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CHAPTER I

Introduction

This work develops new methods in spatial nonlinear stochastic filtering theory

and stochastic analysis. In particular, we examine a class of long range dependent

stochastic processes and random fields known as fractional Brownian motion and

fractional Brownian sheet. The literature on these processes has developed rapidly

in recent years. This is at least partially due to the fact that the long range depen-

dence phenomenon has been observed in empirical studies spanning a broad range

of disciplines.

Fractional Brownian fields make up a parametric family of processes that evolve

over an m-dimensional parameter space and are parameterized by a Hurst multi-

index, H, where H is an m-dimensional vector. Depending on the value of the Hurst

multi-index, our processes exhibit different levels of dependence. When H = 1
2

and m = 1, the process is a version of the classical Brownian motion which has

independent increments. As such, families of fractional Gaussian processes make up

a rich class of random fields to which classical Wiener processes belong.

As is well known, Wiener processes assign independent random measures to dis-

joint increments and exhibit martingale structure. While this makes Wiener pro-

cesses very attractive as tools to model many real world processes, there are several
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instances where it is not realistic to assume martingale structure or independence of

the process over disjoint increments. Under such circumstances, fractional Gaussian

processes and their more complex covariance structure are better suited to model

real world phenomena.

When Hurst parameter H > 1
2
, fractional Brownian processes exhibit long range

dependence. Such dependence arises often in applications ranging from network

communications, where internet traffic has been shown to exhibit long memory, to

macroeconomics, where the long range dependence paradigm has been used to ana-

lyze the effects of economic shocks on income cycles. Fractional Gaussian processes

are often used to model the long range dependence seen in these real world exam-

ples. It is important, therefore, that we are able to understand and work with the

processes. To this end, a large amount of stochastic analysis of fractional Brownian

motion has been done in recent years.

One area of stochastic analysis which is particularly useful in a variety of appli-

cations is that of filtering theory. It is often the case that one is able to observe

only a noisy version of some process of interest. In this setting one wishes to esti-

mate the underlying process of interest based upon the noisy observation process.

It is important, from the theoretical point of view as well as a more applied point

of view, that we are able to derive filtering techniques not only for processes dis-

torted by martingale noise, but also for processes exhibiting long memory. Modeling

processes as martingales allows one to take advantage of many of the nice mathe-

matical properties associated with such processes. For example, stochastic calculus

developed by Itô [12] which is employed in deriving optimal filtering equations, is

based on L2martingale structure. However, in real applications the martingale as-

sumptions are not always justified, hence the recent literature on filtering in the case
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of fractional Brownian motion noise [14], [5], [6].

Unlike classical nonlinear filtering theory, which is based on an observation model

where the observation noise is a single parameter martingale and the signal is a

one-parameter Markov process, this dissertation develops results in spatial nonlinear

stochastic filtering, where the signal and observation processes are random fields and

the spatial observation is distorted by noise in the form of a fractional Brownian

sheet.

The classical nonlinear filtering problem based on the model with single parameter

martingale noise has been studied by Kushner [17], Zakai [30], Fujisaki, Kallianpur,

and Kunita [11]. These papers describe the evolution of the optimal filter over time

in terms of stochastic partial differential equations. Many of the results in classical

nonlinear filtering have been extended to the setting where the noise is given by

fractional Brownian motion [14], [5], [6] rather than standard Brownian motion. In

such a model the observation noise is not a martingale.

Here we develop nonlinear filtering theory in the case when the observation noise

lacks not only martingale structure, but both our noise and signal processes are

random fields with multi-dimensional spatial parameters. Whereas in the one di-

mensional parameter space setting there is perfect ordering on R and a straight

forward way of defining martingale structure, in higher dimensions defining martin-

gale structure requires a bit more care. In fact, there are a variety of notions of

martingales in the plane. When investigating filtering problems in the plane, one

must take special care to ensure each notion of martingale can be applied in certain

circumstances.

In order to study the continuous nonliner filtering with multidimensional spatial

parameters, we apply the theory of stochastic integration in the plane developed by



4

Renzo Cairoli and John Walsh in 1975 [4]. In this very important paper, integration

with respect to two-parameter martingales was developed based on a partial ordering,

which will be used to define martingales in the plane.

Nonlinear filtering theory has applications in a wide range of areas. In finance

for example, asset prices represent a stochastic process driven by some underlying

value of the asset. The actual price of the asset in the market is based on the true

underlying unkown value, with observation process based on investors’ perception

of the assets’ value. Filtering of random fields is common in digital image analysis

[26]. Typical problems in image analysis involve image restoration, where one tries

to recover the true image from blurry or noisy observations of the given image.

In Chapter II, we develop stochastic evolution equations describing the dynamics

of the optimal filter in a general nonlinear filtering problem. Much of Chapter II is

also devoted to developing the theory that will be used through out the dissertation.

By solving the stochastic evolution equations, one can calculate the best estimate of

the signal process in the mean square error sense.

In Chapter III, we again investigate the nonlinear filtering problem described in

Chapter II. The main goal of Chapter III is to use theoretical methods in stochastic

analysis that make applying the filtering theory of Chapter II more feasible. Since

it is often the case that the evolution equations of Chapter II are extremely complex

and difficult to solve explicitly, we develop alternative representations of the optimal

filter. We arrive at representations of the optimal filter through infinite sums of

multiple stochastic integrals. These infinite sums can be truncated and discretized

in order to numerically implement the optimal filters.

Finally, in Chapter IV, we investigate new theoretical properties involving the

multiple integrals used in the integral expansions of the optimal filter described in
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Chapter III. Specifically, we look at the relationship between multiple stochastic

integrals with respect to standard Brownian sheet and multiple stochastic integrals

with respect to fractional Brownian sheet. We give an operator that allows one to

transform multiple Wiener integrals with respect to Brownian motion into multiple

fractional Wiener integrals with respect to fractional Brownian motion. Both types

of multiple integrals are used in the development of Chapter III and are therefore of

important interest from both theoretical and applied points of view.



CHAPTER II

Stochastic evolution equations for nonlilnear filtering of
random fields

2.1 Introduction

Filtering theory has long been studied by mathematicians, statisticians, scientists

and engineers as a way to estimate partially observed processes. The wide-ranging

applications of the theory make it a particularly useful area of study for many in

the physical sciences and engineering. The mathematical challenges arising in fil-

tering problems often lead to very interesting problems concerning the theoretical

underpinnings and structure of the specific model at hand. With so many available

applications, there are often new models arising which require slight or sometimes

major revisions to existing theory.

In several engineering and physical sciences settings, dynamical systems evolve in

space or often in space and time as opposed to random processes that evolve only

in time. In such cases we use random fields to model various dynamical systems.

Random fields are random processes that evolve over a parameter space T where T

may be a subset of Rd
+ with d ≥ 2, as opposed to single parameter random processes

that evolve over T where T = [0,∞) or T = [0, T ].

As in the case of single-parameter processes, there is often a need for estimation

techniques in dynamical systems that evolve randomly in space and are either cor-

6
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rupted by some random noise or are not directly obervable. One example arises in

image processing where denoising of images or video streams obviously requires a

multidimensional parameter space.

Mathematically, the goal of filtering is to characterize the conditional distribution

of an unobserved ”signal” denoted by (Xt, t ∈ T), given the observation σ-field

FY
t = σ{Ys, s ≺ t}. Equivalently we can study the conditional distribution of

suitable functions of the signal process, given the observation σ-field. In this chapter,

we study the dynamics of E[F (Xt)|FY
t ] for a large but sufficiently suitable class of

functions. We will examine the multiparameter, nonlinear filtering using the natural

observation model

(2.1) Y(t1,...,td) =

∫ t1

0

· · ·
∫ td

0

g
(
X(s1,...,sd)

)
ds1 . . . dsd +W(t1,...,td), (t1, . . . , td) ∈ T,

where g belongs to a suitable class of functions and W(t1,...,td) is a multiparameter

random ”noise.”

This chapter is devoted to studying the evolution of E[F (Xt)|FY
t ] in the parame-

ter space T = [0, T1]× [0, T2] where d, the dimension of the parameter space is equal

to two. The results are easily extended to general d > 2. Perhaps the main difference

between the multiparameter evolution of E[F (Xt)|FY
t ] and the single-parameter evo-

lution is the lack of perfect ordering in the multiparmeter setting. That is, for any

t, s ∈ R with t 6= s, it is always the case that either t < s or s < t. On the other

hand, one needs to take more care in defining an ordering in Rd.

The model (2.1) has been studied in the case where W is a Wiener (Brownian)

sheet in [15] and [16], where several stochastic differential equations governing the

evolution of the unnormalized optimal filter were obtained. Here we study the evo-

lution of the unnormalized optimal filter for (2.1) when W is a fractional Brownian

sheet exhibiting long-range dependence along each axis (persistent) and as such W
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does not exhibit the martingale-type properties of the standard Wiener sheet.

In Section 2.2 we begin by giving an overview of multiparameter martingales

and stochastic calculus with respect to multiparameter martingales. Multiparame-

ter martingales and their properties play a large role in the analysis throughout the

rest of this chapter. Most of the properties and definitions in Section 2.2 can be

found in [4]. In Section 2.3 we give an introduction to the field of fractional calculus.

Fractional calculus is used extensively in the analysis of fractional Brownian mo-

tion and fractional Brownian fields. We will use fractional integrals and derivatives

throughout our analysis. This calculus allows one to obtain stochastic integral rep-

resentations of persistent fractional Brownian sheet and fractional Brownian motion.

In Section 2.4 we introduce fractional Brownian motion and fractional Brownian

sheet. In Section 2.5 we give some known results in the theory of nonlinear filtering.

We examine results in the case of single parameter case. Within this framework, we

first look at the classical setting, martingale noise and then we look at more recent

results involving persistent fractional Brownian motion noise.

Finally in Sections 2.6, 2.7, 2.8 we present the main results of the chapter. We

derive two stochastic evolution equations for the optimal unnormalized filter in the

plane. The first involves the evolution of the optimal filter along a ”increasing”

paths. We define increasing paths in terms of the partial ordering described in

Section 2.2. The next evolution equation is for arbitrary evolution in the parameter

space T. For notational simplicity we restrict our attention to the setting where T is

a bounded, two-dimensional parameter space. The techniques and results developed

can be extended to arbitrary d-dimensional parameter spaces, however, the resulting

evolution equations will contain many more terms.
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2.2 Multiparameter Martingales and Stochastic Integration in the Plane

In this section we state basic definitions and results related to multiparameter

martingales and stochastic integration with respect to such processes. These play

key roles in the development of stochastic filtering theory in the plane and highlight

existing differences and similarities between the one-parameter and multiparameter

martingale theories. We will define partial ordering required in order to define mar-

tingales in multi-dimensional parameter space. In this section, we give the definitions

of different types of martingales in the plane and describe two parameter analogues

of quadratic variation and the Doob-Meyer decomposition.

Recall that for a complete probability space (Ω,F , P ) with filtration
{
Ft, t ∈ R+

}
,

if random process X :=
{
Xt, t ∈ R+

}
is adapted to the filtration

{
Ft, t ∈ R+

}
, and

E|Xt| <∞,∀t ∈ R+, then
{
Xt,Ft, t ∈ R+

}
is a martingale if, for every

0 ≤ s < t < ∞, E(Xt|Fs) = Xs a.s. (P ). However in the case of processes of two

parameters defining martingale structure is less trivial.

First let us define the partial ordering ≺ on the positive quadrant R2
+, and adopt the

following notation for arbitrary points a = (a1, a2) and b = (b1, b2) in R2
+:

a � b if a1 ≤ b1 and a2 ≤ b2

a ≺ b if a1 < b1 and a2 < b2

af b if a1 ≤ b1 and a2 ≥ b2

a ∧ b = (min(a1, b1),min(a2, b2))

a ∨ b = (max(a1, b1),max(a2, b2))

a� b = (a1, b2)
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Next, let us define what is meant by a random measure on Borel sets of R2
+. Martin-

gales in one parameter space are often thought of as having independent increments

for disjoint time intervals. For processes X on parameter space R2
+, we define incre-

ments over the rectangle A = (z, z′] = ((z1, z2), (z
′
1, z

′
2)], where z ≺ z′ as

(2.2) X(A) ≡ X(z′1,z′2) −X(z′1,z2) −X(z1,z′2) +X(z1,z2) = Xz′ −Xz′�z −Xz�z′ +Xz

Given a complete probability space (Ω,F , P ), let
{
Fz, z ∈ R2

+

}
be a family of sub

σ-fields of F satisfying the following properties:

(F1) if z ≺ z′ then Fz ⊂ Fz′

(F2) F0 contains all P -null sets of F

(F3) for each z,

Fz =
⋂

z≺≺z′

Fz′

(F4) for each z, F1
z and F2

z are conditionally independent given Fz,

where F1
z and F2

z are defined as follows: let z = (z1, z2) ∈ R2
+, then

F1
z = F1

z1,z2
= Fz1,∞ =

∨
t

Fz1,t = σ
{ ⋃

t∈R+

Fz1,t

}
F2

z = F2
z1,z2

= F∞,z2 =
∨
s

Fs,z2 = σ
{ ⋃

s∈R+

Fs,z2

}
Note 2.2.1. the condition (F4) is equivalent to:

(F4′) for all bounded random variables X and all z ∈ R2
+

E
{
X|Fz

}
= E

{
E{X|F1

z

}
|F2

z

}
It is important to note that for any process

{
X(A) : A is a rectangle in R2

+

}
, if

X(A1), ...X(An) are independent for all disjoint rectangles A1, ...An, then Fz :=

σ
{
X(A) : ∀u ∈ A, u ≺ z

}
satisfies condition (F4) [4].
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Note 2.2.2. The condition (F3) is analogous to the definition of a right continuous

filtration in one parameter. Similarly,we will call a filtration satisfying (F3) right

continuous.

Definition II.1. Let Fz be a filtration satisfying (F1)-(F4). The process X ={
Xz, z ∈ R2

+

}
is a two− parameter Martingale if:

1. Xz is adapted to the filtration Fz, ∀z ∈ R2
+

2. for each z ∈ R2
+, Xz is integrable

3. for each z ≺ z′, E
{
Xz′|Fz

}
= Xz a.s.

Proposition II.2. [4] If Mz is a two-parameter martingale with respect to filtration

Fz, then for each fixed z2,
{
Mz,Fz

}
=
{
Mz1,z2 ,Fz1,z2

}
is a one-parameter martingale.

Definition II.3. Given a complete filtered probability space (Ω,F , (Fz), P ), we say

W =
(
Wz,Fz, z ∈ R2

+

)
is a continuous version of a Brownian Sheet if it satisfies

the following conditions:

1. W is a random measure on R2
+, assigning to each Borel set A, a Gaussian

random variable of mean zero and variance λ(A), where λ=Lebesgue measure.

2. for disjoint Borel sets in R2
+, W assigns independent random variables.

3. Wz = W (Rz) where Rz is the rectangle whose upper right hand corner is z and

whose lower left hand corner is the origin and Wz is adapted to Fz.

4. W has continuous trajectories.

5. If z = (z1, z2) then for fixed z1, (Wz1,t) is a standard Brownian motion and

similarly, for fixed z2, (Ws,z2) is a Brownian motion.
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Definition II.4. Let X =
{
Xz : z ∈ R2

+

}
be a process such that Xz is integrable

for all z ∈ R2
+ and let the filtration Fz satisty (F1)− (F4). Then

1. X is a Weak Martingale if

(i) Xz is adapted to filtration Fz ∀z,

(ii) E
{
X((z, z′])|Fz

}
= 0 ∀ z ≺≺ z′.

2. X is an i-Martingale (i= 1,2) if,

(i) Xz is F i
z − adapted

(ii) E
{
X((z, z′])|F i

z

}
= 0 ∀ z ≺≺ z′

3. X is a Strong Martingale if

(i)X is adapted to the filtration Fz,

(ii) X vanishes on the axes (i.e. X(0,z2) = 0 and X(z1,0) = 0), a.s.

(iii) E
{
X((z, z′])|F1

z

∨
F2

z

}
= 0 ∀ z ≺≺ z′

Note 2.2.3. Any martingale is a weak martingale and any strong martingale is a

martingale. That is:

{
X : Xis a strong martingale

}
⊂
{
X : Xis a martingale

}
⊂
{
X : X is a weak martingale

}
Definition II.5. A process

{
Xz

}
is right continuous if

lim
z′→z
z≺z′

Xz′(ω) = Xz(ω) a.s.

Definition II.6. A process X =
{
Xz, z ∈ R2

+

}
is called an increasing process if

1. X is right continuous and adapted to Fz

2. Xz = 0 on the axes

3. X(A) ≥ 0 for each rectangle A ⊂ R2
+
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Definition II.7. For p ≥ 1

1. Mp(T) := the space of right continuous martingales M =
{
Mz, z ∈ T

}
such

that M = 0 on the axes and

∥∥M∥∥
p

:= sup
z∈T

(
E
{
|Mz|p

}) 1
p <∞.

2. Mp
S(T) := the class of all strong martingales in Mp(T)

The following theorem gives the two-parameter analogue to the Doob-Meyer de-

composition. In the two-parameter case, uniqueness of the quadratic variation pro-

cess is not guaranteed, unlike in the one-parameter setting.

Theorem II.8. Let M ∈ M2(T). There exists an increasing process A =
{
Az, z ∈

T
}

such that
{
M2

z − Az, z ≺ T
}

is a weak martingale

Note 2.2.4. In the one parameter martingale case, the Doob-Meyer decomposition

gives a unique increasing process. On the other hand, in the two parameter case,

the increasing process A is not necessarily unique. However, for the purposes of

stochastic integration this does not pose any serious problem .

Definition II.9. We say that a process 〈M〉 is a version of the quadratic variation

of martingale M if (M2
z − 〈M〉z, z ∈ T) is a martingale.

Note 2.2.5. By proposition 1.8 and theorem 1.9 of [4], the quadratic variation of

a strong martingale (Mz,Fz, z ∈ T) is unique if Fz is a filtration generated by a

standard Brownian sheet. However, for general martingales and strong martingales

in the plane, the quadratic variation process is not necessarily unique.

Definition II.10. Let M ∈M2
S(T). There exists unique F1

z -predictable, increasing

process denoted [M ](1) such that M2
z − [M ]

(1)
z is a 1-martingale and there exists a
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unique F2
z -predictable increasing process denoted by [M ](2) such that M2

z − [M ]
(2)
z is

an 2-martingale.

Integration with respect to two parameter martingales was developed by R. Cairoli

and John Walsh in 1975 [4]. Their work is fundamental to the theory of stochastic

nonlinear filtering in the plane in much the same way that the work of Itô is pivotal

in the classical nonlinear filtering theory. In this section we give a construction of the

stochastic integral in the plane and properties that are useful in subsequent sections

of the dissertation.

Definition II.11. Consider the space R2
+ × Ω. Let

{
Gz, z ∈ R2

+

}
be an increasing,

right continuous family of sub-sigma fields of F . The sigma field of Gz − predictable

sets is defined as

DG′z := σ − field generated by sets of the form (z, z′]× Λ

where z ≺ z′ and Λ ∈ Gz

Similarly, a process X =
{
Xz, z ∈ R2

+

}
is Gz − predictable if (z, ω) 7→ Xz(ω)

is DG-measurable.

We first define the stochastic integral for simple functions in the plane.

Definition II.12. We call φ a simple function belonging to class S2
1 if there exist a

finite number of disjoint rectangles Ai ⊂ T and bounded random variables αi such

that αi is Fzi
−measurable and φ can be written as the finite sum

φz =
∑

i

αi1Ai
(z).

The superscript 2 and subscript 1 in S2
1 indicate that z is a 2 × 1 matrix, i.e. a

2-dimensional vector.
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Definition II.13. Let M ∈M2(T) and let φ be a simple function. Then we define

the stochastic integral of φ with respect to martingale M over rectangle Rz by∫
Rz

φdM =
∑

i

αiM(Ai ∩Rz)

Clearly, if φ is a simple function andM ∈Mp(T),M ′ ∈Mp
S(T), then

∫
Rz
φζdMζ ∈

Mp(T) and
∫

Rz
φζdM

′
ζ ∈M

p
S(T)

In order to extend the definition of the stochastic plane integrals from simple fuctions

to a larger class of funtions, let us define such classes of functions Hi, i = 0, 1, 2.

Definition II.14. Let {φz, z ∈ T} be a process such that the following conditions

hold:

(a) φ is a bimeasurable function of (ω, z),

(b)
∫

T Eφ2
zdz <∞,

and for each z ∈ T, either (c0) φz is Fz-measurable,

or (c1) φz is F1
z -measurable,

or (c2) φz is F2
z -measurable.

For i = 0, 1, 2, let Hi denote the space of φ satisfying (a),(b) and (ci).

Under the the norm
∥∥φ∥∥H0

=
(
E
{ ∫

T φ
2
ζdζ
}) 1

2 , the simple functions are dense

in H0 and considered as a function space, H0 is a Hilbert space. Let {Wz,Fz, z ∈

T} be a Wiener sheet. Let us introduce the following classes of integrands. The

linear mapping (φn ◦W )z :=
∫

Rz
φndW maps the simple functions onto M2(T) and

preserves the norm. Therefore, the mapping can be extended by continuity to a

norm-preserving linear map from H0 into M2(T) by appropriately taking limits of

sequences of integrals of simple functions.
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Proposition II.15. [28] Let φ ∈ H0 and let W =
{
Wz : z ≺ z0

}
be a Brownian

sheet as in Def. II.3. Then the integral
∫

Rz
φζdWζ is well defined and is a strong

martingale. Furthermore, if we let

Mz =

(∫
Rz

φζdWζ

)2

−
∫

Rz

φ2
ζdζ

then M is a martingale.

Theorem II.16. [9] Let
{
Xz,Gz; z ≺ z0

}
be a strong martingale satisfying either

of the following conditions; (i) E
{
X2

z

}
< ∞ and Gz is a sigma-field generated by a

Brownian sheet; (ii) E
{
X4

z

}
<∞ and X is continuous. Then

exp
{
X2

z −
1

2
〈X〉z

}
is a martingale iff

E

(
exp

{
X2

z0
− 1

2
〈X〉z0

})
= 1

One can also show that for φ ∈ Hi, i = 0, 1, 2, and W , a standard Brownian sheet,

the stochastic integral, denoted

(2.3) (φ ◦W )z =

∫
Rz

φζdWζ =

∫
T
I(ζ ≺ z)φζdWζ , z ∈ T,

is a strong martingale for φ ∈ H0, a 1-martingale for φ ∈ H1 and a 2-martingale for

φ ∈ H2. Moreover, define a process

ξz = (φ ◦W )z(ψ ◦W )z −
∫

Rz

φζψζdζ, z ∈ T.

Then ξ = (ξz, z ∈ T) is a martingale with respect to (Fz)z∈T if φ, ψ ∈ H0, a 1-

martingale if φ, ψ ∈ H1 and a 2-martingale if φ, ψ ∈ H2. In all cases continuous

versions of the above defined processes can be chosen.

For integration in the plane, we will require the development of another type of
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stochastic integral,
∫∫

ψdMdM . In order to do so, we first define a new class of

simple functions in the plane.

Definition II.17. Let T = [0, T1] × [0, T2]. For fixed n we divide T into rectangles

∆i,j := (zi,j, zi+1,j+1], where zi,j = (2−ni, 2−nj). If i, j, k, l satisfy i < k ≤ 2T n
1 −1, l <

j ≤ 2T n
2 − 1, we define the class of functions S1 of the form

(2.4) χijkl(ζ, ζ
′) = α1∆i,j

(ζ)1∆k,l
(ζ ′)

where α is bounded and Fzk,j
-measurable. Similarly, define the class of simple func-

tions S as finite sums of functions in S1

(2.5) χ(ζ, ζ ′) =
∑
ijkl

αijkl1∆i,j
(ζ)1∆k,l

(ζ ′)

where αijkl is bounded and Fzk,j
-measurable

Definition II.18. Let M =
(
Mz,Fz, z ∈ R2

+

)
be a martingale in the plane. For

simple function χ as defined in (2.4), we define the integral
∫∫

χdMdM by

(2.6)

∫
Rz×Rz

χijkl(ζ, ζ
′)dMζdMζ′ := αM(∆i,j ∩Rz)M(∆k,l ∩Rz), z ∈ T.

The integral
∫∫

χdMdM is defined as the corresponding linear combination of inte-

grals of the form (2.6).

Note 2.2.6.
∫
Rz×Rz

χijkl(ζ, ζ
′)dMζdMζ′ as defined above, is a martingale.

Definition II.19. Let Ĥ denote the space of functions ψ(ω, z, z′) ≡ ψz,z′(ω) on

Ω× T× T which satisfy the following conditions:

(â): ψ is a measurable process and for all z, z′ ∈ T, ψz,z′ is Fz∨z′-measurable, and
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(b̂):

∫∫
T2

I(z f z′)E{ψ2
z,z′}dzdz′ <∞.

We equip Ĥ with the scalar product

〈ψ, ϕ〉 :=

∫∫
T2

I(z f z′)E{ψz,z′ϕz,z′}dzdz

Note 2.2.7. Ĥ is a Hilbert space.

The simple functions S are dense in Ĥ. And since the mapping
∫∫

ψdWdW from

Ĥ to M2(T) is norm-preserving for simple functions, the integral can be extended

by continuity of the linear map, to all functions in Ĥ.

We will also require the notion of ”mixed area integrals” as defined in [27].

Definition II.20. For function χijkl in S given by (2.5), define the integrals
∫∫

χdMdζ

and
∫∫

χdζdM by

(2.7)

∫
Rz×Rz

χijkl(ζ, ζ
′)dMζdζ

′ :=
∑
ijkl

αijklM(∆i,j ∩Rz)λ(∆k,l ∩Rz) z ∈ T,

and

(2.8)

∫
Rz×Rz

χijkl(ζ, ζ
′)dζdMζ′ :=

∑
ijkl

αijklλ(∆i,j ∩Rz)M(∆k,l ∩Rz) z ∈ T,

where λ is Lebesgue measure on R2.

Note 2.2.8.
∫
Rz×Rz

χijkl(ζ, ζ
′)dMζdζ

′ and
∫
Rz×Rz

χijkl(ζ, ζ
′)dζdMζ′ as defined above,

are a 1-martingale and 2-martingale respectively.

Again, since S is dense in Ĥ, the mixed area integrals
∫∫

ψdzdW and
∫∫

ψdWdz,

(where W is a standard Brownian sheet) can be extended to all functions in Ĥ. Then

for arbitrary ψ ∈ Ĥ, the stochastic integrals

Xz :=

∫∫
Rz×Rz

ψζ,ζ′dWζdWζ′ , Y
1
z :=

∫∫
Rz×Rz

ψζ,ζ′dζdWζ′ , Y
2
z :=

∫∫
Rz×Rz

ψζ,ζ′dWζdζ
′
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are well-defined (as in [29]) for all z ∈ T and X, Y 1, Y 2 are respectively a martingale,

an (adapted) 1-martingale and an (adapted) 2-martingale, and in all the cases the

sample-continuous versions can be chosen.

2.3 Fractional Calculus

Fractional Brownian motion and fractional Brownian fields can be represented

as integrals of deterministic kernels with respect to standard Brownian motion and

Brownian sheet respectively (see [20], [23], [14], [25] ). We will introduce operators

known as fractional integrals and derivatives that can be used to derive desired

kernels for integral transforms of fractional Gaussian processes. These operators and

the kernels they produce will play a large role in the remainder of the dissertation.

To motivate the use of fractional integrals and operators, let us introduce an n-

fold iterated integral and show that it can be expressed as a single integral described

by a parameter n.

Let a, b be real numbers with a < b. For a function f on [a, b], the multiple n-fold

integral

∫ t

a

{∫ t

a

...

{∫ t

a

{∫ t

a

f(x)dx

}
dt

}
....dt

}
dt =

1

(n− 1)!

∫ t

a

f(y)(t− y)n−1dy

(2.9) =
1

Γ(n)

∫ t

a

ϕ(t)

(x− t)1−n
dt,

where tn ∈ [a, b] and n ≥ 1.

Clearly, the right hand side of (2.9) makes sense even when n is not an integer,

which motivates the definition of the fractional integral of order α ∈ R+.

Definition II.21. Let ϕ(x) ∈ L1(a, b) and let α > 0. The integrals
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(2.10) (Iα
a+ϕ)(x) :=

1

Γ(α)

∫ x

a

ϕ(t)

(x− t)1−α
dt, x < b,

(2.11) (Iα
b−ϕ)(x) :=

1

Γ(α)

∫ b

x

ϕ(t)

(t− x)1−α
dt, x > a,

are called left-handed and right-handed Riemann-Liouville fractional integrals of or-

der α.

Definition II.22. For functions f(x) on interval [a, b], the expressions

(2.12) (Dα
a+f)(x) :=

1

Γ(1− α)

d

dx

∫ x

a

f(t)

(x− t)α
dt,

(2.13) (Dα
b−f)(x) :=

1

Γ(1− α)

d

dx

∫ b

x

f(t)

(t− x)α
dt

where α > 0 are called the left-handed and the right-handed fractional Riemann-

Liouville derivatives of order α, provided the the right hand side exists.

For α ∈ (−1, 0) we define

(Iα
a+ϕ)(x) := (D−α

a+ϕ)(x) and

(Iα
b−ϕ)(x) := (D−α

b− ϕ)(x).

Note that when α = 0 we have the identity operators I0
a+ϕ = ϕ and I0

b−ϕ = ϕ.

One should be aware that it is not always clear whether such integrals and deriva-

tives exist. In many cases, a sufficient condition for fractional operators to be well

defined and for manipulation of these operators to be valid is that our function being

operated on is in the class denoted Iα
a+(Lp), defined in the following way:
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Definition II.23. For α > 0, Iα
a+(Lp) and Iα

b−(Lq) are defined as the spaces of

functions f(x) and g(x) which can be represented as the left-handed and right-

handed fractional integrals, respectively, of order α of summable functions ϕ, ψ,

(2.14) f = Iα
a+ϕ, ϕ ∈ Lp(a, b), 1 ≤ p <∞ and

(2.15) g = Iα
b−ψ, ψ ∈ Lq(a, b), 1 ≤ q <∞.

Definition II.24. Let X be a finite interval in R. The function f : X → R is said

to satisfy the Hölder condition of order λ on X if there exists a constant C > 0,

such that

(2.16) |f(x1)− f(x2)| ≤ C|x1 − x2|λ

for all x1, x2 ∈ X . We denote by Hλ(X ), the space of functions satisfying (2.16).

More generally, for a d-dimensional rectangle Xd, a function f : Xd → R, is said to

satisfy the Hölder condition of order (λ1, ..., λd) (where λi ∈ (0, 1) for i ∈ {1, .., d}),

if there exists constant C > 0 such that

(2.17) |f(x)− f(y)| ≤ C(|x1 − y1|λ1 + · · ·+ |xd − yd|λd),

for all x, y ∈ Xd. We denote by Hλ1,...,λd(X ), the space of functions satisfying (2.17).

The following theorem will be useful for us later in this chapter:

Theorem II.25. [24] Let f(x) = (x − a)−µg(x), where g(x) ∈ Hλ([a, b]), −∞ <

a < b <∞, λ > α, −α < µ < 1. Then, f(x) ∈ Iα
a+(Lp) if µ+α < 1

p
for 1 ≤ p <∞.

Theorem II.26. Semigroup Property [24] For real-valued α, β the relation

(2.18) Iα
a+I

β
a+ϕ = Iα+β

a+ ϕ

holds in each of the following cases:
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i) β ≥ 0, α+ β ≥ 0, ϕ ∈ L1(a, b);

ii) β ≤ 0, α ≥ 0, ϕ ∈ I−β
a+ (L1):

iii) α ≤ 0, α+ β ≤ 0, ϕ ∈ I−α−β
a+ (L1)

Theorem II.27. Fractional Integration by Parts Let ϕ ∈ Lp(a, b), ψ ∈ Lq(a, b),

then

(2.19)

∫ b

a

ϕ(x)(Iα
a+ψ)(x)dx =

∫ b

a

ψ(x)(Iα
b−ϕ)(x)dx

for any p, q ≥ 1 such that 1
p

+ 1
q
≤ 1 + α.

Corollary II.28. The formula

(2.20)

∫ b

a

f(x)(Dα
a+g)(x)dx =

∫ b

a

g(x)(Dα
b−f)(x)dx, 0 < α < 1,

is valid under the assumption that f ∈ Iα
b−(Lp), g ∈ Iα

a+(Lq),
1
p

+ 1
q
≤ 1 + α.

Corollary II.29. [24] A sufficient condition for f(x) and g(x) to satisfy (2.20) is

that the following conditions hold:

1. f, g ∈ C([a, b]), and

2. (Dα
a+g)(x), (Dα

b−f)(x) exist at every point x ∈ [a, b] and are continuous.

2.4 Fractional Brownian motion and fractional Brownian sheet

In this chapter we define fractional Brownian motion and describe useful relation-

ships between fractional Brownian motion and standard Brownian motion.

Definition II.30. Let (Ω,F , P ) be a complele probability space and
{
Ft, t ∈ [0, T ]

}
be a flitration of sub σ-fields of F . Fractional Brownian Motion with Hurst
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parameter H ∈ (0, 1) is a continuous Gaussian process (WH
t , t ∈ R+) such that

(i) WH
0 = 0 a.s.

(ii) E(WH
t ) ≡ 0

(iii) RH(s, t) := E(WH
s W

H
t ) = 1

2
(|s|2H + |t|2H − |t− s|2H),∀s, t ∈ R+

Note that when H = 1
2
, WH

t is a standard Brownian motion which we denote

W =
{
Wt, t ∈ R+

}
. For the standard Wiener process, the covariance function

R(s, t) is given by

R(s, t) = E(WsWt) = min
{
s, t
}
,∀s, t ∈ R+

In the case H > 1
2
, the increments (WH

t −WH
s ) and (WH

t+h −WH
t ) are positively

correlated, for all t, h, s > 0 and t > s. We should also note that such a process with

H > 1
2

will exhibit long range dependence, i.e.

∞∑
i=1

E[WH
1 (WH

i+1 −WH
i )] = ∞.

When H 6= 1
2
,
{
WH

t , t ∈ R+

}
is not a semimartingale. As a result, standard

techniques of stochastic calculus and stochastic integration cannot be appied directly

to fractional Brownian motion. In order to circumvent problems with the lack of

martingale structure, one uses a kernel, KH(t, s) to represent fractional Brownian

motion as a stochastic integral with respect to a standard Wiener process, The

kernel is given by

KH(t, s) = CH

(( t
s

)H− 1
2
(t− s)H− 1

2 − (H − 1

2
)s

1
2
−H

∫ t

s

uH− 3
2 (u− s)H− 1

2du

)
where

(2.21) CH =

(
2HΓ(3

2
−H)

Γ(H + 1
2
)Γ(2− 2H)

) 1
2

.
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Namely, it has been shown [20] that the fractional Brownian motion WH with

Hurst parameter H ∈ (0, 1) can be represented as the stochastic integral of KH(t, s)

with respect to the standard Wiener process W = W
1
2

WH
t =

∫ t

0

KH(t, s)dWs.

It will be useful for us to note thatKH(t, s) can also be represented in the following

way [25], [23]:

(2.22) KH(s, t) = C∗
Hs

1
2
−H
(
I

H− 1
2

t− uH− 1
2 1[0,t](u)

)
(s)

where

(2.23) C∗
H =

(
2HΓ(H + 1

2
)Γ(3

2
−H)

Γ(2− 2H)

) 1
2

.

The Wiener process W can also be constructed from the fractional Brownian mo-

tion via the integral of another deterministic kernel with respect to the fractional

Brownian motion

Wt =

∫ t

0

K−1
H (t, s)dWH

s ,

where the kernel K−1
H is given by

(2.24) K−1
H (t, s) = C ′

H

(( t
s

)H− 1
2
(t− s)

1
2
−H − (H − 1

2
)s

1
2
−H

∫ t

s

uH− 3
2 (u− s)

1
2
−Hdu

)
where

(2.25) C ′
H =

1

Γ(3
2
−H)

(
Γ(2− 2H)

2HΓ(3
2
−H)Γ(H + 1

2
)

) 1
2

.

K−1
H can also be represented in terms of fractional integrals which will often give

more insight into the kernel’s properties than does (2.22);

(2.26) K−1
H (s, t) =

1

C∗
H

s
1
2
−H
(
I

1
2
−H

t− uH− 1
2 1[0,t](u)

)
(s).
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We now define fractional Brownian sheet (fBs), which is the multi-parameter ana-

logue of a fractional Brownian motion. Chapter 6 will be devoted to the filtering

model where observation noise is given by fractional Brownian sheet (fBs).

Definition II.31. The fractional Brownian sheet with Hurst parameters α, β ∈

(0, 1) is a continuous Gaussian random field
(
Bα,β

z , z ∈ R2
+

)
with parameters α, β ∈

(0, 1) such that

i) Bα,β
z = 0 a.s. for z = (0, 0),

ii)E
(
Bα,β

z

)
= 0 ∀z ∈ R2

+,

iii)E
(
Bα,β

z Bα,β
z′

)
= Rα(z1, z

′
1)Rβ(z2, z

′
2) = 1

2

(
z2α
1 +(z′1)

2α−|z1−z′1|2α
)

1
2

(
z2β
2 +(z′2)

2β−

|z2 − z′2|2β
)
.

We note that fBs can be obtained from a Brownian sheet via the integral transform

(2.27) Bα,β
z =

∫
Rz

Kα(z1, ζ1)Kβ(z2, ζ2)dWζ

where z, ζ ∈ T and where Wζ is the Brownian sheet. On the other hand, if we let

K−1
α,β(z; ζ) = K−1

α (z1, ζ1)K
−1
β (z2; ζ2), where K−1

α (s, t) is the kernel defined in (2.24).

Then we get the relationship

Wz =

∫
Rz

K−1
α,β(z; ζ)dBα,β

ζ .

2.5 Nonlinear filtering theory

The classical stochastic nonlinear filtering problem is to obtain an optimal es-

timate of an unobserved signal process Xt =
{
X(t, ω), t ∈ [0, T ], ω ∈ Ω

}
from an

observation process which is a function of the signal observed in the presence of noise.
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The process we observe is generally given by a function h of the signal function, dis-

torted by a noise process.

The classical non-linear problem is modelled by the observation process

(2.28) Yt :=

∫ t

0

h(Xs)ds+ W̃t

where W̃t is a Brownian motion independent of the signal process Xt and h is a

measurable function satisfying

(2.29)

∫ T

0

E|h(Xt)|2dt <∞.

The objective is to estimate the signal Xt in a manner that will minimize mean

squared error loss. As conditional expectation minimizes mean squared error loss, the

estimate known as the “optimal filter” of our observation is given by the conditional

expectation of Xt, given the sigma field generated by observation Y up to time t, i.e.

given FY
t = σ

{
Ys : 0 ≤ s ≤ t

}
.

Define the random measure

(2.30) πt(dy, ω) := P (Xt ∈ dy|FY
t )(ω).

For any measure µ, define µ(f) =
∫
R f(x)µ(dx). Then for a sufficiently wide class of

funtions, f , we study the evolution of

(2.31) πt(f) = E
[
f(Xt)|FY

t

]
Section 2.5 gives stochastic differential equations describing the evolution of the

optimal filter in the classical nonlinear filtering problem described above. In Section

2.5 we give equations for the optimal filter in the nonlinear filtering problem where

the noise term is given by a fractional Brownian motion with Hurst parameter H > 1
2

so that the noise term exhibits long range dependence.
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Kushner, Fujisaki-Kallianpur-Kunita equation and Zakai equation

In this section the signal process is assumed to be a Markov process. When(
Xt

)
t∈[0,T ]

is a Markov process, the normalized filter πt(f) can be written as the

solution to a stochastic differential equation involving the infinitesimal generator of

Xt.

Definition II.32. Let (Xt)t∈[0,T ] be a Markov process. The Infinitesimal Gener-

ator L(s) of (Xt)t∈[0,T ] is defined by:

(2.32)
(
L(s)f

)
(x) = lim

t↓0

E[f(Xs+t)|Xs = x]− f(x)

t
, x ∈ R s ∈ [0, T )

Let D(L) denote the set of all functions f for which the limit exists for all x ∈ R,

0 < s < T . Similarly, let D(L)(x) denote the set of functions f : R → R such that,

for given x ∈ R, the limit exits.

It is often assumed that the signal process is a time homogeneous diffusion satis-

fying:

(2.33) dXt = b(t,Xt)dt+ σ(t,Xt)dWt

where σ(t, x) and b(t, x) are called the diffusion and the drift coefficients respectively,

and Wt is a Brownian motion independent of the noise process W̃t.

When Xt is given by (2.33), the infinitesimal generator is given by:

(2.34) L(s)f(x) = b(s, x)
∂f

∂x
+

1

2
σ2(s, x)

∂2f

∂x2
∀f ∈ C2

b (R).

Consider filtering model (2.28), whereX is a Markov process with the infinitesimal

generator L. The following results for the optimal filter hold.
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Theorem II.33. [11], [17] For f ∈ D(L) such that
∫ T

0
E[f(Xt)h(Xt)]

2dt < ∞, the

random measure π satisfies:

(2.35) πt(f) = π0(f) +

∫ t

0

πs(L(s)f)ds+

∫ t

0

[πs(fh)− πs(f)πs(h)]dνs

where νt is the innovation process given by:

(2.36) νt = Yt −
∫ t

0

E[h(Xs)|FY
s ]ds.

It is well known that ∃ stochastic process (ρt)t∈[0,T ], taking values in the space of

finite positive measures on R, such that ∀f ∈ C2
b (R)

(2.37) πt(f) =
ρt(f)

ρt(1)
.

In light of (2.37), πt(f) is called the normalized optimal filter for f(Xt) while ρt(f)

is the unnormalized optimal filter.

We can define ρt(f) as

(2.38) ρt(f) := πt(f) exp

{∫ t

0

πs(h)dYs −
1

2

∫ t

0

|πs(h)|2ds
}

Theorem II.34. (Zakai Equation for the Unnormalized Optimal Filter)

The process ρt(f) defined by (2.37) satisfies the following stochastic differential equa-

tion:

(2.39) ρt(f) = π0(f) +

∫ t

0

ρs(Lsf)ds+

∫ t

0

ρs(hf)dYs.

The Zakai equation for the unnormalized optimal filter (2.39) is a stochastic dif-

ferential equation which is linear in ρt(·). On the other hand the measure-valued

stochastic differential equation (2.35) is not linear in the πs(·). It is also worth not-

ing that the innovation process (2.36) is a semi-martingale, which allows one to define

the stochastic Itô integral
∫ t

0
[πs(fh)− πs(f)πs(h)]dνs used in Theorem II.33.
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Filtering with fractional Brownian motion

The classical filtering problem can be extended to a wider class of observation

processes. One can change the noise term to exhibit long range dependence so that

the noise is no longer a martingale with independent increments. It is also possible

to extend the model to examine spatial filtering where both the signal and noise are

multi-parameter processes, resulting in a multiparameter observation process. In the

case of multiparameter filtering, it is again interesting to look first at the case where

the noise term has properties analogous to the independent increments of Brownian

motion. Next, in the multi-parameter setting the filtering model can be further

extended to include a noise term exhibiting long memory. The goal of this chapter

is to give filtering equations similar to (2.39) and (2.37) for the optimal filter in the

multiparameter setting with long-memory observation noise.

In this section we present filtering equations for the case when observation noise

is given by fractional Brownian motion with Hurst parameter H > 1
2
. Here Y is a

one parameter observation process with long range dependence in the noise. In this

setting the model is given by:

(2.40) Yt =

∫ t

0

h(Xs)ds+BH
t , t ∈ [0, T ]

where h ∈ C([0, T ]), BH
t is a fractional Brownian motion, independent of the signal,

with H > 1
2

and the signal is given by (2.33).

Proposition II.35. [14] Let BH be fractional Brownian motion with Hurst pa-

rameter H ∈ (1
2
, 1). For continuous function C : [0, T ] → R, define the function

kt
C = (kt

C(s), 0 < s < t) as follows:

kt
C(s) ≡ −ρ−1

H s
1
2
−H d

ds

(∫ t

s

d

dw

{∫ w

0

z
1
2
−H(w−z)

1
2
−HC(z)dz

}
w2H−1(w−s)

1
2
−Hdw

)
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where ρH = Γ2(3
2
−H)Γ(2H+1)sin(πH). Then the function kt

C satisfies the equation

H(2H − 1)

∫ t

0

kt
C(s)|s− r|2H−2ds = C(r); 0 < r < t.

For 0 ≤ t ≤ T , define

(2.41) NC
t ≡

∫ t

0

kt
C(s)dBH

s

and

(2.42) 〈NC〉t ≡
∫ t

0

C(s)kt
C(s)ds

Then the process NC = (NC
t , 0 ≤ t ≤ T ) is a Gaussian martingale with variance

function given by 〈NC〉 = (〈NC〉t, t ∈ [0, T ]).

For the particular case when C ≡ 1, the function kt
C is given by

(2.43) kt
∗(s) = κ−1

H s
1
2
−H(t− s)

1
2
−H , 0 < s < t

where

κH = 2HΓ(
3

2
−H)Γ(H +

1

2
).

The corresponding Gaussian martingale, called the fundamental martingale associ-

ated with WH , takes the form

(2.44) N∗
t = κ−1

H

∫ t

0

s
1
2
−H(t− s)

1
2
−HdWH

s =

∫ t

0

kt
∗(s)dB

H
s 0 ≤ t ≤ T.

The variance function corresponding to the fundamental martingale is given by
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(2.45) 〈N∗〉t = κ−1
H

∫ t

0

s
1
2
−H(t− s)

1
2
−Hds =

∫ t

0

kt
∗ds = λ−1

H t2−2H , ∀t ∈ [0, T ]

where

λH =
2HΓ(3− 2H)Γ(H + 1

2
)

Γ(3
2
−H)

.

Note that

(2.46) Cov(NC
t , N

∗
t ) = 〈NC , N∗〉t =

∫ t

0

kt
∗(s)C(s)ds,

where 〈NC , N∗〉 is a cross-quadratic variation process between NC and N∗. The rep-

resentations (2.45) and (2.46) make it clear that the measures induced by 〈NC , N∗〉t

and 〈N∗〉 are absolutely continuous with respect to Lebesgue measure.

Proposition II.36. [14] Let N∗ and 〈N∗〉 be as defined in (2.44) and (2.45). Then

for continuous function C on [0, T ], the martingale NC defined by (2.41) is con-

tinuous. Moreover, there exists a measurable function qC =
(
qC
t , t ∈ [0, T ]

)
such

that

(2.47)

∫ T

0

(qC
t )2d〈N∗〉t <∞,

and for all t ∈ [0, T ] the following representations hold

(2.48) NC
t =

∫ t

0

qC
s dN

∗
s and 〈NC〉t =

∫ t

0

(qC
s )2d〈N∗〉s.

Furthermore, the above representations hold for qC given by the Radon-Nikodym

derivative

(2.49) qC
t =

d〈NC , N∗〉t
d〈N∗〉t

.
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Note that since the measure induced by 〈NC , N∗〉t is absolutely continuous with

respect to Lebesgue measure and (from (2.45)) Lebesgue measure is absolutely con-

tinuous with respect to the measure induced by 〈N∗〉t, then

(2.50) qC
t =

d〈NC , N∗〉t
d〈N∗〉t

=

(
d〈NC , N∗〉t

dt

)
.

(
dt

d〈N∗〉t

)
Similarly, since the measure, induced by 〈N∗〉t and Lebesgue measures are equivalent

measures (each is absolutely continuous with respect to the other), then

(2.51)

(
dt

d〈N∗〉t

)
=

(
d〈N∗〉t
dt

)−1

As a result we can express qC in the following way

(2.52) qC
t =

(
d

dt
〈NC , N∗〉t

)
.

(
d

dt
〈N∗〉t

)−1

From (2.43), (2.46), (2.45) and (2.52) we can represent qC by

(2.53) qC
t =

Γ(2− 2H)

Γ(3
2
−H)

t2H−1
(
DH− 1

2
0+ u

1
2
−HC(u)

)
(t).

For the purposes of the filtering problem described above, one needs to consider

the case when h(Xt(ω)) plays the role of C(t). We will write the corresponding NC
t

as:

(2.54) Nt(ω) =

∫ t

0

kt
h(X.(ω))(s)dB

H
s (ω),

(2.55) 〈N,N∗〉t(ω) :=

∫ t

0

kt
∗(s)h(Xs(ω))ds

and
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(2.56) qt(X)(ω) :=
d〈N,N∗〉(ω)

d〈N∗〉t

for all t ∈ [0, T ].

Bayes’ formula for fractional Brownian motion Since X and BH are indepen-

dent, we consider the signal process Xt as being defined on the probability space

(ΩX ,FX , PX) and noise, BH
t as being defined on the probability space (ΩB,FB, PB).

Consider (Ω,F , P ) = (ΩX × ΩB,FX ×FB, PX × PB). Then

(2.57) πt(f)(ω) = E[f(Xt)|FY
t ](ω) =

∫
ΩX

f(Xt(u)) exp
{
αu(t)(ω)

}
PX(du)∫

ΩX
exp

{
αu(t)(ω) exp}PX(du)

a.s.

where αu(t)(ω) :=
∫ t

0
kt

h(X.(u))(s)dYs(ω)− 1
2

∫ t

0
kt

h(X.(u))(s)h(Xs(u))ds.

Similarly,

(2.58) πt(f)(ω) = E[f(Xt)|FY
t ](ω) =

E eP
[
f(Xt)

dP

d eP |FY
t

]
(ω)

E eP
[

dP

d eP |FY
t

]
(ω)

,

where

(2.59)
dP

dP̃
(ω) := exp

{
Nt(ω) +

1

2

∫ T

0

kT
h(X(ω))(s)h(Xs(ω))ds

}
and E eP [ · |FY

t

]
is the conditional expectation under the new measure P̃ . Note that

under P̃ , Y is a standard fractional Brownian motion independent of X. Further-

more, the distribution of X is the same under P and P̃ .

Theorem II.37. [14] Suppose X is a Markov process and the observation model

satisfies (2.40) where f ∈ Cb(R), where WH is a fractional Brownian motion, inde-

pendent of the signal, with H > 1
2
, then

(2.60) πt(f) = π0(f) +

∫ t

0

πs(L(s)f)ds+

∫ t

0

[πs(fq)− πs(f)πs(q)]dνs

where νt =
∫ t

0
[qs(X)− πs(q)]d〈N∗〉s and πs(fq)(ω) := E[f(Xs)qs(X)|FY

t ](ω)



34

Note that (2.60) is not a measure-valued stochastic partial differential equation,

since qs(X) is not a function of Xs alone, but a function of
{
Xu, 0 ≤ u ≤ s

}
i.e. the

entire past of the process X up to time s.

We can also give a fractional analogue of the Zakai equation in the case where the

observation noise is a fractional Brownian motion (rather than an ordinary Brownian

motion).

Theorem II.38. Fractional Zakai Equation[14]

(2.61) ρt(f) = π0(f) +

∫ t

0

ρs(Lsf)ds+

∫ t

0

ρs(fq)dZ
∗
s

where Z∗
t :=

∫ t

0
kt
∗(s)dYs, t ∈ [0, T ] is a semi-martingale with the decomposition:

(2.62) Z∗
t = N∗

t + 〈N,N∗〉t t ∈ [0, T ]

and ρt(fq) = E eP
[
f(Xt)qt(X)dP

d eP |FY
t

]
(ω)

2.6 Fractional-spatial Bayes’ formula with persistent fBs noise.

In this section we derive a Bayes type formula for the multiparameter nonlin-

ear filtering problem with fractional Brownian sheet observation noise with Hurst

parameters α, β ∈ (1
2
, 1).

We consider the following observation model:

(2.63) Yz =

∫
Rz

g(Xζ)dζ +Bα,β
z , z ∈ T ≡ [0, T1]× [0, T2] ⊂ R2

+

where Rz ≡ (0, z1] × (0, z2], the signal process Xz and observation process Yz are

measurable, Fz-adapted random fields defined on the complete, filtered probability

space (Ω,F , (Fz), P ), where the filtration (Fz) satisfies (F1)-(F4), given in section

2.2. The observation noise, Bα,β is a fractional Brownian sheet on (Ω,F , (Fz), P )

with Hurst parameters α, β ∈ (1
2
, 1) and Bα,β is assumed to be independent of the
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signal process. We also assume that the function g satisfies the following technical

assumptions:

(A1) The function g : R → R is Hölder continuous of order λ on any finite in-

terval in R, where 2max{α, β} − 1 < λ;

(A2) The function g : R → R satisfies the integrability condition:

(2.64)

∫
Rz0

(
ζ

α− 1
2

1 ζ
β− 1

2
2

)2

E
[(
Dβ− 1

2
0+ ⊗Dα− 1

2
0+ g∗

)
(ζ1, ζ2)

]2
dζ1dζ2 <∞,

where

(2.65) g∗(z1, z2) = z
1
2
−α

1 z
1
2
−β

2 g(Xz1,z2),

and ”⊗” denotes the tensor product of operators. In particular, given a function

f : R2 → R, a pair of operators L1, L2 defined on functions g : R → R,

(
L1 ⊗ L2f

)
(x1, x2) := L1(L2f(·, x2)

)
(x1).

Lemma II.39. For fixed α, β ∈ (1
2
, 1), let h : T → R be a Hölder continuous function

of order (λ1, λ2), where λ1 > α − 1
2

and λ2 > β − 1
2
. Then there exists a function

δh : T → R such that δh ∈ L2(T) while satisfying both

(2.66)

∫
Rz

h(ζ)dζ =

∫
Rz

Kα,β(z; ζ)δh(ζ)dζ ∀z ∈ T

and

(2.67)

∫
Rz

δh(ζ)dζ =

∫
Rz

K−1
α,β(z; ζ)h(ζ)dζ ∀z ∈ T.

Furthermore, the function

(2.68) δh(z1, z2) = (C∗
αC

∗
β)−1z

α− 1
2

1 z
β− 1

2
2

(
Dα− 1

2
0+ ⊗Dβ− 1

2
0+ h∗

)
(z1, z2),

satisfies (2.66) where h∗(z1, z2) = z
1
2
−α

1 z
1
2
−β

2 h(z1, z2).
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Proof By using the polarization technique [19], it is sufficient to consider functions

h of the form h(z1, z2) = h1(z1)h2(z2), where h1 ∈ Hλ1([0, T1]), h2 ∈ Hλ2([0, T2]). For

notational simplicity set k = β − 1
2

and d = α− 1
2

so that k, d ∈ (0, 1
2
). Let δh be as

given in (2.68). Then using representations (2.22),

∫
Rz

Kα,β(z; ζ)δH(ζ)dζ

=

∫ z1

u=0

∫ z2

v=0

u−d
(
Id
z1−t

d1[0,z1](t)
)
(u)v−k

(
Ik
z2−w

k1[0,z2](w)
)
(v)udvk

×
(
Dd

0+ ⊗Dk
0+h

∗(z, w)
)
(u, v)dvdu

=

∫ z1

u=0

(
Id
z1−t

d1[0,z1](t)
)
(u)
(
Dd

0+t
−dh1(t)

)
(u)du

×
∫ z2

v=0

(
Ik
z2−w

k1[0,z2](w)
)
(v)
(
Dk

0+w
−kh2(w)

)
(v)dv

=

∫ z1

u=0

u−dh1(u)
(
Dd

z1−
(
Id
z1−(t′)d1[0,z1](t

′)
)
(t)
)
(u)du

(2.69) ×
∫ z2

v=0

v−kh2(v)
(
Dk

z2−
(
Ik
z2−(w′)k1[0,z2](w

′)
)
(w)
)
(v)dv

(2.70) =

∫ z1

u=0

∫ z2

v=0

h1(u)h2(v)dvdu =

∫
Rz

h(ζ)dζ.

Equality (2.69) follows from an application of fractional differentiation by parts (see

corollary of (2.19) in [24]) since u−dh1(u) ∈ Id
0+(L1[0, t]) and v−kh2(v) ∈ Ik

0+(L1[0, s])

by theorem II.25. Similarly, one can show (2.67) by using representation (2.26).

Next, notice that since h1 ∈ Hλ1([0, T1]), where λ1 > α − 1
2
, by theorem II.25,

h1 ∈ I
α− 1

2
0+ (L2([0, T1])), and hence

∫ ·
0
h1(u)du ∈ I

α+ 1
2

0+ (L2([0, T1])). If we let

δh1(z1) = (C∗
α)−1zd

1

(
Dd

0+t
−dh1(t)

)
(z1) ∀z1 ∈ [0, T1],

then it easily follows from (2.70), that∫ z1

0

hi
1(t)dt =

∫ z1

0

Kα(z1, t)δhi
1
(t)dt, ∀z1 ∈ [0, T1].
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Since the integral operator Kα associated with the kernel Kα,

(
Kαf

)
(z1) :=

∫ z1

0

Kα(z1, t)f(t)dt, f ∈ L2([0, T1]),

is an isomorphism from L2([0, T1]) onto I
α+ 1

2
0+ (L2([0, T1])) [3], it follows that f ∈

L2([0, T1]) if and only if Kαf ∈ I
α+ 1

2
0+ (L2([0, T1])). Therefore δhi

1
∈ L2([0, T1]). Simi-

larly, if h2 ∈ Hλ1([0, T2]), where λ2 > β − 1
2
, then δh2 ∈ L2([0, T2]), where

δh2(z2) = (C∗
β)−1zk

2

(
Dk

0+t
−kh1(t)

)
(z2) ∀z2 ∈ [0, T2].

Therefore, δ(h1⊗h2) = δh1 ⊗ δh2 ∈ L2([0, T1]× [0, T2]), and the result follows.

�

Corollary II.40. Fix λ0 >
max(α,β)− 1

2

λ
. Suppose the signal X = (Xz, z ∈ T) has

almost surely Hölder-continuous sample paths of order (λ0, λ0) and g satisfies con-

dition (A1). Then for almost all ω ∈ Ω one can define function (δz(X), z ∈ T)

by

(2.71) δz(X)(ω) :=
1

c∗αc
∗
β

z
α− 1

2
1 z

β− 1
2

2

(
Dα− 1

2
0+ ⊗Dβ− 1

2
0+ g∗· (X)(ω)

)
(z), z = (z1, z2) ∈ T,

with g∗· (X) defined by (2.65). Then, assuming also that (A2) holds, δ(X) = (δz(X), z ∈

T) has the following properties:

(i) δ·(X)(ω) ∈ L2(T) for almost all ω ∈ Ω and E
∫

T(δz(X))2dz <∞;

(ii) For every rectangle Rz = [0, z] ⊂ T,

(2.72)

∫
Rz

K−1
α,β(z; ζ)g(Xζ)dζ =

∫
Rz

δζ(X)dζ a.s.

and

(2.73)

∫
Rz

Kα,β(z; ζ)δζ(X)dζ =

∫
Rz

g(Xζ)dζ a.s.
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Proof The result follows directly from Lemma II.39 noticing that for λ0 >

max(α,β)− 1
2

λ
and g satisfying (A1), g(Xz) ∈ Hλ1,λ2(T). Notice that we’ve used the

fact that for all x, y ∈ R+, and all a, b ∈ (0, 1), (xa + ya)b ≤ xab + yab.

�

For the remainder of this chapter, assume that the assumptions of Corollary II.40

are satisfied.

Define the following processes

(2.74) W Y
z :=

∫
Rz

K−1
α,β(z; ζ)dYζ and WB

z :=

∫
Rz

K−1
α,β(z; ζ)dBα,β

ζ , z ∈ T.

It easily follows that W Y
z =

∫
Rz
δζ(X)dζ +WB

z .

Next let us define the process

(2.75) Vz = exp

{
−
∫

Rz

δζ(X)dWB
ζ − 1

2

∫
Rz

(δζ(X))2dζ

}
z ∈ T.

We can write Vz in terms of our observation process in the following manner:

(2.76) Vz = exp

{
−
∫

Rz

δζ(X)dW Y
ζ +

1

2

∫
Rz

(δζ(X))2dζ

}
z ∈ T

and hence

Vz = exp

{
−
∫

Rz

δζ(X)d
(∫

Rζ

K−1
α,β(ζ, ζ ′)dYζ′

)
+

1

2

∫
Rz

(δζ(X))2dζ

}
z ∈ T

Lemma II.41. Let V = (Vz, z ∈ T) be defined by (2.76). Then E
(
V(T1,T2)

)
= 1.

Proof Since Bα,β and X are independent it follows that WB and X are indepen-

dent. We can therefore define a standard Wiener sheet WB on a complete probability
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space (Ω2,F2, P2), define X on a complete probability space (Ω1,F1, P1) and then

consider the processes on a product probability space (Ω1 × Ω2,F1 × F2, P1 × P2),

with WB(ω) = WB(ω2) and X(ω) = X(ω1) for all ω = (ω1, ω2) ∈ Ω1 × Ω2. Let

M(ω1, ω2) ≡
∫

T δζ(X(ω1))dW
B
ζ (ω2) on (Ω,F , P ). For fixed ω1 ∈ ΩX , M(ω1, ·) is a

mean zero, Gaussian random variable with variance given by
∫

T(δζ(X))2(ω1)dζ. So

for almost all fixed ω1 ∈ Ω1, we have

EP2

(
VT1,T2(ω1, ·)

)
= EP2

[
exp

{
−M(ω1, ·)−

1

2

∫
T
(δζ(X))2(ω1)dζ

}]
= 1,

and hence

E(V(T1,T2)) =

∫
Ω1×Ω2

V(T1,T2)(ω1, ω2)(P1 × P2)(dω1, dω2) =

∫
Ω1

1P1(dω1) = 1. �

Theorem II.42. Consider observation model (2.63), where the signal X = (Xz, z ∈

T) has almost surely Hölder-continuous sample paths of order (λ0, λ0), where

max(α,β)− 1
2

λ
< λ0, and g satisfies conditions (A1)-(A2). Under probability measure P̃ ,

defined in terms of the Radon-Nikodym derivative as

dP̃

dP
= V(T1,T2)

defined on (Ω,F , P ), X and Y are independent and X has the same distribution under

P as under P̃ . P and P̃ are also equivalent probability measures. Furthermore, under

P̃ , Y is fractional Brownian sheet with Hurst indices α, β.

Proof The proof follows directly from the multiparameter Girsanov-type theorem

for the standard Wiener sheet (see e.g. Theorem 1 in [7], p. 89), Proposition II.16

and Lemma II.41.

�

We will use the following lemma to prove a Bayes-type formula for the spatial

filtering model (2.63).
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Lemma II.43. Let (Ω,F) be a probability space and let P and P̃ be equivalent

probability measures on F . Denote by E(·|G) and Ẽ(·|G) the conditional expectations

with respect to G ⊂ F under P and P̃ . Then for any X such that E|X| <∞,

E(X|G)(ω) =
Ẽ
(
X dP

d eP |G
)
(ω)

Ẽ
(

dP

d eP |G
)
(ω)

a.s.

Proof: Since

P

(
Ẽ

(
dP

dP̃
|G
)

(ω) = 0

)
= Ẽ

[
1{

Ẽ
(

dP

d eP |G
)
=0

}(ω)
dP

dP̃
(ω)

]
=

Ẽ

[
1{

Ẽ
(

dP

d eP |G
)
=0

}(ω)Ẽ

(
dP

dP̃
|G
)

(ω)

]
= 0.

Note that
Ẽ
(

X dP

d eP |G
)
(ω)

Ẽ
(

dP

d eP |G
)
(ω)

is G −measurable and for any A ∈ G

E

[(
X(ω)−

Ẽ
(
X dP

d eP |G
)
(ω)

Ẽ
(

dP

d eP |G
)
(ω)

)
1A(ω)

]
= Ẽ

[(
X(ω)−

Ẽ
(
X(ω)dP

d eP |G
)
(ω)

Ẽ
(

dP

d eP |G
)
(ω)

)
1A(ω)

dP

dP̃
(ω)

]

= Ẽ

(
X(ω)

dP

dP̃
(ω)1A(ω)

)
− Ẽ

[
Ẽ
(
X dP

d eP |G
)
(ω)

Ẽ
(

dP

d eP |G
)
(ω)

1A(ω)Ẽ

(
dP

dP̃
|G
)

(ω)

]
= 0

And since this holds for all A ∈ G, the result follows.

�

Theorem II.44. Consider observation model (2.63), where the signal X = (Xz, z ∈

T) has almost surely Hölder-continuous sample paths of order (λ0, λ0), where

max(α,β)− 1
2

λ
< λ0, and g satisfies conditions (A1)-(A2). The following “spatial-fractional”

version of the Bayes’ formula holds: For any F ∈ Cb(R),

(2.77) E
(
F (Xz)|FY

z

)
=

Ẽ
[
F (Xz)V

−1
(T1,T2)|FY

z

]
Ẽ
[
V −1

(T1,T2)|FY
z

] =
Ẽ
[
F (Xz)V

−1
z |FY

z

]
Ẽ
[
V −1

z |FY
z

] a.s.
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where Ẽ denotes the expectation under probability P̃ , FY
z denotes the filtration gen-

erated by the observation process in the rectangle Rz = [0, z1]× [0, z2] ⊂ T, i.e.

FY
z := σ{Yζ : 0 ≺ ζ ≺ z}, z ∈ T,

and V = (Vz, z ∈ T) is defined by (2.75) (in terms of (4.4)).

Proof Since P ∼ P̃ , we have

dP

dP̃
= V −1

T = exp

{∫
T
δζdW

Y
ζ − 1

2

∫
T
[δζ(X)]2dζ

}
From lemma II.43, it follows that for any F ∈ Cb(R) we have

E[F (Xz)|FY
z =

Ẽ[F (Xz)V
−1

T |FY
z ]

Ẽ[V −1
z0
|FY

z

a.s.

giving us the first equality in (2.77). By Theorem II.42, Y and X are independent

under P̃ . Furthermore, Y is a fractional Brownian sheet with Hurst parameters α, β

under P̃ . As in the proof of Lemma II.41 we can define a standard Wiener sheet W Y

on a complete probability space (Ω2,F2, P2), and define X on a complete probability

space (Ω1,F1, P1) and then consider the processes on a product probability space

(Ω1 × Ω2,F1 × F2, P1 × P2), with W Y (ω) = W Y (ω2) and X(ω) = X(ω1) for all

ω = (ω1, ω2) ∈ Ω1 × Ω2. For each fixed ω1,

V −1
T (ω1, ·) = exp

{∫
T
δζ(X(ω1))dW

Y
ζ (·)− 1

2

∫
T
[δζ(X(ω1))]

2dζ

}
.

It follows from Proposition II.15 and Corollary II.40, that for fixed

ω1 ∈ Ω1,
∫

Rz
δζ(X(ω1))dW

Y
ζ (·) is a mean zero, Gaussian strong martingale with

respect to FW Y

z := σ
{
W Y

z′ : 0 ≺ z′ ≺ z ∈ T
}

with quadratic variation process∫
Rz

[δζ(X(ω1))]
2dζ. Thus, applying Theorem II.16, for fixed ω1,

(
V −1

z (ω1, ·),FW Y

z

)
is

a martingale with respect to P̃ . For any z ∈ T, the sigma field generated by W Y
z

is equal to the sigma field generated by Yz, so it follows that
(
V −1

z (ω1, ·),FY
z

)
is a
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strong martingale under P̃ for fixed ω1. The second equality in (2.77) now can easily

be obtained using arguments similar to the classical reference measure approach (see

e.g. [13], pg. 282).

�

2.7 Fractional Duncan-Mortensen-Zakai-type evolution equation along
increasing path in the plane

We are now ready to present evolution equations for the optimal filter in the multi

parameter non-linear filtering problem. Similarly to the single parameter case, we will

derive a stochastic evolution equation describing the dynamics of the unnormalized

optimal filter for an observation process in the plane corrupted by noise term Bα,β
z ,

a fractional Brownian sheet.

Let ∆ be an increasing path connecting the origin to T. By increasing path we

mean that ∆ is non decreasing in both the z1 direction and the z2 direction. For each

z ∈ T, let z∆ be the ”smallest” point on ∆ larger than z with respect to the partial

ordering ≺. The path ∆ divides the Rz into two regions; the region below ∆ which

we will denote D∆
1 and the region above, denoted D∆

2 . More formally, we can express

D∆
1 and D∆

2 as D∆
1 =

{
ζ ∈ T : ζ � ζ∆ = ζ∆

}
and D∆

2 =
{
ζ ∈ T : ζ∆ � ζ = ζ∆

}
.

Definition II.45. Let (Fz, z ∈ T) be a filtration satisfying conditions (F1)-(F4).

Suppose ∆ is a monotone nondecreasing continuous 1-dim curve connecting the origin

to point T = (T1, T2) ∈ R2
+. Then

i) A process φ = (φz, z ∈ T) is called ∆-adapted if φz is Fz∆
-measurable for all z ∈ T.

ii) A process X = (Xz, z ∈ T) is called a ∆-martingale if X is ∆-adapted and

E
[
X
(
z, z′

] ∣∣ Fz∆

]
= 0 for all 0 ≺ z ≺ z′ ≺ T.
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Definition II.46. Let H∆ be the space of processes φ = (φz, z ∈ T) satisfying the

following conditions:

(a) φ is a bimeasurable function of (ω, z);

(b)
∫

T Eφ2
zdz <∞;

(c∆) φ is ∆-adapted.

For φ ∈ H∆, define processes φ∆
i = (φ∆

iz, z ∈ T) ∈ Hi, i = 1, 2 by:

φ∆
1z =

 φz, if z ∈ D∆
1 ,

0, otherwise;

and φ∆
2z =

 φz, if z ∈ D∆
2 ,

0, otherwise.

Then φz = φ∆
1z + φ∆

2z for almost all z ∈ T and one can construct stochastic integral∫
T φzdWz = (φ ◦W )∆

T for φ ∈ H∆ and show the following properties for the resulting

integral (see [28] for details):

Proposition II.47. Let ∆ be a monotone nondecreasing 1-dim continuous curve

connecting the origin to the final point T . Let φ ∈ H∆ and define the stochastic

integral of φ with respect to a standard Wiener sheet (Wz,Fz, z ∈ T) by

(2.78) (φ ◦W )∆
z = (φ∆

1 ◦W )z + (φ∆
2 ◦W )z, z ∈ T.

Then the integral has the following properties:

i) (φ ◦W )∆ is a ∆-martingale;

ii) (φ ◦W )∆ is a one-parameter martingale on the path ∆;

iii) If ∆ and ∆′ are two monotone nondecreasing paths connecting the origin to T

and both passing through a point z0 ∈ T, and φ is both ∆ and ∆′-adapted, then

(φ ◦W )∆
z0

= (φ ◦W )∆′
z0

.

Proposition II.48. [28] Suppose Xz is a semi-martingale in the plane taking the

form

Xz = X0 +

∫
Rz

φζdWζ +

∫
Rz

θζdζ +

∫
Rz×Rz

ψζ,ζ′dWζdWζ′



44

(2.79) +

∫
Rz×Rz

fζ,ζ′dζdWζ′ +

∫
Rz×Rz

gζ,ζ′dWζdζ
′, z ∈ T,

where Rz = [0, z1] × [0, z2] and φ ∈ H0 and ψ, f, g ∈ Ĥ, where spaces H0, Ĥ are

defined as in Definition II.14 and Definition II.19. Then for any increasing path

∆, connecting the origin to z, there exist ηζ = η(∆, ζ) and νζ = ν(∆, ζ) such that

η ∈ H∆ and

(2.80) Xz = X0 +

∫
Rz

η(∆, ζ)dWζ +

∫
Rz

ν(∆, ζ)dζ x ∈ ∆.

As such, X is a sample-continuous semimartingale along the increasing path ∆.

We now consider the spatial nonlinear filtering model (2.63) with signal process

given by the general multiparameter semimartingale (2.79).

Theorem II.49. Let ∆ be an arbitrary monotone nondecreasing continuous 1-dim

curve connecting the origin to the final point T ∈ R2
+. Let us assume that the

observation model (2.63) holds, along with conditions (A1), (A2), and suppose that

the signal X is a two-parameter semimartingale in the plane, which is written in the

form (2.80), where η ∈ H∆ and ν is ∆-adapted, and whose trajectories are Hölder-

continuous of order (λ0, λ0), where λ0 >
max{α,β}− 1

2

λ
. For F ∈ C2

b (R), consider the

unnormalized optimal filter

(2.81) σz(F ) := Ẽ
[
F (Xz)V

−1
z |FY

z

]
, z ∈ T,

introduced in Theorem II.44. Then the following stochastic evolution equation, gov-

erning the dynamics of the unnormalized optimal filter along the monotone increasing

path ∆, is satisfied:

(2.82)

σz(F ) = σ0(F ) +

∫
Rz

σζ∆

(
νF ′ +

1

2
η2F ′′)dζ +

∫
Rz

σζ∆(Fδ)d

(∫
Rζ

K−1
α,β(ζ; ζ ′)dYζ′

)
,
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∀z ∈ ∆, where

(2.83) σζ∆(Fδ) := Ẽ
[
F (Xζ∆) δζ∆(X)V −1

ζ∆

∣∣FY
ζ∆

]
,

and (δz(X), z ∈ T) is defined in (4.4).

Proof First we reparameterize ∆ by {z(t); 0 ≤ t ≤ 1} so that the process {Xz, z ∈

∆} can be rewritten as {Xz(t), 0 ≤ t ≤ 1}. By Proposition II.47 and Proposition

II.48, X is a continuous one-parameter semimartingale on ∆. Therefore, for any

F ∈ C2
b (R),

F (Xz(t)) = F (Xz(0)) +

∫ t

0

F ′(Xz(s))dXz(s) +
1

2

∫ t

0

F ′′(Xz(s))d〈X,X〉z(s), t ∈ [0, 1],

where 〈X,X〉z(t) =
∫

Rz(t)
η2

ζdζ. Note that one can re-express F along ∆ free of the

earlier parametrization as follows:

F (Xz) = F (X0) +

∫
Rz

F ′(Xζ∆)dXζ +
1

2

∫
Rz

F ′′(Xζ∆)η2
ζdζ, z ∈ ∆.

Similarly, since

V −1
z(t) = exp

{∫ t

0

δz(s)(X)dWB
z(s) +

1

2

∫ t

0

[δz(s)(X)]2dz(s)

}
, t ∈ [0, 1],

the (single parameter) Itô formula gives

V −1
z(t) = 1 +

∫ t

0

V −1
z(s)δz(s)(X)dWB

z(s) +

∫ t

0

V −1
z(s)[δz(s)(X)]2dz(s), t ∈ [0, 1],

where the latter equation can also be rewritten free of parametrization as

V −1
z = 1 +

∫
Rz

V −1
ζ∆
δζ∆(X)dW Y

ζ , z ∈ ∆.

We can apply the one-parameter Itô product rule to V −1
z(s)F (Xz(s)) giving

V −1
z(t)F (Xz(t)) = F (Xz(0)) +

∫ t

0

V −1
z(s)

(
νz(s)F

′(Xz(s)) +
1

2
η2

z(s)F
′′(Xz(s))

)
dz(s)
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+

∫ t

0

V −1
z(s)F

′(Xz(s))ηz(s)dWz(s) +

∫ t

0

F (Xz(s))V
−1
z(s)δz(s)(X)dW Y

z(s), t ∈ [0, 1].

Taking conditional expectations of both sides of the above one-parameter equation

with respect to FY
z(t) = FW Y

z(t) under P̃ , we obtain the following equation along the

path ∆:

σz(t)(F ) = σz(0)(F ) +

∫ t

0

σz(s)(νF
′ +

1

2
η2F ′′)dz(s) +

∫ t

0

σz(s)(Fδ)dW
Y
z(s), t ∈ [0, 1],

where

σz(s)(Fδ) := Ẽ[V −1
z(s)F (Xz(s))δz(s)(X)|FY

z(s)].

The latter evolution along the 1-dimensional path ∆ can be expressed free of parametriza-

tion as follows:

σz(F ) = σ0(F ) +

∫
Rz

σζ∆(νF ′ +
1

2
η2F ′′)dζ +

∫
Rz

σζ∆(Fδ)dW Y
ζ , z ∈ ∆,

or, equivalently, in terms of the observation process

(2.84)

σz(F ) = σ0(F )+

∫
Rz

σζ∆(νF ′+
1

2
η2F ′′)dζ+

∫
Rz

σζ∆(Fδ)d
(∫

Rζ

K−1
α,β(ζ; ζ ′)dYζ′

)
, z ∈ ∆,

where the equations hold almost surely under P̃ and P .

�

Remark The above stochastic evolution equation cannot be interpreted as a measure-

valued stochastic differential equation because of the special meaning assigned to

σζδ
(Fδ) in (2.83). This form of the optimal filter takes into account the fact that

δz(X) is not a function of Xz alone but rather a function of the entire past (Xζ , 0 ≺

ζ ≺ z).
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2.8 Fractional Duncan-Mortensen-Zakai-type evolution equation in the
plane

The stochastic evolution equation (2.82) of Section 2.7, governing the dynamics of

the unnormalized optimal filter, holds only for ”increasing” evolution in the param-

eter space. Our objective in this section is to develop a “fractional-spatial” analogue

of the Duncan-Mortensen-Zakai equation for the unnormalized optimal filter which

holds along arbitrary paths in the plane.

Let a : R → R and b : R → R be measurable functions satisfying the following

Lipshitz and growth conditions: there exists a finite constant C > 0 such that for all

x, y ∈ R,

(2.85) |a(x)− a(y)|+ |b(x)− b(y)| ≤ C|x− y|

and

(2.86) |a(x)|+ |b(x)| ≤ C(1 + |x|).

Then there exists a unique strong solution to the following multiparameter SDE (see

e.g. [7]):

Xz = X0 +

∫
Rz

a(Xζ)dζ +

∫
Rz

b(Xζ)dWζ , z ∈ T,

where W denotes a standard Wiener sheet. Moreover, the solution has Hölder-

continuous sample path of order (λ1, λ2) for all λ1, λ2 ∈
(
0, 1

2

)
.

Theorem II.50. Consider the observation model (2.63), and that a(·) and b(·)

satisfy the Lipshitz conditions (2.85) and (2.86). Furthermore, assume conditions

(A1), (A2) are valid. Suppose that the signal X is the unique strong solution of the
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following SDE:

(2.87) Xz = X0 +

∫
Rz

a(Xζ)dζ +

∫
Rz

b(Xζ)dWζ , z ∈ T,

where W is a standard Wiener sheet independent of the observation Y . Let σz(F ) :=

Ẽ
[
F (Xz)V

−1
z | FY

z

]
, i.e. σz(F ) is the unnormalized conditional expectation corre-

sponding to the optimal filter. Then for all F ∈ C4
b (R), evolution of the unnormalized

optimal filter satisfies the following:

σz(F ) = σ0(F ) +

∫
Rz

σζ

(
aF ′ +

1

2
b2F ′′)dζ +

∫
Rz

σζ

(
Fδ
)
dW Y

ζ

+

∫∫
Rz×Rz

σζ,ζ′
(
F ; δ ⊗ δ

)
dW Y

ζ dW
Y
ζ′

+

∫∫
Rz×Rz

[
σζ,ζ′(F

′; a⊗ δ) +
1

2
σζ,ζ′(F

′′; b2 ⊗ δ)
]
dζdW Y

ζ′

+

∫∫
Rz×Rz

[
σζ,ζ′(F

′; δ ⊗ a) +
1

2
σζ,ζ′(F

′′; δ ⊗ b2)
]
dW Y

ζ dζ
′

(2.88) +

ZZ
Rz×Rz

I(ζ f ζ′)

»
σζ,ζ′

`
F ′′; a⊗ a

´
+

1

2
σζ,ζ′

`
F ′′′; b2 ⊗ a + a⊗ b2´

+
1

4
σζ,ζ′

`
F (iv); b2 ⊗ b2´–

dζdζ′,

where ⊗ denotes the tensor product of functions, σz(Fδ) := Ẽ
[
F (Xz)δz(X)V −1

z | FY
z

]
,

σz,z′
(
F ; δ ⊗ δ

)
:= Ẽ

[
F (Xz∨z′)δz(X)δz′(X)V −1

z∨z′ | FY
z∨z′

]
, and for arbitrary functions

f1 : R → R, f2 : R2 → R, we put σz,z′(f1; f2) := Ẽ
[
f1(Xz∨z′)f2(Xz, Xz′)V

−1
z∨z′ | FY

z∨z′

]
for all z, z′ ∈ T. (In (2.88), W Y

z =
∫

Rz
K−1

α,β(z; ζ)dYζ and δ is given by (4.4), as

before.)

Remark In Theorem II.50, we could write σz(F ) = σz,z(F ; 1), where 1 denotes

function on R2 which is identically equal to one.

Proof : First note that, under P̃ , Y is a fractional Brownian sheet with Hurst

indices (α, β), while the corresponding field W Y , given by W Y
z =

∫
Rz
K−1

α,β(z; ζ)dYζ ,

is a standard Wiener sheet and the two random fields generate the same natural
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filtration, thus, the observation sigma-field (FY
z )0≺z≺T has properties (F1)–(F4).

Similarly, (FX
z )z∈T and (FX,Y

z )z∈T have properties (F1)–(F4) under reference prob-

ability measure P̃ . Note also that the paths of X = (Xz, z ∈ T) are almost surely

Hölder-continuous of arbitrary order (λ1, λ2), where λ1, λ2 <
1
2
, thus δ is well-defined

and the conclusions of Corollary II.40 hold. Next, by a version of the Itô’s formula for

multiparameter semimartingales (see [29]), we obtain that for arbitrary F ∈ C4
b (R),

F (Xz) = F (X0) +

∫
Rz

F ′(Xζ)
[
a(Xζ)dζ + b(Xζ)dWζ

]
+

1

2

∫
Rz

F ′′(Xζ)b
2(Xζ)dζ

+

∫∫
Rz×Rz

F ′′(Xζ∨ζ′)b(Xζ)b(Xζ′)dWζdWζ′

+

∫∫
Rz×Rz

[
F ′′(Xζ∨ζ′)b(Xζ)a(Xζ′) +

1

2
F ′′′(Xζ∨ζ′)b(Xζ)b

2(Xζ′)
]
dζdWζ′

+

∫∫
Rz×Rz

[
F ′′(Xζ∨ζ′)b(Xζ)a(Xζ′) +

1

2
F ′′′(Xζ∨ζ′)b(Xζ)b

2(Xζ′)
]
dWζdζ

′

+

∫∫
Rz×Rz

I(ζfζ ′)

[
F ′′(Xζ∨ζ′)a(Xζ)a(Xζ′)+

1

2
F ′′′(Xζ∨ζ′)

(
a(Xζ)b

2(Xζ′)+a(Xζ′)b
2(Xζ)

)
+

1

4
F (iv)(Xζ∨ζ′)b

2(Xζ)b
2(Xζ′)

]
dζdζ ′.

Similarly, under P̃ , one shows that

V −1
z = 1 +

∫
Rz

V −1
ζ δζ(X)dW Y

ζ +

∫∫
Rz×Rz

V −1
ζ∨ζ′ δζ(X)δζ′(X)dW Y

ζ dW
Y
ζ′ a.s.

Then the multiparameter version of the stochastic integration-by-parts formula (to-

gether with independence of W and W Y under P̃ ) yields a corresponding equation

for the product F (Xz)V
−1
z . Upon taking conditional expectation of both sides of the

latter equation for F (Xz)V
−1
z with respect to FY

z (note that FY
z = FW Y

z ) and using



50

Lemma II.51, which is proved below, one arrives at the following equation:

Ẽ
(
F (Xz)V

−1
z |FY

z

)
= Ẽ

(
F (X0)|FY

0

)
+

∫
Rz

Ẽ
([

a(Xζ)F
′(Xζ) +

1

2
b2(Xζ)F

′′(Xζ)
]
V −1

ζ

∣∣FY
z

)
dζ

+

∫
Rz

Ẽ
(
F (Xζ)δζ(X)V −1

ζ | FY
ζ

)
dW Y

ζ

+

∫∫
Rz×Rz

Ẽ
(
F (Xζ∨ζ′)δζ(X)δζ′(X)V −1

ζ∨ζ′

∣∣∣∣FY
ζ∨ζ′

)
dW Y

ζ dW
Y
ζ′

+

∫∫
Rz×Rz

Ẽ
([

a(Xζ)F
′(Xζ∨ζ′) +

1

2
b2(Xζ)F

′′(Xζ∨ζ′)
]
δζ′V

−1
ζ∨ζ′

∣∣∣∣FY
ζ∨ζ′

)
dζdW Y

ζ′

+

∫∫
Rz×Rz

Ẽ
([

a(Xζ′)F
′(Xζ∨ζ′) +

1

2
b2(Xζ′)F

′′(Xζ∨ζ′)
]
δζV

−1
ζ∨ζ′

∣∣∣∣FY
ζ∨ζ′

)
dW Y

ζ dζ
′

+

∫∫
Rz×Rz

I(ζ f ζ ′)Ẽ
([
F ′′(Xζ∨ζ′)a(Xζ)a(Xζ′) +

1

4
F (iv)(Xζ∨ζ′)b

2(Xζ)b
2(Xζ′)

+
1

2
F ′′′(Xζ∨ζ′)

{
b2(Xζ′)a(Xζ) + a(Xζ′)b

2(Xζ)
}]
V −1

ζ∨ζ′

∣∣∣∣FY
ζ∨ζ′

)
dζdζ ′ a.s.,

thus, the required conclusion follows. �

Lemma II.51. Let W and W Y be independent standard Wiener sheets on a prob-

ability space (Ω,FT , P̃ ) and FW,W Y

z := σ(Wζ ,W
Y
ζ′ : 0 ≺ ζ ≺ z, 0 ≺ ζ ′ ≺ z), z ∈ T.

Also let (FW
z ) and (FW Y

z ) denote the natural filtrations generated by W and W Y ,

respectively. Consider a process M (which is
(
FW,W Y

z

)
-measurable), given by

Mz :=

∫
Rz

φζdW
Y
ζ +

∫∫
Rz×Rz

ψζ,ζ′dW
Y
ζ dW

Y
ζ′ ,

where φ ∈ H0 and ψ ∈ Ĥ, with H0 and Ĥ being defined with respect to filtration

(FW,W Y

z ). Then

i) For any process ψ ∈ Ĥ,

Ẽ
(∫

Rz×Rz

ψζ,ζ′dWζdWζ′

∣∣∣∣FW Y

z

)
= 0 a.s. P̃ ,

Ẽ
(∫

Rz×Rz

ψζ,ζ′dWζdζ
′
∣∣∣∣FW Y

z

)
= 0 a.s. P̃ ,
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Ẽ
(∫

Rz×Rz

ψζ,ζ′dζdWζ′

∣∣∣∣FW Y

z

)
= 0 a.s. P̃ ,

Ẽ
(∫

Rz×Rz

ψζ,ζ′dWζdW
Y
ζ′

∣∣∣∣FW Y

z

)
= 0 a.s. P̃ ,

Ẽ
(∫

Rz×Rz

ψζ,ζ′dW
Y
ζ dWζ′

∣∣∣∣FW Y

z

)
= 0 a.s. P̃ .

ii) The following equation holds almost surely with respect to P̃ :

Ẽ
(
Mz | FW Y

z

)
=

∫
Rz

Ẽ
(
φζ | FW Y

ζ

)
dW Y

ζ +

∫
Rz×Rz

Ẽ
(
ψζ,ζ′ | FW Y

ζ∨ζ′

)
dW Y

ζ dW
Y
ζ′ .

Also,

Ẽ
(∫

Rz×Rz

ψζ,ζ′dζdW
Y
ζ′

∣∣∣∣FW Y

z

)
=

∫
Rz×Rz

Ẽ
(
ψζ,ζ′|FW Y

ζ∨ζ′

)
dζdW Y

ζ′ a.s. P̃ ,

Ẽ
(∫

Rz×Rz

ψζ,ζ′dW
Y
ζ dζ

′
∣∣∣∣FW Y

z

)
=

∫
Rz×Rz

Ẽ
(
ψζ,ζ′|FW Y

ζ∨ζ′

)
dW Y

ζ dζ
′ a.s. P̃ .

Proof: Let us start by showing that the first equality in (i) holds, i.e. that

Ẽ
(∫

Rz×Rz

ψζ,ζ′dWζdWζ′|FW Y

z

)
= 0

almost surely under P̃ . By independence of W and W Y , we may assume that W is a

standard Wiener sheet on a filtered complete probability space (ΩX , F̆W
T , (F̆W

z )z∈T, P̃
X),

whereas W Y is a standard Wiener sheet on another filtered complete probability

space (ΩY , F̆W Y

T , (F̆W Y

z )z∈T, P̃
Y ), where (F̆W

z ) and (F̆W Y

z ) are, respectively, natu-

ral filtrations generated by processes W and W Y (in ΩX and ΩY , respectively),

and (Ω,FT , P̃ ) = (ΩX × ΩY , F̆W
T × F̆W Y

T , PX × P Y ), i.e. the product probabil-

ity space. Then W and W Y are defined on (Ω,FT , P̃ ) by Wz(ω) = Wz(ω1) and

W Y
z (ω) = W Y

z (ω2) for all ω = (ω1, ω2) ∈ Ω. Then, clearly, FW
z = F̆W

z × {∅,ΩY } and

FW Y

z = {∅,ΩX} × F̆W Y

z .

Next let us fix some n ∈ N and consider a partition of rectangle RT = (0, T ] (where

T = (T1, T2)) into rectangles ∆i,j :=
(
z(i,j), z(i+1,j+1)

]
, where z(i,j) = (2−niT1, 2

−njT2).
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Let S be the class of processes ψ of the form:

(2.89) ψ(ζ, ζ ′) =
2n−1∑

i,j,k,`=0

αijk`1∆i,j
(ζ)1∆k,`

(ζ ′),

where αijk` is FW,W Y

z(i,j)∨z(k,`)
-measurable. By definition of the double integral,∫

Rz×Rz

ψ(ζ, ζ ′)dWζdWζ′ :=
2n−1∑

i,j,k,`=0

αijk` 1{i<k}1{`<j}W (Rz ∩∆i,j)W (Rz ∩∆k,`).

Then,

Ẽ
(∫

Rz×Rz

ψ(ζ, ζ ′)dWζdWζ′|FW Y

z

)
=

2n−1∑
i,j,k,`=0

Ẽ
[
αijk`1{i<k}∩{`<j}W (Rz ∩∆i,j)W (Rz ∩∆k,`)

∣∣ {∅,ΩX} × F̆W Y

z

]
.

Note that ∀Q ∈ F̆W Y

z , we haveZ
ΩX×Q

αijk`(ω1, ω2)1{i<k}∩{`<j}W (Rz ∩∆i,j)(ω1)W (Rz ∩∆k,`)(ω1)dP̃ (ω1, ω2)

=

Z
Q

»Z
ΩX

αijk`(ω1, ω2)1{i<k}∩{`<j}W (Rz ∩∆i,j)(ω1)W (Rz ∩∆k,`)(ω1)dP̃ X(ω1)

–
dP̃ Y (ω2) = 0,

since for fixed ω2 ∈ Ω2 and for all i < k and ` < j, random variables αijk`(·, ω2),

W (Rz ∩∆k,`) and W (Rz ∩∆i,j) are mutually independent. Thus,

Ẽ
[
αijk`1{i<k}∩{`<j}W (Rz ∩∆i,j)W (Rz ∩∆k,`)

∣∣ {∅,ΩX} × F̆W Y

z

]
= 0 a.s.(P̃ ),

implying that for any simple process ψ ∈ S,

Ẽ
(∫

Rz×Rz

ψ(ζ, ζ ′)dWζdWζ′|FW Y

z

)
= 0 a.s. (P̃ ).

Since S is dense in Ĥ, the required equality follows for arbitrary ψ ∈ Ĥ by taking

appropriate limits. Similar arguments show that the remaining equalities in (i) are

also valid.

To prove (ii), let us show that ∀ψ ∈ Ĥ,

(2.90)

Ẽ
(∫

Rz×Rz

ψ(ζ, ζ ′)dW Y
ζ dW

Y
ζ′ |FW Y

z

)
=

∫
Rz×Rz

Ẽ
[
ψ(ζ, ζ ′)|FW Y

ζ∨ζ′

]
dW Y

ζ dW
Y
ζ′ a.s.
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First, consider ψ ∈ S of the form (2.89). Then

Ẽ
(∫

Rz×Rz

ψ(ζ, ζ ′)dW Y
ζ dW

Y
ζ′ |FW Y

z

)
=

2n−1∑
i,j,k,`=0

Ẽ
[
αijk`|FW Y

z

]
1{i<k}∩{`<j}W

Y (Rz ∩∆i,j)W
Y (Rz ∩∆k`),(2.91)

where note that

1{i<k}∩{`<j}W
Y (Rz ∩∆i,j)W

Y (Rz ∩∆k`) = 0 unless z(k,j) =
(
z(i,j) ∨ z(k,`)

)
≺≺ z.

Since αijk` is FW,W Y

z(k,j)
-measurable and z(k,j) ≺≺ z, then the conditional expectation

in the right-hand side of (2.91) satisfies equation

Ẽ
[
αijk`|FW Y

z

]
= Ẽ

[
αijk`|FW Y

z(k,j)

]
a.s.,

by independence of W and W Y and since Wiener sheets generate independently

scattered measures. Thus,

Ẽ
(∫

Rz×Rz

ψ(ζ, ζ ′)dW Y
ζ dW

Y
ζ′ |FW Y

z

)
=

2n−1∑
i,j,k,`=0

Ẽ
[
αijk`|FW Y

z(k,j)

]
1{i<k}∩{`<j}W

Y (Rz ∩∆i,j)W
Y (Rz ∩∆k`) a.s.(2.92)

On the other hand,∫
Rz×Rz

Ẽ
[
ψ(ζ, ζ ′)|FW Y

ζ∨ζ′

]
dW Y

ζ dW
Y
ζ′

=

∫
Rz×Rz

2n−1∑
i,j,k,`=0

Ẽ
[
αijk`|FW Y

ζ∨ζ′

]
1∆i,j

(ζ)1∆k,`
(ζ ′)dW Y

ζ dW
Y
ζ′

=

∫
Rz×Rz

2n−1∑
i,j,k,`=0

1{i<k}∩{`<j}Ẽ
[
αijk`|FW Y

ζ∨ζ′

]
1∆i,j

(ζ)1∆k,`
(ζ ′)dW Y

ζ dW
Y
ζ′ ,(2.93)

where the last equality holds by definition of the double integral. Note that

1{i<k}∩{`<j}1∆i,j
(ζ)1∆k,`

(ζ ′) 6= 0 implies that ζ ∨ ζ ′ ∈ ∆z(k,j)
,
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which, in turn, implies that Ẽ
[
αijk`|FW Y

ζ∨ζ′

]
(in the right-hand side of (2.93)) equals

almost surely to Ẽ
[
αijk`|FW Y

z(k,j)

]
, since αijk` is FW,W Y

z(k,j)
-measurable. Thus, from (2.93)

by definition of the double integral,∫
Rz×Rz

Ẽ
[
ψ(ζ, ζ ′)|FW Y

ζ∨ζ′

]
dW Y

ζ dW
Y
ζ′

=
2n−1∑

i,j,k,`=0

Ẽ
[
αijk`|FW Y

z(k,j)

]
1{i<k}∩{`<j}W

Y (Rz ∩∆i,j)W
Y (Rz ∩∆k`) a.s.(2.94)

From (2.92) and (2.94), it follows that (2.90) holds for all ψ ∈ S. Since S is dense in

Ĥ, it follows that (2.90) holds for all ψ ∈ Ĥ by taking appropriate limits. Similarly

one establishes that ∀φ ∈ H0,

Ẽ
( ∫

Rz

φζdW
Y
ζ

∣∣FW Y

z

)
=

∫
Rz

Ẽ(φζ |FW Y

ζ )dW Y
ζ a.s.,

thus, the first statement in (ii) is proved. The remaining two statements in (ii) can

be established by analogous arguments. �



CHAPTER III

Representations of the optimal filter in the context of
nonlinear filtering of random fields with fractional noise

3.1 Introduction

In Chapter II, we considered the nonlinear filtering model (2.63) and derived the

Duncan-Mortensen-Zakai-type evolution equation describing the evolution of the best

mean square estimate of (a function of) the signal. While this evolution equation

is useful in describing the dynamics of the optimal filter, one may or may not be

able to work with the evolution equation which is analytically very complex. In this

chapter we develop methods for representing the optimal filter in terms of ratios of

infinite sums of multiple stochastic integrals.

Here we will extend the model (2.63) to the analogous, more general model in

m-dimensions where m ≥ 1. For this model, we develop expansions based on the

integral transformations and change of measure associated with Vz as defined by

(2.75), that was used in the Duncan-Mortensen-Zakai-type evolution equation. We

also derive expansions based on the multiparameter version of the transformation

NC defined in (2.41).

The expansions described in Theorems III.31, III.32 and III.33 can be truncated

and discretized in order to provide a method for numerically implementing the opti-

mal filter in practice. In Theorem III.34, we show that the ratio of a truncated and

55
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discretized version of the multiple integral expansion converges to the multiple op-

timal filter. This truncation and discretization technique describes a method which

can be used to compute accurate estimates of the optimal filters in a very general

class of spatial nonlinear filtering problems with long range dependent noise.

In section 3.2 we introduce several notions of multiple stochastic integrals. Be

begin with the multiple stochastic integral with respect to Brownian sheet in m

dimensional parameter space. We then develop the concept of the Wiener integral

with respect to persistent fractional Brownian motion and then move on to multiple

stochastic integrals (of both Wiener and Stratonovich type) with respect to fractional

Brownian motion and fractional Brownian sheet. In section 3.3 we describe the

model being used and extend some of the methods developed in Chapter II to the

m dimensional parameter space. In section 3.4 we extend the notion of integral

transform NC and the results of section 2.5 from the single parameter case to the

m-dimensional parameter space. Finally, in section 3.5 we give expansions of the

optimal filter and truncated, discretized expansions of these representations.

3.2 Multiple stochastic integrals

In this section we outline the theory of multiple stochastic integrals with respect

to Brownian sheet and with respect to persistent fractional Brownian sheet. We

will use these processes to express the optimal filter discussed earlier in Chapter

II as infinite sums. Specifically, we will develop several methods for expressing the

conditional expectation in (II.44) in the framework of the spatial filtering model

(2.63). Here we will be able to work in the general m-dimensional bounded space

T = [0, T1] × · · · × [0, Tm]. Since we will not be examining evolution equations, the

notation is not greatly affected by the additional dimensions. We begin by introduc-
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ing a few important tools in Gaussian analysis.

Definition III.1. The nth Hermite polynomial, Hn(x), is defined by

Hn(x) = (−1)ne
x2

2
dn

dxn
(e−

x2

2 ), n ≥ 1,

and H0(x) = 1.

These polynomials are coefficients of powers of t in the expansion of exp(tx− t2

2
).

That is

exp(tx− t2

2
) = exp

(
x2

2
− 1

2
(x− t)2

)
= e

x2

2

∞∑
n=0

tn

n!

(
dn

dtn
e−

(x−t)2

2

) ∣∣∣∣
t=0

(3.1) =
∞∑

n=0

tnHn(x).

It follows that we can characterize the Hermite polynomials as follows:

(3.2) H′
n(x) = nHn−1(x), n ≥ 1

(3.3) Hn+1(x) = xHn(x)− nHn−1(x), n ≥ 1.

The first Hermite polynomials are:

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x
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Proposition III.2. Let random variables Z1, Z2 have joint Gaussian distribution

such that E(Z1) = E(Z2) = 0 and V ar(Z1) = V ar(Z2) = 1. If n,m ≥ 0 then,

E (Hn(Z1)Hm(Z2)) =

 n! (E (Z1Z2))
n if n = m

0 if n 6= m

Definition III.3. For any n random variables, X1, ..., Xn, the Wick product X1 �

· · · �Xn is defined recursively for k1 + ...+ kn = N, as satisfying

1. X0
1 � · · · �X0

n = 1

2. E
(
Xk1

1 � · · · �Xkn
n

)
= 0

3. ∂
∂Xi

(
Xk1

1 � · · · �Xkn
n

)
= ki

(
Xk1

1 � · · · �Xki−1
i � · · · �Xkn

n

)
We also define the nth Wick power of a random variableX, byX�n := X � · · · �X︸ ︷︷ ︸

n

.

The following identities follow from the definition of the Wick product and Hermite

polynomial.

For X, Y, Z ∈ L2(Ω,F , P ), and a ∈ R

(aX) � Y = X � (aY ) = a(X � Y )

X � (Y + Z) = X � Y +X � Z = (Y + Z) �X

Proposition III.4. For any mean zero Gaussian random variable X with variance

given by σ2,

(3.4) X�n = σnHn (X/σ)

where Hn(x) is the Hermite polynomial of order n.

In order to examine stochastic integrals in the m-dimensional hyperplane, we first

need to generalize the notions of increments in the plane and hence random measures
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in the plane. Using these generalizations we will give the m-dimensional analogue of

the Brownian sheet given in Definition II.3.

Definition III.5. Let T = [0, T ] = [0, T1] × · · · × [0, Tm] and take t, s ∈ T such

that s � t. Then for process X =
(
Xz, z ∈ T) define the increment of X over the

rectangle R = (s, t] = (s1, t1]× · · · × (sm, tm] by

(3.5) X(R) ≡
∑

α∈{0,1}m

(−1)m−
Pm

i=1 αiX
(
s+

m∑
i=1

αi(ti − si)
)
,

where X
(
s +

∑m
i=1 αi(ti − si)

)
denotes the value X assumes at the point s +∑m

i=1 αi(ti − si) in T. X(R) is also referred to as the variation of X over (hyper)

rectangle R.

Definition III.6. On a complete filtered probability space (Ω,F , (Fz), P ), let T =

[0, T1]×· · ·×[0, Tm]. W =
(
Wz,Fz, z ∈ T

)
is called a continuous version of a Brownian

(Wiener) sheet if it satisfies the following conditions:

1. W is a random measure on T, assigning to each (hyper) rectangle R, a Gaussian

random variable of mean zero;

2. for disjoint Borel sets in T, W assigns independent random variables;

3. Wz = W (Rz) where Rz is the rectangle whose upper right hand corner is z and

whose lower left hand corner is the origin and Wz is adapted to Fz;

4. W has continuous trajectories;

5. for all t, s ∈ T, E(WtWs) = (s1 ∧ t1) · · · (sm ∧ tm).

Now suppose our underlying probability space, (Ω,F , P ) is complete. We de-

note by Hm = span {W (Rz) : z ∈ T} the closed Gaussian subspace of L2(Ω,F , P )
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whose elements are mean zero Guassian random variables. We have an isometry be-

tween Hm and the Hilbert space L2(T,B(T), λ), where λ is Lebesgue measure on Rd.

We consider W (R) an L2(Ω,F , P )-valued random signed measure on the parameter

space (T,B(T)), assigning independent random variables to disjoint Borel sets in the

plane such that W (R) is a normal mean zero random variable with variance given

by λ(R). We say W is an L2(Ω)-valued Gaussian measure on (T,B(T)).

Let us define Hilbert space

(3.6) L2(Tn) :=
{
f : Tn → R, s.t.

∥∥f∥∥
L2(Tn)

<∞
}

where the norm
∥∥ · ∥∥

L2(Tn)
is induced by the scalar product,

(3.7) 〈f, g〉L2(Tn) :=

∫
Tn

f(z1, ..., zn)g(z1, ..., zn)λ(z1)...λ(zn)

We first define the multiple stochastic integral for the class of special elementary

functions.

Definition III.7. For fixed n ≥ 1 let Sm
n denote the class of symmetric deterministic

functions of the form

f(z1, z2, ..., zn) =
k∑

i1,...,in=1

ai1...in1Ai1
×...×Ain

(z1, ..., zn)

where A1, ..., Ak are pairwise disjoint Borel sets in T ⊂ Rm
+ and ai1...in = 0 if any two

of the indices i1, ...im are equal. So if zi = zj for i 6= j then f vanishes. For this

reason we say that f vanishes along the “diagonals.”

Definition III.8. For f ∈ Sm
n , the multiple stochastic integral Im(f) of f is defined

by

(3.8) In(f) =
k∑

i1,...,in=1

ai1...inW (Ai1)...W (Ain).
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For non-symmetric functions g ∈ L2(Tn), define the symmeterization of g as

(3.9) g̃(z1, ..., zn) =
1

n!

∑
π

g(zπ(1), ..., zπ(n)),

where π is the set of all permutations of the set
{
1, 2, ..., n

}
.

Proposition III.9. [21] The class Sm
n is dense in L2(Tn).

Proposition III.9 allows us to extend the integrals In(f) to the class of all such

functions f in L2(Tn). For the remainder of the thesis, In(f) will denote the multiple

stochastic integral with respect to Brownian sheet, also known as the Wiener integral

with respect to Brownian sheet. We will not specify the dimension of the parameter

space of the Brownian sheet corresponding to the integral In(f) but this should be

clear from the context in which the integral is described.

Proposition III.10. The following properties hold for In(·) : L2(Tn) → R:

1. In is linear and E[In(f)] = 0 ∀n ≥ 1, f ∈ L2(Tn).

2. for any f ∈ L2(Tn) the following relationship holds:

(3.10) In(f⊗n) =
(∥∥f∥∥

L2(Tn)

)nHn

(
IRT
1 (f)∥∥f∥∥

L2(T)

)
where the tensor product of a function, f⊗m(z1, ..., zn) = f(z1)f(z2)...f(zn).

3. for f ∈ L2(Tn) and g ∈ L2(Tk), then

(3.11) E[In(g)Ik(f)] =

 n!〈f̃ , g̃〉L2(Tn) if n = k

0 if n 6= k
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Next, let us turn to stochastic integration with respect to fractional Brownian

motion and fractional Brownian sheet. Recall that for t, s ∈ R+, H ∈ (1
2
, 1), we call

the mean zero Gaussian process BH(t), with with covariance

(3.12) RH(t, s) := E
[
BH(t)BH(s)

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
,

a fractional Brownian motion.

We define the m-parameter fractional Brownian sheet in an analogous manner to

the 2-parameter fractional Brownian sheet of Definition II.31.

Definition III.11. On a complete filtered probability space (Ω,F , (Fz), P ), let H =

(H1, ..., Hm) ∈ (0, 1)m and let T = [0, T1] × · · · × [0, Tm]. BH =
(
BH

z ,Fz, z ∈ T
)

is

called a continuous version of a fractional Brownian sheet (field), if it satisfies the

following conditions:

1. BH is a random measure on T, assigning to each (hyper) rectangle R, a Gaussian

random variable of mean zero;

2. BH
z = BH(Rz) where Rz is the rectangle whose upper right hand corner is z

and whose ”lower left hand corner” is the origin and BH
z is adapted to Fz;

3. BH has continuous trajectories;

4. for all z, y ∈ T with z = (z1, ..., zm), y = (y1, ..., ym), E(BH
z B

H
y ) =

∏m
i=1RHi

(zi, yi).

For t, s ∈ R+, define

(3.13) φH(t, s) :=
∂2

∂t∂s
RH(t, s) = H(2H − 1) |t− s|2H−2 .

The stochastic integral with respect to fractional Brownian motion is constructed by
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first defining the integral for S1
1 , a class of simple functions on [0, T ] of the form

f(s) =
n∑

i=1

ai1(ci,di](s),

where ai ∈ R are constants and (ci, di] i = 1, ..., n are disjoint intervals in [0, T ].

Definition III.12. For k ∈ N+, define the space H H
k by

H H
k := span

{
BH(Rz) : z ∈ [0, T ]k

}
where Rz is the (hyper) rectangle with ”lower left” endpoint at the origin and ”upper

right” endpoint at z. Equip this space with the scalar product

〈X, Y 〉H H
k

= E(XY ),

for any X, Y ∈ H H
k .

For f ∈ S1
1 , define the Itô (Wiener) integral with respect to BH as the map from

S1
1 to H H

1 given by

IBH

1 (f) :=

∫
[0,T ]

f(s)dBH
s :=

n∑
i=1

ai(B
H
di
−BH

ci
).

Definition III.13. Define the space L2
H,1([0, T ]) by

L2
H,1([0, T ]) =

{
f : [0, T ] → R, s.t.

∥∥f∥∥
L2

H,1([0,T ])
<∞

}
.

where the L2
H,1([0, T ])-norm is induced by the scalar product

(3.14) 〈f, g〉L2
H,1([0,T ]2) :=

∫ ∫
[0,T ]

f(s)g(t)φH(s, t)dsdt,

and φH(·, ·) is defined by (3.13).

For all f, g ∈ S1
1 , we have the isometry 〈f, g〉L2

H,1([0,T ]) = 〈IBH

1 (f), IBH

1 (g)〉H H
1
.

Define ΛH
1 to be the completion of S1

1 under the norm induced by 〈·, ·〉L2
H,1([0,T ]), so
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that {ΛH
1 , 〈·, ·〉L2

H,1([0,T ])} is a Hilbert space and IBH

1 can be extended to an isometric

isomorphism mapping ΛH
1 to H H

1 . We will call this extension IBH

1 as well. For

notational simplicity we will often drop the superscript and simply write I1 whenever

it is clear which process we are integrating with respect to.

Proposition III.14. [23] For H > 1
2
, the class L2

H,1([0, T ]) is an incomplete linear

subspace of ΛH
1 , and S1

1 ⊂ L2
H . However, the closure (L2

H,1([0, T ]), 〈·, ·〉L2
H,1([0,T ])) is

equal to ΛH
1 and is a Hilbert space.

Note 3.2.1. The elements of ΛH
1 may not be functions but rather generalized func-

tions. For this reason, it is convenient to work with functions in L2
H,1([0, T ]).

Definition III.15. Let {ei}∞i=1 be a complete orthonormal system in L2
H,1([0, T ]).

Define S 1
n , the class of deterministic symmetric functions of the form:

(3.15) f(t1, ..., tn) =
∑

1≤ki≤k

ak1,...,knek1(t1)...ekn(tn).

Definition III.16. For f ∈ S 1
n , define the m-fold multiple Itô integral with respect

to BH as map IBH

n by

(3.16) IBH

n (f) :=
∑

1≤ki≤k

ak1,...,k2IBH

1 (ek1) � ... � IBH

1 (ekn),

where IBH

1 (ekj
) is the stochastic integral of ekj

with respect to fractional Brownian

motion BH . IBH

n is the nth order Wiener integral with respect to fractional Brownian

motion with Hurst parameter H ∈ (1
2
, 1). For non-symmetric f, IBH

n (f) is defined

by IBH

n (f̃), where f̃ is the symmetrization of f , defined by (3.9).

Definition III.17. Define the space of functions L2
H,n([0, T ]n) by

(3.17) L2
H,n([0, T ]n) :=

{
f : [0, T ]n → R s.t. ‖f‖L2

H,n([0,T ]n) <∞
}
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where the norm ‖ · ‖L2
H,n([0,T ]n) is induced by the scalar product

(3.18)

〈f, g〉L2
H,n([0,T ]n) =

∫
[0,T ]2n

f(t1, .., tn)g(s1, .., sn)φH(s1, t1) · · ·φH(sn, tn)ds1dt1 · ·dsndtn.

Note 3.2.2. Let (L2
H,1([0, T ]))⊗n denote the nth symmetric tensor power of L2

H,1([0, T ]).

Then (L2
H,1([0, T ]))⊗n ⊂ L2

H,n([0, T ]n).

Any f ∈ (L2
H,1([0, T ]))⊗n, can be written as the limit of functions fj ∈ S 1

n where

the limit is taken in the 〈·, ·〉L2
H,n

-sense. Hence for any f ∈ (L2
H,1([0, T ]))⊗n the multi-

ple stochastic integral IBH

n (f) can be defined uniquely as the limit (in the Gaussian

space) of sequences of integrals of S 1
n functions, IBH

n (fj), where fj → f . The inte-

gral can be extended to non-symmetric functions by defining IBH

n (f) by IBH

n (f̃) for

non-symmetric functions f . We will henceforth denote the extension by IBH

n .

Proposition III.18. [22] For H > 1
2
, L2([0, T ]n) is a dense subclass of L2

H,n([0, T ]n).

Finally, for the Itô integral with respect to fractional Brownian sheet and for the

multiple Wiener integral with respect to fractional Brownian sheet, the development

is very similar to the development of the corresponding integrals with respect to

fractional Brownian motion. Define the space Sm
1 of simple functions on T, where T

is in the m-dimensional hyperplane.

Definition III.19. Let f be a simple function in Sm
1 . Then we define the Itô integral

of f with respect to fractional Brownian sheet BH over rectangles Rz ∈ T by

IBH

1 (f) =

∫
Rz

fdBH
y =

∑
i

αiB
H(Ai ∩Rz)
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Definition III.20. Let T = [0, T1] × · · · × [0, Tm]. Define the space of functions

L2
H,1(T) by

(3.19) L2
H,1(T) :=

{
f : T → R s.t. ‖f‖L2

H,1(T) <∞
}

where the norm ‖ · ‖L2
H,1(T) is induced by the scalar product

(3.20) 〈f, g〉L2
H,1(T) :=

∫
T2

f(t1, ..., tm)g(s1, ..., sm)
m∏

i=1

φH(ti, si)dt1ds1 · · · dtmdsm,

ti, si ∈ [0, Ti] ∀i and where φH(·, ·) is given by (3.13).

For all f, g ∈ Sm
1 , we have the isometry 〈f, g〉L2

H,1(T) = E
(
IBH

1 (f)IBH

1 (g)
)
. De-

fine ΛH
m to be the completion of Sm

1 under the norm induced by 〈·, ·〉L2
H,1(T), so that

{ΛH
m, 〈·, ·〉L2

H,1(T)} is a Hilbert space and IBH

1 can be extended to an isometric iso-

morphism mapping ΛH
m to the H H

1 . We will call this extension IBH

1 (f) as well.

For notational simplicity we will often drop the superscript and simply write I1(f)

whenever integrating process is clear.

Note 3.2.3. As was true in the case of ΛH
1 , the elements of ΛH

m may not be functions

but rather generalized functions. For this reason, it is convenient to work with

functions in L2
H,1(T) which is a linear subspace of ΛH

m containing Sm
1 and satisfies

(L2
H,1(T), 〈·, ·〉L2

H,1(T)) = ΛH
m.

Definition III.21. Let T = [0, T1] × · · · × [0, Tm]. Define the space of functions

L2
H,m(Tn) by

(3.21) L2
H,m(Tn) :=

{
f : Tn → R s.t. ‖f‖L2

H,m(Tn) <∞
}

where the norm ‖ · ‖L2
H,m(Tn) is induced by the scalar product

(3.22)

〈f, g〉L2
H,m(Tn) :=

∫
T2n

f(z1, ..., zn)g(y1, ..., yn)
( n∏

i=1

φ⊗m
H (zi, yi)

)
dz1dy1 · · · dzndyn,
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zi = (zi
1, ..., z

i
m), yi = (yi

1, ..., y
i
m) ∀i and

(3.23) φ⊗m
H (zr, yr) =

m∏
j=1

φH(zr
j , y

r
j )

where φH(·, ·) is given by (3.13).

Definition III.22. Let {ei}∞i=1 be a complete orthonormal system in L2
H,1(T). Define

S m
n , the class of deterministic symmetric functions of the form:

(3.24) f(z1, ..., zn) =
∑

1≤ki≤k

ak1,...,knek1(z
1)...ekn(zn).

The superscript n and subscript m, indicate that f is a function of an m× n matrix

where the ith column is zi.

Denote the nth symmetric tensor power of L2
H,1(T), by L2

H,1(T)⊗n

Definition III.23. For h ∈ S m
n , define the map IBH

n (h) by

(3.25) IBH

n (h) :=
∑

1≤ki≤k

ak1,...,k2IBH

1 (ek1) � ... � IBH

1 (ekn),

where IBH

1 (·) is the stochastic integral with respect to fractional Brownian sheet BH .

IBH

n (h) is the nth order Wiener integral with respect to fractional Brownian sheet

with Hurst parameter H ∈ (1
2
, 1)n.

Any g ∈ (L2
H,1(T))⊗n, can be written as the limit of functions gj ∈ S m

n where the

limit is taken in the 〈·, ·〉L2
H,n(Tn)-sense. Hence for any g ∈ (L2

H,n(T))⊗n the multiple

stochastic integral IBH

n (g) with respect to fractional Brownian sheet BH can be de-

fined uniquely as the limit (in the Gaussian space) of sequences of integrals, IBH

n (gj),

where gj → g (in 〈·, ·〉L2
H,n(Tn)-sense). The integral can be extended to non-symmetric

function by defining IBH

n (g) by IBH

n (g̃). We will denote the extension by IBH

n .

The final stochastic integral we will need is the multiple fractional integral of the

Stratonovich type.
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Definition III.24. Let g ∈ S m
n . The nth order Stratonovich integral of g with

respect to fractional Brownian sheet BH is defined by

(3.26) IBH

n (g) :=
∑

1≤ki≤k

ak1,...,knIBH

1 (ek1) · · · IBH

1 (ekn),

where IBH

1 (·) is the Itô integral with respect to fractional Brownian sheet BH .

Again, since any f ∈ (L2
H,1(T))⊗n can be written as the limit of functions fj ∈ S m

n

where the limit is taken in the 〈·, ·〉L2
H,n(Tn)-sense, we can again extend the inte-

gral mapping (3.26) to all functions IBH

n : (L2
Hm)⊗n → L2(Ω). For non-symmetric

f ∈ L2
H,n(Tn) we define IBH

n (f) := IBH

n (f̃).

We will make use of the multiparameter version of the fractional Hu-Meyer for-

mula [8] which describes the relationship between the multiple stochastic integrals

of Stratonovich type and multiple stochastic integrals of the (Wiener) Itô-type.

Proposition III.25. For symmetric function f ∈ L2
Hm(Tn), we define the trace

Trk
φ(f) ∀u1, . . . , un−2k ∈ Rz,

Trk
φ(f)(u1, . . . , un−2k)(3.27)

:=

∫
T2k

f(s1, t1, . . . , sk, tk, u1, . . . , un−2k)

[ k∏
`=1

φ⊗m
H (s`, t`)

]
ds1dt1 . . . dskdtk.

For H ∈ (1
2
, 1) the following hold

IBH

n (f) =

bn/2c∑
k=0

ck,nIBH

n−2k(Tr
k
φf) a.s.,

IBH

n (g) =

bn/2c∑
k=0

(−1)kck,nI
BH

n−2k(Tr
k
φg) a.s.

where ck,n = n!
k!(n−2k)!2k . By convention, Tr0

φ(f) = 0 and IBH

n = IBH

0 = Id, the

identity operator.
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Throughout the remainder of the dissertation, we will make extensive use of the

integrals defined in this section. In this chapter we will use the integrals in multidi-

mensional parameter space to derive representations of the optimal filter described in

Chapter II, where we extend the filtering to general m-parameter space for all finite

m ≥ 1. In Chapter IV we will study properties related to the multiple fractional

integrals in the 1-dimensional parameter space.

3.3 Filtering model in m-dimensional parameter space

We will consider the same filtering model as discussed in Chapter II. However, in

this chapter, since we are not concerned with evolution equations describing the dy-

namics of the filter, we can extend the model to the general m-dimensional parameter

space without significantly complicating notation. For the sake of completeness, we

will state the new model and the underlying assumption in the m-dimension space

even though the extensions should be clear.

Throughout the analysis, we consider a fixed, complete filtered probability space

(Ω,F , (Fz), P ) where filtration (Fz) satisfies the following conditions:

F(i) If z � z′ then Fz ⊂ Fz′ ;

F(ii) F0 contains all P -null sets of F ;

F(iii) Fz =
⋂

z≺z′ Fz′ ;

F(iv) The sigma-fields F1
z , ...,Fm

z are mutually independent conditional on Fz, where

F i
z :=

∨
tj≥0
j 6=i

F(t1,...zi,...tm).

On the probability space, consider m-parameter random fields X = (Xz, z ∈ T),

Y = (Yz, z ∈ T) and BH = (BH
z , z ∈ T) where T = [0, T1] × · · · × [0, Tm], m ≥ 2.



70

Assume each of these processes is measurable, (Fz)-adapted. Instead of directly

observing X, suppose that a noisy field Y is observed and that the observation

model is given by:

(3.28) Yz =

∫
Rz

h(Xζ)dζ +BH
z , z ∈ T,

where Rz denotes a rectangle [0, z1) × · · · × [0, zm) for z = (z1, . . . , zm) ∈ T, h is a

measurable function, process BH = (BH
z , z ∈ T) is an m-parameter fractional Brow-

nian sheet with Hurst index H = (H1, . . . , Hm) ∈ (1
2
, 1)m (thus, the fBs is persistent,

i.e. has long-range dependence in all spatial directions). Finally, we make the usual

assumption that “signal” X is independent of the observation noise BH .

As in Chapter II, the goal is to characterize the best mean square estimate of the

signal given the σ-field generated by the observation process. Equivalently, the goal

is to identify E[f(Xz)|FY
z ] where FY

z = σ({Yζ , 0 ≺ ζ ≺ z}). However, in this chapter

we will be concerned with the estimation and representation of E[f(Xz)|FY
z ] rather

than studying it’s dynamics.

Introduce the following conditions on the function h : R → R, analogous to the

conditions imposed on h in Chapter II:

(Am
1 ) h is Hölder-continuous of order λ on any finite subinterval in R, where λ >

2 max(H1, . . . , Hm)− 1; and

(Am
2 ) For h∗z(X)(ω) := (

∏m
j=1 z

1
2
−Hj

j )h(Xz(ω)) (where z = (z1, . . . , zm) ∈ T, ω ∈ Ω),

(3.29)

∫
T
(

m∏
j=1

ζ
2Hj−1
j )E

[(
DH1− 1

2
,...,Hm− 1

2
0+,...,0+ h∗. (X)

)
(ζ)

]2

dζ <∞,
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where Dα1,...,αm
a1+,...,am+ denotes the left-handed mixed fractional Riemann-Liouville deriva-

tive of order α = (α1, . . . , αm) ∈ (0, 1)m defined by

(Dα1,...,αm
a1+,...,am+f)(x)

=
1∏m

j=1 Γ(1− αj)

∂m

∂x1 . . . ∂xm

∫ x1

a1

. . .

∫ xm

am

f(ζ1, . . . , ζm)∏m
j=1(xj − ζj)αj

dζ1...dζm,

for all x = (x1, . . . , xm) (where a = (a1, ..., am) ≺ x).

Also, introduce the following condition on the signal:

(Am
3 ) X has Hölder-continuous trajectories of order (λ0, . . . , λ0), where

λ0 >
max{H1, . . . , Hm} − 1

2

λ
,

where λ is as given in condition (A1) above.

For almost all ω ∈ Ω define function (δz(X), z = (z1, . . . , zm) ∈ T) by

(3.30) δz(X)(ω) :=
1∏m

j=1 c
∗
Hj

( m∏
j=1

z
Hj− 1

2
j

)(
DH1− 1

2
,...,Hm− 1

2
0+,...,0+ h∗· (X)(ω)

)
(z), z ∈ T,

where c∗Hj
= Γ(Hj + 1

2
)

√
2HjΓ( 3

2
−Hj)

Γ(Hj+
1
2
)Γ(2−2Hj)

. By the same argument as in [2], one can

show the following property:∫
Rz

( m∏
j=1

K−1
Hj

(zj; ζj)
)
h(Xζ)dζ =

∫
Rz

δζ(X)dζ a.s.,

where

(3.31)

K−1
Hj

(t; s) = c′Hj

(( t
s

)Hj− 1
2
(t− s)

1
2
−Hj − (Hj −

1

2
)s

1
2
−Hj

∫ t

s

uHj− 3
2 (u− s)

1
2
−Hjdu

)
,

where c′Hj
= 1

Γ( 3
2
−Hj)

√
Γ(2−2Hj)

2HjΓ( 3
2
−Hj)Γ(Hj+

1
2
)
.
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Next define the following random fields:

(3.32) W Y
z :=

∫
Rz

m∏
j=1

K−1
Hj

(zj; ζj)dYζ , z ∈ T,

(3.33) Vz = exp

{
−
∫

Rz

δζ(X)dW Y
ζ +

1

2

∫
Rz

(δζ(X))2dζ

}
, z ∈ T.

Then, as in Chapter II:

Lemma III.26. Let P̃ be a new probability measure on (Ω,F) given by:

(3.34)
dP̃

dP
= V(T1,...,Tm) a.s.(P )

Then P̃ is equivalent to P and, under P̃ , (3.28) holds a.s., Y is a standard fBs with

Hurst multi-index H = (H1, . . . , Hm), X has the same law as under P , and processes

X and Y are independent under P̃ . Moreover, the following “spatial-fractional”

version of the Bayes’ formula holds: For any F ∈ Cb(R),

(3.35) E
(
F (Xz)|FY

z

)
=

Ẽ
[
F (Xz)V

−1
z |FY

z

]
Ẽ
[
V −1

z |FY
z

] a.s.

where Ẽ denotes the mathematical expectation under P̃ .

3.4 Multiparameter strong martingale transforms associated to a persis-
tent fractional Brownian sheet

Denote the space of continuous, real-valued functions mapping [0, T1]×· · ·×[0, Tm]

to R by C([0, T1]× · · · × [0, Tm],R).

Lemma III.27. For arbitrary C ∈ C([0, T1]×· · ·×[0, Tm],R) and ∀z = (z1, . . . , zm) ∈

[0, T1]×· · ·× [0, Tm], ∀ζ = (ζ1, . . . , ζm) ∈ (0, z1)×· · ·×(0, zm), ∀H = (H1, . . . , Hm) ∈

(0.5, 1)m, define kernel kz
C;H(·) by

kz
C;H(ζ) = αH(ζ)

∂m

∂ζ1. . .∂ζm

[ ∫ z1

ζ1

. . .

∫ zm

ζm

AC;H(v1, . . ., vm)(3.36)

×
m∏

j=1

v
2Hj−1
j (vj − ζj)

1
2
−Hjdv1 . . . dvm

]
,
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where

AC;H(v) :=
∂m

∂v1 . . . ∂vm

∫ v1

0

. . .

∫ vm

0

( m∏
j=1

u
1
2
−Hj

j (vj − uj)
1
2
−Hj
)

×C(u1, . . . , um)du1 . . . dum,

αH(ζ) :=
(−1)m

ρH

m∏
j=1

ζ
1
2
−Hj

j , ρH :=
m∏

j=1

[
Γ
(3
2
−Hj

)]2

Γ(2Hj + 1) sin(πHj).

Then the following equation holds: ∀0 < rj < zj,

(3.37)

∫ z1

0

. . .

∫ zm

0

kz
C;H(v1, . . . , vm)

m∏
j=1

φHj
(vj, rj)dv1 . . . dvm = C(r1, . . . , rm),

for all z = (z1, . . . , zm) ∈ [0, T1]× · · · × [0, Tm], where

φHj
(vj, rj) := Hj(2Hj − 1)|vj − rj|2Hj−2, j = 1, . . . ,m.

Moreover, for all z, z′ ∈ T,

(3.38)

∫
Rz×Rz′

kz
C;H(v)kz′

C;H(v′)φH(v, v′)dvdv′ =

∫
Rz∧z′

C(ζ)kz∧z′

C;H (ζ)dζ,

where z ∧ z′ := (min(z1, z
′
1), . . . ,min(zm, z

′
m)), Rz := [0, z1) × · · · × [0, zm) for all

z = (z1, . . . , zm) ∈ T, and

φH(z, z′) :=
m∏

j=1

φHj
(zj, z

′
j).

Proof: First we show that (3.37) holds for arbitrary C ∈ C([0, T1]×· · ·×[0, Tm],R)

of the form C(r1, . . . , rm) = C1(r1, . . . , rm−1)C2(rm). When m = 1, (3.37) is valid by

Proposition II.35. Assume that (3.37) is true for an arbitrary continuous function of

m− 1 variables. Then∫ z1

0

. . .

∫ zm

0

kz
C;H(v1, . . . , vm)

m∏
j=1

φHj
(vj, rj)dv1 . . . dvm

=

[ ∫ z1

0

. . .

∫ zm−1

0

k
(z1,...,zm−1)
C1;(H1,...,Hm−1)(v1, . . . , vm−1)

m−1∏
j=1

φHj
(vj, rj)dv1 . . . dvm−1

]
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×
[ ∫ zm

0

kzm
C2;Hm

(vm)φHm(vm, rm)dvm

]
= C1(r1, . . . , rm−1)C2(rm) = C(r1, . . . , rm)

for all 0 < rj < zj, j = 1, . . . ,m. Thus, the desired result holds by induction. In the

case of a more general C, the required equality follows by the polarization technique.

To prove (3.38) we first use (3.37) from which it follows that for s < t,∫ s

0

∫ t

0

Ks
C2;H

[
Kt
C2;H(v)φ(v, r)drdv

]
dr =

∫ s

0

Ks
C2;HC2(r)dr,

and hence, for m = 1, (3.38) holds.

Next we show that (3.38) holds for arbitrary C ∈ C([0, T1] × · · · × [0, Tm],R) of

the form C(r1, . . . , rm) = C1(r1, . . . , rm−1)C2(rm). Assume (3.38) holds for arbitrary

continuous function of m− 1 variables. Then∫
Rz×Rz′

kz
C;H(v)kz′

C;H(v′)φH(v, v′)dvdv′

=

[ ∫ z1

0

. . .

∫ zm−1

0

∫ z′1

0

. . .

∫ z′m−1

0

k
(z1,··,zm−1)
C1;(H1,...,Hm−1)(v1, .., vm−1)k

(z′1,··,z′m−1)

C1;(H1,...,Hm−1)(v
′
1, .., v

′
m−1)

×
m−1∏
j=1

φHj
(vj, v

′
j)dv

′
1 . . . dv

′
m−1dv1 . . . dvm−1

]

×
[ ∫ zm

0

∫ z′m

0

kzm
C2;Hm

(vm)k
z′m
C2;Hm

(v′m)φHm(vm, v
′
m)dvm

]
=

[ ∫ z1∧z′1

0

· ·
∫ zm−1∧z′m−1

0

k
(z1,..,zm−1)∧(z′1,..,z′m−1)

C1;(H1,..,Hm−1) (v1, .., vm−1)C1(v1, .., vm−1)dv1 · ·dvm−1

]
×
[ ∫ zm∧z′m

C2(vm)k
zm∧z′m
C2;H (vm)dvm

]
=

∫ z1∧z′1

0

. . .

∫ zm∧z′m

0

kz∧z′

C;H (v1, . . . , vm)C1(v1, ..., vm−1)C2(vm)dv1 . . . dvm

=

∫
Rz∧z′

C(ζ)kz∧z′

C;H (ζ)dζ.

The result follows by induction and the polarization technique.
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Next we present the multiparameter version of Proposition II.36, which will be

used in the multiple integral expansions of the optimal filter.

Theorem III.28. Let T = [0, T1] × · · · × [0, Tm] and let (BH
z , z ∈ T) be a normal-

ized m-parameter fractional Brownian sheet of Hurst index H = (H1, . . . , Hm) ∈

(0.5, 1)m, defined on a complete filtered probability space (Ω,F , (Fz)z∈T, P ). Let

(3.39) NC
z :=

∫
[0,z1)×···×[0,zm)

kz
C;H(ζ)dBH

ζ

for all z = (z1, . . . , zm) ∈ T, where kz
C;H(·) is given by (3.36). Then NC = (NC

z )z∈T

is a Gaussian strong m-parameter martingale with variance function given by

〈NC〉z =

∫
[0,z1)×···×[0,zm)

kz
C;H(ζ)C(ζ)dζ,

and (FNC
z ) = (FBH

z ), where (FNC
z ) and (FBH

z ) are the natural filtrations generated

by the processes NC and BH , respectively. Moreover, let id(z) ≡ 1, i.e. id(·) denotes

a function on T which is identically equal to 1. Then

(3.40) 〈NC, N id〉z ≡ Cov(NC
z , N

id
z ) =

∫
[0,z1)×···×[0,zm)

kz
id;H(ζ)C(ζ)dζ,

where kz
id;H(·) reduces to

(3.41) kz
id;H(ζ) =

m∏
j=1

ζ
1
2
−Hj

j (zj − ζj)
1
2
−Hj

2HjΓ(3
2
−Hj)Γ(Hj + 1

2
)
.

Moreover,

(3.42) NC
z =

∫
[0,z1)×···×[0,zm)

qCζ dN
id
ζ and 〈NC〉z =

∫
[0,z1)×···×[0,zm)

(
qCζ
)2
d〈N id〉ζ ,

where

(3.43) qCz :=
d〈NC, N id〉z
d〈N id〉z

.
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Proof: Since NC
z and N id

z are, by definition, integrals with respect to fractional

Brownian sheet, BH , NC is a mean-zero Gaussian process with

E
(
NC

z N
C
z′

)
=

〈
kz
C;H1Rz , k

z′

C;H1Rz′

〉
L2

H,1(T)

=

∫
Rz×Rz′

kz
C;H(ζ)kz′

C;H(ζ ′)φH(ζ, ζ ′)dζdζ ′

=

∫
Rz∧z′

C(v)kz∧z′

C;H (v)dv, ∀z, z′ ∈ T,(3.44)

by Lemma III.27.

Cov(NC
z , N

id
z ) =

〈
kz
C;H1Rz , k

z
id;H1Rz

〉
L2

H,1(T)

=

∫
Rz×Rz

kz
C;H(ζ)kz

id;H(ζ ′)φH(ζ, ζ ′)dζdζ ′

=

∫
Rz

{∫
Rz

kz
C;H(ζ)φH(ζ, ζ ′)dζ

}
kz

id;H(ζ ′)dζ ′

=

∫
Rz

C(ζ ′)kz
id;H(ζ ′)dζ ′

by Lemma III.27, where kz
id;H satisfies (3.41), since

Aid;H(v) =
∂m

∂v1 . . . ∂vm

∫ v1

0

. . .

∫ vm

0

m∏
j=1

u
1
2
−Hj

j (vj − uj)
1
2
−Hjdu1 . . . dum

=
m∏

j=1

∂

∂vj

∫ vj

0

u
1
2
−Hj

j (vj − uj)
1
2
−Hjduj

=
m∏

j=1

∂

∂vj

v
2−2Hj

j B(
3

2
−Hj,

3

2
−Hj)

=
m∏

j=1

(2− 2Hj)
[
Γ(3

2
−Hj)

]2
Γ(3− 2Hj)

v
1−2Hj

j ≡ ĉH

m∏
j=1

v
1−2Hj

j ,

with

ĉH =
m∏

j=1

(2− 2Hj)
[
Γ(3

2
−Hj)

]2
Γ(3− 2Hj)

,
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which implies that

kz
id;H(ζ) = αH(ζ)

∂m

∂ζ1 . . . ∂ζm

[ ∫ z1

ζ1

. . .

∫ zm

ζm

ĉH
( m∏

j=1

v
1−2Hj

j

)
×
( m∏

j=1

v
2Hj−1
j (vj − ζj)

1
2
−Hj

)
dv1 . . . dvm

]

= ĉHαH(ζ)
m∏

j=1

∂

∂ζj

∫ zj

ζj

(vj − ζj)
1
2
−Hjdvj

= ĉHαH(ζ)
m∏

j=1

∂

∂ζj

[
(zj − ζj)

3
2
−Hj

3
2
−Hj

]

= ĉH
(−1)m

ρH

( m∏
k=1

ζ
1
2
−Hk

k

)
(−1)m

m∏
j=1

(zj − ζj)
1
2
−Hj

=
ĉH
ρH

m∏
j=1

ζ
1
2
−Hj

j (zj − ζj)
1
2
−Hj ,

where

ĉH
ρH

=
m∏

j=1

2− 2Hj

Γ(3− 2Hj)Γ(2Hj + 1) sin(πHj)
=

m∏
j=1

1

2HjΓ(Hj + 1
2
)Γ(3

2
−Hj)

the last equality follows from the relations Γ(z+1) = zΓ(z), Γ(z)Γ(1−z) = π/ sin(zπ)

and the Legendre formula:

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
.

Representation (3.41) is thus proved.

Next we show that NC is an m-parameter strong martingale. For z ≺ z′, let

(z, z′] := (z1, z
′
1] × · · · × (zm, z

′
m]}, and let NC((z, z′]) be the increment of NC over

(z, z′] as defined by (3.5). Then for all ζ = (ζ1, ..., ζm) ∈ [0, T1] × · · · × [0, Tm] such

that 0 ≤ ζi ≤ zi for at least one i, it follows by (3.44) that

(3.45) E
[
NC((z, z′])NC

ζ

]
= 0.
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Since NC((z, z′]) and NC
ζ are mean-zero Gaussian random variables, (3.45) implies

that NC((z, z′]) and NC
ζ are independent for all ζ such that ζi ≤ zi for at least one

i ∈ {1, ...,m}. Therefore, NC((z, z′]) is independent of FNC ,1
z ∨ · · · ∨ FNC ,m

z for all

z ≺ z′, where FNC ,i
z := σ(NC

ζ : ζ ∈ [0, T1]× · · · × [0, zi]× · · · × [0, Tm]). Thus,

(3.46) E
[
NC((z, z′])

∣∣∣∣FNC ,1
z

∨
· · ·
∨
FNC ,m

z

]
= E

[
NC(z, z′])

]
= 0 a.s. ∀z ≺ z′.

Moreover, note that FNC
z = FBH

z = FW b

z , where W is the standard Wiener sheet as-

sociated with BH , via the integral transform WB
z =

∫
Rz

∏m
i=1K

−1
H1

(zi; ζi)dB
H
ζ , z ∈ T.

Therefore, (FNC
z )z∈T satisfies conditions F (i), F (ii), F (iii) and F (iv) of the mul-

tiparameter martingale theory. By (3.46) we conclude that NC is a two-parameter

strong martingale.

Since NC and N id are Gaussian strong martingales with (FNC
z ) = (FW B

z ) = (FN id

z ),

then, by the multiparameter version of martingale representation theorem, there

exists qC = (qCz , z ∈ T) such that
∫

T

(
qCz
)2
d〈N id〉z <∞ and

(3.47) NC
z =

∫
Rz

qCζ dN
id
ζ , ∀z ∈ T.

It follows that

〈NC, N id〉z =

∫
Rz

qCζ d〈N id〉ζ , which implies qCz =
d〈NC, N id〉z
d〈N id〉z

a.e.

and also 〈NC〉z =
∫

Rz
(qCζ )2d〈N id〉ζ .

�

3.5 Representations of the optimal filter

For the remainder of this chapter, we assume the observation model described

by (3.28) holds. Theorems III.29–III.33, presented below, generalize representations
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found in [5] to the case of multiparameter random fields. By the same arguments as

Theorem II.42, one can show that under the probability measure P0, where

(3.48)
dP

dP0

= exp

{∫
T
kT

h(X.);H(ζ)dYζ −
1

2

∫
T
kT

h(X.);H(ζ)h(Xζ)dζ

}
,

Y is a normalized fractional Wiener sheet with Hurst index H = (H1, . . . , Hm) ∈

(1
2
, 1)m, Y and X are independent, and the law of X is the same under P and P0.

Let µ
X

denote the probability law induced by X on B(C(T)), where B(C(T)) de-

notes the σ-field generated by all finite-dimensional Borel cylinder subsets of the

space of continuous functions on T. Also let µ
H

denote the probability law in-

duced by a standart fractional Brownian sheet with Hurst index H on B(C(T)).

It will be convenient for us to consider the canonical probability space (Ω,F , P0) =

(C(T)×C(T),B(C(T))× B(C(T)), µ
X
×µ

H
), where B(C(T))× B(C(T)) denotes the

completion of the Borel product sigma field. In this caseXz(ω) = Xz(ω1, ω2) := ω1(z)

and Yz(ω) = Yz(ω1, ω2) := ω2(z) for all ω = (ω1, ω2) ∈ C(T) × C(T). Similarly, we

consider the canonical space (Ω,F , P̃ ) = (C(T) × C(T),B(C(T))× B(C(T)), µ
X
×

µ
W

), where µW denotes the measure induced by the Wiener process W Y . On this

space, Xz(ω) = Xz(ω1, ω2) := ω1(z) and W Y
z (ω) = W Y

z (ω1, ω2) := ω2(z) for all

ω = (ω1, ω2) ∈ C(T)× C(T). The following versions of the Bayes’ formula are valid

and follow directly from Lemma III.26

Theorem III.29. Assume the filtering model (3.28) and conditions (A1)–(A3) of

Section 1. Then ∀f ∈ Cb(R),

(3.49) E[f(Xz)|FY
z ](ω) =

EµX
[f(Xz)V

−1
z (·, ω2)]

EµX
[V −1

z (·, ω2)]

and similarly

(3.50) E
[
f(Xz)|FY

z

]
(ω) =

EµX
[f(Xz)Lz(·, ω2)]

EµX
[Lz(·, ω2)]

, ∀z ∈ T = [0, T1]× · · · × [0, Tm],
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for almost all ω = (ω1, ω2) ∈ Ω, where

Lz(ω1, ω2) = e
R

Rz
kz

h(X.(ω1));H
(ζ)dYζ(ω2)− 1

2

R
Rz

kz
h(X.(ω1));H

(ζ)h(Xζ(ω1))dζ
, z ∈ T,

where kz
h(X.(ω1));H(·) is the kernel kz

C;H(·) (given by equation (3.36)) with C(z) =

h(Xz(ω1)), and Rz denotes the rectangle [0, z1)× · · · × [0, zm).

Note: For fixed ω1, using the notation of Section 3.4, Lz(ω1, ·) can be written as

Lz(ω1, ·) = exp

{
Nh(X.(ω1))

z − 1

2

〈
Nh(X.(ω1))

〉
z

}
,

i.e. in terms of NC with curve C = h(X.(ω1)).

The proofs of theorems III.32 III.33 and III.31 use the following results.

Lemma III.30. (i) Let (Vz, z ∈ T) be defined by (3.33) and let f be a Borel-

measurable function satisfying

(3.51) E
(
f 2(Xz)e

R
Rz

(δζ(X))2dζ
)
<∞, ∀z ∈ T.

Then

f(Xz)V
−1
z =

∞∑
n=0

1

n!
f(Xz)

(∫
Rz

δζ(X)dW Y
ζ

)n

exp

{
− 1

2

∫
Rz

δ2
ζ (X)dζ

}

=
∞∑

n=0

f(Xz)
(∫

Rz
(δζ(X))2dζ

)n/2

n!
Hn

 ∫
Rz
δζ(X)dW Y

ζ√∫
Rz

(δζ(X))2dζ

 ,

where the series converge in L2(P̃ ).

(ii) Let (Lz, z ∈ T) be defined as in Theorem III.29 and let f be a Borel measurable

function satisfying:

(3.52) E
(
f 2(Xz)e

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ
)
<∞, ∀z ∈ T.
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Then

f(Xz)Lz =
∞∑

n=0

1

n!
f(Xz)e

− 1
2

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ

[ ∫
Rz

kz
h(X.);H(ζ)dYζ

]n

=
∞∑

n=0

1

n!
f(Xz)

(∫
Rz

kz
h(X.);H(ζ)h(Xζ)dζ

)n/2

×Hn

 ∫
Rz
kz

h(X.);H
(ζ)dYζ√∫

Rz
kz

h(X.);H
(ζ)h(Xζ)dζ

 ,(3.53)

where Hn denotes the nth Hermite polynomial and both series converge in L2(P0).

Proof (i) A Taylor expansion gives

V −1
z = exp

{
1

2

∫
Rz

δ2
ζ (X)dζ

} ∞∑
n=0

1

n!

(∫
Rz

δζ(X)dW Y
ζ

)n

.

Notice that under P̃ , W Y is a Brownian sheet and as δ is a function of the ran-

dom variable X but not Y , for fixed,
∫

Rz
δζ(X)(ω̃1, ·)dW Y

ζ is a mean zero Gaus-

sian martingale and hence its variance is given by the quadratic variation which is∫
Rz
δ2
ζ (X(ω̃1, ·))dζ. Equivalently, the conditional distribution of

∫
Rz
δζ(X)dW Y

ζ given

FX under P̃ is a mean zero Gaussian martingale with variance given by
∫

Rz
δ2
ζ (X)dζ.

The moments of
∫

Rz
δζ(X)dW Y

ζ conditioned on FX are therefore given by:

Ẽ

[(∫
Rz

δζ(X)dW Y
ζ

)2j
∣∣∣∣∣FX

z

]
=

(2j)!

j!2j

(∫
Rz

δ2
ζ (X)dζ

)j

∀j ≥ 1

Ẽ

[(∫
Rz

δζ(X)dW Y
ζ

)2j+1
∣∣∣∣∣FX

z

]
= 0 ∀j ≥ 1

So for any a < b, we have
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Ẽ

[ b∑
n=a

1

n!

(∫
Rz

δζ(X)dW Y
ζ

)n
]2 ∣∣∣∣∣FX

z


=

∑
a≤l,n≤b
l+n even

1

n!l!
Ẽ

[(∫
Rz

δζ(X)dW Y
ζ

)l+n
∣∣∣∣∣FX

z

]

=
b∑

i=a

(2i−a)∧b∑
n=(2i−b)∨a

1

(2i− n)!n!
Ẽ

[(∫
Rz

δζ(X)dW Y
ζ

)2i
∣∣∣∣∣FX

z

]

=
b∑

i=a

(2i−a)∧b∑
n=(2i−b)∨a

(
2i

n

)(∫
Rz
δ2
ζ (X)dζ

)i

i!2i

≤
b∑

i=a

(∫
Rz
δ2
ζ (X)dζ

)i

i!2i

(
2i∑

n=0

(
2i

n

))

=
b∑

i=a

(∫
Rz
δ2
ζ (X)dζ

)i

i!2i
22i

=
b∑

i=a

(
2
∫

Rz
δ2
ζ (X)dζ

)i

i!
.

Using smoothing and the above inequality, we get, for any Borel measurable function

F ,

Ẽ

(
f(Xz) exp

{
− 1

2

∫
Rz

δ2
ζ (X)dζ

} b∑
n=a

1

n!

(∫
Rz

δζ(X)dW Y
ζ

)n
)2

= Ẽ

f 2(Xz) exp

{∫
Rz

δ2
ζ (X)dζ

}
Ẽ

[ b∑
n=a

1

n!

(∫
Rz

δζ(X)dW Y
ζ

)n
]2 ∣∣∣∣∣FX

z


≤ Ẽ

f 2(Xz) exp

{∫
Rz

δ2
ζ (X)dζ

} b∑
i=a

(
2
∫

Rz
δ2
ζ (X)dζ

)i

i!


= Ẽ

{
f 2(Xz) exp

{∫
Rz

δ2
ζ (X)dζ

} b∑
i=a

2i

i!

(∫
Rz

δ2
ζ (X)dζ

)i
}
→ 0 as a→∞,

where the convergence relies on assumption (3.51) and follows by the dominated con-

vergence theorem. Hence the sum, when taken from zero to ∞ converges in L2(P̃ ).
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Applying relation (3.1) with

x =

∫
Rz
δζ(X)dW Y

ζ√∫
Rz
δ2
ζ (X)dζ

and t =

√∫
Rz

δ2
ζ (X)dζ

gives

V −1
z =

∞∑
n=0

1

n!

(∫
Rz

δ2
ζ (X)dζ

)n
2

Hn

 ∫
Rz
δζ(X)dW Y

ζ(∫
Rz
δ2
ζ (X)dζ

) 1
2

 .

Taking a < b again, and applying Proposition III.2 gives

Ẽ


 b∑

n=a

1

n!

(∫
Rz

δ2
ζ (X)dζ

)n
2

Hn

 ∫
Rz
δζ(X)dW Y

ζ(∫
Rz
δ2
ζ (X)dζ

) 1
2




2 ∣∣∣∣∣FX
z


=

bX
n=a

bX
l=a

1

n!l!

„Z
Rz

δ2
ζ(X)dζ

« n+l
2 eE(

Hn

0@ R
Rz

δζ(X)dW Y
ζqR

Rz
δ2

ζ(X)dζ

1AHl

0@ R
Rz

δζ(X)dW Y
ζqR

Rz
δ2

ζ(X)dζ

1A ˛̨̨̨
˛FX

z

)

=

bX
n=a

“R
Rz

δ2
ζ(X)dζ

”n

n!
.

Therefore, by smoothing we see

Ẽ

 b∑
n=a

(∫
Rz

δ2
ζ (X)dζ

)n
2

Hn

 ∫
Rz
δζ(X)dW Y

ζ(∫
Rz
δ2
ζ (X)dζ

) 1
2




2

= Ẽ

{
f 2(Xz)Ẽ


 b∑

n=a

1

n!

(∫
Rz

δ2
ζ (X)dζ

)n
2

Hn

 ∫
Rz
δζ(X)dW Y

ζ(∫
Rz
δ2
ζ (X)dζ

) 1
2




2 ∣∣∣∣∣FX
z

}

= Ẽ

{
f 2(Xz)

b∑
n=a

(∫
Rz
δ2
ζ (X)dζ

)n

n!

}
→ 0 as a→∞,

by assumption (3.51) and the dominated convergence theorem and giving conver-

gence of the series in L2(P̃ ).

The proof of (ii) follows similarly by taking
∫

Rz
kz

h(X.);H
(ζ)dYζ in place of

∫
Rz
δζ(X)dW Y

ζ

and taking
∫

Rz
kz

h(X.(ω1));H(ζ)h(Xζ(ω1))dζ in place of
∫

Rz
δ2
ζ (X)dζ.
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We now give three different expansions of the optimal filter E[f(Xz)|FY
z ], each of

which is expressed in terms of the ratio of infinite series of different multiple stochastic

integrals.

Theorem III.31. Assume the filtering model (3.28) and the corresponding condi-

tions. Moreover, assume conditions (Am
1 ), (Am

2 ) and (Am
3 ). If f ∈ Cb(R) and the

following conditions hold:

(3.54) E
[
f 2(Xz)e

R
Rz

(δζ(X))2dζ

]
<∞

and

(3.55) E
[
e

1
2

R
Rz

(δζ(X))2dζ

]
<∞, ∀z ∈ T,

then the following representation for the optimal filter holds:

(3.56) E
[
f(Xz)|FY

z

] a.s.
=

∑∞
p=0

1
p!
IW Y ,z
p

(
E
[
f(Xz)(δ.(X))⊗p

])
∑∞

p=0
1
p!
IW Y ,z
p

(
E
[
(δ.(X))⊗p

]) ,

where the series converge in L2(P̃ ) (and in L1(P )) and IW Y ,z
p denotes the pth order

multiple stochastic fractional integral of the Itô type with respect to m-parameter field

W Y , given by ( (3.32)), with the integral taken over rectangle Rz = [0, z1) × · · · ×

[0, zm), and where δ is given by (4.4).

Proof First we prove the following convergence for arbitrary p ≥ 1, where {ei}∞i=1

is a complete orthonormal system in L2
H,1(Rz)

lim
M→∞

M∑
i1,...,ip=1

〈
(δz)

⊗n, ei1 ⊗ ...⊗ eip

〉
L2(Rp

z)
IW Y ,z
p (ei1 ⊗ ...⊗ eip)

(3.57) =

(∫
Rz

(δζ(X))2dζ

)p/2

Hp

 ∫
Rz
δζ(X)dW Y

ζ√∫
Rz

(δζ(X))2dζ

 ,
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where the limit is in L2(P̃ ). To prove (3.57), note that for fixed ω̃1 ∈ C[Rz0 ],

δ·(ω̃1) ∈ L2(Tp) so the integral IW Y ,z
p ([δ·(ω̃1)]

⊗n) is well defined. By linearity of the

multiple stochastic integral and (3.10),

EµW

[(∫
Rz

δ2
ζ (X(ω̃1, ·))dζ

)p/2

Hp

 ∫
Rz
δζ(X)(ω̃1, ·)dW Y

ζ(∫
Rz
δ2
ζ (X(ω̃1, ·))dζ

) 1
2



−
M∑

i1,...,ip=1

〈
(δz)

⊗p, ei1 ⊗ ...⊗ eip

〉
L2(Rp

z)
IW Y ,z
p (ei1 ⊗ ...⊗ eip)

]2

= EµW

[
IW Y ,z
p

(
(δ·(X(ω̃1, ·)))⊗p−

M∑
i1,..,ip=1

〈
(δz(X))⊗p, ei1 ⊗ ...⊗ eip

〉
L2(Rp

z)
ei1 ⊗ ...⊗ eip

)]2

≤ p!

∥∥∥∥∥(δ·(X(ω̃1, ·)))⊗p−
M∑

i1,...,ip=1

〈
(δz(X))⊗p, ei1 ⊗ ...⊗ eip

〉
L2(Rp

z)
ei1⊗...⊗eip

∥∥∥∥∥
2

L2(Rz)

→ 0

as M → ∞. The last inequality follows from (3.11) and the fact that
∥∥f̃∥∥2

L2(Rz)
≤

p!
∥∥f∥∥2

L2(Rz)
. To show convergence in L2(P̃ ), note that by (3.11),

EµW

 M∑
i1,...,ip=1

〈
(δz(X))⊗p, ei1 ⊗ ...⊗ eip

〉
L2(Rp

z)
IW Y ,z
p (ei1 ⊗ ...⊗ eip)

2

=
M∑

i1,...,ip=1

〈
(δz(X))⊗p, ei1 ⊗ ...⊗ ein

〉
L2(Rp

z)
p!
∥∥ei1 ⊗ ...⊗ ein)

∥∥2

L2(Rz)

≤ p!
∥∥δ·(X(ω̃1, ·))⊗p

∥∥2

L2(Rz)
= p!

∥∥(δ·(X(ω̃1, ·)))
∥∥2p

L2(Rz)
.

And EµX

∥∥δ·∥∥2p

L2(Rz)
<∞ follows by assumption (3.55) since

∥∥δ·(ω1)
∥∥2

L2(Rz)
=
∫

Rz
δ2
ζ (X)dζ.

Now we apply dominated convergence theorem, proving the convergence (3.57) in

L2(P̃ ) since P̃ = µX × µW .

Now by Lemma III.30 and (3.57) we have
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EµX [f(Xz)V
−1

z (·, ω2)]

= EµX

264f(Xz)

∞X
p=0

1

p!

„Z
Rz

δ2
ζ(X(·, ω2))dζ

«p/2

Hp

0B@ R
Rz

δζ(X)(·, ω2)dW Y
ζ“R

Rz
δ2

ζ(X(·, ω2))dζ
” 1

2

1CA
375

=

∞X
p=0

1

p!
EµX

264f(Xz)

„Z
Rz

δ2
ζ(X(·, ω2))dζ

«p/2

Hp

0B@ R
Rz

δζ(X)(·, ω2)dW Y
ζ“R

Rz
δ2

ζ(X(·, ω2))dζ
” 1

2

1CA
375

= EµX [f(Xz)] +

∞X
p=1

1

p!
EµX

24f(Xz)

∞X
i1,...,ip=1

˙
(δz(X))⊗p, ei1 ⊗ ...⊗ eip

¸
L2(R

p
z)

IW Y ,z
p (ei1 ⊗ ...⊗ eip)

35
= EµX [f(Xz)] +

∞X
p=1

1

p!

∞X
i1,...,ip=1

EµX

h
f(Xz)

˙
(δz(X))⊗p, ei1 ⊗ ...⊗ eip

¸
L2(R

p
z)

i
IW Y ,z

p (ei1 ⊗ ...⊗ eip)

= EµX [f(Xz)] +

∞X
p=1

1

p!

∞X
i1,...,ip=1

˙
EµX

ˆ
f(Xz)(δz(X))⊗p˜

, ei1 ⊗ ...⊗ eip

¸
L2(R

p
z)

IW Y ,z
p (ei1 ⊗ ...⊗ eip)

= EµX [f(Xz)] +

∞X
p=1

1

p!
IW Y ,z

n

`
EµX

ˆ
f(Xz) (δ·(X))⊗p˜´

=

∞X
p=0

1

p!
IW Y ,z

p

`
EµX

ˆ
f(Xz) (δ·(X))⊗p˜´

=

∞X
p=0

1

p!
IW Y ,z

p

`
E

ˆ
f(Xz) (δ·(X))⊗p˜´

where the series converges in L2(P̃ ). Notice that since V −1
T1,...,Tm

= dP

d eP , it follows

that Ẽ(V −1
T1,...,Tm

)2 = E(V −1
T1,...,Tm

) < ∞ , which implies V −1
T1,...,Tm

∈ L2(P̃ ). Since the

sequence of partial sums

SN :=
N∑

p=0

1

p!
IW Y ,z
p

(
E
[
f(Xz) (δ·(X))⊗p])

converges in L2(P̃ ), clearly |SN | converges in L2(P̃ ) as N → ∞. Again we use the

fact that V −1
T1,...,Tm

= dP

d eP , giving

(3.58) 〈V −1
T1,...,Tm

, |SN |〉L2( eP ) = ‖SN‖L1(P )

and by the Cauchy-Schwarz inequality 〈V −1
T1,...,Tm

, |SN |〉L2( eP ) converges and so by

(3.58), SN converges in L1(P ). Taking f = 1 gives the denominator of (III.31).

Plugging into (3.49) gives (3.56). �

Theorem III.32. Assume the filtering model (3.28) and the conditions therein.
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Moreover, assume that f ∈ Cb(R) and the following conditions hold:

(3.59) E
[
f 2(Xz)e

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ

]
<∞

and

(3.60) E
[
e

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ

]
<∞.

Then the following representation holds:

(3.61)

E
[
f(Xz)|FY

z

] a.s.
=

∞∑
p=0

1

p!
IY,z

p

(
E
[
f(Xz)e

− 1
2

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ(kz
h(X.);H(·))⊗p

])
∞∑

p=0

1

p!
IY,z

p

(
E
[
e−

1
2

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ(kz
h(X.);H(·))⊗p

]) ,

where the series converge in L2(P0) (and in L1(P )) and IY,z
p denotes the pth order

multiple stochastic fractional integral of the Stratonovich type with respect to the

observation m-parameter field Y taken over the rectangle Rz = [0, z1)× · · · × [0, zm).

Proof: Let

Ñz :=

∫
Rz

kz
h(X.);H(ζ)dYζ , and 〈Ñ〉z :=

∫
Rz

kz
h(X.);H(ζ)h(Xζ)dζ.

Lemma III.30(i), gives

(3.62) Eµ
X

[f(Xz)Lz(·, ω2)] =
∞∑

p=0

1

p!
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉zÑp

z (·, ω2)
]
,

where the series converges in L2(P0). By the relation xp =
∑bp/2c

k=0 ck,pHp−2k(x) for

all x ∈ R and n = 0, 1, 2, . . ., where ck,p = p!/(k!(p− 2k)!2k), we have

(3.63) Ñp
z =

bp/2c∑
k=0

ck,p〈Ñ〉p/2
z Hp−2k

(
Ñz

〈Ñ〉1/2
z

)
a.s.

Choose a complete orthonormal system {ei}∞i=1 in L2
H,1(Rz). Then it is easy to show

by arguments similar to those used to show (3.57), that for all p ≥ 1 and all z ∈ T,

lim
M→∞

EP0

[
〈Ñ〉p/2

z Hp

(
Ñz

〈Ñ〉1/2
z

)
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−
M∑

i1,...,ip=1

〈
(kz

h(X.);H)⊗p, ei1 ⊗ · · · ⊗ eip

〉
L2

H,p(Rp
z)
IY,z
p (ei1 ⊗ · · · ⊗ eip)

]2

= 0.

Applying the above equality and equation (3.63) gives

Eµ
X

[
f(Xz)e

− 1
2
〈 eN〉zÑp

z

]
=

bp/2c∑
k=0

ck,p Eµ
X

[
f(Xz) e

− 1
2
〈 eN〉z〈Ñ〉p/2

z Hp−2k

(
Ñz

〈Ñ〉1/2
z

)]

=
∑

k∈{0,···,bp/2c}:

p−2k≥1

ck,p

∞∑
i1,···,ip−2k=1

{
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z〈Ñ〉kz

×
〈
(kz

h(X.);H)⊗p−2k, ei1 ⊗ ···⊗ eip−2k

〉
L2

H,p−2k(Rp−2k
z )

]
IY,z
p−2k

(
ei1 ⊗ ···⊗ eip−2k

)}
+ c p

2
,p 1{p is even}Eµ

X

[
f(Xz)e

− 1
2
〈 eN〉z〈Ñ〉p/2

z

]

=
∑

k∈{0,···,bp/2c}:

p−2k≥1

ck,p

∞∑
i1,···,ip−2k=1

{〈
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z〈Ñ〉kz (kz

h(X.);H)⊗p−2k

]
,

ei1 ⊗ ···⊗ eip−2k

〉
L2

H,p−2k(Rp−2k
z )

IY,z
p−2k

(
ei1 ⊗ ···⊗ eip−2k

)}
+ c p

2
,p1{p is even}Eµ

X

[
fz e

− 1
2
〈 eN〉z〈Ñ〉p/2

z

]
=

bp/2c∑
k=0

ck,p I
Y,z
p−2k

(
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z〈Ñ〉kz (kh(X.);H)⊗p−2k

])
,

with the convention: x⊗0 ≡ 1, and IY,z
0 (ϕ) = ϕ. Note that for p > 0 and k =

0, 1, . . . , bp/2c, and every fixed z ∈ T,

Trk,z
φ

(
Eµ

X

[
f(Xz)e

− 1
2
〈 eN〉z

(
kh(X.);H

)⊗p
])

(u1, . . . , up−2k)

(3.64) = Eµ
X

[
f(Xz)e

− 1
2
〈 eN〉z〈Ñ〉kz

(
kz

h(X.);H

)⊗p−2k
(u1, . . . , up−2k)

]
,
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where, for a symmetric function g ∈ L2
H,p(R

p
z), the trace Trk,z

φ (g) is defined by (3.27).

Therefore, it follows that

Eµ
X

[
f(Xz)e

− 1
2
〈 eN〉zÑp

z

]
=

bp/2c∑
k=0

ck,pI
Y,z
p−2k

(
Trk,z

φ

(
Eµ

X

[
f(Xz)e

− 1
2
〈 eN〉z(kz

h(X.);H)⊗p
]))

= IY,z
p

(
Eµ

X

[
f(Xz)e

− 1
2
〈 eN〉z(kz

h(X.);H)⊗p
])
,(3.65)

where (3.65) follows by direct application of the multiparameter version of the “frac-

tional” Hu-Meyer formula (which is a simple extension of the one-parameter “frac-

tional” Hu-Meyer formula found in [8]). From (3.62), (3.65) and

〈Ñ〉z = ‖kz
h(X.);H

‖2
L2

H,1(Rz)
, we obtain that

Eµ
X

[f(Xz)Lz(·, ω2)] =
∞∑

p=0

1

p!
IY,z

p

(
Eµ

X

[
f(Xz)e

− 1
2

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ

× (kz
h(X.);H)⊗p

])
(ω2),(3.66)

where the series converges in L2(P0). Substituting f ≡ 1 in the above equation leads

to corresponding expansion for Eµ
X

[Lz(·, ω2)].

Let us denote by EP0 , the expectation under probability measure P0. Assump-

tion (3.60) implies E( dP
dP0

) = 1. Consequently, since EP0(
dP
dP0

)2 = E( dP
dP0

), we have

dP
dP0

∈ L2(P0). Since the sequence of partial sums

SN :=
N∑

p=0

1

p!
IY,z

p

(
Eµ

X

[
f(Xz)e

− 1
2

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ(kz
h(X.);H)⊗p

])
converges in L2(P0), clearly |SN | converges in L2(P0) as N → ∞. By the Cauchy

Schwarz inequality and the fact that 〈 dP
dP0
, |SN |〉L2(P0) = E(|SN |) we also have conver-

gence in L1(P ). Substituting (3.66) in (3.50), gives the required result.

�
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Theorem III.33. Under assumptions of Theorem III.32, ∀f ∈ Cb(R),

(3.67) E
[
f(Xz)|FY

z

] a.s.
=

∑∞
p=0

1
p!
IY,z
p

(
E
[
f(Xz)(k

z
h(X.);H

(·))⊗p

])
∑∞

p=0
1
p!
IY,z
p

(
E
[
(kz

h(X.);H
(·))⊗p

]) ,

where the series converge in L2(P0) (and in L1(P )) and IY,z
p denotes the pth order

multiple stochastic fractional integral of the Itô type (defined as in [8]) with respect

to the m-parameter observation field Y taken over the rectangle Rz = [0, z1)× · · · ×

[0, zm).

Proof: Choose a complete orthonormal system {ei}∞i=1 in L2
H,1(Rz). Using argu-

ments similar to those employed in proving (3.57), we can show that for all p ≥ 1,

lim
M→∞

EP0

(∫
Rz

kz
h(X.);H(ζ)h(Xζ)dζ

)p/2

Hp

 ∫
Rz
kz

h(X.);H
(ζ)dYζ√∫

Rz
kz

h(X.);H
(ζ)h(Xζ)dζ



(3.68) −
M∑

i1,...,ip=1

〈(kz
h(X.);H)⊗p, ei1 ⊗ ···⊗ eip〉L2

H,p(Rp
z)I

Y,z
p

(
ei1 ⊗ ···⊗ eip

)2

= 0.

By Lemma III.30(i) and (3.68),

Eµ
X

[f(Xz)Lz] =
∞∑

p=0

1

p!
Eµ

X

[
f(Xz)

(∫
Rz

kz
h(X.);H(ζ)h(Xζ)dζ

)p/2

×Hp

( ∫
Rz
kz

h(X.);H
(ζ)dYζ√∫

Rz
kz

h(X.);H
(ζ)h(Xζ)dζ

)]

=
∞∑

p=1

1

p!
Eµ

X

[
f(Xz)

∞∑
i1,···,ip=1

〈(kz
h(X.);H)⊗p, ei1 ⊗ ···⊗ eip〉L2

H,p(Rp
z)

×IY,z
p

(
ei1 ⊗ ···⊗ eip

)]
+ E (f(Xz))
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=
∞∑

p=1

1

p!

∞∑
i1,···,ip=1

Eµ
X

[
f(Xz)〈(kz

h(X.);H)⊗p, ei1 ⊗ ···⊗ eip〉L2
H,p(Rp

z)

]
×IY,z

p

(
ei1 ⊗ ···⊗ eip

)
+ E (f(Xz))

=
∞∑

p=1

1

p!

∞∑
i1,···,ip=1

〈
Eµ

X

[
f(Xz)(k

z
h(X.);H)⊗p

]
, ei1 ⊗ ···⊗ eip

〉
L2

H,p(Rp
z)

×IY,z
p

(
ei1 ⊗ ···⊗ eip

)
+ E (f(Xz))

=
∞∑

p=0

1

n!
IY,z
p

(
E
[
f(Xz) (kz

h(X.);H)⊗p
])
,(3.69)

where the series converges in L2(P0). As we’ve shown (in the proof of Theorem

III.32) convergence in L2(P0) implies convergence in L1(P ). Substituting (3.69) in

the numerator and denominator (with f ≡ 1) of (3.50) gives the required result.

�

The multiple stochastic integrals in (3.56) are mathematically simpler then those

described in (3.61) and (3.5) since they are multiple stochastic integrals with respect

to a standardized Brownian sheet. However, from the point of view of implementation

of the filter, representations (3.61) and (3.5) are more practical. The reason being

that the integrals in (3.56), taken with respect to Brownian sheet W Y require that

we compute W Y via the integral transform

W Y
z :=

∫
Rz

m∏
j=1

K−1
Hj

(zj; ζj)dYζ , z ∈ T.

Notice that the kernels K−1
Hj

(zj; ζj) take different forms depending on the value of zj.

That is, the kernel used in the transformation must be continuously updated as the

value of the current state z in the parameter space T changes. On the other hand,

integrals in (3.61) and are simply taken with respect to the observation random

field Y . The additional layer of complexity makes taking pathwise integrals with

respect to W Y
z computationally expensive. However, (3.56) may be used to obtain

a representation of the optimal filter in terms of integrals with respect to Y if there
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exists a suitable version of the stochastic transfer principle (similar to those found

in [22],[5]). That is, if we can identify an operator Γz
p;H such that IW Y ,z

p (F ) =

IY,z
p (Γz

p;HF ) for all suitably regular and integrable functions F from the domain of

Γz
p;H , and then rewrite (3.56) in the form:

(3.70) E
[
f(Xz)|FY

z

] a.s.
=

∑∞
p=0

1
p!
IY,z
p

(
Γz

p;HE
[
f(Xz)(δ.(X))⊗p

])
∑∞

p=0
1
p!
IY,z
p

(
Γz

p;HE
[
(δ.(X))⊗p

]) .

In Chapter IV we will explore this idea of the operator Γz
p;H and conditions under

which such an operator exists.

While evolution equations such as those described in Chapter II are useful in de-

scribing the dynamics, they are often not easy to use in practice. The evolution

equations have complicated analytical structure and are not proper stochastic differ-

ential equations. The expansions described in Theorems III.31, III.33 and III.31 can

be used as a tool to approximate the optimal filter in the general model described

by (3.28). By truncating the series and discretizing the integrals in the series, we

can obtain a class of suboptimal filters which converge to the best mean square

filter. These suboptimal filters can be implemented numerically. Here we extend

results given in [5] to the multiparameter setting described in the model (3.28). The

following theorem describes the truncated, discretized suboptimal filter and gives

convergence results for this approximation.

Theorem III.34. Let {πM} be a sequence of partitions of Rz = [0, z1]× · · ·× [0, zm]

into m-dimensional rectangles with mesh |πM | → 0 as M →∞. Assume conditions
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of Theorem III.32, then

(3.71) E
[
f(Xz)|FY

z

]
=

L1(P )− lim
M→∞

M∑
p=0

1

p!
Sp(`p(f, z|·), πM , Y )

L1(P )− lim
M→∞

M∑
p=0

1

p!
Sp(`p(1̃, z|·), πM , Y )

,

where S0(`0(f, z|·), ·) ≡ Eµ
X

[
f(Xz)e

− 1
2

R
Rz

kz
h(X.);H

(ζ)h(Xζ)dζ
]
, 1̃ denotes the function

identically equal to 1, and for all functions gp ∈ L2
H,p(Rz), ∀p ≥ 1,

Sp(gp, πM , Y ) :=

n(M)∑
i1,··· ,ip=1

[∫
Rp

z

gp(u
1, . . . , up)β

M

i1,··· ,ip(u
1, . . . , up)du1 . . . dup

]
×Y (�M

i1
) . . . Y (�M

ip
),

with Y (�M
i ) represents the variation of Y over partition rectangle �M

i ∈ πM as

defined in (3.5), n(M) is the number of rectangles in partition πM , and for all uj =

(uj
1, . . . , u

j
m) ∈ Rz, where j = 1, . . . , p, we define

β
M

i1,··· ,ip(u
1, · · · , up) :=

n(M)∑
j1,··· ,jp=1

{(
(E

M
)−1)

i1,j1
. . .
(
(E

M
)−1)

ip,jp

×
(∫

�
M
j1

φH(u1, ζ)dζ

)
× · · ·×

(∫
�

M
jp

φH(up, ζ)dζ

)}
,

where φH(u, ζ) :=
m∏

i=1

Hi(2Hi−1)|ζi−ui|2Hi−2 for all u = (u1, . . . , um), ζ = (ζ1, . . . , ζm) ∈

Rz,

`p(f, z|u1, · · · , up) = Eµ
X

[
f(Xz) exp

{
−1

2

∫
Rz

kz
h(X.);H(ζ)h(Xζ)dζ

}
×
(
kz

h(X.);H

)⊗p
(u1, · · · , up)

]
(3.72)

and the matrix E
M

is defined by E
M

:=

(〈
1�M

i
, 1�M

j

〉
L2

H,1(Rz)

)
1≤i,j≤n(M)

.

Proof: Consider a sequence of partitions πM = {�M
i }i=1,...,n(M) of the rectangle

Rz into n(M) rectangles, and let PM denote the orthogonal projection operator (in
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L2
H,1(Rz)) onto the linear span of {1�M

i
; i = 1, 2, ···, n(M)}. Then PM converges to

the identity operator as M →∞ in the sense that ∀g ∈ L2
H,1(Rz)

‖(PM − I)g‖L2
H,1(Rz) −→ 0 as M →∞.

Let us introduce the notation

〈Ñ〉z :=

∫
Rz

kz
h(X.);H(ζ)h(Xζ)dζ.

By arguments used in proving (3.53), we have that as a, b→∞,

E
P0

[
f(Xz)e

− 1
2
〈 eN〉z

b∑
p=a

1

p!

(∫
Rz

PMk
z
h(X.);H(ζ)dYζ

)p
]2

−→ 0,

uniformly in M . Therefore
∑∞

p=0
1
p!
f(Xz) e

− 1
2
〈 eN〉z

(∫
Rz
PMk

z
h(X.);H

(ζ)dYζ

)p

converges

in L2(P0) and hence,

(3.73)
∞∑

p=0

1

p!
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

(∫
Rz

PMk
z
h(X.);H(ζ)dYζ

)p]
→ 0

in L2(P0) where the convergence is uniform in M . We also note that since we can

represent the projection by P
M
kz

h(X.);H
=
∑n(M)

k=1 α
M

k 1�M
k
, we have

Eµ
X

[
f(Xz) e

− 1
2
〈 eN〉z

(∫
Rz

PMk
z
h(X.);H(ζ)dYζ

)p]

= Eµ
X

f(Xz) e
− 1

2
〈 eN〉z

n(M)∑
k=1

α
M

k Y (1�M
k

)

p
= Eµ

X

f(Xz) e
− 1

2
〈 eN〉z

n(M)∑
i1···ip=1

α
M

i1
· · ·αM

ipY (1�M
i1

) · · ·Y (1�M
ip

)


=

n(M)∑
i1···ip=1

Eµ
X
f(Xz) e

− 1
2
〈 eN〉zα

M

i1
· · ·αM

ipY (�M
i1

) · · ·Y (�M
ip )

= IY,z
p

(
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z(PMk

z
h(X.);H)⊗p

])
.(3.74)
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Let us fix arbitrary M ≥ 1. Note that {1�M
i

; i = 1, 2, ···, n(M)} are linearly inde-

pendent (as elements of L2
H,1(Rz)) and ∀g ∈ L2

H,1(Rz), the projection PMg can be

represented as:

P
M
g =

n(M)∑
k=1

α
M

k 1�M
k
,

where 

α
M

1

. . .

. . .

α
M

n(M)


= (E

M
)−1



〈
1�M

1
, g
〉

L2
H,1(Rz)

. . .

. . .〈
1�M

n(M)
, g
〉

L2
H,1(Rz)


,

and E
M

denotes the matrix

(〈
1�M

i
, 1�M

j

〉
L2

H,1(Rz)

)
1≤i,j≤n(M)

.

Setting g = kz
h(X.);H

, define

(3.75) α
M

i (X) :=

n(M)∑
j=1

(
(E

M
)−1)

ij

〈
1�M

j
, kz

h(X.);H

〉
L2

H,1(Rz)
, i = 1, ···, n(M).

Then by (3.74)

∞∑
p=0

1

p!
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

(∫
Rz

PMk
z
h(X.);H(ζ)dYζ

)p]
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=
∞∑

p=0

1

p!
IY,z

p

(
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z(PMk

z
h(X.);H)⊗p

])

=
∞∑

p=1

1

p!
IY,z

p

(
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

n(M)∑
i1,··· ,ip=1

( p∏
k=1

α
M

ik
(X)

)
×1�M

i1
⊗ · · · ⊗ 1�M

ip

])
+ Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

]
=

∞∑
p=1

1

p!
IY,z

p

( n(M)∑
i1,··· ,ip=1

Eµ
X

[
f(Xz) e

− 1
2
〈 eN〉z

p∏
k=1

α
M

ik
(X)

]
1�M

i1
⊗ ···⊗ 1�M

ip

)
+Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

]
=

∞∑
p=1

1

p!

( n(M)∑
i1,··· ,ip=1

Eµ
X

[
f(Xz) e

− 1
2
〈 eN〉z

p∏
k=1

α
M

ik
(X)

]
Y (�M

i1
) . . . Y (�M

ip )

)
+Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

]
,(3.76)

where the series converge in L2(P0) uniformly in M by (3.73) and (3.74). Note that

p∏
k=1

α
M

ik
(X) =

n(M)∑
j1,··· ,jp=1

[ p∏
k=1

(
(E

M
)−1)

ik,jk

] ∫
Rp

z

{(
kz

h(X.);H

)⊗p
(u1, · · · , up)

×
(∫

�
M
j1

φH(u1, ζ)dζ

)
× · · ·×

(∫
�

M
jp

φH(up, ζ)dζ

)}
du1 . . . dup,

therefore,

Eµ
X

[
f(Xz) e

− 1
2
〈 eN〉z

p∏
k=1

α
M

ik
(X)

]
=

n(M)∑
j1,··· ,jp=1

{(
(E

M
)−1)

i1,j1
...
(
(E

M
)−1)

ip,jp

×
∫

Rp
z

`p(f, z|u1, · · · , up)

( p∏
k=1

∫
�

M
j
k

φH(uk, ζ)dζ

)
du1 . . . dup

}

(3.77) =

∫
Rp

z

`p(f, z|u1, · · · , up)β
M

i1,··· ,ip(u
1, · · · , up)du1 . . . dup,

where `p(f, z|·) is defined as in (3.72) and

β
M

i1,···,ip(u
1, · · · , up) :=

n(M)∑
j1,··· ,jp=1

{(
(E

M
)−1)

i1,j1
. . .
(
(E

M
)−1)

ip,jp

×
(∫

�
M
j1

φH(u1, ζ)dζ

)
× · · ·×

(∫
�

M
jp

φH(up, ζ)dζ

)}
.
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Therefore, we obtain that

∞∑
p=0

1

p!
Eµ

X

[
f(Xz) e

− 1
2
〈 eN〉z

(∫
Rz

PMk
z
h(X.);H(ζ)dYζ

)p]

(3.78) =
∞∑

p=0

1

p!
Sp (`p(f, z|·), πM , Y ) ,

where S0(·, ·, ·) ≡ Eµ
X

[
f(Xz) e

− 1
2
〈 eN〉z

]
, and for arbitrary gp ∈ L2

H,p(R
p
z), p ≥ 1,

Sp (gp, πM , Y ) :=

n(M)∑
i1,··· ,ip=1

[∫
Rp

z

gp(u
1, ···, up)β

M

i1,··· ,ip(u
1, ···, up)du1

... dup

]
× Y (�M

i1
) . . . Y (�M

ip ),

and the series
∑k

p=0
1
p!
Sp (`p(f, z|·), πM , Y ), converges in L2(P0) uniformly in M as

k → ∞, since the convergence in (3.76) is uniform in M . Notice that in showing

(3.78), we also have shown that

Sp(`p(f, z|·), πM , Y ) = IY,z
p

(
Eµ

X
f(Xz) e

− 1
2
〈 eN〉z

(
PMk

z
h(X.);H

)⊗p
)

∀ p = 1, 2, .....

Since for each p ≥ 1,

(3.79) Sp(`p(f, z|·), πM , Y )
L2(P0)−→ IY,z

p (`p(f, z|·)) as M →∞,

it follows by the uniform convergence of the series that

M∑
p=0

1

p!
Sp(`p(f, z|·), πM , Y )

L2(P0)−→
∞∑

p=0

1

p!
IY,z

p (`p(f, z|·)) as M →∞,

and since we have shown that convergence in L2(P0) implies convergence in L1(P ),

we have the result that

(3.80)
M∑

p=0

1

p!
Sp(`p(f, z|·), πM , Y )

L1(P )−→
∞∑

p=0

1

p!
IY,z

p (`p(f, z|·)) as M →∞.

Substituting (3.80) into (3.61) and setting f ≡ 1 in the denominator gives (3.71).

�



CHAPTER IV

Inverse stochastic transfer principle

4.1 Introduction

In their 2002 paper [22], Pérez-Abreu and Tudor give a stochastic transfer principle

enabling one to represent the multiple fractional stochastic integrals of determinis-

tic functions f as Itô type multiple stochastic integrals of a deterministic operator

Γ
(n)
H,T (f). The operator Γ

(n)
H,T : L2

H,n(T n) → L2(T n) is defined in terms of multivari-

ate Riemann-Liouville fractional integrals, which will be discussed in section 4.2.

These very nice results allows one to take many of the known properties of multi-

ple stochastic integrals with respect to Brownian motion and apply these properties

to multiple fractional stochastic integrals. A similar transfer principle for general

Volterra Gaussian process has been developed in [1].

However, the inverse relation, giving a scheme for representing multiple Wiener

Itô integrals of a deterministic function in terms of a multiple fractional Wiener in-

tegral is not immediately clear. This stems from the fact that the Riemann-Liouville

fractional integrals of functions f ∈ Lp are invertible only for a certain subclass of

Lp. As these fractional integrals play a key role in the definition of Γ
(n)
H,T , whether

there exists an inverse operator depends on the inversion properties of the Riemann-

Liouville fractional integrals.

98
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From the transfer principle in [22], the form of the left inverse of the Γ
(n)
H,T seems

very intuitive. However, Γ
(n)
H,T may not be invertible. Obviously for functions f

which can be represented as Γ
(n)
H,Tφ for some φ ∈ L2

H,n(T n), Γ
(n)
H,T is invertible. The

fact that the operator involves n-dimensional fractional integrals however, makes the

invertibility non-trivial. In this chapter we give two main results. The first result

gives a class of functions for which the multiparameter Riemann-Liouville fractional

integral operator is invertible on a compact domain. In proving this result, we

give an explicit method for identifying a function ϕ such that f is equal to the

Riemann-Liouville fractional integral of ϕ, provided the function f lives in Iα(Lp).

The second result gives an explicit class of functions L2
Φ,H for which Γ

(n)
H,T from [22]

is invertible. Inclusion in this class can be verified by checking the existence of the

limits specified in section 4.4. For such functions we establish the Inverse Stochastic

Transfer Principle (ISTP).

The ISTP is applicable in a number of settings. Firstly, in combination with the

direct stochastic transfer principle, it allows one to obtain general representations of

multiple fractional stochastic integrals of Hurst index H1 in terms of multiple frac-

tional stochastic integrals of Hurst index H2, for arbitrary H1, H2 ∈ (0, 1). Secondly,

it is a useful tool in certain problems where fractional chaos decomposition is desired.

For example, in many continuous time nonlinear filtering applications with fractional

noise, the goal is to describe the optimal filter (which is the best mean-square esti-

mate of an underlying signal of interest) in terms of the trajectory of the observation

process (call it, Y ). When the noise corrupting the observation is fractional white

noise, then, under an appropriate reference measure, Y is a fractional Brownian mo-

tion. In [5] and [18] it has been shown that the optimal filter can, with probability

one, be represented as a ratio of infinite series of multiple stochastic integrals of var-
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ious types. The latter integrals can be taken with respect to a suitably constructed

ordinary Brownian motion (with an appropriately defined integrand). However, it

is much more natural and computationally efficient to describe the optimal filter in

terms of multiple fractional integrals with respect to observation process Y itself

([2], [5]). The inverse transfer principle allows to easily transform integral expan-

sions of the optimal filter with respect to ordinary Brownian motion to the more

natural and numerically convenient expansion involving multiple fractional integrals

with respect to the observation process. Such a transformation of the integral ex-

pansions makes numerical approximations of the optimal filter possible whereas the

implementation of the original filter approximation is computationally inefficient.

This chapter is organized as follows. In section 4.2, we give an introduction to

multidimensional fractional calculus, laying out the tools we will need throughout

our analysis. In section 4.3 we give criteria that guarantee a function f belongs

to I(Lp) on a compact domain. The criteria also establish a way of finding such a

function ϕ ∈ Lp such that f is equal to the fractional integral of ϕ. In section 4.4, we

establish the Inverse Stochastic Transfer Principle. In section 4.5 we give an example

of an application of the ISTP applied to integral expansions of optimal filters for a

nonlinear filtering problem with fractional noise.

4.2 Multivariate fractional calculus

In this section we discuss concepts of fractional calculus which will be used

throughout the chapter, namely fractional integration and differentiation of func-

tions of many variables. As in [24] (section 24, Chapter 5), let us make use of the

following extensions of the Riemann-Liouville fractional integral and derivative.

Definition IV.1. Let [a, b] = [a1, b1] × · · · × [an, bn], where each [ai, bi] are fixed
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intervals in R. For the function ϕ(x) : [a, b] → R, ϕ ∈ L1([a, b]), the right-sided

mixed fractional integral of order α = (α1, ..., αn), is given by

(4.1) (Iα,n
b− ϕ)(x) = (Iα1

b1− ◦ ...◦ I
αn
bn−ϕ)(x) =

1

Γ(α)

∫ b1

x1

...

∫ bn

xn

ϕ(t)dt

(t− x)1−α
, 0 ≺ α ≺ 1

where (t− x)1−α = (t1 − x1)
1−α1 ....(tn − xn)1−αn , Γ(α) = Γ(α1) · · ·Γ(αn) and

dt = dt1...dtn.

Definition IV.2. For ϕ as in definition IV.1, the right-sided mixed Riemann-

Liouville fractional derivative of order α = (α1, ..., αn) is given by

(4.2) (Dα,n
b− ϕ)(x) =

1

Γ(1− α)

∂n

∂x1...∂xn

∫ b1

x1

...

∫ bn

xn

ϕ(t)dt

(t− x)α
0 ≺ α ≺ 1

where (t− x)α = (t1 − x1)
α1 ....(tn − xn)αn , Γ(1− α) = Γ(1− α1) · · ·Γ(1− αn) and

dt = dt1...dtn, provided ϕ is such that the derivative on the right side of (4.2) exists.

If a solution exists to the multidimensional Abel equation

(4.3)
1

Γ(α)

∫ b1

x1

...

∫ bn

xn

f(t)dt

(t− x)1−α
= ϕ(x), x ≺ b,

then clearly f(x) = (Dα,n
b− ϕ)(x) is the unique solution. Hence Dα,n

b− (Iα,n
b− f)(x) = f(x).

However, in general it is not the case that Iα,n
b− (Dα,n

b− f)(x) = f(x). If there exists a

function φ satisfying Iα,n
b− φ(x) = f(x) ∀x ∈ [a, b], then clearly Iα,n

b− (Dα,n
b− f)(x) = f(x).

In order to investigate existence of such a φ, we need to introduce the (mixed) finite

difference operator ∆k,n
h acting on functions f : Rn → R parameterized by order

vector k and step vector h, defined by

(4.4) (∆k,n
h f)(x) =

∑
0�j�k

(−1)|j|
(
k

j

)
f(x− j • h)

where j = (j1, ..., jn), k = (k1, ..., kn) are vectors of integers in Rn, and we use of the

following notation,(
k

j

)
:=

n∏
i=1

(
ki

ji

)
, j • t := (j1t1, ..., jntn), and |j| :=

n∑
i=1

ji.
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For notational simplicity, let us define the function

(4.5) θn(x; t, α, k) =

∏n
i=1 α

ki
i∏n

i=1 t
(1+αi)ki

i (bi − xi)αi(1−ki)
, x ∈ Rn

where α = (α1, ..., αn), αi ∈ (0, 1) ∀i ∈ {1, ..., n}. We also introduce the integral

operator

(4.6)(
Φb,n

α,kf
)

(x) =

(
n∏

i=1

(bi − xi)
ki−1

)∫ b1−x1

t1=0

· · ·
∫ bn−xn

tn=0

θn(x; t, α, k)(∆k,n
−t f)(x)dtn...dt1.

Similarly, define the operator

(4.7)(
Φb,n

ε,α,kf
)
(x) =

(
n∏

i=1

(bi − xi − εi)
ki−1

)∫ b1−x1

t1=ε1

··
∫ bn−xn

tn=εn

θn(x; t, α, k)(∆k,n
−t f)(x)dtn...dt1

where ε = (ε1, ...εn).

Definition IV.3. For function f : [a, b] → R,

(4.8) Dα,n
b−,εf(x) ≡

(
n∏

i=1

1

Γ(1− αi)

) ∑
0�k�1

(
Φb,n

ε,α,kf
)

(x),

is called the truncated Marchaud fractional derivative, and, where the Lp limit

exists

(4.9) Dα,n
b− f(x) ≡ lim

ε→0
Dα,n

b−,εf(x),

is called the Marchaud fractional derivative, where the sum over 0 � k � 1

represents the sum over all vectors k ∈ {0, 1}n.

Remark For example, when n = 1, Dα,n
b−,εf(x) is the sum of two terms,

(4.10) Dα,n
b−,εf(x) =

f(x)

Γ(1− α)(b− x)α
+

α

Γ(1− α)

∫ b−x

t=ε

f(x)− f(t+ x)

t1+α
dt
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In the case n = 2,

“ 2Y
i=1

Γ(1− αi)
”
Dα,n

b−,εf(x) =
f(x1, x2)

(b1 − x1)α1(b2 − x2)α2
+ α1

Z b1−x1

t1=ε1

f(x1, x2)− f(t1 + x1, x2)

t1+α1
1 (b2 − x2)α2

dt1

+α2

Z b2−x2

t2=ε2

f(x1, x2)− f(x1, t2 + x2)

t1+α2
2 (b1 − x1)α1

dt2

(4.11) +α1α2

Z b1−x1

t1=ε1

Z b2−x2

t2=ε2

f(x1, x2)− f(t1 + x1, x2)− f(x1, t2 + x2) + f(t1 + x1, t2 + x2)

t1+α1
1 t1+α2

2

dt2dt1,

the sum of four terms. It is easy to see that for general n, Dα,n
b−,εf(x) is given by the

sum of 2n such terms where the numerator of the integrand in each term is given by

the variation of f along the axes with respect to which the integral is taken.

4.3 Representation of fractional integrals of many variables

In this section we give conditions on functions f : [a, b] → R which ensure that

there exists a function φ ∈ Lp([a, b]) such that f(x) = (Iα,n
b− φ)(x) for all x ∈ [a, b],

where [a, b] = [a1, b1] × · · · × [an, bn]. When looking at the truncated Marchaud

fractional derivative, the form of
(
Φb,n

ε,α,kf
)

(x) depends on the sub-region x falls

in. We adopt the very important convention of [24], and assume that the function

f : [a, b] → R vanishes outside the region [a, b].

Definition IV.4. For vectors a = (a1, ..., an), b = (b1, ..., bn) and ε = (ε1, ..., εn),

where 0 < εi < bi − ai ∀i = 1, ..., n, define

R(ε) = Ra,b(ε) = [a, b]−
(
[a1, b1 − ε1)× · · · × [an, bn − εn)

)
.

We will partiion R(ε) into 2n − 1 regions. Consider all rectangles of the form

I
(ε)
1 ×· · ·× I(ε)

n where exactly k of the I
(ε)
j ’s are of the form I

(ε)
j = [bj− εj, bj], and the

remaining n − k of the I
(ε)
j ’s are of the form I

(ε)
j = [aj, bj − εj). There are

(
n
k

)
such
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rectangles, let us call them Rk
1, ...,Rk

(n
k)

, so that we have

R(ε) =
n⋃

k=1

(n
k)⋃

r=1

Rk
r .

To see how these regions affect the form of Marchaud fractional derivative let us look

at an example with n = 2. Take the last term in (4.11),

(4.12)

∫ b1

t1=x1+ε1

∫ b2

t2=x2+ε2

f(x1, x2)− f(t1, x2)− f(x1, t2) + f(t1, t2)

(t1 − x1)1+α1(t2 − x2)1+α2
dt2dt1.

If a1 ≤ x1 < b1 − ε1, b2 − ε2 ≤ x2 ≤ b2, that is x ∈ R1
2, since f vanishes outside

[a, b], the last two terms in the numerator of the integrand become zero and we are

left with (
1

εα2
2

− 1

(b2 − x2)α2

)∫ b1

t1=x1+ε1

f(x1, x2)− f(t1, x2)

(t1 − x1)1+α1
dt1

and if b1 − ε1 ≤ x1 ≤ b1, b2 − ε2 ≤ x2 ≤ b2 (x ∈ R2
1) then (4.12) becomes

f(x1, x2)

(
1

εα1
1

− 1

(b1 − x1)α1

)(
1

εα2
2

− 1

(b2 − x2)α2

)
.

Theorem IV.5. Let [a, b] be a compact rectangle in Rn. Let f : [a, b] → R be a

measurable function on [a, b]. Suppose 1 ≤ p <∞, and αi ∈ (0, 1
p
) ∀i. If f ∈ Lp([a, b])

and the Lp limit

(4.13) lim
ε→0

(Lp)

(
Φb,n

ε,α,kf
)

(·)

exists ∀ 0 � k � 1 (i.e. for all vectors k ∈ {0, 1}n ) where ε = (ε1, ..., εn) and Φb,n
ε,α,k

is given by (4.7), then there exists function ϕ ∈ Lp([a, b]) such that f(x) = Iα,n
b− ϕ(x),

for all x ∈ [a, b]. Moreover, ϕ is equal to lim ε→0

(Lp)

∑
0�k�1

(
Φb,n

ε,α,kf
)

(·).

Proof: Let f ∈ Lp([a, b]) and consider the function

(4.14) ϕ(n)
ε (x) =

(
n∏

i=1

1

Γ(1− αi)

) ∑
0�k�1

(
Φb,n

ε,α,kf
)

(x).
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It is easy to check directly that ϕ
(n)
ε (x) ∈ Lp([a, b]) and when the limit exists,

limε→0 ϕ
(n)
ε (x) := ϕ(n) ∈ Lp([a, b]). We will prove that f = Iα,n

b− ϕ
(n). Since the oper-

ator Iα,n
b− is continuous in Lp (see [24]) it is enough to show f = limε→0 I

α,n
b− ϕ

(n)
ε (x),

where the limit is taken in Lp.

Step 1 Let us first focus on the region where xi < bi− εi ∀i. We first show that over

this region,

(4.15)

Iα,n
b− ϕ

(n)
ε (x) =

∫ b1−x1
ε1

t1=0

· · ·
∫ bn−xn

εn

tn=0

(
n∏

i=1

Kαi
(ti)

)
f(t1ε1 + x1, ..., tnεn + xn)dtn...dt1,

where Kαi
(ti) = 1

Γ(αi)Γ(1−αi)

(
t
αi
i −(ti−1)

αi
+

ti

)
, which has the property that

(4.16)

∫ ∞

ti=0

Kαi
(ti)dti = 1.

The right hand side of (4.15) can be rewritten as∫ b1−x1
ε1

t1=0

Kα1(t1)...

∫ bn−1−xn−1
εn−1

tn−1=0

Kαn−1(tn−1)

[∫ bn−xn
εn

tn=0

tαn−1
n f(t1ε1 + x1, ..., tnεn + xn)dtn

−
∫ bn−xn

εn

tn=1

(tn − 1)αn

tn
f(t1ε1 + x1, ..., tnεn + xn)dtn

]
dtn−1...dt1 ×

1

Γ(αn)Γ(1− αn)
.

Making the substitution yn = tnεn + xn, the term inside brackets becomes

(4.17)

1

εαn
n

∫ bn

xn

f(t1ε1 + x1, ..., yn)

(yn − xn)1−αn
dyn −

1

εαn
n

∫ bn

xn+εn

f(t1ε1 + x1, ..., yn)(yn − xn − εn)αn

(yn − xn)
dyn.

Using the fact that

(y − ε− x)α

εα(y − x)
=

∫ y−ε

s=x

1

(s− x)1−α(y − s)1+α
ds (x < y),

which follows from the indefinite integral∫
1

(s− x)1−α(y − s)1+α
ds =

(y − s)−α(s− x)α

α(y − x)
,
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(4.17) becomes

(4.18)

1

εαn
n

∫ bn

xn

f(t1ε1 + x1, ..., yn)

(yn − xn)1−αn
dyn−αn

∫ bn−εn

sn=xn

∫ bn

yn=sn+ε

f(t1ε1 + x1, ..., yn)

(sn − xn)1−αn(yn − sn)1+αn
dsndyn.

Adding and subtracting the term∫ bn−εn

yn=xn

f(t1ε1 + x1, ..., yn)

(yn − xn)1−αn(bn − yn)αn
dyn −

1

εαn

∫ bn−εn

yn=xn

f(t1ε1 + x1, ..., yn)

(yn − xn)1−αn
dyn

+

∫ bn

yn=bn−εn

f(t1ε1 + x1, ..., yn)

(yn − xn)1−αn(bn − yn)αn
dyn

(4.18) becomesZ bn

yn=xn

1

(yn − xn)1−αn

(
f(t1ε1 + x1, ..., yn)

(bn − yn)αn
+αn

Z bn

sn=yn+εn

f(t1ε1 + x1, ..., yn)− f(t1ε1 + x1, ..., sn)

(sn − yn)1+αn
dsn

)
dyn.

So that the right hand side of (4.15) is equal to

1

Γ(αn)Γ(1− αn)

Z b1−x1
ε1

t1=0

Kα1(t1)...

Z bn−1−xn−1
εn−1

tn−1=0

Kαn−1(tn−1)

" Z bn

yn=xn

1

(yn − xn)1−αn

(
f(t1ε1 + x1, ..., yn)

(bn − yn)αn

+αn

∫ bn

sn=yn+εn

f(t1ε1 + x1, ..., yn)− f(t1ε1 + x1, ..., sn)

(sn − yn)1+αn
dsn

}
dyn

]
dtn−1...dt1.

Considering f(t1ε1 + x1, ..., yn) as a function of yn only, and letting

ϕ(1)
ε (t1ε1 + x1, ..., yn)

=
1

Γ(1− αn)

[
f(t1ε1 + x1, ..., yn)

(bn − yn)αn

+αn

∫ bn

sn=yn+εn

f(t1ε1 + x1, ..., yn)− f(t1ε1 + x1, ..., sn)

(sn − yn)1+αn
dsn

]
,

the right hand side of (4.15) is equal to(
n−1∏
i=1

1

Γ(αi)Γ(1− αi)

)∫ b1−x1
ε1

t1=0

(
tα1
1 − (t1 − 1)α1

+

t1

)
...

(4.19)

...

∫ bn−1−xn−1
εn−1

tn−1=0

(
t
αn−1

n−1 − (tn−1 − 1)
αn−1

+

tn−1

)
Iα,1
b− ϕ

(1)
ε (t1ε1 + x1, ..., yn)dt1...dtn−1dyn,
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where Iα,1
b− ϕ is the mixed fractional integral, that is the single parameter Riemann-

Liouville fractional integral taken over only the nth axis. Using the fact that mixed

fractional integrals of Lp([a, b]) functions are in Lp([a, b]) if αi <
1
p
∀i (see [24]), ap-

plying Fubini’s Theorem and repeating the above arguments in each of the remaining

n− 1 coordinates gives (4.15).

In view of (4.15) and (4.16),

Iα,n
b− ϕ

(n)
ε (x)− f(x)

(4.20)

=

∫ ∞

t1=0

· · ·
∫ ∞

tn=0

(
n∏

i=1

Kαi
(ti)

)[
f(t1ε1 + x1, ..., tnεn + xn)− f(x1, ..., xn)

]
dtn...dt1

for x ∈ [a1, b1 − ε1)× · · · × [an, bn − εn).

Step 2 Next we show ‖Iα,n
b− ϕ

(n)
ε ‖Lp(R(ε)) → 0 as ε → 0. Specifically we will examine

the norm over individual regions making up R(ε), as

(4.21) ‖Iα,n
b− ϕ

(n)
ε (x)‖Lp(R(ε)) ≤

n∑
`=1

(n
`)∑

r=1

‖Iα,n
b− ϕ

(n)
ε ‖Lp(R`

r(ε)),

where each term in the sum satisfies

(4.22) ‖Iα,n
b− ϕ

(n)
ε (x)‖Lp(R`

r(ε)) ≤
( n∏

i=1

Γ(1− αi)
)−1

2n∑
j=1

‖Iα,n
b− Φb,n

ε,α,jf(x)‖Lp(R`
r(ε))

where Φb,n
ε,α,jf are the individual terms (integrals) making up ϕ

(n)
ε (x) and each j ∈

{1, ..., 2n} represents an element of the set of vectors 0 � k � 1, that is all vectors

k ∈ {0, 1}n.

For notational simplicity we will look only at the regionRm
1 (ε), where bi−εi ≤ xi ≤ bi
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for i = 1, ...,m. All other terms are handled in the same manner. The substitution

qi = bi + xi − ti, ∀i yields

Iα,n
b− Φb,n

ε,α,jf(x) =
1

Γ(α)

∫ b1

x1

...

∫ bn

xn

Φb,n
ε,α,jf(b1 + x1 − q1, ..., bn + xn − qn)∏n

i=1(bi − qi)1−αi
dqn...dq1.

Applying the Minkowski inequality for integrals [10],

‖Iα,n
b− Φb,n

ε,α,jf‖Lp(Rm
1 (ε))

=
1

Γ(α)

(∫ b1

x1=b1−ε1

· · ·
∫ bm

xm=bm−εm

∫ bm+1−εm+1

xm+1=0

· · ·
∫ bn−εn

xn=0∣∣∣∣∣
∫ b1

q1=x1

...

∫ bn

qn=xn

Φb,n
ε,α,jf(b1 + x1 − q1, ..., bn + xn − qn)∏n

i=1(bi − qi)1−αi
dqn...dq1

∣∣∣∣∣
p

dxn...dx1

) 1
p

≤ 1

Γ(α)

∫ b1

q1=b1−ε1

··
∫ bm

qm=bm−εm

∫ bm+1

qm+1=0

··
∫ bn

qn=0

(∫ q1

x1=b1−ε1

··
∫ qm

xm=bm−εm

∫ qm+1∧(bm+1−εm+1)

xm+1=0

· · ·
∫ qn∧(bn−εn)

xn=0

∣∣∣∣Φb,n
ε,α,jf(b1 + x1 − q1, ..., bn + xn − qn)∏n

i=1(bi − qi)1−αi

∣∣∣∣pdxn...dx1

) 1
p

dqn...dq1

≤ 1

Γ(α)

∫ b1

q1=b1−ε1

1

(b1 − q1)1−α1
· · ·
∫ bn

qn=0

1

(bn − qn)1−αn
dqn...dq1‖Φb,n

ε,α,jf‖Lp(Rm
1 (ε))

=
1

Γ(α)
εα1
1 · · · εαm

m b
αm+1

m+1 · · · bαn
n ‖Φb,n

ε,α,jf‖Lp(Rm
1 (ε))

(4.23) ≤ 1

Γ(α)
εα1
1 · · · εαm

m b
αm+1

m+1 · · · bαn
n ‖Φb,n

ε,α,jf‖Lp([a,b]) → 0 as ε→ 0.

Similar arguments show that for any 0 � k � 1, ‖Iα,n
b− Φb,n

ε,α,kf‖Lp(R`
r(ε)) → 0 for all

R`
r(ε) making up R(ε). This result along with (4.21) and (4.22) gives

‖Iα,n
b− ϕ

(n)
ε ‖Lp(R(ε)) → 0 as ε→ 0.

Step 3 As f ∈ Lp(a, b),

‖f‖Lp(R(ε)) → 0 as ε→ 0.
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Upon combining this with (4.20) and using the properties of mean continuity of Lp

functions and the dominated convergence theorem, we obtain that

‖Iα,n
b− ϕ

(n)
ε − f‖Lp(a,b) ≤ ‖Iα,n

b− ϕ
(n)
ε − f‖Lp(R(ε)) +

∫ ∞

t1=0

· · ·
∫ ∞

tn=0

( n∏
i=1

Kαi
(ti)

)
×
∥∥∥f(t1ε1 + x1, ..., tnεn + xn)− f(x1, ..., xn)

∥∥∥
Lp(a,b)

dtn...dt1 −→ 0

as ε→ 0 and the desired result follows.

�

4.4 Inverse stochastic transfer principle

In this section we describe the inverse transfer principle and the operator for the

class of functions L2
Φ,H([0, T ]n), which allow us to represent multiple stochastic inte-

grals with respect to Brownian motion in terms of multiple stochastic integrals with

respect to fractional Brownian motion.

First, for Hurst parameter H ∈ (1
2
, 1) and for (t1, ..., tn) ∈ [0, T ]n, let us recall from

[22], the following continuous, isometric operator Γ
(n)
H,T : L2

H,n([0, T ]n) → L2([0, T ]n)

defined by

(
Γ

(n)
H,T (f)

)
(t1, ..., tn) := (C∗

H)n

(
n∏

j=1

(tj)
1
2
−H

)

×

(
I

H− 1
2
,n

T−

( n∏
k=1

s
H− 1

2
k

)
f(s1, ...sn)

)
(t1, ...tn)(4.24)

where

C∗
H =

(
2HΓ(H + 1

2
)Γ(3

2
−H)

Γ(2− 2H)

) 1
2

.

Next, let us recall the following (direct) stochastic transfer principle of Perez-Abreu

and Tudor.
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Theorem IV.6. (Stochastic Transfer Principle) ([22]) For arbitrary

f ∈ L2
H,n([0.T ]n),

(4.25) IBH

n (f) = IW B

n (Γ
(n)
H,Tf)

where IBH

n (·) is the nth order Wiener integral with respect to BH , taken over [0, T ]n

and In(·) is the multiple stochastic integral taken over [0, T ]n with respect to the

standard Brownian motion WBH

t =
∫

[0,t]
K−1

H (t, s)dBH
s .

In order to define the inverse stochastic transfer principle, let us introduce the

operator Γ
(n)(−1)
H,T : L2([0, T ]n) → L2

H,n([0, T ]n),(
Γ

(n)(−1)
H,T f

)
(t1, ..., tn) :=

(
1

C∗
H

)n
(

n∏
j=1

(tj)
1
2
−H

)

×

(
DH− 1

2
,n

T−

( n∏
k=1

s
H− 1

2
k

)
f(s1, ...sn)

)
(t1, ...tn).(4.26)

We also make use of the following definition:

Definition IV.7. Define L2
Φ,H([0, T ]n) to be the class of functions f : [0, T ]n → R

such that f ∈ L2([0, T ]n) and

(4.27) lim
ε→0

(L2)

( n∏
i=1

xi

) 1
2
−H (

ΦT,n

ε,H− 1
2
,k
f ∗H

)
(x)

exists ∀ 0 � k � 1 where Φ is given by (4.7). Here H denotes the vector H =

(H, ..., H) so that H − 1
2

= (H − 1
2
, ..., H − 1

2
), ε = (ε1, ..., εn) and f ∗H(x1, ..., xn) :=

(x1 · · ·xn)H− 1
2f(x1, ..., xn).

Note A trivial example of a function f such that limit (4.27) exists is given by

f(x1, ..., xn) = C(x1 · · ·xn)
1
2
−H , where C ∈ R.

Theorem IV.8. (Inverse Stochastic Transfer Principle) For functions f ∈

L2
Φ,H([0, T ]n), the following equality holds:

(4.28) IW B

n (f) = IBH

n (Γ
(n)(−1)
H,T f),
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where IW B

n (·) and IBH

n (·) are as described in Theorem IV.6.

Proof First note that f ∈ L2([0, T ]n) implies f ∗H ∈ L2([0, T ]n) since x
H− 1

2
i is

bounded on the compact interval [0, T ] for each i. The existence of (4.27) and

boundedness of x
H− 1

2
i on [0, T ] imply the existence of

lim
ε→0

(L2)

(
ΦT,n

ε,H− 1
2
,k
f ∗H

)
(x),

for all 0 � k � 1. Let us therefore define

ϕ(n)
∗,ε (x) :=

(
1

Γ(3
2
−H)

)n ∑
0�k�1

(
ΦT,n

ε,H− 1
2
,k
f ∗H

)
(x).

From Theorem (IV.5) it follows that f ∗H = lim ε→0

(L2)
I

H− 1
2
,n

T− ϕ
(n)
∗.ε . By continuity of the

fractional integral in L2 it follows that f ∗H =

(
I

H− 1
2
,n

T− lim ε→0

(L2)
ϕ

(n)
∗.ε

)
.

Next we define the term

(4.29)

φ
(n)
∗,ε,H,T (x) :=

(
1

Γ(3
2
−H)

)n ∑
0�k�1

( n∏
i=1

xi

) 1
2
−H (

ΦT,n

εH− 1
2
,k
f ∗H

)
(x), ∀x ∈ [0, T ]n.

Note that the L2 limit of φ
(n)
∗,ε,H,T (x) exists as ε→ 0, as a consequence of (4.27). We

can write f ∗H in terms of φ
(n)
∗,ε := φ

(n)
∗,ε,H,b as

f ∗H(x) =

IH− 1
2
,n

T− lim
ε→0

(L2)

( n∏
i=1

ui

)H− 1
2
φ(n)
∗.ε (u)

 (x)

=

IH− 1
2
,n

T−

( n∏
i=1

ui

)H− 1
2
lim
ε→0

(L2)

φ(n)
∗.ε (u)

 (x).

And hence

f(x) = (x1 · · ·xn)
1
2
−Hf ∗H(x1, ..., xn)

=
( n∏

i=1

xi

) 1
2
−H

IH− 1
2
,n

T−

( n∏
i=1

ui

)H− 1
2
lim
ε→0

(L2)

φ(n)
∗.ε (u)

 (x)
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(4.30) = (C∗
H)n

( n∏
i=1

xi

) 1
2
−H

IH− 1
2
,n

T−

( n∏
i=1

ui

)H− 1
2
(

lim
ε→0

(L2)

(C∗
H)−n φ(n)

∗.ε

)
(u)

 (x)

So the existence of lim ε→0

(L2)
φ

(n)
∗,ε (x) implies that for any f ∈ L2([0, T ]n), there exists

φ ∈ L2([0, T ]n) such that

(4.31) f(x) = (C∗
H)n

( n∏
i=1

xi

) 1
2
−H
(
I

H− 1
2
,n

T−

( n∏
i=1

ui

)H− 1
2
φ(u)

)
(x).

It follows that Γ
(n)(−1)
H,T f(x) = φ(x) and f(x) = Γ

(n)
H,Tφ(x) ∀x ∈ [0, T ]n. Using the fact

that

(4.32)
˜

Γ
(n)
H φ(x) = Γ

(n)
H φ̃(x),

we obtain that

(4.33)

IW B

n (f) = IW B

n (Γ
(n)
H,Tφ) = IW B

n (Γ̃
(n)
H,Tφ) = IW B

n (Γ
(n)
H,T φ̃) = IBH

n (φ̃) = IBH

n (
˜

Γ
(n)(−1)
H,T f),

where the third equality follows from (4.32) and the fourth follows from direct appli-

cation of (4.25). Since φ ∈ L2([0, T ]n), by Theorem III.18, φ ∈ L2
H,n([0, T ]n) so that

IBH

n (φ̃) and IW B

n (Γ̃
(n)
H,Tφ) are well defined.

�

4.5 An example in the context of nonlinear filtering

As an application of Theorem IV.8, we look at the nonlinear filtering problem

described in[5]. Consider the following nonlinear filtering problem for a random

process X = (Xt, t ∈ [0, T ]), where T <∞, and X is not observed directly. Suppose

that a noisy process Y is observed instead and that the observation model, which is

of interest in many engineering and economics applications, is given by:

(4.34) Yt =

∫ t

0

h(Xs)ds+BH
t , t ∈ [0, T ]
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where h is a suitably regular and integrable nonlinear function, BH = (BH
t ) is a

fractional Brownian motion with Hurst parameter H ∈ (1
2
, 1) and the signal process

X is assumed to be independent of the observation noise BH . The goal is to charac-

terize the optimal filter, or, in other words, to study the best mean-square estimate

of the signal, conditioning on FY
t := σ{Ys : 0 ≤ s ≤ t}, the σ-field generated by the

observation process.

Recall from Chapter III, the following representaion of the optimal filter holds:

(4.35) E
[
f(Xt)|FY

t

] a.s.
=

∑∞
p=0

1
p!
IW Y ,t
p

(
E
[
f(Xt)(δ.(X))⊗p

])
∑∞

p=0
1
p!
IW Y ,t
p

(
E
[
(δ.(X))⊗p

]) ,

where the series converge in L2, (·)⊗p denotes the pth order tensor product and IW Y ,t
p

denotes the pth order multiple stochastic fractional integral of the Itô type with re-

spect to the Brownian motion W Y , with the integral taken over [0, t].

By truncating the sum in (4.35) it is possible approximate the optimal filter by

(4.36) E
[
f(Xt)|FY

t

]
≈

∑N
p=0

1
p!
IW Y ,t
p

(
E
[
f(Xt)(δ.(X))⊗p

])
∑N

p=0
1
p!
IW Y ,t
p

(
E
[
(δ.(X))⊗p

]) .

From a practical point of view however, this representation is not easy to implement,

since it requires that we compute the trajectory of (W Y
t , t ∈ [0.T ]) using the kernel

K−1
H , whose form changes at each point t in the parameter space [0, T ].

We can use the Inverse Stochastic Transfer Principle to represent the integrals in
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(4.36) as multiple fractional stochastic integrals with respect to observation process

Y . Namely, provided

E
(
f(Xt)(δ.(X))⊗p

)
(·) ∈ L2

Φ,H([0, T ]p) ∀p = 1, ..., N, ∀t ∈ [0, T ]

we can approximate (4.35) by

(4.37) E
[
f(Xt)|FY

t

]
≈

∑N
p=0

1
p!
IY,t
p

(
Γ

(p)(−1)
H,t E

[
f(Xt)(δ.(X))⊗p

])
∑N

p=0
1
p!
IY,t
p

(
Γ

(p)(−1)
H,t E

[
(δ.(X))⊗p

]) ,

where IY,t
p denotes the pth order multiple stochastic integral of the Itô type with

respect to the observation process Y , with the integral taken over [0, t].

The approximation (4.37) allows for numerical implementation of the representations

given by (4.35). The Inverse Stochastic Transfer Principle gives multiple integrals

with respect to the observation process so we can directly use the observation pro-

cess to obtain the integrals as opposed to those in (4.35) which require continuously

updating the kernel K−1
H to obtain the process W Y . We should note however, that

in this case we will need to continuously update the operator Γ
(p)(−1)
H,t depending on

the spatial parameter t.
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