
Full-System Critical-Path Analysis and Performance
Prediction

by

Ali Ghassan Saidi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctorate of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:
Professor Trevor N. Mudge, Co-Chair
Associate Professor Steven K. Reinhardt, Co-Chair
Associate Professor Scott Mahlke
Associate Professor Dennis M. Sylvester

c© Ali Ghassan Saidi 2009
All Rights Reserved

To my family: for their continuous love and support.

ii

ACKNOWLEDGEMENTS

This dissertation marks the end of a chapter of my life. My journey through school has
been aided by many people over the years and I’m thankful for all their help and support.

First, I must thank my family. They have always encouraged me to learn and have been
supportive in every way they could be. My mother, Raghda Saidi Henthorne, my father
Ghassan Saidi, my step-dad Michael Henthorne, and my sisters, Rania Combs and Rola
Hart have continuously provided love, support, and advice. Additionally, I would like to
thank Don and Rita Myntti, who I have known since the time I was a small child, and who
have never once failed to call me on my birthday.

Next, I have to thank Karen Smid. She provided tremendious love and encouragement
while we both finished our dissertations, as well as the occasional bit of last minute editing.

My advisors, Steve Reinhardt and Trevor Mudge, along with the other Michigan faculty,
provided continuous guidance throughout the whole process. Steve is a wonderful mentor,
and one of the smartest people I know. His calm and rigorous approach to solving any
problem taught me to step back and look at the entire issue, instead of fruitlessly focusing
on the minutia. When I was particularly stuck on some issue, I could always count on
Trevor to pull some inspiration out of thin air and his meetings always broke up the day
with laughs and entertainment.

The other graduate students from Steve’s group at Michigan were also of great help to
me: Nathan Binkert, Lisa Hsu, Ron Dreslinksi, and Kevin Lim. In particular, I must thank
Nate and Lisa not only for their insight and assistance over the years, but also for being
great friends. nice

During my time in Michigan, I’ve met some other wonderful people who have become
close friends. They have provided great support and laughter that broke up the days into
more managable pieces: Ashley Bangert, Chris Kiekintveld, Chris McCleary, Ed Argalas,
Ellen Hamilton, Lee Newman, Michael Abowd, and Michael Zeidler. Lastly, Olga Ko-
rnievskaia relentlessly encouraged me to stay in shape, and Kate Cappell, Diane Bouis and
Astrid Tuin made sure that the last six months—without Karen and while writing the bulk
of my dissertation—was as painless as possible.

iii

Contents

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

List of Figures . viii

List of Tables . x

CHAPTER

1 Introduction . 1
1.1 Complex Workloads . 2
1.2 Simulation . 3
1.3 Critical Path Analysis . 4
1.4 High Speed Networks . 5
1.5 Thesis Statement . 6
1.6 Contributions . 7
1.7 Organization . 8

2 Network Background . 9
2.1 Network . 9
2.2 Network Interfaces . 11
2.3 Drivers . 13
2.4 Device . 14
2.5 IP . 14
2.6 UDP . 15
2.7 TCP . 15
2.8 Sockets . 17

2.8.1 User-to-kernel copy . 17

iv

2.9 Applications . 18
2.9.1 Micro-benchmarks . 18
2.9.2 Web server . 18

2.10 Summary . 19

3 Simulator Background and Validation . 20
3.1 Introduction . 21
3.2 The M5 Simulator . 23

3.2.1 Processor Models . 23
3.2.2 Memory and I/O System 24
3.2.3 Ethernet Interface . 24

3.3 Benchmarks . 25
3.3.1 Memory Microbenchmarks 25
3.3.2 Netperf . 26
3.3.3 SPEC WEB99 . 26

3.4 Methodology . 27
3.4.1 Metrics . 27
3.4.2 Simulated System . 28
3.4.3 Real System . 28

3.5 Comparison to M5 . 29
3.5.1 Memory Latency . 29
3.5.2 Network Benchmarks . 31

3.6 Sensitivity of Results . 34
3.6.1 Issue Window . 35
3.6.2 Issue Width . 36
3.6.3 Branch Mispredict Penalty 37
3.6.4 Acknowledging Writes 37
3.6.5 Faster Busses . 37
3.6.6 TLB Miss Penalty . 38
3.6.7 Spatial Stability . 38

3.7 Related Work . 39
3.8 Conclusion . 39

4 Creating an End-to-End Dependence Graph 41
4.1 Basic Technique . 41

4.1.1 Explicit State Machines 42
4.1.2 Implicit State Machines 43

v

4.1.3 State Machine Interactions 44
4.1.4 Critical-Path Analysis . 44

4.2 Queue-based State Machine Interactions 45
4.3 Tracking Multiple Connections 47
4.4 Refining Annotations . 48
4.5 Implementation . 49

4.5.1 Simulator . 49
4.5.2 Annotations . 50
4.5.3 Annotation Perturbation 56

4.6 Conclusion . 57

5 Locating Bottlenecks and Analyzing Data 58
5.1 Processing Data . 58

5.1.1 Time and Space Complexity 58
5.1.2 Limiting Memory Usage 59
5.1.3 Analysis Internals . 60
5.1.4 Constructing the Graph 63
5.1.5 Tracking Multiple Connections 68

5.2 Critical Path . 69
5.3 Most Critical States . 69
5.4 Resource Dependence Loops . 71
5.5 Predicting Speed-ups . 72
5.6 Connection Trace . 73
5.7 State Machine Information . 74
5.8 Queue statistics . 74
5.9 Compact Graph Output . 76

5.9.1 High-level Interaction . 76
5.9.2 Global State Machine Graph 76
5.9.3 Single State Machine Output 79

5.10 Conclusion . 79

6 Application of Analysis . 81
6.1 Simulation and Methodology . 81
6.2 Streaming Benchmark Analysis 82

6.2.1 UDP Streaming Benchmark 82
6.2.2 TCP Streaming Benchmark 86

6.3 Web Server Analysis . 90

vi

6.4 Analyzing a Copy Engine . 92
6.4.1 Copy Engine Overview 93
6.4.2 Performance Evaluation 94
6.4.3 Kernel Bug . 96

7 Related Work . 97
7.1 Critical Path Analysis . 97
7.2 Profilers . 98
7.3 Other Related Work . 99

8 Conclusion and Future work . 101
8.1 Future Work . 102

8.1.1 Automation . 102
8.1.2 Real Systems . 102
8.1.3 Different Systems . 103

Bibliography . 104

vii

List of Figures

Figure

2.1 Network stack transmit and receive paths 10

2.2 Example transmit and receive descriptor rings 11

3.1 mem lat read: Memory Latency with Stride 8 29

3.2 mem lat read: Memory Latency with Stride 64 30

3.3 mem lat read: Memory Latency with Stride 8k 31

3.4 mem lat read: Memory Latency Stability with Stride 8k 32

3.5 Absolute Bandwidth (Mbps) for benchmarks 33

3.6 Relative Bandwidth (Mbps) for benchmarks 34

3.7 Processor Utilization over Benchmarks . 35

3.8 Sensitivity of results after varying parameters 36

4.1 Conversion of a state machine . 42

4.2 Example of queue dependencies . 45

4.3 Example state machines: a) simplified IP stack state machine; b) simplified
driver state machine. 47

4.4 Example dependence graph showing the interaction of the two state ma-
chines of the previous figure. 47

5.1 Illustration of a graph construction. 59

5.2 Example of critical path analysis. 70

5.3 Example of most critical analysis. 71

5.4 Illustration of a resource dependence loop. 71

5.5 Example of resource dependence loop analysis. 72

5.6 Example of connection tracing analysis. 73

5.7 Example of state machine information. 74

5.8 Example of queue statistics output. 75

viii

5.9 Graph of state machines and queues in Linux TCP/IP stack from NIC to
application. 76

5.10 Example global state machine graph generated by the analysis program. . . 78

5.11 Example single state machine graph generated by the analysis program. . . 80

6.1 NIC Transmit State Machine – Global bottleneck graph 83

6.2 Actual bandwidth and predictions made with the TCP streaming bench-
mark beginning with configuration 1. Dotted line is bandwidth produced
by initial configuration. 87

6.3 Actual bandwidth and predictions made with the TCP streaming bench-
mark beginning with configuration 2. Dotted line is bandwidth produced
by initial configuration. 89

6.4 Actual bandwidth and predictions made with the TCP streaming bench-
mark beginning with configuration 3. Dotted line is bandwidth produced
by initial configuration. 90

6.5 Actual bandwidth and predictions for four connections on web server. . . . 91

6.6 Evaluated copy engine configurations . 94

ix

List of Tables

Table

3.1 Description of CPU Utilization Categories. 27

6.1 Most critical states Linux 2.6.13 w/netfilter 85

6.2 Next most critical states Linux 2.6.13 w/netfilter 85

x

Chapter 1

Introduction

System optimization—whether tuning an existing platform or designing a future one—
requires knowledge of the current system’s bottlenecks. Because the performance of mod-
ern networked systems is often determined by the complex interplay among application and
operating system software, network interface hardware, and network protocol behavior,
identifying the source of performance problems is a painstaking and error-prone process
[1, 2, 3]. When dealing with interacting and concurrently operating components spanning
multiple layers of software and hardware, conventional tools such as software profilers are
inadequate for pinpointing true system-level bottlenecks.

This challenge is becoming increasingly relevant for architects as computing becomes
more network-centric and as integration expands CPU design beyond microarchitecture
to a platform-level effort. Although full-system simulation is becoming more common,
understanding the contribution of hardware, operating system, and application layers to a
simulated machine’s performance is very challenging. What little comprehension can be
achieved is typically gained through tedious trial-and-error cycles of forming hypotheses
based on aggregate statistics, and then proving or disproving those hypotheses through ad-
ditional time-consuming simulations. When results do not match expectations, identifying
the root cause is extraordinarily difficult.

This thesis proposes an end-to-end critical-path analysis methodology that is capable of
identifying performance bottlenecks in networked applications across the user/kernel and
software/hardware boundaries. In doing so, I leverage the observability of a full-system
simulation environment to annotate both software and hardware components within a sys-
tem. From the annotated simulations, a complete dependence graph of component inter-
actions is constructed. By identifying the waiting states in each component, a user can
generate the end-to-end critical path from a transmitting application in one system, through
its operating system and network interface, across the network link, and back up to the

1

receiving application in another system.
Because the methodology records and analyzes the full end-to-end dependence graph,

it can be extended beyond identification of the critical path to performance prediction. By
instructing my tool to reduce or eliminate the latencies of certain edges while processing
the dependence graph, users can generate a predicted dependence graph with a new critical
path length; the ratio of the original critical path length to this new one accurately predicts
the system-level speedup achievable by optimizing a particular component.

This prediction is accurate even if the critical path changes qualitatively. By reduc-
ing delays on the original critical path until a new critical path emerges, users can pre-
dict (1) how much a particular component’s performance must be improved before it is
no longer the bottleneck; (2) what the new bottleneck will be after that optimization; and
(3) how much speedup can be achieved before that new bottleneck is reached. This ap-
proach can be applied iteratively: Once this secondary critical path is exposed, latencies
along that path may be artificially reduced until the tertiary critical path appears, and its
length can be used to make further quantitative predictions. Thus, after a single simula-
tion run, my tool can—in minutes—identify the end-to-end performance bottleneck, and
in successive runs, predict the quantitative impact of removing that bottleneck and expose
the subsequent bottleneck. In contrast, even with a fast and flexible simulation environ-
ment, each step of this process requires hours or even days, starting with tedious manual
interpretation of statistics to generate a hypothesis about the bottleneck, possibly days of
development to prototype an optimization that addresses that bottleneck, and hours of sim-
ulation to measure the impact of that optimization—and possibly further iterations on the
same bottleneck if the initial hypothesis was incorrect.

This chapter discusses why these workloads are important but difficult to analyze, and
what motivatesi my goal to provide better tools to analyze these systems.

1.1 Complex Workloads

Many interesting workloads today are not limited by the CPU, but rather by the interac-
tions among the CPU, memory system, I/O devices, and the complex software that ties all
the components together. These non-CPU bound workloads are commonplace, especially
in the server domain. Some examples of these workloads include web serving, file serving,
and online transaction processing (OLTP). They stress a wide range of hardware, including
disks, disk controllers, network interfaces, memory, and caches. Additionally, these work-
loads tend to use many kernel services stressing multiple layers of software. This change
is evident in the benchmarking suites in use on new hardware. The community has shifted

2

from using only CPU performance tests such as SPEC CPU [4] to more complex workloads
testing OLTP [5], web serving [6], and file serving.

Because of the large number of interacting layers—both hardware and software—
present in these systems, locating performance bottlenecks is difficult with conventional
tools. The various levels of software and hardware overlap operations to operate as effi-
ciently as possible, thus a simple snapshot of the current system is insufficient. While all
the layers of software and hardware may be processing units of data, it may not be clear
which is causing the delay at a much higher level.

For example, consider the issues Kegel [3] recounts in improving the performance of
a web server benchmark. The issues described span all layers of the system, and include:
the web server itself (Apache), the system call interface (poll() and select()), lock-
ing present in a large data copy loop, the network stack, the user-configurable parameters
within the network stack, the network device driver, the disk scheduler, the process sched-
uler, and even the client machine making the request. This performance debugging took
years of effort by hundreds of people around the world. The experience described by Kegel
is not unique. Cantrill [1] relates similar experiences at Sun Microsystems, noting that
while the problems tend to originate at high-levels of abstraction, few tools exist to analyze
the system at those levels, so simple tools like CPU utilization are typically substituted.
While these methods may eventually lead to the original cause, they don’t do so quickly.

1.2 Simulation

In this work I turn to simulation to assist in locating performance issues as simulation
provides complete observability into the system without perturbation. Simulation allows
researchers to assess an idea without the complexity or cost of building real hardware. The
researcher is normally guided through his intuition or other ad hoc means to improve a
component that is assumed to be under-performing in relation to the rest of the system.
This hypothesis is then tested in simulation and the results guide future experiments. When
applied to a complex system involving multiple layers of hardware and software, two prob-
lems arise: (1) simulation time; and (2) final cause determination.

In any one of these complex systems there are hundreds if not thousands of parameters
that can be adjusted. The quantity of parameters can present a large problem because
of the inherent slowdown in simulation. It is simply too time consuming to explore the
entire available state space of all the parameters. A system that contains only ten binary
parameters results in 1024 possible combinations of those parameters. Normally some
pruning is done to remove configurations that are uninteresting, however a large number

3

of interesting configurations can still exist. This coupled with the extreme slowdown of
simulation—resulting in at least a 1000x slowdown—means that a immense amount of
processing power and time are required to explore the entire state space.

The second problem with this state space exploration approach is that a result can be
produced by the simulator that identifies some particular parameter as improving perfor-
mance. This parameter in many cases is a proxy for a different problem that must be dis-
covered. For example, consider an experiment in which the researcher halves the latency
of main memory. In most applications some performance increase will occur, however the
reason for the increase is still unclear. Is the improved performance because the I/O de-
vices could write to memory more quickly? because cache misses can be resolved more
quickly? because of something else entirely? Halving the latency to memory is not a re-
alistic solution, however presenting the researcher with the actual root cause would allow
improvement to be focused on the actual problem at hand, as opposed to a proxy of the real
problem.

1.3 Critical Path Analysis

Critical path analysis (CPA) [7] or the critical path method (CPM) is a technique for
scheduling a set of activities. It has been used for a variety of tasks from the original goal
of project planning to instruction scheduling in a micro-processor. Generally a dependence
graph of all the activities is created in which edges describe the amount of time required to
do an activity and the graph’s structure reflects dependencies inherent in the process.

For example, consider the task of making a bird house. The activities are: get wood,
get paint, cut wood, build bird house, and paint. The painting is dependent on having a bird
house built and having paint. Building a birdhouse is dependent on having wood cut to do
so, which is in turn dependent on having wood. Having paint isn’t dependent on anything
so it can happen right away, although it may not be advantageous to get it immediately.
In fact, as long as paint is available before the bird house is built, the bird house will be
completed in the same amount of time.

In this work the activities are normally some high-level task, such as the placement
of a packet in a queue or the calculation of a checksum for a packet. The time for an
activity to occur isn’t estimated for the purposes of planning, but it instead directly observed
from the system in question. The observed data is then used for a posteriori analysis. In
particular, the observed data can pinpoint which of the many concurrent activities is really
the bottleneck and therefore what activity requires improvement.

4

1.4 High Speed Networks

Locating performance problems is particularly difficult in high-bandwidth network pro-
cessing [2], in which there is no single bottleneck that can be easily addressed and the
problems are not fully understood. Researchers have taken completely different paths [8,
9, 10, 11] in attempting to improve performance without fully understanding the causes of
the problem. Performance losses come from the combination of numerous overheads in
interactions among the network protocol, software running on the CPU, the memory sys-
tem, and the network interface controller [12]. For example, consider the case in which the
end-to-end bandwidth between some sender and receiver is lower than expected. There are
a number of explanations:

• Transmit data is queued in the network interface card (NIC)’s DMA descriptor ring,
but the NIC DMA controller cannot process the descriptors quickly enough. Perhaps
the NIC cannot fetch the descriptors fast enough or the I/O bandwidth is insufficient
to fetch descriptors and packets at the rate the OS is making them available.

• There is data ready to be transmitted in the kernel, but the device driver cannot fill
the NIC’s DMA descriptors from the kernel I/O buffers quickly enough. Perhaps the
number of allocated buffers is insufficient, or the overhead of reclaiming processed
buffers is too high.

• The application has requested a transmission, but the kernel’s TCP/IP protocol stack
has not completed processing the data so the device driver has not received it.

• There is data ready to be transmitted in the kernel, but the TCP protocol is delaying
transmission because the receiver has not advertised sufficient buffer space to accept
it. In this case, the receiving system is the bottleneck; a similar exercise must be
repeated on that system to isolate the bottleneck to the NIC, device driver, kernel,
application, or other source.

• There is data ready to be transmitted in the kernel, but the TCP protocol is delay-
ing transmission because the number of outstanding packets has reached the TCP
congestion window size.

• The application has not requested a transmission via write() or send(). In this
case, the application is the bottleneck.

Note that these reasons span from hardware through kernel code up to the application
on both the sending and receiving systems. Furthermore, because the transmission process

5

is pipelined, simply observing snapshots of system state is insufficient: at any given point
in time, the application, kernel stack, device driver, and NIC may all be actively operat-
ing on different data units without any obvious indication of which one is the bottleneck.
Finally, each of the reasons listed above is only an intermediate determination, not a fi-
nal cause. For example, if the application or protocol processing is the bottleneck, further
analysis is required to determine which part of the code is problematic, whether the lack
of performance is due to limitations in instruction execution or memory bandwidth. I have
found that the complexity of this problem generally stymies attempts to tease out bottle-
necks using traditional means such as ad hoc analysis of statistics or iterative testing of
hypotheses.

1.5 Thesis Statement

The thesis of this work is that critical-path analysis can be applied to complex systems
composed of multiple layers of hardware and software such the interacting state machines
that govern the systems behavior can be converted into a dependence graph. That depen-
dence graph can be used to locate performance bottlenecks and predict performance when
those bottlenecks are removed.

As architects look beyond the CPU to more integrated platform designs, it is difficult
for them to locate bottlenecks in proposed hardware before the systems are built. In this
environment, real hardware is unavailable, and simulation is the primary performance eval-
uation tool. However, simulation is slow and the state space the architects are operating in
is extraordinarily large. When results do not match expectations, locating the bottleneck
component is difficult. This thesis provides a technique to apply critical-path analysis to all
the layers within a simulated system. A prerequisite for critical-path analysis is an event
dependence graph representing timing constraints. Unfortunately, since there are many in-
teracting components, the task of developing a global dependence graph through ad hoc
familiarity with the subject matter rapidly becomes intractable. First, a method for creating
such a dependence graph is presented that converts systems of interacting state machines
(both explicit state machines in hardware and the state machines that implicitly govern soft-
ware behavior) into a global dependence graph suitable for performance analysis, including
bottleneck identification. This conversion is done with modest effort and without a deep
understanding of the components involved. Next, the dependence graph must be analyzed
to distill useful information from the many million nodes and edges it contains. Several
algorithms are presented that provide condensed information about bottlenecks. Addition-
ally, a mechanism to locate resource constraints is explored. Because the dependence graph

6

contains all the information about interactions in the system, it can be used to predict per-
formance when the current and subsequent bottlenecks are eliminated. Finally, I show that
multiple bottlenecks can be found using my technique and that the performance predictions
provided are extremely accurate even when the predicted performance gain is substantial.

1.6 Contributions

This thesis makes the following contributions:

• I describe an automated technique for converting systems of multiple interacting state
machines into a global dependence graph suitable for performance analysis, includ-
ing bottleneck identification.

• I show that the annotations necessary for this analysis can be developed with mod-
est effort and without detailed knowledge of the particular implementation of the
components involved; in particular:

1. state machines implicit in complex software systems, such as the Linux kernel’s
UDP, TCP, and IP stacks, can be traced with limited manual effort by relying
primarily on control-flow tracing and symbol table lookup

2. the necessary inter-state-machine dependence annotations can be uncovered us-
ing iterative refinement

• I demonstrate an implementation of my technique that uses a full-system multi-
machine simulator to identify bottlenecks across hardware/software boundaries.

• My technique is able to deal with complex protocols, multiple connections, and mul-
tiple processors through its explicit modeling of shared resources such as queues.

• I identify critical-path “loops” as the characteristic signature of a finite-resource bot-
tleneck, and automate the detection of these loops.

• I demonstrate that my critical-path methodology is capable of not only identifying
multiple bottlenecks from a single run, but accurately predicting the quantitative
benefit of removing those bottlenecks. This methodology eliminates the need to
use statistics to form hypotheses about system bottlenecks, and enables designers to
predict in minutes results that may take hours or days to prototype and simulate.

7

1.7 Organization

The remainder of this thesis is organized as follows. First, some background infor-
mation is presented about networking in Chapter 2 and simulation in Chapter 3. After this
background information, related work is discussed in Chapter 7. The technique that enables
the creation of an end-to-end dependence graph for complex systems is explored in Chap-
ter 4. With a method to create an end-to-end dependence graph available, the methodology
to analyze this graph and produce useful results is presented in Chapter 5. The technique
and analysis is applied to several applications, protocols, and systems in Chapter 6. Finally,
I conclude and present future work in Chapter 8.

8

Chapter 2

Network Background

This chapter briefly describes the software and hardware that interact to enable appli-
cations to send and receive packets in a network. Networking is becoming an increasingly
important part of computing. As mentioned in the introduction, because of the large num-
ber of layers that interact, high-speed networking is difficult to analyze. This chapter takes
a bottom-up view, starting with the lowest level and describes the abstractions that are built
upon each layer, eventually enabling applications to reliably transmit data from one ma-
chine to another. The descriptions here are slightly biased toward the Linux network stack,
although most of the discussion is generally applicable. A more detailed description of a
TCP/IP implementation can be found in [13]. The general unidirectional flow of packets
through the networking stack and devices is illustrated in Figure 2.1. However, packets can,
and frequently are, sent concurrently from both directions. Each layer is composed of one
or more state machines—either hardware or software—that interoperate transfer packets
from the sender to the recipient.

2.1 Network

A network can be a simple point-to-point link or a complex series of routers and links
as exists on the Internet. In normal operations the packet is delivered some time after it
is sent. The link-layer protocol used to exchange packets govern what guarantees the net-
work makes. The most popular protocol, Ethernet, does not guarantee in-order delivery or
delivery at all. Packets can be discarded in the network due to congestion or failure and
out-of-order packets are possible because of different path lengths and routers automati-
cally adapting to congestion on their links. Other protocols do provide stronger guarantees,
but because of their cost, their cost their adoption is extremely limited.

9

Application

Socket Interface

Protocol (TCP/UDP)

IP

Device

Driver

NIC

Wire

Application

Socket Interface

Protocol (TCP/UDP)

IP

Device

Driver

NIC

1

2

3

4

5

6

7

7

1

6

5

4

3

2

S
o
f
t
w
a
r
e

H
a
r
d
W
a
r
e

Figure 2.1: Network stack transmit and receive paths

10

Packet Location Size Flags

Packet Location Size Flags

Packet Location Size Flags

Packet Location Size Flags

Packet Location Size Flags

Last used descriptor

Last packet transmitted

(a) Transmit descriptor ring

Packet Location Size Flags

Packet Location Size Flags

Packet Location Size Flags

Packet Location Size Flags

Packet Location Size Flags

Last available descriptor

Last packet received

(b) Receive descriptor ring

Figure 2.2: Example transmit and receive descriptor rings

2.2 Network Interfaces

Broadly speaking, a Network Interface Controller (NIC) is a physical device that pro-
vides connectivity between the network and CPU. In its simplest form, a NIC receives a
packet from a CPU and transmits the entire packet to the network adhering to the physical
link transmission protocol which, in most cases, is Ethernet. Similarly in the reverse, a NIC
can receive a packet from the network link, notify the CPU of is existence, and provide a
means for the CPU to retrieve the packet.

Simple NICs operating on low bandwidth links can be interfaced with purely through
uncached I/O operations, also known as Programed I/O (PIO). However, as the desired
bandwidth and number of CPU clock cycles to access an uncachable memory location
increases, this method becomes untenable. Most high performance NICs transfer data
through one or more DMA descriptor rings for both the transmit and receive sides of the
NIC.

After the NIC has received a packet from the CPU it is placed in an outbound FIFO
waiting for the media access controller (MAC) and physical interface (PHY) to send the
packet. This buffering exists because the speed at which the NIC receives a packet and the
speed at which it must signal a packet onto the network may be different. When a NIC
receives a packet from the network it is placed in the inbound FIFO waiting for the NIC to
copy it to the appropriate location in memory.

These DMA descriptor rings are located in memory and contain an address of a packet
to send, the size of the packet, and some flags that describe precisely what is to be done
with the packet. The rings are either a circular buffer or a chain of next pointers (normally
wrapping around and creating a ring). The device and driver maintain pointers to entries in
the ring and communicate through it.

For example, take the transmit descriptor ring illustrated in figure 2.2(a). In this case,

11

the NIC maintains the last packet transmitted pointer, while the CPU maintains the last

used descriptor pointer. These pointers can never cross, however both can wrap around the
ring. When the driver would like to transmit a packet it places the packet location, size,
and flags in the descriptor succeeding the last used descriptor and updates the pointer. The
NIC can then transmit all the packets between the last packet transmitted and the last used

descriptor. The driver cannot instruct the device to transmit an additional packet if the last

used descriptor pointer is immediately succeeded by the last packet transmitted pointer. In
that case the driver must wait for the NIC to send some packets to free up some space in
the descriptor ring.

The receive descriptor ring is similar to the transmit side and is illustrated in fig-
ure 2.2(b). However, in this case the driver makes many descriptors available for the NIC
to populate with packets as they are received from the network. Each descriptor contains
an address of an available buffer and the maximum size that buffer can hold. The NIC
writes the packet to the location specified by the descriptor and then updates the last packet

received pointer. If the descriptor ring is full, the last packet received and last available

descriptor point to the same location and the NIC must wait for the driver to provide it with
more descriptors. If insufficient buffering exists on the NIC, packets can be lost when no
descriptors are available.

The device can either signal to the device driver when action is required (see next sec-
tion), or the device driver can poll the device at some regular interval. Both polling and
interrupts have drawbacks. In the case of polling, the CPU is interrupted at a fixed interval
of time if there is work to be done or not. If work needs to be done then the polling mech-
anism limits the interrupts the CPU experiences to a fixed number over a certain amount
of time; however, when there is no work to be done, the polling continues possibly inter-
rupting an otherwise busy or idle CPU. On the other hand, interrupting every time the NIC
requires some sort of attention is not realistic either. If a 10 Gbps NIC interrupted the CPU
every time it received a packet the interrupt rate could exceed 20M interrupts/sec, which
would not leave much time for the CPU to handle other tasks. As such, most NICs include
some sort of interrupt moderation scheme. These schemes either limit the interrupt rate to
a certain number per second (e.g., 8000), or wait some amount of time after an interrupt
would be generated to coalesce several interrupts into one (thus limiting the rate). Finally,
a hybrid approach is possible that interrupts during a period of NIC idleness and switches
to a polling mode when the NIC is busy.

There are several NIC optimizations that remove some processing and bandwidth re-
quirements from the host CPU. Most high-performance NICs have support for checksum
offloading. Checksum offloading calculates and inserts a checksum into a packet. This is

12

reasonably simple for the NIC to do, since it is going to transmit every byte in the packet,
however for a CPU to calculate the checksum it must sum every word in the packet. An-
other optimization would allow a scatter-gather DMA to assemble a packet. In this case,
various portions of a complete packet can be in different memory locations. The NIC can
fuse together the data provided by multiple descriptors and send them as one unit. This is
especially useful when different portions of the data come from different layers of software
(e.g. the application and protocol layers) and prevents additional copying to ensure that all
packets occupy continuous bytes in memory.

2.3 Drivers

The device driver is piece of code that manages the device presenting it with packets that
are ready to be transmitted. The particular interface to do this is device specific, however
the majority of NICs employ a DMA descriptor scheme similar to the one outlined in the
previous section. The driver’s responsibility is to manage the descriptor rings.

On the transmit side, the driver places packets into free entries in the ring (or allocates
a new descriptor and links it into the ring with the next pointer). The driver inserts the
address of the packet (or a portion of the packet), size, and any flags. These flags include
an end-of-packet marker and various other flags normally dealing with the generation of
checksums and if interrupts should be generated when the transmission of this packet is
complete. Upon inserting packets into the ring, the device driver updates the ring pointer
which informs the NIC that it has more work to do. The NIC moves the pointer it manages
when it completes the transmission of the packet.

The device interrupts the CPU (or waits for the polling interval) when it needs attention.
For the transmission side of the NIC, an interrupt generally indicates the transmission of
packets, and the driver can then clean up the descriptors associated with those packets.
This includes resetting the descriptor for future use, and signaling that the NIC is done
transferring the packet to the rest of the kernel. Depending on the protocol being used, this
may or may not free the data associated with the packet (if the protocol is reliable it may
have to be resent).

On the receive side of the NIC, the driver performs actions similar to those on the
transmit side. When the NIC has DMAed a packet to memory the driver hands the packet
to the network stack for processing. The driver normally checks the descriptor to verify
that the network checksum was correct and may do other things such as copying the packet
header for small packets so the network protocol headers can be accessed quickly. The
used descriptor is cleaned by allocating a new buffer to store a new packet and populating

13

the descriptor with the new buffer’s address and size along with clearing various status bits.

2.4 Device

The device layer exists as an indirection layer as well as buffering for both the receive
and transmit sides of the driver. This layer unifies the interface of the driver and the pro-
tocol. On the transmit side, if the driver is currently unable to accept a packet because the
device is busy, doesn’t have enough free descriptors, or is otherwise stopped, the packet is
buffered in the device layer. When the driver signals that it is again able to accept packets,
packets queued in the device layer are handed to the driver. Similarly, on the receive side
the device layer queues received packets until they are processed by the network stack.
This queueing allows the device driver to run for a short time and the scheduler to pick an
appropriate time for the network stack to process the incoming packets.

2.5 IP

The next protocol in the stack is almost always the Internet Protocol(IP) [14]. The IP
layer consists of a header that is attached to the packet that contains the source and des-
tination address, the encapsulated protocol, a checksum, and fragmentation information.
The source and destination specify the end points of the connection, and are used to cal-
culate the next hop along the route from source to destination. This next hop may be the
destination itself, or an intermediate router to the destination. The encapsulated protocol
identifies which protocol is being sent an IP packet; this is normally TCP or UDP, but other
types are also utilized. The IP header contains a checksum of the header to verify that the
header arrived correctly. This checksum is frequently calculated and inserted by the NIC.
If the packet that is being transmitted is larger than the network’s maximum transmission
unit (MTU), the IP layer fragments the packet into multiple pieces. This fragmentation is
reasonably inexpensive to do; however, it tends to be much more costly to undo. Protocols
such as TCP that guarantee delivery are rarely fragmented because of the cost of reassem-
bly later. Finally, the IP layer looks up the destination address in a list of devices connected
to the system and sends the packet to the appropriate device.

When the IP layer receives a packet it verifies that the checksum is correct. Normally,
this verification is done by the NIC, but if the NIC was unable to verify the checksum, it
would be calculated here. The IP layer then does any reassembly that is required, deter-
mines what protocol the IP header encapsulates, and presents the packet to that layer for

14

further processing.

2.6 UDP

The User Datagram Protocol (UDP) [15] provides very few transport guarantees. UDP
gives an application access to the IP protocol, and provides for data multiplexing by adding
source and destination port numbers, and some level of integrity checking with a checksum
that includes the data. However, the protocol does not provide for guaranteed in-order
delivery and thus leaves end-to-end reliability to the application. This is desirable in some
cases, either because the reliability and ordering constrains need to be handled in a special
way, or the real-time nature of the data means that any re-transmission or lost or re-ordered
packets would be stale. For example, consider the live broadcast of video on the Internet. If
one packet is missing in the stream, by the time that missing packet is noticed, re-requested,
and received, it is extremely likely that the viewer will have already noticed a disruption
and continued watching. The viewer would be disrupted more by the video stopping to
wait for the packet containing the missing video frame to arrive.

Since the protocol provides such minimal guarantees, the protocol does very little and
just acts as a bridge between the IP layer and the sockets layer.

2.7 TCP

The Transmission Control Protocol (TCP) [16] provides, like UDP, for data-multiplexing
via port numbers and checksums the data payload to provide some integrity guarantees.
However, unlike UDP, TCP provides for reliable in-order delivery. It is a significantly
more complex protocol that has to deal with lossy links, congestion, and re-ordered pack-
ets. When TCP packets are received, the corresponding bytes are acknowledged in a packet
flowing in the opposite direction. This packet may contain data flowing in the opposite di-
rection as well, or may simply be an acknowledgment. TCP maintains several sliding
windows to ensure adequate buffering is available and received bytes are actively acknowl-
edged by the receiving side. It contains a buffer notification scheme to limit the data the
sender can transmit to the available buffering on the receiver and contains a congestion
avoidance algorithm to limit the rate at which data can be transmitted.

The TCP receiver’s sliding window advertises to the sender how much space is cur-
rently available for buffering on the receiver. The protocol forbids the sender from having
more outstanding unacknowledged bytes in the network than the receive window adver-

15

tises. The sender itself also has a window that limits the amount of outstanding data in the
network. Since TCP is a reliable protocol, each transmitted byte must be buffered locally
in case a retransmission is required. Since this buffering requires kernel memory, it cannot
grow without bounds. Thus, each connection has a limited amount of memory for local
buffering. The amount of required buffering is equal to the bandwidth-delay product. The
desired bandwidth times the round-trip delay is the required size for the sender window
and the receiver window. The TCP protocol also contains a congestion window that also
limits the sender. This window initially limits the sender through the slow-start algorithm
that seeks to match the rate that packets are injected into the network with the rate that
responses are received. This limits congestion on the network by not completely saturating
a slow link on the path from source to destination. If the receive, sending, and congestion
windows are all very large, and the path from source to destination traverses a large net-
work, the network may discard some packets. When this occurs the congestion window
size is reduced dramatically to slow down the sender and allow the congestion to pass.
Normally, the congestion window is then increased at a slower rate. There are additional
requirements that may cause the TCP layer to delay sending out some available data. One
is TCP attempting to batch together several smaller transmissions into one larger packet
(Nagle’s algorithm) [17].

When all the window and congestion algorithm requirements are met, a packet has a
TCP header applied and is then sent to the IP layer for continued processing. Just like in the
IP header, the TCP header contains a checksum that can be expensive to compute. In many
cases the NIC can insert this checksum, so the operating system need not be burdened with
this calculation.

When a packet is received by the TCP layer a variety of checks must be completed.
The TCP receive code verifies that the packets were received in-order; if a segment is
not in the correct order it is queued separately waiting for the intervening packets. If the
packets are received in order without any special flags or options then the packets can
be handled on a fast path as first noted by Van Jacobson [18]. For every two packets
that are received normally an acknowledgment is generated. The first packet causes a
timer to begin to count down, and if another packet isn’t received then the timer fires and
generates an acknowledgment. If the timer is already running, the timer is canceled and an
acknowledgment is sent out immediately.

16

2.8 Sockets

The socket buffer level is an intermediate level of code that seeks to unify multiple pos-
sible transfer methods behind a common interface. This interface can be accessed through
the send() and recv() system calls or through normally read() and write() sys-
tem calls. Socket options can choose between blocking and non-blocking versions of these
calls. The blocking versions wait until the requested action has occurred, while the non-
blocking ones return immediately and leave the application to re-request the action. For
example, in the case of send() or write(), if the sender window is full, the system call
will normally block until enough space is available in the window before returning to the
application. In the case of a non-blocking call, the call will return immediately if it will
block with an error status. The application will need to try to send the data again later.
Once the system call returns to the application, the buffer that was given to the application
is again owned by the application, thus all the data must have been copied out of it prior
to the system call return. Similarly, when read() or recv() are called the system call
will block if no data is available in the socket; if data is available then it will be copied into
the user buffer and returned. Just like the transmission, if the call is non-blocking then the
system call will return an error code if no data was available in the socket.

2.8.1 User-to-kernel copy

The copies to or from user space are very expensive operations. User-to-kernel copies
can be cache hits since the application normally just prepared data to send. However,
kernel-to-user copies are normally cache misses. When the NIC DMAs bytes to memory
those blocks in the cache are invalidated. This forces them to be a miss (unless DMAs
are injected into the cache via some mechanism). With many of these copies exceeding
1KiB and sometimes being as large as 64KiB, the time to copy 64KiB is rather extreme
as it results in many cache misses. Furthermore, since the 64KiB normally consists of
many smaller packets, prefetching does not help as much as it potentially could. Some
optimizations are done for the copy in the TCP fast path case, if an application is blocked
waiting for data the data can be copied immediately to the user buffer rather than first being
enqueued in the socket layer.

17

2.9 Applications

The transmission or receipt of some data begins at the application level. Here the ap-
plication must prepare the data it wishes to send and then inform the kernel about its intent
and the desired destination. It does this with a system call. This is conceptually similar to a
function call, however instead of calling more application code, code inside the kernel with
a higher privilege level is executed to process the request. If the system call blocks, the
application is de-scheduled and will continue re-scheduled in the future when the system
call can be completely satisfied.

While it is possible to be more efficient with non-blocking I/O calls, many applications
use blocking I/O because of the added complexity the non-blocking system calls entail.
Many applications use additional threads that block, as opposed to a single thread that does
not.

2.9.1 Micro-benchmarks

Network streaming micro-benchmarks test the throughput available from one applica-
tion to another (normally across multiple systems). They are rather simple and seek to
transmit packets as fast as possible on one end, while receiving them as quickly as pos-
sible on the other end. They normally consist of a single stream, and thus are generally
limited to a single CPU. Since the application does nothing but transmit or receive data,
micro-benchmarks generally use blocking I/O calls.

2.9.2 Web server

A web server is a large application that serves web pages to numerous clients simulta-
neously. The architecture of the web server varies, with some using a single (or extremely
small number) of processes using non-blocking I/O [19], while others may use a multitude
of processes and/or threads coupled with blocking I/O [20]. A web server can serve a com-
bination of static and dynamic content. The static content is pre-generated and just needs
to be sent to the requester. Dynamic content needs to be generated per user and can vary
from minimal processing of a template, to complete data generation. The bulk of the data
transmitted by a web server generally is static content.

Sendfile

Normally, when an application would like to transmit some data, it must read or gen-
erate that data into one of its buffers before transmitting it. In the case of a web server

18

this activity can be very costly. The data must first be copied from the kernel’s buffer
cache (where files read off disk are cached for multiple accesses) to the user application
and then again from the user application to the kernel for transmission. This action con-
tains two copies, doubling one of the most time-consuming parts of data transmission. The
sendfile() system call allows for an application to bypass the two copies by instruct-
ing the kernel to send (part of) a file directly to the desired recipient. This replaces two
copies with zero, since the buffer cache will keep a copy of the file to be transmitted until
the transmission is acknowledged. The web server still needs copies for HTTP headers and
dynamic content; however, with sendfile(), sending static content is much cheaper.

2.10 Summary

This chapter has illustrated some of the many layers, spanning both the hardware/software
and user/kernel boundaries, that interact in network workloads. Each new layer builds on
the abstractions presented by the previous layer to enable greater functionality, however as
the functionality increases the difficult in locating problems increases as well. Understand-
ing how one high level event effects the system as a whole is a difficult and error prone
task.

19

Chapter 3

Simulator Background and Validation

There are two reasons that simulation is used in this work. First, it allows ideas to be
analyzed before hardware for them is built. This is particularly useful as integration pushes
CPU design from the microarchitecture into a system-level design. Second, simulation
provides observability into the system without perturbation. For the results of the analysis
performed to be useful, performance accuracy is a critical, yet it is often a neglected aspect
of architectural performance simulators. One approach to evaluating performance accu-
racy is to attempt to reproduce observed performance results from a real machine. In this
chapter, I will model the performance of a Compaq Alpha XP1000 workstation using the
M5 full-system simulator version 1.0. (Since this project was completed, numerous new
versions of the simulator have been released). There are two novel aspects to this work:
a) complex TCP/IP networking workloads are simulated and network bandwidth is used as
the primary performance metric; b) performance accuracy is achieved without extremely
precise modeling of the reference hardware. Unlike conventional CPU-intensive applica-
tions, these networking workloads spend most of their time in the operating system kernel
and include significant interactions with platform hardware such as the interrupt controller
and network interface device. Instead of exactly modeling the hardware of interest, simple
generic component models are used and tuned to achieve the appropriate bandwidth and
latencies.

Overall, a high level of accuracy was achieved even with M5’s relatively imprecise
models, matching the bandwidth of the real system within 11% both in absolute terms
and comparing the relative performance of a 500MHz system against the performance of a
667MHz system. Random delays were injected into the ethernet and memory system and
resulted in very little spatial variability. Additionally, I performed a sensitivity study on the
impact of incorrectly modeling various architectural parameters. I find the change tends to
be minor, affecting the relative performance between the two systems by less than 10%.

20

However, it is interesting to note that normally neglected parameters such as the TLB miss
trap cost tend to affect the results as much as parameters that are often considered more
important such as the instruction window size.

3.1 Introduction

The computer architecture community makes wide use of simulation to evaluate new
ideas. Simulation allows ideas to be tested in a fraction of the time and without the cost
and risk associated with building a physical implementation. However, because of the
slowdown inherent to simulation, only a small amount of time can be simulated in de-
tail. To provide meaningful results, execution-driven architectural simulators must both
be functionally correct and model performance accurately. Functional correctness, though
often challenging to achieve, is typically straightforward to test. In many cases, a lack of
functional correctness has catastrophic consequences that cannot be ignored. Performance
accuracy, on the other hand, is much harder to verify and much easier to neglect. As a
result, it generally gets short shrift from the research community. This situation is ironic:
Given that the primary output of these simulators is performance data rather than simulated
program output, performance accuracy is at least as important as functional correctness, if
not more so.

One of the key obstacles to validating performance accuracy is that accuracy measure-
ment requires a reference implementation with which the simulator’s performance results
can be compared. Because the primary purpose of simulation is to model designs that have
not been (and may never be) implemented, this reference usually does not exist. Some
of the few simulator validation studies in the literature came from situations in which the
simulator was used in the design of a system that was afterwards implemented in hardware,
at which point the designers could go back and retroactively measure the accuracy of their
simulators [21, 22]. While valuable for the insights provided, these studies do not provide
validation before design decisions are made, when it is needed most.

Another approach to performance validation is to configure a parameterizable simulator
to model an existing system and evaluate its accuracy in doing so [23, 24]. Although this
process does not fully validate the simulator’s accuracy in modeling all the various config-
urations of interest, it identifies common-mode errors and provides a much higher degree
of confidence than having no validation whatsoever. Unfortunately, modern computer sys-
tems are extremely complex, and modeling the myriad subtleties of a particular hardware
implementation is a painstaking effort. Capturing these subtleties may required correlation
of the simulator’s absolute performance with that of the actual reference hardware. How-

21

ever, to the extent that these details are orthogonal to the architectural features under study,
more approximate models would suffice to provide accurate relative performance measure-
ments. Developing performance models that incorporate numerous potentially irrelevant
details may not be the most productive use of a researcher’s time.

The difficulty of performance validation increases as researchers attempt to investigate
more complex applications. For example, Desikan et al. [24] were able to model the per-
formance of CPU-bound microbenchmarks on an Alpha 21264 with an accuracy of 2%,
but complexities in the memory system (including the impact of virtual-to-physical page
mappings and refresh timing) caused their modeling error to average 18% on the SPEC
CPU2000 macrobenchmarks.

This chapter describes my experience in validating the performance accuracy of the M5
full-system simulator for TCP/IP-based network-intensive workloads. My efforts differ
from previous work in this area in two key aspects. First, complex workloads that are
both OS- and I/O-intensive are used. In contrast, earlier simulation validation studies used
application-only simulation [23, 24] or used workloads that did not stress the OS or perform
significant I/O [21, 22]. Second, while the configuration of the M5 simulator is adjusted
to model the reference machine (a Compaq Alpha XP1000), I do not strive to model that
system precisely. One of my goals is to determine how accurately I can model the overall
behavior of a complex system using appropriately tuned but relatively generic component
models. Avoiding irrelevant modeling details both saves time and increases confidence
that the set of model parameters exposed in M5 captures the most important behavioral
characteristics.

Two Alpha 21264-based Compaq XP1000 systems were used as reference platforms,
with CPUs running at 500 and 667 MHz. The performance of the M5 simulator was com-
pared to the two real systems to assess both the absolute and relative performance accuracy
of the simulator, using network bandwidth as the primary metric. After correcting several
inaccuracies in the model, I narrowed the discrepancy between it and the actual hardware
to less than 11%. I also evaluated simulations on their ability to model the relative time
spent in different portions of the software (application, protocol stack, device driver, etc.).
I found that the simulated and actual CPU utilization numbers are strongly correlated.

In addition to the validation, a sensitivity analysis was performed on the modified sim-
ulator to determine which parameters have the greatest impact on simulated system be-
havior. In doing so, I evaluated the spatial stability of these workloads and found that
parameter changes affect the achieved bandwidth by an order of magnitude that is greater
than inserting randomness into the memory or ethernet latencies. Identifying components
and parameters that do not contribute significantly to overall accuracy is important, as the

22

architecture community can save development time by not writing or validating detailed
models for these components, and can save simulation time by not executing those detailed
models. I found that incorrectly modeling a single parameter does not greatly affect the
achieved bandwidth. However, some often neglected parameters such as the TLB miss trap
cost are as important as parameters that are normally considered architecturally important.

3.2 The M5 Simulator

The primary goal of the M5 simulator [25] is to enable research in end-system architec-
tures for high-bandwidth TCP/IP networking. TCP/IP network protocol and device inter-
face code resides in the operating system kernel, so TCP-intensive workloads spend much
of their time there. As a result, full-system simulation is a necessity. This research requires
additional capabilities beyond previously existing full-system simulators [26, 27, 28], such
as a detailed and accurate model of the I/O subsystem, including the network interface
controller (NIC), and the ability to simulate multiple networked systems in a controlled
and timing-accurate fashion.

A key goal of M5 is modularity. All simulated components are encapsulated as C++
objects with common interfaces for instantiation, configuration, and checkpointing. The
following subsections describe the categories of component models most relevant to this
study: processors, memory and I/O systems, and the network interface.

3.2.1 Processor Models

M5 includes two processor models used in this study: a simple functional model used
primarily for fast-forwarding and cache warmup, and a detailed out-of-order model used
for collecting performance measurements. (M5 version 1.0 uses a model derived from
Simplescalar’s sim-outorder [29], but has been almost completely rewritten.) In ad-
dition to standard out-of-order execution modeling, the detailed processor model includes
the timing impact of memory barriers, write barriers, and uncached memory accesses.

These processor models functionally emulate an Alpha 21164 (EV5). The simulator
executes actual Alpha PALcode to handle booting, interrupts, and traps. The 21164 was
originally chosen because it allowed the M5 developers to use SimOS/Alpha [26] as a refer-
ence platform during initial development of full-system support. Although M5 implements
the 21164 control registers and executes 21164 PALcode, both the OS and application code
see the processor as an Alpha 21264, with all associated 21264 ISA extensions [30].

To boot Linux, M5 functionally models a Compaq Tsunami platform [31], of which

23

the XP1000 is an example. M5’s implementation includes the chipset and corresponding
devices such as a real-time clock and serial ports. These devices are emulated with enough
fidelity to boot an unmodified Linux 2.6 series kernel.

3.2.2 Memory and I/O System

The busses and chips connecting the CPU, memory, and I/O devices of the system are
key factors in the performance of that system. With M5 the memory and I/O system are
built out of memory and device models interconnected by busses and bus bridges.

The bus model is a simple split-transaction broadcast channel of configurable width
and frequency. When used as a point-to-point interconnect, as in some places in the M5
Tsunami model, performance is optimistic, as it provides full bandwidth at half duplex
(i.e., in each direction, though not concurrently), while the real link provides half the total
bandwidth but in full duplex.

The bus bridge model joins two busses and has configurable delay and buffering capac-
ity. Bridges are used to connect busses with different bandwidths and to model the latency
of chip crossings. These bridges also have the capability to acknowledge writes back to the
requester before passing them on, which is needed to accurately model the timing of the
Compaq Tsunami platform (see Section 3.6.4).

Using these simple components, a user can assemble an entire memory hierarchy from
a CPU through multiple levels of cache to DRAM or I/O devices as desired. I/O DMA
transactions are kept coherent by having the cache hierarchy snoop them. DMA reads get
modified data from the cache if present, and DMA writes invalidate any cached copies.
Since a uniprocessor system is being modeled, a more complex coherence scheme is not
required.

3.2.3 Ethernet Interface

The NIC model used in the simulator was a National Semiconductor DP83820 net-
work interface controller (NIC), as it was the only commercial gigabit Ethernet interface
for which documentation waspublicly available at the time of this validation. This card
supports full-duplex transmission at 1Gb/s and is comprised of three units: the BIU, MAC,
and PHY.

The Bus Interface Unit (BIU) connects to the PCI Bus on one side and to the Media
Access Controller (MAC) on the other. This unit holds configuration and status registers
that can be accessed by the device driver through programmed I/O, as well as a DMA
engine, to transfer packets to and from main memory. It participates in the memory model

24

as a first class device, arbitrating for the PCI bus and transferring data like any other device
in the memory hierarchy.

Data received from the network or on its way to be transmitted on the network is sent to
the MAC where it is buffered. In the case of the DP83820 the transmit and receive buffers
are 4kB and 32kB respectively. As the media is available the data in the MAC FIFOs is
transmitted to the NIC’s physical interface (PHY). The PHY provides a connection between
the MAC FIFOs and the physical link, modulating and demodulating signals on the link
(copper or fiber). Since the PHY contains no buffering and represents minimal delay, it is
not modeled explicitly.

The Ethernet link modeled in M5 was a lossless full-duplex link of configurable band-
width and delay. The time on the link was calculated by dividing the packet size by the
link bandwidth. If the result was less than the wire delay, only a single packet was allowed
on link at a time. If the delay was large, then it was possible for the link to have multiple
packets in flight. If insufficient buffer space was available at the receiver when a packet
exits the link, the packet was dropped.

The DP83820 was used in many actual gigabit Ethernet cards including the NetGear
GA622T, D-Link DGE500T, and SMC 9462TX. The NetGear GA622T is used for the
experiments with real hardware. The DP83820 has a bug which requires it to DMA to
a 8-byte aligned address. A NIC can normally DMA to an arbitrarily aligned address so
that the payload within the Ethernet packet can be aligned at the expense of unaligning the
Ethernet header. This bug does not exist in the model simulated in M5. However, to be
true to the actual card, I removed that fix. As a result, the experiments take many unaligned
access traps on both the real and simulated Alpha hardware.

3.3 Benchmarks

Several workloads were used to compare the performance of the simulated systems
and the two Alpha XP1000s. Two memory microbenchmarks, the mem lat rd utility
from LMBench [32] and a custom Linux kernel module, provided detailed memory timing
information. To measure networking performance, the netperf [33] microbenchmark is
used along with a modified version of SPEC WEB99 [6].

3.3.1 Memory Microbenchmarks

The memory system and I/O device delays in M5 were calibrated with two different
microbenchmarks. The first is a small custom Linux kernel module that calculates the

25

latency to a given uncachable memory location. It accomplishes this by using the Alpha
rpcc instruction to time the execution of loads and stores to the address in question. With
this kernel module on a real machine I was able to discern the read and write latency to
chipset registers and I/O device registers. These measured delays were used to calibrate the
bus-bridge timing in the M5 simulator appropriately.

The mem lat rd benchmark from LMBench helped me calibrate and verify the DRAM
and cache timing parameters used in the system. This tool allows the user to select a stride,
a region, and a size of memory for testing. The benchmark then builds a linked list in the
memory region with each memory location holding a pointer to a location a stride away.
The pointer dependence forces each load to complete before the next load can issue. By
adjusting the stride it is possible to cause a variety of behaviors in the cache hierarchy and
thus determine timing information for access to different levels of cache and for events like
TLB misses.

3.3.2 Netperf

Netperf is a collection of network microbenchmarks developed by Hewlett-Packard,
including benchmarks for evaluating the bandwidth and latency characteristics of various
network protocols. Of the various benchmarks, I selected TCP stream, a transmit bench-
mark, and TCP maerts, a receive benchmark. In both of these benchmarks, the client
informs the server of the benchmark and the server acts either as a sink (for the transmit
benchmark) or as a source (for the receive benchmark), consuming or producing data as
fast as it can. These benchmarks are simple, just filling a buffer and calling send() or
receive(). Thus they spend most of their time in the kernel TCP/IP stack and interrupt
handler, and very little time executing user code.

3.3.3 SPEC WEB99

SPEC WEB99 is a popular benchmark for evaluating web server performance. It sim-
ulates multiple users accessing a mix of both static and dynamic content over HTTP 1.1
connections. The benchmark includes CGI scripts to do dynamic ad rotation and other
services a production web server would normally handle. The web server used for the
benchmark is Apache version 2.0.52 with the mod SPECWEB99 module that replaces the
generic reference CGI scripts with a more optimized C implementation and is available
from the SPEC and Apache websites.

The M5 developers also wrote their own client request generator that is more appro-
priate for a simulation environment while preserving the workload characteristics of the

26

Category Description
Alignment Time spent processing reads or writes to unaligned addresses.
Buffer Time spent dealing with buffer management issues.
Copy Time spent copying packets around in the kernel and to/from user space.
Driver Time spent executing code from the network driver.
Idle Time spent with the CPU being idle.
Interrupt Time spent handling I/O and timer interrupts (not including device driver code).
Other Time spent in the kernel that doesn’t fall into any of the other categories.
Stack Time spent processing packets in the TCP/IP protocol stack.
User Time spent executing a user level process.

Table 3.1: Description of CPU Utilization Categories.

benchmark. In this work, I used their request generator. The standard SPEC WEB99 score
is the maximum number of simultaneous clients a server can support at a minimum band-
width per connection. Each client requests a reasonably small amount of data at a max-
imum rate of 400kbps and expects that request to be serviced within a certain time. The
server’s score is normally determined by configuring a very large testbed of client machines
and iteratively tuning the number of connections and various server parameters. Given the
enormous slowdown incurred by simulation, this iterative approach is clearly impractical
for simulation. Since I was interested in the performance characteristics of the benchmark
and not the actual score achieved, I used the M5 developer’s request generator that enabled
a single client to scale up its performance to saturate the web server, thus avoiding the it-
erative tuning step. This request generator is based on the Surge [34] traffic generator, but
using the statistical distribution of requests from the stock SPEC WEB99 client.

3.4 Methodology

This section describes the metrics used to compare the simulated results to the real
hardware and the methodology employed to gather data.

3.4.1 Metrics

Two metrics were used to compare the simulated and real systems: bandwidth and CPU
utilization. The primary comparison focused on the bandwidth achieved by the server, since
that is of greatest concern for network-oriented benchmarks. The data is presented both in
terms of absolute performance between simulated and actual configurations and relative
performance between two configurations running at different clock rates. This enables

27

me to determine how useful the simulator is at predicting the magnitude of performance
increases even if it cannot provide absolute numbers. The secondary metric was CPU
utilization. CPU time down is broken down into several categories (Idle, Other, User,
Copy, Buffer, Stack, Driver, Interrupt, and Alignment) and the relative amount of time
spent by the simulated and actual machines is compared. See Table 3.1 for a description of
the categories.

3.4.2 Simulated System

Full-system cycle-level simulation is orders of magnitude slower than real hardware,
making it impractical to run benchmarks to completion. To cope with this limitation, I
turned to checkpointing, fast-forwarding, cache warmup, and sampling to reduce the sim-
ulation time while maintaining the characteristics of the benchmark. These techniques,
however, cannot be applied blindly since the TCP protocol is self-tuning. Sampling too
soon after switching from a function to a detailed model can produce incorrect results [35].

To apply fast-forwarding I functionally executed the code with a perfect memory sys-
tem. This allowed me to quickly boot the system and reach an interesting point of execu-
tion, at which point I create a checkpoint. From this checkpoint I then switched to a simple
CPU with a memory hierarchy and warmed up the caches for a tenth of a second. At this
point I switched to a detailed CPU model and took 8 samples of a tenth of a second each.
These samples were then averaged to create the results shown below.

The system of interest varies depending on the benchmark; the system under test was
the client for netperf and the server for SPEC WEB99. To ensure that the system under test
can perform to its fullest capacity, the other machine was simulated with a perfect memory
system, making it artificially fast.

I sampled the program counter every 100 cycles to measure the amount of time the CPU
spent executing different categories of code. With the use of the kernel symbol table I found
the symbol closest to that address, keeping track of how many times each symbol was seen
during the execution. In a post processing step these function names were aggregated into
the broad categories presented above.

3.4.3 Real System

My testbed consisted of one Compaq Alpha XP1000 running with either a 500MHz
EV6 or 667MHz EV67 processor and a National Semiconductor NS82830 based Gigabit
Ethernet card. To stress the Alpha I used a dual-processor Opteron with a Tigon III Ethernet
card. For the real system I had the luxury of running benchmarks to completion at the price

28

 0

 5

 10

 15

 20

 25

 30

 35

32M16M8M4M1M256K64K16K4K1K

T
im

e
(n

se
c)

Size (bytes)

XP1000 500MHz
XP1000 667MHz

Simulator 500MHz
Simulator 667MHz

Figure 3.1: mem lat read: Memory Latency with Stride 8

of the data gathering slightly perturbing the results. To reduce this interference as much
as possible I ran for hundreds of seconds sampling the transmit and receive byte counts on
the Opteron at 30 second intervals and using OProfile[36] sampling every 100,000 cycles
to obtain the Alpha’s CPU utilization breakdowns.

3.5 Comparison to M5

In this section, I compare my measurements of two real Alpha XP1000 systems to the
simulator’s results for similarly configured systems. The first section describes my results
for the memory microbenchmarks I used to calibrate M5’s modeled memory latencies. The
second section discusses the network benchmarks that are of primary interest.

3.5.1 Memory Latency

Figures 3.1 through 3.3 compare the simulated system to the real hardware.

29

 0

 50

 100

 150

 200

 250

32M16M8M4M1M256K64K16K4K1K

T
im

e
(n

se
c)

Size (bytes)

XP1000 500MHz
XP1000 667MHz

Simulator 500MHz
Simulator 667MHz

Figure 3.2: mem lat read: Memory Latency with Stride 64

In Figure 3.1 I configure mem lat rd to read every word sequentially. This setup
incurs an L1 cache miss every 8 accesses. For sizes over 4MB, the L1 misses also miss
in the L2. I tune my simulated memory system latencies so that my data matches the real
data rather closely. The little bump around 64kB is due to page mapping issues. The Alpha
has a virtually indexed physically tagged L1, while M5 currently supports only physically
indexed caches. Thus pages within a 64KB array could conflict in the L1 whereas they
cannot on the real machine. The other discrepancies observed for the 500MHz system are
within the timer resolution latency.

Figure 3.2 shows results for a 64-byte stride, and is mainly concerned with L2 hit
time. For array sizes larger than the L1 cache, all accesses are L1 misses. Again, I have
successfully tuned M5 to model the real hardware latencies. The simulated main memory
access times seen at the right end of the graph are within 4ns of the measured times.

Figure 3.3 focuses on TLB miss latency by showing results for a stride of 8kB. Below
4MB, each access is a TLB miss but an L2 hit. At the right end of the graph, accesses miss
in both the TLB and the L2 cache. I was able to model the TLB miss latency precisely for

30

 100

 150

 200

 250

 300

 350

 400

 450

16M8M4M

T
im

e
(n

se
c)

Size (bytes)

XP1000 500MHz
XP1000 667MHz

Simulator 500MHz
Simulator 667MHz

Figure 3.3: mem lat read: Memory Latency with Stride 8k

both situations on the 667MHz machine. However, the 500MHz machine poses a greater
challenge. Using the same TLB miss overhead (in CPU cycles) as in the 667MHz machine,
I was able to correctly model the cost of a TLB miss that hits in the L2 cache. However,
the latency for a combined TLB/L2 miss on the 500MHz system takes approximately 30ns
longer on the simulator than on the real machine, in spite of having an accurate latency
for main memory accesses on this system (see Figure 3.2). I am unable to explain this
phenomenon, and it doesn’t appear to occur on the 667MHz system. Figure 3.4 illustrates
this effect by plotting just the TLB miss penalty (subtracting the memory access latency)
for multiple runs of the microbenchmark. The reason for this difference in stability also
eludes me.

3.5.2 Network Benchmarks

In Figure 3.5 I show the absolute difference in performance between the workloads
running on the simulator and on real hardware. Then in Figure 3.6 I show the percent error

31

 100

 110

 120

 130

 140

 150

 160

 170

 180

32M16M8M4M

T
im

e
(n

se
c)

Size (bytes)

XP1000 500MHz 1
XP1000 500MHz 2
XP1000 500MHz 3
XP1000 500MHz 4
XP1000 667MHz 1
XP1000 667MHz 2
XP1000 667MHz 3
XP1000 667MHz 4

Figure 3.4: mem lat read: Memory Latency Stability with Stride 8k

in terms of absolute bandwidth between the simulated and real machine, and relative error
comparing the speedup between the 500MHz machine and the 667MHz machine on both
the simulator and the actual hardware.

The results in Figure 3.5 show that the simulated and real systems’ network perfor-
mance deviate by no more than 20Mb/s. In general the results tend to underestimate the
performance of the microbenchmarks a little bit and overestimate the performance of the
macrobenchmark. Turning to Figure 3.6, the blue and purple bars show that M5 models the
performance of the systems within 11%. Additionally, comparing the relative performance
increase of the 500MHz system to the 667MHz system shown in the yellow bar, here too
M5 deviates by no more than 11.5% from the real hardware.

Since M5 does not model the hardware in excruciating detail and only uses generic
components to construct a virtual system, these results are very good. There are many
potential sources of error in the M5 models; for example, M5 does not model clustered
functional units like the real EV6 does. Although the model of the ethernet interface is

32

0

100

200

300

400

500

600

Stream Maerts Specweb

B
a
n
d
w

id
th

(M
b
p
s
)

XP1000 500MHz

Simulator 500MHz

XP1000 667MHz

Simulator 667MHz

Figure 3.5: Absolute Bandwidth (Mbps) for benchmarks

based on the datasheet for the real device, the internal aspects of how the device operates,
what operations it can do concurrently, and how fast it can transition between states of
operation are unknown and thus force assumptions to be made.

In Figure 3.7 I compare the fractional CPU utilization broken down into the categories
mentioned above. As mentioned previously, the data was gathered from OProfile on the real
hardware and using high-frequency sampling (every 100 cycles) on the simulator. Note that
the simulator spends more than twice as much time in interrupt code as the real system. I
believe this is due to OProfile not being able to interrupt the CPU for a monitoring event
if the CPU is at a higher interrupt priority level. This includes all the PALcode, and any
points in the kernel that are uninterruptible. Unlike OProfile, M5’s sampling is not affected
by the CPU’s interrupt priority level and thus it makes sense that the results show a larger
amount of interrupt time.

The other two discrepancies seen in the utilization graph are a difference in time spent
in TCP/IP stack processing and the lack of idle time in the simulated stream runs. I hy-

33

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Stream Maerts Specweb

P
e
r
c
e
n
t

500 Abs Error

667 Abs Error

Rel Error

Figure 3.6: Relative Bandwidth (Mbps) for benchmarks

pothesize that this is due to M5’s CPU model underestimating some aspects of the real
CPU’s performance. This effect is not surprising, as I spent most of my tuning effort on the
memory and I/O system.

Even considering the above problems, there is a strong correlation between the simu-
lated utilization breakdowns and the actual hardware.

3.6 Sensitivity of Results

In this section I look at the impact of various architectural parameters both in terms of
performance change for the benchmarks and their stability across different CPU speeds.
Additionally, I evaluate the spatial stability of the chosen workloads and verify that the
changes observed by changing architectural parameters are not simply noise.

Figure 3.8 plots the percent change between the simulator’s nominal output for a bench-
mark at the given speed and the simulator’s output with the parameters on the X axis. If
the bars corresponding to a single benchmark at different speeds show a similar increase
then even though the absolute bandwidths may not be the same, the relative increase will

34

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ea
l

M
ac
h
in
e

S
im
u
la
to
r

R
ea
l

M
ac
h
in
e

S
im
u
la
to
r

R
ea
l

M
ac
h
in
e

S
im
u
la
to
r

R
ea
l

M
ac
h
in
e

S
im
u
la
to
r

R
ea
l

M
ac
h
in
e

S
im
u
la
to
r

R
ea
l

M
ac
h
in
e

S
im
u
la
to
r

Stream
500

Stream
667

Maerts
500

Maerts
667

Specweb
500

Specweb
667

P
e
rc

e
n

t
o

f
C

P
U

 U
ti

li
za

ti
o

n
Idle
Other
User
Copy
Buffer
Stack
Driver
Interrupt
Alignment

Figure 3.7: Processor Utilization over Benchmarks

be approximately the same.

3.6.1 Issue Window

The first part of Figure 3.8 shows the impact of varying the instruction window size.
The big instruction window triples the size of the ROB and instruction queue, yielding 240
and 192 respectively, while the small IW halves the size of the ROB and IQ, yielding 80 and
32 entries respectively. Across all the benchmarks these changes are stable as the change
between the two processor frequencies is minimal. In most cases there is also a minimal
performance change, except in the case of the maerts benchmark, which is receive biased.
In the receive case, packets have been copied to memory by the NIC and when the kernel
is going to copy the data to user space it must take cache misses. The bigger instruction
window allows more misses to get started and reduces the copy time from 18% to 8%.
The impact of this isn’t seen in the more transmit oriented benchmarks because the data to

35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Big IW Small IW 8 Issue 2 Issue Low

Branch

Penalty

High

Branch

Penalty

No Write

Acks

Fast

Busses

Fast TLB Slow TLB

Change

R
e
a
la

ti
v
e
 B

a
n

d
w

id
th

 C
h

a
n

g
e

Stream 500 Mhz

Stream 667 Mhz

Maerts 500 Mhz

Maerts 667 Mhz

SpecWEB 500 Mhz

SpecWEB 667 Mhz

Figure 3.8: Sensitivity of results after varying parameters

transmit is already in the cache and therefore there aren’t expensive cache misses during
the copy.

3.6.2 Issue Width

Varying the issue width of the machine greatly affects the performance. The results
show an increase of at least 10% and as much as 20% by doubling the width, and a decrease
by 20% for halving the issue width. These results are some of the least stable as a machine
with a slower clockrate can benefit more from an increased issue width if the workload is
stalling the processor regularly waiting a constant time for long latency miss. In particular,
the stream benchmark benefits more from increased width and is hurt less by a decreased
width. The more complex macrobenchmark doesn’t exhibit this change because it isn’t as
I/O bound in the 667MHz configuration. SPECWEB has a lot more processing than the
microbenchmarks so the increase in issue width doesn’t improve the performance of one
system more than the other.

36

3.6.3 Branch Mispredict Penalty

Normally an Alpha EV6 has a branch mispredict penalty of 3 cycles. In the above graph
I change these values to 1 and 10 cycles for the low mispredict penalty and high mispre-
dict penalty, respectively. The larger penalty adversely affects the stream and SPECWEB
benchmarks because they have more difficult branches. On average the mispredict rate for
these benchmarks is 6-7% higher than the maerts benchmark. Even though changing the
penalty affects the benchmarks differently, the relative performance increase is still stable,
changing by only a couple of percentage points.

3.6.4 Acknowledging Writes

While analyzing a previous version of the CPU utilization numbers mentioned in Sec-
tion 3.5, it was evident that the time the simulated system spent in a function updating the
chipset interrupt mask register was much higher than it was on the real machine. An inves-
tigation into this issue led me to conclude that on the real machine, uncached writes to this
register were getting acknowledged by the memory controller before the write had actually
propagated to the device register. As a result, the register’s write latency is substantially
smaller than the read latency I measured with the kernel microbenchmarks described in
Section 3.3.

The effect of the corrected write acknowledgment timing on network bandwidth de-
pends on the workload. The number of uncached register writes is correlated with the
number of network packets transmitted per interrupt. Since the SPECWEB benchmark
has the most think time, and therefore transmits the fewest packets per interrupt, it sees
the largest change in bandwidth of about 8% because of this error. The stream benchmark
transmits packets with a 5% change in bandwidth, and finally the maerts benchmark experi-
ences little to no change since it only transmits acknowledgement packets. Acknowledging
writes earlier and reduces the time spent in the device driver and interrupt handler, bringing
the utilization breakdown more in line with the real system. Again, this change doesn’t
appear to affect the relative performance increase between the two CPU runs, and is thus a
stable change.

3.6.5 Faster Busses

For this parameter I doubled the frequency that the internal busses in the simulator
up to the CPU frequency. The results shown in Figure 3.8 are not stable. This shows
that the stream benchmark running at 667MHz is I/O limited, while the stream running

37

at 500MHz and the maerts benchmark are not. The 667MHz stream run with the faster
bus is 9% faster than the normal run, while the 500MHz run is only 2% faster. The faster
bus does help the SPECWEB benchmark a little bit as well, but since there is much more
computation involved in this benchmark it doesn’t help to the extent that is shown in the
stream benchmark.

3.6.6 TLB Miss Penalty

To further match the observed TLB miss penalty, I added an arbitrary delay of 20ns
to the invocation of the TLB miss handler. Eliminating this delay (labeled Fast TLB in
Figure 3.8) causes a 10% change in bandwidth for the maerts benchmark and doubling
the delay (labeled Slow TLB in the same figure) results in a 20% change in bandwidth.
Thus, for some benchmarks what is normally considered an unimportant parameter can
have a huge effect on performance. The bandwidth seen from the stream and SPECWEB
benchmarks is reduced by about 10% with the longer TLB miss penalty and increases
performance by only a few percentage points with the shorter TLB miss penalty.

These results are not stable as the relative increase in performance varies by as much as
10%. In general the maerts benchmark is more sensitive to the TLB miss penalty because it
uses a large amount of system memory for receiving packets and since it doesn’t reuse the
buffers that the translations often miss in the TLB. The other benchmarks aren’t affected as
much by variations in the TLB latency, however the TLB latency can play almost as large
a role in the performance of a system running network intensive workloads as the issue
width.

3.6.7 Spatial Stability

To address the possibility that the variation between runs with different parameters is
not due to the relatively short sampling window and more optimal scheduling decisions I
modified the M5 simulator to be able to inject random variations in the DRAM access delay
and the delay on the ethernet link [37]. Over eight runs the coefficient of variation for the
microbenchmarks was under 1% and for the macrobenchmark the variation was under 5%.
Given this information we can be reasonably certain that the differences in performance are
not due to spatial variability, but are caused by the architectural changes.

38

3.7 Related Work

Bedicheck [21] validated the Talisman simulator, designed to model the Meerkat pro-
totype multicomputer, against the final hardware. He achieved remarkable accuracy, but
beyond a wide range of microbenchmarks he reports only on a few small kernels without
any OS or I/O activity. Meerkat was based on the in-order, single-issue Motorola 88100
CPU, so detailed CPU modeling was not required.

Gibson et al. [22] validated the various simulation models used to develop the Stan-
ford FLASH prototype (including SimOS-based full-system models) against the prototype
hardware itself. In accordance with the focus of the FLASH project, the workloads used
for validation were parallel compute-bound applications from the SPLASH-2 suite [38],
which did not involve significant OS or I/O activity. Interestingly, they found (as I did) that
the overhead of software TLB miss handling indicated a significant discrepancy between
their simulator and the real machine. They also found that a fast, simple in-order processor
model often gave results as accurate as a more detailed out-of-order model.

Desikan et al. [24] created and validated a model of a Alpha 21264 microprocessor
against a Compaq DS-10L workstation. They spent considerable effort modeling detailed
aspects of the 21264 processor core, such as replay traps and clustered execution, result-
ing in an error of less than 2% for CPU-bound microbenchmarks. However, their inabil-
ity to model complex interactions within the memory system caused their error on SPEC
CPU2000 macrobenchmarks to average 18%. This error reflects in part issues that are ef-
fectively non-deterministic and cannot be accurately matched in a simulator, such as phys-
ical page mapping effects on cache and DRAM page conflicts and DRAM refresh timing.

3.8 Conclusion

This chapter discussed the validation of the M5 simulator by comparing M5 models
of two Compaq Alpha XP1000 servers with their real-world counterparts. I compared
network bandwidth and CPU utilization for two network-intensive micro-benchmarks and
a macro-benchmark. The M5 models were able to get within 11% of the real machines’
bandwidth in all benchmarks. Furthermore, the simulation results accurately reflect the
impact of varying CPU frequency. This level of accuracy is quite good given the relatively
generic and imprecise models used in the simulator, and the fact that my only major effort
in tuning for the reference machine was to correlate memory and device register latencies.

Additionally, this work shows that incorrectly modeling one of a variety of architec-
tural parameters usually doesn’t affect the absolute bandwidth attained by a benchmark

39

by more than 10% and many parameters don’t affect the relative performance seen by
two configurations. However, some parameters do greatly affect the performance of these
workloads. The issue width is a commonly considered parameter, however the TLB miss
penalty affects performance almost as much as the issue width, although the parameter is
rarely considered important.

40

Chapter 4

Creating an End-to-End Dependence Graph

Critical-path analysis has been applied in many domains to find bottlenecks in complex,
concurrent systems. In addition to providing an analytical means for bottleneck identifica-
tion, the resulting dependence graph also provides information about slack and criticality,
which architects, system designers, and developers can use to understand how altering the
execution time for a single event can change the overall performance of a system.

Critical-path analysis requires a dependence graph that represents the timing constraints
between events. For a simple system, it can be easy to construct the required graph; how-
ever, the difficulty of building such a graph can increase rapidly as systems become more
complex. In the most extreme case, the number of interactions in a system is proportional
to the square of the number of events.

This chapter describes a key technique that facilitates the creation of a dependence
graph for large and complex systems without detailed knowledge of all the components
involved. The creation of this dependence graph enables applying critical path analysis
to a much wider scope. The resulting dependence graph can locate bottlenecks, pinpoint
the under-provisioned resources, and estimate the performance when these limitations are
removed.

4.1 Basic Technique

To create a dependence graph I algorithmically map the execution of state machines
that govern software and hardware component behavior on a global dependence graph.
The technique involves two steps. First, the execution of each individual state machine
is converted to a portion of the dependence graph. Next, dependences between the state
machines are recorded in the form of interactions on a shared data structure, principally a
FIFO queue.

41

S2

S1

S4

S3

t1
t2

t3

t4

t5

Begin
→
S1

S1
→
S2

S2
→
S4

S4
→
S2

S2
→
S3

S3
→
S4

t1-t0

t2-t1
t3-t2

t4-t3

t5-t4

a) b)

Figure 4.1: Conversion of a state machine - a) The state machine being converted; nodes
are labeled with the state name; transitions are labeled with the time they are traversed.
b) The state machine converted to a dependence graph; nodes are labeled as the transition
between two states; edges are labeled with the time spent in the corresponding state.

This chapter begins by describing the conversion of an explicit state machine to a de-
pendence graph. While some systems, such as hardware devices, are designed as state
machines, software normally is not. Thus, for software systems, I have the additional chal-
lenge of generating a meaningful implicit state machine from the program execution. This
process is substantially automated by using program flow information to identify states. Fi-
nally, identifying interactions between state machines must be performed manually; how-
ever, this can be done in an incremental, iterative fashion that eliminates the need for sub-
stantial up-front effort.

4.1.1 Explicit State Machines

The execution of a state machine can be converted to a dependence graph through a
simple algorithmic transformation. The events of interest in a state machine’s execution
are the transitions between states. These transitions, which traverse the edges of the state
machine diagram, become the nodes of the dependence graph. Conversely, edges in the
dependence graph, which represent the time spent waiting between events, correspond to
the time spent in a particular state (node) of the state machine.

Figure 4.1 illustrates the conversion process. The state machine on the left begins at t0
in S1 and transitions to S2 at t1, having spent time t1 − t0 in S1. At time t2, it transitions
to S4, thus spending time t2 − t1 in state S2. Next at time t3, the state machine transitions
back to S2, spending t3− t2 in S4. This process continues for the rest of the arcs illustrated

42

in the graph. In the right-hand part of the figure, I show the resulting dependence graph.
Instead of accumulating time in the nodes of the graph, like the state machine graph does
in the left-hand side of the graph, time is accumulated on the edges. Additionally, unlike
the canonical state-machine graph, transitions result in additional nodes being added to the
graph.

4.1.2 Implicit State Machines

Some system components, such as hardware controllers, are normally designed as ex-
plicit state machines, however many other components are not. This is frequently the case
for software; even when the software is based on a state machine, the states and transitions
are difficult to extract from the code. To construct a dependence graph as outlined above, I
have the additional challenge of decomposing software into meaningful states.

While an expert may be able to identify the state boundaries in a complex program, such
experts are rarely available. To enable non-experts to identify the state machines—even in
such substantial pieces of unfamiliar software as the network stack in the Linux kernel—I
can automatically create an initial decomposition by using function entry and exit points
(calls and returns) to delineate state boundaries. These events can be recorded at runtime
with the aid of a binary recompiler, JIT, simulator, or VM. If the symbol table is available,
the states can be labeled according to source function names.

Given this automatic decomposition, the manual effort is reduced to two tasks, both
of which can be performed incrementally. The first task is refining the automatic decom-
position in cases where the function decomposition results in states that are too coarse.
The second task arises when a single executable binary (e.g., an application or the Linux
kernel) contains multiple state machines. In this situation, users must indicate when the
CPU’s execution path leaves one state machine and enters another. This event typically
corresponds to a call from one subsystem to another, e.g., from the protocol stack into the
device driver, and is not too difficult to recognize. The CPU may also switch from one state
machine to another when executing an interrupt handler or time-slicing between applica-
tions. The manual effort takes the form of placing annotations or markers in the code that
identify the state machine and state boundaries. These annotations are further discussed in
Section 4.5.2.

Quantifying the difficulty of a particular task is complex; however, in my experience
to date the effort required to instrument substantial pieces of code has been minimal. For
example, fewer than 100 annotations were required to instrument the entire UDP code
path—from application to driver—in a Linux 2.6 series kernel. Similarly, the TCP code

43

path requires approximately 300 annotations and can be completed in a few days. In both
cases iterative refinement was used to hone the annotations.

4.1.3 State Machine Interactions

Given a system decomposed into state machines, a global critical path can be con-
structed by tracing the execution of the individual state machines and their interactions.
The interactions consist of situations in which one state machine waits for an event to oc-
cur in another state machine (such as the production of a data value or an interrupt signal)
before making a transition itself. As with the detailed decomposition of software state
machines, these interactions can be identified fairly quickly by non-experts using iterative
refinement.

These state machine interactions are modeled in two ways. The principle method of
interaction is via a queue, although other data structures are possible. State machines inter-
act through a queue when one state machine produces a value that another state machine
consumes. Additionally, state machines can interact when the queue is full; in this case a
state machine that produces a value can be dependent on a state machine that consumes a
value. Section 4.2 provides a more detailed explanation of the queue interactions.

An additional method of interaction is used to allow code to be segmented into different
state machines when there isn’t any shared buffering, but rather a function call in a software
state machine. There are several cases in which a software state machine can span multiple
separate pieces of code or one distinct piece of code utilized several times as a sub-module.
Some examples of this include an application executing a system call or different layers of
the TCP/IP stack that do not have buffering. In these cases, it is worthwhile—although not
strictly necessary—to label the state machines differently so that, at a high level, informa-
tion about where time is being spent can be quickly observed by a user. When a function
call that should be segmented occurs, an edge is created between the two state machines
and an edge back to the original state machine when the appropriate return occurs.

4.1.4 Critical-Path Analysis

Once the state machines and their interactions have been identified, the global critical
path can be extracted from an execution trace automatically. A global dependence graph is
constructed using observed latencies as edge weights. The weights on edges representing
waiting states are set to zero, so that the longest path between two nodes represents the crit-
ical path of execution. The critical path between any two nodes of interest—generally start-
ing where a request is made and ending where the corresponding response is received—can

44

WaitEnqueue

Dequeue

Enqueue

Dequeue

Wait

(a) Queue empty example

Dequeue

Enqueue

Dequeue

Queue Full
Enqueue
Enqueue
Enqueue

Dequeue
Dequeue

(b) Queue full example

Enqueue

DequeueEnqueue

Dequeue

Enqueue

DequeueEnqueue

Dequeue

(c) Queue equilibrium example

Figure 4.2: Example of queue dependencies

then be found with standard graph analysis techniques.

4.2 Queue-based State Machine Interactions

State machines often interact with each other indirectly through shared resources. For
example, a producing state machine may provide data to a consuming state machine through
a queue. There are three possible cases that are each illustrated in Figure 4.2. If the queue
is empty (Figure 4.2(a)), the consuming state machine waits idle for the producing state
machine to produce an element. Similarly, if the queue is bounded and full (Figure 4.2(b)),
the producing state machine waits idle for the consuming state machine to remove items
from the queue. Finally, if the queue is at equilibrium (Figure 4.2(c)), the state machines
still interact, though they never idle waiting on each other since the queue is never empty
or full.

Capturing these indirect interactions is key to several aspects of my analysis, including
the ability to track multiple connections (see Section 4.3), to detect resource-limited critical
paths (see Section 5.4), and to predict speedups (see Section 5.5).

Dependencies are expressed as operations on a (logical) queue between state machines.
(To date, I have been able to model all interactions via a queue with FIFO ordering, al-
though other shared resources or more complex manipulations would be possible.) I have
identified the following queue operations as sufficient for my work to date:

(1) enqueue(n): add n items;

(2) dequeue(n): remove n items;

(3) peek(n): look at, but do not remove n items;

(4) reserve(n): reserve space for n items to be added;

45

(5) size(n): resize the queue to contain exactly n items;

(6) wait empty(n): wait because n items are not available in the queue;

(7) wait full(n): wait because space for n items is not available in the queue.

Note that the “items” stored in each queue are abstract entities. In most cases, single
objects such as packets are placed in the queue, and the enqueue and dequeue operations
have a default argument value of 1. However, these queues are also used to represent
storage limits for structures such as the socket buffer, in which case n may be set to the
number of bytes in the current send request or packet. Queues are also used to represent
the TCP flow control and congestion control windows. For example, one queue tracks
a connection’s TCP send window, with the TCP transmit state machine consuming items
from the queue (and blocking when it is empty), while received ACKs add items to the
queue. The size annotation is used only when the TCP stack resizes one of the protocol
windows.

I record these queue manipulation events in the same fashion as other state-machine
transitions. In hardware models, the manipulations are annotated directly in the models. In
the case of software state machines, I annotate the source code with pseudo-instructions.

This queue-based model as applied to connect the pieces of the dependence graph pro-
duced by transforming each execution into a state. Any time one state machine produces
an element that is buffered and consumed by a second state machine, the producing and
consuming events are linked with an inter-state-machine edge. For example, a dequeue or
peek operation creates a dependence between the state machine node entered by the peek
or dequeue and the state machine node that originally enqueued the referenced item(s). The
weight on this edge corresponds to the communication latency between the producer and
the consumer. When the rate of enqueueing and dequeueing are mismatched, the queue
will become empty or full. I explicitly record when these conditions occur and, once ob-
served, zero the weights on intra-state-machine dependence-graph edges for the waiting
state machine so that the critical-path analysis will properly follow the inter-state-machine
edge.

To better illustrate this process, consider the state machines shown in Figure 4.3. These
are simplified versions of state machines that might exist in an IP stack and a driver. In
this case, the stack state machine and the driver state machine interact via a single queue.
The stack state machine places packets in that queue and the driver state machine removes
packets and places them in a DMA descriptor that is given to the NIC.1 The dashed arrows

1In a real system, the actual state machines would interact with other state machines and have many
additional states; this simplified version exists only to illustrate the creation of a dependence graph.

46

Get pkt

Append hdrs

Look up dest

Enqueue in tx
queue

Dequeue from
TX queue

Wait on TX
queue Process pkt

Enqueue in desc
ring

1, 0t; 5, 17t

2, 5t; 6, 23t
3, 9t

4, 11t
1, 13t 2, 16t

3, 26t

a) Simplified IP stack state machine b) Simplified Driver State Machine

Figure 4.3: Example state machines: a) simplified IP stack state machine; b) simplified
driver state machine.

Get pkt →
Append hdrs

Append hdrs →
Look up dest

Look up dest →
Enqueue

Enqueue →
Get pkt

Dequeue →
process pkt

Wait on TX
queue →
Dequeue

Process pkt →
Enqueue in
desc ring

Queue in desc
ring → Wait

Get pkt →
Append hdrs

Append hdrs →
Look up dest

5 4 2 6 6

0 (13) 3 10
2

Figure 4.4: Example dependence graph showing the interaction of the two state machines
of the previous figure.

represent observed transitions the state machine made in the form of (sequence number,
latency). Thus, at time 0, the stack state machine transitioned from Get pkt to Append hdrs,
and at time 5 the state machine transitioned from Append hdrs to Look up dest, etc.

Figure 4.4 illustrates a dependence graph created from the observed transitions in Fig-
ure 4.3. Initially, the driver state machine is idle, waiting for a packet to be present in
the queue. Although 13 time units elapsed in this state, that edge is given a weight of
zero because the state machine was stalled waiting. A value of 2 time units is placed on
the edge between the stack and the driver state machine, because the driver state machine
waited 2 time units between the data becoming available and being consumed. This is the
communication delay between the stack state machine and the driver state machine.

4.3 Tracking Multiple Connections

A state machine implementation often supports multiple concurrent instances. For ex-
ample, the kernel’s TCP stack and a web server application can both process multiple con-
nections. To analyze modern systems, I must identify which instance of a state machine is
transitioning when an annotation is encountered. To this end, a unique key must be identi-
fied to distinguish instances for each state machine, and the current value of that key must
be provided with each annotation. The value is treated by my extended analysis program
as an opaque identifier. For example, in the TCP stack, the pointer to the per-connection

47

transmission control block (TCB) is used as the key, while in an application, the file de-
scriptor of the connection’s socket could be used. For a machine with multiple NICs, the
Ethernet MAC is used to distinguish the independent device driver state machine instances.

These queue-based annotations enable the analysis program to automatically associate
state-machine instances (e.g., which application file descriptor goes with which kernel TCB
value) by noting which instances of two state machines communicate. This association is
effective even when shared queues or state machines interpose; for example, I can associate
the related TCBs on the client and server though the connection’s packets even though they
pass through a single shared state machine at the device driver layer.

I even automatically identify which state machines have per-connection instances and
which are shared among connections by noting whether a single instance processes queue
entries corresponding to only one or to multiple instances of the application-level connec-
tion state machines.

4.4 Refining Annotations

An important feature of my approach is that annotations can be developed iteratively,
using the results of an analysis on an incompletely annotated system to indicate where
further effort is required. My queue-based model requires additional information in the
annotations, but also provides extra feedback to help users generate that information cor-
rectly.

A state machine graph for an incompletely annotated system can be quickly scanned
for incongruous states. Spurious edges connecting disjointed components tend to indicate
that a state machine begin or end annotation is missing. Queue annotations are constantly
checked for consistency at runtime and can produce a variety of warnings. These can
include notification of a dequeue operation on an empty queue, a state machine waiting to
dequeue from a non-empty queue, etc. I also provide an assert(n) annotation that will raise
an error if the queue being maintained in the model does not contain exactly n items.

Another technique that helps to identify shared resources and the state machines that
wait on them is to analyze a pair of applications communicating at low bandwidth. The
critical path should be in the application state machine, waiting for the next message to be
sent. All other state machines should be mostly idle; any kernel or hardware state machine
that remains active indicates a missing wait annotation.

48

4.5 Implementation

This work has been implemented in the context of a full-system simulator, which pro-
vides deterministic results and complete visibility of all software execution and the hard-
ware models. The analysis is performed in two phases.. First, the simulator simulates the
system(s) of interest and generates a file with the resulting annotations that I process with
an analysis program in the second phase. This decoupling of data generation and analy-
sis allows for interactive processing which would not be possible if the analysis occurred
during the simulation. While a simulator is used in this work, it is possible that a similar
system could be created in the context of a real implementation using a binary recompiler,
JVM, JIT, or VM, to instrument the system. In this case the visibility into the hardware
would be greatly limited, so the analysis would end at the software’s edge.

4.5.1 Simulator

The M5 simulator [25], as discussed in Chapter 3, was used for this work. The lat-
est development releases were modified to support the recording and output of annotation
data for later analysis. Hardware state-machine transitions and interactions are recorded
by inserting function calls directly in the simulator models to record relevant information
on each occurrence. Software components are annotated through a combination of observ-
ing CPU execution within the simulator and the addition of pseudo-instructions into the
relevant binaries. These pseudo-instructions are inserted explicitly in the source code via
annotation macros, and exploit unused opcodes to instruct the simulator to record the oc-
currence of a state-machine transition or other event of interest. These pseudo-instructions
must be fetched and executed by the simulated CPU, so they do perturb the execution;
however, they are reasonably rare and execute instantaneously, so their effect is minimal.
The particular annotations used are detailed in Section 4.5.2.

Simulator Output

The simulator periodically records and buffers the annotations writing the buffer to disk.
The annotations are stored in a binary form along with a “key” that allows the records to
be converted to meaningful names where required. The ability to store and later process
annotations provides flexibility in the type of analysis done, but the cost of this flexibility
is the storage space of the annotations. For a typical detailed simulation, the storage cost is
modest—hundreds of megabytes per second of simulated time.

Frequently in the realm of architectural simulation simulations are started from check-

49

points which store the entire state of the simulation. These checkpoints allow for a simu-
lation to be quickly functionally executed to a point of interest and then a checkpoint can
be created. The checkpoint can be used to run multiple experiments as long as they don’t
alter the architectural state of the machine (e.g. various bus widths), but they can’t be used
if some system-visible parameter is changed (e.g. the size of main memory).

Because dependencies are tracked through queues, the queue state must be preserved
across simulator checkpoints. When a checkpoint is created, the entire internal state is
saved. In addition, the various records that are still in each queue are also saved to the
checkpoint. When restoring from a checkpoint, these records are placed in the appropriate
order in the queue and immediately emitted to the output file. Thus, the first set of records in
an output file that is the result of a restored checkpoint are queue operations to populate all
of the queues that have items in them. Without this data it would be extremely challenging
to match up enqueue and dequeue pairs when the data is being analyzed, thus limiting the
usefulness of the data.

4.5.2 Annotations

The annotations are used to capture two classes of information state transitions and state
machine interactions. The state transitions are simply when a state machine transitions
from one state to the next, while the interactions capture when one state machine creates an
output that induces a change in a different state machine. These interactions are generally
modeled as queues so the annotations add or remove elements from a queue, and by keeping
track of the elements in that specific queue interactions can be established.

Annotations are used to identify state machines and their interactions in both hardware
and software. These annotations are captured by the simulator at run time and eventually
are written in a packed format to a simulator output file, as described above. The hardware
and software annotations do largely the same thing, however because they’re being used in
different places the syntax varies slightly. Specifically, the software annotations can ma-
nipulate states that the simulator retains and can modify the behavior of future annotations,
while the hardware annotations are stateless and thus every annotation fully specifies the
transition or interaction that is occurring. In principle, software could be annotated by spec-
ifying every transition and interaction; however, that would increase the burden required to
use the tool.

50

Identifying State Machines

A state machine that is being annotated is uniquely identified by the system to which
it belongs and an instance identifier that makes multiple instances of the state machine
unique. The value of this identifier depends on the the state machine being annotated but it
could be any unique value such as the MAC address in a NIC, or the socket structure inside
a kernel. The state machine name, system, and instance identifier are combined to form a
unique integer, the state machine identifier, which is a globally unique ID.

Identifying Queues

Queues are identified in a manner similar to state machines. The queue name alone is
not sufficient to uniquely identify an instance of a queue, so the queue is coupled with a
unique identifier. This opaque identifier could again be any number of values such as the
MAC address or the socket structure that belongs to the current connection. Just as in the
state machine identification the system, queue name, and queue instance id are combined
to form a globally unique queue ID. Unlike the state machine identification however, the
queue can potentially reside in another system (e.g. the end-point of a network link proba-
bly does not exist in the current system), so the queue identifier is created from the system
in which the queue exists, not in which the annotation was seen.

Flags

A variety of flags may be passed to the annotations to alter their behavior in some way.
Some annotations have a number of flags that are used while others have none, although
most annotation operations allow the specification of flags.

Hardware Annotations

There are seven hardware annotations that are used for the annotating TCP/IP flows
between two systems.

• hwBegin(flags, system, instance, state machine, state)

The begin annotation marks the transitioning of the given state machine from the
previous state it was in to the state given by state. To further identify the state ma-
chine in question a system is provided along with a instance. These values uniquely
identify the state machine that is transitioning as described above in Section 4.5.2.
The only flag that may be recorded with this annotation marks the state the state ma-
chine currently entered as suspect. This is normally done to states that either signify

51

an error condition of some type, or to mark a piece of a state machine that hasn’t
been annotated yet.

• hwQ(flags, system, instance, state machine, queue, q instance,

q system, count)

The queue annotation enqueues count units of data in the specified queue. As de-
scribed above in Section 4.5.2, the system, instance, and state machine are combined
to identify the state machine instance performing this enqueue operation. The queue

parameter names a queue that is being operated on and, as described in Section 4.5.2,
the queue, queue instance, and queue system are combined to form the unique queue
ID that is having data enqueued in it. If the queue instance or queue system param-
eters are not specified, then the system and instance parameters are used. There are
currently no flags that modify the behavior of the queue operation.

• hwDq(flags, system, instance, state machine, queue, q instance,

q system, count)

The dequeue annotation operates in the exact same fashion as the enqueue operation;
however, in this case items are removed from the queue as opposed to being added
to the queue. If there are fewer units of data available in the queue then were re-
quested by count, an error is printed and the annotations need to be further refined.
If a special count of -1 is specified, all items are removed from the queue by this
dequeue operation. This is useful for pseudo-queues such as the list of packets yet
to be acknowledged. One acknowledgement will acknowledge all packets that have
been received, so all items can be removed from the queue in this case.

• hwPq(flags, system, instance, state machine, queue, q instance,

q system, count)

This peek annotation operates in the exact same way as the dequeue annotation, but
items are not removed from the queue. The dependency between the state machine
that did the queuing operation and the state machine that did the peek operation is still
added. This annotation is used in cases in which a state machine wants to examine the
item in the queue before it is consumed. The item will eventually be dequeued, but
the analysis can not happen without the element present. Therefore, a dependency
must be set up when the value is used, as well as when it is removed.

• hwRq(flags, system, instance, state machine, queue, q instance,

q system, count)

The reserve annotation operates in the same manner as the queue annotation, but no

52

items are added to the queue when a reserve occurs. The reserve creates a depen-
dence between the dequeue of an element that provided space in a queue and and
activity that a state machine will now do because of the available space. This anno-
tation is useful when a state machine verifies there is enough space in a queue before
it takes some lengthy action to produce more data. If space isn’t available that ac-
tion is delayed, therefore there should be a dependence between the space becoming
available and the state machine producing data to fill it. Normally, state machines
produce data and then wait until they can place it in a queue. However, in a few cases
this annotation is required.

• hwWe(flags, system, instance, state machine, queue, q instance,

q system, count)

The wait empty operation has the exact same parameters as the above described
queue operations. The wait empty operation signifies that the given state machine
is blocked waiting on some count units of data to be available in the specified queue.
When this annotation occurs, the state machine stops accumulating time and some
bookkeeping is updated, indicating that the state machine is in this state. At this
time, if the queue has the requested number of units of data in it, a warning is printed
as it normally indicates improper annotations2 When the state machine next does a
dequeue operation on this queue the dequeue operation will set up the dependency as
normal. However, an additional weight will be placed on the edge that connects the
two state machines. This weight is the time between when the data was available and
when the waiting state machine removed the data (the communication latency). This
ability is extremely important. Frequently, the communication latency can dominate
a critical path and performance gains can be achieved by reducing that latency.

• hwWf(flags, system, frame, state machine, queue, q instance,

q system, count)

The wait full operation is similar to the empty condition, however here the given state
machine is blocked waiting on count units of space to be free in the given queue. In
this case, when an enqueue operation follows a wait full operation, a dependency is
set up between the state machine that removed the items from the queue and the state
machine that needed space in the queue. The dependence (edge) is again weighted
with the elapsed time between when the space was available and the queue operation
happened.

2It can also indicate the communication latency between the consumer and the producer is large. In this
case an item may be available in the queue, however the consumer has no way of knowing that information.

53

Software Annotations

The software annotations ultimately generate the seven hardware annotations that are
described above along with a few additional ones. The additional ones are not necessarily
specific to software, but since the end-points of interest normally exist in software, and
software queues can be arbitrarily created and destroyed, some operations tend to be useful
only in software. Unlike the hardware, parameters and even complete annotations are ex-
tracted directly from the execution as opposed to being completely specified. This reduces
the effort required to analyze a given system substantially.

Begin annotations are automatically created from the execution and symbol tables.
When the simulator observes the system executing a branch-and-link instruction it auto-
matically creates a begin annotation for the target symbol.

• swBeginStateMachine(state machine, instance, flags)

This operation maintains a set of stacks of state machines, one for each execution
context in the machine. The begin state machine pushes the active state machine
identifier on the top of the stack that belongs to the current execution context of the
machine. It creates the identifier exactly in the same manner the hardware annota-
tions above did. This operation combines the system the annotation was executed on,
along with the state machine and the instance to create a unique state machine iden-
tifier. A flag can be specified to indicate that the previous state machine was directly
interacting with this one (e.g. a system call, or some layering of the kernel). This
flag creates an additional link annotation that informs the analysis program that
the two state machines are directly interacting at this point. In addition, the fact that
this link occurred is stored in a map so that when the current state machine ends, a
link operation can be automatically emitted to link the state machines in the reverse
direction.

• swEndSm(state machine)

The end state machine annotation provides the reverse operation of the begin state
machine annotation, it removes the top most state machine identifier from the stack
of state machine identifiers for the current execution context. The annotation takes
a single parameter, the name of the state machine that is ending. While this is not
strictly necessary since it is simply removing the top most element on the stack, the
state machine name allows M5 to verify that state machines are nesting properly.
If the stack is not unwinding correctly, a end state machine annotation is probably
missing. As mentioned in the previous description, if a link flag was passed to the

54

swBeginStateMachine() operation then a link operation is emitted to return
the previous state machine.

• swBegin(flags, state)

Software states are normally begun automatically by observing the program execu-
tion. The program counter, privilege level, and currently running process information
are used to locate the appropriate symbol table and create a new begin annotation
each time a branch-and-link instruction is observed. The topmost element in the
state machine stack provides the state machine identifier for this annotation. In some
cases, the user may want to subdivide a large function into smaller pieces. In this
case, a software begin annotation can be manually inserted. Like the hardware ver-
sion of this annotation, a flag can be specified that marks the current state as “bad,”
indicating that this path has not been annotated or is not expected to be executed. The
state is converted into a unique ID per state machine for more compact storage.

• swQueue/swDequeue/swPeek(flags, queue, q instance)

The software queue annotations operate in the same manner as their hardware coun-
terparts. The only difference is that the state machine that is doing the operation
is implicitly specified by the state machine identifier stack for the current execution
context just as is done for the software begin operations.

• swWaitFull/swWaitEmpty(queue, q instance, count, state machine)

The wait annotations occur in the same way as the hardware annotations occur, ex-
cept that like the other software annotations the current state machine identifier is
specified implicitly. Additionally, the wait annotations have a state machine param-
eter causes the wait annotation to be immediately followed by an end state machine
annotation when it is specified.

• swSizeQueue(flags, queue, q instance, sizes)

The size queue operation changes the size of the queue either by queueing additional
elements or removing some elements. Much like the other queue operations the
queue, q instanced, and current system are combined to find a unique queue. If this
queue presently has fewer elements than size, additional elements are queued to make
it size. If the queue is too large, elements are removed from the back of the queue
until it is the appropriate size. This operation is used when the underlying storage
of a queue is expanded or contracted (e.g. when the TCP receive window changes
size). An optional flag can specify that the queue is to be completely cleared and then
requeued. This is useful in cases in which a queue is reused for a different connection

55

and was never completely emptied. Stale elements in the queue can create improper
dependencies in the graph and must be removed.

• swAssertQueue(queue, q instance, size)

The assert queue operation is used to assist the annotator in adding the manual an-
notations. The annotation causes a warning to be printed if the specified queue has
a size other than the size specified by the annotation. It is used to verify that the
annotations are correct and pinpoint the location where a problem is occurring.

• swGetId()

The get identifier operation returns a unique connection ID and marks the state ma-
chine that created the annotation as belonging to that connection. This is used to
trace connections from start to end. The ID is returned to the caller for future use.

• swIdentify(id)

This operation creates an identity for the specified id. It is used to verify that the state
machine has not changed the ID of the connection it belongs to unless it has done so
intentionally.

4.5.3 Annotation Perturbation

Since annotations are inserted directly into software they have the ability to perturb
the system. I analyzed the perturbation that the annotations introduced into the system
by measuring the change in bandwidth between an annotated system and an unannotated
system. To verify that these annotations are not introducing a large overhead, I compared
the performance of various configurations studied in this dissertation (see Chapter 6 for
details).

The perturbations I saw are a result of several things:

• A larger binary due to the inserted pseudo-instructions

• Different code emitted by the compiler (since functions are of a slightly different size
the compiler could choose different optimizations for the function)

• Interrupts and scheduling occurring at different times in the simulator due to the
difference in the code size and instruction counts

The annotations generally had very little effect on the bandwidth produced by the sys-
tem. On average, the bandwidth produced changed by only 3%. This variation included
both a slight increase in the bandwidth produced, by as much as 2%, and slight decreases in

56

the bandwidth produced, by as much as 7%. Generally, experiments that were CPU limited
were affected more by the annotations than ones that were otherwise limited. This result
seems reasonable as the CPU limited experiments are most likely to be slowed down by
larger code size and resource consumption within the processor.

While the change in bandwidth is minor, it would be possible to completely remove all
the annotations in the code. The compiler could generate a mapping between address and
annotation that could be used for the same purpose in a simulator.

4.6 Conclusion

This chapter has shown how critical path analysis can be applied to a large computer
system consisting of multiple layers and machines. A dependence graph can be constructed
without detailed knowledge of the underlying implementation by algorithmically mapping
the execution of the state machines that govern the system into a global dependence graph.
The resulting graph describes all dependencies and interactions within the system and can
be used, as shown in the following chapter, to locate bottlenecks and predict performance
of hypothetical systems.

57

Chapter 5

Locating Bottlenecks and Analyzing Data

While having the data necessary to create a dependence graph is interesting, the data
alone does not provide any analysis or insight. This chapter describes the analysis program
that takes the raw data, constructs a dependence graph, and provides higher level metrics
to interpret the new graph. First, the task at hand is described, including the time and space
complexity of the analysis and how the complexity can be reduced. Next, the method-
ology for creating the graph, finding the critical path and tracking multiple connections
simultaneously, is presented.

The remainder of this chapter is dedicated to describing the analysis that is provided
by the analysis program. While the dependence graph contains a huge amount of data,
high-level conclusions about the system are not readily available from the graph without
aggregation and analysis. The analyses I have developed to draw high-level conclusions
from the graph are presented in multiple ways.

5.1 Processing Data

The analysis program processes the data provided by the simulator and creates a useful
representation of that data that can be used for the analysis. The program has to be cog-
nizant of the temporal and spatial complexity of the data processing and analysis. Since
millions of annotation records are processed, small inefficiencies in the code can lead to
unacceptable performance.

5.1.1 Time and Space Complexity

A naive way to process the data would be to simply create all the nodes and edges cor-
responding to the recorded annotations. In this case, adjacency lists would be preferable

58

State machine A

State machine B

new
node

Figure 5.1: Illustration of a graph construction.

to an adjacency matrix since there are a large number of nodes and they are sparsely con-
nected (Θ(V + E) vs. Θ(V 2)). After the graph is created it can be topologically sorted,
and the longest path can be found in the graph using standard graph analysis techniques.
The topological sort would take Θ(V +E), initializing the bookkeeping information takes
Θ(V), and doing the edge relaxation for the entire graph takes Θ(E)[39]. While none of
these algorithms are inefficient, there is the possibility for many millions of nodes. Even
an efficient representation can take gigabytes of memory, which makes it hard to store and
difficult to process. Even when the entire graph can fit in memory the topological sort can
take quite some time to construct and requires Θ(V) additional memory.

5.1.2 Limiting Memory Usage

As mentioned above the amount of RAM required to build a graph in memory depends
on the number of edges and vertices in it. A graph with millions of nodes can consume
an extremely large quantity of memory so steps must be taken to limit the memory usage.
Furthermore, the only reason to build the graph is to locate the critical path, as visualizing
many millions of nodes is not feasible, nor would it be particularly useful.

The structure of the graph and data provide a low-cost method to find the critical path
without building the entire graph in memory. Since all the annotations recorded by the
simulator are done so in a total order, if the records are processed in order the next record
always happens after the current record. Additionally, each annotation in the file has a strict
total order between it and other records belonging to the same state machine.

Nodes in the graph are connected to a single node in the same state machine (the last
node that was inserted into the graph belonging to the same state machine) and possibly
another state machine. Thus, when a node is inserted into the graph the critical path is

59

either from the previous node in that state machine, or a node that the state machine just
interacted with (see figure 5.1). In other words, all the annotations recorded for analysis
are already topologically sorted. Therefore, for each state machine in the graph there is
only one critical path to its end. Rather than keeping the longest path information for each
node, it can instead be kept for state machine. Since the number of state machines in the
graph is orders of magnitude less than the number of nodes, the longest path can be found
with significantly less storage and without creating the entire graph. A similar method was
utilized in the online critical path processing work of Hollingsworth [40]. Depending on
the desired data, the critical path to that point can be recorded, or if a more memory-optimal
implementation is desired, statistics about the edges traversed (their name and total time)
can be stored, rather than the longest path (which would contain many instances of edges
with the same name). Since the graph is too large to visualize, the data must be aggregated
in some way for analysis. Thus, it’s beneficial to just aggregate the data up front, summing
the time in each state and transition count instead of building the graph.

5.1.3 Analysis Internals

This section provides information about the internals of the analysis program. It begins
by describing how the data is read, parsed, and fast-forwarded, and then proceeds to discuss
how the dependencies are created.

Data File

The various annotations that are captured are written to a file for later processing. The
file consists of a header containing version information, an offset, and length to all the
records that were recorded, and an offset and length to a key that can convert the unique
state machine and queue IDs into readable names.

The majority of the file is composed of fixed length records that contain a time stamp,
the CPU on which the event occurred, the operation, the state machine ID, the state ID/queue
ID, any corresponding data, and a set of flags. The key provides a set of arrays and dictio-
naries that map the various unique integer IDs to readable names. An array of all the state
machine and queue IDs map each ID to a name, instance id, and system ID. Another array
maps system IDs to system names. Finally, a dictionary of state machines’ names maps
each state machine to an array of state names that can be indexed with the state ID.

60

DataParser

A DataParser class is used to provide an abstraction layer between the data file and the
analysis program. This abstraction layer allows changes to the data file format and layout
without requiring changes to the core of the analysis code. The DataParser first verifies
that it is compatible with the version of the analysis file it is being given to read, and then
creates descriptions of the various records in the file. The key associating strings with the
unique IDs stored in the file is given to the NameResolver class so it is able to return strings
given to the unique IDs in the future.

Queue

A queue object is created for every queue in the system. It tracks the elements cur-
rently in the queue and where they came from. The queue also tracks which state machines
are waiting on the queue (either to have space or have an element) and provides the appro-
priate dependence information when an element is added or removed. The queue tracks
various statistics such as the occupancy, time spent waiting for space in the queue, time
spent waiting for data, the communication latency through the queue, service times, and
the data arrival and departure rate.

A queue or dequeue is split into two phases. During the first phase, the dependency is
retrieved and during the second phase the queue is updated to reflect the operation state.
Dependencies are passed through the queue with the DepInfo object that contains the node
in the graph that did the enqueue operation, the critical path to that node, the critical path
length up to that point, the time the operation was done, the number of units of data that
are being queued, and the connection ID that is doing the enqueue operation.

When a state machine is waiting on a queue, either because of a full or empty anno-
tation, the state machine calls the waitFull() or waitEmpty() functions in the queue object
with the state machine, the time, and the number of data units that it is waiting for/on.
These functions check that the operation makes sense. These tests include:

a) If a state machine is waiting on the queue to have a number of units in it there shouldn’t
be that many units available in the queue at the present time 1

b) If the state machine is waiting on the queue to have space for a number of units and the
queue is empty

c) If the state machine was already waiting on the specified queue

1It is possible that the queue does contain an element, but the communication latency in the system hasn’t
made that information visible to the requesting state machine yet.

61

d) If the state machine was already waiting on the specified queue and the condition that it
was waiting on has been satisfied

When the first phase of an enqueue operation happens (queueDeps), the state machine
that is doing the queue is checked against a list of state machines that were waiting to queue
an item. If a match is found then there is a DepInfo object containing information about
the state machine that removed the item that made space available in the queue. This item is
returned along with the time from when the space was made available to the time this queue
operation happened. If the state machine wasn’t waiting to queue an item then nothing is
returned. In either case, various internal statistics are updated.

In the second phase the DepInfo object is placed in the actual queue that the queue
object manages. The number of units of data in the queue is updated along with various
statistics. If there are any state machines waiting on the queue to have data and the current
insertion satisfies their request the waiter is transitioned from the waiting structure to the
dependence structure, which is searched during the first phase of the removal.

The first phase of the dequeue operation (dequeueDeps) is similar to the queueDeps
phase above. First the queue checks that there are enough units of data available for the re-
quest to be satisfied and raises an error if not enough units exist. Then the various statistics
that the queue keeps are updated and the dependence information along with the com-
munication latency is returned to the state machine that dequeued. In the dequeue case,
dependence information can always be provided since all data is being tracked. On the
other hand, since the size of the queue may not be known, dependence information can not
always be provided in the queue case.

The second phase of the dequeue operation proceeds similarly to the second phase of
the queue operation. Here, the structures that describe which state machines are waiting
on the queue are updated to reflect that the state machine that just dequeued an element
may have made enough room in the queue. Now, the appropriate number of data units are
removed from the queue.

The final operation that the queue does is the resize operation. This operation removes
items from the back of the queue to make the number of data units in the queue equal to
the given size. For instance, this sometimes happens in TCP, when the congestion window
shrinks.

Fast-forwarding Records

The data file created by the simulator starts when the simulator started running either
initially or from a checkpoint. In the case of starting from the beginning of execution all the

62

queues in the system will have items inserted in them and that information will be stored in
the data file. When restoring from a checkpoint, the checkpoint contains the current state
of all the queues in the system and that information is inserted into the data file before the
simulation resumes. To maintain the queue state all the records from the start of the data file
to the record of interest must be minimally processed. During this fast-forwarding time only
Enqueue, Dequeue, and SizeQueue operations are processed. Many fields of the DepInfo
object are left unpopulated when passed to the queue. When the actual analysis begins,
the queues have the correct items, however since there are no nodes to create dependencies
with they do not have that information.

5.1.4 Constructing the Graph

Each record is processed in order to create the graph. The analysis program first com-
pares the record type to each known type. In the case of the identify operation the current
connection for the given state machine is changed to be the connection ID of the connection
that the record describes, and that connection is added to the set of all connections for the
given state machine. In all other cases the analysis program uses the previously identified
connection ID for the state machine that is executing the operation. Next, the state ID is
found. For a begin record this information is encoded in the record itself, for the queue
operations the Queue object initially creates a new ID for the operation and caches it, and
for the link operation the analysis program creates an appropriate ID if one doesn’t already
exist.

If a state machine has not been observed before a dummy state is created so that the
initial node has a starting state in the case of a software state machine the analysis program
next checks if the currently executing state machine is the same as the previous state ma-
chine that executed on this system and CPU. If not, some bookkeeping is updated to reflect
that the previous state machine stopped executing at the current time. This information is
later used to display how much time a state machine that was otherwise ready to execute
spent waiting for the shared processing resource.

A node is now created describing the transition from the previous state of this state
machine to the new state. If the node doesn’t exist in the graph it is added to the graph.

After the node is created, if the operation is a enqueue, dequeue, or peek, the first phase
of these operations is executed by getting the dependence information from the queue. Ad-
ditionally, the time spent waiting on this queue is recorded to display later and the current
connection may be updated to the connection ID of the item being removed from the queue.
Further information about connection tracking is provided in Section 5.1.5.

63

The new node could be dependent on a previous state machine because of a link opera-
tion. The link’s dictionary is searched for a matching entry and if one is found the current
connection is also updated to the linked connection. A single node can not get dependence
information from both a linking and a queue operation.

If the operation identifies the given state machine as waiting because a queue is full
or empty, that state machine is marked as waiting on a queue and any time that would
normally accumulate is zeroed. Additionally, any requests that the user made to reduce the
time that a state machine spent in a particular state are honored (this is used for finding
secondary critical paths as described below).

State transitions (nodes) and states (edges) are inserted into a compact representation of
the graph. Only one node or edge exists for every unique transition and state, even if they
occur multiple times during the analyzed execution. If the edge does not exist it is inserted
into the graph. Otherwise, statistics on the edge are updated to reflect how many times that
state was seen and how much time was spent in that state. The statistics that are collected
include:

• The total time spent in its state (edge)

• The amount of time spent waiting in its state.

• The amount of time the critical path spent in its state.

• The amount of time the critical path spent waiting in its state.

• The number of times this edge was visited.

• The number of times this edge was visited on the critical path.

Next, the critical path information is updated. See Section 5.1.4 for information about
the update process.

Lastly a new dependence info object is created in the operation was queue operation
(enqueue, dequeue, etc.) and the second phase of the queue operation is called. If the state
machine was waiting on a particular queue, and it executed an operation that satisfied that
dependence, it is no longer marked as waiting and its time is accumulated as normal.

When all the records have been processed the critical paths from the start state ma-
chine/state to the ending state machine/state are converted from the internal format to a list.
The critical path statistics on the edges are updated and a list of connection IDs and the state
machine IDs that they ended on is created. This list traces the start of every connection to
all possible endpoints where data from that connection is processed.

64

State Machine Interaction

There are two ways a pair of state machines can interact. They can either do so through
queues, or they can interact directly. The direct interactions are not required, but rather act
as a construct for simplifying output and grouping state machines into smaller units than
they might otherwise be.

Most state machines in a system interact through a series of queues. These queues
normally are bounded in size and some producing state machines place an item in a queue
that is eventually consumed by the consuming state machine. If no items are available in
the queue the consuming state machine is idle waiting on data to consume, and similarly
if the queue is bounded and full the producing state machine is waiting on the consuming
state machine to consume an item before it can continue.

The simple queue and dequeue operations set up the basis for interactions between
state machines. When an item is placed in a queue and is subsequently removed by a state
machine at a later time, the two state machines are said to interact and a dependence can be
created between the state machines through the queue.

More information can be obtained if one of the state machines is observed to be waiting
on the queue. If the consuming state machine is blocked while waiting for an element to
be present in the queue, then the time from when an element is made available in the queue
and when that element is removed from the queue is the communication latency between
the two state machines in this particular instance.

If the sizes of the queues are known, a reverse dependence can be set up between the
removal and subsequent insertion of items in a queue. If the size isn’t known, but the
producing state machine is seen waiting here too, a dependence can be created. Just like in
the case of an empty queue the communication latency between the item removal and the
producer placing the next item in the queue can be calculated.

When there are large state machines or various blocks of code are used by several state
machines, it can make sense to logically separate these into smaller blocks. In this case the
state machines are said to directly interact as there is no queue or buffering between them.
Since the interaction here is purely one of convenience, and does not reflect two separately
interacting entities, the critical path must follow the interaction.

Critical Path

When a new annotation is processed by the analysis program the critical path must be
updated to reflect the edge and transition implied by the annotation. A critical path begins
when a transition is processed that belongs to the state machine and system that the user

65

requested the critical path be found for. This process is accomplished as outlined in the
following pseudo-code:

1 if dep = NIL or dep.cp = NIL

2 then if crit-path[sm].exists

3 then crit-path[sm].append(edge, weight)

4 elseif sm = beginsm � This state machine is the starting state machine
5 then crit-path[sm].start(edge, weight)

6 elseif dep .cp� The interacting state machine has a critical path
7 then if not crit-path[sm].exists or

crit-path[sm].length+ weight < dep.crit-path .length+ comm-lat

8 then crit-path[sm] = dep.crit-path

9 crit-path[sm].append(dep.edge, dep.weight)

10 else
11 crit-path[sm].append(edge, weight)

12 else
13 crit-path[sm].append(edge, weight)

As illustrated in the code above, if the new node is only dependent on the previous node
in the same state machine, then the critical path and the new node is the previous critical
path length, plus the time spent in the current state. If no critical path exists at the previous
node, no critical path can exist at the next node, except in the case in which the node is the
first transition observed for this state machine and the state machine has been identified by
the user as the state machine where the critical path calculation should begin. In that case,
the critical path is created at the current node.

If an inter-state-machine dependence exists then the critical path at the current node is
longer than the critical path at the two parent nodes plus the edge weight (in the case of
the intra-state-machine edge) or the communication latency (in the case of the inter-state-
machine edge).

Because the captured data is processed in order, at any given point there can be at
most one critical path for every connection in every state machine. This fact allows the
critical path to be found without building the entire graph of all interactions. For each state
machine, a crit-path object stores the critical path from the start, including all processed
and relevant records.

The Python code, which is used to find the critical path, makes extensive use of shallow
copies in Python. To avoid the expensive copying that would have to occur every time
a critical path from one state machine is merged with the critical path from another, an

66

innovative format is used. The critical path starts out containing a list of tuples of the edge,
total length, and current length up to the current end of the critical path. Any time a merge
happens and the critical path from a different state machine becomes the critical path in
the current state machine, the list is emptied and a new critical path is created. The first
element of this critical path is a tuple of the shallow copy of the incoming critical path and
its current length when the shallow copy occurred. The current length is stored because
between the time when the critical path is begun (by a enqueue or dequeue) and finally
created (by a corresponding dequeue or enqueue), additional items could be appended to
that portion of the critical path for that state machine. If other items were added it wouldn’t
be possible to know where the interaction occurred. After a merge, simple tuples of three
items are added.

After all the data is processed this format can be turned into an array containing the
entire path. This is done by walking the list in reverse, at the state machine of interest,
appending each item found to a new list. Any time a shallow copy is found, the process
follows the copy. Eventually, a critical path will be found that has no more shallow copies
in it. When this occurs, the complete path has been found, and a huge number of deep
copies have been eliminated. This is illustrated in the code below:

CONVERT-CRIT-PATH(cp)

1 ncp← COPY(cp)

2 ncp.reverse()

3 while IS-SHALLOW-COPY(ncp[last])

4 do (jmpcp, jmplen)← ncp.pop()

5 next-chunk ← COPY(jmpcp[: jmplen]) � Copy first jmplen elements.
6 next-chunk .reverse()

7 ncp.extend(next-chunk)

8 ncp.reverse()

9 returnncp

It is worth noting that if the exact traversed path through the graph isn’t required and
only aggregate information is desired the same process can be applied; however, rather
than keeping a list of encountered edges, a single aggregate edge is stored and the total
time spent on that edge is incremented as nodes are processed.

67

5.1.5 Tracking Multiple Connections

The connection tracking information is used by the analysis program to provide two
functions. It is used to understand which state machines interact together. In a system
with multiple connections it can be useful to understand that state machine A on system X

communicates with state machine B on system Y . This is done by appending the current
connection ID to the data stored in the queue about each element. In this way connection
information flows through the queues binding together state machines. Some state ma-
chines operate on a single connection, while others operate on many or all connections in
the system. For example, in a system with only one NIC all connections must travel down
the same part of the network. Second, the connection tracking enables the calculation of
the correct critical path in a system with more than one connection.

Given a system that may contain multiple connections, it would not be sensible for one
connection of a critical path to traverse a state machine that never handled that connection.
To prevent this from occurring, the connection tracking must know which state machines
belong to a connection and which do not.

Broadly speaking, when a simulation begins, no state machines have connection infor-
mation. After a state machine uses an identify annotation to identify itself as a connection,
the connection information is then passed to other state machines the initial one interacts
with. This is done both through the queues and the non-queue state machine linking. Those
state machines, in turn, continue to pass the connection information to the state machines
they interact with and thus eventually all state machines of interest in the system have
connection information in them.

There are some cases in which the queue should not pass connection information. This
occurs when a state machine reuses an allocated resource, rather than creating a new one.
For example, the device driver may reuse NIC descriptors that were recently freed. How-
ever, in this case, the connection that previously used the descriptor and the connection that
will use the descriptor may not be related. Thus, the state machine should not assume the
old connection of the descriptor when it is dequeued. This can be done one of two ways. A
flag can be used on the queue operations to inform the analysis program that this is occur-
ring, or the names of queues that shouldn’t pass connection information can be otherwise
stored. The latter approach is currently used in the analysis program.

There is one more case in which the queue can not blindly pass connection information
between state machines. These cases occur when a state machine initializes a buffer of
elements before it has received a connection ID. A good example of this case is the TCP
send window. Initially, some number of bytes are available in the window, and thus they are
queued when the connection is set up; however, all these queues don’t have a connection

68

ID. Anytime this occurs the state machine would return to an unknown connection ID.
Thus, there are certain queues that should not reset the connection ID if they do not have
one. These queues are limited to queues that only interact with a single connection, such
as those that represent TCP windows. These queues are easy to recognize because the
connection information will never flow out of these state machines.

Critical paths are only created for state machines that have connection information.
Otherwise, it would be impossible to enforce the restriction that one connection’s critical
path can never traverse state machines that do not handle data for that connection. When
a state machine interacts with another state machine, that state machine’s critical path for
the current connection ID is merged with the incoming critical path, choosing the longest,
as described above.

5.2 Critical Path

The critical path analysis simply prints the critical path from beginning to end for each
connection. Along with the name of the edge, the cumulative time to the edge currently
being printed, the additional time the current edge added, and the amount of time the current
edge was executing but not active (another state machine like an interrupt must have been
active) is printed. Figure 5.2 provides an example of the data provided by this analysis.
Non-active time is not shown in the figure due to space constraints.

5.3 Most Critical States

The critical path analyzed in the previous section can be used to see what interactions
are traversed between the starting and ending state machines of interest. However, as it
grows in size, it becomes difficult to interpret the delays along the critical path quickly.
When this occurs a summary of the most important states along the critical path is desired.
The most critical states analysis accomplishes this by calculating the percentage of time
each state in the critical path contributes to the total critical path length. While every edge
in the critical path is distinct, the states that the edges correspond to are more than likely
repeated. This task is easily accomplished by summing the time spent in each distinct state
and dividing by the total length of the critical path. Generally, the analysis program prints
any state that corresponds to more than 1% of the critical path length.

An example of this analysis is presented in Figure 5.3. In this particular experiment the
system is bound by the CPU on the transmitting system. The majority of the critical path

69

Name Cumulative(ns) Inc(ns)
--- ----------- -------
testsys:Ip Send_0xc1880:__sched_text_end

2512 5
testsys:Ip Send_0xc1880:dev_queue_xmit

2515 3
testsys:Ip Send_0xc1880:pfifo_fast_enqueue

2523 8
testsys:Ip Send_0xc1880:Queue->testsys:Device TX_0x86e80:Peek[DeviceTxQ0xe86e80]

2558 34
testsys:Device TX_0x86e80:Peek__DeviceTxQ0xe86e80

2563 5
testsys:Device TX_0x86e80:dev_hard_start_xmit

2569 5
testsys:Device TX_0x86e80:e1000_xmit_frame

2609 40
testsys:Device TX_0x86e80:Dequeue__TX Free Descriptors0x2

2652 43
testsys:Device TX_0x86e80:Queue__TX Unused Descriptors0x2

2655 2
testsys:Device TX_0x86e80:pci_map_single

2655 0
testsys:Device TX_0x86e80:pci_dac_dma_supported

2656 0
testsys:Device TX_0x86e80:pci_map_single

2656 0
testsys:Device TX_0x86e80:pci_map_single_1

2657 1
testsys:Device TX_0x86e80:e1000_xmit_frame

2695 37
testsys:Device TX_0x86e80:Dequeue__TX Free Descriptors0x2

2696 1
testsys:Device TX_0x86e80:dprintk

2706 10
testsys:Device TX_0x86e80:Queue->testsys:TX Desc Fetch_0x2:Peek[TX Unused Descriptors0x2]

2706 0
testsys:TX Desc Fetch_0x2:Peek__TX Unused Descriptors0x2

2706 0
testsys:TX Desc Fetch_0x2:Resv__TX Descriptors0x2

2706 0
testsys:TX Desc Fetch_0x2:Prepare Fetch Desc

2756 50
testsys:TX Desc Fetch_0x2:Fetch Desc

9145 6389
testsys:TX Desc Fetch_0x2:Fetch Complete

9145 0
testsys:TX Desc Fetch_0x2:Dequeue__TX Unused Descriptors0x2

9145 0

Figure 5.2: Example of critical path analysis.

70

Most critical edges (time spent) on connection id 1 critical path:
--
testsys:TcpSendMsg_0xbd880:do_softirq 01.33 (99.58% waiting)
testsys:TXQ_2:Queue->drivesys:RXQ_1:Dequeue[WireQ] 02.01 (00.00% waiting)
testsys:TcpSendMsg_0xbd880:__kmalloc 02.35 (47.67% waiting)
testsys:TcpSendMsg_0xbd880:tcp_sendmsg 02.58 (17.51% waiting)
testsys:TcpSendMsg_0xbd880:__alloc_skb 05.11 (29.12% waiting)
testsys:TcpSendMsg_0xbd880:release_sock 12.74 (99.82% waiting)
testsys:TcpSendMsg_0xbd880:__copy_user 34.62 (31.82% waiting)
testsys:TcpSendMsg_0xbd880:tcp_push_one 34.75 (99.72% waiting)

Figure 5.3: Example of most critical analysis.

A0-A1 A1-A2 A4-A5 A5-A0 A0-A1 A1-A2 A4-A5

B0-B1 B1-B2 B2-B3 B5-B0 B0-B1 B1-B2 B2-B3

C0-C1 C3-C4 C4-C5 C5-C0 C0-C1 C3-C4 C4-C5

A5-A0

B5-B0

C5-C0

Time

Iteration 1 Iteration 2

Figure 5.4: Illustration of a resource dependence loop.

is composed of by the tcp push one() function that is mostly waiting as that function
instructs lower level TCP and IP state machines to transmit packets and copy user()

that does the user-to-kernel copy of the payload. In this case this function is interrupted by
the NIC interrupting the CPU to handle TCP acknowledgements.

5.4 Resource Dependence Loops

Although the most obvious way to eliminate a critical path is to reduce the latency of
the operations it contains, in some situations the critical path reflects a resource constraint
and can be removed without improving any operation latencies. This ability is particularly
useful when a feature that is out of the designer’s control, such as the network latency, is
the dominant component of the critical path. I have developed an automated technique for
identifying these situations in my analysis.

In resource-constrained environments, the critical path forms a repeating pattern, mov-
ing from one state machine to another and eventually returning to the initial state machine,
thus creating a “loop.” (Although the critical path is acyclic, it is often visualized by using
a representation in which different iterations of the same state machine are folded onto the

71

Most critical edges (resource loops) on critical path 1:
--
25 testsys:TcpRcvProcess_0xc1880:Queue->

testsys:TcpSendMsg_0xc1880:Dequeue[sndmemQ0x4c1880]

Figure 5.5: Example of resource dependence loop analysis.

same graph nodes, causing these edges to form a loop.)
Figure 5.4, illustrates a portion of a hypothetical dependence graph composed of three

interacting state machines: A,B, andC. A transfers data throughB to a buffer managed by
C, where it is consumed. C returns credits indicating the availability of buffer space to A.
If only one buffer is available at C, A must wait for a credit before each transfer. The solid
bold arrows in the figure indicate the true data dependence, while the dashed arrows from
C4 → C5 to A5 → A0 indicate A’s dependence on C’s flow-control credit and complete
the loop back to A. Assuming a unit weight on each edge, the path following the bold lines
from A0 → A1 of iteration 1 (in the upper left) to A5 → A0 of iteration 2 (in the upper
right) will be the critical path at a latency of 11 units.

If a second buffer is added to C, A can now send two units of data before requiring a
credit from C. This change modifies the dependence graph; A5 → A0 is now dependent
on the instance of C4 → C5 in the previous iteration rather than the same iteration. In
the figure, the dotted arrows replace the bold dashed arrows. The weight of the path from
A0 → A1 of iteration 1 through C and back to A5 → A0 of iteration 2 is now 5 units, and
the critical path between these nodes has shifted to the 7-unit path internal to A.

My analysis program automatically identifies these resource loops and presents them
to the user. The resource constraints I have identified with this technique include the NIC
device’s DMA descriptor rings, kernel socket buffers, and TCP window size parameters.

An example of the output provided by this analysis is shown in Figure 5.5. In this case
the transmitting system is limiting bandwidth on the link because not enough memory is
available to buffer transmitted packets in the socket until acknowledgements are received.

5.5 Predicting Speed-ups

All the state machine transitions and interactions that occurred—not just the ones that
compose the critical path—are contained in the dependence graph. Once the critical path
is identified, a user can reduce the weights on the edges in that path to identify the next
most critical path, and rerun the extended analysis on the recorded trace to find a whole
series of bottlenecks. The lengths of these additional critical paths relative to the original

72

drivesys:Device TX_0x16c80(270): set([1, 2, 3, 4])
drivesys:TXQ_0x1(271): set([1, 2, 3, 4])
testsys:RXQ_0x2(272): set([1, 2, 3, 4])
testsys:RX Desc Writeback_0x2(273): set([1, 2, 3, 4])
testsys:Ip Recv_0x38440(274): set([1, 2, 3, 4])
drivesys:TcpRcvProcess_0xa3880(275): set([2])
drivesys:TcpRcvProcess_0xa3280(297): set([1])
testsys:TcpRcvProcess_0xe3280(276): set([1])
testsys:TcpSendMsg_0xe3280(281): set([1])
testsys:TcpOutput_0xe3280(282): set([1])

Figure 5.6: Example of connection tracing analysis.

critical path quantify the potential speedup that can be achieved by eliminating an exist-
ing bottleneck. These additional critical paths can be extracted in a few minutes, and do
not require the user to have any idea how a particular bottleneck could be eliminated in
practice. In contrast, even with a simulator, measuring the speedup of bottleneck elimina-
tion directly would require determining a parameter adjustment or another modification that
would eliminate the bottleneck, prototyping that modification, and finally multiple hours of
running the simulation. Additionally, the resource dependence loops described above can
be eliminated by disallowing the critical path to traverse the edge identified by the resource
loop analysis. This, in turn, predicts the performance of the resource dependence being
completely removed by providing additional resources so it is no longer the bottleneck.

5.6 Connection Trace

This analysis option prints a list of all the state machines seen in the system and the
connection IDs that each state machine handled. It can be used to debug any connection
tracking issues, and provides a quick way to see which resources are shared and which are
allocated per connection.

An example of this analysis is shown in Figure 5.6. The first five state machines listed
belong to the device, driver, and receive processing portions of the system. Since there
is only one network interface in this experiment, all of the four present connections tra-
verse these state machines. On the other hand, the last four state machines are connection
specific. Two instances of the TcpRcvProcess state machine are shown, one for connec-
tion 1 and another for connection 2. Finally, three more state machines all belonging to
connection 1 are shown.

73

testsys:TcpSendMsg_0xbd880 6031us (98%)
-- testsys:TcpSendMsg_0xbd880:__copy_user 4314us
-- testsys:TcpSendMsg_0xbd880:__alloc_skb 661us
-- testsys:TcpSendMsg_0xbd880:tcp_sendmsg 391us
-- testsys:TcpSendMsg_0xbd880:__kmalloc 224us
-- testsys:TcpSendMsg_0xbd880:kmem_cache_alloc 180us
-- testsys:TcpSendMsg_0xbd880:loop 40us
-- testsys:TcpSendMsg_0xbd880:release_sock 35us
-- testsys:TcpSendMsg_0xbd880:Dequeue__sndmemQ0x4bd880 34us
-- testsys:TcpSendMsg_0xbd880:Queue__skSendQ0x4bd880 27us
-- testsys:TcpSendMsg_0xbd880:cache_alloc_refill 23us

Figure 5.7: Example of state machine information.

5.7 State Machine Information

The information recorded for the analysis is a superset of the information that would be
recorded by a profiler. As such, the analysis program is able to print out information about
each software state machine, how long it was active, and what the top N functions are in
that state machine. This analysis is particularly useful when a system is CPU bound. If it is
not possible to easily address any of the most critical states on the critical path, providing
an additional CPU may improve performance.

For example, in Figure 5.7 the TcpSendMsg state machine for a connection is shown.
This one state machine occupied a little over 6ms of total CPU time during the detailed
experiment that was used to generate it. Out of the 6ms this state machine was active for
98% of the time, which is captured by the top 10 functions shown below. The most CPU
time was used by the copy user function which used 4.3ms.

5.8 Queue statistics

A great deal of information is collected about the queue while the analysis is running.
For each queue in the system, a page of histograms can be printed that show the occupancy,
the time state machines were waiting for space or data, communication latency, service
time, and arrival rate.

The statistics for the receive descriptor queue of the NIC are shown in Figure 5.8.

74

Figure 5.8: Example of queue statistics output.

75

IP/TCP

backlog
queue

pre
queue

App Socket/
TCP

TCP
Data

Ouput

Congestion
Window

Receive
Window

sk send
queue

Pending
ACKs

TCP
ACK

Output

device
queue

Nagle
Alg Q

packet
queueTCP

Receive
Process

sk recv
queue

App

Driver

Driver

Send
MemQ

Used
Descriptor
queue

Ready
Descriptor
queue

NIC
Descriptor
Fetch

NIC
Writeback
Fetch

Cached
Descriptor
queue

Cached
Descriptor
queue NIC TX

TX
FIFO

Used
Descriptor
queue

Ready
Descriptor
queue

NIC
Descriptor
Fetch

NIC
Writeback
Fetch

Cached
Descriptor
queue

Cached
Descriptor
queue

NIC RX
RX

FIFO

NIC TX
FIFO

NIC RX
FIFO

Driver
TX

Interupt

Free
Descriptor
queue

ucopy
queue

Figure 5.9: Graph of state machines and queues in Linux TCP/IP stack from NIC to appli-
cation.

5.9 Compact Graph Output

Graphical output can be useful to visualize the state machines, states, and interactions.
However, as mentioned earlier, the number of nodes present in a dependence graph can
easily exceed a million. Over 100 sheets of paper would be required to draw only 10,000
nodes, making visualization impossible. I have devised a number of graph outputs that limit
the nodes and edges while still containing a rich amount of information. These formats are
described below.

5.9.1 High-level Interaction

Another visualization option is to graph all the state machines and queues in the system
at a high level. This graph helps the user visualize which state machines are operating on
which queues and the end-to-end flow of the system from a high level. For example, the
graphic in Figure 5.9 contains automatically generated data.2

5.9.2 Global State Machine Graph

The graph analysis option prints a large graph of all the state machine and their inter-
actions. While the above techniques can quickly provide considerable data on the graph
structure for analysis, it’s also useful to visualize the graph to see how and where various
state machines interact. Unfortunately, as mentioned previously, the graph is far too large

2The images and links in the graph were reformatted for easier presentation as the analysis output simply
creates circles for state machines and squares for queues, and uses graphviz to lay out the nodes and arcs.

76

to visualize when the number of nodes exceeds a few thousand.
To cope with this problem, I created a graphical model that is a hybrid between a canon-

ical state machine graph and the dependence graph described in Chapter 4. Like the depen-
dence graph, nodes in the graph represent transitions and edges represent states; however,
there is only one node for each transition regardless of the number of times that transition
occurs at runtime. These transformations result in a graph that is much easier to visualize
and work with.

The nodes in this graph are labeled with the system they belong to and the transition
that is taking place. Edges are labeled with a state name and three numbers corresponding
to the number of entrances into that state, the time spent in that state, and the time on the
critical path spent in that state. The graphs are generated per connection and all the nodes
belonging to a single state machine have the same color. The edges are colored based on
the critical path. The red and blue components of the edge’s color are proportional to the
most critical edge and the most traversed edge, respectively. Because of the limitations of
the number of nodes that graphviz/dot can reasonably process at one time, the output is
limited to approximately 1500 nodes. The number of nodes in the graph is further reduced
by replacing straight line interactions with a single super-edge that represents multiple
transitions and states. Additionally, rarely traversed paths can be pruned from the graph if
it is still too large.

There are several graph invariants:

1. For every node in the graph, the sum of the entrance count of the outgoing edges
must be equal to the sum of the entrance count of the incoming edges.3

2. The time on the critical path in the node can not exceed the time spent in that node.

3. For every system and state machine, there exists only one node for any state transition
A→ B.

4. For any edge, there can be more than one edge corresponding to the same state.
Multiple state transitions can end up in state B, so an edge corresponding to state B
must be able to appear multiple times.

5. Inter-state-machine edges (dashed lines) do not represent any time spent executing
in a state machine but instead describe interactions between state machines. When a
state machine A reaches state X in which it is waiting for another state machine B to
reach state Z before it can continue, an inter-state-machine edge is placed between

3This count can be off by one due to the window in which data was recorded.

77

Figure 5.10: Example global state machine graph generated by the analysis program.

78

the successor of state X in state machine A and the node in state machine B that
begins state Z.

An example of the graph is presented in Figure 5.10. All the text that would normally
be present in the graph has been removed for clarity. When displayed on an interactive
terminal the user would be expected to zoom into portions of the graph that are considered
interesting.

5.9.3 Single State Machine Output

Instead of visualizing the entire graph at once the analysis program can output a single
state machine and the interactions it had with other state machines. This graph is much
smaller than the global graph described above, so it can be generated and manipulated in
a fraction of the time. However, it provides the same information contained in the global
state machine, albeit one state machine at a time. An example of this graph generated for
the transmit portion of the Ethernet device is presented in Figure 5.11.

5.10 Conclusion

This chapter has described the methods used to process the data provided by the sim-
ulator. In doing so, a useful representation is created that can be used for analysis and
can bypass directly creating the entire graph in memory, which would entail large space
requirements. Ultimately, further analysis is required to extract the useful information in
the graph and provide it to the user in an useable form. Several analyses are presented that
accomplish this task, such as the most critical states and resource dependence loops anal-
ysis. After processing up to hundreds of millions of nodes, the analysis program provides
a few hundred lines that describe the most critical portions of the system. It can then be
used to predict the performance that may be attained if those critical portions are modified
in some way.

79






































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































 























































































































Figure 5.11: Example single state machine graph generated by the analysis program.

80

Chapter 6

Application of Analysis

In this chapter, the technique and tool from the previous chapter are applied to find
bottlenecks in systems and predict performance after the bottlenecks are removed. With
this methodology, bottlenecks can be detected at all levels of the system, spanning both
hardware and software.

This chapter begins by looking at a simple UDP workload to show that the methodol-
ogy described previously can identify a hardware bottleneck and locate a bug in the Linux
2.6.13 kernel. Later in the chapter, TCP based workloads are analyzed and, finally the
overheads involved in a copy-engine are discussed. TCP, as described in Chapter 2, is
more complex protocol that, unlike UDP, provides reliable, in-order delivery. This tech-
nique described in the previous two chapters is able to find a sequence of bottlenecks and
to accurately predict the resulting performance after the bottlenecks are removed. From be-
ginning to end, the tool predicts an over 300% performance improvement from the baseline
system with only a single detailed experiment. These predictions are then validated with
additional simulation, and are found to be very accurate.

After analyzing a TCP streaming workload, the analysis moves to a more complex web
server workload that utilizes multiple connections. Bottlenecks in the web serving work-
load are located, the performance without the bottlenecks predicted, and the predictions are
validated.

Finally, the analysis returns to the TCP streaming workload. This time, the receive side
is analyzed and a the overheads involved in a DMA copy-engine are enumerated.

6.1 Simulation and Methodology

The M5 simulator [25], described in Chapter 3 is used to execute annotated software and
hardware models. For this work, I used the default M5 parameters with a few exceptions.

81

All simulated CPUs operated at 4 GHz and the I/O bus bandwidth was originally set to
that of a single (x1) PCIe lane, then changed (as described below) to the bandwidth of a
PCIe x4 channel. The I/O bridge latency was set to 100ns. All experiments involve two
systems connected with a single simulated Ethernet link, with a link delay of 350µs for the
streaming experiments and 500µs for the web server experiments.

In each experiment, M5 simulates the systems’ functionally as they boot a Linux 2.6.13
or 2.6.18 kernel and invoke the benchmark. Once the benchmark execution stabilizes, a
checkpoint is created. The simulation is restored from that checkpoint into a configura-
tion in which the server (the system under test) has a detailed CPU model and timing
memory system, while the client continues to execute functionally. The client’s effective
performance is scaled so that it is not the bottleneck. The detailed simulation is run for a
simulated 100ms, with annotations recorded after a 20ms warm-up period.

The critical path analysis is begun by choosing suitable starting and ending state ma-
chines. For the streaming workload, the path between the client and server applications
is measured. Similarly, for the web server workload the path between the request and re-
sponse components of the client application is measured. The critical path is determined
from the first time the starting state machine is entered to the last time the ending state
machine is entered within the simulation window. I use the term “most critical state” to
indicate the state in which the critical path spends the largest fraction of its time. The criti-
cal path indicates only the latency bottleneck, but for large transfers (much larger than the
network’s bandwidth-delay product), latency is inversely proportional to bandwidth. Thus,
by simulating sufficiently long intervals, the analysis program can predict the increase in
bandwidth caused by a change in the dependence graph by calculating the reciprocal of the
percent decrease in critical path length.

6.2 Streaming Benchmark Analysis

First, a streaming benchmark is analyzed. These benchmarks are frequently used for
performance analysis on real hardware and in simulation because they quickly provide a
uniform, steady-state measurement of the bandwidth between the two systems.

6.2.1 UDP Streaming Benchmark

The first protocol that is analyzed is UDP, which is described in Chapter 2. The analysis
program is able to identify hardware and software bottlenecks in this workload, something
that a profiler would be unable to do.

82

testsys:TXS_0x2
Update Desc→Dequeue__TX Unused

Descriptor Cache0x2

testsys:TXS_0x2
Desc Writeback→Peek__TX Unused

Descriptor Cache0x2

27:Peek__TX Unused Descriptor Cache0x2(4606:0:0)
27:Resv__TX FIFO Q0x2(4606:0:0)
27:DMA Packet(4605:28068:0)
27:Update Desc(4605:0:0)

testsys:TXS_0x2
Dequeue__TX Unused Descriptor

Cache0x2→Queue__TX Used Descriptor
Cache0x2

testsys:TXS_0x2
Queue__TX Used Descriptor

Cache0x2→Queue__TX FIFO Q0x2

27:Queue__TX Used Descriptor Cache0x2(4606:194:0)

27:Dequeue__TX Unused Descriptor Cache0x2(4606:0:0)

testsys:TXS_0x2
Queue__TX FIFO Q0x2→Desc Writeback27:Queue__TX FIFO Q0x2(4606:0:0)

27:Desc Writeback(4606:383:0)
Descriptor Writeback

TX FIFO

TX Desc fetch

Figure 6.1: NIC Transmit State Machine – Global bottleneck graph

Hardware bottlenecks

In the first experiment, a Linux 2.6.13 kernel is utilized to send 16KiB UDP packets.
The I/O bus is configured to be a standard PCI Express x1 bus. This bus provides 2 Gbps
of peak I/O bandwidth. However, a fraction of this bandwidth is lost to bus arbitration. An
additional portion of the bandwidth is consumed by the NIC to manage DMA descriptors:
For each DMA transfer of actual network data, the NIC must read the descriptor corre-
sponding to that buffer, then update and write back the descriptor to mark it as processed.
In the case of an Intel e1000 compatible NIC these descriptors are normally 16 bytes long.
Finally, data may not always be ready to transfer when the bus is free, introducing idle
cycles that further reduce the effective bus bandwidth.

Simulating this configuration resulted in a bandwidth of 1.8 Gbps on the link. The
critical path analysis tool identified the NIC transmit and the NIC TX Descriptor Fetch
state machines as the primary bottleneck. The critical path spent 57% of the time in the
“Wait” state in the TX Descriptor Fetch state machine—a state that waits for commands
from the Transmit state machine—and 39% of the time was spent in the “DMA packet”
state of the Transmit state machine.

The transmit state machine portion of the combined graph for this experiment is shown
in Figure 6.1. All other state machines have been removed from the graph, and rarely
traversed paths of the transmit state machine have also been omitted for legibility. As
discussed in Section 5.9.2, each edge of the cgraph is labeled with the name of the corre-
sponding state in the original state machine and a 3-tuple indicating the number of visits
to that state, the total time spent in the state, and the time spent in that state on the critical

83

path.
The state machine operates by reading a locally cached descriptor, executing the action

specified (DMAing a packet), queuing the packet for transmission, updating the descriptor,
and repeating. The state machine interacts with three other state machines (dotted lines):
Descriptor Fetch, Descriptor Writeback, and TX FIFO state machines. The analysis clearly
indicates that the “DMA Packet” state is the most critical.

To verify this, the simulated system is modified, replacing the PCI Express 1x link with
a 4x link and re-running the experiment. The new bus has four times the bandwidth of the
original bus, so it should no longer be the bottleneck. Upon rerunning the experiment—
only changing the I/O bus—3.3 Gbps of bandwidth is observed on the link. The most
critical state was no longer in the NIC’s transmit state machine (and not in the NIC at all).

This I/O bus bottleneck would not be easily observed via software profiling, even given
detailed visibility into the kernel code. The profiler would see various kernel components
working steadily, since packets are still being sent at a fast rate. The only kernel indicator
that the DMA is a bottleneck would be the number of free DMA descriptors the driver has
available and the size of the device queue. However, an execution-time profiler would not
provide any insight to the size or occupancy of these structures.

Software and configuration bottlenecks

The analysis of the UDP workloads continues by looking at the software bottleneck that
is uncovered after replacing the PCI Express x1 bus with a x4 configuration. Here again,
the simulated system is still using a Linux 2.6.13 kernel and transmitting a 16KiB payload.
Since the 16KiB payload is larger than the MTU of 1518 bytes, it must be fragmented by
the IP layer. This is generally preferable to sending smaller UDP packets that don’t need to
be fragmented because the smaller packets require the application to perform more system
calls to send the same amount of data. These differences result in different paths through
the kernel and somewhat different critical paths.

The analysis program produced some unexpected results when analyzing the data from
the UDP experiment. When compared to other protocols, the UDP workload is simple and
one would expect the majority of the CPU time to be the user-to-kernel copy. However, the
results presented in Table 6.1 do not show this to be the case. A great deal of time is spent
waiting for the other state machines in the system to process the packet.

In an effort to resolve why so much time is spent waiting in the ip push pending-

frames state, the analysis program is instructed to remove the time spent in the ip-
push pending frames state and print the the next most critical path. The results of

this are presented in Table 6.2. The most critical non-waiting state, ip defrag, defrag-

84

State Criticality
testsys:Sys Send:ip push pending frames 53.73% (99.96% waiting)
testsys:Sys Send:do csum partial copy from user 30.69% (09.10% waiting)
testsys:Sys Send:alloc skb 4.77% (12.41% waiting)

Table 6.1: Most critical states Linux 2.6.13 w/netfilter

State Criticality
testsys:Ip Send:qdisc restart 32.57% (98.45% waiting)
testsys:Ip Send:ip defrag 6.26% (09.98% waiting)
testsys:Ip Send:memcpy 5.97% (09.80% waiting)
testsys:Ip Send: read unlock bh 04.68% (06.99% waiting)
testsys:Ip Send:do softirq 3.94% (99.36% waiting)
testsys:Ip Send:ip copy metadata 3.74% (17.61% waiting)
testsys:Ip Send:ipt do table 3.60% (11.12% waiting)
testsys:Ip Send:ip fragment 3.60% (07.88% waiting)
testsys:TXQ:Queue->drivesys:RXQ:Dequeue[WireQ] 3.17 (00.00% waiting)
testsys:Ip Send:nf iterate 2.45% (17.05% waiting)
testsys:Ip Send:dev queue xmit 2.30% (03.43% waiting)

Table 6.2: Next most critical states Linux 2.6.13 w/netfilter

ments IP packets. However, the system under test is the transmit side, which is expected
only to fragment packets. In fact, six rows below the ip defrag state there is an state
named ip fragment, which (with the help of some of the states in between) fragments
packets that are larger than the MTU. Looking at the global state machine graph or the
critical path confirms that the kernel is fragmenting the packet to be sent down the wire
and then almost immediately reassembling the fragments to pass them to the netfilter. This
order results in a large overhead, and is an error in the code; the netfilter should be in-
voked before the packet is fragmented. This problem was fixed in Linux 2.6.16, something
that I was unaware of when I began running experiments, but sought out after I found this
surprising result.1

This bug can be verified by running the same experiment with a newer Linux ker-
nel. Performance increases substantially. As such, all future experiments described in
this Chapter use Linux 2.6.18. Unlike the PCI bottleneck described above, these netfilter
bottlenecks are theoretically visible to a kernel profiler. However, the user-to-kernel copy
function is still by far the dominant item on a function-based profile, consuming roughly
five times more cycles than ip defrag. To discover this bottleneck with a profiler, a user
would have to realize that the UDP and IP stacks form a pipeline, then sum the time spent

1See http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;-
h=1bd9bef6f9fe06dd0c628ac877c85b6b36aca062.

85

in UDP functions and in IP functions separately to determine that the aggregate IP pro-
cessing dominates. This function categorization is not obvious, as it cannot be performed
solely based on function names. In contrast, the implicit-state-machine approach automat-
ically assigns functions to the appropriate state machine once the boundary between state
machines is properly identified and can even cope with a single static function being called
from multiple state machines. Thus, this technique provides a much more direct, reliable,
and automatic identification of the bottleneck.

6.2.2 TCP Streaming Benchmark

This subsection analyzes a TCP streaming benchmark developed at CERN called GenSink [41].
The GenSink benchmark is composed of two applications: (a) a generator that sends data
as quickly as possible over a single TCP/IP connection and (b) a sink that receives the data
and discards it. Both applications use blocking system calls for network I/O. In these ex-
periments, the generator system is the system under test and is simulated in detail, while
the sink is modeled only functionally.

The analysis begins with a detailed simulation of the benchmark on a baseline config-
uration (configuration 1). The analysis tool described in Chapter 5 is used to process the
trace generated by the annotations in this run to locate the bottleneck in the system. The tool
is then re-run, modifying the critical path calculation to model a hypothetical optimization
removing that bottleneck, to generate a new critical path. The length of this new critical
path predicts the performance of the optimized platform (configuration 2), and the path
itself predicts the bottleneck in that platform. The tool is then re-run a third time, including
both the prior modifications and a new set of modifications that address configuration 2’s
predicted bottleneck, so as to generate a new critical path and performance prediction for
the further optimized system (configuration 3). Finally, the tool is run a fourth time, pro-
ducing critical-path and performance predictions for a further optimized configuration 4.
To validate the tool’s predictions, detailed simulations of configurations 2–4 are then run.
The experimental results are presented in Figure 6.2.

The baseline configuration (configuration 1) sets the link bandwidth between the sys-
tems to 1 Gbps. The simulated systems achieve 1 Gbps, as shown by the dashed line in
Figure 6.2. The analysis program indicates that the critical path is through the NIC’s TX
FIFO state machine, which removes packets from the outbound FIFO buffer and places
them on the link. This result indicates that the link is indeed the bottleneck.

For configuration 2, I decide to address this bottleneck by increasing the link bandwidth
from 1 Gbps to 10 Gbps. This optimization should reduce the time spent transmitting on

86

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

()*+,-./0)*"%" ()*+,-./0)*"&" ()*+,-./0)*"'"

123-/4"5/*678639"

:.;6823;6"5/*678639"

Figure 6.2: Actual bandwidth and predictions made with the TCP streaming benchmark
beginning with configuration 1. Dotted line is bandwidth produced by initial configuration.

the Ethernet link by 90%, so I instruct my analysis tool to recompute the critical path based
on the configuration 1 dependence graph but with this modification. The tool predicts that
the critical path length would be reduced by 13%, which would increase the bandwidth of
the system to 1147 Mbps. This is shown in the leftmost bar group in Figure 6.2.

Examining the predicted critical path itself, I see that it goes back and forth between
state machines in the generator and sink systems, with the majority of time being the com-
munication latency between the systems (the Ethernet link latency). In the real world, this
network latency is typically out of the system designer’s control. However, the resource
dependence loop analysis, described in Section 5.4, identifies the queue that represents the
TCP send window to be the bottleneck. The TCP send and receive windows indicate the
buffer space on both sides of a TCP connection. Sender buffers are required to store copies
of all packets in case a re-transmission is required. Receiver buffers provide enough space
to buffer all the bytes in flight from the sender. When the buffers are smaller than the
bandwidth-delay product of the connection, they can limit performance. The analysis tool
predicts that for configuration 2, these buffer sizes are the bottleneck.

I then consider a configuration 3, which addresses this bottleneck by increasing these
buffer sizes. I instruct the analysis program to break the TCP resource dependence loop
that is limiting performance by ignoring the edge that completes the loop in the critical-path
calculation. With this change, combined with the 10 Gbps link modification for configura-
tion 2, my tool predicts the new bandwidth to be 1718 Mbps. This result is shown in the
figure as the first bar in the “Configuration 3” group.

87

The critical path from this analysis run is dominated by the NIC state machine that
DMAs packets from main memory, indicating the I/O bus bandwidth is the bottleneck. I
propose a configuration 4, which removes this bottleneck by increasing the I/O bus band-
width by a factor of 4, and instruct my analysis program to model this new system by re-
ducing the time spent in the DMA states by 75% (in addition to the previous modifications).
The length of the resulting predicted critical path indicates a bandwidth of 3491 Mbps (the
first bar in the “Configuration 4” group). The critical path itself identifies the user-to-kernel
buffer copy as the bottleneck. Because this copy takes place in software, this result indi-
cates that the benchmark is now CPU bound.

Each of the proposed configurations was simulated in detail and used to verify the
performance predictions. The detailed simulation of configuration 2, increasing the link
bandwidth to 10 Gbps, produced a bandwidth of 1289 Gbps (the first bar group), within
9.6% of the predicted performance. The error in the performance projection is due to
a change in the behavior of the transmit state machine.2 When a change in the system
produces a qualitative change in the way state machines behave or interact, the analysis
tool’s prediction cannot account for the impact of those changes since they are not captured
in the original dependence graph. Nevertheless, the tool did identify the correct bottleneck,
and the predicted bandwidth is still close enough to be useful even in the face of minor
changes in system behavior.

To validate the prediction for configuration 3, the TCP stack parameters were modified
and another detailed simulation was done. 3 The measured bandwidth increases, validating
the prediction of the bottleneck. Furthermore, the new bandwidth is 1705 Mbps (middle
bar group of Figure 6.2), within 1% of the predicted value.

Finally, configuration 4 is simulated, which increases the I/O bus bandwidth by a factor
of four. The measured bandwidth increases to 2992 Mbps (right-most bar group), validat-
ing the identification of the I/O bus as the bottleneck, with a 17% error on the predicted
bandwidth. The source of this error will be discussed shortly.

To further examine the accuracy of the analysis tools, I applied my analysis tool to the
dependence graphs generated by my annotations during the detailed simulations of con-
figurations 2–4. These results are presented in Figures 6.3 and 6.4. The tool verifies that
the actual critical paths were qualitatively the same as predicted by the original run.4 The

2The new TCP window bottleneck causes burstier behavior than seen in the original run as the sender fills
the window, waits for ACKs, then fills the window again. As a result of this burstiness, there is slightly more
overlap between the ACK delays and NIC processing than predicted.

3The values of the following Linux kernel parameters were increased: tcp rmem, tcp wmem, tcp mem,
rmem max, wmem max, rmem default, and wmem default.

4Of course, the quantitative difference in the actual and predicted critical paths matches the error in the
predicted bandwidths.

88

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

()*+,-./0)*"&" ()*+,-./0)*"'"

123-/4"5/*678639"

:.;6823;6"5/*678639"

Figure 6.3: Actual bandwidth and predictions made with the TCP streaming benchmark
beginning with configuration 2. Dotted line is bandwidth produced by initial configuration.

results of the configuration 2 simulation were used to predict the critical paths and perfor-
mance for configurations 3 and 4, giving 1725 Mbps and 3432 Mbps (1% and 15% error),
respectively. Using the result from configuration 3 to predict the critical path for config-
uration 4 projects a bandwidth of 3081 Mbps (3% error). Again, the critical paths were
qualitatively in agreement with the original predictions. The bandwidth predictions based
on these critical-path lengths are shown as the second and third bars in the corresponding
groups in Figure 6.2.

My speedup predictions for configuration 4 overestimate the actual bandwidth by 3–
17%. To identify the source of this error, I compared the critical paths produced by the
analysis program for the three predictions and the measured result. I traced the error to
a change in cache behavior at higher bandwidths. When the Linux e1000 NIC device
driver receives a small packet (such as the TCP ACKs the sink sends to the generator), it
copies the packet for processing by the TCP stack. This copy moves the data from main
memory (where the NIC DMA engine placed it) into the CPU’s cache. In the 1 Gbps
case, ACK packets remain in the cache until they are processed. However, as the data
rate increases, the cache footprint of the benchmark increases as well: More packets are
copied to kernel space for transmission (and buffered for potential retransmission), and
ACK packets arrive at a faster rate. This increased memory pressure tends to flush the
ACK packets out of the cache before they are processed. The resulting cache misses make
ACK processing approximately 10x more expensive than in the original experiment. Thus,
although the analysis program correctly identifies the state machines on the critical path, the

89

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

()*+,-./0)*"'"

123-/4"5/*678639"

:.;6823;6"5/*678639"

Figure 6.4: Actual bandwidth and predictions made with the TCP streaming benchmark
beginning with configuration 3. Dotted line is bandwidth produced by initial configuration.

latencies it uses for the ACK processing states are optimistic, so its predictions overshoot
the actual bandwidth. As successive experiments increase the bandwidth, this cache effect
increases gradually; hence I achieve increasingly more accurate predictions from the later
experiments.

Overall, I was able to correctly identify the top four performance bottlenecks using the
initial 1 Gbps experiment, and predict the bandwidth increase achievable by removing the
first three bottlenecks with accuracies ranging from 1% to 17%. Additionally, in all cases,
all predictions and validations agreed on the bottlenecks and critical paths. The analysis
program produced each of these predictions by reprocessing the annotation trace from the
original simulation in under 5 minutes, which is orders of magnitude less CPU time than
was required for all of the detailed simulation results. Furthermore, the workload was not
CPU limited until the final bottleneck, so conventional software profiling tools would not
have identified these bottlenecks.

6.3 Web Server Analysis

The techniques described are not limited to a single connection or a single core. To
illustrate its applicability to multi-processor, multi-connection workloads, this section ana-
lyzes a web server. For this workload, the lighttpd web server is used, which powers several
of the world’s biggest web sites, including YouTube, Wikipedia, and Meebo [19]. The web
server is stressed with a modified Surge [34] web client to request large files ranging from

90

0!

1000!

2000!

3000!

4000!

5000!

6000!

7000!

Connection 1! Connection 2! Connection 3! Connection 4! Overall!

B
a
n

d
w

id
th

 (
M

b
p

s)
!

Original Bandwidth!

Predicted Bandwidth!

Actual Bandwidth!

Actual Bandwidth (+extra core)!

Figure 6.5: Actual bandwidth and predictions for four connections on web server.

500kB to 4MB. The URLs are requested in the same order in each experiment, and the
initial checkpoint is created after the same number of HTTP responses have been received.
The number of connections to the web server is limited to four to allow the results to be
more easily analyzed and presented. However, the methodology and web server are both
capable of handling more that four connections at a time. Since my primary interest is in
the networking behavior, I reduced M5’s simulated disk delay to a point at which it was no
longer a bottleneck in this workload.

The web server was first simulated the lighttpd workload running on a single core.
The resulting total bandwidth is 4.8 Gbps, shown in Figure 6.5. Using the data produced
by the annotations during this run, the analysis program constructed four critical paths,
one for each connection. The paths are nearly identical; the bandwidths of the individual
connections range from 1130 Mbps to 1267 Mbps. The analysis program identified the
primary latency in each of the connections to be communication delays inside the kernel
on the web server machine. Furthermore, the resource-loop analysis points to the TCP stack
parameters as the bottleneck. A software profiler would be unable to pinpoint the TCP stack
parameters as the primary bottleneck, nor would it be able to identify the communication
latency in the TCP stack as limiting performance.

In the real world, the server designer typically does not have control over the client’s
TCP stack parameters, so I chose not to address this bottleneck in that fashion. I instead
attempted to reduce the communication latency in the server. This latency stems from the
fact that the lighttpd web server is a single-threaded process that uses non-blocking I/O.
The server handles a single connection until it is blocked (because it either has satisfied the
request or is unable to continue due to a resource limitation, such as a full socket buffer)
before moving on to the next connection. The latency observed is the time taken by the
server thread to return to servicing a blocked connection after that connection becomes

91

ready. I hypothesize that adding an additional core running an additional lighttpd process
and distributing the connections among the two processes should reduce the communica-
tion latency substantially.

This optimization is modeled by noting that in the baseline system, with four connec-
tions on one core, each connection must wait for three others before being serviced. With
an additional core, the system will have two connections per core, so each connection will
wait on only one other, a two-thirds reduction. Thus, I instruct my tool to predict the per-
formance of the system with two-thirds of the relevant communication delay removed from
each connection. The resulting critical paths predict per connections ranging from 1407 to
1670 Mbps, for a total bandwidth of 6.2 Gbps.

To validate these results, I added a second core to the simulated system and a second
copy of the web server for that core. The resulting total bandwidth is 5.8 Gbps, 6% lower
than the analysis tool’s prediction. The analysis tool overestimates the bandwidth improve-
ment for two reasons. First, decreasing the wait time by two-thirds does not account for
the overheads of a multicore system, such as coherence effects and lock contention (par-
ticularly in the NIC driver). Second, because the system still contains only one network
interface, NIC interrupt handling and TCP receive processing are isolated to just one of the
two CPUs. This asymmetric loading causes two of the connections (those on the interrupt-
handling CPU) to have much lower bandwidth than the tool predicted, with the other two
having much higher bandwidth, as can be seen in Figure 6.5. While these asymmetries
nearly cancel out, the inefficiency of this uneven load balancing further degrades overall
performance.

To determine whether the tool’s per-connection predictions are accurate in the absence
of this asymmetric interrupt interference, I add yet another core solely to handle NIC in-
terrupts and TCP receive processing. This arrangement allows for one core to be dedicated
to each of the two lighttpd processes without interference. The results obtained from this
experiment are also presented in Figure 6.5. The connections now behave more uniformly,
and my per-connection bandwidth predictions are much more accurate, particularly for the
individual connections (errors of 0%, 9%, 0%, and 3%) but also for the total bandwidth
(error of 3%).

6.4 Analyzing a Copy Engine

In section 6.2.2, several bottlenecks were addressed, yet the last discovered bottleneck—
the user-to-kernel copy—was left unaddressed. Here the system became CPU limited, and
the simple modification of parameters was unable to improve performance. To improve

92

performance, more CPU resources (additional or faster CPUs) are required or some of the
processing that the CPU is currently doing needs to be offloaded to specialized hardware.

6.4.1 Copy Engine Overview

A DMA copy-engine has been proposed to offload the user-to-kernel and kernel-to-
user copies in the network stack. However, while the copy-engine can easily parallelize the
copy, interfacing with the engine is another question. To be most useful, the copy must be
done asynchronously to the CPU execution. However, the asynchronous behavior is more
difficult to interface with. Copies need to be queued and then the kernel needs to find other
things to do while the copy is in progress.

Interfacing a copy engine with a kernel is not a simple task. Support for DMA copy
engines made it into the Linux kernel in version 2.6.18, and even their support is limited.
Due to the method that user applications employ to provide data to the kernel for transmis-
sion, it is difficult to make the user-to-kernel copy asynchronous. The data is provided to
the kernel via a pointer argument in a system call, and as soon as the system call returns
to the user program, the data pointer can be modified at will. Thus, the copy must occur
before control returns to the user program. While the DMA engine could be utilized for
this copy, there are not many tasks that the CPU could do while it waited for the copy to
complete, so there would be very little performance gain from this approach.

The kernel-to-user copy provides a little more flexibility for offloading. A user-level
application may frequently request enough data from a network socket so that a number
of packets (up to approximately 45) can be needed to satisfy a single request. Thus, while
the kernel is processing incoming packets, the previously received packets can be copied
to the user application buffers asynchronously. However, as the buffer fills, the the pipeline
of operations must drain.

Intel has recently provided such a copy engine on some of their server chipsets under
the name Intel I/O Acceleration Technologies (IOAT) and the driver for this device was
added to the kernel when copy-engine support was added to the Linux kernel. This copy
engine is a simple DMA engine that processes descriptors provided by the kernel driver. It
operates of physical addresses, so pages that are being copied to or from must be pinned in
memory. The latency to the copy engine (and thus cost of uncached read/write operations
to device registers) is reasonably high, so the driver that controls the device batches several
copies together before communicating them to the device.

93

CPU

L1 DL1 I

L2

Memory

I/O
Bridge

NIC

Disk
Controller

Copy
Engine

(a) Configuration 1

CPU

L1 DL1 I

L2

Memory

I/O
Bridge

NIC

Disk
Controller

Copy
Engine

I/O
Bridge

(b) Configuration 2

Figure 6.6: Evaluated copy engine configurations

6.4.2 Performance Evaluation

To evaluate the performance impacts and bottlenecks of a copy engine, I created a model
of the IOAT DMA engine for the M5 simulator. It is capable of interfacing with an un-
modified copy of the driver in Linux and is flexible enough to be connected to any location
in the memory hierarchy. The various locations in the memory hierarchy principally change
the latency for communicating with the device. These un-cached accesses can be quite
expensive, so the closer it is to the CPU, the faster the accesses occur and the less requests
the driver would need to batch together for a performance improvement.

Since the copy engine is only utilized for the receive side, the GenSink benchmark
was used (as used above in Section 6.2.2). However, in this case, the receive system is
evaluated. The methodology in this section is identical to the one presented in the previous
section and is not repeated.

In this section, two system configurations are evaluated. The first is a traditional NIC
attached to a standard I/O bus and a copy engine attached to that same bus. This config-
uration is a bit worse than the one that Intel provides, since the copy engine in the Intel
case is embedded within the north bridge and is shown in Figure 6.6(a). The GenSink
benchmark is run on the system with the copy engine removed to establish a baseline to

94

attempt to improve. The experiment results in a bandwidth received of 3.4 Gbps and the
analysis program shows that the system is CPU limited, particularly 68% of the critical
path is composed of the kernel-to-user copy5.

This result shows that if a copy engine could increase the speed of the copy or allow the
CPU to handle other tasks while the copy is progressing, a performance improvement may
be realizable. Next, the system with the copy engine is evaluated. Surprisingly, this system
produces a bandwidth of 2.6 Gbps, or almost 25% less than the system without the copy
engine! The critical path is now dominated by the copy engine reading and writing data.
This configuration increases the I/O bus bandwidth requirements by 3x over the system
without the copy engine since the data is being written to main memory through the I/O
bridge. Then, at some point later, it is being read from memory and re-written to a new
location.

To remedy this situation, I switch to the configuration presented in Figure 6.6(b). The
copy engine and NIC are now embedded within the CPU die and connect to the memory
hierarchy between the L1 and L2 caches. This increases the bandwidth available to the
copy engine and should improve performance.

The performance of the new configuration improves to 4.5 Gbps (a 33% improvement
over the original). Analyzing the new critical path emphasizes what I alluded to in the
overview sub-section: the overhead of communicating with the copy engine limits the per-
formance that can be realized from the device. The analysis program shows the communi-
cation latency, queueing up several requests to send to the copy engine, and then waiting
for copy engine to complete the copies and report back. Additionally, the analysis program
reports a resource dependence loop around the descriptors used to communicate copies to
the device. Unfortunately, in this case providing more resources is not an option. Each set
of copies is of limited length (about 65KB), and while it is true that if the copy was much
larger the overhead would shrink and the communication delay wouldn’t be as large of an
issue, this is not possible. If the copy engine is thought of as a pipeline, this means that the
pipeline is almost always in a state of filling or draining, but the copies aren’t long enough
to keep the system at a efficient state for very long. A great deal of time is spent waiting
for new copies to be received, and the CPU spins after issuing all the copies, waiting for
them to complete. While it would be possible for the CPU to do something else, much like
the transmission side, this is not a trivial optimization inside the kernel.

Recently, Large Receive Offload (LRO) has become popular. This technique limits the
amount of work the network stack must do by coalescing several data packets together

5A little under half of this time is spent in other portions of code taking interrupts since the copy is such
a long running operation

95

in the common case. In all implementations that I’m aware of, the data packets from
multiple packets are combined in one through the use of pointers. Thus, while a single
packet contains more data, limiting the work that the stack must do, the data is fragmented.
This is unfortunate, because it still would require the same number of individual copies
by the copy engine. A NIC that was able to reassemble the data fragments of incoming
packets would have the advantage that kernel-to-user copies would be much more efficient.
Implementations with a copy engine would require less communication for the copies to
take place, and implementations that used a standard memory copy would be improved
because a simple prefetcher could easily prefect data for the copy.

6.4.3 Kernel Bug

In doing the evaluation discussed above, several experiments produced bandwidths that
were surprisingly low. I evaluated the etherenet traces that were produced by the low-
performing experiments and saw that a duplicate acknowledgemetn was being sent by the
receiving system. A duplicate acknowledgment normally means that a packet was lost in
route from sender to receiver and instructs the sender to enter a fast retransmit mode which
resends the packet immediately as well as limits the bandwidth on the connection to prevent
future drops (assumed to be because of congestion). However, the trace data recorded from
the simulations didn’t show any state machines entering states in which they would drop or
otherwise not deliver packets.

With the ethernet trace showing when the acknowledgment packet and duplicate ac-
knowledgement were sent and the trace data available, I was able to trace the two acknowl-
edgements back to where they were generated in tcp rcv established(). When
TCP receive copy offload is enabled and tcp dma early copy() is successful copied
early is set to true. This causes tcp cleanup rbuf() to be called early, which can

send an acknowledgment. Further along in tcp rcv established(), tcp ack-

snd check() is called and will schedule a delayed acknowledgement. If no packets are
processed before the delayed acknowledgment timer expires, the packet will be acknowl-
edged twice. I submitted a patch to the Linux kernel that addressed this issue and it has
been included in the kernel6.

6http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;
h=53240c208776d557dba9d7afedbcdbf512774c16

96

Chapter 7

Related Work

There is a large body of work on performance analysis and critical path analysis that
is related to this work. Generally, these related works fall into three categories: (1) work
that uses a critical path graph to analyze a particular system; (2) work that uses profilers
to locate software bottlenecks; and (3) work that uses other means to analyze a complex
system.

7.1 Critical Path Analysis

A prerequisite for critical path analysis is a dependence graph representing timing con-
straints. This section presents a subset of the research to create dependence graphs for a
specific domain. Creating a model in this manner requires a great deal of knowledge about
the domain in question; it is both difficult and time consuming.

Fields et al. have developed a relatively simple model from scratch for an out-of-order
execution pipeline [42]. The authors’ principal concern is the granularity of instructions;
their goal is to find which instructions are critical to better apply scheduling and specula-
tion policies. They further show that with slack—a measurement of how much a particular
event can be delayed without affecting performance—they can make decisions about which
instructions to delay in a resource or technologically constrained system [43]. Finally, the
authors seek to understand which instructions interact positively or negatively and ulti-
mately lead to increased execution time [44]. Tune et al. [45] propose a more direct offline
method for quantifying criticality and measuring slack as well as creating a new metric,
tautness, which measures how critical an instruction is.

Nagarajan et al. extends Fields’ work to the TRIPS architecture [46]. Here Fields’ origi-
nal model is expanded to encompass some of the unique features of the TRIPS system. The
block execution model and network links are modeled, increasing the number of dependen-

97

cies and interactions at any given time. The focus in this study shifts from instructions to
micro-architectural events as they examine how an application uses the resources of the
TRIPS architecture.

Barford and Crovella have developed such a model for TCP [47]. They create a Packet
Dependence Graph by observing traces collected at the endpoints of a given TCP con-
nection. Their tool simulates the TCP stack on the two end points, allowing them to know
what state the stack is in when packets are sent or ACKs are received. They then apply their
system to HTTP transactions with a very coarse granularity (propagation, server, timeout,
client, etc).

In the MPI domain, Yang and Miller [48] have developed a methodology to build a
program activity graph based on message and synchronization calls. Their methodology is
based on instrumenting well-defined interfaces to record events. Unfortunately, since many
of the components in the systems I am interested in interact via custom interfaces (e.g., the
DMA descriptors between the driver and NIC), this method isn’t feasible in my work.
This methodology is expanded upon by Hollingsworth and Miller, who have developed
several metrics to guide users to performance problems including: Slack, True Zeroing,
and Logical Zeroing [49, 50].

7.2 Profilers

Applications are frequently profiled with tools such as gprof [51] in an effort to im-
prove the slowest parts of the code. This profiling is either timer based, in which the
location of the program counter is recorded at some interval, or call/return based, in which
additional code is added to the binary to record the time spent in each function and provide
a call graph. Although invaluable to application developers, many profilers are limited to
application code only. There are a handful of profilers that allow inspection of both appli-
cations and kernels such as OProfile [52] or er kernel [53]. These kernel profilers are timer
based, reporting a histogram of the location—functions in applications or the kernel—over
some number of samples. Unlike application only profilers, they generally do not provide
program flow information, and because of interrupt priorities they cannot observe critical
section and other areas of the kernel that execute at the highest interrupt priority level.

98

7.3 Other Related Work

The Magpie [54] project at Microsoft Research sought to gather fine grained traces of
a large number of software components across multiple systems, attribute the events in
the trace to an initial request, and use machine learning techniques to find anomalies in
the normal execution for real-time performance debugging. The goal was not to improve
performance from the baseline, but instead to find problems in a real system as it ran and
correct it to the baseline.

In a similar work, Tierney et al. [55] attempt to diagnose performance problems in com-
plex high-performance systems. They use a combination of application modifications and
kernel logging to gather end-to-end information about the system, time stamping important
events as they happen. Visualization tools process the events to diagnose problems in a real
system. This is done by presenting the user with “life lines” of important events moving
through the system. It is up to the user to identify patterns or delays that are suspicious and
investigate them further.

Aguilera et al. [56] attempt to find causal paths between messages by passively record-
ing the traffic between systems and without any instrumentation in the machines them-
selves. The collected network traces are analyzed to find patterns and attempt to infer
request patterns. They are able to identify the node in a distributed system (for example the
database server for a website) that is the largest source of latency in responding to a request;
however, their technique does not provide any information about the machine itself.

Azizi et al. created a simulator that symbolically simulates programs [57]. When exe-
cuting a benchmark, rather than simply accumulating elapsed time due to various latencies
in the architecture, it produces an expression containing variables (or symbols) that identify
each latency. Their simulation engine can then algebraically compute the execution time
and provide an equation that describes the runtime of a benchmark as a set of variables,
each of which represents the performance of some aspect of the processor. This allows
them to quickly estimate the performance of a huge range of parameters that otherwise
would be computationally impossible. My approach to predicting performance is similar;
however, I measure latencies of large groups of micro-architectural events. Instead of ex-
plicitly maintaining an algebraic expression that predicts performance, I maintain enough
data about the observed latencies to alter them and observe the outcome.

In their Vertical Profiling work, Hauswirth et al. [58] find the root cause of performance
problems that span several layers of software. They use software performance monitors
coupled with hardware counters to understand system behavior. In their work, the user
must identify particular software event(s) and hardware counters to monitor while being

99

careful not to significantly perturb the system. Additionally, because the information at
various levels is gathered separately, the user must correlate the data by hand.

100

Chapter 8

Conclusion and Future work

Architects today are increasingly turning their attention to system-level issues for both
performance and power. This trend is largely driven by the increasing dominance of I/O-
intensive applications. Most tools today still focus on improving overall efficiency of pro-
cessors; few tools exist to aid system designers in understanding the complex interactions
of the various components in a complete system.

This dissertation addresses this need by developing a novel methodology for applying
critical-path analysis to complete systems composed of concurrent components and span-
ning multiple layers of hardware and software. The demonstrated technique can capture
dependence information from all levels of a system, and build a dependence graph that can
be analyzed to locate bottlenecks.

The analysis tool that I have developed is capable of using this dependence graph to
identify the bottlenecks in the system, locate critical resource dependence limitations, and
predict the performance of a hypothetical system with the bottleneck removed or additional
resources added. This predictive capability of the tools and techniques described within
allows system architects to determine, in minutes, the results that can be expected for a
particular optimization. The optimization being evaluated doesn’t need to be realizable
in any way—in fact, no way to achieve the optimization may be known—and crucially a
prediction can be made without designing, implementing, and evaluating a system. This
allows for a shortening of the design loop, as a prediction can be made in minutes. Finally,
the analysis can be applied iteratively to identify the best course of action for fixing the top
performance problems in a system.

The power of the techniques described has been shown by evaluating several network-
ing workloads. I have shown that an end-to-end dependence graph can be constructed,
bottlenecks identified, and performance predicted. Additionally, with little effort, the tool
can be extended to analyze other sub-systems and applications.

101

I believe that the technique and tools described here can greatly assist architects by
replacing ad hoc methods based on intuition with a rigorous methodology for both locating
initial bottlenecks and rapidly predicting performance if a given bottleneck is removed.

8.1 Future Work

There are three directions in which this work could evolve. The first area is the introduc-
tion of additional automation for locating interactions and state machine boundaries. The
second area is in the application of these techniques outside of a simulated system. Finally,
this research could be applied to different systems and problems such as VM overheads
and the composition of VM instances.

8.1.1 Automation

Although my current manual method of annotating state machines does a reasonable
job—the TCP/IP stack in the Linux kernel can be annotated in a few days—I would like
to automate the process. Research such as Mysore et al.’s Data Flow Tomography [59]
deals with tracking the source of every memory location in the system. With this tracking
system, it is possible to know the history of each byte. This information could be used to
see which state machines interact, in what order they interact, and exactly where the inter-
actions occur. This information could be used to quickly guide users to the locations that
need annotation, however it may be possible for tools such as these to provide automated
annotation in many cases.

8.1.2 Real Systems

The work described in this thesis has been carried out with the aid of a full-system sim-
ulator. While this is a reasonable choice, given that in its current form this technique will
be most useful to architects as they explore platform designs, it may also be useful for real
systems. This would allow larger workloads to be analyzed than is possible in a simulation
and data to be collected for longer amounts of time. I believe that the techniques dis-
cussed in this study could be applied to real systems using instrumentation toolkits such as
DTrace [1] or Linux Trace Toolkit [60]. In this case the observability of hardware devices
would be significantly limited; however, as more systems continue to be built by layering
on previous abstractions, interactions between software layers could be analyzed and im-
proved. The major challenge to implementing this analysis on a real system is the overhead

102

introduced by the annotations and the amount of data recorded. Techniques would have to
be developed that minimize the intrusiveness of the instrumentation and limit the amount
of data that is recorded. Additionally, if the analysis spanned multiple machines a form of
time synchronization would be required.

8.1.3 Different Systems

In this work I only look at the network aspects of workloads. It should be straightfor-
ward to analyze other aspects of interesting workloads such as storage or virtual memory.
Other than annotating the additional parts of the relevant workloads, it is probable that
new shared data structures would need to be developed. Many operations in the storage
hierarchy are not done in a first-come first-serve order, but instead are grouped together by
algorithms like elevator scheduling. The annotations would need to understand the other
ordering schemes and it may be interesting to understand how the ordering affects the criti-
cal path. This would probably entail generalizing the enqueue/dequeue interface to support
other orders, probably utilizing the flags that are currently ignored. With virtual machines
becoming ever more popular, using critical path analysis to better understand the overheads
involved in virtualization, especially of I/O devices, is also a promising direction.

There is also potential for wholly different applications of this work. It’s possible that
this research could be the foundation to estimate performance in a system when more re-
sources are added or workloads composed. For example, the critical path could be ana-
lyzed for areas of computation that could—in principle—be run simultaneously, possibly
predicting the performance of an optimized application running on multiple processors.
Additionally, it may be possible to predict the performance of composing multiple VMs in
a single machine or other similar analysis.

103

Bibliography

104

Bibliography

[1] B. Cantrill, “Hidden in plain sight,” Queue, vol. 4, no. 1, pp. 26–36, 2006.

[2] W. Feng et al., “Optimizing 10-Gigabit Ethernet for networks of workstations, clus-
ters, and grids: A case study,” in Proc. Supercomputing 2003, Nov. 2003.

[3] D. Kegel, “Mindcraft redux.” http://www.kegel.com/mindcraft_redux.
html, Jan. 2003.

[4] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the new millen-
nium,” IEEE Computer, vol. 33, pp. 28–35, July 2000.

[5] Transaction Processing Performance Council, “Tpc benchmarks.” http://www.
tpc.org.

[6] Standard Performance Evaluation Corporation, “SPECweb99 benchmark.” http:
//www.spec.org/web99.

[7] K. G. Lockyer, An Introduction to Critical Path Analysis. Pitman Publishing Co.,
1964.

[8] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt, “Integrated network interfaces for
high-bandwidth TCP/IP,” in Proc. Twelfth Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XII), pp. 315–324, Oct.
2006.

[9] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz, and S. K. Rein-
hardt, “Performance analysis of system overheads in TCP/IP workloads,” in Proc.
14th Ann. Int’l Conf. on Parallel Architectures and Compilation Techniques, pp. 218–
228, Sept. 2005.

[10] J. C. Mogul, “TCP offload is a dumb idea whose time has come,” in Proc. 9th Work-
shop on Hot Topics in Operating Systems, pp. 25–30, May 2003.

[11] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell,
L. Cline, and A. Foong, “TCP onloading for data center servers,” IEEE Computer,
vol. 37, pp. 48–58, Nov. 2004.

105

[12] A. P. Foong, T. R. Huff, H. H. Hum, J. Patwardhan, and G. J. Regnier, “TCP per-
formance re-visited,” in Proc. 2003 IEEE Int’l Symp. on Performance Analysis of
Systems and Software, pp. 70–79, Mar. 2003.

[13] J. Chase, High Performance TCP/IP Networking, ch. 13, “Software Implementation
of TCP”. Prentice-Hall, 2003.

[14] J. Postel, “RFC 791: Internet protocol,” Sept. 1981. http://www.ietf.org/
rfc/rfc791.txt.

[15] J. Postel, “RFC 768: User datagram protocol.” http://www.ietf.org/rfc/
rfc768.txt, August 1980.

[16] J. Postel, “RFC 793: Transmission control protocol.” http://www.ietf.org/
rfc/rfc793.txt, Sept. 1981.

[17] J. Nagle, “RFC 896: Congestion control in IP/TCP internetworks.” http://www.
ietf.org/rfc/rfc896.txt, January 1984.

[18] V. Jacobson, “Re: query about tcp header on tcp-ip.”
ftp://ftp.ee.lbl.gov/email/vanj.93sep07.txt, September 1993.

[19] J. Kneschke, “lighttpd.” http://www.lighttpd.net.

[20] Apache Software Foundation, “Apache HTTP server.” http://httpd.apache.
org.

[21] R. C. Bedichek, “Talisman: Fast and accurate multicomputer simulation,” in Proc.
1995 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems,
pp. 14–24, 1995.

[22] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich, “FLASH
vs. (simulated) FLASH: Closing the simulation loop,” in Proc. Ninth Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
IX), pp. 49–58, Oct. 2000.

[23] B. Black and J. P. Shen, “Calibration of microprocessor performance models,” IEEE
Computer, vol. 31, pp. 59–65, May 1998.

[24] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental error in mi-
croprocessor simulation,” in Proc. 28th Ann. Int’l Symp. on Computer Architecture,
pp. 266–277, 2001.

[25] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt,
“The M5 simulator: Modeling networked systems,” IEEE Micro, vol. 26, pp. 52–60,
Jul/Aug 2006.

[26] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete computer system
simulation: The SimOS approach,” IEEE Parallel & Distributed Technology, vol. 3,
pp. 34–43, Winter 1995.

106

[27] L. Schaelicke and M. Parker, “ML-RSIM reference manual.” http://www.cse.
nd.edu/˜lambert/pdf/ml-rsim.pdf.

[28] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Halberg, J. Hogberg,
F. Larsson, A. Moestedt, , and B. Werner, “Simics: A full system simulation plat-
form,” IEEE Computer, vol. 35, pp. 50–58, Feb. 2002.

[29] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future microprocessors: the
SimpleScalar tool set,” Tech. Rep. 1308, Computer Sciences Department, University
of Wisconsin–Madison, July 1996.

[30] R. E. Kessler, “The Alpha 21264 microprocesor,” IEEE Micro, vol. 19, pp. 24–36,
March/April 1999.

[31] High Performance Technical Computing Group, “Exploring Alpha Power for
Technical Computing,” April 2002. http://h18002.www1.hp.com/
alphaserver/download/wp_alpha_tech_apr00.pdf.

[32] L. W. McVoy and C. Staelin, “lmbench: Portable tools for performance analysis,” in
USENIX Annual Technical Conference, pp. 279–294, 1996.

[33] Hewlett-Packard Company, “Netperf: A network performance benchmark.” http:
//www.netperf.org.

[34] P. Barford and M. Crovella, “Generating representative web workloads for network
and server performance evaluation,” in Proc. 1998 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Computer Systems, pp. 151–160, 1998.

[35] L. R. Hsu, A. G. Saidi, N. L. Binkert, and S. K. Reinhardt, “Sampling and stability
in TCP/IP workloads,” in Proc. First Annual Workshop on Modeling, Benchmarking,
and Simulation, pp. 68–77, June 2005.

[36] P. S. Panchamukhi, “Smashing performance with OProfile,” Oct. 2003.
http://www-106.ibm.com/developerworks/linux/library/
l-oprof.html.

[37] A. R. Alameldeen and D. A. Wood, “Variability in architectural simulations of multi-
threaded workloads,” in Proc. 9th Int’l Symp. on High-Performance Computer Archi-
tecture (HPCA), pp. 7–18, Feb. 2003.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs:
Characterization and methodological considerations,” in Proc. 22nd Ann. Int’l Symp.
on Computer Architecture, pp. 24–36, June 1995.

[39] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

[40] J. K. Hollingsworth, “An online computation of critical path profiling,” in Proc. SIG-
METRICS Symp. on Parallel and Distributed Tools (SPDT’96), pp. 11–20, 1996.

107

[41] J. Sørensen, “gensink.” http://jes.home.cern.ch/jes/gensink/.

[42] B. Fields, S. Rubin, and R. Bodı́k, “Focusing processor policies via critical-path pre-
diction,” in Proc. 28th Ann. Int’l Symp. on Computer Architecture, pp. 74–85, May
2001.

[43] B. Fields, R. Bodı́k, and M. D. Hill, “Slack: maximizing performance under techno-
logical constraints,” in Proc. 29th Ann. Int’l Symp. on Computer Architecture, pp. 47–
58, 2002.

[44] B. A. Fields, R. Bodı́k, M. D. Hill, and C. J. Newburn, “Using interaction costs for
microarchitectural bottleneck analysis,” in Proc. 36th Ann. Int’l Symp. on Microar-
chitecture, pp. 228–239, Dec. 2003.

[45] E. Tune, D. M. Tullsen, and B. Calder, “Quantifying instruction criticality,” in Proc.
11th Ann. Int’l Conf. on Parallel Architectures and Compilation Techniques, p. 104,
2002.

[46] R. Nagarajan, X. Chen, R. G. McDonald, D. Burger, and S. W. Keckler, “Critical path
analysis of the TRIPS architecture,” in Proc. 2006 IEEE Int’l Symp. on Performance
Analysis of Systems and Software, pp. 37–47, Mar. 2006.

[47] P. Barford and M. Crovella, “Critical path analysis of TCP transactions,” in Proc.
SIGCOMM ’00, pp. 127–138, 2000.

[48] C.-Q. Yang and B. P. Miller, “Critical path analysis for the execution of parallel and
distributed programs,” in Proc. 8th Int’l Conf. on Distributed Computing Systems,
pp. 366–373, June 1988.

[49] J. K. Hollingsworth and B. P. Miller, “Slack: A performance metric for parallel pro-
grams,” Tech. Rep. 1260, Computer Sciences Department, University of Wisconsin-
Madison, Dec. 1994.

[50] J. K. Hollingsworth and B. P. Miller, “Parallel program performance metrics: a com-
prison and validation,” in Proc. 1992 Int’l Conf. on Supercomputing, pp. 4–13, Nov.
1992.

[51] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler,” in Proc. ACM SIGPLAN 1982 Symp. on Compiler Construction, (New York,
NY, USA), pp. 120–126, ACM Press, 1982.

[52] J. Levon, “OProfile.” http://oprofile.sourceforge.net.

[53] Sun Microsystems, “Performance analyzer: er kernel.” http://docs.sun.com/
app/docs/doc/819-5264/afaht?l=sv&a=view.

[54] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: on-line modelling and
performance-aware systems,” in 9th Workshop on Hot Topics in Operating Systems
(HotOS IX), pp. 85–90, May 2003.

108

[55] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter, “The net-
logger methodology for high performance distributed systems performance analysis,”
in Proc. 7th Int’l Symp. on High Performance Distributed Computing, (Washington,
DC, USA), p. 260, IEEE Computer Society, 1998.

[56] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen,
“Performance debugging for distributed systems of black boxes,” in Proc. Nineteenth
ACM Symp. on Operating System Principles (SOSP), pp. 74–89, 2003.

[57] O. Azizi, J. Collins, D. Patil, H. Wang, and M. Horowitz, “Processor performance
modeling using symbolic simulation,” in Proc. 2008 IEEE Int’l Symp. on Performance
Analysis of Systems and Software, pp. 127–138, Apr. 2008.

[58] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical profiling: under-
standing the behavior of object-oriented applications,” in Proc. 19th Ann. Conf. on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’04),
pp. 251–269, 2004.

[59] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood, “Understanding and visu-
alizing full systems with data flow tomography,” SIGARCH Comput. Archit. News,
vol. 36, no. 1, pp. 211–221, 2008.

[60] K. Yaghmour and M. Dagenais, “System administration: The Linux trace toolkit,”
Linux J., vol. 2000, no. 73es, p. 22, 2000.

109

