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ABSTRACT

In this thesis, we examine the ponderomotive interaction between an applied op-

tical field and a highly excited Rydberg electron. An atom in a Rydberg state is

essentially composed of an electron loosely bound, at a relatively large radial sep-

aration, to a positive ionic core. As such, the ponderomotive interaction for the

Rydberg electron is similar to the interaction with free charges, which has been stud-

ied in context of plasma physics, new particle accelerator techniques, ion trapping,

and electron diffraction among others. We are focused on using the ponderomotive

interaction with the Rydberg electron to exert control over both the center-of-mass

and electronic states of translationally cold Rydberg atoms. These capabilities can

be adapted as tools for application in many experiments in areas such as atomic

spectroscopy and quantum information processing. Our theoretical investigations

have provided a well-defined parameter space for our experimental work and have

allowed us to develop experimental methods appropriate for studying Rydberg atoms

in ponderomotive potentials.

In dense gases of cold Rydberg atoms, rich dynamics stem from electric multipole

interactions among the Rydberg atoms. For example, interatomic forces between

Rydberg atoms cause state-changing collisions which can significantly increase the

kinetic energy of the colliding atoms. In addition to the studies of Rydberg atoms

in ponderomotive potentials, we discuss collisions of cold Rydberg atoms in which

internal energy of the Rydberg atoms is converted into kinetic energy.
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CHAPTER I

Introduction

1.1 Cold Rydberg Gases

A Rydberg atom, composed of a highly excited electron loosely bound at a rela-

tively large radial separation from an ionic core, is a system of great physical interest

located on the boundary of classical and quantum physics. These atoms have many

exaggerated properties, such as their nearly macroscopic size, large geometrical and

collisional cross-sections, huge accessible Hilbert space, extreme sensitivity to ex-

ternally applied fields, and long lifetimes, which have been studied systematically

and in great detail, particularly since the nineteen seventies with the development

of tunable dye-laser technology [1]. Recent developments in laser-cooling have re-

newed interest in Rydberg atoms. One area of major current interest is the study of

Rydberg-atom ensembles in which the electric multipole interactions between Ryd-

berg atoms dominate the dynamics of such systems. These interactions can influence

laser-excitation dynamics of Rydberg systems in the so-called dipole blockade [2, 3]

which creates the necessary entanglement for use in proposed quantum information

processing schemes [2, 4]. In cold gases of Rydberg atoms, these strong interac-

tions can occur among a large number of atoms, providing an interesting context for

studying many-body physics [5, 6].

1
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Under certain conditions, interactions also induce state-mixing and ionizing colli-

sions in cold Rydberg gases which govern the evolution dynamics of these systems [7].

In chapter II, we examine a how interactions among Rydberg atoms in a cold Rydberg

gas cause motion of the atoms, significantly altering the kinetic energy distribution

of the constituent atoms [8]. In particular, attractive forces accelerate atoms toward

each other, increasing the kinetic energy of the atoms, and these collision often end

in Penning ionization. For this study, we developed a time of flight measurement

technique, which detects fast atoms that are emitted from the cold Rydberg gas.

Since the time-resolved detection occurs at a specified distance from the gas, we can

construct velocity distributions of these fast atoms. State selective field ionization

and density dependent studies link the increase in kinetic energy of the detected

atoms to binary collision processes in cold Rydberg gases in which internal energy of

the Rydberg atoms is converted into kinetic energy. We have also adapted this tech-

nique to study the formation of Rydberg atoms in an expanding ultracold plasma,

presumably through a process called three-body recombination. Our preliminary

results are in qualitative agreement with expectations based on ion expansion rates

in ultracold plasmas [9] and the density scaling of three-body recombination rates.

1.2 Rydberg Atoms in Ponderomotive Potentials

In the remainder of the text, we investigate the ponderomotive interaction be-

tween a Rydberg electron and an applied optical field. Since the Rydberg electron is

very weakly bound or quasi-free, its interaction with an applied field is similar to that

of a free electron, which has been studied in the context of plasma physics [10], new

particle accelerator techniques [11], ion trapping [12, 13], and high-harmonic gener-

ation [14], among others. In chapter III, we describe the ponderomotive interaction
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involving a Rydberg electron in great detail. In first order, the energy levels of the

Rydberg electron in a homogeneous applied optical field are shifted by an amount

equal to the shift of a free electron in the same field. However, inhomogeneities in

the applied field produce spatially and Rydberg-state dependent energy level shifts,

which result in forces on the Rydberg atoms. These forces can be tailored to con-

trol the motion of Rydberg atoms. Initial experiments focus on spectroscopically

probing these energy level shifts, either in the Rydberg laser-excitation spectra or

in microwave spectra between neighboring Rydberg states. In particular, we explore

the effects of applying a strongly inhomogeneous standing plane wave optical field,

which could be used to form a periodic 1D ponderomotive optical lattice of Rydberg-

atom traps. The depth of these traps depends on the intensity of the applied optical

field and can easily exceed the average kinetic energy of Rydberg atoms excited from

laser-cooled ground state atoms. Rydberg-atom trapping or control of Rydberg atom

motion has potentially useful applications in quantum information processing, cav-

ity QED experiments with Rydberg atoms [15], and precision spectroscopy of atomic

quantities. Additionally, the ponderomotive optical lattice confines Rydberg atoms

with a much smaller trap-induced shift than other Rydberg-trapping schemes [16, 17].

In chapter IV, we propose a new method for driving transitions between Rydberg

states by resonantly modulating an applied ponderomotive potential [18]. In par-

ticular, we consider a Rydberg atom in a ponderomotive potential formed by a 1D

standing plane wave. If the intensity of the plane wave is modulated at frequencies

corresponding to transitions from the initial state to another target Rydberg state,

the amplitude modulated ponderomotive optical lattice can transfer population be-

tween the two states. Rabi frequencies of order 100 kHz are calculated for a wide

variety of transitions between nearby Rydberg states under anticipated experimental
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conditions. Transitions driven in this way differ from transitions resulting from the

direct application of resonant radiation. First, transitions in the modulated lattice

are not subject to the familiar dipole selection rules, since the length scale of the spa-

tial variation of the lattice is comparable to the extent of the Rydberg wavefunction.

In this case, many nonlinear terms in the transition matrix elements have similar

magnitudes and allow the coupling of Rydberg states without well-defined selection

rules for the orbital angular momentum quantum number `. However, transitions in

the lattice exhibit a ∆m = 0 selection rule, where the quantization axis is defined

to be normal to the lattice planes. Second, the modulated lattice can, in principle,

be used to drive transitions within an ensemble of Rydberg atoms with micron pre-

cision, since the light field which delivers the microwave-frequency perturbation can

be focused. Such spatial selectivity is not possible simply with the direct applica-

tion of microwave radiation. The ponderomotive optical lattice has the capability

of manipulating both center-of-mass states and internal states of Rydberg atoms to

which it is applied. This combination of capabilities would have potentially useful

applications in quantum information processing schemes and high precision Rydberg

spectroscopy.

In chapter V, we discuss the development of experimental techniques for applying

a ponderomotive potential to Rydberg atoms and probing the effects of the inter-

action. In particular, we concentrate on creating and aligning a 1D ponderomotive

optical lattice formed with a retro-reflected 1064 nm laser beam. To achieve desired

intensities, the lattice beams are focused to a spot size of 15 µm. Schemes for local-

izing Rydberg atoms to the volume subject to the applied ponderomotive potential

are discussed in detail. For using the ponderomotive lattice as a spectroscopic tool

for coupling Rydberg states, the lattice must be amplitude modulated at frequencies
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in the tens of gigahertz range. Techniques for providing this type of modulation

to a focused, retro-reflected lattice beam geometry over a broad frequency range

are presented. Spectroscopy with direct application of microwaves is a useful tool

for characterizing the effects of a ponderomotive potential on a Rydberg atom, and

relevant techniques are developed in this chapter as well.

1.3 Relation to Other Work

Cold Rydberg atoms are created by photo-exciting atoms in laser-cooled gases

into Rydberg states. The initial kinetic energy of the Rydberg atoms is characteris-

tic of the thermal energy of the laser-cooled atoms from which they are excited. Even

at relatively low Rydberg atom densities (of order 10−7 cm−3), long range, electric

multipole interactions among Rydberg atoms can be large compared to their kinetic

energy. The “frozen Rydberg gas” picture of essentially stationary, strongly interact-

ing Rydberg atoms resembles an amorphous solid [19, 20] on time scales less than a

couple of microseconds. Coherent many-body interactions among Rydberg atoms in

the “frozen Rydberg gas” regime are of great interest in studies of Rydberg atoms.

One important example of this is work related to the so-called dipole blockade [2–

4], a mechanism central to quantum information processing schemes using Rydberg

atoms. On longer time scales, these interactions, which depend strongly on the sep-

aration of the atoms, create attractive and repulsive forces on atoms leading motion

of the atoms and a variety of incoherent state-changing and ionizing collisions. Our

work in chapter II examines the motion of the atoms in a cold Rydberg gas over

such longer timescales [8]. The collisions we examine highlight an interesting case

where the internal energy of the “frozen,” many-body Rydberg system is converted

into kinetic energy.
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Much of the work in this thesis examines the ponderomotive interaction between

a Rydberg electron and an applied optical field. A free electron in an oscillating

electric field experiences a ponderomotive energy shift equal to its time-averaged

kinetic energy. Spatial inhomogeneities in the applied electric field lead to forces

on charged particles. For an optical standing wave, the potential is periodic and

represents a potential from which electrons can be scattered (Kapitza-Dirac effect).

Rainbow scattering [21], Bragg scattering [22], and diffraction [23] of electrons from

high intensity laser pulses have all been observed experimentally. Since the Rydberg

electron is weakly bound or quasi-free, its interaction with an oscillating electric field

is similar to the ponderomotive interaction with a free electron. This intuition has

been confirmed experimentally in measurements of the ponderomotive shift of the

laser excitation frequency of a transition from a ground state to a Rydberg state

performed on atoms immersed in a high intensity laser field [24]. In our work, we

develop schemes for applying periodic ponderomotive potentials to Rydberg atoms

in such a way as to control their motion and internal states. Rydberg atom trap-

ping has been demonstrated using magnetic [16] and electrostatic [17] potentials.

In chapter III, we discuss trapping cold Rydberg atoms in a ponderomotive optical

lattice [25], and in chapter IV, we develop a method for coupling Rydberg states

through the application of a time-dependent ponderomotive potential [18]. These

methods may become relevant in future coherent-control and quantum information

processing applications.

1.4 Experimental Apparatus - Overview

In this section, we present a brief overview of the apparatus used to conduct the

experiments presented in the remainder of the thesis. Figure 1.1 shows a picture of
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the vacuum chamber that houses the internal elements represented diagrammatically

in figure 1.2.

Pyramidal 

MOT 

LVIS Beam

Direction 

Electrical
Feedthroughs

Rb Reservoir

Figure 1.1: Apparatus used to conduct the experiments presented in this thesis.

Cold Rydberg atoms are created by photo-exciting 85Rb atoms (see table 1.1 for

relevant atomic data) that have been laser-cooled in the magneto-optical trap (MOT)

shown in the picture in figure 1.2. A Rydberg atom created in this way is called

“cold” because it has essentially the same kinetic energy as the laser-cooled ground

state atom from which it was excited. The MOT in figure 1.2 is loaded from a cold,

slow atomic beam (low-velocity, intense source or LVIS) formed in a pyramidal MOT

that is located on the right-hand side of figures 1.1 and 1.2. The atomic beam is

directed toward the center of the chamber and collected in the six-beam MOT shown

in figure 1.2. The various copper wire-wound coils visible in figure 1.1 are used to

compensate stray magnetic fields at the location of the MOT.

The primary means for gathering information is through the detection of electrons

that originate from the cold Rydberg atoms. Figure 1.2 shows a rendering of the

cylindrical electrode package, whose vertical axis corresponds to the central axis of
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Mesh
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LVIS and MCP
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Electrodes
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Phosphor Screen

1 cm
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Figure 1.2: Electrode structure for creating and controlling electric fields for use in experiments.

the outer chamber, that facilitates the ionization and detection of the Rydberg elec-

trons. Applying appropriate voltage signals (using the UHV electrical feedthroughs

shown in figure 1.1) to the semi-circular electrodes creates an electric field at the

location of the atoms that liberates electrons from the cold Rydberg gas (created

from photo-excitation of laser-cooled atoms in the MOT) and directs them toward a

micro-channel plate detector (MCP).

The signal at the MCP can then be read out temporally and related to the ap-

plied voltage. In this way, we construct the probability distribution for detecting an

electron at a particular applied electric field. This forms the basis of an essential tool

for analyzing the distribution of Rydberg states in a sample, since different Rydberg

states tend to ionize at distinct electric fields. This technique is referred to as state

selective field ionization. For low angular momentum states, the ionizing electric
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Table 1.1: 85Rb Parameters
Atomic Number: 37
Relative Natural Abundance: 72 %
Ground State: 5S1/2

Ionization Potential: 33 690.798 47(3) cm−1 [26]
Nuclear Spin: 5/2

D2 Line (5S1/2 → 5P3/2) Parameters
Wavelength (F = 3 → F ′ = 4): 780.244 nm [27]
Resonant Saturation Intensity (F = 3 → F ′ = 4): 1.67 mW/cm2 [27]
Natural Line Width (FWHM): 6.06 MHz [27]
Doppler Temperature: 145.57 µK

Quantum Defects: δ(n) = δ0 + δ2/(n− δ0)2

nS1/2 δ0 = 3.131804(10), δ2 = 0.1784(6) [28]
nP1/2 δ0 = 2.6548849(10), δ2 = 0.2900(6) [28]
nP3/2 δ0 = 2.6416737(10), δ2 = 0.2950(7) [28]
nD3/2 δ0 = 1.34809171(40), δ2 = −0.60286(26) [28]
nD5/2 δ0 = 1.34646572(30), δ2 = −0.59600(18) [28]
nF5/2 δ0 = 0.0165192(9), δ2 = −0.085(9) [29]
nF7/2 δ0 = 0.0165437(7), δ2 = −0.086(7) [29]

field in atomic units is typically E = 1/(16n∗4), where n∗ is the effective principal

quantum number. These states are said to ionize adiabatically. Higher angular mo-

mentum states tend to ionize in the electric field range 1/(9n∗4) < E < 1/(4n∗4) and

are said to ionize diabatically. It is evident from the differing ionization behavior of

the high and low angular momentum states that the detailed mapping of quantum

states onto an ionizing electric field is not completely straightforward. However, this

technique remains essential for studying cold Rydberg atoms.



CHAPTER II

Cold Rydberg-Rydberg Collisions - Fast Rydberg Atoms

The internal states of atoms in cold Rydberg gases evolve through state-mixing

and ionizing collisions with electrons and other Rydberg atoms [7, 20, 30, 31]. In

addition to the changes in their internal states, Rydberg-Rydberg collisions in a cold,

dense Rydberg gas can lead to the conversion of internal energy into center-of-mass

energy of the colliding atoms, resulting in Rydberg-atom velocities much larger than

the initial velocities in the gas. In this chapter, we discuss a series of experiments

in which we investigate how interactions among Rydberg atoms in a cold Rydberg

gas alter the kinetic energy distribution of the constituent atoms [8]. Attractive

interactions between Rydberg atoms lead to interatomic forces that accelerate atoms

toward each other. On the timescale of a few microseconds, this type of collision often

ends in Penning ionization. The accelerated atoms have increased kinetic energy that

can be large compared to the initial kinetic energy in a cold Rydberg gas, so we refer

to these atoms as “fast” Rydberg atoms.

In the experiments, we prepare cold Rydberg-atom gases by photo-excitation of

laser-cooled atom clouds and use time-of-flight measurements to demonstrate the

production of fast Rydberg atoms. The velocity distributions of Rydberg atoms

emerging from the Rydberg-atom gases are obtained. State-selective field ionization

10
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spectra indicate a correlation between the production of fast Rydberg atoms and the

presence of Penning ionization signatures. The connection between the production

of fast Rydberg atoms and binary collisions is also supported by examining the num-

ber of fast atoms produced as a function of density. Additionally, we will discuss

preliminary results from experiments using a similar procedure to study the produc-

tion of fast Rydberg atoms produced via three-body recombination in an expanding

ultracold plasma.

2.1 Binary Rydberg-Rydberg Collisions

In cold Rydberg gases, the kinetic energy of the constituent Rydberg atoms is

relatively small. Electric multipolar interactions among the Rydberg atoms can be

quite strong and long range. Thus, interesting dynamics in these systems can oc-

cur on time scales that are quite small compared to the time scale for appreciable

displacement of the Rydberg atoms from their initial positions (relative to the inter-

atomic spacing). The “frozen Rydberg gas” picture of essentially stationary, strongly

interacting Rydberg atoms resembles an amorphous solid [19, 20] on time scales less

than a couple of microseconds.

On longer time scales, the Rydberg atoms do move about due to thermal motion

and accelerate due to interatomic electric multipolar interactions. For the case of at-

tractive interactions between two Rydberg atoms, they would undergo accelerations

that reduce their relative interatomic spacing R. When R is small enough that the

Rydberg-atom interaction energy is comparable to the binding energy of the Ryd-

berg state, one of the atoms can be ionized, and the other atom de-excited into a

more deeply bound state. This process is known as Penning ionization and can be
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expressed symbolically as,

Ryd(n0) + Ryd(n0) → Ryd(n) + ion + e− , (2.1)

with n0 and n denoting the initial and final principal quantum numbers, respectively.

The binary Rydberg-Rydberg interaction (considered in detail in reference [32])

for Rydberg atoms with an appreciable separation relative to the extent of their

electronic wavefunction can be described by an essential states model. States cou-

pled via near-resonant channels strongly interact through a resonant dipole-dipole

interaction, which scales as n4/R3, in contrast to weaker off-resonant van der Waals

interactions, which scale as n11/R6. In a typical Rydberg series, over large n-ranges

the interactions are predominately of the off-resonant type; however, resonant inter-

actions occur naturally over small n ranges. Enhancement in the ionization rates of

laser excited, low-angular-momentum Rydberg atoms resulting from resonant inter-

action compared to off-resonant interactions has been observed experimentally [6].

In experiments described in this chapter, the production of fast Rydberg atoms

is always accompanied by large amounts of state-mixing collisions, which transfer

Rydberg population from laser-excited low angular momentum states to high angu-

lar momentum states in nearby hydrogenic manifolds [30]. States in the hydrogenic

manifolds tend to mix easily and interact strongly. The strength of these interac-

tions depends on inter-atomic separation as R−3, and on the mutual orientation of

the dipole moments of the atoms. Ignoring the angular dependence and following

reference [33], we can estimate the time required for two Rydberg atoms interacting

via V ∝ n4/R3 (in atomic units) to come together. If we assume that the initial

velocity of the Rydberg atoms (of mass M , separated by an amount R0) is zero, the
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relative velocity at a separation R is given in atomic units by

v =

√
2n4(2/M)

(
1

R3
− 1

R3
0

)
(2.2)

From the form of this equation for v, it is clear that the velocity of the Rydberg

atoms is increasing as they approach each other. The time for the two atoms to

“snap together” is approximately

T =

∫ R0

0

dR

v(R)
≈ 20 µs×

√
M(amu)R5

0(µm)/n2 (2.3)

For a cold Rydberg gas at n = 64, the timescale (estimated by equation 2.3) over

which two atoms separated by the Wigner-Seitz radius corresponding to a Rydberg

density of 8× 108 cm−3 is approximately 7 µs. This simple estimate of the collision

time agrees quite well with the observations in reference [7] obtained at n = 64 and

a density of 8× 108 cm−3. This work used state-selective field ionization techniques

to analyze the state distributions in cold Rydberg gases as a function of the delay

between the photo-excitation and field ionization of the Rydberg sample (figure 4 in

reference [7]). The fraction of the signal associated with Penning ionization reached

its maximum in about 12 µs.

In a Penning ionizing collision, the energy difference between the initial and final

Rydberg state must be greater than the initial binding energy in order to ionize one

collision partner. This energy conservation statement is summarized by the following

inequality (given in atomic units), which places the following restriction on the final

state distribution of the bound Rydberg atom

−1/2n2 − (−1/2n2
0) ≤ −1/2n2

0 ⇒ n ≤ n0/
√

2 (2.4)

where n0 and n denote the principal quantum number for the initial and final state,

respectively. Thus, the maximum final n-value is . 70 % of the initial n-value.
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Classical monte carlo simulations of the collisions of two translationally cold Ryd-

berg atoms were performed in reference [33]. There, final state distributions of n

for the bound collision partner were calculated. In these distributions (figure 1 in

reference [33]), the weight is concentrated near the n0/
√

2 upper limit but covers more

deeply bound states as well. Since the final states are always more deeply bound

than the equality condition, there is an energy balance which must be contained

in the kinetic energy of the collision particles. The final velocity distributions for

ions obtained from these trajectories show a most probable velocity corresponding

to roughly 1 % of the initial binding energy (see figure 2 in reference [33]). Since

the mass of the Rydberg atom is similar to that of the ion, the velocity distribution

for the bound Rydberg atom would be virtually the same as for the ion. Following

reference [33], for n0 = 90 Rydberg atoms, the most probable velocity (which is

expected to scale with 1/n0) would be about 7 m/s. The initial temperature of the

atoms in this calculation was 500 uK, where the r.m.s. velocity is about 40 cm/s.

This represents a increase of the kinetic energy of a factor of 300 through this collision

process, which converts internal energy of the atoms to kinetic energy of the center

of mass.

After the ionizing collision, the liberated electron receives most of the kinetic

energy, leaving behind the Rydberg atom and the ion at small relative separation.

In this situation, the net positive space-charge would tend to cause repulsion and

an increase in the kinetic energy of the collision particles on the outgoing leg of

the collision. Also present would be the forces resulting from the interaction of the

highly-polarizable Rydberg atom and the inhomogeneous field of the ion. Rydberg

atoms in low-electric-field seeking states would be repelled from the ion while Ryd-

berg atoms in high-electric-field seeking states would be attracted to the ion.
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To estimate the strength (upper limit) of the polarization potential between the

ion and the Rydberg atom, we consider the linear Stark shift of the extreme Stark

state W = 3n2E/2 [1]. We take E to be the value of the electric field from the ion

at the location of the Rydberg atom center-of-mass. For an n = 90/
√

2 Rydberg

atom in the extreme Stark state at a distance of 2.5 µm from a singly charged ion,

the Stark shift is 7 × 10−5 eV. For comparison, the kinetic energy of a Rubidium

atom moving at 7 m/s (most probable velocity from above) is 2 × 10−5 eV. This

estimate indicates the importance of the polarization forces in the outgoing leg of

the collision. In fact, the monte carlo simulations of reference [33] revealed the

formation of molecular ions in a few percent of the trajectories. Regarding our simple

estimate however, the final state distribution will mostly contain states with a shift

significantly less than that of the extreme Stark states, and the Coulomb repulsion

will also be important since the three-particle interaction is not simply an interaction

between a charged particle and a perfect dipole at small relative separations. In any

case, these collisions highlight the interplay between the internal state and motion of

the collision particles. While most of the energy is transferred to the ionized electron,

enough internal energy is transferred to the kinetic energy of the product ion and

Rydberg atom that their velocities should exceed the initial thermal velocities by a

couple of orders of magnitude [33].

Penning ionization has been studied in other cases, notably, in collisions where

metastable helium atoms are directed into a gas of noble-gas atoms or simple molecules.

In these experiments, target gas atoms are ionized in collisions with metastable he-

lium. The ionization energy is provided when the metastable atom undergoes a

transition to its ground state during the collision. Interaction is primarily mediated

by the van der Waals interaction between the atoms that can be considered to be
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spherically symmetric [34–36]. Experiments are typically performed at thermal ve-

locities [37]. In cold Rydberg gases, not only is the ionizing interaction mediated

by electric multipolar interactions, but the kinetic energy of the collision particles is

also determined by these interactions.

2.2 Fast Rydberg Atom Experiments

2.2.1 Apparatus-Experimental Setup

In this section, we discuss the detection of fast Rydberg atoms with velocities up to

∼ 10 m/s described in the previous section, that are emitted from cold Rydberg-atom

gases [8]. The velocity distributions of these fast atoms have been characterized using

a time of flight measurement. Additionally, we have studied the production of fast

Rydberg atoms as a function of the initial Rydberg-atom density, upon which many

of the processes occurring in cold Rydberg gases depend. Using state-selective field

ionization spectra to obtain the probability distribution of ionization electric fields,

we are able to characterize the Rydberg-gas conditions that lead to the production of

fast Rydberg atoms, and have found a correlation between the signature of Penning

ionization and the production of fast Rydberg atoms.

In our experiment, 85Rb atoms are loaded into a magneto-optical trap from a low-

velocity intense source (LVIS [38]). The trapping light is used to excite atoms from

the 5S1/2 to the 5P3/2 state. The cold Rydberg gas is prepared by exciting atoms

from the 5P3/2 state into Rydberg states by a tunable pulsed dye laser (λ ≈ 480

nm, pulse width ≈ 10 ns, bandwidth ≈ 15 GHz, pulse energy . 1 mJ, fluence

Φ ≈ 3 × 1015 photons/cm2). Excitation into the n0 = 90 Rydberg state (typical

of many of these experiments) actually refers to excitation into a range of states

(∆n ≈ 5) centered at n0 = 90. Initially the angular momentum of these states is

predominately of D character since the oscillator strength from the 5P intermediate
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Figure 2.1: Experimental setup for time-of-flight measurement. A fraction of the fast Rydberg
atoms emitted from the cloud travel into the remote field ionization region (shown in shaded yellow)
between the grounded electrode and the first extraction electrode. Rydberg atoms which enter this
region are field-ionized, and the resulting electrons are directed onto a micro-channel plate detector
and counted.

state is higher to nD-states than nS-states.

Figure 2.1 shows the apparatus used to measure time-of-flight distributions of the

Rydberg atoms emitted from the cold Rydberg gas. Fast Rydberg atoms created in

the gas travel 2 cm from the cold Rydberg gas to a remote field ionization region

located between the grounded electrode and the first extraction electrode. The region

has an aperture of 1 cm such that the solid angle subtended by the remote field

ionization region with respect to the cold Rydberg gas gives a detection efficiency

of about 2 %. Using relaxation calculations, we estimate the electric field in this

region to be ≈ 400 V/cm, which is strong enough to ionize low-angular-momentum

Rydberg atoms down to n = 30 and high-angular-momentum atoms down to n = 42.

Electrons resulting from Rydberg atoms ionized in this region are then counted by a

micro-channel plate detector located approximately 10 cm away. A photon counter
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then records the pulses from the micro-channel plate over a 0.5 to 1 ms wide window

with variable delay.

From earlier experiments [30] it is known that thermal ionization of high-angular-

momentum Rydberg atoms produces time-delayed electrons up to tens of milliseconds

after the creation of the Rydberg gas. To ensure that such time-delayed electrons

could not migrate from the atom cloud location into the remote field ionization region

and produce a signal that could be mistaken for a signal from fast Rydberg atoms,

a bias voltage of 1.5 V is applied to the electrode on the left of the cold Rydberg gas

in figure 2.1. The resultant electric field slightly over-compensates the fringe electric

field produced by the extraction electrodes at the location of the atom cloud, leading

to a weak net field of ≈ 0.2 V/cm (pointing from left to right in figure 2.1). This

field pulls electrons generated by time-delayed thermal ionization of slow Rydberg

atoms toward the leftmost electrode so that the signal measured in the remote field

ionization region is solely due to fast Rydberg atoms.

2.2.2 Experimental Results

Figure 2.2 shows typical time-of-flight data for n0 = 90. Since the distance trav-

eled by the atoms from the cold Rydberg gas to the detection region is L = 2 cm,

the velocity distribution PV (v) of the detected fast Rydberg atoms, shown in fig-

ure 2.2(b), can be calculated from the time-of-flight data PT (t), shown in figure 2.2(a),

using the relation PV (v) = PT (L
v
) L

v2 . The center of weight of the velocity distribution

of the detected fast Rydberg atoms is found to be slightly less than 5 m/s, and the

width of PV (v) about 5 m/s. The corresponding kinetic-energy range exceeds that

of Rb atoms in a magneto-optical trap (velocity ∼ 0.20 m/s) by a factor of about

600. The precise distance L from the MOT to the location in the remote field ioniza-

tion region where the fast Rydberg atoms ionize is known to an accuracy of ±5 mm.
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This corresponds to an uncertainty in the center of weight of the velocity distribution

of ±1.25 m/s. The the center of weight of the velocity distribution from figure 2.2

agrees well with the 7 m/s velocity estimated in section 2.1 from the classical cal-

culations by Robicheaux [33], and the shapes of simulated and measured velocity

distributions are very similar. These results are consistent with the notion that the

fast Rydberg atoms are a product of binary collisions between two Rydberg atoms.

This assessment is supported by state-selective field ionization data (see figure 2.4)

and trends in the number of fast atoms detected versus density (see figure 2.5).
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Figure 2.2: Time-of-flight (a) and velocity distribution (b) of Rydberg atoms emitted from a cold
Rydberg-atom gas with initial principal quantum number n0 = 90, central Rydberg atom density
1.4×108 cm−3 and Rydberg atom number 3×105. The time-of-flight t is the elapsed time between
the Rydberg excitation pulse and the detection of the Rydberg electron by the MCP detector.

The most probable time of flight in figure 2.2 is 4 ms, which exceeds the natu-

ral lifetime of most Rydberg states. To explain this apparent conflict, we consider

the effect of radiative decay and thermal ionization of fast Rydberg atoms prior to

detection. For n0 = 90, the principal quantum numbers of the fast Rydberg atoms
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are expected to be in the range 45 . n . 65, peaking around n = 60 [33]. Also,

based on the field ionization data presented in figure 2.4 below we assume that the

Rydberg-atom products of Penning-ionizing collisions typically are in high-angular-

momentum states. Dipole selection rules allow atoms in high-angular-momentum

states to only undergo transitions to other high-angular momentum states, so these

atoms remain in Rydberg states for much longer than the lifetime of the initial

high-angular-momentum state.

To obtain a quantitative estimate of the fraction of detectable atoms that reach

the remote field ionization region, we have simulated the evolution of an ensemble of

n = 60 Rydberg atoms with initially random angular momenta, weighted ∝ (2l + 1)

and prepared in a 300 K radiation field, using a rate equation calculation developed

previously [39]. We find that 4 ms after excitation about 80 % of the atoms still

reside in detectable states (n & 35 in our case). Therefore, under the conditions

of figure 2.2, most of the fast Rydberg atoms survive until detection, and our TOF

method yields good representations of the velocity distribution of fast Rydberg atoms

produced in Rydberg-Rydberg collisions.

The product Rydberg states of Penning ionization are distributed over a certain n-

range. A subtle consequence of radiative decay or ionization is that we preferentially

measure the velocities of the longer-lived, higher-n portion of the distribution and lose

more of the shorter-lived, lower-n portion. Since it is likely that atoms produced with

below-average n have above-average velocities (because of generally larger energy

exchanges in the Penning collision process), preferential detection of high-n atoms

distorts the measured velocity distribution. For the case n0 = 90, we expect 45 .

n . 65. Using the simulation discussed in the previous paragraph, we find that this

n-range corresponds to survival probabilities ranging from about 66 % at n = 45 to
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86 % at n = 65. Since the width of this percentage range is quite small, for n0 = 90

the difference between measured and actual velocity distributions of the fast Rydberg

atoms is deemed minimal. However, we found that the estimated spread in survival

probabilities of product atoms increases considerably with decreasing n0. Therefore,

we have limited most studies in this paper to large values of n0 (namely 90 and 75).
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Figure 2.3: Total production of fast Rydberg atoms (¥) vs initial Rydberg atom density ρ at
n0 = 90, where ρscale = 9× 108 cm−3 is a convenient density unit. The production of fast Rydberg
atoms is compared with integrated Penning ionization (N) and plasma (H) signals obtained from
state-selective field ionization spectra. For the color-highlighted data points, the corresponding field
ionization spectra are shown in figure 2.4.

We have studied the dependence of fast Rydberg atom production on the initial

Rydberg atom density (¥ in figure 2.3). Fast Rydberg atom production is determined

by summing the MCP counts for a time-of-flight scan at a particular density over all

times. At low densities, we observe a rapid increase of fast Rydberg atom production,

while at the highest densities the production of fast Rydberg atoms is suppressed.
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Optimal production is observed at some intermediate density.
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Figure 2.4: Field ionization spectra for n0 = 90 and Rydberg atom densities colored coded with
corresponding data points in figure 2.3. The Rydberg gas is excited at t = 0, and the field ionization
pulse (thick line) is applied between 40 µs< t . 75 µs. Characteristic state selective field ionization
signatures: (A) plasma electrons, (B) initial state, (C) `-mixing, (D) Penning ionization.

In order to understand the density dependence of fast-Rydberg-atom production,

we have examined state-selective field ionization spectra (see figure 2.4) of cold Ryd-

berg gases for various densities at which time-of-flight measurements were taken

(color coded with corresponding data points in figure 2.3). During a Penning ioniz-

ing collision, one of the Rydberg atoms undergoes a transition into a more deeply

bound state with n . n0/
√

2 and presumably high angular momentum. The de-

excited atoms should produce a broad FI signal at electric fields of order ten times

the ionization electric field of the initial state, because the ionization electric field
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scales as n−4 and because high-angular-momentum atoms ionize at fields up to four

times higher than those for low-angular-momentum atoms. The broad field ioniza-

tion signal labeled “D” in figure 2.4 covers the expected ionization electric field range

of the de-excited product atoms of Penning ionization. The net Penning ionization

signal (N in figure 2.3), obtained by integrating over the “D”-signatures in figure 2.4,

can be compared with the production of fast Rydberg atoms (¥ in figure 2.3). Both

quantities rapidly increase with density at low densities, exhibit broad maxima at

intermediate densities values, and decrease with density at high densities. These

similarities suggest that Penning-ionizing collisions lead to the production of fast

Rydberg atoms. At low densities, the Penning-ionization and fast-Rydberg signals

steadily increase, because with increasing density it becomes increasingly likely that

two atoms are sufficiently close to each other to “snap together” and undergo the

reaction in equation 2.1. As the density significantly exceeds the density of opti-

mal production of fast Rydberg atoms, the Rydberg gas increasingly evolves into

a plasma, as evidenced by the free-electron signatures “A” in figure 2.4. Electron-

Rydberg-atom collisions in the plasma cause the Rydberg atoms to ionize or to

undergo transitions to lower Rydberg states that ionize at higher electric fields than

are present in the remote field ionization region [7]. We believe that both of these

effects contribute to the detection of weaker Penning-ionization signatures in field

ionization spectra and fewer fast Rydberg atoms at high densities.

The Penning-ionization signature is correlated with field ionization signatures of

l-mixing (signal “C” in figure 2.4). Therefore, it seems likely that many Rydberg

atoms first acquire large permanent electric dipole moments due to l-mixing collisions

before undergoing Penning-ionizing collisions [7]. This sequence of processes appears

reasonable because polar (high-l) atoms interact via dipole-dipole forces that are
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stronger than the van-der-Waals forces acting between the (initially) non-polar low-l

atoms as discussed in section 2.1.
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Figure 2.5: Total production of fast Rydberg atoms vs initial Rydberg atom density ρ in the low-
density limit at n0 = 75, where ρscale = 3 × 107 cm−3 is a convenient density unit. A constant
background of 17 counts was subtracted from the data set to compensate for dark counts on the
MCP. The uncertainty for these counting measurements arises mainly from statistical noise which
is ≈ √

N .

By examining the production of fast Rydberg atoms at low densities, the number

of fast Rydberg atoms produced should possess a simple power law dependence on

density. At higher densities, secondary effects, such as multiple electron collisions,

tend to alter the fast Rydberg atom detection efficiency in a highly nonlinear way.

Figure 2.5 shows a log-log plot of total fast Rydberg counts vs density for very low

densities. The uncertainty for the number of Rydberg atoms detected stems mainly

from the statistical noise proportional to the square root of the total number of

counts and is indicated by the vertical error bars. The densities plotted on the x-axis

are scaled by a density ρscale, which is accurate to within a factor of two. However,

the uncertainty of a given density relative to the other densities in the plot is less

than 20 %. The uncertainty in the relative densities arises mainly from the shot-to-
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shot fluctuations in the 480 nm pulsed dye laser intensity. Assuming that the density

fluctuates in proportion to the intensity, the relative uncertainty of each density value

plotted in figure 2.5 is approximately given by 1/
√

Nshots, where Nshots = 25 is the

number of shots over which the number of fast Rydberg atoms was averaged. A linear

fit using a least squares method to determine the slope of the line (drawn in red in

figure 2.5) yields an experimentally determined exponent for the low-density power

law of 1.95 ± 0.1. This exponent is close to two, indicating that the production of

fast Rydberg atoms indeed results from binary collisions between Rydberg atoms,

such as Penning ionization.

2.2.3 Discussion of Results

Time of flight data taken was taken for initial principal quantum numbers n0 = 90,

75, 60, and 45. As n0 was decreased from 90 to 45, the optimal yield of fast Rydberg

atoms steadily decreased by about a factor five, while the velocity distributions re-

mained approximately the same. The signal decrease can be qualitatively explained

as a consequence of radiative decay and thermal ionization [39], which cause a de-

crease of the survival probability of the Rydberg-atom products of equation 2.1 from

about 85% at n = 60 to less than 10% at n = 20. The fact that we observe essentially

n0-independent velocity distributions contradicts the simulations in Ref [33], where

it is found that the velocities of the fast Rydberg atoms should scale as 1/n0. This

discrepancy can partially be explained by the n-dependence of the survival probabil-

ities of the product states in our time-of-flight experiment. An interesting possibility

to further explain the discrepancy is that at lower n0 we may increasingly observe

“van de Graaf” type collisions that result in product velocities that are actually

lower than those calculated for Penning ionization [33]. In these predicted collisions,

the Rydberg atoms initially approach each other on an attractive dipole potential.
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During the collision, the Runge-Lenz vectors of the Rydberg atoms precess in such a

way that the dipole potential becomes repulsive. In this process, both atoms remain

bound and gain kinetic energy from the collision because the internal states of the

atoms change during the collision. In any case, we cannot distinguish between the

“van de Graaf” type and Penning ionizing collisions in our experiment.

Fast Rydberg atoms could also form by three-body recombination in dense, ex-

panding plasmas; however, this mechanism does not significantly contribute to these

results. First, Rydberg atoms formed by three-body recombination are expected to

have velocities ∼ 50 m/s [40], while our data indicate an average velocity of only ∼

5 m/s and a rapid drop-off at velocities above ∼ 10 m/s (see figure 2.2). Second, the

signal we observe already appears at low densities, where it scales like a binary colli-

sion effect (see figure 2.5) and where the Rydberg gas does not evolve into a plasma.

In contrast, Rydberg-atom formation via three-body recombination presumably will

exhibit a threshold behavior, because the evolution of the Rydberg gas into a plasma

proceeds via an ionization avalanche [41, 42]. In section 2.3, we present preliminary

data from a similar time of flight experiment detecting fast Rydbergs formed by

three-body recombination in expanding plasmas.

To summarize, we have performed time of flight measurements on Rydberg atoms

emitted from a cold Rydberg gas. We have characterized the velocity distribution

of these atoms, and found that the atoms have acquired a factor of ≈ 600 in kinetic

energy. Furthermore, we have correlated the production of these fast atoms with

Penning ionization. While large parts of our results agree with simulations [33], it

is presently not clear why for small n0 the experiments show lower atom velocities

than the simulations.
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2.3 Fast Rydberg Atoms in Expanding Ultracold Plasmas

At high densities, cold Rydberg-atom gases have also been found to evolve into

cold, neutral plasmas [41, 42]. Such plasmas have also been created directly by

excitation beyond the photo-ionization threshold, and have been studied extensively

from both a theoretical and experimental perspective [9, 43–47]. Rydberg atoms are

formed in these plasmas presumably via three-body recombination [40] at velocities

in the range of 50 m/s. In this section, we discuss preliminary experiments using the

time of flight technique discussed in the previous section to examine the formation

of fast Rydbergs atom in expanding plasmas.

2.3.1 Three-body Recombination

Three-body recombination occurs when an ion collides with two electrons, result-

ing in an electron and ion forming a bound atom in a Rydberg state. The remaining

electron conserves energy and momentum in the collision. The process can be rep-

resented symbolically as

ion + 2e− → Ryd(n) + e− (2.5)

The process has been examined in numerous theoretical considerations [48–50], which

have resulted in the rate equations for this process of the form

R3 = C × n2
enionveb

5 (2.6)

where ve =
√

kBTe/me is the thermal velocity of an electron and b = e2/(4πε0kTe)

is the distance of closest approach where the thermal energy of the electron equals

the Coulomb repulsion potential between two electrons. In reference [48], C = 0.07

for the case of a magnetized plasma (B → ∞). For the the magnetic field free

case, C = 0.76 is an order of magnitude larger. In reference [51], C ranges from
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≈ 0.1 to 0.12 for magnetic fields in the 3 to 6 T range. From equation 2.6, we can

see that the three-body recombination rate R3 scales ∝ T−9/2, which would tend to

make it the dominant recombination process at low temperatures like those found in

ultracold plasmas. Experiments measuring the rate of Rydberg atom formation in

these systems [40, 52] have reported rates significantly smaller than those predicted

by equation 2.6. Low-temperature corrections to the rate formulas are addressed in

references [53, 54].

Three-body recombination is important in the evolution of ultracold plasmas.

The recombination removes one electron from the plasma and increases the kinetic

energy of the second electron by the binding energy of the new Rydberg atom. Sub-

sequent collisions between the Rydberg atom and plasma electrons can result in

de-excitation of the Rydberg atom and further heating of the electronic component

of the plasma. This heating of the electronic component increases plasma expansion

velocities [45]. Along with disorder-induced heating resulting from the initially ran-

dom photo-ion and electron distributions [55, 56], this heating presents challenges to

observing strong-coupling [57] in these neutral plasma systems.

Current cold anti-hydrogen experiments [58, 59] rely on three-body recombination

of antiprotons and positrons to produce antihydrogen in antimatter plasmas. The

two-component antimatter plasmas are confined in nested penning traps which use

a strong magnetic field to confine the particles transverse to the field and an electro-

static potential for longitudinal confinement. In our lab, we have created and trapped

plasmas by photo-ionizing 85Rb contained in a variation of this type of trap [60].

This trap has the unique ability to simultaneously trap two-component plasmas [60],

Rydberg atoms [16], and ground state atoms [61] (which can be laser-cooled as well).

Preliminary experiments involving three-body recombination in strongly-magnetized
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plasmas have been performed in this trap [62], and work continues in this area.
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Figure 2.6: Field ionization spectrum of an ultracold plasma (initial ion density around 109 cm−3)
showing evidence of three-body recombination.

2.3.2 Experimental Results

Figure 2.6 shows a field ionization spectrum of an ultracold plasma (initial ion

density around 109 cm−3). Near t = 0 the ultracold plasma is created by photo-

ionizing atoms collected in a magneto-optical trap. The excitation proceeds in a

fashion similar to that described in section 2.2 except that the atoms are created

at or above the single-atom, field free ionization potential. For atoms excited from

the 5P3/2 state, the ionization threshold corresponds to photons with wavelength

λ ≈ 479.1 nm. In an experiment, the ionization threshold is determined by stray

electric fields that can field ionize fragile high-lying Rydberg states and density, as

interactions lead to continuum lowering. To obtain the data in figure 2.6, the photo-

ionization laser was tuned to λ = 479.2 nm, which lies above the ionization threshold

for the given experimental conditions.

After photo-ionization, the ultracold plasma is allowed to evolve for 40 µs before
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applying a state selective field ionization ramp, which is applied for 40 µs ≤ t ≤ 90 µs.

During the field free expansion time (t ≤ 40 µs), we see the characteristic signature

of electrons emitted from the expanding ultracold plasma [9]. At t = 40 µs, the

sharp peak of electron signal results from the removal of electrons remaining in the

positive space-charge potential of the ion cloud. The broad electron signal arriving

during the electric-field ramp corresponds to bound Rydberg atoms created in the

expanding plasma presumably via three-body recombination as discussed above.
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Figure 2.7: Time of flight data (a) and calculated velocity distribution (b) of fast Rydberg atoms
emitted from an expanding ultracold plasma.

Figure 2.7(a) shows time of flight data obtained using the technique illustrated

in figure 2.1. In this case, an ultracold plasma is created instead of a cold Rydberg

gas, the bias voltage is 900 mV (instead of 1.5 V), and the segmented guide tubes

are held at 350 V (instead of 300 V). Some of the fast Rydberg atoms formed in

the expanding ultracold plasma are emitted into the solid angle subtended by the

remote field ionization region and their detection is recorded as a function of delay

time from the creation of the ultracold plasma. The most probable arrival time of
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Rydberg atoms at the remote field ionization region is about 500 µs. The ultracold

plasma has a lifetime on the order of 50 µs, which is a factor of ten smaller than

the most probable arrival time. Thus, we consider the arrival time relative to the

creation of the ultracold plasma to approximately measure the time of flight of the

Rydberg atom over the ≈ 2 cm flight distance (see figure 2.1). The most probable

arrival time corresponds to velocities in the 40 m/s range, which is consistent with

ion expansion velocities in ultracold plasmas [9, 50].

The velocity distribution calculated from the time of flight data in figure 2.7(a) is

shown in part (b) of the figure. From this velocity distribution, we can see that Ryd-

berg atoms are preferentially formed at lower velocities. This is consistent with the

scaling laws for three-body recombination (see equation 2.6). Recombination rates

will be highest at places in the ultracold plasma where densities are the highest. The

highest densities in the expanding ultracold plasma occur at the center of the plasma

where ions are moving the slowest. These results are in qualitative agreement with

the simulations of Rydberg atom formation in expanding plasmas in Pohl et. al. [63]

(see figures 4 and 5 in this reference).

Figure 2.8(a) shows the total number of fast Rydberg atoms detected as a function

of the photo-ionizing laser’s wavelength λ. The excess photon energy above the

ionization potential corresponds to energy imparted to the plasma per photon (∆E =

hc[λ−1 − λ−1
threshold]) by the photo-ionization process. Assuming the electrons receive

most of the excess energy, the wavelength range in figure 2.8 corresponds to an initial

electron temperature range of 10 to 600 K. The weak trend of reduced fast Rydberg

atoms detected with increasing photon energy (decreasing wavelength) does not seem

at all consistent with the T
−9/2
e scaling predicted for three-body recombination, which

would predict a huge change in fast Rydberg production over this excess photon
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energy (initial electron temperature) range. The electronic component cools as it

drives the expansion the plasma [52], which could make the rates similar for the

various wavelengths despite the disparity in the initial electron temperature.
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Figure 2.8: Total fast Rydberg atoms counted (a) and corresponding velocity distributions calcu-
lated from time-of-flight data (b) of fast Rydberg atoms formed in an expanding ultracold plasma.

Higher energy plasmas would expand more rapidly [50]. Thus, one might expect

to see increasingly higher fast Rydberg velocities at lower ionizing wavelengths. This

expectation is not reflected in the fast Rydberg atom velocity distributions plot-

ted in figure 2.8(b), which are calculated from time-of-data taken at various photo-

ionization wavelengths. Though the trend is not perfect, the velocity distributions

for lower-wavelength (higher plasma energy) data seem to favor lower velocities than

corresponding distributions for data at higher wavelengths. A major difficulty in

interpreting the data is that it is unclear what fraction of the Rydberg atoms formed

in the plasma at a particular velocity are in detectable states when they arrive at the

remote field ionization region. For example, the simulations in reference [63] predict

that a significant fraction of Rydberg atoms formed in the expanding plasma reside
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in states the are too deeply bound to be ionized in the remote field ionization or too

short-lived to survive the time-of-flight. An experiment that could probe the spatial

Rydberg-atom distribution in real time would be useful in overcoming this problem.

Such an experiment, which utilizes a needle as a field ionization electrode to project

a magnified image of the charge distribution on a micro-channel plate, is discussed

in section VI.

To summarize the results of this section, we have made time-of-flight measure-

ments detecting fast Rydberg atoms emitted from expanding ultracold plasmas. The

velocity distributions calculated from these measurements agree qualitatively with

expectations based on the typical ion expansion velocities and three-body recombina-

tion density scaling, which predicts preferential formation at lower velocities. More

detailed interpretation of trends with photo-ionization energy are difficult because

of the complex nature of the evolution of these plasmas and limitations of the appa-

ratus. Future experiments using another apparatus being developed in our lab (see

discussion in chapter VI) could provide more insight into this important physical

process.



CHAPTER III

Ponderomotive Interaction with Rydberg Electrons

In this chapter, we discuss the theoretical framework for the ponderomotive in-

teraction of an optical field with a Rydberg electron. The starting point for this

description is the classical interaction of a free electron with a rapidly oscillating,

spatially inhomogeneous electromagnetic field that results in the so-called pondero-

motive force on the electron directed towards regions of low intensity. One might

anticipate a similar interaction between an oscillating field and the Rydberg electron

since a Rydberg electron is essentially a quasi-free electron bound weakly to an ion

through their Coulomb interaction. This can be made rigorous by considering the

various timescales over which the relevant coordinates for a Rydberg atom in an

optical field evolve. Through the application of the Born-Oppenheimer approxima-

tion [25], it can be shown that the Rydberg electron experiences a ponderomotive

shift in its energy in proportion to the intensity of an applied optical field. Forces

on the Rydberg atom result from spatial inhomogeneities in the optical field. These

inhomogeneities also cause the ponderomotive shift to be Rydberg state dependent.

Finally, we discuss schemes for spectroscopically probing the ponderomotive interac-

tion for the Rydberg electron.

34
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3.1 Ponderomotive Potential for a Free Electron

In this section, we discuss the ponderomotive potential for free a electron in an

inhomogeneous electromagnetic field. A free electron in an oscillating electric field

experiences a ponderomotive energy shift equal to its time-averaged kinetic energy.

For applied electric fields of the form E(r, t) = E(r)eiωt, the ponderomotive energy

can be expressed as [64],

WQ =
e2|E(r)|2
4meω2

, (3.1)

where and −e and me are the electronic charge and mass, respectively. The potential

is obtained from classical considerations, and this form will be taken for the quantum

mechanical interaction potential describing the effect of a ponderomotive potential

on a Rydberg electron.

Spatial inhomogeneities in the applied electric field lead to forces on charged

particles. For an optical standing wave, the potential is periodic and represents a

potential from which electrons can be scattered via the Kapitza-Dirac effect. Rain-

bow scattering [21], Bragg scattering [22], and diffraction [23] of electrons from high

intensity laser pulses have all been observed experimentally. In studies of laser-

plasma interactions, the intensity gradients in the Guassian profile of a laser beam

passing through a plasma causes electrons to be expelled from regions of high inten-

sity (electron cavitation [65]). Ponderomotive effects in plasmas also form the basis

of new charged particle accelerator methods, in which electrons can be accelerated

in wake-field plasma waves created by laser pulses [10, 11]. On the low intensity

side, the ponderomotive force is used to create the Paul trap for ions [12, 13]. The

application of high frequency voltage signals to electrodes producing inhomogeneous

electric fields, e.g. spherical quadrupole, produces a ponderomotive force on the
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charged particles directed toward regions of smaller fields.

To gain some physical insight into the nature of the ponderomotive interaction

between an oscillating electromagnetic field and a free electron, we examine the case

of particular experimental interest of an electron in an applied optical standing wave,

such as that which could be produced by a retro-reflected laser beam. The classical

equation of motion for such an electron whose position r in a electric field E and a

magnetic field B is given by the Coulomb and Lorentz forces such that,

mr̈ = −e(E + ṙ×B). (3.2)

The electric and magnetic fields appropriate for an a standing wave with a propaga-

tion axis along the x-direction and the electric field polarized along the y-direction

can be written

E(r, t) = Ey(x, t)ŷ = E0y [cos(ωt− kx) + cos(ωt + kx)] ŷ

= 2E0y cos(ωt) cos(kx)ŷ (3.3)

B(r, t) = Bz(x, t)Ẑ = −ẑ

∫
∂Ey

∂x
dt

=
2E0y

c
sin(ωt) sin(kx)ẑ (3.4)

This standing electromagnetic field is plotted in Fig 3.1. To solve equation 3.2 for

the electrons motion in the field of a standing wave, we assume that the electron

undergoes a driven oscillation (quiver motion) in the electric field. The resulting

velocity (plotted in red in Fig. 3.1 and given in equation 3.6) is perpendicular to the

magnetic field and possesses a relative phase which produces a nonzero time-averaged

force along the axis of propagation normal to the standing wave planes. We begin by

writing the equation of motion for the quiver motion of the electron in the oscillating
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electric field:

ÿ = −eE(x, t)

m
= −e2E0y

m
cos(kx) cos(ωt) (3.5)

ωt

z

y

π
π/2

Ey(t)

Bz(t)

vy(t)
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Figure 3.1: Electric field E (blue), magnetic field B (green), and velocity v of driven electron motion
(red) in a standing wave for a point in time ωt = π/4 (a) and a point in space kx = π/4 (b). Using
the right-hand rule associated with the Lorentz force on the electron −ev×B, these two plots can
be used to understand key features of the dynamics of an electron in a standing wave light field.

Integrating with respect to time and assuming that ẏ(0) = 0, we solve for the velocity

of the quiver motion,

ẏ = −2eE0y

ωm
cos(kx) sin(ωt). (3.6)
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The velocity of the quiver motion along the y-direction is set up perpendicularly to

the magnetic field component of the standing wave from equation 3.4, which is along

the z-direction. The result is a force perpendicular to the standing wave planes,

Fx = −eẏB =
4e2E0y

mωc
sin2(ωt) sin(kx) cos(kx). (3.7)

We compute the time average of this force over one period of the quiver motion which

yields

〈Fx〉t =
ω

2π

∫ 2π/ω

0

Fxdt =
2e2E0y

mωc
sin(kx) cos(kx). (3.8)

This time-averaged, spatially inhomogeneous force is nonzero and can be related to

potential energy such that

WQ
SW = −

∫
dx〈Fx〉t =

e2[2E0y cos(kx)]2

4mω2
, (3.9)

which has the general form of a ponderomotive potential given in equation 3.1 after

noting that |E(r)| = 2E0y cos(kx) for the standing wave electric field of equation 3.3.

In solving equation 3.2 as outlined above, we have assumed that the first term

in equation 3.2 is much larger than the second. Inserting equations 3.3 and 3.4

into 3.2, we find the amplitude of the electric field term is e2E0y, and the amplitude

of magnetic term is e2E0yẏ/c, which yields the condition |ẏ/c| ¿ 1 for the validity of

our asumption. Evaluating the amplitude of ẏ in equation 3.6 for parameters typical

of our experiments (λ = ω/c = 1064 nm, E0y = 1× 106 V/m), we find |ẏ| < 200 m/s

validating our assumption as to the relative strengths of the electric and magnetic

forces.

Another quantity that will be of interest in subsequent discussions is the amplitude

of the quiver motion of an electron in a ponderomotive standing wave lattice. We

can calculate this amplitude y0 by integrating ẏ from equation 3.6 finding

y0 =
2eE0y

mω2
. (3.10)
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For the experimental parameters listed in the previous paragraph, we compute the

amplitude of the quiver motion to be about 2 pm.

From the form of equation 3.1, we see that the charged particles, regardless of the

sign of the charge, are attracted to local intensity minimum in the applied electric

field. For the standing wave in equation 3.9, charged particles would experience a

ponderomotive force directed toward the nodes of the lattice. These points can be

made graphically for the standing wave using figure 3.1. Here the standing wave

fields from equations 3.3 and 3.4 are plotted as a function of x for a particlar instant

in time (a) and as a function of t for a particular point in space (b). The velocity

of an electron driven by the electric field is plotted in red. The force along the x-

direction arises from the Lorentz force. Applying the right hand rule to the magnetic

field and velocity plotted in figure 3.1(a), we can determine that the direction of the

Lorentz force always points to the node of the electric field, which corresponds to the

intensity minimum of the potential. If the sign of the charge is positive, the velocity

solution given in the figure also changes sign, and we can infer that the potential is

the same for both positively and negatively charged particles.

Examining figure 3.1 in a similar way, one finds that over the half temporal period

plotted, the Lorentz force always points in the same direction. In the second half

of the temporal period (not shown) the sign of the velocity and magnetic field both

change such that the direction of the force remain the same as in the first half. This

confirms that the force averages to a nonzero value over one optical cycle.

The ponderomotive potential can also be viewed as the time average kinetic energy

of the charged particle oscillating in the applied field. Taking this view, we write

down the kinetic energy by inserting equation 3.6 into the kinetic energy expression

WQ
SW =

ω

2π

∫ 2π/ω

0

1

2
mẏ2dt =

e2[2E0y cos(kx)]2

4mω2
,
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which reproduces the correct form for the ponderomotive potential without explicitly

appealing to the action of the magnetic field on the charged particle.

In this section, we have described the action of harmonically oscillating, spatially

inhomogeneous electromgnetic fields on charged particles. In subsequent sections, we

extend the discussion to the ponderomotive interaction between a Rydberg electron

and an applied optical field.

3.2 Ponderomotive Potential for a Rydberg Electron

In this section, we outline the theoretical foundation for the ponderomotive in-

teraction of an applied optical field and a Rydberg electron proposed in a paper by

Dutta, et. al. [25] (see also reference [66] for an alternate treatment). There, they

proposed forming an optical lattice for Rydberg-atom trapping using the pondero-

motive interaction between a Rydberg electron and a standing wave light field, which

they called a ponderomotive optical latttice.

A Rydberg atom is comprised of an electron that is weakly bound to an ionic core.

The fact that the Rydberg electron is quasi-free suggests that its ponderomotive

interaction would be similar to that of the free electron discussed in section 3.1. A

Rydberg atom immersed in a optical field can be described by the three coordinates

R, r, and ρ. The coordinate system is sketched in figure 3.2(a). R gives the position

of the Rydberg atom center of mass, r is the relative coordinate between the Ryd-

berg electron and the ionic core, and ρ is describes the quiver motion of the driven

oscillation of the electron in the applied field.

The coordinates are chosen to reflect the various timescales of the evolution of

the system shown in figure 3.2(b). The fastest evolving coordinate is the quiver co-

ordinate ρ, which evolves at the frequency of the applied optical field (2.8× 1014 Hz
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Figure 3.2: Relevant coordinates (a) and time scales (b) for a Rydberg atom immersed in an applied
optical field.

for 1064 nm light). The coordinate for the relative motion of the Rydberg electron r

evolves over a large range of timescales, the fastest of which is given by the Kepler fre-

quency of the Rydberg electron (about 1×1011 Hz for n = 40). As a side note, some

experiments involving the creation and manipulation of Rydberg electron wavepack-

ets that exhibit classical orbiting behavior can be found in Maeda, et.al. [67].

In any case, the timescale of the quiver motion is shorter than that of the relative

motion by a factor of 1000, which is enough to adiabatically separate the quiver

motion from the orbital motion. Additionally, the amplitude of quiver motion of the

electron is much smaller than the characteristic variation lengths of the atomic po-

tential and external potentials. In the last section (see equation 3.10), we calculated

the quiver amplitude for anticipated experimental conditions to be about 2 picome-

ters. For an n = 40 Rydberg atom at half the radius of the Bohr orbit (a0n
2/2), the

length over which the atomic potential varies by 10−4× 13.6 eV is ≈ 1 nm. Variations
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in external potentials, such as those that might arise from gradients in the applied

optical field, would vary over even larger length scales. Therefore on the timescale

of the quiver motion, we can assume that the electron is quivering in a background

potential V0(R + r) composed of contributions from the atomic and external poten-

tials evaluated at the average (over the quiver motion) position of the electron. The

value of the constant background potential V0(R + r) can be subtracted from the

Schrödinger equation for the quiver motion, which yields

[
− ~2

2me

∇ρ + eρ · E(R + r) cos(ωt)

]
φ(ρ, t; r, R) = i~

∂

∂t
φ (ρ, t; r, R) (3.11)

for the quiver wave function φ(ρ, t; r, R) where r and R are quasistatic parameters

of the solution. Equation 3.11 is simply the time-dependent Schrödinger equation for

a free electron in a plane wave with amplitude E(R + r). The Volkov states [68, 69]

are solutions for the φ(ρ, t; r, R) and the energies are given by the ponderomotive

potential

WQ =
e2|E(R + r)|2

4meω2
, (3.12)

With the adiabatic elimination of the quiver motion, the interaction between the

Rydberg electron and an applied optical field can be treated by adding a static

potential WQ to the Hamiltonian of the Rydberg atom. This point verifies the

initial intuition that the Rydberg electron would experience a ponderomotive shift

in an applied light field like that of the free electron discussed in the previous section.

The idea that a shift of the form given in equation 3.12 can be added to the atomic

potential to describe the ponderomotive interaction is the starting point of setion 4.1,

where driving transitions with a time-dependent ponderomotive perturbation to the

Rydberg electron is discussed.

In the remainder of this section, we continue the discussion of Dutta, et.al. [25]
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pertaining to the effect of a ponderomotive interaction on the evolution of the cen-

ter of mass coordinate R and the formation of ponderomotive optical lattices. The

expected order of magnitude for the evolution of the center of mass coordinate is

tens of kilohertz. This is much slower than the Kepler evolution timescales of the

relative motion. For Rydberg states that are sufficiently non-degenerate with other

Rydberg states (energy splittings much greater than the ponderomotive shift of the

Rydberg electron), the relative motion can be adiabatically separated from the center

of mass coordinate. The low angular momentum states of the heavy alkalis satisfy

this condition for many experimentally relevant laser field intensities. However, the

high angular momentum states in the hydrogenic manifold have an ≈ n2 degeneracy.

Small stray fields can mix these states creating energy level splittings of order 10

kHz (for an electric field of ≈ 1 mV/cm). This leads to evolution timescales for the

relative coordinate that are of the same order as the expected evolution frequencies of

the center-of-mass coordinate preventing simple application of a Born-Oppenheimer

approximation. In this case, the application of appropriate electric and magnetic

fields can lift the energy degeneracies of the hydrogenic states making them suffi-

ciently non-degenerate for the adiabatic separation of the relative motion from the

center-of-mass motion.

This point is important for a couple of reasons. First, the separation of vari-

ables and the ponderomotive potential for the center-of-mass coordinate that results

is universally applicable to all Rydberg states. Further, one potential use for pon-

deromotive optical lattices is to suspend Rydberg atoms in high angular momentum

circular states against gravity while making spectroscopic measurements of atomic

properties. Circular states are desirable for spectroscopic efforts due to their long

lifetimes and electric and magnetic field insensitivity, and have potential uses in
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high-precision spectroscopy of the Rydberg constant [70].

Assuming that the appropriate fields have been applied in order to validate the

Born-Oppenheimer approximation, the center-of-mass coordniate R can be consid-

ered a quasi-static parameter of the relative motion, yielding for the Schrödinger

equation for the relative motion

[
HF + WQ(R + r)

]
ψ(r;R) = WR(R)ψ(r;R), (3.13)

where HF is the sum of the atomic Hamiltonian and the static-field-induced per-

turbations of the relative motion and ψ(r;R) is the wavefunction for the relative

motion. The solution of equation 3.13 yields energies WR
j (R) which form adiabatic

potential surfaces which govern the evolution of the center-of-mass coordinate of

a Rydberg atom in state |j〉. We can use nondegenerate perturbation theory to

solve equation 3.13 for WR
j (R). The unperturbed Rydberg wavefunctions and the

corresponding energies are defined by HFψ0
j (r;R) = WR0

j (R)ψ0
j (r;R). The energy

difference WR
j (R) − WR0

j (R) is equal to the ponderomotive shift of the energy of

Rydberg state |j〉 at location R and is given by

WR
j (R)−WR0

j (R) =
e2

4meω2

∫
d3r|E(R + r)|2|ψ0

j (r;R)|2. (3.14)

For low angular momentum states of the heavy alkalis, no external fields are

needed to validate the adiabatic separation of relative and center-of-mass coordinates.

In this case, the Rydberg wavefunctions ψ0
j (r) and energies WR0

j are simply the

eigenfunctions and eigenvalues of an atomic Hamiltonian H0 = Vc(r) − 1/r, where

Vc(r) is a short-range potential consistent with the quantum defects of the desired

atomic species. See table 1.1 for a list of quantum defects of 85Rb.

Suppose a Rydberg atom is immersed in an applied optical field whose amplitude

|E| does not vary appreciably over the extent of the atom’s wavefunction. For this
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case, the integral in equation 3.14 can be performed by evaluating the field amplitude

at the location of the Rydberg atom’s center of mass R. The energy shift of the

Rydberg state in Equation 3.14 then reduces to the energy shift of a free electron in

equation 3.1. As the extent of the Rydberg atom wavefunction increases to become

appreciable compared to the spatial variation length of the applied field amplitude,

the ponderomotive shift of the Rydberg level reflects a kind of spatial average of the

light field weighted by the Rydberg wavefunction.

In either case, spatial inhomogeneities in the energy shift result in forces on the

Rydberg atom. For a standing wave light potential, such as that formed by two

laser beams propagating at a mutual angle, the periodic potential would form a pon-

deromotive optical lattice for Rydberg atoms [25]. A suitable geometry for holding

Rydberg atoms against gravity in a one dimensional optical lattice is shown in fig-

ure 3.3. The lattice constant in this trap could be adjusted by varying α. For trap

parameters using a wavelength of 1064 nm and single beam intensities of 500 W/cm2,

the trap depth is about 5 µK or 25 kHz. The trap depth scales with the intensity and

wavelength squared, so higher trap depths are feasible by exploiting these parameters.

However, to efficiently load photo-excited laser-cooled atoms into a ponderomotive

optical lattice with these trap depths, subdoppler laser cooling techniques must be

employed.

Holding Rydberg atoms in long lived, high-angular-momentum states against

gravity could be used to verify the effectiveness of such a lattice. If the hold time

is sufficient for untrapped atoms to fall from the detection regions, remaining atoms

could be considered trapped. Another method for verifying the effectiveness of the

lattice is comparing ionization rates for Rydberg atoms with and without the lat-

tice. The lattice should inhibit collisions of the type discussed in section 2.1. Directly
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Figure 3.3: An appropriate geometry for forming a one dimensional ponderomotive optical lattice
to hold Rydberg atoms against gravity.

imaging the atoms in the lattice using a spatially resolving field ionization techniques

could also be used to verify the effectiveness of the lattice.

Since the application of the light field shifts the energy of the Rydberg states

significantly, it should also be possible to spectroscopically probe the effects of the

ponderomotive interaction with the Rydberg electron. The light shift of Rydberg

states has been measured previously by examining the Rydberg excitation spectrum

of rubidium atoms immersed in an intense, non-resonant optical field [24]. Spatial

inhomogeneities in the applied optical field, such as the Gaussian intensity profile of

a focused laser beam or a periodic standing wave formed from a retro-reflected laser

beam, should have predictable and measurable effects on the spectroscopy of Ryd-

berg atoms in these fields. In the remainder of this chapter, we discuss a variety of

ways to use spectroscopy to probe the ponderomotive interaction in Rydberg atoms.

3.3 Spectroscopy of Rydberg Light Shift

In section 3.2, we discussed the ponderomotive shift of Rydberg energy levels and

suggested using these shifts to spectroscopically probe the effect of a nonresonant
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applied optical field on a Rydberg atom. In this section, we examine this possibility

further from two perspectives, laser spectroscopy of Rydberg states proceeding from

the ground state and microwave spectroscopy between two Rydberg states. In a

homogeneous laser field, the ponderomotive shift of a Rydberg electron is the same

for all Rydberg states, namely that of the free electron. Thus, the net frequency

shift of a transition between to Rydberg states would be zero. However, if one

compares the shift of the frequency of a Rydberg level relative to the ground state,

the two are not equal in general and can in fact result in measurable shifts [24, 66].

By introducing inhomogeneities into the applied optical field, the resonant Rydberg

laser-excitation frequency becomes position-dependent allowing a degree of control

via the spatial distribution of Rydberg excitations. Examining equation 3.14, we see

that if inhomogeneities are introduced in the applied optical field, the Rydberg level

shifts become state-dependent. In this case, microwave spectroscopy between two

Rydberg states could be used to probe the Rydberg-state-dependent ponderomotive

interaction.

We begin by examining the energy shift of a transition from the 5S1/2 ground state

of 85Rb into a Rydberg state in a homogeneous applied optical field. The shift is the

sum of light shifts for the ground state and the Rydberg state. First, we consider

the ponderomotive energy shift of a free electron or quasi-free Rydberg electron in a

AC electric field (E(t) = E0 cos(ωt)) and relate the shift WQ to the field amplitude

E0 through a dynamic polarizability αe− such that

WQ =
e2E2

0

4mω2
= −1

2
αe−〈E2〉t = −1

4
αe−E2

0 ⇒ αe− = − e2

mω2

For a comparison, we look at the classical polarizability from the classical electron

oscillator model (in the limit of large detuning from a single resonance) which is



48

written [71]:

α = −e2

m

1

ω2 − ω2
0

(3.15)

where ω0 is a resonance for the electron oscillator (atomic resonance). We note here

that the polarizability for the free and Rydberg electron is described by the classical

oscillator model with a resonance at ω0 = 0. For our experiment, we are interested

primarily in a light field with angular frequency ω = 2πc/1064 nm. In this case for

a free/Rydberg electron, we have

αe− = αRyd = −1.354× 10−7 cm2

V2
MHz (3.16)

Using the expression for polarizability from the classical electron oscillator (CEO)

model in equation 3.15, we can estimate the polarizability of the 5S1/2 ground state

of 85Rb which has a dominant atomic resonance at ω0 = 2πc/780 nm.

α5S,CEO = 1.573× 10−7 cm2

V2
MHz

This estimate agrees reasonably well with a more accurate determination of the

dynamic polarizability of the 5S1/2 ground state (again ω = 2πc/1064 nm), which

has been calculated by Marinescu, et. al. [72]

α5S = 1.776× 10−7 cm2

V2
MHz (3.17)

For our calculations, we will use this value for the ground state polarizability.

In 85Rb, the energy shift of a Rydberg level relative to the ground state is given

by

∆W =
1

4
(α5S − αRyd) E2

0 (3.18)

For a value of E0 relevant to our experiments, we look at the intensity maximum of

a focused (P1=) 5 W laser beam with a radial Gaussian profile (full width at half
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maximum of xFWHM = 16 µm at the focus),

E0 =

√
0.89

2P1

cε0x2
FWHM

= 3.62× 104 V

cm
(3.19)

Plugging the values from equations 3.17, 3.16, and 3.19 into the expression in 3.18

for the energy shift of the Rydberg state relative to the ground state, we find

∆W = h× 102 MHz

which is large compared to the resolution of the Rydberg laser excitation sequence.

We note that approximately 43 % and 57 % of the shift comes from the ponderomotive

shift of the Rydberg state and the light shift of the ground state, respectively. The

analysis described above is valid for situations in which the amplitude of the applied

optical field varies over length scales that are large compared to the extent of the

Rydberg wavefunction. For the focused laser beam profile described above, this

condition is easily satisfied for n < 100. This focused laser field then makes the

Rydberg excitation frequency a strong function of position. Combining a spatially

dependent resonant excitation frequency with high resolution laser excitation, the

spatial distribution of Rydberg excitations can be controlled by tuning the frequency

of the laser excitation, which is demonstrated in the spectra in figure 3.4.

To obtain the spectra in figure 3.4, 85Rb ground state atoms were loaded into an

optical dipole trap by focusing the dipole trap laser through a MOT. The dipole trap

is formed by focusing a 5 W, 1064 nm laser beam to a spot size of 16 µm full width at

half maximum as described in the example above. Prior to the Rydberg excitation

sequence, the MOT lasers were switched off, and atoms not confined in the dipole

trap were allowed to fall away. The Rydberg excitation proceeded via a two-photon

transition from the 5S1/2 ground state to the 47S1/2 Rydberg state through the 5P3/2

intermediate state. The 5S to 5P lower step of the transition was fixed at ≈1.5 GHz
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Figure 3.4: Light shift of the Rydberg excitation spectrum in a Gaussian laser focus. The black
(red) curve is the spectrum in the absence (presence) of the applied optical field.

red-detuned from resonance. This is large enough that the effects arising from the

intermediate state detuning, which depends on the intensity of the applied field, are

insignificant. The frequency of the upper step of the two-photon transition (λ ≈

480 nm) was scanned to obtain the spectra. The black curve showing the field free

Rydberg excitation spectrum was obtained by switching off the dipole trap beam for

a few microseconds prior to excitation and has a spectral width of about 6 MHz. The

spectrum in red was taken with the dipole trap beam left on during the excitation

sequence.

As compared to the field free spectrum, the red spectrum is significantly broad-

ened, and its center of weight is shifted by the presence of the dipole trap light. The

assymetric lineshape reflects the spatial distribution of ground state atoms within

the dipole trap. The sharp cutoff on the high-frequency edge of the spectrum corre-

sponds to the excitation of atoms at or near the intensity maximum along the axis
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of the dipole trap. Taking the linewidth of the Rydberg excitation to be δ = 6 MHz,

the maximum shift to be ∆W = 175 MHz, and the full width a half maximum of

the dipole trap laser to be xFWHM = 16 µm, we can estimate the degree to which

Rydberg atoms excited at the cutoff are localized near the axis to be

∆x =
xFWHM

2
√

ln(2)
ln

(
∆W

∆W − δ

)
< 2 µm

Thus, we see that spatial inhomogeneities in the light shift afford some control over

the spatial distribution of Rydberg excitations. The magnitudes of the calculated

shift (102 MHz) and measured shift (175 MHz) are similar. We note that the ge-

ometry of the dipole trap laser focus has not been rigorously characterized and the

discrepancy between these two values could be accounted for in the uncertainty of

the focal spot size.

Now, we turn our attention to estimating transition frequencies shifts between

Rydberg states from these applied light fields. The estimates we have made so far

ignore spatial inhomogeneities in the applied AC electric fields, and therefore give the

same ponderomotive shift for all Rydberg states. The transition frequency shift be-

tween any two Rydberg states is then identically zero. In the following consideration,

we account for the spatial inhomogeneities with an effective DC electric field derived

from the ponderomotive force on the Rydberg electron, which is proportional to the

intensity gradient of the applied field. We then use DC polarizabilities calculated for

specific Rydberg states of interest to estimate transition frequency shifts.

The ponderomotive shift of a free electron in a Guassian laser focus, taken along

a line through the focal spot, is given by

WQ =
q2|E(x)|2

4mω2
=

q2|E0|2
4mω2

exp

[
−2x2

s2

]

where |E0| is the laser field amplitude on axis (x = 0) and s is the 1/e2 radius of the
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laser focus. The force on an electron |FQ| = |∇WQ|:

|FQ| = |dWQ

dx
| = q2|E0|2

4mω2

(
4x

s2

)
exp

[
−2x2

s2

]

The maximal force occurs near x = s/2:

|FQ
max| = |dWQ

dx
|x=s/2 =

q2|E0|2
4mω2

(
2e−1/2

s

)

The effective electric field experienced by an electron near the force maximum is

written EDC = |FQ
max|/q. Assuming that EDC (∝ ∇I) is constant over the extent

of the Rydberg wavefunction, the magnitude of the shift on the Rydberg transition

between states |1〉 and |2〉 is estimated to be

|∆W | = 1

2
|α1 − α2|E2

DC

where αi is the DC polarizability of the Rydberg state |i〉.

We can extract DC polarizabilities for Rydberg states of interest from Stark shift

calculations of these states in small electric fields, where the DC Stark shift can be

written W S = 1
2
αiE

2
DC. Using this method, the polarizabilities for the Rydberg states

53S and 53P states are α53S = 76.2 cm2

V2 MHz and α53P = 529.8 cm2

V2 MHz. Since the

DC polarizability of a Rydberg state scales as n7, the polarizability for nS and nP

states can be written

αnS = 76.2
( n

53

)7 cm2

V2
MHz

αnP = 529.8
( n

53

)7 cm2

V2
MHz

As in the previous estimate, we use the focus of a 5 W laser beam with a radial

Gaussian profile (xFWHM = 16 µm, s = xFWHM/1.18). In an experiment, one could

tune the Rydberg excitation using the spatially dependent light shift such that Ryd-

berg atoms are excited where the gradient in the applied field is largest. At the
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Figure 3.5: Maximal shift (magnitude) of Rydberg-Rydberg transition frequency in a Gaussian
laser focus for two types of transitions vs. principal quantum number.

point of maximal gradient x = s/2, EDC ≈ 0.2 mV/cm, which is a relatively small

DC electric field despite the acute electric-field sensitivity of Rydberg atoms. Thus,

transition frequency shifts between neighboring Rydberg states are quite small even

though the shift of each Rydberg state is quite large. The shifts of two types of Ryd-

berg-Rydberg transitions are plotted in figure 3.5. At n = 60, the frequency shifts

of the two transitions are |∆W (60S → 61S)| = 0.3 Hz and |∆W (60S → 60P)| =

14.6 Hz. For a given n, the difference in the polarizabilities of the P and S states are

large compared to the difference between the polarizabilities of neighboring S states.

Thus, |∆W (nS → (n + 1)S)| ¿ |∆W (nS → nP)|.

This estimate shows that inhomogeneities in the applied ponderomotive potential

shift the transition frequencies by only a small amount. The maximum frequency

shift for applied field used for this estimate (sl i.e., typical running wave dipole trap)

is small compared to the natural linewidth of these states caused by their finite
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lifetimes. Thus, experimentally resolving the effects of these shifts would not be

feasible. However, if the gradients of the applied fields were stronger, as in a standing

wave or optical lattice, the shifts would grow significantly. In such an applied field

geometry, the periodicity of the lattice can be comparable to the size of the Rydberg

atom. In this case, the assumption of spatially homogeneous gradients used in the

above estimate breaks down. Evaluating the integral in equation 3.14 numerically

can be done in order to calculate shifts for the case of large spatial gradients in the

applied fields. In the section 3.4, we calculate the energy shifts in a 1D standing

wave with a periodicity of 532 nm and examine the possibility of localizing Rydberg

excitations within an optical lattice and spectroscopically resolving a Rydberg state

dependent ponderomotive energy shift.

3.4 Rydberg State Dependent Shifts in Ponderomotive Optical Lattices

In section 3.3, we examined the ponderomotive shift of Rydberg energy levels in

homogeneous and quasi-homogeneous applied optical fields. In our examples, we

found that the levels were shifted by ≈ 100 MHz. We also estimated the effects

adding weak spatial gradients (relative to the Rydberg atom size) to the applied

optical field, which gives the shift some small dependence on the Rydberg state

considered. In this section, we examine the energy level shifts of Rydberg atoms in

a ponderomotive optical lattice. The strong gradients in the intensity profile of this

applied optical field lead to a departure of the Rydberg level ponderomotive shift from

that of a free electron. The nature of the Rydberg wavefunction becomes essential

in determining the shift. To characterize this effect, we move beyond the simpler

estimates of the previous section. The task is essentially to integrate equation 3.14

for a particular Rydberg state immersed in a standing plane wave. The formalism and
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procedure for carrying out this calculation is outlined extensively in section 4.1. In

the discussion, we also develop tools for localizing Rydberg excitations in the lattice

and spectrosopically probing the Rydberg state-dependent ponderomotive shift.

To be relevant to our experiments, we take the lattice to be formed by a λ = 1064 nm

laser beam, which is retro-reflected on itself to form a standing wave. For conve-

nience, the shifts plotted in this section are scaled by αRyd × |E0|2, where E0 is the

single electric field amplitude. For a Gaussian laser focus geometry typical of our ex-

periment, |E0| can be calculated using equation 3.19, which for a single beam power

of (P1 =) 1 W and xFWHM = 16 µm, αRyd × |E0|2 = 36 MHz.

The 2D plots in figure 3.6 show the scaled shifts of Rydberg states nS (a) and

nP, m=0 (b) as a function of principal quantum number n on the y-axis and the

position of the Rydberg atom center-of-mass relative to the nearest lattice maximum

z0 on the x-axis. The quantization axis for this calculation is perpendicular to the

lattice planes. At low n (. 30), the scaled shift approximately follows the shift of

a free electron in the local intensity of the lattice. At higher n, the extent of the

Rydberg atom wavefunction becomes appreciable relative to the lattice constant, and

the ponderomotive shift of the Rydberg level reflects a spatial average of the light

field weighted by the Rydberg wavefunction. When the extent of the wave function

somewhat surpasses the lattice constant, the locations where the shift is maximal

switch from the intensity maxima to the intensity minima. In this case, for a Rydberg

atom whose center-of-mass is at an intensity minimum, the dominant lobes of the

wavefunction sample regions of high intensity half a lattice period away, maximizing

the time-averaged kinetic energy of the Rydberg electron. Figure 3.6(b) shows the

level shift for the nP, m = 0 case, and the switch of the location of maximal shift just

described occurs around n = 63. For the m = 1 case (not shown), the shift occurs at
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much higher n since the dominant lobes of the wavefunction are aligned in the plane

of the lattice such that the extent of the wavefunction normal to the lattice planes

for a given n is less than in the m = 0 case (see the discussion of figure 4.4).

For a given n, the range of shifts present in the lattice with maximal and min-

imal shifts WQ
max and WQ

min can be characterized by the potential depth ∆WQ =

WQ
max − WQ

min. The ponderomotive shift as a function of z0 can be viewed as an

adiabatic potential governing the motion of the Rydberg center-of-mass as discussed

in section 3.2. If the depth ∆WQ is sufficient, the lattice forms a periodic array of

Rydberg atom traps centered about the points of minimal ponderomotive shift [25].

The trap depth ∆WQ = 36 MHz (e.g. low-n state in typical experimental geometry

described above) corresponds to a temperature of about 1.5 mK which is sufficient

to trap Rydberg atoms excited from laser-cooled ground state atoms (Doppler tem-

perature Rb ≈ 150 µK). Additionally, for cases in which the depth ∆WQ is large

compared to the linewidth of the Rydberg excitation, the shifts could be used to

exert some control over the spatial distribution of Rydberg excitations.

From the discussion of figure 3.6, we have seen that the shift depends strongly

on the principal quantum number n, the orbital angular momentum `, and the

projection of the orbital angular momentum onto the axis normal to the lattice

planes m. This suggests that a differential shift between neighboring Rydberg states

could be observable using microwave spectroscopy of appropriate Rydberg-Rybderg

transtions. Figure 3.7 shows the differential shift between neighboring Rydberg states

nS → nP and nS → (n + 1)S at the intensity maxima of the applied lattice. The

maximal shift on the nS → (n+1)S transition occurring near n = 50 is −0.018αRyd×

|E0|2, which corresponds to a transition frequency shift of -650 kHz for the P1 = 1 W,

xFWHM = 16 µm geometry described above. Note that the shifts of the nS → nP
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Figure 3.7: Frequency shift of Rydberg transitions nS → nP (left axis, red circles) and nS →
(n+1)S (right axis, black squares) at the intensity maxima of a ponderomotive optical lattice with
lattice constant 532 nm (retro-reflected, λ = 1064 nm laser beam). The shift is scaled in units of
αRyd × |E0|2, where E0 is the single-beam electric field amplitude.

are larger in comparison to the nS → (n + 1)S transition, and the scaling of their

respective axes in figure 3.7 differs by a factor of ten.

The magnitude of this differential shift represents the amplitude of the transition

frequency shift that varies sinusoidally with respect to the position of the Rydberg

atom center of mass relative to the lattice maximum. For atoms uniformly dis-

tributed across the ponderomtive optical lattice, transitions to nearby states would

be inhomogeneously broadened by the presence of the lattice. The width of the sym-

metric broadening would be comparable to the differential shift plotted in figure 3.7

for a given transition. In the vicinity of n = 50, readily achievable linewidths for

the two-photon microwave transition nS → (n + 1)S are on the order of 100 kHz

and are often limited by the microwave interaction time (see section 5.4). Thus,

the inhomogeneous line broadening should be visible under anticipated experimental
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conditions.

It may also be possible to utilize the level shift of the initially laser-excited Ryd-

berg state to localize Rydberg excitations to a particular lattice position (e.g. the

intensity maximum) and subsequently probe the differential shift relative to the

target Rydberg state using a microwave transition. In such a spectrum, one could

expect a shift of the center of weight relative to the optical field free spectrum.

There would be a couple of sources of inhomogeneous broadening. First, the line

would broaden by an amount inversely proportional to the degree of localization

achieved in the laser excitation, due to the range of differential shifts sampled by the

Rydberg atoms. Second, motion during the microwave probe time would broaden the

transition as Rydberg atoms sample various differential shifts in time. The motion

would be governed by the initial kinetic energy of the Rydberg atoms, which is due

to the thermal energy of the laser-cooled atoms from which they were excited and

the net effect of the ponderomotive forces arising from the optical lattice. Motional

effects are often important in experiments involving ponderomotive optical lattices as

the distance traveled during an experimental interval can be appreciable relative to

the lattice constant, and the effect of the lattice on a Rydberg atom usually depends

on its relative position in the lattice.

In this chapter, we have examined the ponderomotive interaction between a Ryd-

berg electron and an applied optical field. We started in section 3.1 by examining

the interaction for a free electron, which is given simply by the time-averaged kinetic

energy of its driven motion in the oscillating electric field. The intuition that the

effect on the “quasi-free” Rydberg electron would be similar was placed on firm

theoretical footing in section 3.2 through the separation of appropriate coordinate

time-scales and the adiabatic elimination of the quiver motion that accounts for the
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ponderomotive interaction with a time independent energy shift. In the next chapter,

we examine the effects of adding time dependence to the ponderomotive interaction,

specifically, amplitude modulation of an applied ponderomotive optical lattice.



CHAPTER IV

Rydberg Atoms in Time-Dependent Ponderomotive
Potentials

4.1 Introduction

In chapter III, we introduced the ponderomotive interaction with the Rydberg

electron, which can be seen as the time-averaged kinetic energy of free or quasi-free

charges in electric fields that oscillate with periods much shorter than other charac-

teristic time-scales of the particle motion. The disparity in timescales leads to the

adiabatic elimination of the fast quiver motion allowing the ponderomotive interac-

tion to be treated by adding a time-independent shift to the atomic Hamiltonian.

Spatial inhomogeneities of the applied field amplitude lead to ponderomotive forces

and state-dependent energy shifts.

Based on these interactions, the trapping of Rydberg atoms in the ponderomotive

potentials created by standing-wave laser fields was proposed [25]. In that method,

the quasi-free Rydberg electron is trapped in the periodic ponderomotive potential

of a standing-wave laser field, and the entire atom is trapped due to weak Coulomb

binding of the atomic nucleus to the trapped Rydberg electron. The spatial periods

and the depths of ponderomotive standing-wave Rydberg-atom traps can be quite

similar to those of standard optical lattices for atoms in atomic ground states. Due

to this compatibility, ponderomotive optical lattices may become useful in recently

61
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proposed quantum-information processing schemes that involve Rydberg levels [2,

4]. Regularly-spaced arrays of Rydberg atoms would also be useful in studying the

random walk problem in quantum systems [73]. Furthermore, since trap-induced

level shifts in ponderomotive Rydberg-atom traps are quite small, these traps are

ideal for high-precision spectroscopy of Rydberg transitions. Perfect periodicity,

micron-size trap dimensions, and small trap-induced level shifts set ponderomotive

traps apart from other static-field Rydberg-atom traps that have been proposed or

realized [16, 74–76].

In this chapter, we discuss the effects of adding harmonic time-dependence to the

ponderomotive interaction. In particular, we focus on electric multipole transitions

between Rydberg levels in amplitude-modulated standing-wave ponderomotive po-

tentials [18]. We find that, by modulating the intensity of the applied optical field

at an appropriate frequency, internal states of the Rydberg atom can be coupled,

so driving transitions between Rydberg states using a time-dependent ponderomo-

tive interaction should also be achievable. Due to sub-micron spatial period, the

modulated potential is effective in driving a wide range of multipole transitions. As

disucssed in section 3.4, the shifts in the transition frequencies should be measurable,

but can be quite small in cases appropriate for spectroscopy with time-dependent

ponderomotive potentials. Since crossed, focused laser beams may be used to form

the standing-wave ponderomotive potential, the transitions can be induced with a

high spatial selectivity (in the µm-range). This new method of driving microwave

transitions between Rydberg levels could be useful for high-precision spectroscopy,

studies of coherent interactions between Rydberg atoms, and quantum information

processing applications.
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4.2 Qualitative Picture of Rydberg-Rydberg Transitions in an Amplitude-
Modulated Ponderomotive Optical Lattice

Before delving into the analysis of a more rigorous model the dynamics of a Ryd-

berg atom immersed in a amplitude-modulated ponderomotive optical, we consider

the simple time-domain picture of the interaction shown in figure 4.1, which captures

many of the essential conclusions obtained in the rest of the chapter. The figure

is illustrated such that a ponderomotive lattice is of a certain strength and the

corresponding Rydberg wavefunctions are color-coded.

Ω

W 
Q

z

Figure 4.1: Qualitative picture of using amplitude-modulated ponderomotive optical lattices to
drive multipole transitions between Rydberg states.

The blue curve represents the ponderomotive potential created by a standing

plane wave whose lattice planes are perpendicular to the z-axis. A Rydberg atom

located at an intensity minimum in the potential has a electronic wavefunction (also

shown in blue) whose spatial distribution is determined by the Coulomb interaction

with the ionic core (shown in gray) and the confinement of the lattice potential. If

the ponderomotive potential is relaxed (shown in maize), the Rydberg wavefunction

would expand somewhat to fill the volume also shown in maize. If the intensity of

the light field creating the ponderomotive lattice were harmonically modulated at a
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frequency Ω, then the electronic charge distribution in this picture would undergo

a breathing-mode oscillation at this frequency. Charge oscillations with appropriate

symmetries at a frequency resonant with the energy splitting between the initial

Rydberg state and a target state result in population transfer from the initial to the

target state (see section 9.11 in reference [77]). In this case, the charge oscillation has

a breathing-mode character, which would be indicative of an even transition between

states possessing the same parity.

The scale of the Rydberg electron wavefunction relative to the lattice constant

in figure 4.1 is realistic for many Rydberg states of interest. The familiar dipole

approximation for the interaction of an atomic electron and applied radiation field is

based on the fact that the extent of the atomic wavefunction is small compared to the

wavelength of the impinging radiation (see, e.g., section 5.1 in reference [78]). This is

not true for the case of a Rydberg atom in a ponderomotive optical lattice. In fact,

many nonlinear terms in the transition matrix elements have similar magnitudes and

make appreciable contributions to the coupling of relevant Rydberg states.

4.3 Quantitative Model of Rydberg Atom in Amplitude-Modulated Pon-
deromotive Optical Lattice

In this section, we develop a quantitative model to describe the ponderomotive

interaction of a Rydberg atom with an applied standing plane wave whose intensity

is harmonically modulated. As discussed in section 3.2, the fast quiver motion of the

driven electron can be adiabatically eliminated from the Rydberg atom plus applied

field system by adding the eigenvalues of equation 3.11 to the atomic Hamiltionian.

Thus, an optical wave of angular frequency ω with a position-dependent, slowly
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varying electric-field amplitude E(r, t) adds a ponderomotive potential

WQ(r, t) =
e2|E(r, t)|2

4meω2
, (4.1)

to the inner-atomic Coulomb potential (−e and me are the electron charge and mass,

respectively). Assuming that the optical wave is a one-dimensional standing plane

wave in z-direction and that it is amplitude-modulated at an angular frequency, Ω,

the Rydberg-electron potential is, in atomic units,

V = −1/r + Vc(r) + (A + B cos(Ωt))(1 + cos(2k(z − z0))) , (4.2)

where Vc(r) is a short-range core potential consistent with the quantum defects of

the atom (see table 1.1 for 85Rb), 2B is the temporal modulation amplitude of the

depth of the ponderomotive lattice potential, 2A is its time-averaged depth (A and

B are positive, and A ≥ B), z0 is the location of the peak of the lattice potential

closest to the center of mass of the Rydberg atom (which is at r = 0), and k = ω/c

(see figure 4.2). The spatial part of the lattice potential can be expanded about

z = 0, leading to

V = −1/r + Vc(r) + (A + B cos(Ωt))
∞∑

p=0

Cpz
p (4.3)

with coefficients

Cp =
(2k)p

p!





(−1)p/2 cos(2kz0) + δp,0 , p even

(−1)(p−1)/2 sin(2kz0) , p odd

, (4.4)

where δp,0 is a Kronecker-δ.

Ignoring the spin degree of freedom of the Rydberg electron, in the bound energy

range the Hamiltonian can be represented in the spherical basis {|n, l, m〉} and has

elements

Hn′,l′,m′
n,l,m = En,lδn,n′δl,l′δm,m′

+(A + B cos(Ωt))
∑∞

p=0 Cp (rp)n′,l′
n,l (cosp θ)l′,m′

l,m δm,m′

(4.5)



66

Figure 4.2: Ponderomotive optical lattice potential amplitude-modulated at frequency Ω for Ωt = 0
(solid) and Ωt = π (dotted) vs. the Rydberg-electron coordinate in the center of mass frame z,
where z0 is the location of the lattice potential peak nearest to the Rydberg atom center of mass.
Equipotential surfaces for the ponderomotive potential are planes perpendicular to the z-direction,
which is chosen to be the quantization axis.

with perturbation-free energy levels, En,l, and radial and angular matrix elements,

(rp)n′,l′
n,l and (cosp θ)l′,m′

l,m , respectively.

The radial matrix elements depend on the quantum defects of the atom (see

table 1.1 for 85Rb); here, we compute the radial matrix elements numerically using

a method described previously (see section II in reference [32]).

Since the m-quantization axis in equation 4.2 is transverse to the equipotential

surfaces of the ponderomotive lattice potential, the Hamiltonian equation 4.5 does

not depend on the azimuthal coordinate and, therefore, does not couple states of

different m (see figure 4.2). Using Wigner 3j symbols, the angular matrix elements

can be written as
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(cosp θ)l′,m
l,m = (−1)m p!

∑

l̃=p,p−2,...,0

(2l̃ + 1)
√

(2l + 1)(2l′ + 1)

2(p−l̃)/2(p−l̃
2

)!(p + l̃ + 1)!!

×




l′ l̃ l

0 0 0







l′ l̃ l

−m 0 m


 (4.6)

equation 4.5 is then written as Hn′,l′,m′
n,l,m = En,lδn,n′δl,l′δm,m′+(A+B cos(Ωt))Dn′,l′,m

n,l,m δm,m′

with

Dn′,l′,m
n,l,m = (−1)m+

l̃min−η

2

∑

p=l̃min,l̃min+2,...

(−1)
p−l̃min

2 (2k)p(rp)n′,l′
n,l

[
cos(2kz0 − ηπ

2
) + δp,0

]

×




∑

l̃=p,p−2,...,0

(2l̃ + 1)
√

(2l + 1)(2l′ + 1)

2
p−l̃
2 (p−l̃

2
)! (p + l̃ + 1)!!




l′ l̃ l

0 0 0







l′ l̃ l

−m 0 m







(4.7)

where l̃min = |l − l′|, the parameter η = 0 for even l̃min, and η = 1 for odd l̃min.

We assume that the atoms are initially prepared in a state |1〉 = |n, l, m〉. The

off-diagonal terms (A + B cos(Ωt))Dn′,l′,m
n,l,m will drive a multipole transition into state

|2〉 = |n′, l′,m〉 if the modulation frequency Ω ≈ ΩA = (En′,l′−En,l)/~. The dynamics

remains restricted to the space {|1〉, |2〉} if both states |1〉 and |2〉 are sufficiently

non-degenerate, i.e. if |En,l − En′′,l′′ | À A and |En′,l′ − En′′,l′′ | À A for all states

|n′′, l′′,m〉 /∈ {|1〉, |2〉} (note that A > B always). This requirement largely means

that the quantum defects of the states |1〉 and |2〉 differ from those of other l-states by

À n3 A (with A in atomic units). For transitions between lower-angular-momentum

states of heavy alkali atoms (l . 6) these assumptions are satisfied under anticipated

experimental conditions. The Hamiltonian within the subspace of coupled states,
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{|1〉, |2〉},

H =




0 0

0 ~ΩA


 + (A + B cos(Ωt))




D11 D12

D12 D22


 (4.8)

Defining the wave-function |ψ〉 = c1|1〉 + c2|2〉 and transformed coefficients c̃k =

ck exp(−iφ(t)) with φ(t) = −i
∫ t

[
AD11 + B (D11+D22)

2
cos(Ωt′)

]
dt′ for k = 1, 2, the

Hamiltonian transforms into

H̃ =




−B D22−D11

2
cos(Ωt) (A + B cos(Ωt))D12

(A + B cos(Ωt))D12 ~ΩA + A(D22 −D11) + B D22−D11

2
cos(Ωt)


 (4.9)

Defining δ = (ΩA − Ω) + A(D22 −D11)/~, the Rabi frequency χ = BD12/~, and

the auxiliary variables ε = B (D22−D11)
2~ and µ = AD12/~, and transforming č1 = c̃1

and č2 = c̃2 exp(−iΩt), the Hamiltonian transforms into

Ȟ = ~




−ε cos(Ωt) µe−iΩt + χ
2

[
1 + e−i2Ωt

]

µeiΩt + χ
2

[
1 + ei2Ωt

]
δ + ε cos(Ωt)


 (4.10)

The terms ∝ e±i2Ωt cause a Bloch-Siegert shift of the resonance from δ = 0 by an

amount χ2/(4Ω) [79]. Since Ω À χ, for the purpose of the present discussion the

Bloch-Siegert shift is negligible. Because Ω À ε and Ω À µ, the rapidly oscillat-

ing terms ∝ cos(Ωt) and e±iΩt also do not cause significant shifts of the resonance

from δ = 0. We have confirmed this by numerical simulations. Consequently, the

Hamiltonian

Ȟ ≈ ~




0 χ
2

χ
2

δ


 . (4.11)

An amplitude-modulated ponderomotive lattice therefore has two main effects. First,

the lattice drives multipole transitions if the modulation frequency, Ω, is in the

vicinity of an atomic transition frequency, ΩA = |En′,l′−En,l|/~. The Rabi frequency
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of these transitions is

χ = BDn′,l′,m
n,l,m /~ (4.12)

with B defined in equation 4.2 and Dn′,l′,m
n,l,m in equation 4.7. Second, the resonance

δ = 0 occurs at a frequency Ω that is shifted from ΩA by an amount

∆W = ΩA − Ω = A(Dn′,l′,m
n′,l′,m −Dn,l,m

n,l,m)/~ (4.13)

with A defined in equation 4.2.

4.4 Relating the Model to Experimental Parameters

In this section, we calculate realistic values for A and B based primarily on the

capabilities of current electro-optic modulator technology and the laser beam geome-

try in our experiment. Broadband fiber-coupled modulators [80] have a modulation-

frequency range 0 . Ω . 2π×40 GHz, which covers many transitions between Ryd-

berg levels. This imposes a restriction on the states that can be experimentally

coupled using this techinique. However, neighboring Rydberg states (n & 45) have

transition frequencies in this range. Furthermore, this is not a fundamental limita-

tion, and the applicability of the method will expand with the modulator technology.

Typically, the modulators are usable for optical powers up to a few 100 mW (at a

wavelength λ = 2πc/ω ≈ 1064 nm) and they allow for close to 100% amplitude

modulation (i.e. A = B in equation 4.2).

In our experiment, the ponderomotive optical lattice is formed by a retro-reflected

laser beam with a single beam intensity of P1 = 150 mW, which is determined by the

power limitations of the modulator. To achieve appropriate intensities, the incoming

and return beams are focused to a full width at half maximum of xFWHM = 15 µm.
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The electric field maximum achieved with such a beam geometry is given by

E0 =
√

0.89× 8P1/(cε0x2
FWHM) = 1.34× 104 V

cm
(4.14)

From equation 4.1 it follows that the standing-wave ponderomotive potential for this

beam geometry has a peak value of WQ,max =
e2E2

0

4meω2 = −αRyd

4
|E0|2 = h × 6.1 MHz.

For the case of 100% amplitude modulation it follows from equation 4.2 that

A = B = WQ,max/4 = −αRyd

16
|E0|2. (4.15)

For convenience in interpreting the plots presented in the remainder of this chapter for

a variety of lattice configurations (power, focal spot size), many of them will be scaled

by the factor WQ,max/4h (except for figure 4.6, which is an energy shift simply scaled

by scaled by WQ,max). Determination of Rabi frequencies or transition frequency

shifts from the scaled quantities presented in the figures for specific geometries can

be made using equations 4.14 and 4.15. In many of the numerical examples, we

will use A = B = h × 500 kHz as a somewhat conservative estimate based on the

strength of the ponderomotive optical lattices anticipated using the beam geometry

just described above.

4.5 Computational Results

To exhibit the trends of the Rabi frequencies χ with the change in angular mo-

mentum and principal quantum number, in figure 4.3 we show the magnitude |χ|

for the transitions |n, l = 0,m = 0〉 ↔ |n + 1, l′,m = 0〉 as a function of n and

lattice position, z0, for l′ ranging from 0 to 5. In the calculation of the radial matrix

elements, (rp)n′,l′
n,l , all quantum defects δl are assumed to be small (δl ≤ 0.01 for all

l) but sufficiently large and distinct from one another such that the non-degeneracy

condition for the coupled states (discussed above) is satisfied. First and foremost, it
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Figure 4.3: Rabi frequencies |χ| (scaled by B/h = WQ,max/4h from equation 4.15) of the transitions
|n, l = 0,m = 0〉 ↔ |n + 1, l′,m = 0〉 for the indicated values of l′ vs principal quantum number, n,
and lattice position, z0. If we take the underlying amplitude-modulated ponderomotive lattice to
have temporal modulation amplitude of B = h × 500 kHz, the grayscale for the Rabi frequencies
ranges from 0 to 125 kHz. (Note that l′ = l̃min = |l − l′| for the cases shown in this figure.)
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is noted in figure 4.3 that the largest Rabi frequencies are of order 125 kHz. Thus, the

interaction time tπ required to effect a π-pulse, for which (χ/2)tπ = π, is tπ ∼ 8 µs.

This is considerably less than typical Rydberg-atom lifetimes. Furthermore, laser-

cooled atoms excited into Rydberg states have speeds of only a few cm/s and move

only about one period of the standing-wave ponderomotive potential during tπ. At

the same time, the value of χ contains equal positive and negative domains over one

lattice period, so this motion can cause appreciable cancellation of net transition

probability. The mitigating effects are discussed in detail in section 5.6. However,

we will see that given anticipated experimental conditions, these motional effects

are manageable. Multipole transitions in modulated ponderomotive standing-wave

potentials should therefore be readily observable in experiments.

Since in equation 4.7 it is η = 0 (η = 1) for even (odd) l̃min = |l − l′|, the Rabi

frequencies have a cosine-like (sine-like) dependence on z0, corresponding to cases

depicted in the left column (right column) of figure 4.3. These dependencies reflect

the parity behavior of the transitions. At the maxima and minima of the pondero-

motive potential, corresponding to locations z0 = ±λ/4 and z0 = 0 in figure 4.3, the

perturbation has even parity, and consequently only even-l̃min transitions occur while

odd-l̃min transitions vanish. At the midpoints between adjacent maxima and minima

of the ponderomotive potential, corresponding to locations z0 = ±λ/8 in figure 4.3,

the perturbation has odd parity, and consequently only odd-l̃min transitions occur

while even-l̃min transitions vanish.

At fixed z0, the Rabi frequencies are modulated as a function of n. Since ~χ =

B〈n′, l′,m| cos(2k(z−z0))|n, l, m〉, this modulation reflects an interplay of the spatial

dependencies of the perturbation, B cos(2k(z−z0)), and the involved wavefunctions.

Qualitatively, Rabi frequencies tend to vanish at principal quantum numbers for
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which the dominant lobes of the wavefunctions overlap in equal parts with positive

and negative domains of cos(2k(z − z0)). Near-perfect cancellation can only occur

if the atom diameter, which is ≈ 4n2, covers or exceeds one period of the standing-

wave ponderomotive potential. In figure 4.3, the standing-wave period 4n2 & λ/2 =

532 nm for n & 50. In accordance with this estimate, the lowest principal quantum

number at which |χ| undergoes a cancellation varies from n ≈ 50 for l′ = 1 to n ≈ 85

for l′ = 5. Formally, the dependence of |χ| on n becomes evident from equation 4.7

as follows. Since initial and final states are different and therefore orthogonal, the

radial matrix element ((2kr)p)n′,l′
n,l vanishes for p = 0, and the cosine-term can be

factored out. The terms remaining under the p-sum have alternating signs, allowing

one to write the sum as a difference Peven − Podd, where Peven (Podd) denotes the

partial p-sum over even (odd) p-terms. Since the radial matrix elements scale as

(2kn2)p, with increasing n increasingly higher-p terms dominate in the p-sums. The

factorials in equation 4.7 scale even faster in p than the radial matrix elements, and

consequently the p-sums converge quickly. For parameters as in figure 4.3, the p-sums

can be truncated at p-values ranging from about l̃min + 10 to l̃min + 40, depending

on the ratio between the atom size and the period λ/2 of the ponderomotive lattice.

As n increases, the weight in the p-sums gradually shifts from lower to higher p, and

the difference Peven−Podd slowly alternates between positive and negative values. At

certain n-values, Peven ≈ Podd, and the Rabi frequencies practically vanish.

In figure 4.3, the domains where Rabi frequencies are large gradually shift to

larger n with increasing l̃min (except for the special case l̃min = 0, which will be

discussed separately). Qualitatively, this trend reflects the fact that the factorials

in equation 4.7 generally increase with l̃min. Therefore, with increasing l̃min larger

matrix elements ((2kr)p)n′,l′
n,l are required to result in appreciable Rabi frequencies.
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Hence, the observed shift of the domains of large Rabi frequencies to larger n with

increasing l̃min. It is noted that the case l̃min = 0 does not fit into the pattern followed

by all other l̃min. In the case l̃min = 0, the first term under the p-sum in equation 4.7,

p = 0, vanishes because the radial matrix element (rp)n′,l
n,l = 0 for p = 0 and n 6= n′

(due to the orthonormality of the involved radial wavefunctions). The lack of the

first term under the p-sum makes the case l̃min = 0 an exception. It is indeed seen

in figure 4.3 that the Rabi frequencies in the case l̃min = 0 are largest at n-values at

which the Rabi frequencies of the next case, l̃min = 1, are smallest.

In section 4.3, we saw that if we choose the quantization axis along the z-direction,

the azimuthal symmetry prevents the ponderomotive optical lattice from coupling

states of different m. The effects of the lattice, however are not the same for differing

m states, and the differences stem mainly from how the dominant lobes of a partic-

ular wavefunction align relative to the z-axis of the optical lattice. Figure 4.4 can

be divided into two columns. The left-hand column shows hydrogenic wavefunction

probability distributions |ψn,`,m|2 in the x − z plane and a corresponding Rabi fre-

quency plot for a transition between neighboring states in rubidium in which m = 0.

The right-hand column contains the corresponding information for the m = 1 case,

with all other parameters the same.

The wavefunctions illustrated in the plots are the spherical |n, `, m > states which

are solutions to the hydrogen atom problem [81] and are meant to give qualitative

feel for the properties of the Rydberg wavefunctions relevant in this discussion. The

wavefunction plots in part a clearly show that for states with same n and ` the state

with the lowest m has the greatest average extent along the z-axis (normal to the

lattice planes). In more compact notation, m < m′ ⇒ 〈z2〉m > 〈z2〉m′ . This is

an important point when considering the ponderomotive interaction of a Rydberg
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Figure 4.4: (a) Hydrogenic wavefunctions |ψn,`,m|2 in the x − z plane for n = 10 and the angular
momentum quantum numbers listed in the figure. (b) The Rabi frequency |χ| (scaled by B/h =
WQ,max/4h from equation 4.15) on the left (right) hand for the |nP, m = 0〉 → |(n − 1)D, m = 0〉
(|nP, m = 1〉 → |(n− 1)D,m = 1〉) transition in rubidium. The figure is arranged in columns such
that the left-hand (right-hand) column shows the wavefunctions and Rabi frequency plot for an
m=0 (m=1) case.
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electron, since the interaction of the Rydberg level reflects the spatial average of the

light field weighted by the Rydberg wavefunction (see equation 3.14). The m = 0

wavefunction has a fairly small weighting near the location of the center-of mass and

extends predominately along the z-axis (normal to the lattice planes). The Rabi

frequencies in the lattice for the m = 0 case go to zero near n = 60, which occur, as

discussed above, when the dominant lobes of the wavefunction sample equal parts

of the domains of positive and negative Rabi frequencies in the lattice. The m = 1

case does not display such a minimum over the plotted range since their orientation

relative to the lattice planes prevents them from sampling a sufficient range in the

lattice (> 1 lattice period) for the cancellation to occur.

When performing experiments, one should make sure to account for the effects

of the Rydberg atom’s “orientation” relative to the lattice planes. In principle, this

can be controlled by using proper external fields and the application of appropriately

polarized light during the photo-excitation of Rydberg atoms in the lattice. As a

final note, this example highlights the effects of the m quantum number on the Rabi

frequencies, but similar inferences can also be made regarding the energy level shifts.

The use of nS states simplifies the situation by limiting the initial state and all

states coupled by the lattice to the m = 0 case. Initial experiments, described in

chapter 5.1, begin with optical excitation into a spherically symmetric nS state.

In section 5.4, we present the analysis relevant to the nS states (in addition to

the discussion of energy shifts found in chapter III), so we focus here on another

experimentally relevant example, the transitions of rubidium atoms in the nD-state

into higher-angular-momentum states with principal quantum numbers n−1. Due to

the quantum defects of Rb (see table 1.1 for 85Rb; δl=2 = 1.34, δl=3 = 0.02, δl>4 ∼ 0),

for these transitions the change in effective quantum number is only ≈ 0.34, leading
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Figure 4.5: Maximal Rabi frequencies |χ| (scaled by B/h = WQ,max/4h from equation 4.15) of
the transitions |n, l = 2,m = 0〉 ↔ |n − 1, l′,m = 0〉 of Rb Rydberg atoms the indicated values of
l′ vs principal quantum number n. The heavy dashed lines delineate the range of the transition
frequencies of all transitions in the plot. For n ∼ 50, all Rabi frequencies are large (& 100 kHz for
B = h× 500 kHz), and the transition frequencies are in a range that is favorable for experimental
studies.

to large radial matrix elements and Rabi frequencies exceeding those in the other

rubidium examples presented in this thesis. As seen in figure 4.5 for an amplitude-

modulation parameter B = h × 500 kHz, Rabi frequencies exceeding 100 kHz can

be achieved for all multipole transitions with 3 6 l′ 6 6. The transition frequencies,

ΩA, are in intervals 0.32/n3 . ~ΩA . 0.34/n3, which for principal quantum numbers

n ∼ 50 are in a convenient range (∼ 20 GHz). Experimentally, the transitions

could be detected via state-selective electric-field ionization. While atoms in the

initial (nD) state tend to ionize adiabatically, at electric fields of about 1/(16n4) in

atomic units, the higher-angular-momentum states tend to ionize non-adiabatically,

at considerably higher electric fields [1]. This differential behavior should allow one

to measure spectra of the transitions nD → (n − 1) l′, with l′ > 2, as a function of
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the modulation frequency Ω. In similar spectroscopy experiments between initial and

final states that both ionize adiabatically, state selective field ionization can resolve

the states in certain cases, as discussed in 5.4.
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Figure 4.6: Level shift of the state |nD,m = 0〉 of Rb (scaled by WQ,max from equation 4.15) in a
ponderomotive potential with B = 0 and A = WQ,max/2 (factor of two change in scaling evident
from equation 4.2 for the B = 0 case) and in equation 4.2. The shift ranges from 0 (white) to
WQ,max (black) and is displayed on a ten-point linear gray scale.

The time-averaged level shifts, ADn,l,m
n,l,m(z0), represent effective potentials for the

center-of-mass motion of Rydberg atoms in state |n, l, m〉. These potentials may

be used to trap the Rydberg atoms [25]. In an electromagnetic transition driven

by a modulated ponderomotive lattice, the transition energy is shifted from its

unperturbed value, ~ΩA = En′,l′ − En,l, by the difference of the effective poten-

tials of the initial and final states. The transition frequency is therefore shifted by

A (Dn′,l′,m
n′,l′,m−Dn,l,m

n,l,m)/~. As an example, in Figs. 4.6 and 4.7 we analyze the transitions

nD → (n− 1)F and nD → (n− 1)G of Rb.

Figure 4.6 shows the level shifts, ADn,l=2,m=0
n,l=2,m=0, of the initial state in the transition,
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Figure 4.7: (a) Rabi frequencies |χ| (scaled by B/h = WQ,max/4h from equation 4.15) for the case
A = B of the transition |nD, m = 0〉 ↔ |(n − 1)F, m = 0〉 of Rb Rydberg atoms. If we take the
underlying amplitude-modulated ponderomotive lattice to have temporal modulation amplitude of
B = h× 500 kHz, the grayscale for the Rabi frequencies ranges from 0 (white) to 225 kHz (black).
The overlaid lines indicate the frequency shift of the transition induced by the ponderomotive
potential. For the case of A = B = h× 500 kHz, the scale is as follows: solid = 2.5 kHz, long-
dashed = 5 kHz, dashed = 10 kHz, short-dashed = 20 kHz, dotted = 40 kHz). The + and - signs
indicate the sign of the shift in various domains. (b) Same as (a) for the transition |nD, m = 0〉 ↔
|(n− 1)G, m = 0〉.
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|nD,m = 0〉, vs. n and lattice position z0. In the computation of Dn,l,m
n,l,m, the radial

matrix element (rp)n,l
n,l = 1 for p = 0, and the term p = 0 in the p-sum in equation 4.7

does not vanish. (For this reason we have kept the δp,0 in equation 4.7). For small

n, the atoms are much smaller than the period of the ponderomotive potential, and

consequently the shift is practically identical with the ponderomotive potential itself.

At large n, the atoms are larger than the period of the ponderomotive potential, and

the shifts are close the the spatial average of the ponderomotive potential (~ ×

106 rad/s in figure 4.6).

The shifts of the transition frequency, A (Dn′,l′,m
n′,l′,m − Dn,l,m

n,l,m)/~, are usually much

lower than A Dn,l=2,m=0
n,l=2,m=0/~ because Rydberg states that are close in energy tend to

have have similar values of D. As seen in figure 4.7, domains exist in which the Rabi

frequency exceeds 2π × 50 kHz while the transition shift is less than 2π × 1 kHz

(domains labeled “Good”). Odd transitions are particularly favorable, because the

maxima of the Rabi frequency coincide with locations where the transition shift

vanishes (see, e.g., figure 4.7 (a)). Also, for a sample of randomly placed atoms the

transition shifts are equally likely to be positive or negative by same amounts (note

the signs in figure 4.7). Thus, in spectroscopic measurements the transition shifts

should mostly cause line broadening with little net shift.

4.6 Summary

In this chapter, we have investigated the effects of making the perturbation caused

by the ponderomotive interaction time-dependent. In particular, we examined reso-

nant transitions of Rydberg atoms in amplitude-modulated standing-wave pondero-

motive potentials. We have found that such potentials are suited to drive multipole

transitions up to high order. For changes in the angular-momentum quantum num-
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ber up to about five and for realistic laser parameters, we find Rabi frequencies on the

order of 100 kHz, which should be sufficient to observe them experimentally. Varying

the amplitude-modulation frequency of the standing-wave ponderomotive potential,

it should be possible to obtain spectra of many multipole transitions and to determine

atomic parameters, including quantum defects for fairly high angular momenta. In

contrast to the direct application of microwave radiation, the method has high spa-

tial selectivity, because the modulated light fields giving rise to the ponderomotive

potential can be focused to a spot size of a few µm. This property may become useful

in future applications where localized coherent interactions between Rydberg atoms

are of interest, such as in quantum information processing. In the next chapter, we

discuss experimental progress toward studying both the time-independent aspects of

the ponderomotive interaction with a Rydberg atom discussed in chapter III and the

time-dependent aspects (driving resonant transitions with modulated ponderomotive

optical lattices) discussed in this chapter.



CHAPTER V

Rydberg Atoms in Ponderomotive Potentials - Experiments

In this chapter, we discuss the techniques developed for use in experiments probing

the ponderomotive interaction between a Rydberg electron and an applied optical

field. Additionally, strategies for probing various aspects of the interaction, including

transitions induced by amplitude-modulated lattice potentials and Rydberg atom

trapping in a 1D lattice, are proposed.

5.1 Preparating Cold Rydberg Atoms

In this section, we discuss the preparation of cold Rydberg atoms for use in pon-

deromotive optical lattice experiments. The atoms first undergo a two-stage laser-

cooling scheme to remove excess kinetic energy that can cause unwanted motional

effects in lattice experiments (see section 5.6). Once the atoms are cooled, a two-

photon laser excitation sequence transfers population from the ground state to a

Rydberg state. In initial experiments, we are primarily interested in the interaction

of the applied ponderomotive optical lattice and the Rydberg atom. Therefore, we

excite atoms at low densities in order to minimize the effects of Rydberg-Rydberg

interactions.

To begin, 85Rb is cooled and trapped in a pyramidal low-velocity intense source

(LVIS) [38] that forms a beam of cold, slow atoms that is recaptured in a six-beam

82
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Figure 5.1: Timing sequence for laser-cooling and Rydberg atom experiments (a) and Rydberg
excitation energy level scheme (b).

magneto-optical trap (MOT). The MOT is located at the geometric center of the

electrode stack as shown in figure 1.2. The typical magnetic field gradient for a

MOT is about 20 G/cm; however for the experiments described in this section, we

operate at a low gradient of 1-2 G/cm. The low gradient magnetic field configuration

allows substantial sub-doppler cooling without switching the magnetic field coils,

while providing sufficient atomic densities to achieve the desired number of Rydberg

atoms for our experiments. Figure 5.1(a) shows the intensity and detuning from

the 5S1/2 to 5P3/2 resonance of the laser-cooling beams for the MOT. The MOT

cooling phase utilizes laser intensities and detunings appropriate for efficient loading

and cools atoms to near the Doppler limit. During the molasses phase, the laser

is red-detuned from the MOT cycling transition resonance by about five linewidths

(≈ 30 MHz). At the same time, the intensity of the trapping light is reduced. For

the low-gradient MOT, significant sub-doppler cooling occurs in the large-detuning,

low-intensity limit. For the polarization employed in the MOT (σ− − σ+), the sub-
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doppler cooling mechanism is known as a cork-screw molasses since the polarization

gradient cooling arises from the rotating orientation of the resultant linearly polarized

light [82]. The intensity level for the molasses phase is adjusted to minimize the

temperature of the atomic sample. The temperature of the atomic distribution is

reduced from the Doppler temperature of the MOT phase (≈ 150 µK) to its lower,

steady-state temperature (≈ 30 µK) in . 3 ms, at which time the trapping light

can be turned off and experiments are performed. When the trapping light is off,

the atomic distribution will expand. The rate of the expansion can be measured

and related to the temperature. This is done by measuring the density profile of the

sample at various times during the expansion as shown in Fig 5.2.

Figure 5.2: Fluorescence images of atomic sample after various time intervals of free expansion.

Assuming a thermal velocity distribution and self-similar Gaussian expansion, the

standard deviation of the spatial distribution has the form σ(tf ) =
√

σ2(0) + v2t2f ,

where tf is the time interval over which the cloud expands. The thermal velocity

(in 1D) v =
√

kBT/M relates σ(tf ) to the temperature T of the atomic sample.

Fig 5.2(a) shows fluorescence images of the atomic distribution at various times dur-

ing its free expansion. From the expansion of the sample, we infer a temperature

of 30 µK after the molasses phase compared to the roughly 150 µK Doppler tem-

perature characteristic of the MOT. As a final note, the temperature in this type of

molasses (σ−−σ+) is dependent on stray bias magnetic fields, and thus tuning three

pairs of magnetic field compensation coils were required to reach this 30 µK mark.
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After the laser-cooling process has reduced the temperature of the atoms suffi-

ciently, the trapping light is switched off, and Rydberg atoms are then created via a

two-photon excitation from the 5S1/2 ground state to a Rydberg state as shown in

figure 5.1(b). Photons from two narrow band sources (one at ≈ 780 nm and the other

at ≈ 480 nm) effect the transition. This transition can proceed resonantly through

the 5P3/2 intermediate state or with a detuning ∆I with respect to the intermediate

state, such that the population is restricted to the ground and Rydberg states. In

the limit of no saturation, the linewidth of the excitation process is typically on the

order of 6 MHz.

Since the excitation proceeds via a two-photon excitation from the 5S ground

state, the initial Rydberg states coupled are nS and nD states. However, by ap-

plying small electric fields, other states (e.g., nP states) can be laser-excited. Addi-

tionally, circular states, which are of particular interest for their long lifetimes and

high-precision spectroscopy potential [1, 70], can be laser-excited in dynamic crossed

electric and magnetic fields [83]. For initial experiments involving Rydberg atoms in

ponderomotive optical lattices, we focus on preparing Rydberg atoms in nS states.

Using nS states simplifies matters for a few reasons. First, the S states are less

sensitive to stray electric and magnetic fields, which practically elimates broadening

in microwave spectra between neighboring S states (as discussed in section 5.4). The

nS state is a spherically symmetric m = 0 state. Since the 1D ponderomotive optical

lattice does not couple states of differing m, level shifts and Rabi frequencies in the

optical lattice are not subject to the “orientational” effects discussed in section 4.5.

Finally, the nS states over the n-range of interest (45 < n < 75) exhibit relatively

small, repulsive binary interactions with other nS Rydberg atoms, as compared to

nD Rydbergs states’ larger and attractive interactions, which can lead to collisions
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as discussed in chapter II. Thus, the choice of nS states helps isolate the Rydberg-

Rydberg interaction effects from the Rydberg-ponderomotive potential interactions

of interest.

In the interval of time between the Rydberg excitation sequence and the applica-

tion of the field ionization ramp, the Rydberg atoms can be subjected to a combina-

tion of ponderomotive potentials and microwave probes. In experiments designed to

probe the ponderomotive shift of the Rydberg energy levels, a standing wave lattice

creates the shift and a microwave probe is applied to measure the effect. In ex-

periments geared toward driving multipole transitions with an amplitude-modulated

lattice, the applied lattice is modulated at appropriate microwave frequencies (by

applying microwaves to an electro-optic modulator as shown in figure 5.3). In any

case, the Rydberg atoms are field ionized after exposure to the external fields to

determine the final distribution of Rydberg states.

5.2 Creating a Ponderomotive Optical Lattice Potential

In this section, we discuss the experimental setup of the ponderomotive optical

lattice, which is the standing wave formed by a focused, retro-reflected 1064 nm laser

beam as shown in figure 5.3. The ponderomotive optical lattice itself refers to the

roughly cylindrical volume where the standing wave intersects the MOT. A properly

aligned lattice corresponds to the case where the focus of the incident lattice beam

coincides with the focus of the return lattice beam at the location of the atomic

distribution. Additionally, the incident and return beam must interfere efficiently

and have sufficient intensity to achieve measurable effects from Rydberg level shifts

and Rabi frequencies according to the descriptions in chapters III and IV.

The laser source used for the lattice is a 1064 nm fiber laser (P/N: YLR-10-1064-
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LP-SF, IPG Photonics) which produces up to 10 W of linearly polarized output

with quoted linewidth of ∆ν = 70 kHz. The coherence length of the output beam

l = c/∆ν ≈ 4 km. The path length difference over which the return beam is to

interfere with the incoming beam to form a standing wave is . 1 m. To verify this

interference experimentally, the Michelson interferometer (shown in the right dashed

box in figure 5.3) interferes the incident (split to the M3 arm) and return (propragates

to the M2 arm) beams on the photodiode detector, PD, over a path length difference

of ≈ 2 m. The resulting visibility (Imax − Imin)/(Imax + Imin) measured is over 90 %.
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Figure 5.3: Schematic diagram of the ponderomotive optical lattice experimental setup.

The Michelson can also be used to measure the temporal phase stability of the

optical standing wave. Mechanical vibrations of the optical elements that make

up the Michelson interferometer cause the phase of the interference sampled at the

photodiode to vary continuously over a range that is substantially larger than 2π.

The timescale over which the phase changes by less than 10 % (of 2π) is on the order of
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50 µs. Since more optical elements in the interferometer are contributing to the phase

noise than are used to form the lattice, this measurement represents a lower limit

on the phase stability of the lattice. Many Rydberg atom experiments, especially

those of interest initially, can be performed on timescales under 50 µs, over which

time the lattice is phase-stable. Experiments occurring over longer timescales, such

as spectroscopic probes of long-lived circular Rydberg states, may require additional

mechanical stability or active phase-stabilization.

The lattice light is delivered to the experiment through a fiber optic cable whose

output is roughly collimated by a short focal length aspheric lens. The diagram

shows the light passing through an electro-optic modulator, which is the case for

experiments involving amplitude-modulated ponderomotive optical lattices. Since

the throughput of the modulator is limited to about 200 mW of cw power, the

modulator is replaced by polarization maintaining fiber for experiments requiring

more power. As is discussed in the next section, 780 nm light is often coupled into

the fiber together with the 1064 nm light. To ensure single mode operation at both

wavelengths, a fiber optimized for operation near 850 nm is suitable.

After the fiber collimator, the Gaussian beam is then expanded to full width at

half maximum of ≈ 30 mm using a telescope formed by lenses T1 and T2. A focal

spot size of xFWHM = 15 µm is achieved using focusing lens L1 with a focal length

of 30 cm. The focal length of L1 is chosen to be 30 cm, so that the lens can sit just

outside the vacuum chamber. The focal spot has been characterized using a CCD

camera with 6.7 µm pixel size. The focal spot characterization also confirms that

the intensity profile of the beam at the focal spot is essentially Gaussian. Use of two

inch optics for elements T2, M1, L1, L2 and M2 is required to avoid diffractive effects

(e.g., doughnut shaped intensity profiles) at or near the focus resulting from clipping
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the beam. Additionally, high numerical aperture fiber output collimation, such as

that provided by a short focal length aspheric collimation package, is required to

avoid these aperture effects.

L1
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Splitter
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Optical
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Figure 5.4: Picture of ponderomotive optical lattice optics used to monitor the lattice beam and
focus it into the MOT with the appropriate spot size.

The Rayleigh length has been also been measured to be . 1 mm. Since the

diameter of the MOT is about 500 µm, the width of the lattice beam will be uniform

across the atomic distribution for the case of a well-aligned lattice. The Rayleigh

length also determines the sensitivity of the alignment of the lattice to the positions of

lenses L1 and L2. The first step to locating the position of L1 and L2 is to determine

the effective focal length of the lens system {T1, T2, L1}. This effective focal length

can be set by adjusting the collimation of the beam after the the telescope T1:T2

and determined by accurately measuring the distance between L1 and the resulting

focus. The telescope T1:T2 and focusing lens L1 should then be transferred to

the experiment without changing the distance between T1 and T2. L1 is placed

at a distance equal to the measured effective focal length of lens system {T1, T2,
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L1} from the expected MOT location (assumed to be the geometrical center of the

chamber). L2 can be roughly located by placing it such that it collimates lattice

beam.

Placing L1 and L2 on translation stages streamlines the fine tweaking process,

which is accomplished via laser spectroscopy of the light shift on the Rydberg exci-

tation sequence. The nature of these shifts is described in sections 3.3 and 3.4. The

fine alignment begins by adjusting the location of L1 with the return beam blocked.

This creates conditions equivalent to that for which the data taken in figure 3.4 was

obtained. When the focal spot corresponds to the location of the atoms, the high-

frequency cutoff of the spectrum (see figure 3.4) will be maximal. If the position of

the lens is one Rayleigh length from the optimal position, the shift will be reduced

by a factor of two. Thus, this method provides an accurate way to place L1.

After L1 is in place, the return beam should be unblocked, and the retro-mirror

M2 should be adjusted such that the lattice beam is maximally coupled back into the

fiber. Again, we turn to laser spectroscopy techniques to finely adjust the position

of L2. Interpreting the spectrum, in this case, will be somewhat more complicated

than in the running wave case because the shift will reflect the inhomogeneity of the

applied lattice field, which could also have some significant running wave component.

The situation can be simplified by exciting to lower Rydberg states near n = 40 where

the shift reflects the local lattice intensity. In this case, the position of L2 can then

be adjusted by again maximizing the position of the high frequency cutoff as in the

alignment of L1.
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5.3 Preparing Rydberg Atoms in a Ponderomotive Optical Lattice

One important experimental challenge is localizing Rydberg excitations to within

a volume subjected to the externally applied ponderomotive optical lattice. Spurious

Rydberg excitations external to the lattice volume reduce the signal-to-noise ratio

for any experiments in which we attempt to probe the effects of the lattice. In this

section, we discuss schemes for creating Rydberg atoms in a volume that intersects

the applied ponderomotive potential and limiting these excitations to that volume.

In some cases, it may also be possible to have some control over the location of Ryd-

berg excitations within this volume using spatially inhomogeneous light shifts. The

production of Rydberg atoms procees via a two-photon excitation process, requiring

one photon at 780 nm (5S-5P ) and one at 480 nm (5P -Rydberg). These photons

come from two different laser sources, which are focused separately into the atomic

sample at a 45◦ angle relative to one another such that Rydberg excitations can be

created in the intersection volume of these two beams as shown figure 5.5.

The red 5S-5P beam is coupled into the same fiber as the 1064 nm ponderomotive

optical lattice beam. This ensures that the two beams propagate colinearly. One

advantage of this arrangement is that the 5S-5P , which interacts strongly with atoms

in the ground state, can be used to direct the optical lattice beam through the

center of the ground state atom distribution by observing the effects of the colinearly

propagating 5S-5P laser on the MOT. Next, the 5S-5P and optical lattice beam

overlap in space. Figure 5.5 depicts how these to beams overlap assuming the focusing

optics shown in figure 5.3. Due to chromatic aberrations in this optical system, the

5S-5P focal spot lies about 5 mm nearer to L1 than the optical lattice focal spot.

Thus, the full width at half maximum of this beam is about 150 µm at the location
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Figure 5.5: Diagram of Rydberg excitation (red and blue) and ponderomotive optical lattice (yellow)
laser beams and intersection regions (purple and white). The atomic distribution is shown in a
grayscale.

of the lattice beam focus which has a 15 µm width. The blue 5P -Rydberg laser is

focused to a 25 µm width. Therefore, the ponderomotive optical lattice potential

intersects only about 5 % of the total Rydberg excitation volume defined by the

intersection of the two Rydberg excitation lasers and the MOT.

In order to increase the signal-to-noise in the lattice, the volume mismatch be-

tween the Rydberg excitation region and the ponderomotive optical lattice must be

reduced. One way to achieve this is by using the light shift from the optical lattice

potential to spatially modulate the resonant frequency for Rydberg excitations as

discussed previously (see sections 3.3 and 3.4). In this case, the distribution of Ryd-

berg excitations can be determined by tuning the sum frequency of the two-photon

Rydberg excitation sequence. For this procedure, two-photon excitation, which pro-

ceeds off-resonantly with respect to the intermediate state, is advantageous since it

isolates the sum frequency light shift from the spatial modulation of the 5S to 5P res-
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onance frequency. A convenient excitation scheme for 85Rb used in our experiments

involves stabilizing the 5S-5P laser frequency to the near 87Rb (F = 2 → F ′ = 3

)cycling transition (∆I ≈ 1.5 GHz red detuned) while scanning the 5P -Rydberg laser

frequency over the sum frequency resonance. This method should work quite well for

high-intensity lattice experiments such as those investigating the energy level shifts

caused by ponderomotive optical lattices. For experiments involving lower-intensity

lattices, such as driving transitions using amplitude-modulated ponderomotive opti-

cal lattices, the light shift on the Rydberg state is reduced significantly, so the ability

to localize transitions using the spatially modulated light shift is correspondingly re-

duced.

Another perhaps more straightforward approach to spatially localizing the Ryd-

berg excitations to a volume corresponding to the ponderomotive optical lattice is

to address the chromatic aberration in the optical system that leads to the focusing

mismatch of the 5S − 5P and lattice beams. At the output of the fiber, these

beams are polarized linearly and orthogonally with respect to one another. This

configuration suggests the use of a birefringent lens, which could be designed with

a differential focal length for two orthogonal axes appropriate for compensating the

chromatic aberration in this lens system. Such a lens could be incorporated into

the system (replacing, e.g., L1 in figure 5.3) such that the 5S-5P and lattice beams

focused at the same distance from L1. In this case, the focal spot of the 5S-5P beam

would be slightly smaller than that of lattice beam (by a factor of ≈ 780/1064). In

this way, the Rydberg excitations would be confined to a volume that coincides well

with the high intensity axis of the Gaussian plane wave ponderomotive optical lattice

potential.
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5.4 Microwave Spectroscopy Techniques

As discussed in section 3.4, microwave spectroscopy of transitions between neigh-

boring Rydberg states is a potentially useful tool for investigating the ponderomotive

interaction with a Rydberg electron. In general, precision microwave Rydberg spec-

troscopy requires a high degree of control over external fields due to the Rydberg

atom’s sensitivity to these fields. In certain cases, however, the states can be chosen

such that the transition frequency is quite insensitive to perturbing fields. The nS

to (n + 1)S Rydberg transition is a useful instance of this type of transition that is

relatively insensitive to external fields. For experiments performed in a MOT, uti-

lizing this type of transition is essential since the inhomogeneous fields of the MOT

would tend to broaden and split spectral line profiles. In this section, we focus the

discussion on the microwave spectroscopy of the nS to (n+1)S transition in a MOT.

Figure 5.1(a) shows the timing diagram for a typical Rydberg atom experiment. In

microwave spectroscopy applications, microwaves are applied to the Rydberg atoms

in the interval of time between the photo-excitation and state selective field ioniza-

tion. In our experiments, microwaves are delivered to the Rydberg atoms via a horn

placed outside the vacuum chamber at a distance of about 40 cm for the MOT. The

horn directs radiation onto the Rydberg atoms through large glass viewports. The

chamber and electrodes do shield the atoms from the radiation to some degree, but

a sufficient amount impinges on the atoms to transfer population efficiently between

Rydberg states.

After the application of microwaves, a field ionization ramp is applied to deter-

mine the Rydberg state distribution. For spectroscopy between neighboring Rydberg

states, states must be chosen such that the initial and target states are resolvable
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in the field ionization spectrum. Since the energy spacing of the initial and target

states for many experiments of interest is less than 40 GHz, the ionizing fields will

not differ by a large amount. In this case, certain states are distinguishable in field

ionization spectra while others with similar energy separation are not.
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Figure 5.6: Rydberg energy level structure as a function of applied electric field (Stark map). The
zero field state labels are shown for some of low angular momentum states, which are separated from
the degenerate hydrogenic manifolds because of their quantum defects. Inset shows field ionization
signal for two states which are nearby in energy yet resolvable in the spectrum.

With our electric field ionization ramps (slew rates in the 20 V/µs range), the

low-angular-momentum states (S, P , and D) traverse the Stark map adiabatically,

meaning that the zero-field energy ordering of the states is preserved as the electric

field is increased and states are ionized [1]. Thus, the energy of states between two hy-

drogenic fans will tend to converge as the electric field is increased and subsequently

ionize at similar electric fields (see figure 5.6). Meanwhile, the energy splitting of

states separated by a hydrogenic fan tend to increase, subsequently ionizing at dis-

tinct electric fields (see figure 5.6). Note, the nS and nP states appear to cross the
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hydrogenic states in figure 5.6. At low fields the coupling is weak, but it grows with

electric field and the states are deflected as just described. The inset shows the field

ionization spectrum for the latter case for an nS to (n + 1)S transition. These are

clearly distinguishable while the (n+1)S to nP , for example, would not be. The nS

to nP field ionization signals would also be distinguishable.

In order to obtain a microwave spectrum for a Rydberg transition, the experimen-

tal sequence shown in figure 5.1 is used with microwave radiation at given frequency

applied in the time interval between Rydberg excitation and field ionization. Two

gates of a photon counter counting pulses from the micro-channel plate detector are

used to determine (Gate A) the total number of counts and (Gate B) the number

of counts corresponding to population in the target state of the Rydberg transition.

Using the information from these gates, the fraction of population transferred to

the target state is determined at a particular frequency. By repeating this process

over a range of frequencies, the target state population fraction (Gate B / Gate A)

as a function of microwave frequency, which corresponds to the spectral line of the

Rydberg transition, can be constructed.

Figure 5.7 shows spectra recorded in this way for the 58S → 59S. This is a

two-photon transition resulting from the absorbtion of two photons from a single

frequency source. The frequency displayed on the x-axis in figure 5.7 is the frequency

of the source. This transition can be described fairly well by the solution to the two-

level Rabi problem (see, e.g., section 3.3 of reference [84]). Following this reference

and assuming the population starts in the initially laser-excited state, the target

state probability is given by

|ctarget(t)|2 =
χ2

δ2 + χ2
sin

(√
δ2 + χ2

2
t

)
(5.1)

where χ is the Rabi frequency of the transition (as in equation 4.11) and δ is the
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Figure 5.7: Microwave spectra for the Rydberg transition 58S → 59S for (a) a relatively large Rabi
frequency (≈ 100 kHz) and (b) intensities yielding a Rabi frequency about a factor of five smaller
than in (a).

detuning from resonance. While this model succeeds in describing the basic features

of the microwave spectra in figure 5.7, it is based on a one-photon transition. For a

more rigorous treatment of the two-photon Rabi problem based on three-level system

where the two-photon transition proceeds off-resonantly through the intermediate

state (which would be 58P for the 58S → 59S transition) see reference [85].

The spectrum in figure 5.7(a) is typical of microwave spectra on this transition for

a nominal microwave output of around -20 dBm directed onto the Rybderg atoms

as described above. The field ionization delay (see figure 5.1), which is the same



98

as the microwave interaction time, for this spectrum was 20 µs. In this parameter

range, equation 5.1 predicts the presence of substantial side peaks and a central

peak magnitude which is strongly modulated as a function of the Rabi frequency (i.e.,

applied microwave power) and microwave interaction time t. This strong modulation

is also observed experimentally in response to varying these parameters.

The spectra in figure 5.7(b) were taken at a microwave power of about -27 dBm

(low intensity limit). The blue and green spectra were taken for two different mi-

crowave interaction times. The scale of the frequency axis has been reduced to show

the central feature. Note, the relative magnitude of the side peaks are substantially

smaller in the low-intensity limit than at higher intensities. The spectral width of

the transition is strongly dependent on the length of the microwave interaction time.

The blue spectrum was taken for a 20 µs interaction time and has a width of about

25 kHz, which is essentially transform limited. The green spectrum was taken for

50 µs interaction time and has a width of about 15 kHz, which is only slightly larger

than the transform limit.

The spectral widths of these transitions are nearly transform limited in spite of the

presence of perturbing electric and magnetic fields. The insensitivity to stray electric

fields results from the similarity in the polarizabilities of neighboring S states. The

energy levels of the nS and (n + 1)S states would both be shifted by by similar

amounts such that the differential level shift is quite small. The spectral profile of

the nS → (n + 1)S transition also shows no discernable effect from the 2 G/cm

magnetic field gradient from the MOT trapping fields. The presence of a small

magnetic field splits the both the nS and (n + 1)S levels into two levels each due

to the interaction of the electron spin with the external field. Since the Landé g-

factor of the two states is the same and the radiation field does not couple states
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of opposite spin, the transition frequency is unperturbed by the magnetic field. A

similar argument can be made for the apparent magnetic field insensitivity of other

two-photon transitions of the type nL → (n + 1)L (see reference [28]).
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Figure 5.8: Rabi frequencies |χ| (scaled by B/h = WQ,max/4h from equation 4.15) of the transitions
nS ↔ (n + 1)S vs principal quantum number, n, and lattice position, z0. If we take the underlying
amplitude-modulated ponderomotive lattice to have temporal modulation amplitude of B = h ×
500 kHz, the grayscale for the Rabi frequencies ranges from 0 to 112 kHz.

In figure 5.8, we present the Rabi frequency plot (see discussion in chapter IV)

for the nS → (n + 1)S transition in an amplitude modulated ponderomotive optical

lattice. Rabi frequencies of order 100 kHz have been calculated for anticipated ex-

perimental conditions. This Rabi frequency compares favorably with the measured

spectral widths of this transition in figure 5.7. Thus, it should be possible to trans-

fer significant population from the initial to the target state using the amplitude-

modulated lattice. The spectral width of the 53S → 53P transition is broadened to

about 5 MHz by external fields (see figure 5.9). Since anticipated Rabi frequencies

are significantly smaller than the broadened linewidths of these transitions, transfer
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of significant population to the target state in this case would not be possible. This

contrast highlights a significant advantage of working with the nS → (n + 1)S tran-

sitions for initial demonstrations of driving transitions with an amplitude-modulated

ponderomotive optical lattice.
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Figure 5.9: Microwave spectra for the Rydberg transition 53S → 53P for varying magnetic fields
(a) and electric fields (b).

Figure 5.9 shows microwave spectra taken on the 53S1/2 → 53P3/2 transition. The

line profile in (a) is split into six separate lines. The presence of small magnetic fields

splits the 53S1/2 states into two states corresponding to the two electron spins while

the 53P3/2 splits into four states. Due to differing g-factors of the 53S1/2 and 53P3/2
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states, the dipole selection rules allow for six distinct transition frequencies, which

are clearly evident in the blue spectrum in figure 5.9(a). After adjusting magnetic

field compensation coils, the splitting can be significantly reduced as seen in the

green spectrum in figure 5.9(a). Switching off the MOT magnetic field (≈ 2 G/cm

gradient) would further reduce the linewidth and will be required to reach linewidths

in the range of 100-200 kHz.

The magnitude of the electric polarizability of the 53P state is significantly larger

than the polarizability of the 53S state (see equation 3.20), and the quadratic Stark

shift of these states is to lower energy. Thus, the presence of small electric fields effects

a substantial net transition frequency shift which reduces the transition frequency as

the field strength increases. This can be seen clearly in the Stark map in figure 5.6

and is demonstrated experimentally in figure 5.9(b). In these spectra, the voltage on

the MCP semi-circular electrode (see figure 1.2) is held at various voltages shown in

the legend. A voltage difference of 100 mV between the this electrode and the LVIS

semi-circular electrode corresponds to an electric field of ≈ 26 mV/cm at the location

of the MOT. The electric field experienced by the atoms is minimized when the center

frequency of the spectral line is maximized. In the experiments in figure 5.9(b), the

maximum value of the center frequency occurs between 100 mV and 200 mV. Using

this method, the electric field component defined by the geometry of the electrode

pair can easily be minimized to less than 10 mV/cm.

5.5 Amplitude Modulating a Ponderomotive Optical Lattice

In chapter IV, we discussed inducing transitions in Rydberg atoms by resonantly

amplitude-modulating the ponderomotive optical lattice in which they were im-

mersed. To provide this intensity modulation of the applied optical field, which
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must be highly tunable over a range of tens of GHz, we use a broadband, fiber-

coupled, lithium niobate electro-optic modulator (P/N: AZ-AV1-40-PFA-PFA-106-

UL-S, EOSPACE, Inc.). In this section, we discuss techniques appropriate for using

this device to modulate the output over a range of frequencies with close to 100 %

temporal modulation depth.

The modulator listed above is a Mach-Zehnder type, polarization maintaining,

z-cut, lithium niobate modulator which operates from DC to 40 GHz at peak powers

up to about 200 mW. Additionally, it has the following specifications: 2.0 dB optical

insertion loss, Vπ(1 GHz) = 3.2 V, DC bias Vπ(0) = 1.2 V, and a 19 dB extinction

ratio. At 40 GHz, the frequency response of the modulator is down about 3 dB

compared to the 1 GHz response, which smoothly decreases by this 3 dB amount

over the range of operating frequencies.

From Signal Generator

Microwave AmplifierCu Heat Sink

Electro-Optic Modulator

Fiber 

Output

Fiber

Input

DC Bias Input

AM Input

Figure 5.10: Picture of electro-optic modulator setup used to created amplitude modulated pon-
deromotive potentials.

The physical setup of the modulator is represented schematically in figure 5.3 and

shown in the picture in figure 5.10. The DC bias input is used to set the point on

the transmission curve (see figure A.1) about which the modulation signal is applied.
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For our application, this is normally the quadrature point which corresponds to 50 %

transmission. The AM input is a high frequency input that controls the amplitude

modulation of the output. For our application, the AM signal is an amplified, single

frequency, sinusoidal microwave signal from a signal generator (P/N: N5183A-540-

1E1-UNT-UNW, Agilent Technologies) which produces a power output up to 7 dBm.

The RF Vπ = 3.2 V as quoted above, which corresponds to a microwave power of

20.1 dBm. To achieve powers in this range, the microwaves from the signal generator

are amplified by a medium-power, solid-state amplifier (e.g., P/N: ALS02406, Alde-

tec, Inc.) before being applied to the AM input. For our application, the nominal

modulation amplitude corresponds to the RF Vπ/2.

The transmission T through the modulator as a function of applied voltage Vapplied

is given by

T (Vapplied) = sin2

(
π

2

Vapplied

Vπ

)
(5.2)

For our applications, the applied voltage consists of the sum of a DC voltage Vbias

and an RF signal at frequecy Ωm with amplitude VA such that

T (Vbias, VA, t) =
1

2
− 1

2
cos

[
π

(
Vbias

Vπ(0)
+

VA

Vπ(Ωm)
sin(Ωmt)

)]
(5.3)

where the use of two values of Vπ(0) and Vπ(Ωm) reflects the frequency response of

the modulator. Assuming that the signal is monitored on a slow detector that time

averages over the fast modulation at frequencies Ωm, the time average transmitted

output is measured to be (see appendix A)

T (Vbias, VA, t) =
1

2

[
1− J0

(
πVA

Vπ(Ωm)

)
cos

(
πVbias

Vπ(0)

)]
(5.4)

where J0 is the zeroth order Bessel function. This equation provides a good descrip-

tion for the output of the modulator measured in figure 5.11.



104

The output of the modulator can be monitored on the photodiode PD in figure 5.3

with the beam reflected from M3 blocked to eliminate interference effects. The bias

point can be easily set by dithering the DC bias input and noting the voltage corre-

sponding to the maximum or minimum output (for modulation about an extremum

of the transmission curve) or the voltage corresponding to where the output is the

average of the maximum and minimum outputs (for modulation about the quadra-

ture point). In our setup, computer generated analog modulation output is routed

to the DC bias input of the modulator and the photodiode monitor signal is routed

to an analog input on the computer allowing this process to be computer controlled.
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Figure 5.11: Transmission profile through the electro-optic modulator as a function of bias voltage
and microwave power (i.e., the amplitude of AM signal). For this data, Ωm = 25.5 GHz.

The temporal modulation depth is dependent on the amplitude VA of the AM

signal, and must be set precisely at Vπ(Ωm)/2 at the quadrature point for a depth of

100 %. The following is a technique for using a slow detector to appropriately cali-

brate the microwave power required to produce the desired modulation. Figure 5.11

shows the transmission through the modulator as a function of the DC bias voltage
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Vbias and the microwave power output from the signal generator, which is amplified

by ≈ 30 dBm and sent to the AM input of the modulator. We notice at two mi-

crowave powers (near -8 dBm and 0 dBm) the transmission through the modulator is

independent of the DC bias voltage Vbias. This behavior is predicted by equation 5.4

to occur when the argument of the Bessel function is equal to a zero of the zeroth

order Bessel function (J0(x0k) = 0) such that the corresponding amplitude VA is

given by

VA =
x0k

π
Vπ(Ωm) (5.5)

Since x01 = 2.4048, this condition is first satisfied at an amplitude of VA ≈ 0.77 ×

Vπ(Ωm). The target amplitude of Vπ(Ωm)/2 can be achieved by locating the VA ≈

0.77×Vπ(Ωm) point where the output is constant over the full range of bias voltages

and reducing the microwave power by ≈ 3.75 dBm, as shown in figure 5.11.

The transmission curve (see figure A.1) displays a temperature dependence such

that a change in temperature will displace the curve with respect to the applied

voltage. This results in a temperature drift of the bias voltage Vbias appropriate

for a particular type of modulation (e.g., the quadrature point). For steady-state

operating conditions, the bias voltage is stable over the timescale of several minutes.

However, changes to the operating conditions that change the heat load on the device

will cause an abrupt drift of the bias voltage which stabilizes as the modulator reaches

a constant temperature. An important example of this is the drift that occurs when

the microwave power sent to the modulator’s AM input is changed. Usually the bias

voltage will stabilize within thirty seconds of changing the power. In general, the

time required for stabilization grows with the magnitude of the change in power.

The z-cut modulators are susceptible to a parasitic chirp on the modulator’s out-

put which is often quantified in terms of the chirp parameter [86]. We have not
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determined the total effect of this parasitic chirp on the standing wave produced

with the output of the modulator. Note that resonant phase modulation of a pon-

deromotive optical lattice can also drive transitions and should be a manageable

effect if the phase modulation of the lattice is significantly less than 2π. However, a

reduction in the interference of the lattice beams at the location of the atoms would

reduce Rabi frequencies. We have observed that the visibility of the interference,

measured using the Michelson interferometer described in section 5.2, remains quite

large during the operation of the modulator at frequencies near 20 GHz.

The lattice is produced by retro-reflecting a beam, which is amplitude-modulated

at high frequencies (e.g., 20 GHz), from a mirror placed roughly dretro = 40 cm

from the location where the beam must interfere with itself. The high-frequency

modulation produces pulses of light lasting for a time 2π/Ωm and covering a spatial

extent of Lpulse = 2πc/Ωm. For Ωm = 2π × 20 GHz, Lpulse = 15 mm, which is

small compared to dretro = 40 cm. In order for the beams to interfere properly

at the MOT location, the condition which must be satisfied is 2dretro = NLpulse,

where N is an odd integer. Experimentally, this distance dretro would be optimized

(over a distance Lpulse) by maximizing the Rabi frequency of transitions occuring in

amplitude-modulated lattices. It may also be possible to set dretro using a scheme

that probes the state-dependent nature of the lattice induced shift. In the misaligned

case, no lattice is formed at the location of the atoms, and the ponderomotive shift

would be not be observable on a transition between Rydberg states.

5.6 Effects of Rydberg Atom Motion in a Ponderomotive Optical Lattice

For most Rydberg states, the energy level shift in a ponderomotive optical lattice

strongly depends on the position of the Rydberg atom in the lattice. For the case of an
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amplitude modulated lattice, the level shifts and Rabi frequencies are lattice-position

dependent. Rydberg-atom motion in the lattice (normal to the lattice planes) arises

primarily from two sources, thermal motion and ponderomotive forces caused by

inhomogeneities in the applied optical field. Thermal motion will be important for

cases where the lattice trap depth is smaller than average thermal energy kBT of the

ground state atoms (from which the Rydberg atoms are created). Typical Rydberg

atom experiments in optical lattices (e.g., driving transitions with an AM lattice)

occur over a timescale of 5 µs. In this time, an atom moving freely with the average

thermal velocity characteristic of T = 30 µK moves ≈ 270 nm (normal to the lattice

planes), which is more than half a lattice period (532 nm) in a 1064 nm standing

wave lattice. Motion on this scale during a lattice experiment would cause the Ryd-

berg atom to sample a variety of energy level shifts or Rabi frequencies significantly

altering the outcome of the experiment relative to stationary atoms.

We first consider the effects of motion on coupling Rydberg states using amplitude-

modulated lattices. In figure 5.12, we present the target state population accounting

for effects of motion using the following simple model. Experiments of this type

anticipated to fall in the regime where the thermal energy is comparable to or exceeds

the depth of the ponderomotive optical lattice. Therefore in this consideration, we

assume the atoms move freely at a constant velocity and ignore the forces arising

from the lattice. For a case of considerable interest (58S, AM lattice parameters

leading to 100 kHz Rabi frequency), the thermal energy equals the lattice depth

around 20 µK. For a Rydberg atom sampling a variety of Rabi frequencies over the

duration tint of a time-dependent perturbation which resonantly couples an initial

and target state, the target state population is given by

P (tint) = sin2

(
1

2

∫ tint

0

χ(t)dt

)
(5.6)
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The Rabi frequency in a ponderomotive optical lattice has the form χ(z) = χ0 cos(2kz),

where k = 2π/1064 nm. For an atom moving freely through the lattice with veloc-

ity v, the position of the atom is given by z(t) = z(0) + vt. Therefore, the time

dependent Rabi frequency experienced by this atom is χ(t) = χ0 cos[2k(z(0) + vt)].
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Figure 5.12: Target state fraction accounting for thermal motion of atoms as a function of (a) inter-
action time for given Rabi frequency and temperature and (b) Rabi frequency for given temperature
(red circles) and temperature for a given Rabi frequency (black squares).

The plots in figure 5.12 were constructed by calculating the target state pop-

ulation from equation 5.6 averaging over trajectories in which z(0) is distributed

uniformly over a lattice period and v is chosen from a thermal velocity distribution
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(v = vrms

√−2 ln x, where vrms =
√

kBT/M and x is a random number uniformly

distributed over the interval (0,1)). Figure 5.12(a) shows the target state popula-

tion P (tint) for anticipated experimental parameters, χ0 = 100 kHz and temperature

T = 30 µK. The target state probability increases to its maximum value of ≈ 27 %

in a time 1/2χ0 and proceeds to a slightly lower steady state value of ≈ 20 % in

a time 2/χ0. No Rabi oscillations are visible due to the significant range of Rabi

frequencies sampled in the lattice. However, Rabi oscillations for even order transi-

tions should, in principle, be observable in experiments with very cold atoms (whose

thermal energy is much less than the lattice depth) that are created near the minima

of the lattice potential and localized near the minima by ponderomotive forces.

In figure 5.12(b), the maximum target state population (defined in figure 5.12(a))

is plotted as a function of temperature T for a Rabi frequency χ0 = 100 kHz (black

squares) and as a function of Rabi frequency χ0 for a temperature T = 30µK (red cir-

cles). The maximal target state fraction becomes larger as the temperature decreases

(black squares), which motivates the use of sub-Doppler laser-cooling techniques that

are employed in our experiments (see section 5.1). Note that as the temperature

drops below 30 µK the assumption that the lattice potential can be ignored becomes

increasingly invalid. The maximal target state fraction grows as a function of Rabi

frequency χ0 (red circles) eventually saturating near 70 % due to the assumption in

the model that atoms are uniformly distributed in the lattice.

Another important case is the limit in which the thermal energy of the atoms is

negligible compared to the depth of the applied ponderomotive optical lattice. In this

case, the energy level shift of a given Rydberg state as a function of lattice position

(see, e.g., figure 3.4) is the potential which governs the motion of Rydberg atoms

over the duration of experiments. In this consideration, we describe a qualitative
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picture of the effects of this motion on experiments spectroscopically probing the

Rydberg-state dependent level shifts on microwave transitions between neighboring

Rydberg states. The following consideration could be made more quantitative using

a model analogous to the one used to construct figure 5.12. For this case, the model

would need to track the average differential shift (with respect to the initial and

target state) experienced by an atom accounting for its motion, which is governed

by the ponderomotive optical lattice potential.

Atoms excited near the lattice potential maxima are created with enough po-

tential energy to allow the range of motion to nearly cover the extent of a lattice

period. Since the differential shift between two neighboring states (labeled |i〉 and

|j〉) is of the form ∆WQ
ij (z) = WQ

ij (0) cos(2kz), motion over a lattice period covers a

range of energy shifts (both positive and negative) which would tend to broaden the

microwave transition between states |i〉 and |j〉 and mitigate to a degree any overall

energy shift. Meanwhile, atoms excited near the lattice potential minima are created

with little potential energy and are thus confined to points in the lattice near their

respective minima. These atoms sample a small range of differential shifts which are

either positive or negative depending on the Rydberg states |i〉 and |j〉. The spectral

line for this transition should exhibit a net frequency shift with little overall broad-

ening. From the discussion in sections 3.3 and 3.4, it should be possible to control

the initial potential energy of Rydberg atoms in a lattice by tuning the Rydberg

excitation laser frequency. Given the ability to control the initial potential energy

of Rydberg atoms in a lattice, demonstrating the potential-energy dependent effects

on the |i〉 to |j〉 microwave transition as described above would provide substantial

proof of Rydberg atom trapping in ponderomotive optical lattice.



CHAPTER VI

Outlook

In this thesis, we have examined the ponderomotive interaction between a Ryd-

berg atom and an applied optical field. In particular, we focused on the case where

the applied field is a 1D standing wave optical lattice. Using this field geometry,

Rydberg atom motion (normal to the lattice planes) is governed by ponderomotive

forces arising from spatial inhomogeneities in the applied field. Furthermore, am-

plitude modulation of this type of applied field at appropriate frequency couples

Rydberg states allowing control of the internal states. Our theoretical investigations

have produced a well-defined parameter space for producing measurable pondero-

motive interactions with Rydberg atoms. These considerations have informed the

development of techniques and the design of experiments to demonstrate control of

Rydberg atom center-of-mass motion and internal states.

The next step is to utilize the techniques developed in chapter V to look for spec-

troscopic evidence of Rydberg-state dependent shifts on microwave transitions be-

tween neighboring Rydberg states (see figure 3.7). This type of measurement can be

extended to demonstrate 1D Rydberg atom trapping as discussed in section 5.6. The

key to these experiments is localizing Rydberg excitations to the volume subjected

to the ponderomotive potential. With this capability in place, coupling Rydberg
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states with a modulated optical lattice should be possible by applying the amplitude

modulation techniques described in section 5.5 to the lattice beams and looking for

population transfer from the initial to target state.

For initial experiments, the transition, nS → (n + 1)S, is the best candidate for

obtaining clean results. In order to work with other transitions of interest (e.g., mea-

suring quantum defects on the nD to nf or nG transitions), a new apparatus, which

is tailored to microwave spectroscopy applications (see the description of apparatus

used in reference [28, 29]), is required. For microwave spectroscopy on most Ryd-

berg transitions, precise control of electric and magnetic fields is essential. This will

require MOT magnetic fields to be switched off [87–89] during the microwave probe.

The apparatus should also be designed to maximize optical access to accommodate

multiple lattice beams (for 2D and 3D lattices).
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Figure 6.1: Target state fraction vs. Microwave interaction time for two different densities.

Development of an apparatus tailored to microwave spectroscopy could also be

useful in studying interactions between Rydberg atoms [88, 90]. Figure 6.1 shows

Rabi oscillations of the target state population on the 65S1/2 → 66S1/2 for two differ-
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ent Rydberg atom densities. While the frequency of the Rabi oscillation is the same

for both densities, the decay rate of the oscillation amplitude is larger for the high

density case (red circles). The increased damping most likely reflects decoherence in

the Rydberg atom gas due to interactions among Rydberg atoms in the many-body

system. Studies of this type, over a variety of timescales, densities, and Rydberg

states may shed light on the decoherence processes in cold Rydberg gases. Similar

observations have been made using a variant of the Ramsey method [91].
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Tip Electrode
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Figure 6.2: (a) Diagram of charged particle imaging using a tip electrode and (b) electrode package
for controlling electric fields.

Figure 6.2(a) shows a schematic representation of a charged-particle imaging tech-

nique currently being developed in our group. By applying a voltage to the tip

electrode, the resulting radial electric field projects charged particles originating, in

this case, from the ultracold plasma located a distance d1 from the tip. A magnified

image of the ionic distribution of the ultracold plasma is projected onto the detector

at a distance d2 from the tip with a magnification factor of M = d2/d1. Such an

apparatus is well-suited for time-resolved studies of plasma expansion and can also
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be adapted to imaging Rydberg atom distributions in expanding plasmas. This capa-

bility would be useful in the studies of Rydberg atom formation in ultracold plasmas

described in section 2.3.2. Another exciting possibility for this apparatus is imaging

Rydberg excitations in the so-called dipole-blockade regime (see section 7.2.1 in ref-

erence [92]). A primary objective of this type of investigation would be to observe

anticorrelation in the distribution of Rydberg excitations.
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APPENDIX A

Bessel Function Expansion of Electro-Optic Modulator
Transmission Function

1

T=IT/I0

V
π

Vapplied

V
A

-V
A

t

V
 (t)

2
π

/Ω
m

Vbias

Figure A.1: Transmission through EOM as a function of applied voltage.

The transmission through an electro-optic modulator as a function of the applied
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voltage is given by [93]:

T (Vapplied) = sin2(
π

2

Vapplied

Vπ

)

Vapplied = Vbias + VA sin(Ωmt)

T (VA, Vbias, t) =
1

2
− 1

2
cos[

π

Vπ

(Vbias + VA sin(Ωmt))]

x =
πVA

Vπ(0)
, φ =

πVbias

Vπ(Ωm)
, θ = Ωmt

where the use of Vπ(0) and Vπ(Ωm) reflects the frequency response of the modulator.

T (x, φ, θ) =
1

2
− 1

2
cos(x sin θ + φ)

To evalulate T (x, φ, θ), perform Bessel function expansion of T , we begin with the

Bessel generating function is given by [94]

e(x/2(t−1/t)) =
∞∑

n=−∞
Jn(x)tn

t = eiθ ⇒ eix sin θ =
∞∑

n=−∞
Jn(x)einθ

t = e−iθ ⇒ e−ix sin θ =
∞∑

n=−∞
Jn(x)e−inθ =

∞∑
n=−∞

(−1)nJn(x)einθ

cos(x sin θ + φ) = (eiφeix sin θ + e−iφe−ix sin θ)/2

=
1

2

∞∑
n=−∞

(eiφ + (−1)ne−iφ)Jn(x)einθ
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n = 0 → cos φJ0(x)

n ∈ Zeven → cosφ

∞∑
neven=−∞

Jn(x)einθ = 2 cos φ

∞∑
neven=2

Jn(x) cos(nθ)

n ∈ Zodd → sinφ

∞∑
nodd=−∞

Jn(x)einθ = −2 sin φ

∞∑
nodd=0

Jn(x) sin(nθ)

T (x, φ, θ) =
1

2
(1−J0(x) cos φ) + sin φ

∞∑
nodd=1

Jn(x) sin(nθ) − cos φ

∞∑
neven=2

Jn(x) cos(nθ)

From this expression, the frequency spectrum of the modulated light field is ev-

ident. If a slow detector is used to monitor the output of the modulator, then the

relevant time averaged intensity output can be obtained from

T (x, φ, θ) =
1

2
(1− J0(x) cos φ)

In terms of the physical parameters in the system,

T (VA, Vbias) =
1

2

[
1− J0

(
πVA

Vπ(Ωm)

)
cos

(
πVbias

Vπ(0)

)]

The output intensity of the modulator is independent of the bias voltage when

the microwave power input to the modulator is set such that

VA =
Vπ

π
x0k

where x0k is the kth root of the J0(x) Bessel function.
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