 150 200}; 

ARRAY B_Quantity 4 {150 100 200 150}; 

ARRAY C_Quantity 4 {200 150 50 200}; 

ARRAY D_Quantity 4 {150 200 100 150}; 

ARRAY E_Quantity 4 {100 150 50 100}; 

ARRAY F_Quantity 4 {150 250 50 100}; 

ARRAY G_Quantity 4 {50 200 50 150}; 

 Note that indexing arrays in the Stroboscope language is zero-based. Thus, the 

index of the first value in an array is zero, which is the same as in the C language. 

5.3.1.3 Confidence levels (MP.RES.ConfidenceLevel) 

 Confidence levels for determining the CLT for each resource are stored in the 

SaveValues shown below. For this example, a 50 percent confidence level is used for all 

resources. 

SAVEVALUE ResA_ConfidenceLevel 0.5 ; 

SAVEVALUE ResB_ConfidenceLevel 0.5 ; 

SAVEVALUE ResC_ConfidenceLevel 0.5 ; 

SAVEVALUE ResD_ConfidenceLevel 0.5 ; 

SAVEVALUE ResE_ConfidenceLevel 0.5 ; 

SAVEVALUE ResF_ConfidenceLevel 0.5 ; 

SAVEVALUE ResG_ConfidenceLevel 0.5 ; 
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5.3.1.4 Additional variables (MP.AdditionVariable) 

There are two additional variables, which include iSQS and nthBinInterval used 

later.  iSQS is used to automatically generate Stroboscope code, whereas nthBinInterval 

is used to determine the corresponding crew lead time (CLT). Both additional variables 

are stored in SaveValues. Note that iSQS is used for coding purpose, while ithSQS is 

used to track the current index of sequence step. 

SAVEVALUE iSQS 1; 

SAVEVALUE nthBinInterval 0; 

5.3.2 Simulation Code for Programming Objects (PO) 

The simulation code in the following subsections is encoded in Stroboscope 

GUI’s Programming Objects. 

5.3.2.1 Permission to the site (PO.RES.Semaphore) 

One important decision (i.e., RES_CLT_Semapore) is whether to allow resources 

to enter the site (i.e., letting resources in RES_CLT Combis) or to keep them off the site 

(i.e. holding resources in RES_Offsite Queues). Resources are allowed to enter the site 

only if their corresponding activities must not yet have been completed. For example, the 

number of units in ACT_Complete Queues must not equal the total number of units (4 

units for this example). Without this decision (or condition), resources will always re-

enter the site, even though all the work has been completed, and rest in RES_Idle until 

the simulation ends because there is no work left for them to work. The condition 

(RES_CLT_Semaphore) of allowing a resource to enter the site is stored in Variables, 

updated automatically by Stroboscope. It is encoded in Programming Objects, and used 

in RES_CLT’s semaphore in resource flow sub-networks. 
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VARIABLE ResA_CLT_Semaphore ' A_Complete.CurCount != 4' ; 

VARIABLE ResB_CLT_Semaphore ' B_Complete.CurCount != 4' ; 

VARIABLE ResC_CLT_Semaphore ' C_Complete.CurCount != 4' ; 

VARIABLE ResD_CLT_Semaphore ' D_Complete.CurCount != 4' ; 

VARIABLE ResE_CLT_Semaphore ' E_Complete.CurCount != 4' ; 

VARIABLE ResF_CLT_Semaphore ' F_Complete.CurCount != 4' ; 

VARIABLE ResG_CLT_Semaphore ' G_Complete.CurCount != 4' ; 

5.3.2.2 Precedence constraints (PO.ACT.Semaphore) 

 Precedence constraints (e.g., B_Perform_Semaphore) are stored in Variables and 

used in ACT_Perform’s semaphore work flow sub-networks. Due to precedence 

constraints, an activity can start only if its current number of completed units (e.g., 

B_Complete.CurCount) plus its current number of on-going units (e.g., 

B_Perform.CurInst) is less than its predecessor’s number of completed units (e.g., 

A_Complete.CurCount). For this example, all precedence constraints are shown below: 

VARIABLE B_Perform_Semaphore  

'B_Complete.CurCount + B_Perform.CurInst 

< A_Complete.CurCount'; 

VARIABLE C_Perform_Semaphore  

'C_Complete.CurCount + C_Perform.CurInst 

< A_Complete.CurCount'; 

VARIABLE D_Perform_Semaphore  

'D_Complete.CurCount + D_Perform.CurInst 

< B_Complete.CurCount 

& D_Complete.CurCount + D_Perform.CurInst 

< C_Complete.CurCount'; 

VARIABLE E_Perform_Semaphore  

'E_Complete.CurCount+ E_Perform.CurInst 
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< B_Complete.CurCount'; 

VARIABLE F_Perform_Semaphore  

'F_Complete.CurCount +F_Perform.CurInst 

< C_Complete.CurCount'; 

VARIABLE G_Perform_Semaphore 

'G_Complete.CurCount+G_Perform.CurInst 

< D_Complete.CurCount  

& 

G_Complete.CurCount+G_Perform.CurInst  

< E_Complete.CurCount 

&  

G_Complete.CurCount+G_Perform.CurInst 

<F_Complete.CurCount'; 

5.3.2.3 Activity Duration (PO.ACT.Duration) 

 Activity durations (e.g., A_Perform_Duration) are stored in Variables and used in 

ACT_Perform’s duration in the work flow sub-networks. ACT_Perform’s duration varies 

from unit to unit due to amount of works in each unit and variability in production rates. 

Therefore, activity durations are a function of work amount of the current unit and 

production rate. The duration of ACT_Perform Combis is essentially the work amount in 

a unit divided by the production rate of that activity. Duration variables of activities are 

shown below: 

VARIABLE A_Perform_Duration  

A_Quantity[4-A_Remain.CurCount]*1/Normal[10,1]; 

VARIABLE B_Perform_Duration 

B_Quantity[4-B_Remain.CurCount]*1/Normal[10,1]; 

VARIABLE C_Perform_Duration 
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C_Quantity[4-C_Remain.CurCount]*1/Normal[15,1.5]; 

VARIABLE D_Perform_Duration 

D_Quantity[4-D_Remain.CurCount]*1/Normal[15,1.5]; 

VARIABLE E_Perform_Duration 

E_Quantity[4-E_Remain.CurCount]*1/Normal[25,2.5]; 

VARIABLE F_Perform_Duration 

F_Quantity[4-F_Remain.CurCount]*1/Normal[15,1.5]; 

VARIABLE G_Perform_Duration 

G_Quantity[4-G_Remain.CurCount]*1/Normal[20,2]; 

5.3.2.4 Decision of keeping or laying off resource (PO.RES.Strength) 

The decisions of keeping or laying off resources are stored in variables (e.g., 

ResA_Leave_Strength) and used in resource flow sub-networks. After a resource 

completes one unit of work, it will consider whether to leave the site. If there is no 

remaining work for the resource, it will leave. The resources’ decisions whether to leave 

or stay are shown below:  

VARIABLE ResA_Leave_Strength '(A_Remain.CurCount == 0)? 1:0'; 

VARIABLE ResB_Leave_Strength '(B_Remain.CurCount == 0)? 1:0'; 

VARIABLE ResC_Leave_Strength '(C_Remain.CurCount == 0)? 1:0'; 

VARIABLE ResD_Leave_Strength '(D_Remain.CurCount == 0)? 1:0'; 

VARIABLE ResE_Leave_Strength '(E_Remain.CurCount == 0)? 1:0'; 

VARIABLE ResF_Leave_Strength '(F_Remain.CurCount == 0)? 1:0'; 

VARIABLE ResG_Leave_Strength '(G_Remain.CurCount == 0)? 1:0'; 

Note that these decision variables are used in the Strengths of two links, 

iRES_Leave and iRES_Stay in the resource flow sub-networks. See Section 5.3.3.5, 

CME.RES.Stay.Strength, and Section 5.3.3.6, CME.RES.Leave.Strength for more detail. 
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5.3.2.5 Temporary SaveValues for crew idle time (PO.RES.TempIdleTime) 

The following SaveValues are for temporarily recording the total idle time in each 

resource in each replication. They are defined in Programming Objects and reset at the 

beginning of each replication. 

SAVEVALUE svResB_Idle 0; 

SAVEVALUE svResC_Idle 0; 

SAVEVALUE svResD_Idle 0; 

SAVEVALUE svResE_Idle 0; 

SAVEVALUE svResF_Idle 0; 

SAVEVALUE svResG_Idle 0; 

These svRES_Idle SaveValues (temporary storages) of idle time will be assigned 

to their corresponding BinCollectors (permanent storages), declared in Section 5.3.2.8 

PO.RES.CIT.SQS, for a specific sequence step, at the end of each replication (see Section 

5.3.4.5 CS.RES.CIT.SQS). After the assignment, these SaveValues are, then, reset prior 

to the execution of a new replication. 

5.3.2.6 Crew idle time (PO.RES.CIT)  

Samples of crew idle time (CIT) used to determine crew lead time (CLT) are 

stored in BinCollectors. BinCollectors are data holders that keep statistics of the numbers 

they receive in intervals, specified by users. Every resource that is scheduled by SQS-AL 

in order to achieve continuous resource utilization must have at least one RES_CIT 

BinCollector, which is RES_CIT1. 

BINCOLLECTOR statement requires 4 arguments, which are: 1) the name of the 

collector, 2) the number of intervals, 3) the lower bound of the collected data, and 4) the 

upper bound of the collected data. For this example in Figure 5.11, RES_CIT1 
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BinCollectors collect CITs from a range of 0 to 300 days. This range is divided into 60 

intervals, meaning that CIT samples are grouped on a five-day basis from 0 to 5 days, 5 

to 10 days, etc., assuming five work days per week. 

Since crew idle time of resources is collected from one replication to another, the 

data in RES_CIT1 BinCollectors must be persistent, and thus an asterisk, “*”, is required 

when their names are declared.  

BINCOLLECTOR ResB_CIT1* 60 0 300; 

BINCOLLECTOR ResC_CIT1* 60 0 300; 

BINCOLLECTOR ResD_CIT1* 60 0 300; 

BINCOLLECTOR ResE_CIT1* 60 0 300; 

BINCOLLECTOR ResF_CIT1* 60 0 300; 

BINCOLLECTOR ResG_CIT1* 60 0 300; 

5.3.2.7 Crew lead time (PO.RES.CLT.Duration) 

The crew lead time (CLT) for each resource is stored in a persistent SaveValue 

(requiring an asterisk sign “*” after its name), and used to set the duration RES_CLT 

Combi in resource flow sub-network. The initial value for CLT is zero according to the 

sequence step algorithm. The RES_CLT_Duration Variables are created mainly to 

systemize the simulation code. They are used in RES_CLT Combis, discussed in section 

5.3.3.1 CME.RES.CLT.Duration.  

SAVEVALUE ResB_CLT1* 0; 

SAVEVALUE ResC_CLT1* 0; 

SAVEVALUE ResD_CLT1* 0; 

SAVEVALUE ResE_CLT1* 0; 

SAVEVALUE ResF_CLT1* 0; 

SAVEVALUE ResG_CLT1* 0; 
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VARIABLE ResB_CLT_Duration ResB_CLT1; 

VARIABLE ResC_CLT_Duration ResC_CLT1; 

VARIABLE ResD_CLT_Duration ResD_CLT1; 

VARIABLE ResE_CLT_Duration ResE_CLT1; 

VARIABLE ResF_CLT_Duration ResF_CLT1; 

VARIABLE ResG_CLT_Duration ResG_CLT1; 

Note that the number one at the end of RES_CLT1 indicates the first lead time 

measured from the project start date. In Chapter 6 where work breaks in resource 

schedules are discussed, a resource with one work break will have RES_CLT1 (measured 

from project start date) and RES_CLT2 (measured from the time the resource takes the 

break). 

5.3.2.8 Crew idle time for each sequence step (PO.RES.CIT.SQS) 

The code below of BinCollectors for crew idle time (CIT) associated with 

sequence steps (SQS) is for the purpose of recording the changes in CITs from one SQS 

to another. Note that the iSQS in the below code is used with “$<…>$” (explained later) 

to automatically create simulation code, while ithSQS is used to track the current index of 

sequence step. 

ASSIGN iSQS 1; 

WHILE 'iSQS<=nSQS+1'; 

BINCOLLECTOR bcltResA_IdleSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltResB_IdleSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltResC_IdleSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltResD_IdleSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltResE_IdleSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltResF_IdleSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltResG_IdleSQS$<iSQS>$* 60 0 300; 
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BINCOLLECTOR bcltProjectDurationSQS$<iSQS>$* 60 0 300; 

BINCOLLECTOR bcltProjectIdleTimeSQS$<iSQS>$* 60 0 300; 

ASSIGN iSQS iSQS+1; 

WEND; /iSQS 

Note that the “$<Argument>$” is a preprocessor operator of Stroboscope used to 

automatically generate simulation code. The Stroboscope evaluates the argument in the 

operator, and replaces the operator and argument before executing the statement. This 

preprocessor operator is useful when there is a consistent pattern of simulation code 

(Martinez 1995). For more information about the “$<Argument>$” operator, see The 

Stroboscope Simulation Language, Chapter 15, Statement Preprocessing and Automatic 

Code Generation. 

5.3.3 Simulation Code for Model Elements (CME) 

The simulation code in this section (CME) can be easily encoded in simulation 

model elements (Visio shapes) such as Combis and Links on drawings in Stroboscope 

GUI. To enter the following code, users can double click on a shape of Combis or Links 

(e.g., Figure 5.12 is the GUI for ResB_CLT Combi) and enter the code as shown in this 

section. The following statements specify attributes of simulation elements (i.e., Combis 

and Links) in Stroboscope GUI where the code is stored. These statements are: 

1) SEMAPHORE for Semaphore Combis 

2) DURATION for Duration in Combis 

3) STRENGTH for Strength in Links 

4) ONFLOW for OnFlow in Links 
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5.3.3.1 Semaphore in RES_CLT Combis (CME.RES.Semaphore) 

 The Semaphores of RES_CLT Combis are shown below. They are stored in 

simulation model elements (Visio shapes for Combis in Stroboscope GUI), as shown in 

Figure 5.12. When using the Stroboscope GUI for simulation model elements as shown 

in Figure 5.12, certain statements of Stroboscope must be omitted because Stroboscope 

GUI will automatically create those statements such as in Figure 5.12 for the 

SEMEPHORE statement in this section and DURATION statement in the next section. 

Details of this semaphore are given in Section 5.3.2.1, PO.RES.Semaphore. 

SEMAPHORE ResB_CLT ResB_CLT_Semaphore; 

SEMAPHORE ResC_CLT ResC_CLT_Semaphore; 

SEMAPHORE ResD_CLT ResD_CLT_Semaphore; 

SEMAPHORE ResE_CLT ResE_CLT_Semaphore; 

SEMAPHORE ResF_CLT ResF_CLT_Semaphore; 

SEMAPHORE ResG_CLT ResG_CLT_Semaphore; 

SEMAPHORE ResH_CLT ResH_CLT_Semaphore; 

SEMAPHORE ResJ_CLT ResJ_CLT_Semaphore; 
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Figure 5.12 Assigning semaphore and duration for ResB_CLT Combi  

 

5.3.3.2 Duration in RES_CLT Combis (CME.RES.CLT.Duration) 

Durations of RES_CLT Combis in resource flow are shown below, stored in 

simulation model elements (Visio shapes for Combis in Stroboscope GUI), as shown in 

Figure 5.12. Details of these durations are given in Section 5.3.2.7, 

PO.RES.CLT.Duration. 

DURATION ResA_CLT ResA_CLT_Duration; 

DURATION ResB_CLT ResB_CLT_Duration; 

DURATION ResC_CLT ResC_CLT_Duration; 

DURATION ResD_CLT ResD_CLT_Duration; 

DURATION ResE_CLT ResE_CLT_Duration; 

DURATION ResF_CLT ResF_CLT_Duration; 

DURATION ResG_CLT ResG_CLT_Duration; 

DURATION ResH_CLT ResH_CLT_Duration; 
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DURATION ResJ_CLT ResJ_CLT_Duration; 

5.3.3.3 Semaphore in ACT_Perform Combis (CME.ACT.Semaphore) 

Semaphores of ACT_Perform Combis in work flow are shown below. They are 

stored in simulation model elements, as shown in Figure 5.13. Details of these 

semaphores are given in Section 5.3.2.7, PO.RES.CLT.Duration. 

SEMAPHORE A_Perform A_Perform_Semaphore; 

SEMAPHORE B_Perform B_Perform_Semaphore; 

SEMAPHORE C_Perform C_Perform_Semaphore; 

SEMAPHORE D_Perform D_Perform_Semaphore; 

SEMAPHORE E_Perform E_Perform_Semaphore; 

SEMAPHORE F_Perform F_Perform_Semaphore; 

SEMAPHORE G_Perform G_Perform_Semaphore; 

 
Figure 5.13 Assigning semaphore and duration for B_Perform Combi  
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5.3.3.4 Duration in ACT_Perform Combis (CME.ACT.Duration) 

Durations of ACT_Perform Combis in work flow sub-networks are shown below. 

These ACT_Perform_Duration Variables are stored in simulation model elements, as 

shown in Figure 5.13. Details of these durations are given in Section 5.3.2.3, 

PO.ACT.Duration. 

DURATION A_Perform A_Perform_Duration; 

DURATION B_Perform B_Perform_Duration; 

DURATION C_Perform C_Perform_Duration; 

DURATION D_Perform D_Perform_Duration; 

DURATION E_Perform E_Perform_Duration; 

DURATION F_Perform F_Perform_Duration; 

DURATION G_Perform G_Perform_Duration; 

5.3.3.5 Strength in iRES_Stay Links (CME.RES.Stay.Strength) 

Strengths of iRES_Stay links in work flow sub-networks are shown below. They 

are stored in simulation model elements, as shown in Figure 5.14. Details of these 

strengths are given in Section 5.3.2.4 PO.RES.Strength. Notice, the RES_Leave_Strength 

Variables are preceded by an exclamation sign returning the opposite value of the 

Variables. Accordingly, the opposite of resource leaving the site is resource staying on 

the site. 

 STRENGTH iResA_Stay !ResA_Leave_Strength; 

STRENGTH iResB_Stay !ResB_Leave_Strength; 

STRENGTH iResC_Stay !ResC_Leave_Strength; 

STRENGTH iResD_Stay !ResD_Leave_Strength; 

STRENGTH iResE_Stay !ResE_Leave_Strength; 

STRENGTH iResF_Stay !ResF_Leave_Strength; 

STRENGTH iResG_Stay !ResG_Leave_Strength; 
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Figure 5.14 Assigning Strength for Link iResB_Stay 

 

5.3.3.6 Strength in iRES_Leave (CME.RES.Leave.Strength) 

As opposed to the strength in iRES_Stay Link, the Strength of iRES_Leave is 

RES_Leave_Strength Variable. Details of these strengths are given in Section 5.3.2.4, 

PO.RES.Strength.   

STRENGTH iResA_Leave ResA_Leave_Strength; 

STRENGTH iResB_Leave ResB_Leave_Strength; 

STRENGTH iResC_Leave ResC_Leave_Strength; 

STRENGTH iResD_Leave ResD_Leave_Strength; 

STRENGTH iResE_Leave ResE_Leave_Strength; 

STRENGTH iResF_Leave ResF_Leave_Strength; 

STRENGTH iResG_Leave ResG_Leave_Strength; 
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Figure 5.15 Assigning strength for iResB_Leave Link 

 

5.3.3.7 OnFlow in iRES_Leave Links (CME.RES.Leave.OnFlow) 

Crew idle time of resources is collected only when SQS-AL is processing the 

sequence step of the activities they serve. For example, CITs for Resource B is collected 

from simulation runs during processing SQS2 because Activity B is in SQS2.   

ONFLOW iResB_Leave COLLECT ResB_CIT1  

PRECOND 'ithSQS==2' ResB_Idle.AveWait*ResB_Idle.TotCount; 

ONFLOW iResC_Leave COLLECT ResC_CIT1  

PRECOND 'ithSQS==2' ResC_Idle.AveWait*ResC_Idle.TotCount; 

ONFLOW iResD_Leave COLLECT ResD_CIT1  

PRECOND 'ithSQS==3' ResD_Idle.AveWait*ResD_Idle.TotCount; 

ONFLOW iResE_Leave COLLECT ResE_CIT1  

PRECOND 'ithSQS==3' ResE_Idle.AveWait*ResE_Idle.TotCount; 

ONFLOW iResF_Leave COLLECT ResF_CIT1  

PRECOND 'ithSQS==3' ResF_Idle.AveWait*ResF_Idle.TotCount; 
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ONFLOW iResG_Leave COLLECT ResB_CIT1  

PRECOND 'ithSQS==4' ResG_Idle.AveWait*ResG_Idle.TotCount; 

 
Figure 5.16 Collecting CITB during processing SQS2 

 

5.3.4 Control Statements (CS)  

Simulation code in the following sections is encoded in Stroboscope GUI’s 

Control Statements. 

5.3.4.1 Sequence step and replication loops (CS.Loops) 

The following two While-Loops statements control SQS-AL’s sequence step loop 

and replication loop, respectively. As discussed in Chapters 4 and 5, the replication loop 

is for collecting crew idle time of resources whose activities are in the current processing 

sequence step (ithSQS). The sequence step loop is for determining crew lead time for the 

resources. An extra sequence step is added to obtain the final results of project duration, 

project idle time, and idle time in resource utilization. 
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WHILE 'ithSQS <= nSQS+1';   / Start Sequence Step Loops. 

WHILE 'ithRep <= nRep ';  / Start Replication Loops. 

CLEAR;    / Clear temporary data. 

Crew lead times for all resources are determined when SQS-AL finishes 

processing the last sequence step. Nevertheless, an extra sequence step is added to obtain 

the final results of project duration, project idle time, and idle time in resource utilization. 

The CLEAR statement is executed at the beginning of each replication to clear the 

results from a previous simulation run. This statement sets all non-persistent SaveValues 

to their initial values and clears all data and statistics from non-persistent Collectors and 

BinCollectors. 

5.3.4.2 Initializing work amounts (CS.ACT.INIT) 

 At the beginning of each replication, the work amount in units for each activity is 

initialized in ACT_Remain Queues in Work Flow Networks. INIT is a Stroboscope’s 

statement used to create and place resources in specified Queues. As discussed in Section 

5.2.1, Work Flow Template, the amount of Resources rq_ACT, in ACT_Remain Queue 

is the number of remaining units needed to be completed, which is 4, as shown in the 

code below.  

INIT A_Remain 4; / The resource name in this Queue is “rq_A”. 

INIT B_Remain 4; / The resource name in this Queue is “rq_B”. 

INIT C_Remain 4; / The resource name in this Queue is “rq_C”. 

INIT D_Remain 4; / The resource name in this Queue is “rq_D”. 

INIT E_Remain 4; / The resource name in this Queue is “rq_E”. 

INIT F_Remain 4; / The resource name in this Queue is “rq_F”. 

INIT G_Remain 4; / The resource name in this Queue is “rq_G”. 
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5.3.4.3 Initialization of resources (CS.RES.INIT) 

 At the beginning of each replication, resources are initialized in RES_Offsite 

Queues in resource flow sub-networks. As discussed in Section 5.2.2, Resource Flow 

Template, resources in RES_Offsite Queues are considered unemployed, prior to the start 

of the first unit and after the end of the last unit. 

INIT ResA_Offsite 1; / The resource name in this Queue is “ResA”. 

INIT ResB_Offsite 1; / The resource name in this Queue is “ResB”. 

INIT ResC_Offsite 1; / The resource name in this Queue is “ResC”. 

INIT ResD_Offsite 1; / The resource name in this Queue is “ResD”. 

INIT ResE_Offsite 1; / The resource name in this Queue is “ResE”. 

INIT ResF_Offsite 1; / The resource name in this Queue is “ResF”. 

INIT ResG_Offsite 1; / The resource name in this Queue is “ResG”. 

5.3.4.4 Executing simulation (CS.Simulate) 

After initializing the work amount in ACT_Remain and the resources in 

RES_Offsite, the simulation starts after Stroboscope executes the SIMULATE statement. 

Then, the simulation replication will end when all activities are completed, i.e., when 

there is no rq_ACT resource in each and every one of the ACT_Remain Queues.  

SIMULATE; /Run one replication 

Note that the crew idle time for each resource is collected at the end of each 

replication during simulation runs, while crew lead time is determined at the end of 

processing each sequence step. Therefore, the simulation code collecting crew idle time is 

encoded in simulation model elements, discussed in Section 5.3.3.7, 

CME.RES.Leave.OnFlow, while the code determining crew lead time is coded in Control 

Statements, discussed in Section 5.3.4.6, CS.RES.CLT. 
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5.3.4.5 Recording CITs in bcltRES_IdleSQS BinCollectors (CS.RES.CIT.SQS) 

 At the end of the specified number of replications for each sequence step, the 

following data are collected. 

1) Crew idle time of resources from processing the current sequence step 

2) Project duration from processing the current sequence step 

3) Sum of crew idle time and project idle time from processing the current 

sequence step 

These collected data are for tracking changes in crew idle time, project duration, 

and project idle time. They are valuable for analysis of the impact of an assigned crew 

lead time on activities, resources, and the project. The following code is for calculating 

the crew idle time (e.g., svResB_Idle) for each resource (e.g., Resource B) responding to 

each sequence step processing. The svRES_Idle SaveValues are temporary storage for 

crew idle time, declared in Programming Object (5.3.2.5 PO.RES.TempIdleTime). The 

bcltRES_IdleSQS$<iSQS>$ BinCollectors (e.g., bcltResB_IdleSQS1) are permanent 

storage for crew idle time from each sequence step.  

ASSIGN svResB_Idle ResB_Idle.AveWait*ResB_Idle.TotCount; 

ASSIGN svResC_Idle ResC_Idle.AveWait*ResC_Idle.TotCount; 

ASSIGN svResD_Idle ResD_Idle.AveWait*ResD_Idle.TotCount; 

ASSIGN svResE_Idle ResE_Idle.AveWait*ResE_Idle.TotCount; 

ASSIGN svResF_Idle ResF_Idle.AveWait*ResF_Idle.TotCount; 

ASSIGN svResG_Idle ResG_Idle.AveWait*ResG_Idle.TotCount; 

ASSIGN iSQS 1; 

WHILE 'iSQS<=nSQS+1'; 

IF 'ithSQS==$<iSQS>$'; 

COLLECT bcltResB_IdleSQS$<iSQS>$ svResB_Idle; 
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COLLECT bcltResC_IdleSQS$<iSQS>$ svResC_Idle; 

COLLECT bcltResD_IdleSQS$<iSQS>$ svResD_Idle; 

COLLECT bcltResE_IdleSQS$<iSQS>$ svResE_Idle; 

COLLECT bcltResF_IdleSQS$<iSQS>$ svResF_Idle; 

COLLECT bcltResG_IdleSQS$<iSQS>$ svResG_Idle; 

COLLECT bcltProjectDurationSQS$<iSQS>$ SimTime; 

COLLECT bcltProjectIdleTimeSQS$<iSQS>$ 

'svResA_Idle+ svResB_Idle+ svResC_Idle 

+svResD_Idle+ svResE_Idle+ svResF_Idle 

+svResG_Idle'; 

ENDIF; 

ASSIGN iSQS iSQS+1; 

WEND; /iSQS 

ASSIGN ithRep ithRep+1; / Increase ithRep by 1 

WEND; /ithRep 

Remember that iSQS is used for coding purpose, while ithSQS is used to track the 

current index of sequence step. For the code above, the small nested loop controlled by 

iSQS is not the sequence step loop. 

The last line of the code is the end of SQS-AL’s replication loop. When 

Stroboscope reaches this line, it will check whether the current replication index (ithRep) 

is less than or equal to the total number of replications (nRep). The corresponding 

WHILE statement for this WEND of ithRep (replication loop) is in Section 5.3.4.1, 

CS.Loops. SQS-AL exits the replication loop when ithRep equals to nRep, and enters the 

sequence step loop. 
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5.3.4.6 Determining crew lead time for activities belonging to ithSQS (CS.RES.CLT) 

 After SQS-AL exits the replication loop and enters the sequence step loop, the 

crew lead time of resources serving activities in the current processing sequence step will 

be determined. For example, after the total number of replications is executed in 

processing SQS2, SQS-AL determines CLTs of Resources ResB and ResC serving 

Activities B and C in SQS2, respectively. The code below shows the determination of the 

crew lead time for Resource Res_B.  

IF 'ithSQS==2'; / Resource Res_B serves activity B in SQS2. 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResB_CIT1,nthBinInterval] 

<ResB_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResB_CLT1 BinHigh[ResB_CIT1,nthBinInterval]; 

ENDIF; 

As shown in the code above, if the current sequence step is SQS2 (ithSQS==2), 

SQS-AL will determine CLTB. The nthBinInterval SaveValue is used to indicate the 

current index of ResB_CIT1 BinCollector. The nthBinInterval is increased by 1 until the 

cumulative frequency value of the indexed element is greater than the user-specified 

confidence level for that particular resource. To obtain the cumulative frequency, 

PctAtOrBelowBin function is used; it returns the percentage of values collected in the 

indexed element and all lower elements. To obtain the value of crew lead time, BinHigh 

function is used; it returns the upper bound of the indexed element. 

For the example in Table 4.4, the element in ResB_CIT1 BinCollector having a 

PctAtOrBelowBin[ResB_CIT1,nthBinInterval] greater than 80% is in the range of 55 
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days. Accordingly, PctAtOrBelowBin[ResB_CIT1, nthBinInterval] returned 94.27%, 

whereas BinHigh[ResB_CIT1, nthBinInterval] returned 55 days. The following 

simulation code is for obtaining the crew lead time for Resources ResC, ResD, ResE, 

ResF, and ResG. 

 The code below is for determining CLTC (ResC_CIT1) of Resource ResC serving 

Activity C in SQS2.  

IF 'ithSQS==2'; / Resource Res_C serves activity C in SQS2. 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResC_CIT1,nthBinInterval] 

<ResC_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResC_CLT1 BinHigh[ResC_CIT1,nthBinInterval]; 

ENDIF; 

The code below is for determining CLTD (ResD_CIT1) of Resource ResD serving 

Activity D in SQS3.  

IF 'ithSQS==3'; / Resource Res_D serves activity D in SQS3. 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResD_CIT1,nthBinInterval 

<ResD_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResD_CL1 BinHigh[ResD_CIT1, nthBinInterval]; 

ENDIF; 

The code below is for determining CLTE (ResE_CIT1) of Resource ResE serving 

Activity E in SQS3.  
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IF 'ithSQS==3 '; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResE_CIT1 , nthBinInterval] 

<ResE_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResE_CLT1 BinHigh[ResE_CIT1,nthBinInterval]; 

ENDIF; 

 The code below is for determining CLTF (ResF_CIT1) of Resource ResF serving 

Activity F in SQS3.  

IF 'ithSQS==3 '; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResF_CIT1 , 

nthBinInterval]<ResF_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResF_CLT1 BinHigh[ResF_CIT1,nthBinInterval]; 

ENDIF; 

The code below is for determining CLTG (ResG_CIT1) of Resource ResG serving 

Activity G in SQS4.  

IF 'ithSQS==4’; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResG_CIT1,nthBinInterval] 

<ResG_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResG_CLT1 BinHigh[ResG_CIT1,nthBinInterval]; 

ENDIF; 
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ASSIGN ithSQS ithSQS+1; 

WEND; / ithSQS 

 The last line of the code is the end of the sequence step loop. When Stroboscope 

reaches this line, it will check whether the current index of the sequence step (ithSQS) is 

greater than the total number of sequence steps plus one (nSQS+1). If ithSQS is not 

greater than nSQS+1, SQS-AL will begin processing the next sequence step. On the other 

hand, if ithSQS is greater than nSQS+1, SQS-AL will stop. At the end of SQS-AL, crew 

lead times for all resources are determined, and the schedule is finalized. Project duration 

and project idle time are recorded from the processing of every sequence step, as well as 

the idle time of all resources. Results from SQS-AL are comprehensively discussed in 

Chapter 8, ChaStrobe Application. 

5.4 Summary 

 This chapter discusses two simulation model templates and a comprehensive 

simulation model and code for the Sequence Step Algorithm (SQS-AL). First, the 

proposed simulation model templates are introduced in details related to repetitive 

projects. The advantages of the simulation model templates are also discussed. The 

implementation of SQS-AL in simulation and cooperation between SQS-AL and the 

templates is presented. An example of a repetitive project is used to demonstrate the 

application of SQS-AL in simulation and also the proposed simulation model templates. 

To facilitate the means of collecting simulation data for SQS-AL, the two 

templates are established: 1) Work Flow template, and 2) Resource Flow template. The 

Work Flow template is for modeling repetitive activities, whereas the Resource Flow 

template is for modeling utilization of resources. The design of the two templates 
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facilitates the creation of organized and systemized simulation models for applying the 

Sequence Step Algorithm (SQS-AL) to repetitive projects. The two templates also 

provide users with the simulation outputs produced by SQS-AL. 

 The Work Flow template is designed to produce an efficient and effective 

simulation model of repetitive activities. The use of the Work Flow template results in 

the following:  

• Tracking work progress of repetitive activities. Different work statuses of 

repetitive activities in each unit are categorized in: 

a. Remaining work, represented by ACT_Remain Queues 

ACT_Remain.CurCount indicates the number of uncompleted units. 

b. On-going work, represented by ACT_Perform Combis 

ACT_Perform.CurInst indicates the number of in-progress units. 

c. Completed work, represented by ACT_Complete Queues 

ACT_Complete.CurCount indicates the number of completed units. 

• Modeling precedence constraints. The precedence constraints for each 

repetitive activity are modeled through its semaphore by comparing its work 

progress to those of its preceding activities, promptly derived from tracking 

activities’ work progress 

• Simulating activity durations 

The Resource Flow template is designed to represent the simulation model of 

resources serving repetitive activities. The use of the Resource Flow template results in 

the following:  
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• Differentiating states of resources. Different states of resources are 

categorized in: 

a. Unemployed. Resources are unemployed, and thus they are not on the 

construction site, represented by RES_Offsite Queues. During the period 

of unemployment, resources are not considered idle.  

b. Being Idle during employment. The duration that resources are employed 

but performing no work is considered idle time. The idle time of resources 

is presented by the time resources spend in RES_Idle Queues.  

c. Being productive during employment. The duration that resources perform 

work is considered productive time. The productive time of resources is 

presented by the time resources spend in ACT_Perform Combis.  

• Recording the duration of crew idle time (CIT). Crew idle time of resources is 

derived from the total duration resources spend in RES_Idle Queues, which is 

RES_Idle.AveWait x RES_Idle.TotCount 

• Postponing resource arrival date. Resources are scheduled to the site 

according to their calculated crew lead time (CLT), which is the duration of 

RES_CLT Combis. 

• Determining when to lay off resources. The decision whether to lay off a 

resource is determined by checking the number of incomplete units of its 

activity, represented by ACT_Remain.CurCount. 

As stated above, the proposed simulation model templates offer the ability of 

collecting data and distinguishing different statuses of activities and resources. The 

proposed simulation model templates provide instantaneous data required by SQS-AL.  
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The last example in this chapter shows the application of the templates, and also explains 

the simulation code and model for SQS-AL. 



 

CHAPTER 6 

 WORK BREAKS 

CHAPTER 6  WORK BREAKS 

To minimize idle time and achieve continuous resource utilization, the Sequence 

Step Algorithm (SQS-AL) postpones the arrival date of resources. Results from the 

postponement are 1) cost reduction from minimizing resource idle time and 2) 

productivity improvement from the learning-curve phenomenon. However, minimizing 

idle time comes at the cost of prolonged project duration; as a result, penalty cost is 

incurred from the increased project duration. 

Penalty cost from the increased project duration could exceed the savings from 

the minimized resource idle time. To mitigate this problem, relaxation of resource 

continuity constraints should be considered. Carefully examining and balancing the 

tradeoff between satisfying and relaxing continuity constraints can optimize both project 

duration and cost. Chapter 4 demonstrates that the tradeoff can be analyzed using 

different confidence levels of resources. Relaxing continuity constraints using lower 

confidence levels results in a shorter project duration. However, this approach is effective 

only to a certain extent. Relaxing continuity constraints using confidence levels may not 

effectively reduce idle time and project duration simultaneously. Thus, introducing 

another form of relaxation focusing on reducing the increased project duration without 

incurring idle time is necessary. 

149 



This chapter introduces the application of work breaks within repetitive activities, 

which is another form of relaxation of resource continuity constraints. A work break is a 

deliberate interruption in the work of a resource which specifies when resources should 

leave the site and for how long. With work breaks, resources will leave the site at the 

beginning of the work break and return at the end of the work break. It is essentially a 

predetermined interruption, intentionally scheduled in a resource calendar. This 

deliberate interruption in resource utilization (work break) can be used to relax continuity 

constraints. Applying work breaks properly in repetitive activities could result in an 

earlier start date of the repetitive activities, which in turn shortens project duration. 

The application and the calculation of work breaks in this chapter focus on 

reducing project duration. The calculation of work breaks uses the concepts from the 

Repetitive Scheduling Method (RSM) and the Sequence Step Algorithm (SQS-AL). The 

concept of controlling sequence in RSM is used to determine work break position. In this 

chapter, the calculation is shown in detail with an example, including simulation model 

and code.  

6.1 Introduction of Work Breaks 

Scheduling repetitive activities with the Repetitive Scheduling Method (RSM) or 

the Sequence Step Algorithm (SQS-AL) is likely to increase project duration. These 

methods postpone repetitive activities from their early start date in order to keep 

resources working continuously, without interruption. These methods provide a schedule 

with minimized idle time. 

Nevertheless, these methods result in lengthened project durations. In certain 

cases, cost savings from maintaining continuous resource utilization might not favorably 
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compensate for the penalty cost from the lengthened duration. Extending project duration 

from an early schedule should be carefully analyzed. 

Figure 6.1 is a production diagram showing the early schedule for four activities 

(A, B, C, and D) that repeat over 4 identical units. The resource performing Activity B 

has a total idle time of 30 days from 3 interruptions (LagB1,B2, LagB2,B3, and LagB3,B4). 

Similarly, Activity D has a total idle time of 45 days, caused by 3 interruptions. 

Therefore, this early schedule (CPM) results in 75 days of total idle time, where project 

duration is 105 days.  

 
Figure 6.1 The CPM schedule with 105-day project duration and 75-day idle time 

 

Figure 6.2 displays a schedule using RSM eliminating idle time by postponing 

Activities B and D from their early start dates. A comparison between Figure 6.1 (derived 

from CPM) and Figure 6.2 (derived from RSM) shows the resource continuity constraints 

in the RSM schedule eliminate all 75 days of resource idle time but increase project 

duration from 105 to 135 days. 
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 Figure 6.2 RSM schedule with an increased project duration from 105 to 135 days 

 

Typically, the cost savings due to the elimination of resource idle time is far 

greater than the additional cost from the increased project duration. Yet, in certain cases 

this generalization is not always true. Delaying project completion may increase indirect 

project costs, lead to lost opportunities, and result in a lower overall profit. Accordingly, 

the tradeoff between eliminating resource idle time and increasing project duration must 

be analyzed thoroughly. The same holds for the possibility of eliminating idle time 

without increasing project duration.  

One of the approaches that can be applied to RSM and SQS-AL in order to 

minimize cost and project duration is introducing work breaks in repetitive activities. A 

work break is a time period when a resource is scheduled to temporarily leave the project; 

resources do not earn wages during the work break. Remember, a work break is a 

scheduled interruption, while idle time is not. 

During idle time, resources are on site and being paid, although they do not 

produce output. Accordingly, the costs associated with work breaks and idle time are 

completely different, as well as their resulting discontinuities. Work breaks usually incur 
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cost of transporting resources (labor and equipment), cost of hiring and firing labor, cost 

of setting up and dismantling equipment, etc. Additionally, the impact of setup time after 

work breaks must also be evaluated. This chapter focuses on the underlying tradeoff 

between project idle time and project duration. 

Figure 6.3 illustrates the tradeoff between project idle time and project duration 

by introducing one work break in Activity B. In Figure 6.3, introducing a 20-day work 

break between B2 and B3 reduces project duration from 135 days (Figure 6.2) to 115 

days (Figure 6.3). Notice that in order to maintain resource continuity between B1 and 

B2, the start of B1 must be postponed from its early start date of day 15 (Figure 6.1) to 

day 25 (Figure 6.3). Overall, the introduction of a 20-day work break in activity B 

reduces project duration also by 20 days, from 135 days in Figure 6.2 (the RSM schedule 

without a work break) to 115 days in Figure 6.3 (the RSM schedule with one work 

break). This schedule is only 10 days longer than the project duration of 105 days in the 

CPM schedule, while at the same time it eliminates the 75 days of resource idle time. 

Thus, the schedule with the work break results in a better solution, summarized in Table 

6.1. 
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Figure 6.3 The work break B2-B3 reducing project duration from 135 to 115 days 

 

Method Project Duration 
(days) 

Total Resource Idle Time 
(days) 

Work 
Break 

Position 
CPM 105 75 None 
RSM 135 0 None 
RSM  115 0 B2-B3 

Table 6.1 Scheduling methods, idle time, project duration, and work break 
 

From this example the following questions must be answered prior to scheduling 

work breaks: 

• Which activities should be considered for the introduction of a work break 

(e.g., B)? 

• Between which repetitive units should the work break be introduced (e.g., B2-

B3)? 

• What should be the start date of that activity in the first unit (e.g. B1)? 

• How long should the duration of the work break be? 

These questions will be answered in this chapter for both deterministic and 

probabilistic activity durations. An example project consisting of 9 activities with 
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probabilistic durations repeating over 10 similar work units is used for the purpose of 

demonstration. 

6.2 Candidate Work Break Positions 

 Work break positions (e.g., B2-B3 in Figure 6.3) specify when resources will 

leave the site (e.g., the completion of B2 in Figure 6.3), and then return (e.g., the start of 

B3) to continue the work. To determine candidate work break positions, the following 

concepts derived from repetitive scheduling method (RSM) are used: 

1) Control points and controlling sequences 

2) Relative production rates 

6.2.1 Control Points and Controlling Sequences 

A control point between two repetitive activities is the precedence constraint that 

determines the start date of a succeeding repetitive activity under resource continuity 

constraints. In Figure 6.4, the control point between A and B is at the end of A3 and the 

start of B3 because it is the point that specifies the earliest start of repetitive Activity B, 

(day 35) under resource continuity constraints. 
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Figure 6.4 The control point between Activities A and B at A3-B3 

  

Another example is shown in Figure 6.5. In the figure, the control point between 

A and B is at the end of A2 and the start of B2 since it specifies the earliest start date of 

repetitive Activity B ( day 15 in Figure 6.5.b ) under resource continuity constraints. 

 
Figure 6.5 The control point between Activities A and B at A2-B2 

 

A controlling sequence is a series of activities that controls project duration under 

resource continuity constraints. It can be determined visually in a production diagram by 

navigating from project completion to project start through control points. Figure 6.6 

shows the control points and controlling sequence (in bold lines) from the example in 
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Figure 6.1.  Identifying a controlling sequence of a repetitive project when activity 

durations are deterministic is relative easy. However, for activities with probabilistic 

durations, the means of identifying a controlling sequence is slightly complicated. 
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Figure 6.6 The controlling sequence (A1 to A4, B3 to B2, C1 to C4, and D4) 

 

The implication of the controlling sequence, shown in Figure 6.6, reveals that the 

durations of activities on the controlling sequence determine the minimum project 

duration under resource continuity constraints. To shorten the project duration, work 

breaks are introduced in these activities to relax the continuity constraints. The 

conclusion from this observation is that only repetitive activities on controlling sequences 

should be considered as candidates for introducing work breaks. Activities not on the 

controlling sequences can be ignored. 

For a project with probabilistic activity durations, lags between activities must be 

calculated before navigating from project completion to project start through the 

minimum lags between activities in order to identify controlling sequence. Figure 6.7, 

6.8, and 6.9 are the results from three replications of an example project with 
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probabilistic activity durations. These results and explanations demonstrate the use of 

minimum lags in identifying controlling sequence and candidate work break positions.  

Controlling sequence activities in Figure 6.7 are A1 to A4, B3 to B2, C1 to C4, 

and D4. Therefore, the candidate work break position for Activity A are A1-A2, A2-

A3,A3-A4;for Activity B are B1-B2,B2-B3, B3-B4; for Activity C are C1-C2,C2-C3, 

C3-C4; and for activity D are D3-D4. Thus, there are 10 possible work break positions. 

Work break position B1-B2 is considered a possible work break since activity B2 is on 

the controlling sequence. This is also the same for position B3-B4 due to B3 and for 

position D3-D4 due to D4.  

These work break positions are the candidate work breaks considering they are on 

controlling sequence. However, not all of them are effective work break positions. 

Effective work break positions will be discussed in Section 6.2.2, Relative Production 

Rates. 

 
Figure 6.7  Determining the controlling sequence for the 1st replication 
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In Figure 6.8, controlling-sequence activities are A1 to A4, B3 to B2, C1 to C3, 

and D3 to D4. Therefore, the candidate work breaks are on Activity A are A1-A2, A2-

A3,A3-A4;on Activity B are B1-B2,B2-B3, B3-B4; on Activity C are C1-C2,C2-C3, C3-

C4; and on Activity D are D2-D3, D3-D4. Thus, there are 11 possible work break 

positions. 
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Figure 6.8 Determining the controlling sequence for the 2nd replication 

 

In Figure 6.9, controlling-sequence activities are A1 to A2, B2, C2, and D2 to D4. 

Therefore, the candidate work breaks on Activity A are A1-A2, A2-A3, A3-A4;on 

Activity B are B1-B2 and B2-B3; on Activity C are C1-C2 and C2-C3; and on Activity 

D are D1-D2, D2-D3, D3-D4. Thus, there are 10 possible work break positions. 
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Figure 6.9 Determining the controlling Sequence for the 3rd replication 

 

According to these three replications (Figures 6.7 to 6.9), the probability that 

activities will be on the controlling sequence are determined, shown in Table 6.2. Then, 

these probabilities can be used in order to determine work break positions. 

Activity # Controlling Sequence 
(out of 3 replications) 

% Controlling Sequence 

A1 3 100 
A2 3 100 
A3 3 100 
A4 3 100 
B1 0 0 
B2 3 100 
B3 2 66.66 
B4 0 0 
C1 2 66.66 
C2 3 100 
C3 2 66.66 
C4 1 33.33 
D1 0 0 
D2 1 33.33 
D3 2 66.66 
D4 3 100 

Table 6.2 Probability of activities on the controlling sequence 
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From Table 6.2, Activities A1 to A4, B2, C2, and D4 are always on the 

controlling sequence. Based on the probability that activities might be on the controlling 

sequence, the number of possible work break positions is reduced. Considering only 

controlling-sequence activities significantly reduces the number of candidate work break 

positions. Nevertheless, not every work break position on controlling-sequence activities 

could shorten project duration. Figure 6.6 validates this claim; introducing a work break 

on either controlling-sequence Activity A or C will lengthen rather than shorten the 

project. On the other hand, the introduction of a work break in Activity B does shorten 

project duration as shown in Figure 6.6. 

The effectiveness of work breaks in shortening project duration depends on the 

relative production rates between activities on the controlling sequence as explained 

below. 

6.2.2 Relative Production Rates 

 Positions of control points in the Repetitive Scheduling Method (RSM) are 

subject to the relative value of production rates between activities. According to RSM, 

the relative value of production rates between predecessors and successors is 

characterized as either converging or diverging. 

A converging relationship occurs when the production rate of a successor is 

greater than that of its predecessor. The control point between the two repetitive activities 

is at the completion of the predecessor’s last unit and the start of the successor’s last unit. 

For example, in Figure 6.6, the production rate of B is greater than that of A, meaning 

Activities A and B have a converging relationship. Therefore, the control point between 

A and B is at the end of A4 and the start of B4. 
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A diverging relationship, on the other hand, occurs when the production rate of a 

successor is less than its predecessor. The control point between the two activities is at 

the end of the predecessor’s first unit and the start of the successor’s first unit. For 

example in Figure 6.6, the production rate of Activity C is less than that of B, meaning 

they have a diverging relationship. Therefore, the control point between B and C is at the 

end of B1 and the start of C1. The concepts of controlling sequence and relative 

production rates will be discussed further to identify and validate the effectiveness of 

candidate work break positions.  

6.2.3 Determining Effective Work Break Positions 

To confirm whether introducing a work break in a controlling-sequence activity 

can shorten the project, it is necessary to compare the production rate of that activity to 

the production rates of its direct predecessor and successor. Considering, for example, 

Activity B in Figure 6.6, the converging relationship between A and B and the diverging 

relationship between B and C enable a work break in B to shorten project duration. 

Therefore, a controlling-sequence activity having a converging relationship to its 

predecessor and a diverging relationship to its successor are the critical criteria in 

determining an effective work break in shortening project duration, given that the three 

activities (Activities A, B, and C in Figure 6.6) are on the same controlling sequence. 

As shown in Figure 6.6, the converging relationship between Activities A and B 

allows Activities B1 and B2 to start earlier if a work break is introduced at the end of B2. 

Clearly, the relative production rate between A1-A2 and B1-B2 is still converging. The 

control point between A and B is at the end of A2 and the start of B2. Thus, the 

introduction of the work break in B creates a new control point that allows B1 to start 
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earlier. However, the fact that B1 is now scheduled earlier does not guarantee that the 

work break in B will result in shorter project duration. It is necessary to check the relative 

production rates between B and its successor on the same controlling sequence, i.e., 

Activity C. 

The second requirement is the diverging relationship between B and C which 

enables Activity C to start and finish earlier if a work break is introduced to Activity B. 

Since the control point between B and C is at the start date of C1, starting B1 earlier 

moves the control point toward the project start date, resulting in an earlier start date for 

C1. Consequently, Activity C would finish sooner, resulting in shorter project duration. 

It is important to realize that work breaks do not shorten the project duration 

directly; instead, they relax the continuity constraints, allowing controlling-sequence 

activities to start and finish sooner. For example in Figures 6.2 and 6.3, project duration 

is shortened because the controlling sequence Activity C starts earlier in Figure 6.3 than 

it does in Figure 6.2. Clearly, the reduction in project duration is due to the earlier start 

and finish date of Activity C, the successor to the activity to which the work break is 

introduced (i.e. Activity B).  

In summary, an activity to which work break should be introduced must meet the 

following criteria. 

1) It must be on a controlling sequence. 

2) It must have a converging relationship with its direct predecessor on the same 

controlling sequence. 

3) It must have a diverging relationship with its direct successor on the same 

controlling sequence.  
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The application of these rules reduces the number of candidate work break 

positions to just a handful. The next step is to determine work break duration for each 

work break position that fits the aforementioned criteria. 

6.3 Determining Work Break Duration 

 After all the possible work break positions are filtered down to only those that 

may indeed shorten project duration, each candidate work break must be analyzed in 

order to derive a new schedule and project duration. For an activity with a work break, a 

new schedule must include 1) activity start date in the first unit and either 2.1) work 

break duration or 2.2) work break end date. 

Work break duration specifies a fixed duration for work break. The sooner the 

resource completes the last unit before the break, the sooner it will return to the site; the 

later it completes the last unit, the later it will return.  

On the other hand, work break end date specifies a fixed date when the work 

break is to end. A resource will always return on the same date. Accordingly, the work 

break duration for a fixed-date work break varies, depending on when the resource 

finishes the last unit prior to the break. 

To construct a new project schedule for a particular work break position, the 

resource continuity constraints for that activity must be split into two sets: one before the 

work break and one after the work break. For example, in Figure 6.3, a work break is 

introduced at the end of B2. This means that Resource B is scheduled to work 

continuously from B1 to B2 and then takes a break at the end of B2. After the break, 

Resource B will return and work continuously from B3 to B4. Thus, for a deterministic 

problem, 
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Arrival date = {ESD} + {sum of idle times (lags) strictly before the work break} 

Work break duration = {sum of idle times (lags) at and after the work break} 

Therefore, Activity B1 must be postponed from its early start date by the sum of 

idle times before the work break (LagB1,B2) in order to achieve continuous resource 

utilization from Activity B1 to B2, as shown in Figure 6.3. After the completion of B2, 

the resource will take a break for a period equal to the sum of idle times at and after the 

work break location (LagB2,B3 + LagB3,B4) to achieve continuity between Activities B3 and 

B4.  

As a result from introducing a work break between Activities B2 and B3 (B2-B3), 

the increased project duration decreases from 135 days (Figure 6.2) to 115 days (Figure 

6.3). For the example shown in Figure 6.2, it is obvious that the B2-B3 work break 

position minimizes project duration the most. However, each work break position must 

be tested individually. This is usually the case for projects with probabilistic activity 

durations. 

To model probabilistic duration activities with a work break, crew idle time (CIT) 

is split into two: CIT before the break (CIT1) and CIT after the break (CIT2). CIT1 

equals the sum of arrival idle time (AIT) and unit idle time before the break (UIT1), and 

CIT2 equals unit idle time at and after the break (UIT2). Therefore, the calculation for a 

fixed-duration work break is 

CIT1 = {idle time between arrival date and start date in the first unit} 

 + {sum of idle times (lags) strictly before the work break} 

which is 

 CIT1 = AIT + UIT1 
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For the duration of the work break (CIT2) 

CIT2 (fixed duration) = {sum of idle times (lags) at and after the work break} 

which is 

 CIT2 (fixed duration) = UIT2 

After CIT1 and CIT2 are collected from a number of replications, the 

corresponding crew lead times (CLT1 and CLT2 respectively) can be determined. These 

modifications of CIT and CLT are required in order to model work breaks and resource 

continuity constraints under the variability in probabilistic activity durations. 

For example, assuming that the durations of activities in the previous example are 

probabilistic durations, when the Sequence Step Algorithm (SQS-AL) is processing 

SQS2, CIT1B and CIT2B are collected from each replication. These CITs are different 

from one replication to the next because of the variability in activity durations. After a 

user-specified number of replications are simulated, the collected samples of CIT1 and 

CIT2 are summarized in histograms based on relative frequency. At this point, the user 

does not have a single deterministic value of CIT1 and CIT2, which is used to determine 

CLT1 and CLT2, respectively. Instead the user must choose a desired confidence level 

(discussed in Chapter 4) to select the corresponding crew lead times for before and after 

the break (CLT1 and CLT2) from the corresponding histograms for CIT1 and CIT2. 

For a fixed-duration work break, CLT1 is the start date of the activity in the first 

unit (e.g., B1), whereas CLT2 is the selected work break duration. After the completion 

of the last unit prior to the break (e.g. the finish date of B2), Resource B will take a break 

for a duration of CLT2B. Delaying the work in the unit right after the break by CLT2B, 
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ensures that when Resource B returns it should be able to work continuously and without 

idle time with probability equal to a chosen confidence level.  

Using the calculation of fixed-duration work breaks, the work break has a fixed 

duration equal to CLT2, but the start and end of the break are uncertain. Nevertheless, in 

certain cases, it may be desirable to define CIT2 as a specific end date of work break. In 

order to determine such a specific return date, the calculation of CIT2 for a fixed-date 

work break is 

CIT2 (fixed date) = {idle time between arrival date and start date in the first unit} 

+ {sum of all idle times (lags) } + {durations of activity before the break} 

which is 

CIT2 (fixed date) = AIT + UIT1 + UIT2 + T1 

where, T1 is the sum of activity durations before the break. 

6.4 Example 6.1 Repetitive project with work breaks 

The methodology for the optimal introduction of work breaks will be 

demonstrated using an example project comprised of 9 activities with probabilistic 

durations that repeat over 10 non-identical work units. The simulation model, the 

sequence step algorithm, and the introduction of work breaks have been implemented 

using the Stroboscope, discrete-event simulation system. 

The precedence network for each of the 10 work units in the example project is 

shown in Figure 6.10. The quantities of work for each activity, however, are different in 

each unit as shown in Table 6.3. Moreover, each activity is performed by a different crew 

that has its own uncertain production rate. The production rate for each crew follows a 

normal distribution with the mean and standard deviation shown in Table 6.3. Thus, 
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activity durations vary from unit to unit because of different work quantities and because 

of the variability in production rates. 

 
Figure 6.10 Single unit precedence diagram for Example 6.1 

 

Activity 
Name 

Resource 
Production Rate 

Repetitive Unit 
1 2 3 4 5 6 7 8 9 10 

Mean SD Work Amount 
A 20 2.0 200 200 200 200 200 200 400 400 400 400
B 30 3.0 150 150 100 100 100 100 100 100 100 100
C 30 3.0 250 200 200 250 300 200 350 400 200 350
D 15 1.5 300 400 400 450 300 300 250 250 250 400
E 20 2.0 150 150 150 150 150 150 200 200 200 200
F 25 2.5 350 400 300 350 150 200 400 250 300 250
G 30 3.0 150 150 150 150 300 250 300 300 300 450
H 20 2.0 200 300 300 200 250 400 300 400 300 250
J 15 1.5 200 200 200 200 200 200 300 300 300 300

 Table 6.3 Daily production rates and activity work amounts for Example 6.1 
 

For this example, 1000 replications were simulated for processing each SQS. A 

confidence level of 80% was used to choose CLT1 for activities without a work break 

and CLT1 and CLT2 for activities with a work break. In this example, CLT2, if required, 

represents a specific return date after a work break. 

Figure 6.11 shows the production diagram of an early start schedule from the first 

replication (out of 1000 replications). Crews are assumed to arrive and start work in the 

first unit exactly when needed (no idle time) and activities begin as soon as their 
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predecessors in the same unit are completed. This produces the shortest possible average 

project duration of 277 days. As expected, allowing activities to start as early as possible 

results in a large average idle time, 438 days in Figure 6.11.  
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Figure 6.11 CPM schedule with 277-day project duration and 438-day idle time 
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Figure 6.12 SQS-AL schedule without work breaks with 449-day project duration and 1-
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Activity

Crew 
Arrival 

Date 
(CLT1) 

Work 
Break 

Location

Crew 
Return 
Date 

(CLT2) 
A 0 - - 
B 114 - - 
C 68 - - 
D 120 - - 
E 120 - - 
F 78 - - 
G 282 - - 
H 102 - - 
J 288 - - 

Table 6.4 CLT1 from the SQS-AL schedule without work breaks for Example 6.1 
 

Figure 6.12 shows the project schedule derived from SQS-AL. To eliminate idle 

time, start dates of activities are delayed by their respective CLT1, as shown in Table 6.4, 

using a confidence level of 80%. The resulting average total idle time for the project is 

only 1 day but the average project duration has increased to 449 days. Thus, to eliminate 

resource idle time, project duration increased by 172 days or about 60%. It may be hard 

to justify to management or the project owner to delay project completion that much in 

order to eliminate idle time. 

The decrease in project duration due to the introduction of one or more work 

breaks will now be investigated. As shown in Figure 6.12, there are 5 repetitive activities 

on the controlling sequence (A, B, D, G, and J) and only these activities are candidates 

for work breaks. Once the activities on the controlling sequence are identified, their 

relative production rates are compared to indicate activities that fit the aforementioned 

criteria. According to the criteria, only Activities B and G (in Figure 6.12) satisfy the two 

necessary conditions for shortening project duration, i.e., a converging relationship with 

their predecessor and a diverging relationship with their successor. Activity B, for 
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example, has a converging relationship with Activity A (its predecessor) and a diverging 

relationship with Activity C (its successor).  

To determine the best work break position for Activity B, yielding the greatest 

decrease in project duration, nine possible positions are evaluated, which are at the finish 

dates of B1, B2, and so on until B9. For each candidate work break position, crew idle 

times before and after the prospective work break (CLT1 and CLT2) are calculated to 

determine the start date of B1 and the specific return date for the resource after the break. 

The same process is performed for Activity G at the finish dates of G1, G2, and so 

on until G9. After all the candidate break positions (in Activities B and G) are evaluated, 

the results indicate that the two best work break locations in B and G are at the 

completion of B5 and G7, as shown in Figure 6.13. A work break at the completion of G7 

shortens project duration by 39 days, whereas a work break at the completion of B5 

shortens project duration by 34 days. 

0

1

2

3

4

5

6

7

8

9

10

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
Time

U
ni

t

A B C D E F G H J

Average Total Idle Time   = 3 days
Average Project Duration = 376 days

Controlling Sequence  

Figure 6.13 SQS-AL schedule with 2 work breaks with 376-day project duration for 
Example 6.1  
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Activity

Crew 
 Arrival 

Date 
(CLT1) 

Work 
Break 

Location

Crew  
Return 
Date 

(CLT2) 
A 0 - - 
B 38 B5-B6 134 
C 68 - - 
D 78 - - 
E 102 - - 
F 78 - - 
G 208 G7-G8 288 
H 102 - - 
J 214 - - 

Table 6.5 CLT from the SQS-AL schedule with 2 work breaks for Example 6.1 
 

Applying the two work breaks together shortens the average project duration by 

73 days, from 449 to 376 days. The average total idle time increases slightly from 1 to 3 

days. Table 6.5 shows CLT1 and CLT2 for each activity after introducing the B5-B6 and 

G7-G8 work breaks. 

It is important to note that introducing a work break in Activity G does not change 

the status of Activity B on the controlling sequence, and vice versa. Consequently, work 

break positions satisfying the criteria remain the same, either applying a break in B or G 

first. Therefore, it is allowable to introduce work breaks in both activities in one step, 

without re-determining the controlling sequence. Otherwise, after introducing a break in 

Activity G only (as the most effective in reducing project duration), it is necessary to 

identify new candidate work break positions on the new controlling sequence. 

In Figure 6.13, Resource B is scheduled to work continuously from B1 to the end 

of B5 and then take a break. After the break ends, Resource B will return to the site to 

start work on B6 on day 134. Resource G is scheduled to work continuously from G1 to 

the end of G7. Then resource G should take a break and come back on day 288. The work 
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break durations for B and G are not fixed, but depend on when the activities finish the 

unit prior to their respective breaks.  

A comparison between Figures 6.12 and 6.13 shows Activity B is no longer on 

the controlling sequence after the introduction of the two work breaks. On the other hand, 

Activity G is still on the controlling sequence. For the new schedule, Activity C becomes 

an activity on the new controlling sequence, as shown in Figure 6.13.  

A comparison of the relative production rates of the five activities on the new 

controlling sequence in Figure 6.13 indicates that only activities C and G have 

converging relationships with their predecessors and diverging relationships with their 

successors. Only candidate work break positions on Activity C are tested, since Activity 

G has just been evaluated for a work break in the previous step. 

At this point it should be noted that sometimes the converging or diverging 

relationships between activities on the controlling sequence are not evident. For example 

in Figure 6.13, the converging relationship between Activity C and its predecessor, 

Activity A, is not apparent. In such cases, it is necessary to test the work breaks in C in 

order to determine whether they would shorten the project duration. 

In Figure 6.13, there are nine possible work break locations for Activity C, i.e., at 

the end of C1, C2, and so on to the end of C9. The best work break position is at the 

completion of C4, shortening the project duration by 34 days. The resulting project 

schedule with work breaks in Activities B5, C4, and G7, is shown in Figure 6.14. The 

crew lead times, CLT1 and CLT2, for the three work break positions are displayed in 

Table 6.6. In summary, the three work breaks reduce the average project duration to 342 

days with an average total idle time of 3 days. It should be noted that CLT2G changes 
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from 288 days (Table 6.5) to 254 days (Table 6.6) due to the work break in Activity C. 

The work break at C4-C5 allows its successor activities (including G8) to start earlier, 

which in turn reduces project duration by 34 days. 
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Figure 6.14 SQS-AL schedule with 3 work breaks and 342-day project duration for 

Example 6.1 
 

Activity

Crew  
Arrival 
Date 

(CLT1) 

Work 
Break 

Location

Crew  
Return 
Date 

(CLT2) 
A 0 - - 
B 38 B5-B6 134 
C 22 C4-C5 98 
D 44 - - 
E 102 - - 
F 60 - - 
G 174 G7-G8 254 
H 84 - - 
J 180 - - 

Table 6.6 CLT from the SQS-AL schedule with 3 work breaks for Example 6.1 
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Method 
Average 

 Project duration 
Average 

 Project Idle Time 
Work Break 

Positions 
CPM 277 438 - 

SQS-AL 449 1 - 
SQS-AL 410 3 G7 
SQS-AL 376 3 G7,B5 
SQS-AL 342 3 G7,B5,C4 
Table 6.7 Finalized project duration and idle time for Example 6.1 

 
Table 6.7 is a summary of the average project duration and the average total idle 

time from CPM, and SQS-AL with zero, one, two and three work breaks. Clearly, SQS-

AL is effective in reducing the average crew idle time from 444 days to 1 day to save the 

cost associated with resource idle time. However, satisfying continuity constraints also 

increases project duration significantly from 277 to 449 days (from 9 to 15 months).  

To reduce the increased project duration, relaxation of the continuity constraints 

using work breaks is an option. As illustrated in the example, applying work breaks 

reduces project duration significantly, while the change in project idle time is negligible. 

The introductions of work breaks at the end of G7, B5, and C4, reduce average project 

duration by 39, 34, and 34 days, respectively. In the final schedule, the three work breaks 

result in an average project duration of 342 days (11.5 months) with idle time of just 3 

days. In other words, the average project duration increases by 2.5 months from the CPM 

schedule while the 15 months of average crew idle time is almost completely eliminated. 

Moreover, a comparison between the schedules without work breaks (Table 6.4 

and Figure 6.12) and the schedule with three work breaks (Table 6.6 and Figure 6.12) 

shows that the introduction of the work breaks favorably decreases the project duration 

by 3.5 months. Thus, the optimal introduction of work breaks is an effective strategy for 

shortening the increased project duration that results from resource continuity constraints. 
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6.5 Simulation Model and Code for Example 6.1 

The finalized schedule with 3 work breaks from Example 6.1 is used to 

demonstrate the implementation of work breaks in SQS-AL and simulation. The example 

is implemented in Stroboscope; the simulation model and code in Stroboscope language 

are given with explanation. Several important aspects of the simulation model and SQS-

AL are explained along with the given simulation code. The precedence diagram is 

presented in Figure 6.10, and activities’ work amounts in each unit are given in Table 6.3. 

Production rates of activities are assumed to follow a normal distribution with the means 

and standard deviations displayed in Table 6.3. Figure 6.11 is the simulation model for 

this example. As can be seen, Figure 6.15 resembles Figure 6.10, a single unit precedence 

diagram. Simulation model templates are used to represent activities and resources, 

instead of nodes as in Figure 6.10.  
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Figure 6.15 Simulation Model for the Example in Figure 6.10 
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6.5.1 Simulation Code for Model Parameters (MP) 

The Simulation code in the following sections is encoded in Stroboscope GUI’s 

Model Parameters (MP).  

6.5.1.1 Variables controlling replication and sequence step loops (MP.Loops) 

Variables that controls SQS-AL’s replication loop and sequence step loop are 

stored in SaveValue, which is a storage class in Stroboscope language. The nRep is the 

total number of replications executed in processing each sequence step, whereas nSQS is 

the total number of sequence steps. ithRep and ithSQS indicate the current replication and 

processing sequence step, respectively. 

SAVEVALUE nRep 1000; 

SAVEVALUE nSQS 5; 

SAVEVALUE ithSQS* 1; 

SAVEVALUE ithRep* 1; 

Note that in Stroboscope the asterisk sign “*” indicates that the referred-to 

SaveValue (e.g., ithRep and ithSQS) is persistent throughout simulation runs, meaning 

the SaveValue with asterisk sign will not be reset to its initial value at the beginning of 

each replication. Since it is necessary to track the current replication (ithRep) and current 

sequence step (ithSQS), there SaveValues must be persistent and are declared so by the 

asterisk sign at the end of their names. 

6.5.1.2 Work amounts (MP.ACT.Quantity) 

For each activity, the work amount in each repetitive unit is stored in one-

dimensional arrays. The number 10 in the code below is the total number of units in this 

project. The figures in parenthesis are the work amounts for each activity in each unit; 
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there figures initialize the member of the array. So each of the following statement 

defines and initializes the arrays holding the work amount for each activity. 

ARRAY A_Quantity 10 {200 200 200 200 200 200 400 400 400 400}; 

ARRAY B_Quantity 10 {150 150 100 100 100 100 100 100 100 100}; 

ARRAY C_Quantity 10 {250 200 200 250 300 200 350 400 200 350}; 

ARRAY D_Quantity 10 {300 400 400 450 300 300 250 250 250 400}; 

ARRAY E_Quantity 10 {150 150 150 150 150 150 200 200 200 200}; 

ARRAY F_Quantity 10 {350 400 300 350 150 200 400 250 300 250}; 

ARRAY G_Quantity 10 {150 150 150 150 300 250 300 300 300 450}; 

ARRAY H_Quantity 10 {200 300 300 200 250 400 300 400 300 250}; 

ARRAY J_Quantity 10 {200 200 200 200 200 200 300 300 300 300}; 

Note that indexing arrays in the Stroboscope language is zero-based. Thus, the 

index of the first member in an array is zero, which is the same as in the C language. 

6.5.1.3 Confidence levels (SMC.RES.ConfidenceLevel) 

Confidence levels for each resource are stored in SaveValues shown below. For 

this example, an 80 percent confidence level is used for all resources. 

SAVEVALUE ResA_ConfidenceLevel 0.8; 

SAVEVALUE ResB_ConfidenceLevel 0.8; 

SAVEVALUE ResC_ConfidenceLevel 0.8; 

SAVEVALUE ResD_ConfidenceLevel 0.8; 

SAVEVALUE ResE_ConfidenceLevel 0.8; 

SAVEVALUE ResF_ConfidenceLevel 0.8; 

SAVEVALUE ResG_ConfidenceLevel 0.8; 

SAVEVALUE ResH_ConfidenceLevel 0.8; 

SAVEVALUE ResJ_ConfidenceLevel 0.8; 

179 



6.5.1.4 Additional variables (MP.AdditionalVariable) 

Two additional SaveValues are included and used later, iSQS and nthBinInterval.  

The iSQS is used to automatically generate Stroboscope code, whereas the nthBinInterval 

is used to determine corresponding crew lead time (CLT). 

SAVEVALUE iSQS 1; 

SAVEVALUE nthBinInterval 0; 

6.5.2 Simulation Code for Programming Objects (PO) 

The Simulation code in the following subsections is encoded in Stroboscope 

GUI’s Programming Objects (PO). 

6.5.2.1 Permission to enter the site (PO.RES.Semaphore) 

One important decision (i.e., RES_CLT_Semaphore) is whether to allow 

resources to enter the site (i.e., letting them in RES_CLT Combis) or keep them off the 

site (i.e., holding them in RES_Offsite Queues). Resources are allowed to enter the site 

only if their corresponding activities must not yet have been completed. For example, the 

number of units in ACT_Complete Queues must not equal the total number of units (4 

units for this example). Without this decision (or condition), resources will always re-

enter the site, even though all the work has been completed, and rest in RES_Idle until 

the simulation ends because there is no work left for them to work. The condition 

(RES_CLT_Semaphore) of allowing a resource to enter the site is stored in Variables, 

updated automatically by Stroboscope. It is encoded in Programming Objects, and used 

in RES_CLT’s semaphore in resource flow sub-networks. 

VARIABLE ResA_CLT_Semaphore ' A_Complete.CurCount != 10' ; 

VARIABLE ResB_CLT_Semaphore ' B_Complete.CurCount != 10' ; 
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VARIABLE ResC_CLT_Semaphore ' C_Complete.CurCount != 10' ; 

VARIABLE ResD_CLT_Semaphore ' D_Complete.CurCount != 10' ; 

VARIABLE ResE_CLT_Semaphore ' E_Complete.CurCount != 10' ; 

VARIABLE ResF_CLT_Semaphore ' F_Complete.CurCount != 10' ; 

VARIABLE ResG_CLT_Semaphore ' G_Complete.CurCount != 10' ; 

VARIABLE ResH_CLT_Semaphore ' H_Complete.CurCount != 10' ; 

VARIABLE ResJ_CLT_Semaphore ' J_Complete.CurCount != 10' ; 

6.5.2.2 Precedence constraints (PO.ACT.Semaphore) 

 Precedence constraints (i.e., RES_Perform_Semaphore) are stored in Variables 

and used in ACT_Perform’s semaphore work flow sub-networks. Due to precedence 

constraints, an activity (e.g., Activity B) can start only if its current number of completed 

units (e.g., B_Complete.CurCount) plus its current number of on-going units (e.g., 

B_Perform.CurInst) is less than its predecessor’s number of completed units (e.g., 

A_Complete.CurCount). For this example, all precedence constraints are shown below: 

VARIABLE B_Perform_Semaphore  

'B_Complete.CurCount + B_Perform.CurInst 

< A_Complete.CurCount'; 

VARIABLE C_Perform_Semaphore 

 'C_Complete.CurCount + C_Perform.CurInst 

< A_Complete.CurCount; 

VARIABLE D_Perform_Semaphore  

'D_Complete.CurCount + D_Perform.CurInst 

< B_Complete.CurCount 

& 

D_Complete.CurCount + D_Perform.CurInst 

< C_Complete.CurCount'; 

VARIABLE E_Perform_Semaphore  
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'E_Complete.CurCount + E_Perform.CurInst 

< B_Complete.CurCount'; 

VARIABLE F_Perform_Semaphore  

'F_Complete.CurCount + F_Perform.CurInst 

< C_Complete.CurCount'; 

VARIABLE G_Perform_Semaphore 

'G_Complete.CurCount + G_Perform.CurInst 

< D_Complete.CurCount  

& G_Complete.CurCount + G_Perform.CurInst 

< E_Complete.CurCount'; 

VARIABLE H_Perform_Semaphore  

'H_Complete.CurCount + H_Perform.CurInst 

< F_Complete.CurCount'; 

VARIABLE J_Perform_Semaphore 

'J_Complete.CurCount + J_Perform.CurInst 

< G_Complete.CurCount 

& 

J_Complete.CurCount + J_Perform.CurInst 

< H_Complete.CurCount'; 

6.5.2.3 Activity duration (PO.ACT.Duration) 

 Activity durations (e.g., A_Perform_Duration) are stored in Variables, and used in 

ACT_Perform’s duration in work flow sub-networks. ACT_Perform’s duration varies 

from unit to unit due to amount of work in each unit and variability in production rates. 

Therefore, activity durations are a function of work amount of the current unit and 

production rate. The duration of ACT_Perform Combis is essentially the work amount in 

a unit divided by the production rate of that activity. Duration variables of activities are 

shown below: 
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VARIABLE A_Perform_Duration  

A_Quantity[10-A_Remain.CurCount]*1/Normal[20,2]; 

VARIABLE B_Perform_Duration 

B_Quantity[10-B_Remain.CurCount]*1/Normal[30,3]; 

VARIABLE C_Perform_Duration 

C_Quantity[10-C_Remain.CurCount]*1/Normal[30,3]; 

VARIABLE D_Perform_Duration 

D_Quantity[10-D_Remain.CurCount]*1/Normal[15,1.5]; 

VARIABLE E_Perform_Duration 

E_Quantity[10-E_Remain.CurCount]*1/Normal[20,2]; 

VARIABLE F_Perform_Duration 

F_Quantity[10-F_Remain.CurCount]*1/Normal[25,2.5]; 

VARIABLE G_Perform_Duration 

G_Quantity[10-G_Remain.CurCount]*1/Normal[30,3]; 

VARIABLE H_Perform_Duration 

H_Quantity[10-H_Remain.CurCount]*1/Normal[20,2]; 

VARIABLE J_Perform_Duration 

J_Quantity[10-J_Remain.CurCount]*1/Normal[15,1.5]; 

6.5.2.4 Decision of keeping or laying off resource (PO.RES.Strength) 

Decisions of keeping or laying off resources are stored in variables (i.e., 

RES_Leave_Strength) and used in resource flow sub-networks. After a resource 

completes one unit of work, it will consider whether to leave the site. If there is no 

remaining work for the resource, it will leave. The resources’ decision whether to leave 

or stay of resources is shown below:  

VARIABLE ResA_Leave_Strength '(A_Remain.CurCount == 0) ? 1:0 ' ; 

VARIABLE ResD_Leave_Strength ‘(D_Remain.CurCount == 0) ? 1:0 ' ; 

VARIABLE ResE_Leave_Strength '(E_Remain.CurCount == 0) ? 1:0 ' ; 
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VARIABLE ResF_Leave_Strength '(F_Remain.CurCount == 0) ? 1:0 ' ; 

 For resources with work breaks, additional variables (e.g., ResB_nthBreak) below 

are required to track how many times the resources have already left the site. These 

variables are used to determine 1) when resources are allowed to leave the site and 2) 

which crew lead time (CLT1 or CLT2) will be used, if the resources enter the site. 

SAVEVALUE ResB_nthBreak 0; 

SAVEVALUE ResC_nthBreak 0; 

SAVEVALUE ResG_nthBreak 0; 

For resources with work breaks, the decisions of keeping or laying off resources 

are shown below. For example, ResB is allowed to leave the site when: 

1) Five units of B have been completed. Then ResB will take the break. 

2) Ten units of B have been completed. Then ResB will leave the site. At this 

point, ResB has already taken one break (ResB_nthBreak = 1) after 

completing B5.  

VARIABLE ResB_Leave_Strength  

'(B_Complete.CurCount == 5 & ResB_nthBreak == 0)  

| (B_Remain.CurCount == 0 ) 

  ? 1:0  ' ; 

For ResC, it will take a break at the completion of Activity C in Unit 4, and it will 

permanently leave the project at the end of Activity C in Unit 10. 

VARIABLE ResC_Leave_Strength  

' (C_Complete.CurCount ==  4 & ResC_nthBreak == 0)  

  | (C_Remain.CurCount == 0 ) 

  ? 1:0  ' ; 

For ResG, it will take a break at the completion of Activity G in Unit 7, and it will 

permanently leave the project at the end of Activity G in Unit 10. 
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VARIABLE ResG_Leave_Strength  

' (G_Complete.CurCount == 7 & ResG_nthBreak == 0)  

  | (G_Remain.CurCount == 0) 

 ? 1:0  ' ; 

6.5.2.5 Temporary SaveValues for crew idle time (PO.RES.TempIdleTime) 

The following SaveValues are for temporarily recording the total idle time in each 

resource in each replication.  

SAVEVALUE svResB_Idle 0; 

SAVEVALUE svResC_Idle 0; 

SAVEVALUE svResD_Idle 0; 

SAVEVALUE svResE_Idle 0; 

SAVEVALUE svResF_Idle 0; 

SAVEVALUE svResG_Idle 0; 

SAVEVALUE svResH_Idle 0; 

SAVEVALUE svResJ_Idle 0; 

At the end of each replication, these SaveValues (temporary storages) of idle time 

will be assigned to their corresponding BinCollectors (permanent storages) for a specific 

sequence step (see 6.5.2.8 PO.RES.CIT.SQS). After the assignment, these SaveValues 

are, then, reset prior to the execution of a new replication. 

6.5.2.6 Crew idle time (PO.RES.CIT)  

Samples of crew idle time (CLTs) used to determine CLT are stored in 

BinCollectors. BinCollectors are data holders that keep statistics of the numbers they 

receive in intervals, specified by users. Every resource that is scheduled by SQS-AL to 

achieve continuous utilization must have at least one BinCollector, which is RES_CLT1. 
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 BINCOLLECTOR statement requires 4 arguments, which are: 1) the name of the 

collector, 2) the number of intervals, 3) the lower bound of the collected data, and 4) the 

upper bound of the collected data. For this example, RES_CIT1 BinCollectors collect 

CITs from a range of 0 to 300 days. This range is divided into 300 intervals, meaning that 

CIT samples are grouped on a daily basis. 

Since crew idle time of resources is collected from one replication to another, the 

data in RES_CIT1 and RES_CIT2 BinCollectors must be persistent, and thus an asterisk, 

“*”, is required when their names are declared. Resources without work breaks (ResA, 

ResD, ResE, ResF, ResH, and ResJ) have only CIT1 BinCollector, used to determine 

CLT1, as shown below.  

BINCOLLECTOR ResD_CIT1* 300 0 300; 

BINCOLLECTOR ResE_CIT1* 300 0 300; 

BINCOLLECTOR ResF_CIT1* 300 0 300; 

BINCOLLECTOR ResG_CIT1* 300 0 300; 

BINCOLLECTOR ResH_CIT1* 300 0 300; 

BINCOLLECTOR ResJ_CIT1* 300 0 300; 

Resources with work breaks (ResB, ResC, and ResG) have CIT1 and CIT2 

BinCollectors that are used to determined their CLT1 and CLT2, respectively. Moreover, 

the last time resources leave the site must be recorded for calculation purposes in order to 

determine CLT2. See Section 6.5.3.7 (CME.RES.Leave.OnFlow) for the calculation of 

CLT2. 

For ResB, 

BINCOLLECTOR ResB_CIT1* 300 0 300 ; 

BINCOLLECTOR ResB_CIT2* 300 0 300 ; 

SAVEVALUE tempResB_CIT1 0 ; 
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SAVEVALUE tempResB_CIT2 0 ; 

SAVEVALUE ResB_LastTimeLeaveSite 0 ; 

For ResC, 

BINCOLLECTOR ResC_CIT1* 300 0 300; 

BINCOLLECTOR ResC_CIT2* 300 0 300; 

SAVEVALUE tempResC_CIT1 0 ; 

SAVEVALUE tempResC_CIT2 0 ; 

SAVEVALUE ResC_LastTimeLeaveSite 0 ; 

For ResG, 

BINCOLLECTOR ResG_CIT1* 300 0 300 ; 

BINCOLLECTOR ResG_CIT2* 300 0 300 ; 

SAVEVALUE tempResG_CIT1 0 ; 

SAVEVALUE tempResG_CIT2 0 ; 

SAVEVALUE ResG_LastTimeLeaveSite 0 ; 

 

6.5.2.7 Crew lead time (PO.RES.CLT.Duration) 

The crew lead time (CLT) for each resource is stored in a persistent SaveValue 

(requiring an asterisk sign after its name), and used to set the duration of RES_CLT 

Combis in resource flow sub-network. CLT’s initial value is zero according to the 

sequence step algorithm. The RES_CLT_Duration Variables are created mainly to 

systemize the simulation code. They are used in RES_CLT Combis, discussed in Section 

6.5.3.2, CME.RES.CLT.Duration. 

The arrival date of resources without work breaks equals their CLT1, shown in 

the simulation code below. 

SAVEVALUE ResD_CLT1* 0; 

SAVEVALUE ResE_CLT1* 0; 
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SAVEVALUE ResF_CLT1* 0; 

SAVEVALUE ResH_CLT1* 0; 

SAVEVALUE ResJ_CLT1* 0; 

VARIABLE ResD_CLT_Duration ResD_CLT1; 

VARIABLE ResE_CLT_Duration ResE_CLT1; 

VARIABLE ResF_CLT_Duration ResF_CLT1; 

VARIABLE ResH_CLT_Duration ResG_CLT1; 

VARIABLE ResJ_CLT_Duration ResG_CLT1; 

Crew lead times (CLT1 or CLT2) for resources with work breaks are chosen, 

based on their RES_nthBreak Variables (e.g., ResB_nthBreak), to delay the arrival of the 

resources. For example, if ResB has never taken a break (ResB_nthBreak = 0), CLT1B 

will be chosen to delay the arrival of ResB, when ResB attempts to enter the site. On the 

other hand, if ResB has already taken one work break (ResB_nthBreak = 1), CLT2B will 

be chosen to delay the 2nd arrival of ResB. 

VARIABLE ResB_CLT_Duration  

'ResB_nthBreak == 0 ? ResB_CLT1 :  

 ResB_nthBreak == 1 ? ResB_CLT2 : 0' ; 

VARIABLE ResC_CLT_Duration  

'ResC_nthBreak == 0 ? ResC_CLT1 :  

 ResC_nthBreak == 1 ? ResC_CLT2 : 0' ; 

VARIABLE ResG_CLT_Duration  

'ResG_nthBreak == 0 ? ResG_CLT1 :  

 ResG_nthBreak == 1 ? ResG_CLT2 : 0' ; 

6.5.2.8 Crew idle time for each sequence step (PO.RES.CIT.SQS) 

The code below for BinCollectors for crew idle times (CITs) associated with 

sequence steps (SQS) is for the purpose of recording the changes in CITs from one SQS 
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to another. Note that the iSQS in the code below is used with “$<…>$” (explained later) 

to automatically create simulation code.  

ASSIGN iSQS 1; 

WHILE 'iSQS<=nSQS+1'; 

BINCOLLECTOR bcltResA_IdleSQS$<iSQS>$*300 0 300 ; 

BINCOLLECTOR bcltResB_IdleSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltResC_IdleSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltResD_IdleSQS$<iSQS>$*300 0 300 ; 

BINCOLLECTOR bcltResE_IdleSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltResF_IdleSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltResG_IdleSQS$<iSQS>$*300 0 300 ; 

BINCOLLECTOR bcltResH_IdleSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltResJ_IdleSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltProjectDurationSQS$<iSQS>$* 300 0 300 ; 

BINCOLLECTOR bcltProjectIdleTimeSQS$<iSQS>$* 300 0 300 ; 

ASSIGN iSQS iSQS+1; 

WEND; /iSQS 

ASSIGN iSQS 1; 

Note that the “$<Argument>$” is a preprocessor operator of Stroboscope used to 

automatically generate simulation code. The Stroboscope evaluates the argument in the 

operator, and replaces the operator and argument before executing the statement. This 

preprocessor operator is useful when there is a consistent pattern of simulation code 

(Martinez 1995). For more information about the “$<Argument>$” operator, see The 

Stroboscope Simulation Language, Chapter 15, Statement Preprocessing and Automatic 

Code Generation. 
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6.5.3 Simulation Code for Model Elements (CME) 

The simulation code in this section 5.3.3 is encoded in graphical model elements 

in Stroboscope GUI. For the code in this section, the statements specify attributes of 

simulation elements in Stroboscope GUI where the code is stored. These statements are: 

• SEMAPHORE for Semaphore Combis 

• DURATION for Duration in Combis 

• STRENGTH for Strength in links 

• ONFLOW for OnFlow in links 

6.5.3.1 Semaphore in RES_CLT Combis (CME.RES.Semaphore) 

 The Semaphores of RES_CLT Combis are shown below. They are stored in 

simulation model elements, as shown in Figure 5.12. Details for these semaphores are 

given in Section 6.5.2.1 PO.RES.Semaphore. 

SEMAPHORE ResB_CLT ResB_CLT_Semaphore; 

SEMAPHORE ResC_CLT ResC_CLT_Semaphore; 

SEMAPHORE ResD_CLT ResD_CLT_Semaphore; 

SEMAPHORE ResE_CLT ResE_CLT_Semaphore; 

SEMAPHORE ResF_CLT ResF_CLT_Semaphore; 

SEMAPHORE ResG_CLT ResG_CLT_Semaphore; 

SEMAPHORE ResH_CLT ResH_CLT_Semaphore; 

SEMAPHORE ResJ_CLT ResJ_CLT_Semaphore; 

6.5.3.2 Duration in RES_CLT Combis (CME.RES.CLT.Duration) 

Durations of RES_CLT Combis in resource flow are shown below. Details of 

these durations are given in section 6.5.2.7, PO.RES.CLT.Duration.  

DURATION ResA_CLT ResA_CLT_Duration; 
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DURATION ResB_CLT ResB_CLT_Duration; 

DURATION ResC_CLT ResC_CLT_Duration; 

DURATION ResD_CLT ResD_CLT_Duration; 

DURATION ResE_CLT ResE_CLT_Duration; 

DURATION ResF_CLT ResF_CLT_Duration; 

DURATION ResG_CLT ResG_CLT_Duration; 

DURATION ResH_CLT ResH_CLT_Duration; 

DURATION ResJ_CLT ResJ_CLT_Duration; 

6.5.3.3 Semaphore in ACT_Perform Combis (CME.ACT.Semaphore) 

Semaphores of ACT_Perform Combis in work flow are shown below. They are 

stored in graphical simulation elements, as shown in Figure 5.13. Details of these 

semaphores are given in Section 6.5.2.7, PO.RES.CLT.Duration. 

SEMAPHORE A_Perform A_Perform_Semaphore; 

SEMAPHORE B_Perform B_Perform_Semaphore; 

SEMAPHORE C_Perform C_Perform_Semaphore; 

SEMAPHORE D_Perform D_Perform_Semaphore; 

SEMAPHORE E_Perform E_Perform_Semaphore; 

SEMAPHORE F_Perform F_Perform_Semaphore; 

SEMAPHORE G_Perform G_Perform_Semaphore; 

SEMAPHORE H_Perform H_Perform_Semaphore; 

SEMAPHORE J_Perform J_Perform_Semaphore; 

6.5.3.4 Duration in ACT_Perform Combis (CME.ACT.Duration) 

Durations of ACT_Perform Combis in work flow sub-networks are shown below. 

These ACT_Perform_Duration Variables are stored in simulation model elements, as 

shown in Figure 5.13. Details of these duration Variables are given in section 6.5.2.3 

PO.ACT.Duration. 
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DURATION A_Perform A_Perform_Duration; 

DURATION B_Perform B_Perform_Duration; 

DURATION C_Perform C_Perform_Duration; 

DURATION D_Perform D_Perform_Duration; 

DURATION E_Perform E_Perform_Duration; 

DURATION F_Perform F_Perform_Duration; 

DURATION G_Perform G_Perform_Duration; 

DURATION H_Perform H_Perform_Duration; 

DURATION J_Perform J_Perform_Duration; 

6.5.3.5 Strength in iRES_Stay Links (CME.RES.Stay.Strength) 

Strengths of iRES_Stay links in work flow sub-networks are shown below. They 

are stored in simulation model elements, as shown in Figure 5.14. Details of these 

strengths are given in Section 5.3.2.4, PO.RES.Strength. Note that RES_Leave_Strength 

Variables are preceded by an exclamation sign returning the opposite value of the 

Variables. Accordingly, the opposite of a resource leaving the site is the resource staying 

on the site. 

 STRENGTH iResA_Stay !ResA_Leave_Strength; 

STRENGTH iResB_Stay !ResB_Leave_Strength; 

STRENGTH iResC_Stay !ResC_Leave_Strength; 

STRENGTH iResD_Stay !ResD_Leave_Strength; 

STRENGTH iResE_Stay !ResE_Leave_Strength; 

STRENGTH iResF_Stay !ResF_Leave_Strength; 

STRENGTH iResG_Stay !ResG_Leave_Strength; 

STRENGTH iResH_Stay !ResH_Leave_Strength; 

STRENGTH iResJ_Stay !ResJ_Leave_Strength; 
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6.5.3.6 Strength in iRES_Leave Links (CME.RES.Leave.Strength) 

As opposed to the strength in iRES_Stay Links, strength of iRES_Leave is 

RES_Leave_Strength Variable. Details of these strengths are given in Section 6.5.2.4, 

PO.RES.Strength.   

STRENGTH iResA_Leave ResA_Leave_Strength; 

STRENGTH iResB_Leave ResB_Leave_Strength; 

STRENGTH iResC_Leave ResC_Leave_Strength; 

STRENGTH iResD_Leave ResD_Leave_Strength; 

STRENGTH iResE_Leave ResE_Leave_Strength; 

STRENGTH iResF_Leave ResF_Leave_Strength; 

STRENGTH iResH_Leave ResH_Leave_Strength; 

STRENGTH iResJ_Leave ResJ_Leave_Strength; 

6.5.3.7 OnFlow in iRES_Leave (CME.RES.Leave.OnFlow) 

Crew idle time of resources is collected when SQS-AL is processing the sequence 

step of the activities they serve. For example, CIT1 of Resource D is collected from 

simulation runs during processing SQS3 because Activity D is in SQS2.  

The simulation code, determining CLT, for resources without work breaks (ResD, 

ResE, ResF, and ResJ) is similar to Section 5.3.3.7 (CME.RES.Leave.OnFlow) 

ONFLOW iResD_Leave COLLECT ResD_CIT1  

PRECOND 'ithSQS==3' ResD_Idle.AveWait*ResD_Idle.TotCount; 

ONFLOW iResE_Leave COLLECT ResE_CIT1  

PRECOND 'ithSQS==3' ResE_Idle.AveWait*ResE_Idle.TotCount; 

ONFLOW iResF_Leave COLLECT ResF_CIT1  

PRECOND 'ithSQS==3' ResF_Idle.AveWait*ResF_Idle.TotCount; 

ONFLOW iResH_Leave COLLECT ResH_CIT1  

PRECOND 'ithSQS==4' ResH_Idle.AveWait*ResH_Idle.TotCount; 
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ONFLOW iResJ_Leave COLLECT ResJ_CIT1  

PRECOND 'ithSQS==4' ResJ_Idle.AveWait*ResJ_Idle.TotCount; 

The simulation code for the resources with work breaks (ResB, ResC, and ResG) 

are modified as follows. 

 For ResB, 

ONFLOW iResB_Leave ASSIGN ResB_nthBreak ResB_nthBreak+1;  

/CLT for Break B-5 

ONFLOW iResB_Leave COLLECT ResB_CIT1 

PRECOND 'ithSQS==ResB_CLT1_SQS & ResB_nthBreak ==1' 

ResB_Idle.AveWait*ResB_Idle.TotCount ; 

ONFLOW iResB_Leave ASSIGN tempResB_CIT1 

PRECOND 'ithSQS==ResB_CLT1_SQS & ResB_nthBreak ==1' 

ResB_Idle.AveWait*ResB_Idle.TotCount ; 

/CLT for Break B-10 

ONFLOW iResB_Leave COLLECT ResB_CIT2  

PRECOND 'ithSQS==ResB_CLT2_SQS & ResB_nthBreak==2'   

'ResB_Idle.AveWait*ResB_Idle.TotCount -

tempResB_CIT1+ResB_LastTimeLeaveSite' ; 

ONFLOW iResB_Leave ASSIGN tempResB_CIT2 

PRECOND 'ithSQS==ResB_CLT2_SQS & ResB_nthBreak==2'   

'ResB_Idle.AveWait*ResB_Idle.TotCount - tempResB_CIT1' ; 

ONFLOW iResB_Leave ASSIGN ResB_LastTimeLeaveSite SimTime; 

For ResC, 

/CLT for ARRIVAL of ResC 

ONFLOW iResC_Leave ASSIGN ResC_nthBreak ResC_nthBreak+1;  

/CLT for Break C-4 

ONFLOW iResC_Leave COLLECT ResC_CIT1 
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PRECOND 'ithSQS==ResC_CLT1_SQS & ResC_nthBreak ==1' 

ResC_Idle.AveWait*ResC_Idle.TotCount ; 

ONFLOW iResC_Leave ASSIGN tempResC_CIT1 

PRECOND 'ithSQS==ResC_CLT1_SQS & ResC_nthBreak ==1' 

ResC_Idle.AveWait*ResC_Idle.TotCount ; 

/CLT for Break C-10 

ONFLOW iResC_Leave COLLECT ResC_CIT2 

PRECOND 'ithSQS==ResC_CLT2_SQS & ResC_nthBreak==2'   

'ResC_Idle.AveWait*ResC_Idle.TotCount -

tempResC_CIT1+ResC_LastTimeLeaveSite' ; 

ONFLOW iResC_Leave ASSIGN tempResC_CIT2 

PRECOND 'ithSQS==ResC_CLT2_SQS & ResC_nthBreak==2'   

'ResC_Idle.AveWait*ResC_Idle.TotCount - tempResC_CIT1' ; 

ONFLOW iResC_Leave ASSIGN ResC_LastTimeLeaveSite SimTime; 

For ResG, 

/CLT for ARRIVAL of ResG 

ONFLOW iResG_Leave ASSIGN ResG_nthBreak ResG_nthBreak+1;  

/CLT for Break G-7 

ONFLOW iResG_Leave COLLECT ResG_CIT1 

PRECOND 'ithSQS==ResG_CLT1_SQS & ResG_nthBreak ==1' 

ResG_Idle.AveWait*ResG_Idle.TotCount ; 

ONFLOW iResG_Leave ASSIGN tempResG_CIT1 

PRECOND 'ithSQS==ResG_CLT1_SQS & ResG_nthBreak ==1' 

ResG_Idle.AveWait*ResG_Idle.TotCount ; 

/CLT for Break G-10 

ONFLOW iResG_Leave COLLECT ResG_CIT2 
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PRECOND 'ithSQS==ResG_CLT2_SQS & ResG_nthBreak==2'   

'ResG_Idle.AveWait*ResG_Idle.TotCount -

tempResG_CIT1+ResG_LastTimeLeaveSite' ; 

ONFLOW iResG_Leave ASSIGN tempResG_CIT2 

PRECOND 'ithSQS==ResG_CLT2_SQS & ResG_nthBreak==2'   

'ResG_Idle.AveWait*ResG_Idle.TotCount - tempResG_CIT1' ; 

ONFLOW iResG_Leave ASSIGN ResG_LastTimeLeaveSite SimTime; 

6.5.4 Simulation Code for Controlling Statements (CS)  

Simulation code in the following sections is encoded in Stroboscope GUI’s 

Controlling Statements (CS). 

6.5.4.1 Sequence step and replication loops (CS.Loops) 

The following two While-Loops statements control SQS-AL’s sequence step loop 

and replication loop, respectively. As discussed in Chapters 4 and 5, the replication loop 

is for collecting crew idle times of resources whose activities are in the current processing 

sequence step (ithSQS). The sequence step loop is for determining crew lead time for the 

resources. An extra sequence step is added to obtain the final results of project duration, 

project idle time, and idle time in resource utilization. 

WHILE 'ithSQS <= nSQS+1';   / Start Sequence Step Loop. 

WHILE 'ithRep <= nRep ';  / Start Replication Loop. 

CLEAR;    / Clear temporary data. 

Crew lead times for all resources are determined when SQS-AL finishes 

processing the last sequence step. Nevertheless, an extra sequence step is added to obtain 

the final results of project duration, project idle time, and idle time in resource utilization. 
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The CLEAR statement is executed at the beginning of each replication to clear the 

results from a previous simulation run. This statement sets all non-persistent SaveValues 

to their initial values and clears all data and statistics from non-persistent Collectors and 

BinCollectors. 

6.5.4.2 Initializing work amounts (CS.ACT.INIT) 

 At the beginning of each replication, the work amount in units for each activity is 

initialized in ACT_Remain Queues in Work Flow Networks. INIT is a Stroboscope’s 

statement used to create and place resources in specified Queues. As discussed in section 

5.2.1 Work Flow Template, the amount of Resource rq_ACT in ACT_Remain is the 

number of remaining units needed to be completed, which is 10 as shown in the code 

below.  

INIT A_Remain 10; 

INIT B_Remain 10; 

INIT C_Remain 10; 

INIT D_Remain 10; 

INIT E_Remain 10; 

INIT F_Remain 10; 

INIT G_Remain 10; 

INIT H_Remain 10; 

INIT J_Remain 10; 

6.5.4.3 Initializing resources (CS.RES.INIT) 

At the beginning of each replication, resources are initialized in RES_Offsite 

Queues in resource flow sub-networks. 

INIT ResA_Offsite 1; 

INIT ResB_Offsite 1; 
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INIT ResC_Offsite 1; 

INIT ResD_Offsite 1; 

INIT ResE_Offsite 1; 

INIT ResF_Offsite 1; 

INIT ResG_Offsite 1; 

INIT ResH_Offsite 1; 

INIT ResJ_Offsite 1; 

6.5.4.4 Executing simulation (CS.Simulate) 

After initializing the work amount in ACT_Remain and the resources in 

RES_Offsite, the simulation starts after Stroboscope executes the SIMULATE statement.  

Then, the simulation replication will end when all activities are completed, i.e., when 

there is no rq_ACT resource in each and every one of the ACT_Remain Queues. 

SIMULATE; /Run one replication 

Note that crew idle times of resources are collected during simulation runs, while 

crew lead time is determined after the end of processing each sequence step. 

6.5.4.5 Recording CIT in bcltRES_IdleSQS BinCollectors(CS.RES.CIT.SQS) 

 At the end of the specified number of replications for each sequence step, the 

following data is collected. 

1) Crew idle times of resources for processing each sequence step 

2) Project duration for processing each sequence step 

3) Sum of crew idle times and project idle time for processing each sequence 

step 

The collected data are for tracking changes in crew idle times, project durations, 

and project idle times. These data are valuable for analysis of the impact of an assigned 
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crew lead time on activities, resources, and the project. The following code is for 

collecting the data responding to each sequence step processing. 

ASSIGN svResB_Idle ResB_Idle.AveWait*ResB_Idle.TotCount; 

ASSIGN svResC_Idle ResC_Idle.AveWait*ResC_Idle.TotCount; 

ASSIGN svResD_Idle ResD_Idle.AveWait*ResD_Idle.TotCount; 

ASSIGN svResE_Idle ResE_Idle.AveWait*ResE_Idle.TotCount; 

ASSIGN svResF_Idle ResF_Idle.AveWait*ResF_Idle.TotCount; 

ASSIGN svResG_Idle ResG_Idle.AveWait*ResG_Idle.TotCount; 

ASSIGN svResH_Idle ResH_Idle.AveWait*ResH_Idle.TotCount; 

ASSIGN svResJ_Idle ResJ_Idle.AveWait*ResJ_Idle.TotCount; 

ASSIGN iSQS 1; 

WHILE 'iSQS<=nSQS+1'; 

IF 'ithSQS==$<iSQS>$'; 

COLLECT bcltResB_IdleSQS$<iSQS>$ svResB_Idle; 

COLLECT bcltResC_IdleSQS$<iSQS>$ svResC_Idle; 

COLLECT bcltResD_IdleSQS$<iSQS>$ svResD_Idle; 

COLLECT bcltResE_IdleSQS$<iSQS>$ svResE_Idle; 

COLLECT bcltResF_IdleSQS$<iSQS>$ svResF_Idle; 

COLLECT bcltResG_IdleSQS$<iSQS>$ svResG_Idle; 

COLLECT bcltProjectDurationSQS$<iSQS>$ SimTime; 

COLLECT bcltProjectIdleTimeSQS$<iSQS>$ 

'svResA_Idle+ svResB_Idle+ svResC_Idle 

+svResD_Idle+ svResE_Idle+ svResF_Idle 

+svResG_Idle'; 

ENDIF; 

ASSIGN iSQS iSQS+1; 

WEND; /iSQS 

ASSIGN ithRep ithRep+1; / Increase ithRep by 1 
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WEND; /ithRep 

The last line of the code is the end of SQS-AL’s replication loop. When 

Stroboscope reaches this line, it will check whether the current replication index (ithRep) 

is less than or equal to the total number of replications (nRep), explained in section 

6.5.4.1, CS.Loops. SQS-AL exits the replication loop, and enters the sequence step loop, 

when the ithRep SaveValue is greater than nRep SaveValue. 

Remember that iSQS is used for coding purpose, while ithSQS is used to track the 

current index of sequence step. For the code above, the small nested loop controlled by 

iSQS is not the sequence step loop. 

6.5.4.6 Determining crew lead time for activities belonging to ithSQS (CS.RES.CLT) 

 After SQS-AL exits replication loop and enters sequence step loop, the crew lead 

time of the resources serving activities in the current processing sequence step will be 

determined. For example, after the total number of replications is executed in processing 

SQS2, SQS-AL determines CLT of Resource B serving Activity B in SQS2, respectively. 

See Section 5.3.4.6 in Chapter 5 for the explanation of the simulation code. 

The following simulation code is for the resources with work breaks (ResB, ResC, 

and ResG).  Each of these resources has two CLTs, CLT1 (for the arrival date) and CLT2 

(for the return date after the break). Therefore, there are two set of loops, determining 

CLT1 and CLT2. 

For CLT1B, 

IF 'ithSQS==2'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResB_CIT1,nthBinInterval] 

<ResB_ConfidenceLevel; 
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ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResB_CLT1 BinHigh[ResB_CIT1,nthBinInterval]; 

ENDIF; 

For CLT2B, 

IF 'ithSQS==2'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResB_CIT2,nthBinInterval] 

<ResB_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResB_CLT2 BinHigh[ResB_CIT2,nthBinInterval]; 

ENDIF; 

For CLT1C, 

IF 'ithSQS==2'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResC_CIT1,nthBinInterval] 

<ResC_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResC_CLT1 BinHigh[ResC_CIT1,nthBinInterval]; 

ENDIF; 

For CLT2C, 

IF 'ithSQS==2'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResC_CIT2,nthBinInterval] 

<ResC_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 
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WEND; 

ASSIGN ResC_CLT2 BinHigh[ResC_CIT2,nthBinInterval]; 

ENDIF; 

For CLT1G, 

IF 'ithSQS==4; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResG_CIT1,nthBinInterval] 

<ResG_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResG_CLT1 BinHigh[ResG_CIT1,nthBinInterval]; 

ENDIF; 

For CLT2G, 

IF 'ithSQS==4'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResG_CIT2,nthBinInterval] 

<ResG_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResG_CLT2 Round[BinHigh[ResG_CIT2,nthBinInterval],0]; 

ENDIF; 

The following simulation code is for resources without work breaks (ResD, ResE, 

ResF, ResH, and ResJ), having only CLT1. Detail of the code is explained in Section 

5.3.4.6, CS.RES.CLT.  

For CLT1D, 

IF 'ithSQS==3'; 

ASSIGN nthBinInterval 0; 
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WHILE PctAtOrBelowBin[ResD_CIT,nthBinInterval] 

<ResD_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResD_CLT BinHigh[ResD_CIT,nthBinInterval]; 

ENDIF; 

For CLT1E, 

IF 'ithSQS==3; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResE_CIT,nthBinInterval] 

<ResE_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResE_CLT BinHigh[ResE_CIT1,nthBinInterval]; 

ENDIF; 

For CLT1F, 

IF 'ithSQS==3'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResF_CIT,nthBinInterval] 

<ResF_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResF_CLT BinHigh[ResF_CIT1,nthBinInterval]; 

ENDIF; 

For CLT1H, 

IF 'ithSQS==4'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResH_CIT,nthBinInterval] 
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<ResH_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResH_CLT BinHigh[ResH_CIT,nthBinInterval]; 

ENDIF; 

For CLT1J, 

IF 'ithSQS==5'; 

ASSIGN nthBinInterval 0; 

WHILE PctAtOrBelowBin[ResJ_CIT,nthBinInterval] 

<ResJ_ConfidenceLevel; 

ASSIGN nthBinInterval nthBinInterval+1; 

WEND; 

ASSIGN ResJ_CLT BinHigh[ResJ_CIT,nthBinInterval]; 

ENDIF; 

ASSIGN ithSQS ithSQS+1; 

WEND; / ithSQS 

REPORT; 

The last line of the code is the end of sequence step loop. When Stroboscope 

reaches this line, it will check whether the current index of the sequence step (ithSQS) is 

greater than the total number of sequence steps plus one (nSQS+1). If ithSQS is not 

greater than nSQS+1, SQS-AL will begin processing the next SQS. In addition, this 

example project with work breaks is also modeled using ChaStrobe, presented in Chapter 

8, Example 8.2.  
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6.6 Summary 

To minimize idle time, the Sequence Step Algorithm (SQS-AL) postpones the 

arrival date of resources. Results from minimizing idle time usually provide cost 

reduction and productivity improvement. However, project duration may be lengthened 

significantly by scheduling resources to work continuously. Therefore, tradeoffs between 

maintaining and relaxing resource continuity constraints must be carefully studied in 

terms of project cost and duration.  

This chapter presents an application and calculation of work breaks in repetitive 

projects. Work breaks can be used to relax resource continuity constraints in repetitive 

activities, which in turn may shorten project duration. Work breaks, deliberate 

interruptions, are not considered idle time, since work breaks are carefully predetermined 

as part of the project schedule. Resources are informed of the breaks in advance; 

therefore, they can be allocated to other projects at the beginning of the breaks and return 

when the breaks end.  

Under uncertainty, work breaks relax the resource continuity constraints, while 

still minimizing crew idle time. Optimal work breaks relaxing resource continuity 

constraints can be determined by using the concepts of control points, the controlling 

sequence, and relative production rates, proposed by Harris and Ioannou (1998). The 

concepts are discussed in this chapter and also in Chapter 3, Repetitive Scheduling 

Method. 

To determine effective work breaks, positions and durations of work breaks must 

be carefully analyzed and calculated. The following rules offer useful guidance in 

determining candidate positions of work breaks: 
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1) Controlling Sequences and activities on the sequence must be determined 

prior to considering applying a work break.  

2) Only repetitive activities on the controlling sequence are considered as 

candidates for work break positions.  

3) The repetitive activities in (2) must have a converging relationship with their 

direct predecessor on the same controlling sequence. 

4) The repetitive activities in (2) must have a diverging relationship with their 

direct successor on the same controlling sequence. 

5) When there is more than one possible work break position, it is necessary to 

test all the possible positions.  

To test the effectiveness of a work break position, SQS-AL is applied with the 

split activity treated as two separate activities, and duration for each candidate work 

break position is calculated. Then, each work break (position and duration) is applied to 

the project schedule to check the changes in project duration and idle time. The best work 

break position should result in the greatest decrease in project duration and a small 

increase project idle time.  

For an activity with a work break, a new schedule must include both 1) activity 

start date in the first unit and either 2.1) a work break duration or 2.2) a work break end 

date. Fixed-duration work breaks are used when schedulers want resources to take a 

break for a certain period. On the other hand, fixed-date work breaks are used when 

schedulers want resources to return to the site on a specific date. 
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To schedule an activity with a work break, resource continuity constraints are 

split into two sets: before the work break and after the work break. The crew lead time 

before work break (CLT1) can be derived from 

CIT1 = {idle time between arrival date and start date in the first unit} 

 + {sum of idle times (lags) strictly before the work break} 

For crew lead time after work break, two calculations for two types of work 

breaks are presented below. 

For a fixed-duration work break, 

CIT2 (fixed duration) = {sum of idle times (lags) at and after the work break} 

For a fixed-date work break, 

CIT2 (fixed date) = {idle time between arrival date and start date in the first unit} 

+ {sum of all idle times (lags) } + {durations of activity before the break} 

In this chapter, an application of work breaks in repetitive projects is presented 

with examples. The examples provide evidence that applying work breaks could shorten 

project duration while maintaining resource continuity constraints. The implementation 

of work breaks in simulation using the concepts of SQS-AL is demonstrated and attests 

the versatility of SQS-AL and the simulation model templates. 



 

CHAPTER 7 

RESOURCE-SHARING ACTIVITIES 

CHAPTER 7  RESOURCE-SHARING ACTIVITIES 

This chapter discusses the scheduling of resources that serve more than one 

activity in a repetitive project. These types of resources serving many activities are called 

“shared resources,” while resources serving only one activity are called “dedicated 

resources.” Activities sharing one or more resources are called “resource-sharing 

activities.” Shared resources can be scheduled in various ways depending on the activities 

they serve.  It is possible that a resource-sharing activity might use one dedicated 

resource solely for itself and also share a shared resource with another activity. Without 

shared resources in the simulation model, the dedicated resource can be scheduled using 

the Sequence Step Algorithm (SQS-AL) discussed so far to satisfy resource continuity 

constraints. However, when shared resources are included in the simulation model, 

violations in resource continuity constraints for both dedicated and shared resources may 

be incurred.  

Satisfying resource continuity constraints for shared resources is quite 

complicated. The continuity constraints of shared resources are not affected only by the 

resource-sharing activities’ precedence constraints. They could also be compromised by 

the precedence and continuity constraints of the predecessors and successors of the 

resource-sharing activities. This includes both direct and indirect predecessors and 
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successors. Apparently, the calculation of crew idle time and crew lead time may not 

adequately tackle this highly dynamic and complicated utilization of shared resources 

under continuity constraints. Many considerations and careful analysis are required to 

solve this challenging problem. 

To schedule resource-sharing activities and shared resources effectively, 

relationships between resource-sharing activities and their predecessors and successors 

must be accounted for in scheduling. The order of which activities are scheduled first 

among resource-sharing activities and their dependents may result in different schedules, 

as well as efficiency. These additional considerations of scheduling order must be 

incorporated in the schedule in order to successfully maintain continuous utilization of 

resources in the project. In many cases, maintaining resource continuous utilization of 

shared resources may not be possible, depending on the relationships and relative 

production rates between resource-sharing activities and their dependents.  

This chapter uses several examples to explore many possible situations that exist 

in scheduling repetitive projects with resource-sharing activities. Suggestions and 

solutions are given and vary from case to case. There is no substitute for careful analysis 

and sound judgment. Examining and testing variation of schedules are mandatory so that 

potential problems, ineffectiveness and conflict in the schedules are foreseen and 

corrected. Especially for repetitive projects with resource-sharing activities, corrective 

modification in project schedules is usually required to improve the schedules or alleviate 

existing problems and ineffectiveness. 
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7.1 Considerations in Scheduling Resource-Sharing Activities 

Many characteristics of activities, resources, and discrete-event simulation have a 

great influence on the effectiveness of the sequence step algorithm in scheduling 

repetitive projects with resource-sharing activities. The following characteristics outline 

imperative considerations that must be taken into account in scheduling such projects: 

• The precedence relationships between activities sharing the same resource, 

either directly or indirectly dependent. 

• The sequence steps of resource-sharing activities, either in the same or 

different sequence steps. 

• The sequence steps of resource-sharing activities’ direct predecessors and 

successors.  

• The order in which each activity is modeled in the simulation model. 

• The processing sequence step in which resources’ crew lead time (CLT) is 

determined. 

• The relative order that CLT of shared resources serving resource-sharing 

activities and the order that CLT of dedicated resources serving the 

dependents of the resource-sharing activities are determined. 

• The idle time in the early start date schedule and the changes in the idle time 

as SQS-AL proceeds from the first to the last sequence step. 

• The impact from assigning shared resources’ CLT on the idle time and start 

date of their activities and their activities’ dependents. 
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7.2 Examples of Repetitive Projects with Resource-Sharing Activities X and Y 

The following examples demonstrate different problems that schedulers may 

encounter when using the sequence step algorithm to schedule repetitive projects with 

resource-sharing activities.  

Activities X and Y in the following examples are resource-sharing activities, 

sharing the same Resource RESXY. For brevity, a schedule derived during processing a 

sequence step is referred to as the SQS Schedule. For example, the schedule derived 

during processing sequence step 2 is “SQS2 Schedule.” 

7.2.1 Example 7.1 

 Figure 7.1 displays a single unit precedence diagram of a repetitive project 

consisting of 3 units requiring 4 activities in each unit. Activities A and B require 

dedicated Resource RESA and RESB, respectively, while Activities X and Y share the 

same Resource RESXY. 

A
2

X
1

Y
3

B
2

 
Figure 7.1 Precedence diagram with independent resource-sharing 

  Activities X and Y in the same SQS 
  

Figure 7.2 is a production diagram of the project in Figure 7.1, presenting the 

SQS2 schedule. Crew lead times (CLT) and crew idle times (CIT) of activities during 

processing SQS2 are shown in the dialog box. The values of CLT indicate the current 
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value of CLT (CLTA), and the dash sign indicates an unassigned value of CLT (CLTB 

and CLTXY). The values of CIT indicate the idle time. 

Figure 7.2 shows the SQS2 Schedule, which is the same as the SQS1 Schedule, 

because Activity A does not have predecessors and thus has no idle time. Activities X 

and Y compete for the same Resource RESXY. The bold lines emphasize the work order 

for RESXY. In Figure 7.2, after A1 finishes, Activity X1 starts. The reasons that X1 starts 

before Y1, in other words X1 successfully obtains RESXY, are: 

1) The simulation model of Activity X was created before the model of Activity 

Y; thus, by default, Activity X has a higher priority than Y and is first activity 

to obtain RESXY. 

2) Only one RESXY is available; thus, Activities X and Y cannot work on the 

same day.  

 
Figure 7.2 SQS2 Schedule where the simulation model for X is created before Y 

  

In contrast to the schedule in Figure 7.2, if Activity Y is modeled before Activity 

X, the production diagram would appear like Figure 7.3. In Figure 7.2, the working 

sequence of RESXY is less organized than that in Figure 7.3. In Figure 7.2, RESXY works 
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on Activities X and Y for one unit each, then works for two units of X, and finally works 

for two units of Y. This schedule is considered unorganized and may cause some 

confusion to RESXY. On the other hand, the schedule in Figure 7.3 is more organized and 

simpler; RESXY is scheduled to finish Activity Y for all units before starting Activity X. 

Idle time and project duration in Figures 7.2 and 7.3 are different in many ways: 

1) the work order of RESXY, 2) the idle time in Activity B, and 3) project duration. The 

idle time of RESB is 4 weeks in Figure 7.2, while it is zero in Figure 7.3. The project 

duration is 16 weeks in Figure 7.2, while it is 18 weeks in Figure 7.3. The important issue 

to learn here is that the priority with which resource-sharing activities are modeled in 

simulation software affects the schedule, project duration, and idle time in ways that may 

not be obvious.  

 
Figure 7.3 SQS2 Schedule with additional X_Perform semaphore  

 

As opposed to Figure 7.3, Figure 7.4 stipulates RESXY to finish Activity X in all 

units before starting on Y. This additional constraint prohibits RESXY from serving Y1 

before three units of Activity X have been completed. As a result, idle times of RESXY 

and RESB in the SQS2 Schedule are 2 weeks. 
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To eliminate idle time in RESXY, crew idle time of RESXY must be collected 

during processing SQS2, which is the sequence step of Activities X and Y. In Figure 7.4, 

CIT of RESXY is 4 weeks. (Remember, SQS-AL assumes resources arrive to the site at 

the beginning of the project.) Since this is a deterministic example, CLT equals CIT. 

Therefore, RESXY is scheduled to arrive at the site at the end of the 4th week.  

 
Figure 7.4 SQS2 schedule with additional Y semaphore 

 

Figure 7.5 is the final schedule developed from Figure 7.4. Project duration in 

Figure 7.5 is 18 weeks. For this project, project duration is the same, either stipulating 

RESXY to finish Activity X first or Y first. This situation may occur when resource-

sharing activities are not technically dependent; however it is not always true depending 

on the precedence constraints between resource-sharing activities and their dependents 

(both direct and indirect predecessors and successors.) When switching the working 

sequence of resource-sharing activities does not affect the project duration, schedulers 

can benefit from the variations of resource allocation in many different ways. Schedulers 

should consider the variations as an opportunity to improve the project schedule and to 

maximize resource utilization. 
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It is important to notice that even though the schedules in Figures 7.3 and 7.5 

result in exactly the same duration of 18 weeks, they require the presence of Resource 

XY at the site in different time intervals, i.e., Weeks 2 to 14 for Figure 7.3 and Week 4 to 

16 for Figure 7.5. So, the two schedules are not interchangeable and one may be preferred 

over the other because of other work elsewhere for RESXY (e.g., in other projects).  

 
Figure 7.5 Finalized schedule with additional Y semaphore from Figure 7.4 

 

Figures 7.6 and 7.7 show two alternative schedules by conditioning RESXY to 

work alternately between X and Y. The differences between Figures 7.6 and 7.7 are from 

1) the sequences of which the models for Activities X or Y are created, and 2) the 

additional semaphore. 

215 



Unit

3

2

1

Y2

Y3

B2

B3

A2 X
2

X
3

2 6 12 14 184 10 16 280 0

Week

A1 Y1X
1

B1

CLTA = 0
CLTB = 10
CLTXY = 2

X semaphore is X_Complete.CurCount-Y_Complete.CurCount == 0

A3

CITA = 0 
CITB = 0
CITXY = 0

 
Figure 7.6 Finalized schedule with additional X semaphore 

 

Unit

3

2

1

2 6 12 14 184 10 16 280 0

Week

CLTA = 0
CLTB = -
CLTXY = -

Y semaphore is Y_Complete.CurCount-X_Complete.CurCount == 0

CITA = 0 
CITB = 10
CITXY = 2

 
Figure 7.7 Finalized schedule with additional Y semaphore 

 

7.2.2 Example 7.2 

Figure 7.8 is a precedence diagram of a project with resource-sharing Activities X 

and Y that are independent of each other and are in different sequence steps. Discussion 

in this example and the next example illustrates an adverse impact of the orders of 

activities’ sequence steps on SQS-AL’s effectiveness. 
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Figure 7.8 Precedence diagram with independent resource-sharing activities in different 

SQSs 
 

Figure 7.9 is the SQS2 Schedule for Example 7.2. In this figure, RESXY has idle 

time. To eliminate the idle time, SQS-AL collects CITXY during processing the sequence 

step to which activities served by RESXY belong. However in Example 2, RESXY serves 

two Activities X and Y that are in 2 different sequence steps, SQS2 and SQS4. Thus, it is 

essential to answer this question: “In which processing sequence step should resource’s 

crew idle time be collected and its crew lead time be determined when its resource-

sharing activities are in different sequence steps?” 

 
Figure 7.9 SQS1 to SQS4 Schedules, given CLTXY has not been assigned 
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Given CLT of RESXY has not been assigned in Figure 7.9, crew idle time 

collected from processing SQS2, SQS3, and SQS4 are the same, since there is no 

postponement in RESB at the end of processing SQS2. Accordingly, CITXY from SQS2, 

SQS3, and SQS4 are the same. Note that Activities A and B are already in their final 

position, since there is no idle time existing in their resource schedule. Moreover, 

delaying the arrival of RESXY does not affect their schedule. 

 
Figure 7.10 Finalized schedule after assigned CLTXY either at the end of processing 

SQS2, SQS3, or SQS4, from Figure 7.9 
 

 Even though Example 7.2 does not depict the problem in choosing a processing 

sequence step to collect CIT, it shows collecting CITs and determining CLT in different 

sequence steps can result in the same outcome, for this example. However, in the next 

example, choosing different sequence steps will result in a different outcome. Therefore, 

the answer to which sequence step is the best for processing sequence step of the shared 

resource serving resource-sharing activities in different sequence steps can not be easily 

determined. The answer to this question requires schedulers to study the relationships 

between resource-sharing activities and their dependents. 
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7.2.3 Example 7.3 

Figure 7.11 is another example of scheduling resource-sharing activities that are 

in different sequence steps. The precedence diagram shown in Figure 7.11 is similar to 

Figure 7.8 in Example 7.2 except the production rates of A and B are changed. The slow 

production rate of A relative to B and X incurs idle time in B and X. It is interesting that 

the change in a predecessor (Activity A) of resource-sharing Activities X and Y has a 

great impact on the schedule and effectiveness of SQS-AL in solving this problem.  

 
Figure 7.11 Precedence diagram with independent resource-sharing activities in different 

SQSs 
 

Figure 7.12 shows a production diagram for Example 7.3. Comparing between 

Figures 7.10 and 7.12, a significant difference between Examples 7.2 and 7.3 is that in 

Activity B, the predecessor of resource-sharing Activity Y, has idle time. Postponing B at 

the end of processing SQS2 is likely to affect Activity Y in the next sequence step, SQS3. 
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Unit

3

2

1

2 6 12 14 184 10 16 280 0

Week

CLTA = 0
CLTB = -
CLTXY = -

CITA = 0
CITB = 8
CITXY = 7

 
Figure 7.12 SQS2 schedule 

 

In the SQS2 Schedule shown in Figure 7.12, the CITXY is 7 weeks. The idle time 

between the arrival date and first unit for RESXY is 5 weeks (AIT = 5 week), and the idle 

time between units is 2 weeks (UIT = 2 weeks). If CITXY is collected in processing 

SQS2, CLTXY will be 7 weeks; therefore, RESXY will be scheduled to arrive at the site on 

the 7th
 week. However, this CLTXY of 7 weeks does not eliminate idle time in RESXY 

completely. It results in a remaining idle time of 1 week (UIT = 1 week), as shown in 

Figure 7.13. Figure 7.13 shows the result of scheduling RESXY at the end of processing 

SQS2. CITXY from processing SQS2 is not effective, because postponing X delays 

Activity B in SQS2, which in turn delays the start date of Y to the end of the 10th week, 

causing idle time in RESXY in the 9th week.  
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Figure 7.13 Finalized SQS-AL schedule, given CLTXY is derived from the SQS2 

schedule, idle time in RESXY is 1 week 
  

Figure 7.14 is the SQS3 Schedule with no postponement in RESXY at the end of 

processing SQS2. In the SQS3 Schedule under the given condition shown in Figure 7.14, 

CITXY is 8 weeks. Comparing between Figures 7.12 and 7.14 shows postponing Activity 

B at the end of processing SQS2 induces more idle time in RESXY. Accordingly, it can be 

concluded that CITXY should not be collected during processing SQS2, but during 

processing SQS3 instead. If CITXY is collected from processing SQS3 (Figure 7.14), 

RESXY will be scheduled to the site at the beginning of the 9th week resulting in zero idle 

time in RESXY, as shown in Figure 7.15. 
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Figure 7.14 SQS3 schedule without delaying Activity X in SQS2, developed from Figure 

7.12 
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Figure 7.15 Finalized SQS-AL schedule using the CIT of RESXY from SQS3, developed 

from Figure 7.14 
 

Examples 7.2 and 7.3 illustrate the effect of choosing the sequence step at which 

to collect the CIT of shared resources when resource-sharing activities are in different 

sequence steps. In Example 7.2, it does not matter whether the earlier sequence step 

(SQS2) or the later sequence step (SQS4) of resource-sharing Activities X and Y 
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respectively is chosen. In contrast, in Example 7.3, choosing the earlier sequence step 

(SQS2) would result in idle time of 1 week in the shared RESXY. 

 Figures 7.16 to 7.18 display an alternative schedule that uses an additional Y 

semaphore for Activity Y to specify the working sequence of RESXY. The Y semaphore 

conditions RESXY to finish three units of X before starting on Activity Y. As a result of 

applying the additional Y semaphore, the finalized schedule in Figure 7.18 shows zero 

idle time with project duration of 19 weeks. 

 
Figure 7.16 SQS2 schedule with additional Y semaphore 

 

 
Figure 7.17 SQS3 schedule, developed from Figure 7.16 
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Figure 7.18 Finalized schedule, developed from Figure 7.17 

 

Note that the schedule with an additional semaphore (i.e., Figure 7.18) is two 

weeks longer than that of the schedule without one (i.e., Figure 7.15). However, the 

schedule with the stipulated working sequence of RESXY in Figure 7.18 is straightforward 

and easy to manage the resource. On the other hand, the schedule in Figure 7.15 may 

incur confusion especially when the number of repetitive units is large.     

Figures 7.19 and 7.20 display another alternative schedule by applying an 

additional X semaphore to specify the working sequence of RESXY. The semaphore in 

this schedule forces RESXY to finish three units of Y before starting on Activity X. The 

finalized schedule in Figure 7.20 shows zero idle time with a project duration of 19 

weeks, the same as in the previous alternative schedule shown in Figure 7.18. Applying 

an additional semaphore in resource-sharing activities could alleviate the problems of 

choosing between different sequence steps of resource-sharing activities, as exhibited in 

Figures 7.18 and 7.20. 
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Figure 7.19 SQS2 schedule with additional X semaphore 
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Figure 7.20 SQS3 and SQS4 schedules, developed from Figure 7.19 

 

 Note that the two alternative schedules shown in Figure 7.18 and 7.20 result in the 

same project duration and the hiring period for RESXY. However, the schedule in Figure 

7.20 has a higher probability of having interruptions in RESXY when working on Activity 

Y due to the parallel production diagram between Activities B and Y. There are three 

possible interruption points. Whenever the production rate of Y (e.g., Y1) is higher than 

B (e.g., B2), it will incur an interruption in Activity Y.  Another case is that if Activity 
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B1 is not completed at the end of Week 10, RESXY has to wait before working on 

Activity Y.  

7.2.4 Example 7.4 

Figure 7.21 is a precedence diagram of a repetitive project with four repetitive 

activities. Activities A and B use dedicated Resources RESA and RESB, respectively; 

Activities X and Y share the same resource RESXY. These two resource-sharing activities 

X and Y are directly dependent. 

 
Figure 7.21 A precedence diagram with directly dependent resource-sharing activities X 

and Y 
 

Figure 7.22 is the production diagram of the project before processing any 

sequence steps. The simulation model of Activity X in SQS2 is modeled first before the 

simulation model of Activity Y; therefore, Activity X has higher priority than Activity Y. 

For this example, it is unnecessary to postpone any activities in order to eliminate idle 

time because there is no idle time in any resources. Nevertheless, it is beneficial to study 

this example to gather insightful information regarding activity duration and idle time. 

As shown in Figure 7.21, each unit of Activities A and X takes 3 weeks to 

complete. Since the production rates of A and X are the same, there is no idle time in 

Activity X. Comparing Activities X and Y, the production rate of X is slower than Y, 

which should cause idle time in Y. However, this is not the case, since they share the 

same Resource RESXY, and they are directly dependent. When there is an idle time or 
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interruption between units (e.g., X1 and X2), RESXY will work on another resource-

sharing activity (e.g., Y1). 

Unit

3

2

1

Y
2

Y
3

B2

A3

X2

X3

2 6 12 14 184 10 16 208

Week

22 24

A1 X1 Y
1

B1

B3

CLTA = 0
CLTB = -
CLTXY = 3

CITA = 0
CITB = 13
CITXY = 0

A2

0
 

Figure 7.22 SQS2 schedule 
 

For this example, idle time in RESXY is always zero as long as the combined 

production rate of X and Y (4 weeks) is equal to or slower than the production rate of A. 

When comparing between Figure 7.22 and Figure 7.23, if production rate of Activity A is 

slower than X as in Figure 7.23, Activity Y will get the resource RESXY whenever 

activity X cannot start. As a result, the idle time of RESXY between units in Activity X is 

eliminated by the work in Activity Y. 
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Figure 7.23 Modifying Activity A’s duration and comparing the duration to the combined 

durations of X and Y  
 

Figure 7.24 is an alternative schedule from the original duration shown in Figure 

7.22. Figure 7.24 illustrates that project duration is reduced significantly from 22 to 18 

weeks by introducing additional precedence constrains (X semaphore) between X and Y, 

forcing RESXY to work alternately between X and Y. 

 
Figure 7.24 Decreasing project duration in the SQS2 schedule due to additional X 

semaphore 
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7.2.5 Example 7.5 

Figure 7.25 is a precedence diagram of a repetitive project consisting of 3 units 

requiring 4 repetitive activities. Activities A and B utilize two dedicated resources RESA 

and RESB; X and Y use the same Resource RESXY. Resource-sharing Activities X and Y 

are indirectly dependent having Activity B between them as shown in Figure 7.25. 

As explained below, this is an interesting example because it illustrates that the 

working sequence of resource-sharing activities (i.e., X and Y) could be affected by 

another activity (i.e., Activity B) whose precedence places it between the two resource-

sharing activities. 

 
Figure 7.25 Precedence diagram with indirectly dependent resource-sharing Activities X 

and Y 
 

Figure 7.26 is the SQS2 Schedule of the project, where CITXY is 5 weeks. Figure 

7.27 is the SQS3 Schedule, where CLTXY is 5 weeks from the previous processing SQS2, 

and CITB is 15 weeks. As shown in Figures 7.26 and 7.27, Activity Y1 takes place 

between X2 and X3, and thus absorbs the idle time between X2 and X3. However, it is 

likely that RESXY will follow a different working sequence after CLTB is determined due 

to precedence constraints between Activities B and Y. Postponing the arrival date of 

RESB will delay Activity B’ successor, Activity Y.  
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B2

B3

B1

 
Figure 7.26 SQS2 schedule 

 

Comparing Figures 7.27 to 7.28, the working sequence of RESXY changes from 

X1, X2, Y1, X3, Y2, Y3 in the SQS3 Schedule to X1, X2, X3, Y1, Y2, Y3 in the SQS4 

Schedule. Hence, CLTB (15 weeks) derived from the SQS3 Schedule (Figure 7.27) may 

not be the best, because assigning CLTB of 15 weeks changes the working sequence of 

the shared resource RESXY serving Activity B’s dependents. The difference in working 

sequence of RESXY adversely results in: 1) idle time in RESXY and 2) an unnecessary 

delay in RESB, as shown in Figure 7.28.  Thus, the blind application of SQS-AL results in 

a suboptimal schedule. 
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Figure 7.27 SQS3 schedule, developed from Figure 7.26 

 

Unit
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2

1

Y2A2

A3 X3
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Week

22 24

X1

X2

Y1

CLTA = 0
CLTB = 15
CLTXY = 5

CITA = 0
CITB = 0
CITXY = 2

Y3

A1

CITXY of 2 weeks and activity B’s unnecessary delay of 2 weeks are the result
 from the different work order in RESXY from the SQS2 to SQS3 schedules 

B could 
start here.

Y could start here.
0

 
Figure 7.28 Finalized schedule, developed from Figure 7.27 

 

Figure 7.29 is the SQS2 Schedule with an additional semaphore for Activity Y 

that prevents Y from starting unless all units of X are finished; the resulting schedule in 

shown in Figure 7.29. The working sequence for RESXY is fixed, and Activity Y cannot 

absorb the idle time between X2 and X3 in SQS3, as it does in Figure 7.27. As a result of 

adding the additional semaphore in Figure 7.29, CITXY increases to 6 weeks for the SQS2 

Schedule, compared to 5 weeks in Figure 7.26. 
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Figure 7.29 SQS2 schedule with additional Y semaphore 

  

Figure 7.30 is the SQS3 Schedule with the additional semaphore and CLTXY is 6 

weeks. CITB in the SQS3 Schedule with the semaphore is 13 weeks (Figure 7.30), which 

is different from CITB in the SQS2 Schedule (15 weeks) without the semaphore (Figure 

7.27).  

 
Figure 7.30 SQS3 schedule with additional Y semaphore, from Figure 7.29 

 

A comparison between the finalized schedules with the semaphore (Figure 7.31) 

and without the semaphore (Figure 7.28) shows that allowing RESXY to start work in Y 

as early as possible results in an unfavorable impact on the schedule derived by SQS-AL. 
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This is caused by the unexpected change in working sequence for RESXY from processing 

one sequence step (Figure 7.27) to another (Figure 7.28). By introducing the additional Y 

semaphore, the working sequence for RESXY is fixed ensuring consistency in the working 

sequence from processing one sequence step (Figure 7.29) to another (Figure 7.30). As a 

result, CITXY from the SQS2 Schedule (Figure 7.29) is compatible to the working 

sequence for RESXY in the finalized schedule (Figure 7.31).  

Comparing between the finalized schedule in Figure 7.31 where RESXY has a 

specified working sequence and in Figure 7.28 where RESXY has an unspecified working 

sequence, the schedule from Figure 7.31 is preferable because its project duration is 

shorter by 1 week. Moreover, CITXY in Figure 7.31 is zero, while CITXY in Figure 7.28 is 

2 weeks. Project duration in Figure 7.31 is less susceptible to delay in B1 than that in 

Figure 7.28. There is a buffer of 1 week between Activities B and Y. As long as an 

unexpected delay in B1 is less than 1 week, project duration should be completed on the 

deadline. On the other hand in Figure 7.28, if there is an unexpected delay in RESB from 

its CLTXY (Week 15), project duration will most likely be delayed.  

B2
B3

X2

X3

X1 B1

 
Figure 7.31 SQS4 schedule, developed from Figure 7.30 
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 As discussed above, the schedule shown in Figure 7.31 is more favorable than 

Figure 7.28. However, the schedule shown in Figure 7.28 has one advantage; it provides 

a higher confidence level in Activity B due to the buffer between Activities X and B. In 

most circumstance, the schedule in Figure 7.31 should be chosen. An exception is when 

the penalty cost from an interruption (or idle time) in Activity B or Resource RESB is far 

more significant than penalty cost from 1) delaying project completion and/or 2) idle time 

in resource RESXY. 

7.2.6 Example 7.6 

 Example 6 is similar to Example 5, except the production rates of the four 

activities are changed to demonstrate the adverse effect of idle time in resource-sharing 

activities on their dependents.  Figure 7.32 shows a precedence diagram and activity 

durations, and Figure 7.33 shows the production diagram from the SQS2 Schedule. 

 
Figure 7.32 Indirectly dependent resource-sharing Activities X and Y with a slower-

production-rate Activity B between them  
 

In Figure 7.33, the production rates of resource-sharing Activities X and Y are 

faster than that for Activity B between them. In other words, resource-sharing Activities 

X and Y are indirectly dependent separated by Activity B whose production rate is 

relatively slow compared to that of X and Y. As a result, there is idle time in Activity Y. 
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Figure 7.33 SQS2 schedule 

 

Figure 7.34 is the SQS3, SQS4, and the finalized schedules, where CITXY of 4 

weeks is derived from processing SQS2, in Figure 7.33. That is at the end of processing 

SQS2, RESXY is scheduled to arrive at the site at the end of the 6th week, resulting in 

CITB of 8 weeks in SQS3. Therefore, at the end of processing SQS3, a CLTB of 8 weeks 

is assigned. In SQS4, there is no resource that has not yet been assigned crew lead time. 

Accordingly, there is no change in the schedule from SQS3 to SQS5 (final schedule), 

although there is idle time of 4 weeks in Activity Y. In addition, it is obvious that the 

project duration is unnecessarily delayed without eliminating any idle time between units 

in Activity Y.  
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Figure 7.34 SQS3, SQS4, and the finalized schedule when using CITXY from SQS2 and 

CITB from SQS3, developed from Figure 7.33 
 

As shown in Figure 7.34, delaying the arrival date of RESXY does not have the 

intended effect of eliminating interruptions in Activity Y, since delaying Activity X will 

also delay its successor Activity B which causes the idle time and interruption in Y. As a 

result, Activity Y is delayed and has the same idle time as before (Figure 7.34).  

In this case, the idle time of 4 weeks in RESXY cannot be eliminated because of: 

1) Precedence constraints among Activities X, B, and Y 

2) The relatively slower production rate of Activity B compared to X and Y 

3) Continuity constraints between resource-sharing Activities X and Y 

Figure 7.35 is an alternative schedule for Example 7.6, showing the finalized 

schedule, where CLTXY is derived from processing SQS4 (not SQS2), after CLTB in 

processing SQS3. Remember, CLTB could be derived from either SQS2 (before CLTB) or 

SQS4 (after CLTB). Consequently, postponing the arrival of RESXY delays Activity X, 

after already scheduling RESB, causes AITB of 4 weeks. This AITB of 4 weeks exists 

between RESB’s arrival date and the first start date of B1, as shown in Figure 7.35. 
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Figure 7.35 Finalized schedule when using CLTB from SQS3 and CLTXY from SQS4, 

developed from Figure 7.34 

 

In accordance with the finalized schedules in Figures 7.34 and 7.35, it can be 

concluded that the idle time in the shared Resource RESXY cannot be eliminated, as long 

as Activities X and Y still share the same resource or continuity constraints of RESXY 

remains the same. To eliminate idle time in RESXY, three alternatives can be applied. 

The first alternative is to assign dedicated resources to Activity X and Activity Y, 

as shown in Figure 7.36.a. A dedicated RESX is assigned to Activity X, whereas another 

dedicated RESY is assigned to Activity Y. The second alternative is to introduce a work 

break of 4 weeks between Activities X and Y, as shown in Figure 7.36.b.  
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CLTB = 4
CLTX = 2
CLTY = 12

CITB = 0
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B2

(a) Assigning dedicated RESX for Activity X and dedicated RESY for Activity Y

(b) Introducing a work break of 4 weeks in RESXY, after RESXY completes X3
 

Figure 7.36 Using dedicated resources or work break between Activities X and Y 
 

The third alternative is to balance the production rates for Activities X, B, and Y 

as shown in Figure 7.37. Figure 7.37.a illustrates that the production rate for RESB is 

increased in order to balance the production rates between RESB and RESXY. On the 

other hand, Figure 7.37.b illustrates that the production rate of RESXY is decreased in 

order to balance the production rates between RESXY and RESB. 
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(a) Increasing production rate of RESB to balance the production rates of RESB and RESXY

(b) Decreasing production rate of RESXY to balance the production rates of RESB and RESXY

 
Figure 7.37 Balancing production rates of Resource RESXY to achieve its continuous 

resource utilization 
 

7.3 Summary 

This chapter discusses various topics and complexity in scheduling repetitive 

projects consisting of resource-sharing activities. Examples in this chapter demonstrate 

the difficulty in maintaining continuous resource utilization in such projects. The 
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complicated relationships and interactions among precedence, resource availability, and 

resource continuity constraints diminish the effectiveness of SQS-AL when used blindly. 

For SQS-AL to effectively schedule repetitive projects with resource-sharing 

activities, schedulers must imperatively consider the following questions:  

• Are resource-sharing activities directly or indirectly dependent? 

• Are there any activities between the resource-sharing activities? What are 

their production rates compared to the resource-sharing activities’ production 

rates?  

• Are resource-sharing activities in the same sequence step? If they are not in 

the same sequence step, in which processing sequence step should their shared 

resources’ crew lead time be determined? 

• What is the order of which simulation models for resource-sharing activities 

are created in the simulation? Does the order affect resource idle time and 

schedule? 

• Could the working sequence of resources be changed because of 

determination of resources’ CLT? Does the change impact the effectiveness of 

the already determined CLT? 

• Is it possible to eliminate idle time in resource utilization? 

• Could a work break be introduced to relax the resource continuity constraints? 

• Is it necessary to replace a shared resource by many dedicated resources?  

The questions above are a good start in analyzing repetitive projects with 

resource-sharing activities. Many examples are used to point out different problems 

associated with the above questions in scheduling such projects. The examples and their 
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solutions in this chapter show how to tackle the difficulties in scheduling resource-

sharing activities and shared resources, case by case. However, neither the above 

questions nor the example in this chapter are exhaustive. The combinations of these 

questions and examples result in even larger number of possibilities. 

Using SQS-AL to solve scheduling problems of repetitive projects consisting of 

resource-sharing activities definitely requires thorough analysis of the aforementioned 

considerations and careful examination of the simulation results. The trial-and-error 

approach may be necessary to derive an optimal schedule; different scheduling scenarios 

must be tested to improve both activity and resource schedules. To do so, certain 

decisions (e.g., considering different sequence steps for shared resources) must be first 

outlined and their options (e.g., SQS2, SQS3, and SQS4) must be listed prior to the 

testing in simulation and optimization. The following suggestions should be treated as 

decision variables in scheduling resource-sharing activities.  

• It is recommended to use only dedicated resources first in order to study the 

proximity (i.e., start dates and working period) of activities sharing the same 

resource and their interaction in the schedule with their dependents. 

• Activities, both resource-sharing and not-sharing, should be modeled in the 

order of their precedence relationships. Then, the decision of which resource-

sharing activities to start first should be determined later after studying the 

production diagram carefully. 

• Working sequence should be specified so that the order of which activities are 

performed is certain, not by chance. This also prevents an unexpected 

outcome in the schedule such as idle time from probabilistic activity durations 
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and their impact on the effectiveness of SQS-AL. Examples of specifying 

working sequence for shared resources are 1) finishing one resource-sharing 

activity at a time (e.g., X1, X2, X3, and then Y1, Y2, and Y3) and 2) working 

alternately between resource-sharing activities (e.g., X1, Y1, X2, Y2, X3, and 

Y3), given that Activities X and Y share the same resource and are not 

dependent. 

• When resource-sharing activities are in different sequence steps (e.g., X is in 

SQS2 and Y is in SQS4), it is important to check their effect on the schedule. 

If using different sequence steps results in different schedule, all sequence 

steps from the SQS of the earlier-SQS activity (i.e., SQS2) to the later-SQS 

activity (i.e., SQS4) must be tested for the shared resource. 

• When there is a slow-production-rate activity between resource-sharing 

activities, it is recommended to consider assigning work breaks or balancing 

the production rates. If the proximity between resource-sharing activities is 

close (their schedules overlap each other or almost), balancing production rate 

among activities are recommended. On the other hand, if the proximity is 

large, introducing work breaks between resource-sharing activities is 

suggested. 

Chapter 8 presents the ChaStrobe application, which facilitates the trial-and-error 

approach by expediting the processes of simulation code and model creation. In addition, 

the application offers comprehensive analysis of simulation results. 

 



 

CHAPTER 8 

CHASTROBE APPLICATION 

CHAPTER 8  CHASTROBE APPLICATION 

 Commencing with Chapters 4 to 7, the Sequence Step Algorithm (SQS-AL) and 

various topics of repetitive project scheduling have been discussed. In Chapter 4, the 

fundamental concepts of SQS-AL are introduced. The chapter shows that repetitive 

activities should be scheduled in sequence step order so that the effect of postponing an 

activity on its successors’ idle time and interruption are unveiled, and thus taken into the 

account of scheduling the successors. Accordingly, SQS-AL is involved in the repetitive 

processes of executing simulation, collecting data, and scheduling activities. These 

repetitions are demonstrated in Chapters 4 and 5. In Chapter 5, the implementation of 

SQS-AL in simulation system, Stroboscope, is discussed. At the end of Chapter 5, it 

becomes apparent that it is beneficial to create an application automating SQS-AL’s 

systematic process in solving the problems of repetitive project scheduling. 

 In Chapters 6 and 7, two advanced ideas of scheduling repetitive projects are 

discussed: work breaks in repetitive activities (Chapter 6) and resource-sharing activities 

(Chapter7). Chapter 6 shows benefits of applying work breaks (deliberated interruptions) 

in repetitive activities to shorten increased project duration due to the assigned crew lead 

times. Suggestions of which activities into which a work break should be introduced are 

given; however, trial-and-error approach of scheduling work breaks between units in a 
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repetitive activity is apparently inevitable. The modifying simulation model and code is 

required and repeated several times in order to derive an optimal schedule.  

Chapter 7 shows that scheduling resource-sharing activities could be extremely 

complicated. The complexity of scheduling repetitive projects with resource-sharing 

activities varies from case to case depending on 1) relationships between activities 

sharing the same resource and 2) relationships between the resource-sharing activities 

and their dependents. Similar to the trial-and-error approach in Chapter 6, the repetition 

of modifying simulation models and code is mandatory in order to derive an optimal 

schedule for repetitive projects with resource-sharing activities. 

 From Chapters 6 and 7, it is recommended to establish an application that 

facilitates the means of generating and modifying simulation models and code 

conforming to SQS-AL (Chapter 4) and the suggested simulation model templates 

(Chapter 5).  The application must be able to facilitate the trial-and-error approach so that 

modifying simulation models and executing the simulation to optimize a schedule 

become easier. According to the aforementioned needs and goals, ChaStrobe has been 

developed.  

8.1 Overview of the ChaStrobe Application 

ChaStrobe is an application that automates the process of creating simulation code 

and models conforming to the concepts of the Sequence Step Algorithm (SQS-AL) and 

the simulation model templates, discussed in Chapters 4 and 5. ChaStrobe is programmed 

in Visual Basic for Applications (VBA) for Microsoft Visio. It takes input from users, 

and generates the simulation model in a Stroboscope Graphic User Interface file 

(Stroboscope GUI), which is a Visio file with Stroboscope add-ons. When users execute 
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the generated simulation model, the Stroboscope add-ons will convert the simulation 

model in Stroboscope GUI to Stroboscope code. Then, the converted code is combined 

with the simulation code in the Stroboscope GUI and send to the Stroboscope Integrated 

Development Environment (Stroboscope IDE) for simulation execution. Figure 8.1 

shows the processes of using ChaStrobe and Stroboscope to model repetitive projects and 

solve repetitive project scheduling problems using SQS-AL and Stroboscope. 

 

ChaStrobe

Stroboscope 
GUI

Stroboscope 
IDE

2) Generates simulation 
code and models

4) Executes the converted 
and combined simulation 
code

Users
1) Enter inputs for 
simulation parameters, 
activities, and resources

3) Converts the simulation 
models in (2) to code and 
combines all the code

Simulation code and 
models in Visio objects

Inputs for simulation, 
activities, and resources

Converted and combined 
Simulation Code

Simulation results

5) Store the simulation 
results   

Output 
Text Files Output data from specifie

text files, when
requested by ChaStrobe.  

Figure 8.1 ChaStrobe’s process of modeling and solving problems 
 

As shown in Figure 8.1, a user enters inputs for simulation parameters, activities, 

and resources in ChaStrobe. Then, the user asks ChaStrobe to create a simulation model 

and code inside the Stroboscope GUI. This process of creating simulation code and 
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model in Stroboscope GUI normally takes seconds depending on the size of the 

simulation model (e.g., the number of activities and the number of sequence steps) and 

the complexity of the repetitive project (e.g., the existence of work breaks and resource-

sharing activities). After the model is created, both the graphical model and code can be 

examined by the user within the Stroboscope GUI. At this point, the simulation code and 

model can be modified by the user prior to simulation execution. 

As depicted in Figure 8.1, between the Stroboscope GUI and IDE, after a user 

requests to execute the simulation from within the Stroboscope GUI, the graphical 

simulation elements such as Queues, Combis, and Links are converted to simulation code 

and then combined to the simulation code, created by ChaStrobe and the code added by 

users before simulation execution. Then, the combined code is sent to and executed by 

the Stroboscope IDE. Results from the execution are stored in various text files for 

further analysis. 

8.1.1 Inputs for ChaStrobe 

There are four main types of inputs in the ChaStrobe application: 1) simulation 

parameters, 2) project inputs, 3) optimization parameters, and 4) graphical presentation 

parameters. Simulation parameters (e.g., the number of replications) and project inputs 

(e.g., activities and resources) are the most important inputs used to construct simulation 

code and model. Accordingly, this chapter focuses on simulation parameters and project 

inputs, while Chapter 9, Optimization in ChaStrobe, focuses on optimization parameters. 

Graphical presentation parameters for ChaStrobe’s Static Graphs are explained in detail 

in Appendix D. 

The following is a description of ChaStrobe’s inputs.  
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1) Simulation Parameters are simulation setup input, variables, and constants for 

establishing and running simulation, not related to specific activities and 

resources. Figure 8.2 shows ChaStrobe’s user interface for the Simulation 

Parameters. 

 
Figure 8.2 ChaStrobe’s interface for Simulation Parameters 

 

The Simulation Parameters in Figure 8.2 are described below: 

a. “Number of Replications” specifies the total number of replications for 

each SQS-AL processing sequence step. This number is assigned to nRep 

to control SQS-AL replication loop, discussed in Section 5.3.1.1 

(MP.Loops). 

b. “Expected Maximum Value of CIT” specifies the upper bound of 

BinCollectors such as RES_CIT1, discussed in Section 5.3.2.6 

(PO.RES.CIT). 
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c. “Number of Intervals for CIT” determines the number of intervals in 

BinCollectors in (b), discussed in Section 5.3.2.6 (PO.RES.CIT). 

d. “Rounding Digit” specifies the number of decimals used in Stroboscope’s 

Round function to round decimal places. 

e. “Static Graph” option informs ChaStrobe whether to create Static Graphs 

at the end of simulation. When this option is checked (true), ChaStrobe 

generates simulation code storing data, which is used later to create Static 

Graphs. Details for constructing a Static Graphs are given in Appendix D. 

f. “Dynamic Graph” option informs ChaStrobe whether to create production 

diagrams during simulation runs. When this option is checked (true), 

ChaStrobe creates simulation code for the Dynamic Graph. 

g. “Number of (Dynamic) Graphs in Each SQS” indicates how many 

dynamic graphs will be plotted during processing each sequence step. The 

data for each dynamic graph are derived from each replication, starting 

from the first replication. Note that ChaStrobe uses this parameter only if 

the option of Dynamic Graph in item (f) is checked. 

h. “Number of (Dynamic) Graphs in Last SQS” indicates how many dynamic 

graphs will be plotted in the last sequence step. Similar to “Number of 

Graphs in Each SQS,” ChaStrobe uses this parameter only if the option of 

Dynamic Graph is checked. 

i. “Plot Cumulative Frequency of Project Duration” option informs 

ChaStrobe whether to create simulation code used in plotting the 

cumulative frequency of project durations from processing each SQS.  
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j. “Using optimized INIT Activities based on their SQS” option is for 

optimizing SQS-AL’s processing sequence steps in simulation. When this 

option is checked, only activities in all previous and the current sequence 

steps are initiated with the number of units, while activities in the later 

SQS than the current SQS are not initialized. This option is used to 

expedite SQS-AL, when there is no desire to study changes in crew idle 

time, project duration, project idle time etc., between different processing 

sequence steps.  

2) Project Inputs are data related to activities and resources used to create 

simulation code and model. Activity data are activities’ names, precedence 

constraints, production rates, and work amounts. Resource data are resources’ 

names, resource utilization, resource continuity constraints, and work breaks. 

Figures 8.3 to 8.6 show ChaStrobe’s user interface for Project Input. 

a. The Precedence Input sheet (Figure 8.3) collects 1) the number of 

activities, 2) activities’ names, and 3) precedence constraints. ChaStrobe 

determines the number of activities in the Precedence Input sheet by 

counting non-blank cells in Column A, starting from Row 2. Then, it 

collects activities’ names, used to create work flow sub-networks for each 

activity. For precedence constraints, ChaStrobe determines the number of 

predecessors by counting non-blank cells in the column direction, starting 

from Column 2 in the same row of each particular activity. 
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Figure 8.3 ChaStrobe’s Interface for activities’ names and precedence constraints on the 

Precedence Input sheet 
 

b. The Quantity Input sheet in Figure 8.4 collects 1) conversion of 

productivity of activities in the unit of time per the unit of work (e.g., 

hr/m), and 2) work amount for each repetitive unit and each activity in 

units of work per repetitive unit (e.g., m/floor). Therefore the unit of their 

product is in the unit of time (e.g., hr). On the Quantity Input sheet, 

ChaStrobe counts the number of non-blank cells in Row 1 in the column 

direction, starting from Column C, to determine the number of units in the 

project. Therefore, the project in Figure 8.4 consists of 4 units. ChaStrobe 

uses the number of units to: 1) create arrays of work amount in simulation 

code and 2) initialize the number of work units. The conversion of 
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productivity in Column B (e.g., in Cell B2, 1/Normal[10,1]) must be 

Stroboscope’s expression. Activity durations are derived from the product 

of the conversion in Column B and the work amount in Columns C, D, E, 

and F.    For more information about simulation code generated from data 

in the Quantity Input sheet, see Section 5.3.1.2 (MP.ACT.Quantity) for 

arrays of work amounts, Section 5.3.4.2 (CS.ACT.INIT) for initializing 

the number of repetitive units, and Section 5.3.2.3 (PO.ACT.Duration) for 

activities’ durations. 

 
Figure 8.4 ChaStrobe’s interface for activities’ productivities and work amounts on the 

Quantity Input Sheet 
 

c. The Resource Input sheet (Figure 8.5) collects data related to resources in 

repetitive projects. Resource-related inputs for each resource in Resource 
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Input sheet are 1) resources’ names, 2) confidence levels, 3) the total 

number of resources for each type, and 4) continuity constraints. 

ChaStrobe first determines the number of resources by counting non-blank 

cells in Column A starting from Row 2. Then, it records the resources’ 

names in Column A and stores resource’s properties in different columns. 

Confidence levels and the number of resources for each resource type are 

collected from Columns B and C, respectively.  

Continuity constraints for each resource are constructed using 

notation of Break. Breaks indicate series of continuous utilization of 

resources. For example, in Figure 8.5, resource ResB’s Break 1 in Column 

H is B-4, meaning that ResB is scheduled to work continuously from the 

day it arrives to the day it finishes Activity B4. On the other hand, blank 

cells in Column H indicate resources are not constrained by continuity 

constraints; therefore, the early start date is used to schedule the 

unconstrained resources.  ChaStrobe determines the number of breaks by 

counting non-blank cells in the column direction, starting from Column H. 

Simulation code for confidence levels is discussed in Section 

5.3.1.3 (MP.RES.ConfidenceLevel) and Section 5.3.4.6 (CS.RES.CLT). 

For work breaks in continuous resource utilization, see simulation code in 

Section 5.3.3.7 (CME.RES.Leave.OnFlow) for a project without work 

breaks, and Section 6.5.3.7 for the project with work breaks.  
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Figure 8.5 Resources’ names, confidence levels, amounts for each type, and continuity 

constraints on the Resource Input Sheet 
 

d. The Utilization Input sheet is used to assign resource(s) to activities. 

ChaStrobe uses row index in identifying activities in the Utilization Input 

and Precedence Input sheets; therefore, the order of activities on both 

sheets must be the same. Column A on the Utilization Input sheet is only 

for reference purposes; omitting activities’ names in Column A on the 

Utilization Input sheet does not result in an error. For example, as shown 

in Figure 8.6, after ChaStrobe reads resource’s name (ResA) in Row 2 

Column B on the Utilization Input sheet, it assigns Resource ResA to an 

activity declared in Row 2 on the Precedence Input sheet, which is 

Activity A as shown in Figure 8.4. Then, ChaStrobe moves to Row 2 

Column C on the Utilization Input sheet; however, since there is no 
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resource’s name in Row 2 Column C, ChaStrobe will move to Row 3 

Column B. Then, it will assign Resource ResB to an activity declared in 

the same row index, which is Row 3, on the Precedence Input sheet, which 

is Activity B as shown in Figure 8.4. 

 
Figure 8.6 ChaStrobe’s interface for Utilization Input 

 

Note that the Dynamic Code Input and Search Input sheets are for optimization, 

discussed in Chapter 9, Optimization in ChaStrobe. 

After Simulation Parameters and Project Input (Precedence, Quantity, Resource, 

and Utilization Input) are entered, simulation code and model for the problem are ready 

to be created. To generate the simulation model, users click the “GENERATE” button 

(Figure 8.6). To execute the simulation, users click the “RUN MODEL” button. 
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8.1.2 Simulation Output from ChaStrobe 

ChaStrobe stores simulation results related to activities, resources, and projects in 

six different text files. After simulation execution, the six text files are ready for viewing. 

Their main functions are explained below. 

1) tempChaStrobe_Analyzer.txt stores simulation results related to activities, 

such as start date and duration, for the finalized schedule in each replication. 

ChaStrobe uses the activity data in tempChaStrobe_Analyzer to analyze and 

compare the results among SQS-AL, CPM, and RSM. Details of ChaStrobe 

Analyzer are discussed in Section 8.10. 

2) tempChaStrobe_CLT.txt stores resources’ crew lead times. 

3) tempChaStrobe_GA.txt stores objective function values and user-specified 

output from simulation execution, used for optimization, discussed in detail in 

Chapter 9, Optimization in ChaStrobe. 

4) tempChaStrobe_StaticGraph.txt stores data of activities from the first 

replication when processing each sequence step. ChaStrobe’s Analyzer uses 

this data to create example production diagrams. 

5) tempChaStrobe_StaticGraphProb.txt stores simulation results of probability of 

project duration for processing each sequence step. ChaStrobe uses this data to 

create cumulative frequency of project duration from processing each 

sequence step. 

6) tempChaStrobe_StaticGraphSQS.txt stores simulation results of project 

duration and project idle time from processing each sequence step. 
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8.1.3 Automation in ChaStrobe 

ChaStrobe uses Visual Basic for Applications (VBA) and Object and Linking 

Embedding Automation (OLE) in order to control MS Visio, MS Excel, and MS Project, 

to 1) create graphical presentations, 2) execute computational analyses, and 3) perform 

optimization. Upon users’ requests, ChaStrobe retrieves the data stored in output text 

files, performs the necessary tasks, and returns the results when it finishes. Figure 8.7 

explains the processes of analyzing the data from output files, and also applications used 

to present the results. 

ChaStrobe

Presentations Analysis Optimization

  
Output 

Text Files

MS Visio

MS Excel

MS Project

MS Excel

MS Visio

ChaStrobe

Users

1) Request (a), (b), or (c)

a) Creating b) Executing c) Performing

2) Retrieves data

 
Figure 8.7 ChaStrobe’s presentations, analyses, and optimization 

 

Figure 8.7 indicates that the graphical presentations are displayed in MS Visio, 

MS Excel, and MS Project, depending on the type of presentation. Analysis in MS Excel 

focuses on the comparison of results among CPM, RSM, and SQS-AL. For the 

optimization in ChaStrobe, both ChaStrobe and MS Visio with Stroboscope GUI are 
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required as shown in Figure 8.7; it is a recursive procedure of creating simulation models, 

executing the models in Stroboscope GUI, retrieving output from tempChaStrobe_GA, 

and then performing optimization-related calculations in ChaStrobe. ChaStrobe’s 

Optimization and ChaStrobe’s Automation are discussed in Chapter 9. 

8.1.4 Capabilities of ChaStrobe 

 According to the aforementioned ChaStrobe’s features, the ChaStrobe application 

is capable of: 

1) Generating simulation model and code conforming to SQS-AL for repetitive 

projects with: 

a. Probabilistic activity durations (Chapters 4 to 7) 

b. Dedicated resources (Chapters 4 and 5) 

c. Work breaks (Chapter 6) 

d. Resource-sharing activities (Chapter 7) 

2) Automatically and dynamically modifying simulation code and model by 

using Dynamic Simulation Modeling and Dynamic Coding features in 

ChaStrobe, discussed in Chapter 9. 

3) Retrieving output from specified text files to: 

a. Create graphical presentations from the output 

b. Perform comparison analyses of the Critical Path Method (CPM), the 

Repetitive Scheduling Method (RSM), and the Sequence Step Algorithm 

(SQS-AL) 

c. Obtain objective function values for optimization in ChaStrobe: 1) Genetic 

Algorithm Optimization, and 2) Exhaustive Search 
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4) Creating graphical presentations as follows: 

a. Production diagrams from different processing sequence steps 

b. Cumulative distribution function of project duration based on CPM, RSM, 

and SQS-AL 

c. Density functions of project durations from CPM, RSM, and SQS-AL 

d. Comparisons among CPM, RSM, and SQS-AL in project duration, and 

project idle time 

5) Performing optimization using: 

a. Genetic Algorithm 

b. Exhaustive Search 

8.2 Examples of Repetitive Projects in ChaStrobe 

 Four examples of repetitive projects demonstrate the use of the ChaStrobe 

application. Ordered from simple to complicated, the four examples are: 

1) Example 8.1 Simple repetitive project. In this example, each activity utilizes 

one dedicated resource. There are no work breaks or resource-sharing 

activities. 

2) Example 8.2 Repetitive project with work breaks. This example focuses on 

using ChaStrobe to model repetitive activities with work breaks. There is no 

resource-sharing activity. 

3) Example 8.3 Repetitive project with resource-sharing activities. This example 

focuses on using ChaStrobe to model resource-sharing activities. In this 

example, the difficulty in scheduling repetitive projects with resource-sharing 

activities is shown.  
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To solve Example 8.3 effectively, the inputs in Example 8.3 must be modified as 

shown in Example 8.4. However, Example 8.3 is shown for the purposes of 

comparison between two schedules derived from the input in Examples 3 and 4. 

4) Example 8.4 Repetitive project with work breaks and resource-sharing 

activities. This is a very complicated scheduling problem of repetitive 

projects, since both work breaks and resource-sharing activities are included 

in the simulation model.  

To activate ChaStrobe, right click on the Visio drawing with ChaStrobe macro. 

Then, select CHASTROBE, as shown in Figure 8.8 below. 

 
Figure 8.8 Activating ChaStrobe 

 

8.2.1 Example 8.1 Simple repetitive project 

 Example 8.1 is the example used in Section 5.3. Each activity requires only one 

dedicated resource, and there is no work break. This example shows how to use 
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ChaStrobe to model a simple repetitive project. The comparison between the simulation 

code in section 5.3 and the input in the following section should be beneficial to users 

when they desire to modify the default code and model created by ChaStrobe. 

 Figure 8.9 displays a single unit precedence diagram for Example 8.1, whereas 

Table 8.1 shows each activity’s productivity and work amount in each unit. 

 
Figure 8.9 A single unit precedence diagram for Example 8.1 

 

Activity Productivity 
Unit 

1 2 3 4 
Work Amount 

A Normal[10,1] 100 250 150 200 
B Normal[20,2] 150 100 200 150 
C Normal[15,1.5] 200 150 50 200 
D Normal[15,1.5] 150 200 100 150 
E Normal[25,2.5] 100 150 50 100 
F Normal[15,1.5] 150 250 50 100 
G Normal[20,2.0] 50 200 50 150 

Table 8.1 Activities’ productivities and work amounts for Example 8.1 
  

The following sections show the input for Example 8.1 in ChaStrobe. Figure 8.10 

shows Simulation Parameters for the example. The total number of replications is 3000; 

therefore, nRep SaveValue equals 3000 as shown in Section 5.3.1.1 (MP.Loops). The 

Maximum Value in RES_CIT is set at 300, meaning the upper bound of RES_CIT 

BinCollectors is set to 300 days. The number of intervals in these BinCollectors is 60 as 
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shown in the Intervals in RES_CIT bincollector in Figure 8.10. The Maximum Value in 

RES_CIT and the Intervals in RES_CIT bincollector are used in the BinCollectors’ 

declaration in Programming Objects. See Sections 5.3.2.6 (PO.RES.CIT) and 5.3.2.8 

(PO.RES.CIT.SQS) for more detail. 

 In Figure 8.10, the option of Static Graph is checked (true) so that ChaStrobe will 

create simulation code for storing data necessary to construct Static Graphs in 

tempChaStrobe_StaticGraph.txt. 

 
Figure 8.10 Simulation Parameters for Example 8.1 

 

Note that, the total number of processing sequence steps is automatically 

determined by ChaStrobe, which is 4 in this example. Thus, nSQS SaveValue is 4 as 

shown in Section 5.3.1.1 (MP.Loops).  

 Figure 8.11 shows the input of activities’ names and predecessors entered in 

ChaStrobe’s Precedence Input sheet. Activities’ names are entered in Column A starting 

from Row 2, while predecessors of activities are entered in the row direction starting 
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from Column B. ChaStrobe interprets the input on the Precedence Input sheet to create 

work flow sub-networks for each activity and also their precedence constraints. Note that 

precedence constraints are encoded in activities’ semaphores, as shown in Section 5.3.2.2 

(PO.ACT.Semaphore). 

 
Figure 8.11 Precedence Input for Example 8.1 

 

 Figure 8.12 shows the input of activities’ production rates and work amounts in 

each unit; the input is entered in the Quantity Input sheet. The data on the Quantity Input 

sheet is used mainly for 1) determining the total number of units, 2) creating Arrays 

storing activities’ work amounts in each unit, and 3) constructing simulation code for 

activities’ durations. On the Precedence Input sheet, ChaStrobe collects the inverse value 

of productivity from Column B. It is mandatory to enter the input of activities in the same 

order as activities in the Precedence Input sheet, because ChaStrobe uses the row index as 

a reference to collect activities’ properties (production rates and work amounts). 
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For the work amount, ChaStrobe collects data in the row direction starting from 

Column C. In order to determine the number of units, ChaStrobe counts non-blank cells 

in Row 1, starting from Column C. Hence, ChaStrobe recognizes 4 units in this example.  

Note that the simulation code for the work amount is explained in Section 5.3.1.2 

(MP.ACT.Quantity), and the simulation code for activities’ productivity is explained in 

Section 5.3.2.3 (PO.ACT.Duration). 

 
Figure 8.12 Quantity Input for Example 8.1 

 

 Figure 8.13 shows the resource-related input on the Resource Input sheet. The 

Resource Input sheet is one of the most important input sheets, since it collects resource 

data and resource continuity constraints. Starting from Row 2, ChaStrobe collects 

resources’ names and confidence levels from Columns A and B, respectively. For 

Example 8.1, there are 7 resources, as shown in Figure 8.13. The confidence level for 

each resource is 80%. The number of resources for each resource type is in Column C. 

For Example 8.1, there is only one set of resource for each type, as shown in Figure 8.13. 
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To model continuity constraints, ChaStrobe collects user-specified breaks in 

activities and units, defined in “Activity’s Name - Unit’s ID”. The breaks in Column H 

inform ChaStrobe how to model the continuity constraints for each resource. The breaks 

indicate when resources are scheduled to leave the site. During each period that resources 

remain on the site, resource continuity constraints are applied. Consequently, the breaks 

implicitly indicate a series of continuous resource utilization for the resource. For more 

explanation about breaks and series of continuous resource utilization, see Chapter 7, 

Work Breaks.  

  
Figure 8.13 Resource Input for Example 8.1 

 

Note that simulation code for collecting CIT and determining CLT are discussed 

in Section 5.3.3.7 (CME.RES.Leave.OnFlow) and Section 5.3.4.6 (CS.RES.CLT). 

Simulation code for confidence levels is explained in Section 5.3.1.3 

(MP.RES.ConfidenceLevel), and simulation code for the number of resources for each 

type is explained in Section 5.3.2.7 (CS.RES.INIT). 
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 Figure 8.14 shows data of resource utilization in the Utilization Input sheet for 

Example 8.1. These data in the Utilization Input sheet are used to connect work flow sub-

networks to resource flow sub-networks. ChaStrobe links sub-networks of activities in 

Column A to sub-networks of resources in Columns B, C, and so forth. 

 
Figure 8.14 Utilization Input for Example 8.1 

 

 After entering Simulation Input and Project Input, the entered inputs are ready for 

the generation of simulation code and model. To generate simulation model and code, 

users click the “GENERATE” button. To execute the simulation, users click the “RUN 

MODEL” button. Figure 8.15 is the production diagram from the first replication in 

SQS5. As shown in the figure, all activities have no interruption between units at least in 

this replication. More details about this example, solution, and simulation model can be 

found in Chapters 4 and 5. 
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Figure 8.15 Production diagram from the 1st replication in SQS5 for Example 8.1 

 

8.2.2 Example 8.2 Repetitive project with work breaks 

 Example 8.2 demonstrates how to use ChaStrobe to model repetitive projects with 

multiple work breaks. Example 8.2 is the same example in Chapter 6, which the final 

schedule consists of three work breaks at the end of Activities B in Unit 5, C in Unit 4, 

and G in Unit 7. Entering project inputs for Example 8.2 is done in the same way as 

shown in Example 8.1, except for the input for work breaks on the Resource Input sheet. 

Figure 8.16 presents a single unit precedence diagram for Example 8.2; 

precedence relationships from the figure are entered in the Precedence Input sheet as 

shown in Figure 8.18. Table 8.2 displays the work amount for each unit and the 

productivity; these two sets of data are entered in the Quantity Input sheet as shown in 

Figure 8.19. Figure 8.20 presents input for resource utilization on the Utilization Input 

sheet for Example 8.2. Simulation parameters for Example 8.2 are shown in Figure 8.17. 
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Figure 8.16  Single unit precedence diagram for Example 8.2 

 

Act Resource 
Production Rate 

Unit 
1 2 3 4 5 6 7 8 9 10 

Work Amount 
A Normal[20,2] 200 200 200 200 200 200 400 400 400 400
B Normal[30,3] 150 150 100 100 100 100 100 100 100 100
C Normal[30,3] 250 200 200 250 300 200 350 400 200 350
D Normal[15,1.5] 300 400 400 450 300 300 250 250 250 400
E Normal[20,2] 150 150 150 150 150 150 200 200 200 200
F Normal[25,2.5] 350 400 300 350 150 200 400 250 300 250
G Normal[30,3.0] 150 150 150 150 300 250 300 300 300 450
H Normal[20,2] 200 300 300 200 250 400 300 400 300 250
J Normal[15,1.5] 200 200 200 200 200 200 300 300 300 300

Table 8.2 Activities’ productivities and work amounts for Example 8.2 
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Figure 8.17 Simulation Parameters for Example 8.2 

 
 

 
Figure 8.18 Precedence Input for Example 8.2 
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Figure 8.19 Quantity Input for Example 8.2   

 

 
Figure 8.20 Utilization Input for Example 8.2 

 

 Figures 8.21.a and 8.21.b present two different inputs on the Resource Input sheet 

for Example 8.2, one with workout work breaks (Figure 8.21.a) and another one with 

work breaks (Figure 8.21.b). Figure 8.21.a is present here to show the difference between 

the inputs for resources with and without work breaks. The schedule derived from the 
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Resource Input sheet in Figure 8.21.a does not have work breaks, while the schedule 

derived from the Resource Input sheet in Figure 8.21.b has three work breaks. In Figure 

8.21.a, resources are scheduled to work continuously from the start of their activities in 

Unit 1 to the completion in Unit 10. There is no work break specified in Figure 8.21.a. 

The solid borders in Figure 8.21.a indicate cells that will be modified in order to include 

work breaks into their resource schedule, as shown in Figure 8.21.b. 

 
(a) One continuous work series for each resource 

 
(b) Two continuous work series for Resources ResB, ResC, and ResG  

Figure 8.21 Resource Inputs with a different number of work series in ResB, ResC, and 
ResG for Example 8.2 
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In contrast to Figure 8.21.a, Resource Input in Figure 8.21.b specifies three work 

breaks at the end of Activities B5, C4, and G7. The solid borders in Figure 8.21.b 

emphasize cells modified from Figure 8.21.a in order to specify work breaks in the 

resource schedule. According to the input on the Resource Input sheet in Figure 8.21.b, 

Resource ResB is scheduled to work continuously from the start of B1 to the completion 

of B5, and then takes a break. After the break, ResB will return to the site to work on a 

specified-return date, which will be determined by SQS-AL. After the break, ResB will 

work continuously from the start of B6 to the completion of B10. Resources ResC and 

ResG are scheduled to work and take a break in the same way as ResB; ResC will take a 

break at the completion of C4; ResG will take a break at the completion of G7.  

Accordingly, there are three work breaks and three specified-return dates. 

There are two types of work breaks in ChaStrobe: 1) a work break with a fixed 

return date and 2) a work break with a fixed duration (see Chapter 6, Work Breaks, for 

more detail). A work break with a fixed return date determines when the resource returns 

to the site after the break (e.g., returning back on May 20). Using this fixed-return-date 

option, resources will return to the site on the same date. Therefore, work break duration 

for a fixed-return-date work break itself varies depending on when the resource finishes 

the unit before the break and the fixed return date after the break. To inform ChaStrobe to 

construct simulation code and model for a fixed-return-date work break, users must 

include the keyword “date” after activities’ names and units’ IDs, as shown in Figure 

8.21.b (i.e., Cells I2, I3 and I9). 

Note that the keyword for work break types must be included in the cells 

specifying the continuous series of sub-activities after the break (e.g., B10 in Cell I3 in 
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Figure 8.21.b), since the break determines when the resource will return to work on the 

next unit (e.g., B6). The first continuous series of sub-activities for Activity B in Figure 

8.21.b is from B1 to B5, and the second continuous series is from B6 to B10.  

A work break with a fixed duration specifies how long the resource will take a 

break (e.g., taking a break for 15 days). Using the fixed-duration work break option, 

resources always take the exact same work break duration. The later resources finish the 

unit before the break, the later the resources return to the site. To specify a fixed duration 

of a work break in ChaStrobe, users include the keyword “duration” after activities’ 

names and units’ IDs.   

Note that if users do not include either keyword “date” or “duration,” ChaStrobe 

will use the fixed-duration work break option, since the simulation code and model for 

the fixed-duration option is similar to those for repetitive projects without work breaks. 

For more detail about work breaks and calculation, see Chapter 6, Work Breaks. 

After entering Simulation Input and Project Input, the entered inputs are ready for 

simulation code and model generation. To generate the simulation model, users click the 

“GENERATE” button. To execute the simulation, users click the “RUN MODEL” 

button. Figure 8.22 is the production diagram from the first replication in SQS5. As 

shown in the figure, all activities have no interruption between units at least in this 

replication. The three specified work breaks the lags between B5 and B6, between C4 and 

C5, and between G7 and G8 in the figure. More details about this example, solution, and 

simulation model can be found in Chapter 6. 
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 Figure 8.22 Production diagram from the 1st replication in SQS6 for Example 8.2 

 

8.2.3 Example 8.3 Repetitive project with resource-sharing activities 

Example 8.3 demonstrates how to use ChaStrobe to model repetitive projects with 

resource-sharing activities. ChaStrobe can model, solve, and optimize scheduling 

problems of repetitive projects with resource-sharing activities and probabilistic activity 

durations. Nevertheless, schedulers should be aware of complicated situations that may 

arise due to the existence of resource-sharing activities, as discussed in Chapter 7, 

Resource-Sharing Activities. Example 8.3 illustrates how the complexity of resource-

sharing activities could diminish the effectiveness of SQS-AL, discussed in detail in 

Chapter 7.  

Figure 8.23, a single unit precedence diagram, is not a good representative for 

repetitive projects with resource-sharing activities, because the information of resource 

utilization is missing; the relationships between shared resources and resource-sharing 

activities are not presented in Figure 8.23. Therefore, Figure 8.24, a precedence diagram 
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with resource nodes, is established to present the missing information of resource 

utilization. 

 

 
Figure 8.23 Single unit precedence diagram for Example 8.3 and 8.4 

 
 

 
Figure 8.24  Single unit precedence diagram with resource nodes for Examples 8.3 and 

8.4 
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Table 8.3 displays activity durations and variability in the durations. For 

Examples 8.3 and 8.4, each activity duration is the product of duration and variability 

following a normal distribution with a standard deviation of 10% (e.g., Normal[1,0.1] in 

Table 8.3, which 1 is a mean value and 0.1 is a standard deviation).  

ACT Variability 
Unit 

1 2 3 4 5 
Duration 

A Normal[1,0.1] 40 45 40 40 45 
M Normal[1,0.1] 15 15 10 10 10 
B Normal[1,0.1] 50 40 50 50 40 
X Normal[1,0.1] 20 30 25 20 20 
U Normal[1,0.1] 15 20 15 25 20 
V Normal[1,0.1] 40 40 45 45 40 
C Normal[1,0.1] 15 15 15 15 15 
N Normal[1,0.1] 20 25 30 20 25 
Y Normal[1,0.1] 20 20 20 20 20 
D Normal[1,0.1] 45 35 40 40 30 
A Normal[1,0.1] 40 45 40 40 45 

Table 8.3 Durations and variability for activities in Examples 8.3 and 8.4 
 

Figure 8.25 presents Simulation Parameters for Examples 8.3 and 8.4. Notice that 

the options of Static Graphs and Dynamic Graphs are checked, because it is necessary to 

analyze the final solution as well as changes in project duration and project idle time 

from processing one sequence step to another. 
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Figure 8.25 Simulation Parameters for Examples 8.3 and 8.4 

  

Figures 8.26, 8.27, and 8.28 present the Precedence Input, Quantity Input, and 

Utilization Input for Examples 8.3 and 8.4. The differences in the inputs between 

Examples 8.3 and 8.4 are how resources are scheduled. In Example 8.3, resource work 

orders are not fixed, and there is no work break. On the other hand, working sequences of 

resource-sharing activities in Example 8.4 are fixed, and there are scheduled three work 

breaks. The fixed work orders in Example 8.4 ensure that the resource performs work in 

the same working sequence from processing its sequence step to the final sequence step. 

The three work breaks in Example 8.4 eliminate idle time in ResMN serving Activities M 

and N, which are separated by Activity U having a slower production rate, compared to 

M and N.   
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Figure 8.26 Precedence Input for Examples 8.3 and 8.4 

 

 
Figure 8.27 Quantity Input for Examples 8.3 and 8.4 
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Figure 8.28 Resource Input for Example 8.3 only 

 

 
Figure 8.29 Utilization Input for Examples 8.3 and 8.4 

 

After entering Simulation Input and Project Input, the entered inputs are ready for 

simulation model and code generation. To create the simulation, users click the 

278 



“GENERATE” button. To execute the simulation, users click the “RUN MODEL” 

button. 

It is important to realize that the inputs for Example 8.3 are not effective because 

idle time still remains after solving the problem using SQS-AL with the given inputs. The 

main three reasons are: 

1) Working sequences of resources are not consistent from the processing SQS 

which their CITs are collected, to later SQS which their corresponding CLTs 

are employed. Accordingly, the collected CITs do not provide an effective 

CLT that can eliminate idle time. The problem of inconsistency in working 

sequences and solutions are presented in Chapter 7. Note that this problem 

could exist in repetitive projects with or without resource-sharing activities. 

2) Idle time in shared resources cannot be completely eliminated due to a slow 

production rate of a dependent activity (e.g., Activity U in Figure 8.24) 

between two indirectly dependent resource-sharing activities (e.g., Activities 

M and N in Figure 8.24). The problem of insistence of idle time due to a slow 

production rate of an activity between two resource-sharing activities is 

discussed in Chapter 7 along with examples and solutions. This problem only 

exists in repetitive projects with indirectly dependent resource-sharing 

activities having a slow-production-rate dependent activity between the 

resource-sharing activities. 

3) Crew lead times (CLT) of Resources ResM and ResMN, serving Activities M 

are determined in different processing sequence steps. Idle time will be 

incurred in the resource that arrives to the site first (ResM in this case), 
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because ResM and ResM must be available in order to perform resource-

sharing Activity M. By default, ChaStrobe collect CITs and determines CLT 

for shared resources in the latest SQS in which their activities belong. 

Accordingly, ChaStrobe determines CLT for ResM in SQS2, in which 

Activity M belongs, while CLT for ResMN is determined in SQS4, in which 

Activity N belongs. Therefore, Activity M cannot start until ResMN arrives; 

as a result, ResM has to wait for ResMN. 

To solve Example 8.3 effectively, the inputs in Example 8.3 must be modified as 

explained later in Example 8.4. However, the ineffective inputs for Example 8.3 are 

shown for the purposes of comparison between two schedules derived from different 

inputs in Examples 8.3 and 8.4. The production diagram from the 1st replication in the 

SQS6 is shown in Figure 8.30.  

 

Figure 8.30 Production diagram from the 1st replication in SQS6 for Example 8.3 
 

 In Figure 8.30, descriptions are given to point out problems of using SQS-AL to 

schedule repetitive projects with resource-sharing activities. As discussed in detail in 
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Chapter 7 and earlier, the difference in processing sequence steps for ResM (i.e., SQS2) 

and ResMN (i.e., SQS4) causes the idle time in ResM. As shown in Figure 8.30, CLT for 

ResM is determined after processing SQS2, assigning CLTM of 170 days, while CLT for 

ResMN is still undetermined. After processing SQS4, SQS-AL determines CLTMN of 355 

days, causing a further delay in the start date of Activity M from CLTM to CLTMN due to 

the availability of ResMN. As a result, ResM arrives to the site on its CLTM (170 days), 

and must wait until ResMN arrives on CLTMN (355 days), adversely resulting in 185 days 

of idle time in ResM. 

 Similar to the idle time in ResM, the idle time in ResUV is caused by the fact that 

CLT for ResUV and ResMN are determined after processing two different sequence 

steps. CLTUV is determined after processing SQS2, and is set to 190 days. However, after 

processing SQS4, SQS-AL determines CLTMN of 355 days, causing a further delay in 

Activity U due to the precedence constraints between Activities M and U. As a result, 

ResUV arrives to the site on its CLTUV (190 days), and must wait until ResMN arrives on 

CLTMN (355 days), causing 165 days of unnecessary idle time in ResUV. 

 It is important to point out that the idle times in ResM and ResUV are caused by 

the impact of processing sequence steps for resource-sharing activities and their 

dependents on the effectiveness of SQS-AL. This impact changes the working sequence 

of resources and activity start dates from which CLTs are determined. Changing in 

working sequence and activity start dates incur change in the idle time; as a result, the 

collected CITs prior to the change are not a good representative for the “new” idle time 

after the change. Therefore, the CLTs determined earlier cannot effectively eliminate the 

new idle time. 
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 Another complication of scheduling resource-sharing activities is exhibited in 

Figure 8.30 between indirectly dependent resource-sharing Activities M and N, and their 

dependent activities U and V. It is important to realize that Activity U, having a slow 

production rate, causes 1) the lags between Activities M and N and 2) idle time in 

ResMN, as shown in Figure 8.30. This idle time between M5 and N1 is inevitable. 

Delaying ResMN’s arrival date further will result in the same amount of idle time in 

ResMN, since Activities U and V are direct successors of Activity M and direct 

predecessors of Activity N. Moreover, the slow production rate of Activity U also causes 

idle time in ResMN serving Activity N.  

Figure 8.31 presents the average project duration versus idle time from processing 

each sequence step (SQS1 to SQS6) for Example 8.3. Figure 8.31 shows an unusual up-

and-down average project idle time, which indicates difficulty in solving Example 8.3. In 

a typical case, the average project idle time should decrease as SQS-AL proceeds from 

one sequence step to the next. However, Figure 8.31 shows the average project idle time 

increases after processing SQS2 (assigning CLTB and CLTM) and processing SQS4 

(assigning CLTMN and CLTXY). The reasons for the increase in the idle time are the 

complication of scheduling resource-sharing activities using SQS-AL. To solve this 

complication, the inputs in Example 8.3 must be modified as presented later in Example 

8.4. 
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Figure 8.31 An unusual up-and-down pattern of average project idle time in scheduling 

resource-sharing activities 
 

8.2.4 Example 8.4 Repetitive project with resource-sharing activities and work 

breaks 

Example 8.4 is the same problem as Example 8.3. However, several modifications 

are made so that SQS-AL can effectively solve the problem. To alleviate the difficulties 

of scheduling the resource-sharing activities in Example 8.3, the following additional 

conditions are included in the schedule and simulation model for Example 8.4: 

• A work break for Resource ResMN is scheduled between M5 and N1, 

meaning ResMN will work continuously from M1 to M5 (Cell H7 in Figure 

8.32), and then take a break. Next, ResMN will return to the site, and work 

continuously from N1 to N5 (Cell I7). Figure 8.32 presents the modified 

inputs on the Resource Input sheet, which is different from Example 8.3. A 
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work break is scheduled right after M5, as shown in the solid border cells in 

Figure 8.32. 

• The CIT1 for ResM and ResMN (before the break at M5-N1) are specified to 

be collected from processing the same SQS; CIT1M and CIT1MN are collected 

during processing SQS2, while CIT2MN (the crew idle time for Resource MN 

after the break) is collected during processing SQS4. Figure 8.31 shows the 

simulation code in Model Parameters specifying the processing SQS for 

CIT1M and CIT1MN. 

• The consistency in ResMN’s working sequence from processing one SQS to 

another is guaranteed. An additional semaphore for ResMN stipulating its 

working sequence is included, which is N_Perform_Additional_Semaphore 

shown in Figure 8.34. This additional semaphore prevents ResMN from 

serving Activity N, unless five units of Activity M have been completed. This 

Activity N’s additional semaphore is encoded in ChaStrobe’s Additional Code 

for Programming Objects. 

• The consistency in ResXY’s work orders from one processing SQS to another 

is guaranteed. An additional semaphore for ResXY, stipulating ResXY’s 

working sequence, is included which is Y_Perform_Additional_Semaphore. 

This additional semaphore, shown in Figure 8.34, prevents ResXY from 

serving Activity Y, unless five units of Activity X have been completed. This 

Activity Y’s additional semaphore is encoded in ChaStrobe’s Additional Code 

for Programming Objects. 
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Note that Precedence Input, Quantity Input, and Utilization Input for Example 8.4 

are the same as in Example 8.3. Hence, for the inputs in Example 8.4, see Figure 8.26 for 

Precedence Input, Figure 8.27 for Quantity Input and Figure 8.29 for Utilization Input. 

 
Figure 8.32 Resource Input for Example 8.4, different from Example 8.3 
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Figure 8.33 CIT1M and CIT1MN (before work break at M5-N1) collected from the same 

processing SQS2 
 

 
Figure 8.34 Additional code stipulating ResMN’s working sequence from M1 to M5 and 

then N1 to N5, and ResXY’s working sequence from X1 to X5 and Y1 to Y5 
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After modifying the input, the simulation model is ready to be created. To create 

the simulation model, users click the “GENERATE” button. To execute the simulation, 

users click the “RUN” button. 

Figure 8.35 presents the average project duration and idle time from processing 

each SQS. As shown in the figure, project idle time decreases as SQS-AL proceeds from 

one SQS to another, which is a typical pattern of decreasing idle time that should be 

achieved from SQS-AL, not the up-and-down pattern shown in Figure 8.31. Therefore, 

the additional conditions included in the input for Example 8.4 resolve the ineffectiveness 

of the input in Example 8.3. Figure 8.36 is the production diagram from the first 

replication in SQS6. As shown in the figure, all activities have no interruption between 

units at least in this replication, excepting for Activity C between Units 4 and 5. 

 

 
Figure 8.35 A typical pattern of decreasing average project idle time in scheduling 

repetitive projects using SQS-AL 
 

287 



 

Figure 8.36 Production diagram from the 1st replication in SQS6 for Example 8.4 
 

8.3 ChaStrobe’s Output 

 After simulation execution, ChaStrobe offers four output features used to create a 

graphical presentation and to analyze the output from the simulation. As shown in Figure 

8.37, the four features are: 

1) Creating graphs for project duration and its probabilities from processing each 

SQS 

2) Creating static graphs from processing each SQS 

3) Analyzing the output by comparing the results from SQS-AL to CPM and 

RSM, regarding project duration and idle time 

4) Creating a schedule in MS Project using the analyzed data from SQS-AL 

schedule in (3) 
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Figure 8.37 ChaStrobe’s four output features 

 

8.3.1 Project Duration Graphs for each Processing SQS 

 At the end of simulation execution, ChaStrobe stores the simulation outputs for 1) 

the probability of project duration from processing each SQS in a text file titled 

tempChaStrobe_StaticGraphProb.txt and 2) project durations and project idle times in a 

text file titled tempChaStrobe_StaticGraphSQS.txt. To create a graphical presentation 

from the text files, users click the “Draw Proj-Dur Graphs from each SQS” button, and 

then ChaStrobe will generate three graphs, related to project duration and idle time from 

processing each SQS in an automatically-created Excel file, called Analyzer.xls. The 

three graphs, shown in Figures 8.38 to 8.40, are generated automatically from the stored 

data in tempChaStrobe_StaticGraphProb.txt and tempChaStrobe_StaticGraphSQS.txt. 
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Figure 8.38 The average project duration and idle time from processing each SQS for 

Example 8.1 
 

 

Figure 8.39 Probability density functions of project duration from processing each SQS 
for Example 8.1 
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Figure 8.40 Cumulative distribution functions of project duration from processing each 

SQS for Example 8.1 
 

8.3.2 Static Graphs 

 During a simulation run in the first replication of each SQS, ChaStrobe stores the 

data of activities’ start dates and durations in tempChaStrobe_StaticGraph.txt. This data 

is used for creating Static graphs, which are the production diagrams of the 1st replication 

from processing each SQS. To create the Static graphs, users first specify the data from 

which processing SQS will be used, as shown in Figure 8.41.a. Then, users click the 

“Draw Static Graphs” button. Next, ChaStrobe will request a filename for the Static 

Graphs in the Visio file from the users. 

From the Static Graphs input in Figure 8.41.a, ChaStrobe creates the production 

diagrams of the 1st replication from SQS1 to SQS5. To view the available created 

production diagram files, users click on the empty dialog box next to the “View Static 
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Graphs” button, and then ChaStrobe will show the available files in ChaStrobe’s Static 

Graphs, as shown in Figure 8.41.b.  

 
 (a) Creating Static Graphs by clicking the “Draw Static Graphs” button 

 

 
(b) Selecting and viewing Static Graphs 

Figure 8.41 Creating and viewing Static Graphs 

292 



After a file for Static Graphs is selected, as shown in Figure 8.41.b, users click the 

“View Static Graphs” button to view the selected file.  Figures 8.42.a to 8.42.c show 

three production diagrams (different in the timeframe selected by the users) created from 

the last SQS. Users use the “Viewing Static Graphs” form to manipulate the timeframe as 

shown in Figure 8.42. The timeframe for the production diagram in Figure 8.42.a is at the 

beginning of the project (Time = 0). The timeframe in Figure 8.42.b is at the beginning of 

the 10th activity (D1). The timeframe in Figure 8.42.c is at the beginning of the 28th 

activity (G4). Users can use Static Graphs to study the work orders of repetitive activities 

in the project, and also compare the changes in the activities’ working sequences from 

one processing SQS to another. By clicking the “Change Page” button, ChaStrobe will 

show a different production diagram from a different processing SQS. 
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(a) Production diagram at the beginning of the project 

 

 
(b) Production diagram at the beginning of the 10th activity (D1) 

 

 
(c) Production diagram at the beginning of the 28th activity (G4) 

 
Figure 8.42 Static graph from the 1st replication of processing SQS5 for Example 8.1 

 

8.3.3 ChaStrobe’s Analyzer 

 While processing the last sequence step, ChaStrobe stores activities’ start dates 

and durations from each replication in tempChaStrobe_Analyzer.txt. This data is then 

used by ChaStrobe’s Analyzer to analyze and compare the results from SQS-AL, CPM, 

and RSM, regarding project duration and idle time. To activate ChaStrobe’s Analyzer, 

users click the “Run Analyzer” button as shown in Figure 8.38. After ChaStrobe analyzes 

the data in tempChaStrobe_Analyzer.txt, the following graphical presentations are 

created:  
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1) Cumulative Distributions of Project Duration, shown in Figure 8.43 

2) Probability Density Functions of Project Duration, shown in Figure 8.44 

3) Comparing Project Duration of RSM and SQS-AL to CPM, shown in Figure 

8.45 

4) Comparing Project Duration of SQS-AL to RSM, shown in Figure 8.46 

5) Difference in Project Duration and Idle Time between RSM and CPM, 

between SQS-AL and CPM, and between SQS-AL and RSM, shown in Figure 

8.47 

Note that the discussion for cumulative distributions (Figure 8.43) and probability 

density function (Figure 8.44) of project duration derived from CPM, RSM, and SQS-AL 

is given in Chapter 4. 

 
Figure 8.43 Cumulative distributions of project duration derived from CPM, RSM, and 

SQS-AL 
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Figure 8.44 Probability density functions of project duration derived from CPM, RSM, 

and SQS-AL 
 

 Note that the explanations (in texts and shapes) in Figures 8.45 to 4.46 are added 

into the figures in order to discuss about the application of CPM, RSM, and SQS-AL; 

they are not automatically created by ChaStrobe’s Analyzer. The discussions provide 

insight information and how to interpret the corresponding figure.  

Figure 8.45 shows the duration derived from CPM on the X axis and that from 

RSM and SQS-AL on the Y axis. It is important to remember that schedules and their 

project durations derived from RSM are based on perfect hindsight, i.e., it is assumed that 

activity durations are known before scheduling the project. With such perfect hindsight, 

project duration from RSM changes according to the sampled activity durations and the 

resulting necessary delays in activity start dates to achieve continuity. When activity 

durations and the idle time (existing in the CPM schedule for the same replication) 

happen to be small, project duration from RSM also turns out small; when the activity 

durations and the idle time happen to be large, project duration from RSM also turns out 

large. According to the assumption of perfect hindsight and variability in this example 
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project, project durations from RSM ranges from 97 to 117 days, approximately, as 

shown in Figure 8.45.  

 
Figure 8.45 Comparing project duration of RSM and SQS-AL to CPM 

 

It is important to notice that all “CPM,RSM” points are above or on the diagonal 

line in the figure. This is as expected because CPM produces an early start schedule 

which is guaranteed to be the shortest. RSM, on the other hand, delays the start date of 

some activities to achieve continuity. Hence, RSM produce greater project duration than 

does CPM, in most cases. In some cases, it happens by chance that CPM and RSM 

produce the same project duration as shown by “CPM,RSM” points on the diagonal line; 
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however, this does not mean they result in the exactly same schedule. It is possible that 

schedules from CPM on a “CPM,RSM” point on the diagonal line result idle time, while 

schedules from RSM on the same point do not. The same project duration from CPM and 

RSM does not necessarily mean they result in neither the same schedule nor the same 

amount of idle time. 

In general, the vertical distance between “CPM,RSM” points the diagonal line in 

Figure 8.45 is the necessary delay in project completion determined by RSM in order to 

eliminate idle time with the shortest project duration. It is apparent that the delays caused 

by resource continuity in RSM follow the same distribution for any value of CPM 

duration. 

As opposed to RSM, SQS-AL schedules projects without perfect hindsight. Thus, 

it includes floats (time buffers) into the schedule by using crew lead times (CLTs) in 

order to eliminate idle time with a certain degree of confidence (i.e., a given confidence 

level). CLT for a resource is a fixed arrival date of that resource (or its activity’s start 

date) which is determined without knowing activity durations in advance. With an 80% 

confidence level, used for this example in Figure 8.45, SQS-AL postpones activities from 

their early start dates and results in project durations ranging of 119 to 127 days, 

approximately. The project duration from SQS-AL do not vary as a function of CPM 

duration due to the chosen CLTs. The project duration from SQS-AL fits into a smaller 

range than that of RSM because SQS-AL with the selected 80% confidence level delays 

activity start dates (creating floats) to prevent idle time 80% of the time. Therefore, the 

already-delayed project completion from SQS-AL schedule is not affected as much by 

activity durations or idle time existing in CPM as the RSM schedule. The vertical 
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distance between “CPM,RSM” points and the diagonal line is the remaining part of CLTs 

(unused buffers) that cannot be removed. As variability increases, the greater activity 

durations and idle time in the CPM schedule, the greater amount of the chosen CLTs is 

used, the smaller the vertical distance between “CPM,SQS” points and the diagonal line 

is. 

Figure 8.46 shows the comparison of project duration derived from RSM and 

SQS-AL. The vertical distance between “RSM,SQS” points and the diagonal line is 

caused by the fact that RSM delays activities knowing the exact activity durations for 

individual schedule (each point in the figure), whereas SQS-AL has to choose one set of 

CLT values to be used for all schedules (all points in the figure).  In other words, the 

vertical distance is a part of the float included into the schedule by SQS-AL in order to 

prevent idle time for a certain degree of confidence, which may be lager than necessary. 

This vertical distance can also be interpreted as an unnecessary delay (waste in time) in 

the project duration that is included because of variability. Without variability in project 

durations, RSM and SQS-AL will results in the same project duration. 

It is interesting to note that the difference between the vertical distance between 

“CPM,SQS” points and the diagonal line in Figure 8.45 and the vertical distance between  

“RSM,SQS” points in Figure 8.46 is that the vertical distance for “CPM,SQS” includes 

both necessary and unnecessary delay in the project duration, while the vertical distance 

for “RSM,SQS” only presents the unnecessary delay. 
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Figure 8.46 Comparing project duration of SQS-AL to RSM 

 

 The data points for “RSM,SQS” (e.g., P1 and P2 in Figure 8.46) below the 

diagonal line indicate that the chosen CLTs are not large enough for these schedules. As a 

result, it is certain that there is idle time in these schedules. Remember, the project 

duration derived from RSM is the minimum project duration without idle time. 

Therefore, it is impossible to have a shorter project duration than that of RSM without 

idle time. Note that the opposite of this claim is not always true. It is possible that idle 

time exists in the SQS-AL schedule even though its project duration is greater than that 

of the RSM schedule. 
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Figure 8.47 shows the difference in project duration on the X axis and the 

difference in idle time on the Y axis. This figure provides insightful comparison among 

CPM, RSM, and SQS-AL in terms of 1) project duration, 2) idle time, and 3) the 

relationships between project duration and idle time. 

 
Figure 8.47 Difference in project duration and idle time between RSM and CPM, SQS-

AL and CPM, and SQS-AL and RSM 
 

The data points for “RSM-CPM” in Figure 8.47 shows that this example project 

requires necessary delay in project duration ranging from 0 to 10 days in order to 

eliminate the idle time in the CPM schedule ranging from 175 to 285 days, 

approximately. As shown clearly by the scatter of the data points, the relationship 

between 1) the difference in project duration and 2) the difference in idle time from CPM 

and RSM do not exhibit any linear dependence (covariance). 
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Regarding to project duration, the project duration derived from CPM is the 

shortest project duration (without eliminating idle time) since CPM schedules activities to 

start as early as possible. Hence, it is impossible to have data points of “RSM-CPM” or 

“SQS-CPM” on the negative side of the X axis. Similarly, project duration derived from 

RSM is the minimum project duration without idle time. Since there is no idle time in the 

RSM schedule, the difference in idle time between RSM and CPM, “RSM-CPM,” is the 

idle time in the CPM schedule. Accordingly, the difference in project duration between 

RSM and CPM is the necessary increase in project duration in order to eliminate all idle 

time (which is the difference in idle time between RSM and CPM).  

The data points for “SQS-CPM” in Figure 8.47 show that as variability increases, 

the performance of SQS-AL schedules improve relatively to that of CPM schedules. As 

clearly shown in the figure by the white arrow, there is a linear dependency (covariance) 

between the difference in project duration and the difference in idle time from CPM and 

SQS-AL. Scheduling this example project with SQS-AL causes increase in project 

duration ranging from 10 to 30 days (also shown in the vertical distance between 

“CPM,SQS” points and the diagonal line in Figure 8.45) in order to eliminate the idle 

time in the CPM schedule ranging from  175 to 285 days.  

 The data points for “SQS-RSM” shows that as variability increases, the difference 

in project durations derived from RSM and SQS-AL becomes smaller, while the idle time 

in SQS-AL schedule becomes larger. Since there is no idle time in the RSM schedule, the 

difference in the idle time between SQS-AL and RSM is the idle time in the SQS-AL 

schedule. The horizontal distance between “SQS-RSM” points and the Y axis in Figure 
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8.47 is an unnecessary delay in SQS-AL schedule as also shown in Figure 8.46, discussed 

earlier. 

8.3.4 Schedule in Microsoft Project 

 After ChaStrobe’s Analyzer performs the analyses and records the results in 

Analyzer.xls, users can create a schedule in Microsoft Project by clicking the “Create 

output in MS Project” button. Figure 8.48 shows the finalized SQS-AL schedule for 

Example 8.1 in a MS Project file, created automatically. For each activity in the created 

schedule, the name of the activity is placed inside the bar, whereas the name(s) of 

resource(s) serving that activity is placed on the left side. The number on the right side of 

the bar indicates the probability of the activity being on the controlling sequence. 

 
Figure 8.48 The finalized SQS-AL Schedule in Microsoft Project 

303 



8.4 Summary 

 This chapter presents the ChaStrobe application, which is built on top of the add-

on that serves as the Stroboscope Graphical User Interface (Stroboscope GUI).  

ChaStrobe takes input from users, and creates simulation model and code based on the 

sequence step algorithm (SQS-AL) and the simulation model. After the simulation 

creation, simulation model and code can be viewed or modified by users prior to 

simulation execution, which is performed by the Stroboscope Integrated Development 

Environment (Stroboscope IDE) via either Stroboscope GUI or ChaStrobe. 

 To model and solve problems of repetitive project scheduling, ChaStrobe takes 

two main types of input, Simulation Parameters and Project Input. Simulation Parameters 

are variables and constants used in simulation code in order to control the mechanism of 

the simulation, such as the number of replications and sequence steps, and BinCollectors’ 

intervals.  

Project inputs are activity-related and resource-related data used to create 

simulation model for repetitive projects, conforming to SQS-AL and the simulation 

model templates. Accordingly, Project Input consists of four main input types: 

1) Precedence Input collects activities’ names and predecessors. 

2) Quantity Input collects activities’ production rates and work amounts in each 

unit. 

3) Resource Input collects resources’ names, confidence levels, number of 

resources, and continuity constraints (including work breaks). 

4) Utilization Input collects activities’ resource utilization. 
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Four examples of repetitive projects are used to demonstrate how to enter data in 

ChaStrobe and solve the problem of repetitive projects with probabilistic activity 

durations. The main characteristics of these four example projects are: 

• Example 8.1 Simple repetitive project (no work breaks nor resource-sharing 

activities) 

• Example 8.2 Repetitive project with work breaks (no resource-sharing 

activities) 

• Example 8.3 Repetitive project with resource-sharing activities (no work 

breaks) 

• Example 8.4 Repetitive project with work breaks and resource-sharing 

activities 

As presented in Section 8.3, ChaStrobe offers four features to create graphical 

presentations and analyze the simulation results. Changes in project duration and idle 

time from one processing SQS to another can be analyzed, as well as the probability of 

project duration. Moreover, the simulation results derived from SQS-AL are compared to 

CPM and RSM. The graphical presentations created by ChaStrobe after simulation 

execution are: 

• Average project duration and idle time from each SQS 

• Probability density functions of project duration from each SQS 

• Cumulative distribution functions of project duration from each SQS 

• Production diagram in Static Graphs 

• Cumulative distributions of project duration, derived from CPM, RSM, SQS-

AL 
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• Probability density functions of project duration, derived from CPM, RSM, 

SQS-AL 

• Comparison between the project duration of RSM and SQS-AL to CPM 

• Comparison between the project duration of SQS-AL to RSM 

• Difference in project duration and idle time between RSM and CPM, between 

SQS-AL and CPM, and between SQS-AL and RSM. 

• Activity and resource schedule in Microsoft Project 

The ChaStrobe application is a powerful tool used to solve scheduling problems 

of repetitive projects with probability activity durations. ChaStrobe provides a systematic 

and automatic simulation code and model generation for repetitive projects, modeled in 

Stroboscope GUI. Employing ChaStrobe’s capabilities and automation, schedulers 

benefit from the application in both the early (generating simulation model and code) and 

late (creating and analyzing simulation results) stages of problem solving.  

In the following chapter, optimization of repetitive projects is presented. The 

optimization processes are performed automatically by ChaStrobe’s optimization 

features. When many alternatives of activity and resource schedules are available, users 

can use ChaStrobe’s optimization to test a large number of combined alternatives in order 

to optimize the problem. 



 

CHAPTER 9 

OPTIMIZATION IN CHASTROBE 

CHAPTER 9 OPTIMIZATION IN CHASTROBE 

In the previous chapter, the ChaStrobe application and the collaboration between 

ChaStrobe and Stroboscope are presented. ChaStrobe’s simulation code and model 

generation reduces users’ time and effort in modeling and solving the problems of 

repetitive project scheduling. By modifying Project Input in ChaStrobe, users can 

examine various alternative schedules in order to improve their projects. 

Nevertheless, when there are many alternatives in scheduling activities and 

resources, the combinations of these alternatives may result in a large number of possible 

simulation model and code. Manually entering, modifying, and executing the input for 

such large combinations can become time-consuming, tedious, and cumbersome, even 

using the ChaStrobe application. Consequently, the large number of alternative schedules 

prohibits schedulers to test all the possibilities; as a result, a selected schedule may defer 

greatly from an optimum schedule.  

In response to the difficulty, automation of simulation code and model 

manipulation is implemented in ChaStrobe with two search methodologies, the 

exhaustive search and the genetic algorithm. These search methodologies are used to 

optimize problems, modeled in Stroboscope Graphical User Interface (Stroboscope GUI). 

To manipulate the simulation code and model in Stroboscope GUI, ChaStrobe offers 
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three levels of simulation code and model manipulation. These three levels of simulation 

manipulation range from simple simulation code modification to complicated code and 

model modification. With ChaStrobe’s automation, simulation code and model are 

automatically created, modified, and executed. Then, ChaStrobe retrieves the simulation 

results (stored in tempChaStrobe_GA.txt) and employs either the exhaustive search or the 

genetic algorithm to optimize the problem.  

9.1 Overview of ChaStrobe’s Optimization 

 The optimization process in ChaStrobe consists of nine steps, shown in Figure 

9.1. In order to optimize a problem of repetitive project scheduling in ChaStrobe, users 

must first complete Step 1, entering project-related inputs (Simulation Parameters and 

Project Inputs are discussed in Chapter 8) and Step 2, entering optimization-related inputs 

(discussed in this chapter). In Step 1, users provide inputs about the repetitive project 

(such as precedence constraints), and also determine how simulation code and model will 

be constructed (such as the number of replications). These inputs are Project-Related 

Inputs, including ChaStrobe’s Simulation Parameters and Project Input, explained in 

Chapter 8. After users enter the project-related inputs, ChaStrobe and Stroboscope should 

be able to create a valid simulation code and model from the inputs and execute the 

simulation without an error. 

In Step 2, users provide ChaStrobe information about the considered alternatives 

(such as different confidence levels for resource utilization), additional simulation code 

(such as an additional precedence constraint for a specific scenario), and how to optimize 

the problem (such as objective functions). These inputs are optimization-related inputs, 
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including ChaStrobe’s Dynamic Code Input, Search Input, an objective function, and 

Search Parameters. Details of optimization-related inputs are discussed in Section 9.2. 

In Step 3, after entering the project-related and optimization-related inputs, users 

choose between the exhaustive search and the genetic algorithm (discussed in 

Section 9.5) to initiate the optimization process. 

 
Figure 9.1 Nine steps of optimization process in ChaStrobe 

 

 In Step 4, ChaStrobe generates simulation model from Project Input and 

Simulation Parameters given by the users. The simulation generation for optimizing a 

problem is performed in the same as for simply solving a problem with two additional 

crucial parts, updating values of decision variables and including dynamic code. Prior to 

the simulation generation in optimization, ChaStrobe updates the values in the decision 
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variable cells on the Search Input sheet based on a selected search method. Then, cells on 

the Dynamic Code Input sheet referencing the decision variables cells will be updated 

automatically to derive new updated dynamic simulation code. After the simulation code 

on the Dynamic Code Input sheet is updated, ChaStrobe will include this code, called 

“dynamic code,” into various positions in the main simulation code. The positions in 

which the dynamic code is added are based on a user-specified dynamic code index 

(discussed in Section 9.2.2). 

Steps 5 to 6 for optimizing a problem are performed in the same way as in simply 

solving the problem, as discussed in Chapter 8. 

In Step 7, the resulting objective function value from the simulation must be 

stored in tempChaStrobe_GA.txt, when using GA. Figure 9.6 shows how to store the 

objective function value by using Stroboscope PRINT statement. Users must ensure that 

the objective function value is stored and is the first number in tempChaStrobe_GA.txt. 

Note that tempChaStrobe_GA.txt is only a temporary storage for the results from 

simulation. After ChaStrobe retrieves the data (the objective function values and other 

user-specified outputs) in the text file, at the end of simulation for each alternative, and 

stores them in ChaStrobe, it will delete the data in the text file. 

In Step 8, at the end of simulation for each alternative, ChaStrobe automatically 

retrieves the simulation results of the objective value from tempChaStrobe_GA.txt, and 

stores the results on the Search Output sheet. ChaStrobe uses the first number in the text 

file as the objective function value for GA. 

In Step 9, ChaStrobe changes the values of the decision variables in Row 2 on the 

Search Input sheet (these cells are called “decision variable cells”) in order to modify the 
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Project Input, which in turn will change the simulation code and model when created in 

Step 4. These decision variable cells in Row 2 on the Search Input sheet can be 

referenced by various cells on other sheets in the Project Input, such as cells on the 

Precedence Input and Resource Utilization sheets. Changing values in decision variable 

cells on the Search Input sheet will automatically change values in those referencing cells 

on other input sheets. After the values in decision variable cells are changed and the cells 

referencing to them are updated, ChaStrobe repeats Steps 4 to 9. These six steps are 

repeated many times depending on search methods. For the exhaustive search, ChaStrobe 

repeats these steps for the number of all possible alternatives, a combination of decision 

variables given by the user on the Search Input sheet. For GA search, ChaStrobe repeats 

the steps for a number of times equal to the product of the number of generations and the 

number of populations.   

9.2 Optimization Input 

 As shown in Figure 9.2, optimizing simulation model in Stroboscope GUI 

requires ChaStrobe to change the values in the decision variable cells (Step1) in order to 

change Project Input (Step 2) based on the inputs specified by users on the Search Input 

sheet and to create a new simulation model (Step 3). Then, the new simulation model is 

executed to derive the objective function value. For GA, the objective function value is 

used to evaluate the inputs specifying the simulation code and model modification. 
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Figure 9.2 Modifying inputs, updating inputs, and creating simulation code and model 

  

9.2.1 Search Inputs 

Search Inputs are the inputs, given by users before optimization, specifying the 

current values of decision variables and their domain values. The names of decision 

variables are defined by the users in Row 1 on the Search Input sheet, as shown in Row 1 

in Figure 9.3. These names specified by users are used only as a reference for the users 

on the Search Input sheet; they are not used for any other purposes. Accordingly, the 

names of decision variables in Row 1 on the Search Input sheet can be omitted. 

The current values of decision variables are placed in the decision variable cells in 

Row 2 on the Search Input sheet, as shown in Row 2 in Figure 9.3. During optimization, 

ChaStrobe changes the values of the decision variables in decision variable cells in order 

to change Project Input, thus resulting in a different simulation model.  
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Figure 9.3 is an example of optimizing a repetitive project scheduling problem by 

considering the confidence levels for resources. Domain values of the decision variables 

(e.g., confidence levels) range from 0 to 1 with a step of 0.1, as shown in Rows 4 to 14 

in Figure 9.3. 

 
Figure 9.3 The Search Input sheet and the current decision variable cells in Row 2 

 

To collect decision variables and their domain values on the Search Input, 

ChaStrobe determines 1) the number of decision variables and 2) the number of domain 

values for each decision variable. First, ChaStrobe determines the number of decision 

variables by counting non-blank cells in Row 2 on the Search Input sheet, starting from 

Column A. ChaStrobe will stop counting when it reaches a blank cell in Row 2 (e.g., Cell 

G2 in Figure 9.3). For the example in Figure 9.3, there are six decision variables (non-

blank cells in Row 2 from Columns A to F). ChaStrobe uses the column index to indicate 

each decision variable. Therefore, the first decision variable is specified in Column A, 

and the second variable is in Column B, and so forth. 

Second, ChaStrobe determines the number of domain values for each decision 

variable (one decision variable has on column) by counting non-blank cells in the row 
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direction, starting from Row 4. For the example in Figure 9.3, decision variable index 1, 

as shown in Column A, “B_Conf Level”, has 11 domain values. Each domain value is 

indexed by the row order in which it is placed. For example, the indexes of domain 

values in Column A for 0, 0.1, 0.2 and 0.3 are 1, 2, 3, and 4, respectively. After the 

number of decision variables and the number of domain values for each decision 

variables are determined, ChaStrobe creates a two-dimensional array to store them. For 

example in Figure 9.3, there are 6 decision variables with 11 domain values for each of 

them. Note that each decision variable can have a different number of domain values. See 

Figure 9.17 for example.  

 The currently selected values for the decision variables are in decision variable 

cells, which are cells in Row 2 on the Search Input sheet, as shown in Figure 9.3. The 

values of these decision variable cells are referenced by other cells on other input sheets 

in ChaStrobe, which are used to create a new simulation model. During optimization, 

ChaStrobe alters the values of the decision variable cells using the domain values given 

by the users on the Search Input sheet. The means of selecting new values of each 

decision variable depends on the given domain values on the Search Input sheet and the 

chosen search method. Since the values in decision variable cells are referenced by other 

cells on Project Input, changing the values in decision variable cells (e.g., Figure 9.3 in 

Row 2) will change the input for the project used to create the simulation code and model 

(e.g., Figure 9.4 in Column D). Referencing cells within the spreadsheets in  

ChaStrobe is done in the same way as in Excel spreadsheet, because the spreadsheets in 

ChaStrobe are actually Excel components. 
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In the beginning, users can specify any initial values for the decision variable cells 

so that they can see and verify that the value of the cells on other input sheets that 

reference back to these decision variable cells is correct. For example, Cell D2 on the 

Dynamic Code Input sheet in Figure 9.4 is referenced to Cell A2 on the Search Input 

sheet in Figure 9.3.  

9.2.2 Dynamic Code Input 

 Dynamic code is simulation code whose part of the code changes according to the 

currently selected values for the decision variables. Users create dynamic code on the 

Dynamic Code Input sheet. For the changing parts of the dynamic code, users reference 

the decision variable cells on the Search Input sheet showing the currently selected values 

for the decision variables. In Figure 9.4, for example, the changing part of the code in 

Row 2 is the confidence level for ResB (Column D). An Excel formula must be entered 

in Cell D2 on the Dynamic Code Input sheet that references Cell A2 on the Search Input 

sheet (Figure 9.3). For this example, similar formulas, referencing decision variable cells 

on the Search Input sheet, need to be entered in all cells in Column D on the Dynamic 

Code Input sheet to obtain the currently selected values for the SaveValues specified in 

Column C on the Dynamic Code Input sheet. Another example of dynamic code is shown 

in Figures 9.16 and 9.17. 
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Figure 9.4 Dynamic code input with cells in Column D reference to the decision variable 

Cells on the Search Input sheet, shown in Figure 9.3 
 

To establish dynamic code, ChaStrobe collects simulation code in the column 

direction starting from Column B until reaching a blank cell. The code collected from 

cells in the same row is separated by a space. ChaStrobe considers each row on the 

Dynamic Code Input sheet as one line of simulation code. For example, ChaStrobe 

collects code in Cells B2, C2, D2, E2, and stops, since Cell F2 is a blank cell. 

Accordingly, the dynamic code derived from Row 2 in Figure 9.4 is  

“ASSIGN ResB_ConfidenceLevel 0.2;” 
 

Figure 9.5 displays code positions in the combined code between the main code 

and dynamic code. On the left-hand side of Figure 9.5, the main code is presented. The 

main code is the code created by Stroboscope GUI, consisting of: 1) the simulation code 

in Model Parameters, Programming Objects, and Control Statements, and 2) the code 

converted from graphical simulation elements such as Queues and Combis in 

Stroboscope GUI.  
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To determine the position where each line of the dynamic code will be inserted 

into the main simulation code, users must specify a dynamic code index (1 to 6) in 

Column A for each row on the Dynamic Code Input sheet. For example, dynamic code in 

Row 2 in Figure 9.4 is given a dynamic code index of 2, meaning that it will be inserted 

into the main code after the code for Model Parameter in the main code, as shown in 

Figure 9.5. 

Besides specifying an index for each dynamic code on the Dynamic Code Input 

sheet, users must ensure that the order in which simulation code will be presented to 

Stroboscope is valid. Since Stroboscope reads and interprets simulation code sequentially 

line by line, names of model elements (e.g., Queues and Combis), resources, and 

variables must be declared before they can be referred elsewhere in the simulation code. 

 
Figure 9.5 Dynamic code indexes and dynamic code positions in the main code   

 

Four parts of the main code, generated by ChaStrobe through the Stroboscope 

GUI, are the simulation code for Model Parameters, Programming Objects, Model 
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Properties, and Control Statements. They are stored in the simulation in the Stroboscope 

GUI in the form of simulation code. These four parts of the main code are shown in the 

gray rectangles on the left side in Figure 9.5. On the other hand, the main code for Model 

Declaration, generated by the Stroboscope GUI, is stored in the simulation in the form of 

graphical simulation elements (e.g., Queues, Combis, and Links). Before executing a 

simulation model in optimization, ChaStrobe creates the four part of the main code, 

updates the dynamic code, and inserts the dynamic code into the four part of the main 

code. Then, upon the execution, Stroboscope GUI creates the simulation code for the 

graphical simulation elements (converting them to code) and combines all the code for 

simulation execution in Stroboscope GUI.  

Note that the main code generated by ChaStrobe is derived from the inputs on the 

four main project input sheets: Precedence Input, Quantity Input, Resource Input, and 

Utilization Input, as discussed in Chapter 8. 

9.2.3 Additional Consistent Code 

 Additional consistent code is the code that does not change throughout the 

optimization and is not subject to changes in the decision variables. Users enter the 

additional consistent code in the Additional Code tab, as shown in Figure 9.6. On the 

Additional Code tab, there are five sub-tabs indicating five different positions where the 

additional consistent code will be placed in the main code after the part specified by the 

name of the sub-tabs. 

Prior to dynamic code insertion and simulation execution, ChaStrobe collects the 

additional consistent code and inserts it into the main code. For example, in Figure 9.6, 

additional consistent code on the sub-tab of Control Statements in the Additional Code 
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tab will be placed after Control Statements’ main code. This code is for calculating 

objective function value and storing the value on the tempChaStrobe_GA output. Since 

the objective function in Figure 9.6 is consistent throughout the optimization, it can be 

encoded in the Additional Code tab. Otherwise, it should be encoded in the Dynamic 

Code Input sheet, if the code or part of the code changes according to decision variables, 

specified on the Search Input sheet.  

Note that the tempChaStrobe_GA output is automatically created by ChaStrobe 

referring to tempChaStrobe_GA text file in the same folder as the ChaStrobe file. 

 
Figure 9.6 Consistent additional code calculating objective function value, placed after 

the Control Statements’ main code 
 

9.2.4 Search Parameters 

 ChaStrobe offers two search methodologies to optimize scheduling problems of 

repetitive projects modeled in Stroboscope GUI by ChaStrobe. The two search methods 

are Exhaustive Search and Genetic Algorithm. These two search methods are used to 
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alter decision variables in the simulation, which in turn modify the simulation code 

and/or model. The modified simulation, then, is executed to derive an objective function 

value for optimization purposes, as discussed so far. 

The exhaustive search is for testing all the possibilities of combinations of 

decision variables. It is recommended when the number of the possibilities is small. 

Details of the exhaustive search are given in Section 9.5.1. To start the exhaustive search, 

users click on the “Run Exhaustive Search” button on the tab of Search Parameters, as 

shown in Figure 9.7. 

The genetic algorithm (GA) is a search technique based on the mechanism of 

natural selection. GA uses the objective function value from simulation results (stored in 

tempChaStrobe_GA.txt) to evaluate the selection rate of each combination of decision 

variables. To use the genetic algorithm, users enter GA parameters, shown in Figure 9.7, 

and click the “Run GA Search” button. Details of GA and GA parameters are discussed 

in Section 9.5.2.  
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Figure 9.7 Search Parameters with two main search methods, Exhaustive Search and 

Genetic Algorithm 
 

 In Figure 9.7, there are two options for simulation manipulation: 1) Perform 

dynamic coding and 2) Perform dynamic simulation modeling. The option of dynamic 

coding is used when optimization requires changes in simulation code, whereas the 

option of dynamic modeling is used when optimization requires changes in simulation 

model (graphical simulation elements and the code in them). Details of Dynamic Coding 

and Modeling are discussed in Section 9.3. 

9.3 Simulation Code and Model Manipulation 

ChaStrobe offers three levels of simulation model and code manipulation in order 

to optimize problems. These three levels are used to answer the need in modifying either 

simulation code and/or simulation model. After the specification, users can properly enter 

Project Input and select necessary options of dynamic coding and modeling. 
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First, Parameter manipulation is for altering values of variables in simulation code 

in order to optimize problems. Variables in Stroboscope’s language that can be altered 

must be stored in SaveValues. Examples of decision variables in the SQS-AL simulation 

code are: 1) confidence levels, 2) resources’ sequence steps, and 3) the number of 

resources for each type. 

To employ parameter manipulation, users must create dynamic code for the 

parameters on the Dynamic Code Input sheet. The part of the dynamic code that changes 

according to the values of the decision variables must reference the decision variable 

cells on the Search Input sheet. Then, users must select the option of dynamic coding 

before initiating a search method, either the exhaustive search or the genetic algorithm 

(GA) in Figure 9.7. An example of optimization using GA is shown in Section 9.6. 

Most simulation software with optimization offers this capability of parameter 

manipulation. It is a simple means of optimizing problems by altering certain parameters 

in the simulation model. However, parameter manipulation limits users to optimizing a 

problem by changing the value of decision variables, which may not be sufficient to 

optimize problems with various scenarios. Accordingly, ChaStrobe offers simulation 

code manipulation, an extended version of the parameter manipulation that allows 

additional code such as conditional statements to be added to or altered in the simulation, 

in addition to variables. 

Secondly, code manipulation involves altering simulation code upon decision 

variables in order to optimize problems. It is used to add additional code into the main 

code or change part of the additional code. Simulation code manipulation is a superset of 

parameter manipulation. Examples of simulation code manipulation in the SQS-AL 
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simulation code are: adding additional precedence constraints, specifying working 

sequence for resources, and changing objective function based on different scenarios. 

Simulation code manipulation is very useful and not time consuming. To employ 

simulation code manipulation, users must select the option of dynamic coding, shown 

in Figure 9.7. An example of optimizing a problem requiring dynamic coding is 

demonstrated in Section 9.6. 

However, parameter and code manipulation are strictly for simulation code 

modification. They cannot modify a simulation model in order to optimize problems. 

Thirdly, model manipulation involves changes in the four parts of the main code 

generated by ChaStrobe in order to optimize the problem. It is used when there are many 

simulation model alternatives that require adding, removing, or changing graphical 

simulation elements (such as Combis and Queues) or modifying the main code generated 

by ChaStrobe (such as adding simulation code for work breaks). Examples of simulation 

model manipulation are adding a repetitive activity (adding a work flow sub-network), 

removing a resource (removing a resource flow sub-network), changing resource 

utilization (changing links between work flow and resource flow sub-networks), and 

applying work breaks (adding or removing the simulation code for work breaks). These 

examples require both simulation code and model modification. Accordingly, ChaStrobe 

offers an automation of simulation code and model manipulation used to serve such need 

in optimizing repetitive project scheduling problems. 

When a cell on the four main input sheets (Precedence Input, Quantity Input, 

Resource Input, and Utilization Input sheets) references a cell on the Search Input sheet 

or Dynamic Code Input sheet, simulation model manipulation is required. Changes in the 
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values of the decision variables that change the inputs on the four main input sheets 

require a re-construction of the simulation including the simulation code and graphical 

simulation elements created by ChaStrobe. If the changes can be accomplished without 

referencing cells the four main input sheets to cells on the Search Input sheets or the 

Dynamic Code Input sheet, simulation code manipulation should instead be used. When 

simulation model manipulation is required, users must select the option of Dynamic 

Modeling (the checkbox of “Perform dynamic simulation modeling” in Figure 9.7. An 

example of optimizing a problem requiring dynamic coding is demonstrated in 

Section 9.6. 

9.4 Search Output from ChaStrobe’s Optimization 

 Figure 9.8 displays an intermediate result from optimization on the Search Output 

sheet, which is terminated by the user before the simulation for the alternative shown in 

Row 14 has been completed. Each row on the Search Output sheet represents one 

alternative for the simulation model created by different values of decision variables. The 

outputs on the Search Output sheet can be categorized into three sets: 1) the values of 

decision variables (Columns A to F), 2) the resulting objective function values (Column 

H), and 3) the user-specified additional outputs (Columns L to O).  

Firstly, the selected values of decision variables are placed in cells starting from 

Column A in the same order that users setup the decision variable cells on the Search 

Input sheet. For example, in Figure 9.8, the value in Cell A3 is the confidence level for 

ResB, Cell B3 is the confidence level for ResC, and so forth. Secondly, the resulting 

objective function value from the simulation is placed two cells away (Column H 

in Figure 9.8) from the last cell for the decision variables (Column F). Thirdly, user-
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specified additional outputs are placed four cells way (Column L) from the objective 

function value cell (Column F). The data in Columns I and J in Figure 9.8 are calculated 

and shown only when users use the genetic algorithm (GA) to optimize problems. 

 
Figure 9.8 Output from optimization using the genetic algorithm 

 

9.5 Search Methods in ChaStrobe 

ChaStrobe offers two search methods to optimize problems modeled by 

ChaStrobe in the Stroboscope GUI: the exhaustive search and the genetic algorithm 

(GA). 

9.5.1 The Exhaustive Search 

The exhaustive search is a procedure of testing all possible combinations of 

decision variables in order to find the best solution. For the exhaustive search, ChaStrobe 

creates all possible combinations, generates the simulation from the combinations, and 

executes the simulation. After all the possibilities are tested, then the best combination 

can be identified. The exhaustive search is suggested only when the number of 
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possibilities is small or there is no time constraint. Otherwise, it may be inefficient or 

impossible to test all the possibilities. It also provides a baseline for evaluating the 

effectiveness of GA, which will be discussed next. 

9.5.2 The Genetic Algorithm 

The genetic algorithm (GA) is a search algorithm based on the mechanism of 

natural selection and genetics that healthy creatures are most likely to survive from one 

generation to another, while unhealthy creatures will become extinct. Birthing a new 

generation, the survivors mate and produce offspring whose chromosomes are inherited 

from their parents. Occasionally, the offspring may genetically mutate (Goldenberg 

2004).  

Imitating the natural mechanism, the genetic algorithm weighs the selection rate 

of combinations (creatures) of decision variables (chromosomes) based on their resulting 

objective function value (healthy or unhealthy); a combination is a vector of decision 

variable values, where as its resulting objective function value is the degree of fitness. 

Then, the selected combinations (survivors) are paired, and exchange their variables 

(mate) in order to derive a new combination (offspring). In a new generation, new 

combinations with mixed decision variables (inherited) from their predecessors (parents) 

are likely to improve the selection rate, in other words, the objective function value. In 

addition, decision variables of the new combinations are occasionally altered (mutated) to 

prevent a local optimum. 

As stated above, GA in ChaStrobe is composed of six main processes: 

Initialization, Simulation, Evaluation, Reproduction, Crossover, and Mutation. Figure 9.9 

depicts GA’s six main processes for the example shown in Section 9.2. 
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Figure 9.9 The Genetic Algorithm in ChaStrobe 
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Initialization is the process of creating the initial generation that does not have a 

preceding generation. To create the initial generation, ChaStrobe uses the uniform 

distribution to randomly select values for each of the decision variable. As shown 

in Figure 9.9.a, the combinations for the decision variables for the initial generation are 

those assigned by the user on the Search Input sheet in Figure 9.3. 

 Execution is the process of creating and executing the simulation. The execution 

process for GA involves 3 steps: 

Execution.1) Create the simulation for the currently selected values of decision 

variables, which is the simulation for the current combination. Figure 9.9 

shows that the current combination is No 4 in the initial generation. Note that, 

if users only select dynamic coding, as shown in Figure 9.7, ChaStrobe will 

create one version of original main code that will be used without changing 

(being consistent) throughout the GA process. Then, the dynamic code is 

created based on the currently selected values of decision variables for the 

current combination and added to the original main code.  

Execution.2) Executing the simulation. After the simulation for the current 

combination is created, ChaStrobe automatically submits it to Stroboscope for 

simulation execution. 

Execution.3) Retrieving simulation results. After the simulation execution, 

ChaStrobe retrieves the simulation results by reading the data stored in an 

automatically created text file called tempChaStrobe_GA.txt. 

These three steps are repeated until all combinations for the current generation are 

executed. Then, ChaStrobeGA will start the GA evaluation process. 
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Evaluation is the process of calculating the chance of survival of each 

combination based on each combination’s relative performance within the same 

generation. The relative performance of a combination of decision variables is the ratio 

between its resulting objective function value and the sum of all objective function values 

for all combinations in the same generation. The greater this ratio for a particular 

combination is, the better chance the combination has to survive and be chosen for the 

next generation. Figure 9.9.e shows the relative performance of all combinations in 

percent based on their objective function value. For example in Figure 9.9.e, 

Combination 1 has only a 3% chance to be chosen for the next generation, while 

Combination 2 has an 11% chance. Hence, combinations’ relative performance reflects 

the probability of that combination being chosen for the reproduction process. 

Reproduction is the process of selecting combinations for a new generation by 

using a biased roulette wheel whose slot size is proportional to combinations’ relative 

performance. Figure 9.9.f depicts the biased roulette wheel for the initial generation. To 

produce the next generation, the wheel is spun 10 times to get 10 combinations for the 

new generation. Figure 9.9.g shows examples of five selected combinations from the 

previous generation to the next generation. After reproduction finishes, the crossover 

process starts. 

Crossover is the process of exchanging values of decision variables between 

combinations. Crossover consists of two steps. 

Crossover.1) Pairing two combinations. Two combinations are randomly 

selected and paired. Figure 9.9.h shows the reproduced Combinations 2 and 4 

are paired, as well as for Combinations 1 and 5. 
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Crossover.2) Then, GA determines whether to exchange decision variables 

between combinations by using the crossover probability given by users 

in Figure 9.7. The decision is made by using a uniform distribution, randomly 

creating a number between 0 and 1. If the random number is less than the 

crossover probability, GA will, then, unbiased and randomly select a position 

of decision variable, and exchanges the decision variables in the position 

between the two paired combinations Figure 9.9.h shows Combinations 2 and 

4 exchange a decision variable in Position 5, while Combinations 1 and 5 do 

not. 

These two steps of crossover are repeated until each combination has its pair, and 

has been determined whether to exchange its decision variables with its paired 

combination. After the crossover operation finishes, the mutation operation begins.  

Mutation is the process of altering decision variables in order to prevent 

premature loss of important notions (Goldberg 2004). Mutation ensures that results from 

GA are not limited by a local optimum. To decide whether to mutate a combination, GA 

randomly generates a number from 0 to 1 for the combination. Then, GA compares the 

random number to the user-specified mutation probability (see Figure 9.7). If the random 

number is less than the mutation probability, the combination will be mutated. To select a 

decision variable (position) for mutation (assigning a new value for the decision 

variable), ChaStrobe uses the uniform distribution. Figure 9.9.i shows that Combinations 

3 and 5 are mutated in the 2nd and 6th positions, respectively. 

These processes of simulation execution, evaluation, reproduction, crossover, and 

mutation are repeated until the total number of generations given by the users has been 
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reached. Then, the results from all generations are arranged in the same table and sorted 

by the objective function values, which is project profit in this case, to derive the 

optimum solution according to GA. 

9.6 Example 9.1 Optimizing a Repetitive Project 

 The example repetitive project with resource-sharing activities and work breaks 

from Chapter 8 is used to demonstrate how to optimize the problem using ChaStrobe. 

Figure 9.10 is a precedence diagram with resource nodes for the example. For this 

example, GA is used to optimize the problem with parameter, code, and model 

manipulations as follows: 

• Decision variables using “parameter” manipulation are the confidence levels for 

resources. (See Figure 9.16) 

• Decision variables using “code” manipulation are additional semaphores for 

Activities N, Y, and U. (See Figure 9.16) 

• One decision variable requiring “model” manipulation is whether to schedule 

ResMN’s work break position at the end of M5. (See Figure 9.14) 

 

 

331 



 

 
Figure 9.10 Precedence diagram with resource nodes for Example 9.1 

 

Figure 9.11 is the Simulation Input for the example. Notice that the number of 

replications is set at 100. Since many alternatives of simulation models will be tested, the 

number of replications should be low, yet still appropriate. Otherwise, it will be too time-

consuming. A low number of replications can be used to scope down the possible 

decision variables and estimate a probable optimum solution in the initial test. 
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Figure 9.11 Simulation Parameters for Example 9.1 

 

 Figure 9.12 and Figure 9.13 display the Precedence Input sheet and the Quantity 

Input sheet for the example, respectively. The inputs for precedence constraints, work 

amounts, and production rates shown in the figures remain the same throughout the 

optimization processes. 

 
Figure 9.12 Precedence Input for Example 9.1 
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Figure 9.13 Quantity Input for Example 9.1 

 

 Figure 9.14 presents the Resource Input sheet for Example 9.1. On the Resource 

Input sheet, Cells H7 and I7 reference Cell G2 on the Search Input sheet (Figure 9.17) 

with different conditional statements, as shown in Rows 11 and 12 in the figure. Cells H7 

and I7 specify a work break in Resource ResMN. Cell G2 (on the Search Input sheet in 

Figure 9.17) is a decision variable with domain values of {0, 1} determining whether to 

include a work break at the end of M5.  If Cell G2 on the Search Input Sheet is set to 0, 

Cell H7 and Cell I7 on the Resource Input sheet will be “N-5” and empty, respectively. 

This means there is no work break in ResMN’s schedule (Cell G2=0). Without a work 

break, ResMN will stay on the site until it completes both Activities M and N. On the 

other hand, if Cell G2 is set to 1, Cell H7 will be “M-5” and Cell I7 will be “N-5”, 

meaning ResMN will take a break after completing M5 and then return later to finish 

Activity N.  

Changing the value in the decision variable cell in Cell G2 on the Search Input 

sheet will change the inputs in Cells H7 and I7 on the Resource Input sheet and will 

change how ChaStrobe creates simulation code, stored within graphical simulation 
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elements. Since cells (Cells H7 and I7 on the Resource Input sheet for this example) in 

one of the four main input sheets (Precedence Input, Quantity Input, Resource Input, and 

Utilization Input sheets) reference to cells on the Search Input sheet, this optimization 

requires model manipulation. Therefore, users must inform ChaStrobe to perform 

Dynamic Modeling by checking the option of “Perform dynamic simulation modeling” 

on the “Search Parameters” tab, as shown in Figure 9.21. 

 
Figure 9.14 Resource Input with cells referencing to decision variable cells for Example 

9.1 
 

Note that inputs in Figure 9.14 remain the same throughout the optimization 

process except for the inputs in Cells H7 and I7, which reference Cell G2 on the Search 

Input sheet. Solid cell borders indicate the varying cells.  

Figure 9.15 displays the Utilization Input sheet for the example. The inputs on the 

Utilization Input sheet remain the same throughout the optimization processes. In this 

project, there are six resource-sharing activities. Activities M and N require the same 

Resource ResMN; X and Y require ResXY; and U and V require ResUV.  

It is important to mention that Activity M utilizes two types of resources: one 

dedicated resource, ResM, and one shared resource, ResMN. Since ResM serves only 
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Activity M in SQS2, ResM’s crew lead time (CLT1M) will be determined in processing 

SQS2. On the other hand, ResMN’s crew lead time could be determined in either 

processing SQS2 or SQS4 depending on whether a work break at the end of M5 is 

scheduled. When there is no work break in ResMN’s schedule, there will be only one 

crew lead time for ResMN, CLT1MN. When there is one work break, there will be two 

crew lead times for ResMN, CLT1MN and CLT2MN. Without a work break, CLT1MN will, 

by default, be determined at the end of processing SQS4, which is Activity N’s SQS. 

With a work break at M5, CLT1MN will be determined when processing SQS2, which is 

Activity M’s SQS, and CLT2MN will be determined when processing SQS4, which is 

Activity N’s SQS. 

 
Figure 9.15 Utilization Input for Example 9.1 

 

 Figure 9.16 presents the dynamic code on the Dynamic Code Input sheet 

corresponding to the decision variable cells on the Search Input sheet, shown in Figure 

9.17. Cells D2 to D8, D10 to D11, and B13 to B15 on the Dynamic Code Input sheet 

reference the decision variable cells in Row 2 on the Search Input sheet and are 

automatically updated to reflect the current values of decision variables.  
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Figure 9.16 Dynamic Code Input for the initial decision variables in Figure 9.17 

 

 
Figure 9.17 Initial decision variables for Dynamic Code in Figure 9.16 

 

Showing an updated version for the dynamic code in Figure 9.16, Figure 9.18 

presents the Dynamic Code Input sheet corresponding to the decision variable cells 

in Figure 9.19. Notice that many decision variables have changed from Figure 9.16 

to Figure 9.18. In Figure 9.16 and Figure 9.18, the dynamic code in Rows 1 to 11 

involves parameter manipulation, while the code in Rows 13 to 15 involves simulation 

code manipulation. 
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Figure 9.18 Dynamic Code for the initial decision variables in Figure 9.19 

 

 
Figure 9.19 Initial decision variables for Dynamic Code in Figure 9.18 

 

Figure 9.20 presents the objective function for this example, encoded in the sub-

tab Control Statements in the Additional Code tab. The objective function, measured in 

days, is 1200 minus expected project duration and expected sum of idle time in resources 

from the simulation. The expected project duration is presented in the code in Figure 9.20 

by bcltProjectDurationSQS6 BinCollector, whereas the expected sum of idle time in 

resources is presented by bcltProjectIdletimeSQS6 BinCollector. Note that the number of 

1200 in the formula is arbitrarily selected by the user to ensure that the objective function 

338 



is always positive. The greater the resulting objective function value is, resulting from a 

particular set of values of the decision variables, the better the selected values for 

decision variables are. For the purpose of demonstration, the objective function used 

herein is very simple and easy to understand; it is stored in a variable called “ObjFunc,” 

shown in Figure 9.20.  

 
Figure 9.20 Objective function and user-specified additional output for Example 9.1 

 

The value of the ObjFunc variable in Figure 9.20, calculating the objective 

function value, will be stored (printed) in tempChaStrobe_GA.txt at the end of the 

simulation run for each set of decision variables. As stated earlier, ChaStrobe always 

treats the first number in tempChaStrobe_GA.txt as an objective function value, which is 

very important for the calculation and optimization in GA. The rest of the numbers are 
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considered user-specified additional output, collected for the purposes of presentation 

only. 

 Figure 9.21 illustrates Search Parameters for Example 9.1. As shown in the figure, 

both options of Dynamic Coding and Dynamic Simulation Modeling are checked to 

modify simulation code and model. For this example, the genetic algorithm is used since 

the total number of the possible alternatives is tremendously large, 4,478,976 (from 

66x25x3). The number of populations and generations are set to 100 and 40, respectively. 

The probabilities of crossover and mutation are set to 0.6 and 0.1, respectively. 

 
 Figure 9.21 Search Parameters for Example 9.1 

 

Figure 9.22 displays the results from the GA optimization. The data is sorted by 

the objective function values in Column M from maximum to minimum. As shown in the 

figure, there are three solutions returning the objective function value of 590 days. 

According to the formula for the objective function (1200-bcltProjectDurationSQS6-

bcltProjectIdleTimeSQS6), greater objective function value means lower project duration 
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and idle time in the project. The confidence levels from these three solutions are close, 

but not exactly the same. The results in Figure 9.22 show that the work break at the end 

of M5 (Column G) and the specified working sequence for ResMN (Column J) are 

mandatory in achieving an optimum result for this project. Optimum project duration 

should be about 600 days (Column N), and total idle time should be within a range of 5 to 

30 days. Although not shown, it should be noted that the objective function values ranged 

from 102 to 590 days; project duration from 419 to 826; total idle time from 3 to 499 

days. 

 
Figure 9.22 GA Results with three best solutions providing an objective value of 590 

 

9.7 Summary 

 This chapter presents optimization in ChaStrobe. The optimization components of 

ChaStrobe are explained in detail with examples, focusing on optimization-related 

inputs. These inputs are Search Input, Dynamic Code Input, Additional Code, and 

Search Parameters. Search Input collects the decision variables and their domain 
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values for the optimization. ChaStrobe’s Search Input allows users to optimize 

problems with any number of decision variables and their domain values.  

 After the input on the Search Input sheet is established, it is used as a reference 

for Dynamic Code Input. Dynamic Code Input is the simulation code that changes to 

reflect the current values of the decision variables, which are altered by ChaStrobe’s 

search methods in order to optimize problems. The code or part of the code in Dynamic 

Code Input references the decision variable cells (the current decision variables) on the 

Search Input sheet. The code on the Dynamic Code Input sheet is updated automatically 

every time ChaStrobe selects new values for decision variables. After the update, 

ChaStrobe creates simulation based on Simulation Parameters, Project Input (including 

Dynamic Code Input), and Additional Code. 

Additional Code tab stores the simulation code that remains the same throughout 

the process of optimization; the code in Additional Code tab is called “additional 

consistent code.” Normally, user-specified objective function is encoded in the 

Additional Code tab. Nevertheless, if the equation for the objective function is subjected 

to change based on the current values of the decision variables. The equation must be 

encoded in Dynamic Code Input and references to the decision variable cells on the 

Search Input sheet. The objective function specified by users to optimize problems can 

be: 

• Maximizing project profit (e.g., contract prize minus direct cost minus indirect 

cost including cost associated with idle time, penalty cost from delaying the 

project, etc.) 
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• Minimizing project duration and idle time (e.g., 1200 minus project duration 

minus the sum of idle time) 

• Maximizing resource utilization (e.g., project duration minus the sum of idle 

time) 

 To optimize problems with the user-specified objective function, ChaStrobe is 

able to modify simulation code and model in three different levels. The three levels of 

simulation code and model manipulation are: 

1) Parameter manipulation, altering values of variables in simulation code, such 

as changing resources’ confidence levels 

2) Simulation code manipulation, adding and altering simulation code, such as 

stipulating additional precedence constraints 

3) Simulation model manipulation, modeling different scenarios to optimize the 

problem, such as modeling a shared resource with two or more dedicated 

resources 

Employing the simulation model and code manipulation to modify the simulation, 

examples of decision variables and their suggested manipulation types are: 

• Activities’ work amounts, using parameter manipulation 

• Resources’ confidence levels, using parameter manipulation 

• The number of resources for each type, using parameter manipulation  

• Resources’ processing sequence steps, using parameter manipulation 

• Additional constraints, using code manipulation 

• Resources’ working sequence, using code manipulation 

• Whether to use a work break, using model manipulation 
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• The number of work breaks, using model manipulation 

• The positions of work breaks, using model manipulation 

• Whether to use dedicated resources or shared resources, using model 

manipulation  

ChaStrobe offers two search methods to find an optimum schedule for repetitive 

projects. Two search methods are: 

1) The Exhaustive Search, which tests all possible combinations of decision 

variables in order to find the best solution. 

2) The Genetic Algorithm, which imitates the mechanism of natural selection 

and selectively tests combinations of decision variables based on their 

objective function values. 

With the three types of modification and two search methods, users can use the 

optimization in ChaStrobe to optimize repetitive projects effectively and intelligently. An 

example of a repetitive project with resource-sharing activities (Example 9.1) is 

demonstrated how to setup optimization inputs in ChaStrobe and optimize the project. In 

the example, there are 12 decision variables with a different number of domain values, 

resulting in 4,478,976 possibilities. These decision variables are resources’ confidence 

levels, position and the number of work breaks, resources’ sequence steps, and additional 

constraints of working sequences for the resource-sharing activities. Due to the large 

number of alternatives, GA is employed to optimize this example. The objective function 

is maximizing the value of 1200 days minus project duration and idle time. Data from 

optimization shows that the objective values could range from 102 to 590 days; project 

duration from 419 to 826; and idle time from 3 to 499 days. In the end, there are three 
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optimum solutions providing the objective function value of 590 days, compared to 564 

days from a non-optimized solution, shown in Example 8.4.  

As presented in this chapter, the concepts of the sequence step algorithm, the idea 

of using confidence levels and work breaks to relax the continuity constraints, and the 

suggestion of scheduling resource-sharing activities can be cooperatively employed to 

optimize repetitive projects. The means of optimization in ChaStrobe and the results 

attests the effectiveness, usability, flexibility, and extensibility of the ChaStrobe 

application. 



 

CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

CHAPTER 10 CONCLUSTIONS AND RECOMMENDATIONS 

10.1 Summary 

 This dissertation presents the Sequence Step Algorithm (SQS-AL), a simulation-

based scheduling algorithm for repetitive construction projects with deterministic and/or 

probabilistic activity durations. SQS-AL is capable of scheduling repetitive projects 

under variability and uncertainty while maintaining continuous resource utilization. To 

solve scheduling problems of repetitive projects, SQS-AL consists of two nested loops: 

1) replication loop to collect crew idle time (inner loop) and 2) sequence step loop to 

assign crew lead time for each resource serving an activity in the current sequence step 

(outer loop). Using the concepts of SQS-AL, risk analysis can be performed, and project 

duration and project cost can be optimized. 

 The development and testing of SQS-AL was performed using the Stroboscope, 

discrete-event simulation system. Designed in the system, two simulation model 

templates are proposed: 1) Work Flow Template and 2) Resource Flow Template. These 

templates simplify and standardize the development of simulation model for repetitive 

projects within Stroboscope, which otherwise could be complicated and involve many 

simulation elements representing activities and resources. Using these templates, 
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simulation models are easy to create and understand, systematically organized, and 

effective. The work flow template models repetitive work and the flow of work in 

activities, whereas the resource flow template models dynamic resource utilization and 

allocation. Activities’ precedence constraints are modeled in the work flow template 

using semaphore, a conditional statement in Stroboscope. Resource availability 

constraints are modeled in the resource flow template and through links to the work flow 

template. Resource continuity constraints are modeled in and satisfied by SQS-AL and 

the data collected from the resource flow templates. 

The proposed SQS-AL and the two simulation model templates have been 

implemented in Visio on top of the Stroboscope Graphical User Interface (Stroboscope 

GUI) to form a Visio add-on called “ChaStrobe.” ChaStrobe has been programmed in 

Visual Basic for Applications (VBA) within Visio. ChaStrobe creates simulation model 

and code, for a repetitive project, conforming to SQS-AL. The process of creating the 

simulation and solving the problem in ChaStrobe takes only minutes depending on the 

number of repetitive activities and sequence steps. Without ChaStrobe, this process could 

be lengthy and laborious. Moreover, after the graphical simulation elements and code are 

created, users can customize them within the Stroboscope GUI to fit additional 

requirements prior to submitting the model to the Stroboscope Simulation Engine. 

Currently, the integration of SQS-AL, ChaStrobe, and Stroboscope is the most powerful 

tool for scheduling repetitive projects under uncertainty. The usability, flexibility, and 

extensibility of the system establish a vigorous foundation for continuous development in 

the scheduling field for both repetitive and non-repetitive projects with deterministic and 

probabilistic activity durations. 
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SQS-AL minimizes idle time and promotes continuous resource utilization by 

controlling the arrival dates of resources to the site. As expected, project duration is 

sometimes extended due to the imposed resource continuity constraints. SQS-AL ensures 

that project duration is minimized for a given probability of achieving resource 

continuity. Clearly, there is a tradeoff between imposing and relaxing the continuity 

constraints which must be carefully examined and balanced. To mitigate the prolonged 

project duration while maintaining continuity constraints, a lower confidence level of 

resources can be employed. With a lower confidence level, SQS-AL will relax the 

continuity constraints, resulting in shorter project duration, but greater expected idle time.  

The prudent selection of confidence levels is effective enough to optimize a 

problem. However, there is a need to employ another form of relaxation of continuity 

constraints, which is the introduction of deliberate “work breaks” to mitigate the 

prolonged project duration resulting from achieving resource continuity. A work break is 

the deliberate interruption of the work of a resource during which the resource is directed 

to leave the site and for how long. Thus, work breaks are essentially predetermined idle 

time in activity schedule, but not in a resource schedule, since the resource is unemployed 

and not getting paid. Applying a work break in a resource’s schedule splits the resource’ 

continuity constraints; as a result, it allows the sub-activities served by the resource to 

start sooner. In turn, the prolonged project duration from SQS-AL should become shorter. 

Nevertheless, to effectively reduce the project duration by using work breaks, the activity 

served by the resource whose continuity is spitted must have the following 

characteristics: 

• The activity must be on the controlling sequence. 
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• The activity must have a converging relationship with its direct predecessor on 

the same controlling sequence. 

• The activity must have a diverging relationship with its direct successor on the 

same controlling sequence. 

The joint use of proper confidence levels and work breaks immensely improve 

resource utilization and project duration. To improve project cost, users can set both 

confidence levels and work breaks as decision variables and establish an objective 

function in terms of project cost in ChaStrobe’s optimization to optimize the problem. 

For optimization, ChaStrobe offers three levels of simulation model and code 

modification: 1) parameters, 2) simulation code, and 3) simulation model. Using these 

three levels of simulation modification, ChaStrobe automatically modifies the simulation 

(parameters, code, and model) and employs either the exhaustive search or the genetic 

algorithm to optimize a problem. 

10.2 Contributions 

 The development of SQS-AL and ChaStrobe has allowed for the first time to 

solve the problems of scheduling repetitive projects with probabilistic activity durations. 

Both SQS-AL and ChaStrobe have broadened the field of repetitive project scheduling in 

the construction industry today in several ways: 

• SQS-AL is a generalized algorithm that can be implemented in most 

simulation applications or even Excel spreadsheet to solve either deterministic 

or probabilistic scheduling problems of repetitive projects. Since SQS-AL is a 

generalized algorithm, it is applicable to most construction projects. 
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Moreover, SQS-AL does not rely on particular tools, as other techniques limit 

themselves to, for example, linear or dynamic programming.  

• SQS-AL is a simple and effective algorithm requiring two nested loops, 

replication loop and sequence step loop, and the data collection of resources’ 

idle time in order to calculate resources’ arrival dates. (The data collection of 

idle time is required only when solving probabilistic problems.)  

• SQS-AL can maintain continuous resource utilization and control idle time via 

resources’ confidence levels. As a result, idle time in resources and 

interruptions in activities are minimized and managed.  

• SQS-AL’s concept of confidence levels allows a repetitive project scheduling 

problem to be optimized by altering confidence levels for each resource. The 

results from the alteration can be analyzed further to evaluate the benefit of 

satisfying resource continuity constraints at a different confidence level for 

each resource.  

• SQS-AL’s proposed work flow template can represent the realistic nature of 

repetitive construction activities having variability in production rates and 

varying work amounts in each unit. 

• SQS-AL’s proposed resource flow template can represent the realistic and 

dynamic nature of resources in repetitive activities by modeling a separated 

resource flow sub-network for each resource, from the work flow sub-

network. The separated resource flow sub-network allows the model to 

realistically simulate repetitive tasks and dynamically serve more than one 

activity. 
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• The concept of introducing deliberate work breaks to shorten the prolonged 

project duration (due to resource continuity constraints) while maintaining 

continuous resource utilization and controlling idle time and interruptions is 

original. The determination of which activities to test for work breaks using 

SQS-AL’s crew lead time and RSM’s controlling sequence is also new.  

• SQS-AL and the two proposed simulation model templates can model and 

solve a scheduling problem of repetitive projects having activities sharing 

resource(s). Significant insight has been provided into the problem of 

scheduling resource-scheduling activities to allow for proper exploration and 

analysis in practice. 

For the first time, the problem of scheduling repetitive construction projects is 

addressed and analyzed at this extremely complex level. Variability in activity durations, 

differences in work amounts of activities in each unit, maintenance of continuous 

resource utilization, application of work breaks, and existence of resource-sharing 

activities contribute to the high complexity. For the construction industry, SQS-AL and 

ChaStrobe are now available to solve a very complicated scheduling problem. Using 

SQS-AL and ChaStrobe, activities are effectively scheduled with less interruption, and 

resources are efficiently utilized with less idle time. Risk analysis and optimization can 

be performed to maximize project profitability.   

10.3 Recommendations  

The development of this research investigate has been comprehensive. Even so, 

the impact of weather and other global factors on the repetitive projects is one of the 
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subjects that needs to be studied in order to more realistically model repetitive activities 

and their resources, and more effectively schedule repetitive projects, even further. 

 To maintain continuous resource utilization, repetitive activities are delayed. 

Delaying activities, resulting in longer project duration, does not change activities’ 

durations. In this investigation, the activity durations are assumed to be given and remain 

constant. This is a general assumption made by most, if not all, repetitive project 

scheduling techniques, including SQS-AL.  However, delaying a weather-sensitive 

activity from one season to another could result in a longer or shorter activity duration. 

Decreasing and increasing activity durations results in new idle times. Therefore, the re-

calculation of resources’ arrival dates is required. This means an additional loop for re-

calculating resources’ arrival dates is necessary due to the new activities’ durations, 

effected by the weather. 

 To account for the impact of weather on repetitive activities’ durations or 

production rates, an additional weather loop should be implemented between the 

replication loop and sequence step loop. After the certain number of simulation 

replications is executed and resources in that sequence step are scheduled, activity 

durations must be updated. If there is a slight change or no change in activity duration, 

there is no need to re-calculate the idle time for the resources, which have just been 

delayed. On the other hand, if activity duration changes, idle time of the resource must be 

recollected from the simulation to check whether it is in the acceptable range of user-

specified confidence levels (upper bound and lower bound). Thus, the replication loop for 

this particular sequence step must be repeated more than once to re-determine the new 

crew idle time. 
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 Scheduling repetitive projects with weather-sensitive activities is an interesting 

and challenging topic, especially when activities’ durations are probabilistic. As 

discussed earlier, the suggested idea of updating idle time and re-determining resources’ 

arrival dates can be implemented in SQS-AL by adding weather-impact loops between 

replication loop and sequence step loop. Considering the impact of weather on activity 

durations makes the derived schedule more realistic and accurate. Moreover, it could 

reveal a hidden benefit or detriment of scheduling repetitive activities differently, 

espicially in a region where severe weather is common.  
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APPENDIX A 

DETERMINATION OF THE CONTROLLING SEQUENCE 

APPENDIX A Determination of the Controlling Sequences 
 

This section demonstrates how to determine the controlling sequence and 

controlling sequence activities in repetitive projects under variability and uncertainty. 

According to the Sequence Step Algorithm (SQS-AL), activities are postponed from their 

early start date in order to satisfy continuity constraints. Under variability and 

uncertainty, the postponement period for each activity is not determined by a fixed sum 

of its idle time, but by the cumulative distribution of the sum of idle time and a user-

specified confidence level for the activity. Accounting for idle time, variability, and 

uncertainty, the postponement period incurs free floats between activities on control 

points in the project. Consequently, a control point between two directly dependent 

activities is not exactly vertical from the predecessor’s finish date to the successor’s start 

date; there is usually a free float between the activities. Therefore, there is a need for 

modifying the determination of control points and controlling sequences suggested by 

Harris and Ioannou (1998).  

A control point between two repetitive activities is the precedence constraint that 

determines the start date of a succeeding repetitive activity under resource continuity 

constraints. In deterministic scheduling problems of repetitive projects, the predecessor’s 

finish date on a control point is exactly (vertically) the same as the successor’s start date 
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on the same control point; there is no free float between two activities on a control point. 

Thus, schedulers can easily identify the control point between the two activities. After all 

the control points between activities in the project are identified, schedulers simply 

navigate through the control points from the last activity’s finish date to the first 

activity’s start date to determine the controlling sequence for the project. This 

straightforward process of identifying control points and navigating through the points to 

in order to determine the controlling sequence is applicable only to repetitive projects 

with deterministic activity durations.  

In probabilistic scheduling problems of repetitive projects, however, identifying 

control points is not as simple as in deterministic problems because floats between 

activities with probabilistic durations on the controlling sequence usually exist and vary. 

Under variability and uncertainty, activity durations vary, resulting in different idle times 

from one simulation replication to another. Therefore, activities are scheduled beyond 

their start dates in the RSM schedule to account for such variability and uncertainty. For 

example, SQS-AL schedules activities by their crew lead times, which are determined 

from collected crew idle times and user-specified confidence levels. The determined crew 

lead times from SQS-AL result in near-continuous resource utilization and provide 

sufficient floats between activities to prevent interruptions. These crew lead times result 

in floats at a control point between two activities. 

A.1  Determination of Control Points and the Controlling Sequence 

 The determination of control points and the controlling sequence(s) addressed in 

this section is applicable to both deterministic and probabilistic problems. An example of 

a repetitive project consisting of 4 units requiring 7 activities in Figure A.1 is used to 
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present the means of determining control points and the controlling sequences. Two 

tables are given, one for deterministic activity durations in Table A.1 and another one for 

probabilistic activity durations in Table A.2. 

A

B

C

D

E

F

G

SQS1 SQS2 SQS3 SQS4

 
Figure A.1 Single unit precedence diagram for Examples A.1 and A.2 

 

 To determine control points and the controlling sequence in repetitive projects, 

the following steps are required: 

Step 1: Schedule activities using RSM for deterministic problems or SQS-AL 

for probabilistic problems to obtain start and finish dates of activities in each 

unit. For probabilistic problems, the state and finish dates from each 

replication from processing the final sequence step are collected.  

Step 2: Determine all possible paths in the project. For example in Figure A.1, 

there are 4 possible paths: A-B-D-G, A-B-E-G, A-C-D-G, and A-C-F-G. Each 

path is called an “Activity Path.” 

Step 3: Identify the minimum lags between any two directly dependent activities 

and the repetitive units with the minimum lags. The unit(s) resulting in the 

minimum lag between two activities is the control point(s) between the 

activities. The total number of the minimum lags that must be determined in a 
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repetitive project is equal to the number of precedence constraints in a single 

unit precedence diagram. In Figure A.1, there are 9 precedence constraints 

(links); as a result, 9 minimum lags (one each for any two directly dependent 

activities) must be determined: A-B, A-C, B-D, B-E, C-D, C-F, D-G, E-G, 

and F-G. Moreover, the repetitive units in which the minimum lags locate 

must also be identified. 

Step 4: Calculate the sum of the determined minimum lags for each activity 

path. This sum of minimum lags for each activity path is called “Path Idle 

Time” (PIT). For example, in Figure A.2.b, PITs for Activity Paths A-B-D-G, 

A-B-E-G, A-C-D-G, and A-C-F-G are 2, 8, 0, 0 days, respectively. 

Step 5: Determine the activity path(s) with the minimum PIT and identify the 

units with the minimum lags on the path(s). The activity path with the 

minimum PIT is called the “Controlling Activity Path” for the project. In 

Example A.1, shown in Figure A.2, there are two controlling activity paths: 

A-C-D-G and A-C-F-G with zero-day PIT.  

Step 6: Navigate through the minimum-lag units (control points) on the 

controlling activity path from project finish to start. The activities on this 

controlling activity path connected by the control points are controlling 

sequence activities. In Example A.1, controlling sequence activities are A1 to 

A4, B2 to B3, D1 to D4, F1 to F2, and G2 to G4.  

For deterministic problems, Steps 1 to 6 are performed only once to determine 

control points and the controlling sequences for the project, since activity durations are 

deterministic. On the other hand, for probabilistic problems, Steps 2 to 6 must be 
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repeated for each replication to determine the probability that each activity may be on the 

controlling sequence, given that the start and finish dates from each replication are 

already collected from Step 1 using SQS-AL. Therefore, additional steps for probabilistic 

problems are: 

Step 7: Repeat Steps 2 to 6 for the number of user-specified replications and 

record the controlling sequence activities for each replication from processing 

the finalized sequence step. 

Step 8: Calculate the number of times an activity is a controlling sequence 

activities. This is an estimate of the probability of being on the controlling 

sequence. 

The next two sections demonstrate how to determine control points and 

controlling sequences for deterministic problems and probabilistic problems.  

A.2  Example A.1 Repetitive project with deterministic activity durations 

 Table A.1 displays constant production rate and work amounts for activities in 

each unit. As a result of using a constant production rate for each activity, activity 

durations are deterministic. The duration for each activity in each unit is the ratio 

between the work amount in a particular unit and its production rate. 

Activity Resource 
Production Rate 

Quantity of Work in Repetitive Units 
1 2 3 4 

A 10 100 250 150 200 
B 20 150 100 200 150 
C 15 200 150 50 200 
D 15 150 200 100 150 
E 25 100 150 50 100 
F 15 150 250 50 100 
G 20 50 200 50 150 

Table A.1 Resource production rate and quantity of work for Example A.1 
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After the final schedule is derived, the minimum lags between two directly 

dependent activities are determined, as shown in Figure A.2.a in the top-left corner. The 

lag between activities is the free float derived from the difference between the 

successor’s start date (e.g., Activity B1’s start date is 44) and the predecessor’s finish 

date (e.g., Activity A1’s finish date is 10) in the same unit. Therefore, the lag between 

Activities A1 and B1 is 34 days. The minimum lag between Activities A and B in Figure 

A.2 is zero in Unit 5 (B5’s start date is 70 days, and A5’s finish date is 70 days.) 

Note that it is possible for two directly dependent activities to have more than one 

unit with the minimum lag. This is valid for both deterministic and probabilistic 

problems. For example, in Figure A.2.a, Activities C and D have two units providing the 

minimum lag of zero, which are Units 1 and 2. 

After the minimum lags are determined, path idle times (PIT) for each activity 

path are calculated as shown in Figure A.2.b in the top-left corner. Activity paths with the 

minimum PIT, the controlling activity paths, in Figure A.2.b are A-C-D-G and A-C-F-G, 

giving the minimum lag of zero Therefore, there are two controlling sequences in this 

project.   

It is important to note that one controlling activity path may consist of one or 

more controlling sequences. Moreover, the minimum PIT for deterministic and 

probabilistic problems can be zero or non-zero, depending on scheduling methods. If 

there is no additional buffer assigned between activities, the minimum PIT for 

deterministic problems is zero, as shown in Figure A.2 using RSM to schedule the 

project. Nevertheless, the minimum PIT for deterministic problems is a constant, while it 

is a variable for probabilistic problems. 
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(a) Final schedule for Example A.1 with deterministic durations 

 

 
(b) Controlling sequences for Example A.1 with deterministic durations 

Figure A.2 Control points and controlling sequences for Example A.1 with deterministic 
activity durations 

 

The next step is to determine the controlling sequence activities on the identified 

controlling activity path. To do so, schedulers navigate through activities on the 

controlling activity path via the specified minimum lags from project finish to project 

start. For the example in Figure A.2.b, activities on the Controlling Activity Path A-C-D-

G are Activities A1 to A4, C3 to C2, D1 to D4, and G4. The bold dashed lines in Figure 

A.2.b indicate the controlling sequence activities.   
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A.3 Example A.2 Repetitive project with probabilistic activity durations 

 Table A.2 displays activity productivities and work amounts in each unit using a 

normal distribution. As a result of using a normal distribution for productivity for each 

activity, activity durations are probabilistic. The duration for each activity in each unit is 

the ratio between the work amount in a particular unit and its probabilistic productivity, 

which is randomly generated according to a given distribution.  

Activity  Resource 
Production Rate 

Quantity of Work in Repetitive Units 
1 2 3 4 

A Normal[10,1] 100 250 150 200 
B Normal[20,2] 150 100 200 150 
C Normal[15,1.5] 200 150 50 200 
D Normal[15,1.5] 150 200 100 150 
E Normal[25,2.5] 100 150 50 100 
F Normal[15,1.5] 150 250 50 100 
G Normal[20,2.0] 50 200 50 150 

Table A.2 Probabilistic productivity and work amounts for Example A.2 
 

 Assuming that SQS-AL has been performed and that the CLTs for all resources 

have been determined, Figures A.3 to A.7 are five schedules resulting from 5 

replications. To determine the controlling sequences for Example A.2 with probabilistic 

durations, the controlling sequence activities for each of these replications must be 

determined, as shown in the previous section. Then, the probability of activities being on 

the controlling sequence is the ratio between the number of times an activity is on a 

controlling sequence and the number of replications. 

 Figures A.3 to A.7 are five production diagrams (schedules) derived from SQS-

AL using an 80% confidence level at the end of SQS-AL. As shown in the figures, 

activities have been postponed from their earliest start date under continuity constraints 
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due to the cumulative distribution of idle time and the user-specified confidence level of 

80%. Figure A.3 is the production diagram from the first replication. 

 

 
(a) Final schedule for Example A.2 from the 1st replication 

 

 
(b) Controlling sequence in Example A.2 from the 1st replication 

 
Figure A.3 Control points and controlling sequence for Example A.2 Replication 1 with 

probabilistic activity durations 
  

As shown in the top-left corner of Figure A.3.a, the minimum lags between any 

two directly dependent activities are greater than zero; as a result, the minimum PIT is 

greater than zero. For the first replication, the activity path with the minimum PIT, the 

controlling activity path, is A-C-D-G, as show in Figure A.3.b, and activities on the 

controlling sequence are A1 to A4, C3, D2 to D4, and G5 with PIT of 16 days.  
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As can be seen, the controlling sequence in the first replication (Figure A.3) 

differs from the controlling sequence in the deterministic case (Figure A.2) and from the 

controlling sequence in the second replication (Figure A.4). Therefore, identifying the 

individual activity on the controlling sequence(s) for each replication is necessary, before 

calculating the probability of activities being on controlling sequences for the project. 

The probability of activities being on the controlling sequence(s) is the ratio between the 

number of times an activity is on a controlling sequence and the total number of 

replications. 

 Figure A.4 is the production diagram from the second replication, using SQS-AL 

with an 80% confidence level. Figure A.4.b shows there are two activity paths resulting 

in a minimum PIT of 23 days, A-B-D-G and A-C-D-G. For this replication, the two 

controlling activity path result in two controlling sequences: 1) A1 to A4, B3 to B2, D1 to 

D4, and G4, and 2) A1 to A4, C3 to C2, D1 to D4 and G4.   

It is interesting to note that changes in different activities on the controlling 

sequences might have a different impact on the controlling sequences for the project. For 

example, in Figure A.4, Activities A1 to A4, D1 to D4, and G4 are on both controlling 

sequences, while B2 to B3 and C2 to C3 are on different controlling sequences. 

Therefore, changes in Activities A (A1 to A4), D (D1 to D4), and G4 may not result in a 

different controlling sequence. However, changes in Activities C2, C3, B3, and B4 are 

likely to change the controlling sequences for this replication, shown in Figure A.4. 
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(a) Final schedule for Example A.2 from the 2nd replication 

 

 
(b) Controlling sequences in Example A.2 from the 2nd replication 

 
Figure A.4 Control points and controlling sequences for Example A.2 Replication 2 with 

probabilistic activity durations 
 

 Figure A.5 is the production diagram from the third replication. Figure A.5.b 

shows there is one activity path with the minimum PIT of 19 days, A-C-F-G. 

Nevertheless, since there are two positions providing the minimum lag between Activities 

C and F, which are in Units 1 and 2 (Figure A.5.a), there are two controlling sequences 

(Figure A.5.b) within Activity Path A-C-F-G, which are 1) Activities A1 to A4, C3, F2, 

and G2 to G4, and 2) Activities A1 to A4, C3 to C2, F1 to F2, and G2 to G4. Therefore, 
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changes in Activities B2 and F1 are likely to have more impact on the controlling 

sequences than other activities on the controlling sequences. 

 
(a) Final schedule for Example A.2 from the 3rd replication 

 

 
(b) Two controlling sequences in Example A.2 from the 3rd replication 

Figure A.5 Control points and controlling sequences for Example A.2 Replication 3 with 
probabilistic activity durations 

 

 Figure A.6 is the production diagram from the fourth replication. The controlling 

sequence from the fourth replication is the same as from the first replication; however, 

the minimum PITs from the two replications are different. The same controlling sequence 

from different replications may have a different sum of minimum lags (minimum PIT). 

Therefore, collecting the statistical data of PIT for each controlling activity path from 

different replications reveals the criticality and floats of activity paths. Moreover, the 
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statistical data of minimum PIT, such as its average value, shows the number of days 

additionally included in the project to prevent the idle time stemming from variability and 

uncertainty. 

 
(a) A final schedule for Example A.2 from the 4th replication 

 

 
(b) The controlling sequence in Example A.2 from the 4th replication 

Figure A.6 Control points and controlling sequences for Example A.2 Replication 4 with 
probabilistic activity durations 

 

 Figure A.7 is the production diagram from the fifth replication. For this 

replication, the minimum PIT is only 12 days, without any interruption within each 

activity between its units; there is not unit idle time (UIT) in this replication. As shown in 

Figure A.7.a, the duration of Activity A in the 5th replication is relatively longer than in 
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any other previous replications. However, the time buffers (floats) between Activities A 

and B, and between A and C are able to prevent an interruption in Activities B4 and C4. 

 
 (a) Final schedule for Example A.2 from the 5th replication 

 

 
(b) Controlling sequence for Example A.2 from the 5th replication 

Figure A.7 Control points and controlling sequences for Example A.2 Replication 5 with 
probabilistic activity durations 

 

 From five replications, Tables A.3 to A.5 are constructed to display the statistical 

data of activities, activity paths, and also controlling sequences. Table A.3 shows the 

probability that an activity is on a controlling sequence. The “Y” in Table A.3 indicates 

that an activity is on a controlling sequence in the particular replication. Column “Hit” is 

the number of times an activity is on a controlling sequence, whereas Column “%Hit” 
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presents the probability of the activity being on a controlling sequence, based on the five 

replications (Figures A.3 to A.7). 

Activity 
On a Controlling Sequence in 

Replication (Y=Yes) Hit % Hit 
1 2 3 4 5 

A1 Y Y Y Y Y 5 100 
A2 Y Y Y Y Y 5 100 
A3 Y Y Y Y Y 5 100 
A4 Y Y Y Y Y 5 100 
B1      0 0 
B2  Y    1 20 
B3  Y    1 20 
B4      0 0 
C1      0 0 
C2  Y Y  Y 3 60 
C3 Y Y Y Y Y 5 100 
C4      0 0 
D1  Y   Y 2 40 
D2 Y Y  Y Y 4 80 
D3 Y Y  Y Y 4 80 
D4 Y Y  Y Y 4 80 
E1      0 0 
E2      0 0 
E3      0 0 
E4      0 0 
F1   Y   1 20 
F2   Y   1 20 
F3      0 0 
F4      0 0 
G1      0 0 
G2   Y   1 20 
G3   Y   1 20 
G4 Y Y Y Y Y 5 100 

Table A.3 Probability of activities being on controlling sequences 
 

For example, in Table A.3, Activity A has a 100% chance of being on a 

controlling sequence, while Activity E has a 0% chance. It is common that sub-activities 

(e.g., C1, C2, C3, and C4) of an activity (e.g., C) may have different probabilities of 

being on a controlling sequence. For example, Activities C1 and C4 have a 0% chance of 
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being on a controlling sequence, while Activities C2 and C3 have a 60% and 100% 

chance, respectively. Table A.3 also shows Activities A1, A2, A3, A4, C2, C3, D2, D3, 

D4, and G4 having greater than 50% probability of being on controlling sequences 

greater than 50%. Schedulers should pay attention to these activities since they influence 

project duration under the resource continuity constraints.  

Tables A.4 and A.5 present statistical data of activity paths from five replications. 

Table A.5 shows the probability that an activity path is the controlling activity path for 

that particular replication. As shown in the table, Activity Path A-C-D-G has an 80% 

probability of being the controlling activity path for the project, based on the five 

replications. On the other hand, Activity Path A-B-E-G has a 0% chance.  

Activity 
Path 

On a Controlling Sequence in 
Replication (Y=Yes) Hit %Hit 

1 2 3 4 5 
A-B-D-G  Y    1 20 
A-B-E-G       0 
A-C-D-G Y Y  Y Y 4 80 
A-C-F-G   Y   1 20 

Table A.4 Probability of activity path being the controlling activity path 
 

Table A.5 presents statistical data of PIT, average (Avg), standard deviation (Std), 

maximum, and minimum values of each activity path. The bold numbers indicate activity 

paths providing the minimum PIT for a corresponding replication. Activity Path A-B-E-

G, having an 80% probability of being a controlling sequence, has an average PIT value 

of 17.6 days. Approximately 18 days of buffers (floats) are included between activities in 

order to prevent interruptions under variability and uncertainty. If RSM was used to 

schedule this project with perfect hindsight, these 18 days would become zero without 

interruptions or idle time, because activity durations would have been determined and 

known before scheduling. This means that the difference in project duration between 
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assuming perfect information (idealistic or deterministic cases) and imperfect information 

(realistic or probabilistic cases) is 18 days. As the effectiveness in construction operation 

and project control increases, the project should be scheduled toward the idealistic cases 

(perfect information) from the realistic cases by thoughtfully lowering variability in 

activity durations. 

In addition, in Table A.5, it is interesting to note that the maximum value of the 

PIT for Activity Path A-C-D-G is lower than the minimum value of the PIT for A-B-E-G. 

Accordingly, A-B-E-G has the least impact on the project duration. Nevertheless, it is 

important to realize activities on the same controlling activity path also have a different 

impact on the project duration.  

Activity 
Path 

PIT in each Replication (day) Avg. Std. Max Min 1 2 3 4 5 
A-B-D-G 19 23 25 20 16 20.6 3.51 25 16 
A-B-E-G 29 33 30 26 25 28.6 3.21 33 25 
A-C-D-G 16 23 20 17 12 17.6 4.15 23 12 
A-C-F-G 24 26 19 20 15 20.8 4.32 26 15 

Table A.5 PIT of each activity path with its statistical data 
 

A.4   Computerized Procedure of Determining Controlling Activity 

As shown in the previous section, identifying the controlling sequence(s) after the 

controlling activity path(s) and its PIT is specified is relatively simple. Yet, it is tedious 

and cumbersome to manually calculate and determine the controlling sequence, 

especially when the number of units is large and activity durations are stochastic, 

resulting in different possible controlling sequences for each simulation replication. Thus, 

the process of determining controlling sequences should be computerized to reduce 

human effort and time. The following steps present a programmatic means of identifying 

activities on controlling sequences.     
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Step 1) Determine all activity paths in the project. 

Step 2) Create a one-dimensional array for each activity path with a size twice as 

large as the total number of units (1 x 8 for Example A.2 ). Each member of the 

array represents possible control points on the activity start and finish dates, as 

shown in Table A.6.  

Step 3) Assign a value of 1 to start date of the first activity in the first unit (e.g., 

SD1 of A) and the finish date of the last activity (e.g., FD4 of G). 

Step 4) Determine the minimum lag between activities and calculate PIT for each 

activity path. 

Step 5) Identify the controlling activity path, which is the activity path with the 

minimum PIT. For example, the activity path providing the minimum PIT in 

Figure A.7.b is A-C-D-G. 

Step 6) Assign the value of 1 for the predecessors and the successors having 

minimum lags between activities on the controlling activity path in Step 5. As 

shown in Table A.6.a, each member in the array with value of 1 indicates a 

control point on the controlling activity path. The arrow indicates the predecessor 

and the successor of the control point. For example, since the minimum lag 

between A and C is 13 days from A4’s finish date (FD4 of A) to C4’s start date 

(SD4 of C), as indicated in Table A.6.a, FD4 of A and SD4 of C are the 

predecessor and the successor of the control point (i.e., CPAC), respectively. 

Step 7) Connect the navigating path in each activity by assigning a value of 1 

from the first dimension to the last dimension having the value of 1 in the same 
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activity (in the same row in Table A.6.a). Table A.6.b shows the updated array of 

activities after connecting the navigating path.  

 SD1 FD1 SD2 FD2 SD3 FD3 SD4 FD4 
A 1*       1 
B         
C  1     1  
D 1       1 
E         
F         
G       1 1* 

(a) Array indicating control points on the controlling activity path (minimum PIT) 
 

 SD1 FD1 SD2 FD2 SD3 FD3 SD4 FD4 
A 1* 1 1 1 1 1 1 1 
B         
C  1 1 1 1 1 1  
D 1 1 1 1 1 1 1 1 
E         
F         
G       1 1* 

(b) Array indicating controlling sequence activities 
 

Table A.6 Arrays determining activities on controlling sequences 
 

Step 8) Determine whether an activity is on the controlling sequence by checking 

the values in the established arrays. If the values in the updated array for both SD 

and FD in the same unit of an activity are 1, the activity is a controlling sequence 

activity (being on the controlling sequence). For example, in Table A.6.b, since 

the values in the updated members for SD2 and FD2 of Activity C are 1, Activity 

C2 is a controlling sequence activity.  In contrast, because the values of SD1 and 

FD1 for Activity C are 1 and 0 respectively, Activity C1 is not a controlling 

sequence activity (not being on the controlling sequence). After finishing Step 8, 

activities on the controlling sequence are A1 to A4, C2 to C3, D1 to D4, and G4.  
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APPENDIX B 

EXTENSION OF SIMULATION MODEL TEMPLATES 

Appendix B Extension of Simulation Model Templates 
  

This section examines variations of simulation model templates discussed in 

Chapter 5, Simulation Model Templates. Suggestions and examples of how to modify the 

work flow and resource flow templates to model a more complicated repetitive activity 

are given. Two modifications of simulation model templates shown in Appendix B are: 

• Modeling different types of precedence relationships 

• Modeling repetitive activities at an operational level 

One of the main concerns in modifying the simulation model templates is how to 

keep the simulation model simple, organized, and functional. The modified templates 

should not change the functionality for each part of the suggested templates. For 

example, any modification relevant to how an activity is performed or simulated should 

be made in or replace the Act_Perform Combi in the work flow template. Another 

example is that any modification relevant to resources should be made in the resource 

flow template. It is recommended to study Chapter 5 carefully before modifying the 

simulation model generated by ChaStrobe. 

B.1   Modeling Different Types of Precedence Constraints 

In scheduling, there are four types of precedence relationships, which are Finish-

To-Start (FTS), Start-To-Start (STS), Start-To-Finish (STF), and Finish-To-Finish (FTF). 
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In many cases, a composed set of FTS relationships, activities, and lead times can be used 

to model STS, STF, and FTF relationships. When possible and practical, FTS 

relationships should be preferred due to the simplicity. Modeling STF and FTF 

relationships in simulation should always be avoided, since the start dates of the 

successors of STF and FTF relationships are unconstrained. Instead of modeling STF and 

FTF, additional activities and FTS relationships should be used. 

To model different types of precedence relationships, three main components are 

necessarily added in the work flow template: 

• Triggering event 

• Lead time duration 

• Tracking mechanism 

Firstly, since discrete-event simulation advances the simulation clock from one 

event to the next closest event, the simulation model must ensure that events related to 

the precedence constraints, such as the start date of a successor, are registered in the 

future event list by creating a triggering event. In the original work flow template with 

FTS and zero lead time, the triggering event for a successor’s start date is the completion 

of its predecessor (the end of an instance in ACT_Perform Combi). This is 

straightforward. However, when different types of precedence relationships are modeled, 

additional simulation elements, such as Combis and Queues, are required to trigger the 

events. For example, FTS relationships with lead time can be modeled by adding a 

Normal (a simulation model element in Stroboscope) to simulate the lead time. This is to 

ensure that the simulation clock will advance to the completion of the lead-time activity, 

and then the successor may start.  
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Secondly, lead time duration is recommended to be modeled as an activity with 

the duration of the lead time. At the completion of a lead-time activity, which is 

registered in the future event list of the simulation (FEL), the scanning process of 

discrete-event simulation will determine which activities can start, including the 

successors of the lead-time activity. 

Thirdly, it is necessary to separate the number of completed works in predecessor 

activities with a lead time from the number of completed works without a lead time. For 

example, Activity A has two successors, B and C. Activities A and B have a FTS 

relationship without lead time, while Activities A and C have an FTS relationship with 

lead time. Therefore, the completed work in A should be tracked using two different sets: 

completed work after A is completed and completed work after the lead time. 

Figure B.1 is an example of modeling FTS relationships with lead time. Figure 

B.1.a is a precedence diagram showing Activity A has four successors, B, C, D, and E. 

The precedence relationships between A and B and between A and D are FTS without 

lead time, while the precedence relationships between A and C and between A and E are 

FTS with different lead times. Figure B.1.b shows a work flow sub-network for Activity 

A having two different lead times for its successors. As shown in the figure, The 

A_LT_C and A_LT_E Normals are used to model the FTS lead times between Activities 

A and C, and between Activities A and E. The completions of A_LT_C and A_LT_E 

Normals are the triggering events, ensuring the simulation clock will advance to the 

events. The durations of A_LT_C and A_LT_E Normals simulate the duration of the lead 

times. Since lead times between Activities A and C and between Activities A and E are 

different, the two lead times are modeled separately using two Normals.  
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(a) Precedence diagram with activities with FTS with different lead  

 
(b) A work flow sub-network with FTS with different lead 

Figure B.1 Modeling Finish-To-Start relationships with different lead times  
 

In Figure B.1.b, the number of Resource rq_RES in A_LT_C_Complete and 

A_LT_E_Complete Queues is used to determine whether successors C and E can start, by 

coding the semaphores of Activities C and E in C_Perform and E_Perform Combis, 
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respectively. For more detail about the semaphores of ACT_Perform, see Section 5.2.1, 

Work Flow Template. 

Figure B.2 is an example of modeling FTS relationships without lead time and 

STS relationships with lead time. Figure B.2.a is a precedence diagram showing Activity 

A has four successors, B, C, D, and E, with different precedence relationships. The 

precedence relationships between A and B and between A and D are FTS without lead 

time, while the precedence relationships between A and C and between A and E are STS 

with different lead times. Figure B.1.b shows a work flow sub-network for Activity A 

having two different lead times for its successors. As shown in the figure, A_Trigger 

Combi is added in the work flow template as a trigger for the start of Activity A; the 

duration of A_Trigger Combi is zero. After the completion of A_Trigger (duration of 

zero), three activities start (i.e., A_Perform, A_LT_C, and A_LT_E). Normals A_LT_C 

and A_LT_E are used to model the STS lead times between Activities A and C, and 

between Activities A and E. The completion of A_LT_C and A_LT_E Normals is also a 

triggering event, ensuring that simulation clock will advance to the events. The durations 

of A_LT_C and A_LT_E Normals simulate the duration of the lead times. Since lead 

times between Activities A and C and between Activities A and E are different, the two 

lead times are modeled separately using two Normals.  
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Figure B.2.a Precedence diagram with activities with FTS and STS with different lead 

times 
 

 
(b) A work flow sub-network with FTS and STS with different lead times 

Figure B.2 Modeling Start-To-Start relationships with different lead times  
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B.2   Modeling Operational Level of Activities 

 Although the Sequence Step Algorithm (SQS-AL) and the simulation model 

templates are designed to solve and model repetitive projects at an activity level, it is 

possible to modify the templates to model the project at an operational level. As shown 

Figure B.3, there are two types of resources here, activity resources and operational 

resources. The activity resource is modeled by using the resource flow template, while 

the operational resource is not. Only queue and resource are specified for the use of the 

operational resource, and their data are not taken into account by SQS-AL. 

The operational activities and operational resources can be modeled in the work 

flow template by adding queues and combis, as shown in Figure B.3. Operations 1 and 2, 

modeled by Operation 1 Combi and Operation 2 Normal in Activity A requires 

operational resource residing in the “operational resource” Queue to perform the 

operation. After Activity A starts, which is determined by precedence constraints and 

resource available constraints of Resource X in the resource flow sub-network, Operation 

1 draws an operational resource from the queue. Then, both work and operational 

resource will be passed to Operation 2 to complete this unit.  After Operation 2 

completes, the operational resource returns to its queue, whereas completed work is sent 

to “finish perform” Normal and “work done” Queue. 
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Figure B.3 Modeling an activity at an operational level 

 

In certain circumstances, one might want to model an operational resource that 

serves several operations belong to different activities. This can be done in traditional 

simulation modeling way. However, sequence of activities may change and possibly 

complicate the schedule. Imagine that an operational resource is utilized among several 

operations within two different activities, and it causes both activities to start and stop 

due to the lack of the operation resource. Accordingly, the idle times of the main 

resources for both activities are disguised by the fact that activities have started, yet not 

finished. Remember, sub-operation and operational resources in this discussion are 

relatively insignificant compared to activity resource. If the operational resources are 

significant or desired to model, one solution to this is modeling the sub-operation by 
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using work flow template and modeling the operational resource by using resource flow 

template. Although this is viable, it is recommended to keep the simulation model simple. 



 

APPENDIX C 

FLOW CHART FOR THE CHASTROBE APPLICATION 

Appendix C Flow Chart for the Chastrobe Application 

Appendix C presents the flow charts of ChaStrobe. These flow charts provide 

information of how ChaStrobe collects data and create simulation. Explanations, 

references, and simulation code examples are given to clarity each process in the flow 

charts. 

383 



 

Flowchart 1 Main procedure 
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Start

Store Simulation 
Parameters in ChaStrobe’s 
Simulation Parameter page

Store inputs in Visio

Store
Project Input

Store
Additional Code

Store
Static Graphs Patterns 

Finish storing inputs in 
Visio

Including the following,
Number of replications
Expected maximum value of CIT
Number of intervals for CIT
Rounding digit
Options of static graph
Options of dynamic graph
Number of graphs in each SQS
Number of graphs in the last SQS
Options of cumulative frequency of 
project duration
Option of using optimized INIT 
activities based on their SQS

See Section 8.3.2 for an example 
of Static Graphs, and Appendix 
D for Graphical Formats for 
Static Graphs

See Section 9.2.3 for explanation 
and example of Additional Code 

See Section 8.1.1 for  
explanations of how ChaStrobe 
collects Project Input

See Section 8.1.1 for  
explanations of Simulation 
Parameters

 

Flowchart 2 Storing inputs in Visio 
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Start

Store Precedence Input in 
ChaStrobe’s Precedence 

Input sheet

Store
Project Input

Store Quantity Input in 
ChaStrobe’s Quantity Input 

sheet

Store Resource Input in 
ChaStrobe’s Resource 

Input sheet

Store Utilization Input in 
ChaStrobe’s Utilization 

Input sheet

Store Dynamic Code Input 
in ChaStrobe’s Dynamic 

Input sheet

Finish storing Project Input

See Section 8.1.1 for  
explanations of how ChaStrobe 
collects Precedence Input, 
Quantity Input, Resource Input, 
and Utilization Input.

See Section 9.2.2 for detail about 
Dynamic Code Input and 
explanations of how ChaStrobe 
collects the input.

See hidden sheets in ChaStrobe 
Visio file by right click on the 
drawing and select Show/Hide 
Page Tab

 

 

Flowchart 3 Storing Project Input 
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Flowchart 4 Storing Additional Code 
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Store
Static Graph and

 Analyzer Patterns
Start

Store user-specified Static 
Graph patterns

Store user-assigned  
patterns for activities

Finish storing
Static Graph and Analyzer 

Patterns

See Section 8.3.2 for an example 
of Static Graphs, and Appendix 
D for Graphical Formats for 
Static Graphs

See hidden sheets in ChaStrobe 
Visio file by right click on the 
drawing and select Show/Hide 
Page Tab

 

 

Flowchart 5 Storing Static Graph and Analyzer Patterns 
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Start

Collect
Precedence Input

Collect
Quantity Input

Collect 
Resource Input

Collect 
Utilization Input

Collect 
Dynamic Code Input

Finish collecting inputs

Including work amounts and 
productivities for each activity

Including activities’ names, ID, 
predecessors,  sequence steps (column), 
and sequence step rows (rows)

Collect
Simulation Paramters

Including the number of replications, 
expected max CIT, the number of 
intervals for CIT BinCollectors, 
rounding digit, options of Static Graphs 
and Dynamic Graphs, and options of 
optimized INIT

Including user-specified confidence 
levels, the number of resources for each 
type, work breaks’ positions and type

Including resource utilization for each 
activity

Collect inputs for the 
creation of simulation 

models and code

See Section 8.1.1 for  
explanations of how ChaStrobe 
collects Simulation Parameters, 
Precedence Input, Quantity 
Input, Resource Input, and 
Utilization Input.

See Section 9.2.2 for detail about 
Dynamic Code Input and 
explanations of how ChaStrobe 
collects the input.

 

Flowchart 6 Collecting inputs for the creation of simulation model and code 
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Start

Determine the number of 
activities

Counting un-blank cells in Column A on 
the Precedence Input sheet, starting 
from Row 2

Collect activities’ names 
and ID

Determine the number of  
predecessors for each 

activity

Counting un-blank cells in the row 
direction starting from Column B for 
each activity (each row)

Recording activities’ names from un-
blank cells in Column A, on the 
Precedence Input sheet

Collect predecessors’names 
for each activity

Recording predecessors’names from un-
blank cells in the row direction starting 
from Column B for each activity (each 
row)

Determine activities’ 
sequence steps (columns)

Determine the total number 
of sequence steps

Determine activities’ 
sequence step rows

Finish collecting 
Precedence Input

Collect
Precedence Input

See Section 8.1.1 for  
explanations of how ChaStrobe 
collects Precedence Input

 

Flowchart 7 Collecting Precedence Input 
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Flowchart 8 Collecting Quantity Input 
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Start

Determine the number of 
resources

Counting un-blank cells in Column A on 
the Resource Input sheet, starting from 
Row 2

Collect resources’ names 
and ID

Recording resources’ names from the 
un-blank cells in Column A

Record user-specified 
confidence levels for each 

resource

Recording break positions, in the format 
of ACT-UNIT and break types, “date” 
or “period,” in the row direction, 
starting from Column H, for each 
resource (each row on the Resource 
Input sheet)

Recording resources’ confidence levels 
from the un-blank cells in Column B for 
each resource (each row)

Collect the number of work 
breaks (continuous series 
of resource utilization) 

Recording the number of resources in 
Column B for each resource (each row)

Collect the number of 
resources for each resource 

type

Finish collecting
Resource Input

Collect
Resource Input

See Section 5.3.1.3 
(CS.ACT.INIT) for simulation 
code

See Section 5.3.4.3 
(CS.RES.INIT) for simulation 
code

See Section 8.1.1 for  
explanations of how ChaStrobe 
collects Resource Input

 

Flowchart 9 Collecting Resource Input 
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Start

Collect activities’ resources
Assigning resources to activities by 
recording the resources’ names in the 
row direction starting from Column B 
for each activity (each row) on the 
Utilization Input sheet

Determine resources’ 
drawing sequence steps 

(columns)

Determine resources’ 
drawing sequence step 

rows

Using the earliest sequence steps of 
activities utilizing the resources as 
resources’ drawing sequence steps

Determining the number of already 
assigned-position sub-networks (work 
flow and resource flow) in a drawing 
sequence step, and then adding a new 
resource sub-network.

Determine resources’ 
calculation sequence steps

Using the latest sequence steps of 
activities utilizing the resources as 
resources’ calculation sequence steps

Finish collecting
Utilization Input

Collect
Utilization Input

See Section 8.1.1 for  
explanations of how ChaStrobe 
collects Utilization Input

Note: Drawing sequence steps 
are positions in which simulation 
models for activities and 
resources are placed in the 
drawing.

Note: Calculation sequence steps 
are resources’ sequence steps in 
which their CITs and CLTs are 
collected and determined, 
respectively.

 

Flowchart 10 Collecting Utilization Input 
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Clear existing 
simulation models and 

code
Start

Clear simulation code in 
Model Parameters

Deleting simulation code stored on the 
Model Parameters page 

Clear simulation code in 
Programming Objects

Deleting simulation code stored on the 
Programming Objects page 

Clear simulation code in 
Control Statments

Deleting simulation code stored on the 
Control Statements page 

Set the Model Network 
page as the active page

Selecting the Model Network page

Clear existing simulation 
models on the Model 

Network page

Clear resources

Deleting existing simulation models in 
Stroboscope GUI

Deleting existing user-specified 
resources in Stroboscope GUI

Finish clearing existing 
simulation models and 

code  

Flowchart 11 Clearing existing simulation model and code 

 

394 



 

Flowchart 12 Collecting Dynamic Code Input 

 

 

Flowchart 13 Creating simulation code 
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Create simulation code 
for  Model Parameters

Start

Code OUTFILEs
Including tempChaStrobe_GA, 
tempChaStrobe_StaticGraph, 
tempChaStrobe_StaticGraphProb, 
tempChaStrobe_Analyzer, 
tempChaStrobe_StaticGraphSQS, and 
tempChaStrobe_CLT

Code simulation-related 
SAVEVALUEs

Including PrintAnalyzer, nRep, nSQS, 
MaxValue_RES_CIT, 
NumInterval_RES_CIT, 
DurationBinInterval, nthSQS, nthRep, 
iSQS, nthBinterval, and RoundingDigit

Code activities’ work 
amounts

Code the number of 
resources for each type

Code resources’ confidence 
levels

Code resources’ sequence 
steps

For example,
ARRAY A_Quantity 4 {100 250 150 200};
ARRAY B_Quantity 4 {150 100 200 150};

For example,
SAVEVALUE ResB_InitNumber   1;

For example,
SAVEVALUE ResB_ConfidenceLevel  0.8;

For example,
SAVEVALUE ResB_CLT1_SQS  2;
SAVEVALUE ResD_CLT1_SQS  3;

Add Additional Code for 
Model Parameters

Adding Additional Code for Model Parameters 
encoded in ChaStrobe Additional Code

Finish creating code for
Model Parameters

See Section 8.3 for details about 
output from ChaStrobe

 

Flowchart 14 Creating code for Model Parameters 
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Flowchart 15 Creating code for Programming Objects 
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Flowchart 16 Creating PO code for activities 
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Start

Code timestamps when 
resource start working and 

counters for continuity 
breaks

Code the decision whether 
to keep or lay for 

Resource(i)

Code crew idle times and 
crew lead times for 

Resource(i)

For example, 
VARIABLE ResC_Leave_Strength 
'(C_Remain.CurCount == 0  ) 
| ( C_Complete.CurCount == 4 & 
ResC_nthBreak == 0 )? 1 : 0  ' ;

An example for the timestamps, 
COLLECTOR ResB_StartFirstUnit*;
An example for the counters, 
SAVEVALUE ResB_nthBreak 0;

For example, 
SAVEVALUE ResC_CLT1* 0;
BINCOLLECTOR ResC_CIT1* 
$<NumInterval_RES_CIT>$ 0 
$<MaxValue_RES_CIT>$;
SAVEVALUE tempResC_CIT1 0 ;

Code the decision whether 
to enter the site for 

Resource(i)

For example, 
VARIABLE ResB_CLT_Semaphore ' 
B_Complete.CurCount != 4' ;

Code timestamps when 
resources leave the site

An example for the timestamps, 
SAVEVALUE ResB_LastTimeLeaveSite 0 ;

Code crew lead times’ 
durations

Create PO code for  
resources

An example for CLT’s duration, 
VARIABLE ResB_CLT_Duration 
'ResB_nthBreak == 0 ? ResB_CLT1 : 0' ;

Finish creating OP code for
resources

See Section 5.3.2 (PO) for 
simulation code and explanation

See Sections 5.3.2.6 
(PO.RES.CIT) and 5.3.2.7 
(PO.RES.CLT.Duration) for 
simulation code and explanation

See Sections 5.3.2.4 and 6.5.2.4 
(PO.RES.Strength) for 
simulation code and explanation

See Sections 5.3.2.1 
(PO.RES.Semaphore) for 
simulation code and explanation

See Sections 6.5.2.6 
(PO.RES.CIT) for simulation 
code and explanation

See Sections 6.5.2.7 
(PO.RES.CLT.Duration) for 
simulation code and explanation

 

Flowchart 17 Creating PO code for resources 
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Start

Code While-Loops for the 
sequence step and 
replication loops

Create simulation code 
for Control Statements

For example,
WHILE 'nthSQS <= nSQS+1' ;
WHILE 'nthRep <= nRep ' ;

Code clear temporary 
statistical simulation data

For example,
CLEAR ;

Code activity initialization
An example for activity initialization,
INIT B_Remain 4;

Code simulation execution
For example,
SIMULATE;

Code data collection for 
resources’ idle times

An example for temporary storage for idle time,
ASSIGN svResB_Idle 
ResB_Idle.AveWait*ResB_Idle.TotCount;
An example for permanent storage for idle time 
in different sequence steps,
COLLECT bcltResB_IdleSQS$<iSQS>$ 
svResB_Idle;

Code the end of the 
replication loop

Including, bcltProjectDurationSQS$<iSQS>$, 
bcltProjectIdleTimeSQS$<iSQS>$, and 
bcltProjectCrewIdleTimeSQS$<iSQS>$, 

Code data collection for the 
project

For example,
WEND; /nthRep
ASSIGN nthRep 1;

Code the determination of 
crew lead times

Code the end of the 
sequence loop

For example,
ASSIGN nthSQS nthSQS+1;
WEND; / nthSQS

Finish creating code for
Control Statements

Add Additional Code for 
Simulation Statements

Adding Additional Code for Simulation 
Statements encoded in ChaStrobe Additional 
Code

Add Additional Code for 
Control Statements

See Section 5.3.4.1 (CS.Loops) 
for simulation code and 
explanation

See Section 5.3.4.1 (CS.Loops) 
for explanation

See Section 5.3.4.2 
(CS.ACT.INIT) for explanation

Code resource initialization
An example for activity initialization,
INIT ResB_Offsite ResB_InitNumber;

See Section 5.3.4.3 
(CS.RES.INIT) for explanation

See Section 5.3.4.4 
(CS.Simulate) for explanation

See Section 5.3.4.4 
(CS.RES.CIT.SQS) for 
simulation code and  explanation

See Section 5.3.4.4 
(CS.RES.CIT.SQS) for 
simulation code and  explanation

See Section 5.3.4.6 
(CS.RES.CLT) for simulation 
code and  explanation

See Section 9.2.3 for explanation 
and example of Additional Code 

 
Flowchart 18 Creating code for Control Statements 
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Start

Setup page size for the 
project

Add resources in 
Stroboscope GUI

Including activity resource (circulating in work 
flow sub-networks) such as rq_B, and resources 
(circulating in resource flow sub-networks) such 
as ResB

Add simulation models 
for work flow sub-

networks

Code in work flow sub-
networks

Add simulation models 
for resource flow sub-

networks

Code in resource flow 
sub-networks

Finish creating simulation 
models

Create simulation models 
and code in them

See Section 5.3.3 (CME) for 
simulation code and explanation 

See Section 5.3.3 (CME) for 
simulation code and explanation 

See Section 5.2.1 for simulation 
models and explanation 

See Section 5.2.2 for simulation 
models and explanation 

 
Flowchart 19 Creating simulation model 
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Start

Add ACT_Remain Queues 
and specify their name and 

their resource name

Add simulation models 
for work flow sub-

networks

Add ACT_Perform Combis 
and specify their names

Add ACT_Complete Queues 
and specify their name and 

their resource name

Add Links between 
ACT_Remain Queues and 

ACT_Perform Combis

Add Links between 
ACT_Perform Combis and 

ACT_Complete Queues

Finish adding 
simulation models for

 work flow sub-networks

Determine positions to 
place activities’ work flow 

sub-networks

See Section 5.2.1 for simulation 
models and explanation 

 

Flowchart 20 Adding simulation model for work flow sub-networks 
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Flowchart 21 Coding in resource flow sub-networks 

403 



Start

Add RES_Idle Queues and 
specify their name and 

their resource name

Add simulation models 
for resource flow

 sub-networks

Add RES_F Dynaforks and 
specify their names

Add RES_Offsite Queues 
and specify their name and 

their resource name

Add RES_CLT Combis 
and specify their names

Add Links between 
RES_Offsite Queues and 

RES_CLT Combis

Add Links between 
RES_CLT Combis and 
RES_Setup Normals

Add RES_Setup Normals 
and specify their names

Add Links between 
RES_Setup Normals and 

RES_Idle Queues

Add Links between 
RES_Idle Queues and 

RES_F Dynaforks

Add Links between 
RES_F Dynaforks and 
RES_Offsite Queues

Add Links between 
ACT_Perform Combis and 

RES_F Dynaforks

Add Links between 
RES_Idle Queues and 
ACT_Perform Combis

Determine positions to 
place resources’ resource 

flow sub-networks

Finish adding  simulation models 
for resource flow sub-networks

See Section 5.2.2 for simulation 
models and explanation 

 

Flowchart 22 Adding simulation model for resource flow sub-networks 
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Flowchart 23 Coding in resource flow sub-networks 
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APPENDIX D 

GRAPHICAL FORMATS FOR STATIC GRAPHS 

Appendix D Graphical Formats for Static Graphs 
  

 Appendix D presents a key to numerical indicators for graphical formats for Static 

Graphs in the ChaStrobe application. As explained in Section 8.3.2, users can create a 

production diagram using the data recorded in tempChaStrobe_StaticGraph.txt, after 

ChaStrobe schedules the project. Each line in the created production diagram in Static 

Graphs is formatted by user-specified patterns. Users first create Static Graph patterns in 

ChaStrobe’s Static Graph and Analyzer tab, as shown in Figure D.1, and then assign a 

created pattern to each sub-activity, as shown in Figure D.2. 
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Figure D.1.a Creating line patterns for Static Graphs 

 
Figure D.1.b Assigning line patterns to sub-activities 

Figure D.1 Creating and assigning line patterns to production diagrams in Static Graphs 
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To create a pattern, users must specify the following parameters in the Creating 

Patterns sheet: 

1. Pattern ID, used to assign a pattern to an activity. Users specify Pattern ID in 

Column A, as shown in Figure B.1. 

2. Line options, 0 and 1, specifying whether to draw a line or not. If this option 

is set to1, the line for the corresponding pattern will be drawn. If it is set to 0, 

the line will not be drawn. Users specify Line options in Column B. 

3. Act Name options, 0 and 1, specifying whether to label a line with its activity 

name. If this option is set to 1, the line for the corresponding pattern will be 

labeled with its activity name. If it is set to 0, the line will not be labeled. 

Users specify Act Name options in Column C. 

4. Unit Name options, 0 and 1, specifying whether to label a line for an activity 

with its unit name (e.g., ID1, House 1, or just 1). If this option is set to 1, the 

line for the corresponding pattern will be labeled with its unit name. If it is set 

to 0, the line will not be labeled. Users specify Unit Name options in Column 

D. 

5. Line Weight parameters, specifying the weight or thickness of the line. Users 

specify Line Weight parameters in Column E. 

6. L-Pattern parameters (Line Pattern), specifying line patterns, such as doted 

lines and dashed lines. Users specify Line Pattern in Column F. Examples of 

L-Patterns numerical indicators are given in Table D.1. 
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0 No Line

 
Table D.1 Line pattern ID for Static Graphs 

409 



7. L-Color parameters (Line Color), specifying line colors, such as red or green. 

Users specify Line Pattern in Column G. Examples of L-Color numerical 

indicators are given in Table D.2: 

Line Color ID Color 
0 Black 
1 White 
2 Red 
3 Bright Green 
4 Blue 
5 Yellow 
6 Pink 
7 Turquoise 
8 Dark Red 
9 Green 
10 Dark Blue 
11 Dark Yellow 
12 Violet 
13 Teal 
14 Gray-25% 

Table D.2 Line color IDs for Static Graphs  
 

8. L-Start parameters (Line Start), specifying line starts, such as arrows and 

circulars. Users specify line starts for each pattern in Column H. Examples of 

L-Color numerical indicators are given in Table D.3. 

9. L-End parameters (Line End), specifying line ends for each pattern, such as 

arrows or circulars. Users specify Line Pattern in Column I. Examples of L-

Color numerical indicators are shown in Table D.3, the same as for L-Start 

parameters. 

After patterns are specified on the Creating Patterns sheet (Figure D.1.a) in the 

Static Graph and Analyzer tab, users assign a specified pattern to activities on the 

Assigning Patterns sheet as shown in Figure D.1.b.  
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E1

C4

B4
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E3
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27

28
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30

31
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37

38

39

Line Start and 
End Pattern ID 

(at the end)

20

 
Table D.3 Line start and end pattern IDs for Static Graphs 
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