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ABSTRACT  

MANUFACTURING SYSTEM VARIATION REDUCTION THROUGH FEED-

FORWARD CONTROL CONSIDERING MODEL UNCERTAINTIES 

by 

 

Jing Zhong 

 

 

 

 

Co-Charis: Jianjun Shi and Jionghua Jin 

 

 

Today’s manufacturing industry is facing greater challenges than ever. To meet 

the higher and stricter challenges and demands, advanced manufacturing paradigms such 

as flexible manufacturing and reconfigurable manufacturing are widely used by 

manufacturers to perform complex manufacturing operations.  Complex manufacturing is 

characterized by a diverse product mix, various sources of disturbances, a large number 

of operations and stations, and the inevitable complex interactions among stations, and 

between processes and products.  This dissertation deals with modeling and process 

control to enhance product quality produced in complex manufacturing processes, 

including multistage manufacturing processes.  The successful deployment of these 

techniques will lead to new levels of quality and robustness in manufacturing. 



xi 

Fundamental research has been conducted on active control of multistage 

manufacturing systems.  This includes three topics related to control and modeling, which 

are: 

o Development of feed-forward controllers for manufacturing processes:  Feed-

forward controllers allow deviation compensation on a part-by-part basis 

using programmable tools. The control actions take into consideration not 

only process mathematical models and in-line measurements, but also the 

modeling and measurement uncertainties. Simulation results show that the 

proposed control approach is effective in variation reduction, both for a data-

driven model and for an engineering-driven model. 

o Stream of Variation (SoV) Modeling with consideration of model 

uncertainties:  To model the variation propagation and model changes in 

Multistage Manufacturing Processes (MMPs) for control purposes, it is 

necessary for the model to capture the impact of model uncertainties that are 

due to the errors of incoming parts or errors arising from other process 

variations.  This development of a modeling method considering model 

uncertainties enables the development of the above-mentioned control 

strategy. 

o Model and controllability validation in real multistage manufacturing 

processes:  As the theoretical basis for model-based predictive controls and 

many other applications in multistage manufacturing, the SoV model is 

validated in real manufacturing processes.  At the same time, the 

controllability in MMPs also needs to be validated in real processes.  The 

results of experiments provide a solid theoretical basis in the SoV theory and 

its applications including active control. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Motivation 

Today’s manufacturing industry faces greater challenges than ever due to the 

increasing levels of competition led by the emergence of new technologies, more 

demanding customers, stricter regulations, and globalization (Koren, 2003).  To meet 

these challenges and demands, advanced manufacturing paradigms such as flexible 

manufacturing and reconfigurable manufacturing are widely used by manufacturers to 

perform complex manufacturing operations.  Complex manufacturing is characterized by 

a diverse product mix, various sources of disturbances, a large number of operations and 

stations, and the inevitable complex interactions among stations, and between processes 

and products. 

Quality and productivity are the key issues in cost reduction and manufacturing 

process performance improvement, and quality assurance is the more important one of 

these.  This is because all performance measures are related to the variations in key 

product characteristics (KPCs). Thus variation reduction has been a primary means for 

product quality assurance in manufacturing.  Traditionally, variation control was 

accomplished through the methodologies of robust design and Statistical Process Control 

(SPC).  Robust design methodology attempts to tune the parameters in a manufacturing 

system so that the process and products are insensitive to variations.  However, it does 

not completely eliminate the sources of variation, nor can it utilize the abundant on-line 

information that is provided by today’s advanced sensing systems.  SPC methodologies 

have been successfully applied in out-of-control condition detection and root cause 

identification, but these methods do not provide systematic means for automatic 

compensation and variation reduction.  In the last decade, however, the idea of variation 
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reduction through active control has been discussed in the literature (Svensson, 1985; Wu 

et al., 1994).  In this approach, active control systems together with in-line sensing 

systems provide the capability of improving final product quality in a part-by-part 

dimensional control basis in manufacturing. The focus of this thesis will be the 

development and validation of system-level active control that takes modeling 

uncertainties into consideration. 

Real-time automatic control systems have long been employed in manufacturing 

industries including the semiconductor and chemical industries. In assembly processes, it 

was originally introduced to improve manufacturing responsiveness to the variety of 

product mix, but it can also serve as an automatic dimensional controller.  One example 

of such a tool is the FANUC C-Flex robot that serves as a fixture to hold parts in 

automobile assembly lines, as shown in Figure 1-1.  This category of reconfigurable tools 

is also known collectively as Programmable Tooling (PT). Another enabler of real-time 

control is a sensing system such as the Optical Coordinate Measuring Machine (OCMM) 

in the automotive industry, which provides in-line measurements that can be used as 

control input signals. 

 

 

Figure 1-1 A C-Flex unit (Fanuc, 2007) 

Automatic control cannot be implemented without another critical necessity, 

which is the mathematical model of the process.  In order to derive the process models, 

two approaches, i.e. the data-driven approach and engineering-driven modeling, were 

developed in the literature.  In processes where it is difficult to obtain models directly 

from process design knowledge or parameter settings, controllers based on data-driven 

models have been proposed.  Examples include the methodology of Design of 



 

3 

Experiment (DOE) -based Automatic Process Control (APC) (Jin and Ding, 2004).  In 

the DOE-based APC method, the system models are estimated from designed 

experiments, and the strengths from both SPC and active control are combined to achieve 

active process compensation.  At the same time, in processes where engineering 

knowledge is available, control strategies can then be developed based on engineering-

driven models.  Specifically, in MMPs, Stream of Variation modeling methodology has 

emerged to derive system models from design blueprints  (Jin and Shi, 1999; Shi, 2006).  

This method has been widely applied in diagnosis, process design, and active control in 

MMPs.  The tooling adjustment or compensation based on the SoV Model was developed 

to achieve an effective improvement in final product quality (Djurdjanovic and Zhu, 

2005; Djurdjanovic and Ni, 2006; Izquierdo et al., 2007).   

However, the mathematical basis for control, both in the data-driven model and in 

the engineering-driven model, has embedded and inevitable modeling errors.   This is 

because uncertainties can enter the system not only as noise from the sensors and from 

disturbances in the system, but also as variations in the model itself.  These model 

uncertainties can be statistical model estimation errors in DOE modeling, or part 

fabrication and other process-induced uncertainties in SoV modeling.  This thesis will 

develop an automatic controller that takes these uncertainties into consideration. 

1.2 Dissertation Research Overview 

1.2.1 Research Problems 

In the control of complex manufacturing processes, several fundamental problems 

and challenges need to be addressed. 

(i) Control strategy under model uncertainties: Mathematical modeling of 

manufacturing processes is one critical enabler to achieve active control for 

variation reduction.  The two approaches of process model development (data-

driven modeling and engineering-driven modeling) both inherently have model 

uncertainties.  For data-driven modeling, the uncertainties come from the process 

variations as well as measurement noises, because the data used to derive models 
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are sampled from the true underlying process; and thus the statistical model is 

always estimated with errors.  For processes for which models can be built from 

engineering knowledge, the true process will randomly deviate from product and 

process design due to uncertainties in fabrication.  As a result of these modeling 

uncertainties, the performance of a controller may degrade during manufacturing 

processes, if the controller was designed only on the basis of these designated 

models.  The development of control strategies for manufacturing processes that 

take into consideration these modeling and measurement uncertainties will 

significantly improve control performance and robustness in process variation 

reduction. 

(ii) Variation propagation modeling for Multistage Manufacturing Processes:  

To accomplish variation reduction, it is necessary to understand the propagation 

of the variation in MMPs by mathematically describing the propagation at the 

system level.  Stream of Variation modeling methodology for MMPs has been 

proposed and theoretically thoroughly studied, but it has not yet taken into 

consideration the model’s uncertainties that are due to the errors of incoming parts 

or errors arising from variances in locating positions.  It is desirable to model the 

variation propagation and model changes in MMPs for control purposes.  This 

model will catch the impact of process uncertainties in modeling and enable the 

development of the above-mentioned control strategy.  

(iii) Model and controllability validation in real-life MMPs:  As the basis for 

model-based predictive controls, as well as many other applications in multistage 

manufacturing, the SoV model has not yet been validated in real manufacturing 

processes, nor has the controllability in MMPs.  Successful validation will 

demonstrate a solid theoretical basis in the SoV theory and its applications, 

including the active control in MMPs. 

1.2.2 Research Objectives 

The objective of this research is to improve control performance for in-process 

active compensation that takes into consideration modeling and observation uncertainties.  
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The effective application of these subjects will significantly improve product quality, and 

reduce production and maintenance costs.  In this thesis, the knowledge of process 

variations and their propagation will be used for modeling and active control in 

manufacturing process, as illustrated in Figure 1-2.   The four blocks whose names are in 

bold font indicate the areas on which this dissertation focuses and to which it provides 

major contributions.  

 

 

Figure 1-2 Diagram of thesis research scheme 

The more specific research tasks for achieving the proposed objective are:  

1. To develop a feed-forward control strategy that takes into consideration 

modeling and control uncertainties based on a regression model that is estimated from 

observation of the process and product variables through designed experiments; 
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2. To develop a modeling method for multistage manufacturing processes that 

takes into consideration modeling uncertainty. Such a model will include errors inherited 

from part fabrication errors as well as errors accumulated from previous assembly 

dimensional errors; 

3. To develop a feed-forward control strategy that takes into consideration the 

modeling and control uncertainties for multistage manufacturing processes; 

4. To design and conduct simulation experiments for both control strategies; and 

5. To conduct an experiment that validates the SoV model and controllability 

validation in a real-life production environment. 

1.3 Related Work 

Corresponding to the research objectives defined in the previous section, a review 

of existing research will be conducted in this section.  This review covers topics of 

modeling uncertainties, active control based on experimental design and its application in 

MMPs, and variation propagation modeling for MMPs. 

1.3.1 Modeling Uncertainties 

The problem of model uncertainty has drawn much attention in the control 

community.  In control systems, models of the system to be controlled always have 

inherent errors due to imperfect data, lack of process knowledge and system dynamics, 

and complexity.  The research dealing with the above-mentioned dynamics and 

disturbances has formed the area of robust control, with a variety of methodologies 

having been developed.  Among them, Model Reference Adaptive Control (MRAC) 

(Åström, 1996) takes into consideration the system dynamic by designing the controller 

with parameters that can be updated according to system output.  2H  or H∞  control 

(Basar and Bernhard, 1995; Kwakernaak, 2002) seeks to minimize the maximum power 

or energy gain of the system so as to stabilize it.  Fuzzy Control (Tanaka and Sugeno, 

1992) has the ability to control the system without requiring complex mathematical 

modeling.  However, MMPs need to control a particular discrete subassembly throughout 
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the process in finite stages, and because of the different nature of manufacturing systems, 

those well-developed robust control techniques cannot be directly applied in the context 

of MMPs. 

1.3.2 Active Control Based on Experiment Design 

In complex manufacturing processes, there are many process variables that 

interact in a complicated manner.  In general, these variables can be classified into 

control (or controllable) factors, x  (variables that can be easily manipulated), and noise 

(or uncontrollable) factors, n  (variables that vary randomly and are difficult to 

manipulate in real time). 

Taguchi’s robust parameter design (RPD) is considered a cost-effective tool for 

reducing process variability, and it aims to set the values of controllable factors to 

eliminate the effect of noise factors on response (Taguchi, 1986).  This is done by 

exploiting the control-by-noise interactions, and setting the controllable factors to 

“optimal” levels so that the response is not sensitive to the variations in noise factors 

within certain ranges.  Experimental design is then employed to obtain the relationship 

among the dependent and independent variables. 

RPD is essentially an off-line technique for determining the control factors’ 

settings at the design stage in order to maximize the robustness of process performance to 

the disturbances of noise.  In this effort, only the distributions of noise factors are 

assumed to be known. 

Some research efforts have been made that use online observations of noise 

factors for process variation reduction.  One approach is explicitly introducing online 

measurable noise factors into a designed experiment, as described in (Pledger, 1996).  

This research showed that the additional information gained from online observations can 

improve the selection of values for the controllable factors.  The robust parameter design 

methodologies in the presence of feed-forward or feedback control systems and 

measurable noise factors were proposed later (Joseph, 2003; Tirthankar and Wu, 2006).  

These approaches, however, do not implement the off-line control variables under 

automatic control scheme. 
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Recently, the methodology named DOE-based Automatic Control (DOE-based 

APC) emerged in literature, as an automatic control strategy based on regression models 

obtained from DOE (Jin and Ding, 2004).  In this research, noise factors were classified 

into “measurable noise factors” and “immeasurable noise factors”.  This initial approach 

assumed that all controllable factors are adjustable on-line, which limits the applicability 

of the methodology in the case where some control factors cannot be changed in real-

time.  Controllable factors can be further classified into on-line controllable and off-line 

controllable factors, with the latter denoting factors that are difficult to adjust online but 

can be set off-line at the design stage (Shi et al., 2005). 

1.3.3 Variation Propagation Modeling 

In order to conduct variation reduction across the stages, it is important to 

mathematically understand the variation flow and accumulation in MMPs.  The part and 

variation flow is shown in Figure 1-3, where xk represents the state of part quality at stage 

k, k = 1, 2, …, N.  yk is the measurement vector of KPCs at stage k.  uk is the system input 

vector, containing process faults in fixtures, welding gun or machine tools, as well as the 

control action if station k is equipped with control actuators.  wk and vk represent the un-

modeled process error and measurement error at stage k, respectively. 

 

Station 1 Station r Station k Station N
x0 x1 xr-1 xr xk-1 xk xN-1 xN

u1 w1 ur wr uk wk uN wN

vr

yr

vN

yN

 

Figure 1-3 Stream of variation in an MMP 

Since product and process design are available for MMPs, it is possible to develop 

engineering-driven modeling methods.  But due to the complex inter-stage correlation, 

modeling for MMP is relatively new.  The essence of engineering modeling is to 

mathematically represent the knowledge in terms of relationships between potential 
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process faults and quality of KPCs.  The state space model concept in automatic control 

theories was first applied in discrete-manufacturing process modeling  to describe the 

variation propagation in a 2-D automotive body assembly process (Jin and Shi, 1999).  A 

“datum flow chain” (DFC) concept was proposed to identify and define the kinematic 

constraints and mates in the assembly process (Mantripragada and Whitney, 1998).  The 

state space model concept was then adopted for modeling multistage machining 

processes (Huang et al., 2003).  These variation propagation modeling techniques 

provided the basis for the process control as well as for other applications in MMPs, and 

the modeling technique proposed in this dissertation research will provide the ability for 

further reduction of variations under modeling uncertainties including the impacts of 

initial part variations. 

1.3.4 Active Control in MMPs 

Application of in-process control in MMPs is complicated, in the sense that 

variation is propagated and accumulated throughout the production line.  Therefore, a 

successful control strategy for MMPs should be a strategy with system-level 

optimization, rather than stage-level optimization, as the control objective. 

In-process control for MMPs has undergone intensive study, and promising 

results have been reported in the literature, which will be reviewed in the subsequent 

paragraphs.   There are two basic mechanisms in control theory, namely a feedback 

control and a feed-forward control.  Between them, the feedback control mechanism, by 

using information from downstream stages to determine the control actions at the current 

stage, is only effective when the control objective is to reduce the shift in mean values.  

Only the feed-forward control scheme fits the research objective of the process variation 

reduction in MMPs. 

Many research efforts focusing on a feed-forward control in manufacturing 

processes have been reported in the literature.  Most of them are on stage-level variation 

reduction.  Feed-forward control with a sensor system has been employed in various 

assembly processes (Svensson, 1985; Wu et al., 1994), and has been adopted by 

automobile manufacturers like Nissan (Sekine et al., 1991).  However, stage-level active 
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control does not factor in the propagation and cross-stage relationship of variation from 

previous stages.  Thus it is effective only at the last stage of an MMP, or it is effective if 

the compensated KPC is located on parts that will not be affected by downstream 

operations.  Otherwise, the stage-level optimal compensation may not be optimal at the 

system level and thus unable to deliver the best final product at the end of the MMP.  

For system-level active control, an optimal control scheme was proposed in 

mechanical assembly using state transition models (Mantripragada and Whitney, 1999).  

This approach treats control as a stochastic discrete-time linear optimal regulator 

problem, and obtains a deterministic controller, considering parts as the only source of 

variation in the process.  A similar optimal control problem was analyzed, with 

application in semiconductor manufacturing (Fenner et al., 2005).  They used Dynamic 

Programming (DP) as the optimization tool, taking the control magnitudes in each 

direction on each single part, or controllable environmental variables at each 

manufacturing stage, as the decision variable.  However, in an MMP such as an 

automobile assembly, which usually involves large numbers of stages and assemblies, the 

possible control actions form a solution space of extremely high dimensions.  This is 

because each subassembly introduces six degrees of freedom as decision variables, and 

even if the slip plane is only considered as a 2-D case, it will introduce three degrees of 

freedom.  Thus the curse of dimensionality for DP will limit the application of the above-

mentioned analytical global-optimal controller in MMP control.  In this case of a high 

dimensional solution space, a simpler sub-optimal controller with adequate performance 

will be an ideal alternative to the one that attempts to solve global optima.  Under this 

simplified objective, a controller that  adjusts the position of fixtures and the tool path to 

improve the final product quality was proposed for multistage machining process 

(Djurdjanovic and Zhu, 2005).  The realization of a feed-forward control using a 

Programmable Tooling (PT) in a multistage assembly process was also analyzed, with the 

target of the minimization being deviation, rather than the variation of the final product 

(Djurdjanovic and Ni, 2006).  A feed-forward controller that aims at reducing final part 

KPC variation, and which takes  into account controllability and measurement noises was 

developed later (Izquierdo et al., 2007).  These studies investigated control strategies that 

consider the controllability and capability of the actuator respectively, but without taking 
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into account model uncertainty.  The research in this dissertation will provide a control 

strategy that works under modeling errors. 

1.4 Dissertation Outline 

This dissertation is presented in a multiple-manuscript format.  Each of Chapters 

2, 3, and 4 is written in the format of an individual research paper, which consists of an 

introduction, the main body sections, conclusions, and references.  The chapters are as 

follows. 

Chapter 2 describes the design of a feed-forward controller based on models that 

are obtained from designed experiments, where the true process variable relationships can 

be captured only by statistical modeling.  The results of a case study indicate that this 

approach can efficiently improve controller performance.  

Chapter 3 is devoted to the SoV model validation, which was previously verified 

using only simulation and commercial software.  A real-life experiment also 

demonstrates the controllability in multistage manufacturing using actuators together 

with an in-line sensing system. 

Chapter 4 explores the problem of control with uncertainties in the SoV model 

and discrete manufacturing processes. 

Finally, Chapter 5 summarizes the conclusions and contributions of the 

dissertation.  Several topics for future research are also proposed.  
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CHAPTER 2 
 

DESIGN OF DOE-BASED AUTOMATIC PROCESS CONTROLLER WITH 
CONSIDERATION OF MODEL AND OBSERVATION UNCERTAINTIES 

Abstract 

Robust parameter design (RPD) has been widely used as a cost-effective tool in 

quality control to reduce variability, in which the controllable factors are set to minimize 

the variability of response variables due to noise factors, assuming their distributions are 

known.  It is essentially an off-line tool without considering that some noise factors can 

be measured on-line.  Recently, the concept of DOE-based automatic process control has 

been proposed for on-line process control based on regression models obtained from 

DOE and with consideration of the on-line measurement of noise factors.  The existing 

literature investigates the DOE-based APC with assumption that both regression models 

and the on-line noise measurement are precisely known, which limits the applicability of 

the technique.  This paper develops the DOE-based APC scheme that considers both the 

observation and the modeling uncertainties. The controller is implemented under two 

APC strategies, i.e. cautious control strategy and certainty equivalence control strategy.  

The comparison among on-line APC and off-line robust design approaches demonstrates 

that automatic controller with consideration of both uncertainties can achieve better 

process performance than conventional off-line design, and is more stable than normal 

DOE-based APC controllers.  The proposed approach is illustrated using an industrial 

process. 

2.1 Introduction 

In complex manufacturing processes, there are many process variables that 

interact in a complicated manner.  In general, these variables can be classified into 

control (or controllable) factors, x  (variables that can be easily manipulated), and noise 
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(or uncontrollable) factors, n  (variables that vary randomly and are difficult to 

manipulate in real time).  Let y denote a quality response of interest, then the relationship 

between x , n  and y can be generally expressed as 

( ),y f= x n  (1) 

Taguchi’s robust parameter design is considered a cost-effective tool for reducing 

process variability, which aims to set the values of controllable factors to eliminate the 

effect of noise factors on response (Taguchi, 1986).  This is done by exploiting the 

control-by-noise interactions and setting the controllable factors to “optimal” levels so 

that the response is insensitive to the variations in noise factors within certain ranges.  

Experimental design is then employed to obtain the relationship of ( )f ⋅  in (1). 

RPD is essentially an off-line technique for determining the control factors’ 

settings factors at design stage to maximize the robustness of process performance to the 

disturbances of noise.  In this effort, only the distributions of noise factors are assumed to 

be known.  While with the advancement of sensing technology, some noise factors can be 

measured or estimated through in-process sensing during production. Examples of such 

factors include temperature, humidity, etc.  It is reasonable to anticipate the process 

performance to be further improved if the process control factors are adjusted according 

to the on-line sensing information of noise factors, rather than based only on the 

assumptions of their distributions. 

Some research efforts have been made to utilize online observations of noise 

factors for process variation reduction.  One approach is explicitly introducing online 

measurable noise factors into a designed experiment (Pledger, 1996).  This work shows 

that the additional information gained from online observations can enhance the choice of 

values for the controllable factors.  A robust parameter design methodology in the 

presence of feed-forward or feedback control systems and measurable noise factors was 

proposed later (Joseph, 2003; Tirthankar and Wu, 2006).  However they do not 

implement the off-line control variables under automatic control scheme. 

The study of automatic control strategy based on regression models obtained from 

DOE has emerged, where noise factors are classified into “measurable noise factors” and 
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“immeasurable noise factors” (Jin and Ding, 2004).  They investigated two types of 

control strategies: cautious control and certainty equivalence control, and compare them 

with robust parameter design.  Their approach assumes all controllable factors are on-line 

adjustable, which limits the applicability of the methodology in the case where some 

control factors can not be changed in real-time.  The controllable factors were further 

classified into on-line controllable and off-line controllable ones, with the latter denoting 

factors that are difficult to be adjusted online but can be set off-line at the design stage 

(Shi et al., 2005).  A corresponding control strategy is proposed in the paper. 

The aforementioned DOE-based APC approaches are developed based on the 

precise regression models with no assumptions or considerations of modeling error.  

However, in practice, the model parameters are often estimated from experimental data, 

and these estimates will be affected by the design and unknown random effects in 

experiments. Thus, it is unavoidable that all regression models used in the APC design 

have inherent modeling errors.  Other than modeling uncertainties, the precision of on-

line sensing of noise factors is constrained by the sensing capabilities.  Therefore, it is 

important to investigate the impacts of those modeling and sensing errors on the 

performance of the DOE-based APC control strategy, as well as further develop effective 

ways to improve the robustness of the control strategy to both uncertainties.   

This paper develops a generic APC method based on experimental design and 

modeling, which considers modeling and sensing errors simultaneously.  The paper is 

organized as follows.  In Section 2.2, a new process modeling and an on-line control 

strategy is proposed with consideration of model uncertainties.  Section 2.3 illustrates the 

proposed strategies using an injection molding process and carries out comparisons to 

existing approaches.  Finally, the paper is summarized in Section 2.4. 

2.2 Online Control Algorithm 

2.2.1 General Model and Assumptions 

A generic response model with single response y can be expressed in terms of X, 

U, e, and n as: 
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( , , , ) ,y f ε= +X U e n  (2) 

where the controllable factors are classified into off-line setting factors, X, and on-line 

controllable factors, U, while noise factors are classified into measurable noise, e, and 

immeasurable noise, n, and ε  is the regression residual error.  

Regression model ( , , , )f X U e n  is generally non-linear for inputs but still linear 

for model parameters.  A model of interest should include main effects of all factors 

together with control-by-noise interactions.  Thus, model (2) becomes: 

0 1 2 3 4 1 2 3 4 ,T T T T T T T Ty β ε= + + + + + + + + +β X β U β e β n X B e U B e X B n U B n    (3) 

where 1Rm×∈X , 1Rn×∈U , 1R p×∈e , 1R q×∈n , and other vectors and matrices are of 

appropriate dimensions. This model has the typical form of regression models obtained 

from a designed experiment. The details of modeling strategy and procedures can be 

found in (Wu and Hamada, 2000).  The higher order interactions among controllable 

variables and noise variables are not included in (3), since the consideration of these 

interactions will only add to the complexity of solving the problem, but will not on the 

optimization procedure.   

Define β  as ( ) ( )0 1 4 1 4,  , ,  ,  vec , , vec
TT TT Tβ⎡ ⎤≡ ⎣ ⎦β β β B BL L , representing the set 

of all model parameters. Here vec(B) is the stack up of column vectors of a matrix B. 

To develop the process control methodology, the following assumptions have 

been made:  

A1. The manufacturing process is time-invariant for the period of time when the 

same control law is applied.  This would be appropriate for many real-life manufacturing 

processes with stable and in-control productions.  The model and control law can be 

adjusted in case the process setting has changed.  The parameters are estimated from 

designed experiments, denoted by ˆ = +β β β% , where β  is the underlying true model 

parameter, β̂  is its estimate from experiments, and β%  is the estimation error. The 

estimation uncertainty is represented by ˆ( )Cov − = Σββ β % .  This modeling uncertainty is of 
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the same definition as the parameter estimation error.  The estimation error is assumed to 

be normally distributed. 

A2. The noise terms e, n and ε are independent of each other, with ( )E =e 0 , 

( )Cov = ∑ee , ( )E =n 0 , ( )Cov = Σnn , and ( ) 0E ε = , 2( )Var εε σ= .  The model residual 

errors, represented asε ’s, are independently and identically distributed. 

A3. The online noise observer can provide an unbiased estimation of measurable 

noise factor e, denoted by ˆ = +e e e% ,  where e is the true value of the observable noises, ê  

is its observation, and e%  is the observation error.  The observation of noise variable is 

unbiased, i.e. [ ]ˆ ˆ| 0E − =e e e , and ˆ ˆ( | )Cov − = ∑ee e e %  represents the observation 

uncertainty. 

The modeling uncertainty, ∑β% , in assumption A1 can be obtained from 

experimental design together with the model coefficients (Wu and Hamada, 2000).  The 

observation uncertainty, ∑e% , in assumption A3 can be estimated from the specifications 

of observer, or gauge repeatability and reproducibility study. 

2.2.2 Optimal Control Strategy 

The objective process control is usually to keep the deviation of response y  from 

the target value as small as possible, which is called a “nominal-the-best problem”.  A 

quadratic loss function 2( , ) ( )L y t k y t= −  should be chosen as the performance measure, 

where t  is the target value and k  is a monetary coefficient.  Since there is only one 

quality response characteristic y considered in this paper, k  can be assumed to be 1 

without loss of generality.  The optimal control algorithm is developed to minimize 

( , )L y t .  

Thus, when the process parameter β̂  is estimated and measurement ê  is obtained, 

the conditional control objective function can be expressed as 
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( )
( )

( ) ( )

2

, , , , , ,

2

, , , , , ,

ˆˆ, | ,

ˆ ˆˆ ˆ( , ) , ,

ˆ ˆˆ ˆ, , .

APCJ

E L y t E y t

E y t Var y

ε ε

ε ε

⎡ ⎤⎡ ⎤= = −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= − +⎣ ⎦

e n β e n β

e n β e n β

X U e β

e β e β

e β e β

% %

% %

 (4) 

In this equation, if a  is a random vector and b  is a random variable as a function 

of a , [ ]E ba  represents the expectation of b  taken over the distribution of a .  Similarly, 

( )Var ba  represents the variance of b  taken over the distribution of a .  For regression 

model (3), it can be shown that (see Appendix 1 for details):  

( )
( ) ( )
( ) ( )

( )
0 1 2 3 4

2
2

0 1 2 3 1 2

3 1 2 3 1 2

4 3 4 4 3 4
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1

ˆˆ  ( , , )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ  

ˆ ˆˆ ˆ ˆ ˆ  

ˆ ˆ  
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T T T T

T
T T T T

T T T T T
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ε

β

σ β

σ

= + − + + + + +

+ + + ∑ + +

+ + + ∑ + +

⎡ ⎤+ + ∑ + ∑ + ∑ + ∑ +⎣ ⎦

+

e

n

nβ β β β β

X U e β

β X β U β e X B e U B e

β B X B U β B X B U

β B X B U β B X B U

X X U U e e n n X B e

%

% % % % % %

( ) ( ) ( )2 3 4 .T T TE Var E Var⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦n nβ β βU B e X B n U B n% % %

 (5) 

The optimal controller should minimize ( ) ˆ
ˆ ˆˆ, ( , )APC e APCJ E J⎡ ⎤= ⎣ ⎦X U β X,U e β , i.e., 

taking into account of all possible observations of noise factors.  If constraints on the 

controllable factors are considered, this optimization problem can be written as 

( )* *

,
ˆ( , ) arg min , ,APCJ

∞ ∞≤ ≤
=

X 1 U 1
X U X U β             (6) 

where 
∞
⋅  is the maximum absolute row sum norm of the corresponding matrix, and 1 

indicates the experimental region and constraints for the controllable variables.  

Since X  is the off-line setting factor that cannot be adjusted during production, 

the following two-step approach is proposed to obtain an optimal solution to the 

optimization problem. 

(i)  Solve the optimal control law of *U . The restricted solution is given as: 
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( )* ˆˆarg min , | , , .APCJ
∞ ≤

=
U 1

U X U X e β              (7) 

A closed-form solution of * ˆˆ( , , , , )h= ∑ ∑ ∑e n βU X e β %%  can be obtained from (5) and 

(7) by solving the equation of 
( )ˆˆ, | , ,

0
APCJ∂

=
∂

X U X e β

U
.  However this closed-form 

solution is a function of X , and is not guaranteed to be within the constrained region.  A 

numerical search for optimum should be employed under this situation using 

optimization methods such as DIRECT (Jones et al., 1993; Björkman and Holmström, 

1999), which will be illustrated in details in case study. 

(ii) Minimize the quadratic loss at *=U U  over the distribution of ê . Thus the 

constrained optimal setting of *X  can be obtained as: 

( ){ }* *
ˆ

ˆˆarg min , | , .APCE J
∞ ≤

= eX 1
X X U e β              (8) 

It should be noted that, the second step requires a direct plug-in of the closed-

form solution of *U  obtained in the first step. Since it cannot be foreseen whether this 

solution falls into the constrain region or not before numerically solving it, this step 

might not lead to a globally optimal *X , however the sub-optimal performance is 

guaranteed as comparing to Robust Design.  This is because the sub-optimal is still the 

best solution in the feasible region, which includes the solution from Robust Design.  The 

efficiency will be shown in the case study. 

Then the control strategy can be implemented as: 

1. Off-line set *=X X  at the process setup stage; 

2. On-line adjust U  to *U  according to observations during production. 

If there are no measurement errors, i.e. ∑e%  is zero, the corresponding control law 

becomes certainty equivalence control, which will be discussed in the following case 

study. 
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2.3 An Injection Molding Process 

2.3.1 Injection Molding Process Description 

Injection molding is widely used in the manufacturing of fabricated plastic 

products.  The process is very complex due to  the high degree of interaction of material, 

machine and process variables (Smud et al., 1991). 

In this experiment, percentage of shrinkage of the molded parts is determined as 

the quality response.  The problem is considered as a nominal-the-best as discussed in 

section 2.2.2. 

A designed experiment on this injection molding process was reported (Engel, 

1992).  The experiment consists of seven controllable factors and three noise factors as 

listed in Table 2-1.  The lowercase letters are used to denote the process variables in each 

set of factors.   

Table 2-1 Factors in the injection molding experiment 

Controllable Factors 
Off-Line (X) On-Line (U) 

X1: Mold temperature U1: Cycle time 
X2: Cavity thickness U2: Holding pressure 
X3: Gate size U3: Injection speed 
 U4: Holding time 

Noise Factors 
Measurable (e) Immeasurable (n) 

e1: Moisture content N1: Percentage reground 
e2: Ambient temperature  

 

For classification of the noise factors, percentage reground is considered 

immeasurable, since it is very costly to be measured during the process run. Ambient 

temperature can be easily measured; moisture content can be estimated through the 

measurements of ambient humidity and the amount of time the material is exposed to the 

air (Pledger, 1996). Thus these two variables are considered measurable noise factors.  

The experiment design response values are shown in Table 2-2, as presented in literature 

(Steinberg and Bursztyn, 1994).  
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Table 2-2 Design and responses for the injection molding experiment 

Controllable Factors Percent Shrinkage for Noise Factors n1, e1, e2 
Cell u1 x1 x2 u2 u3 u4 x3 (-1,-1,-1) (-1,1,1) (1,-1,1) (1,1,-1) 

1 -1 -1 -1 -1 -1 -1 -1 2.2 2.1 2.3 2.3 
2 -1 -1 -1 +1 +1 +1 +1 2.5 0.3 2.7 0.3 
3 -1 +1 +1 -1 -1 +1 +1 0.5 3.1 0.4 2.8 
4 -1 +1 +1 +1 +1 -1 -1 2.0 1.9 1.8 2.0 
5 +1 -1 +1 -1 +1 -1 +1 3.0 3.1 3.0 3.0 
6 +1 -1 +1 +1 -1 +1 -1 2.1 4.2 1.0 3.1 
7 +1 +1 -1 -1 +1 +1 -1 4.0 1.9 4.6 2.2 
8 +1 +1 -1 +1 -1 -1 +1 2.0 1.9 1.9 1.8 

 

By fitting a straight line in the half-normal probability plot of all main effects and 

two-factor interactions (as shown in  Figure 2-1), any effect or interaction whose 

corresponding point falls off the line is considered significant.   
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Figure 2-1 Half-normal probability plot of main effects and interactions 

Table 2-3 Effect estimates 

Main Effects 2-way Interactions 
Effect Estimate Effect Estimate Effect Estimate Effect Estimate

X1 -0.150 u2 -0.563 X2 e1 1.175 x2 n1 -0.250 
X2 0.125 u3 0.288 U3 e1 -1.113 u2 n1 -0.188 
X3 -0.463 e1 0 X1 n1 0.125 u3 n1 0.213 
U1 0.850 n1 -0.100  
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The estimated effects of all significant terms and some non-significant main 

effects (x1, x2, e1 and n1) are listed in Table 2-3. 

From the above results, the following model can be obtained 

0 1 2 3 1 4 1 1 1 2 1 3 1 4 1 ,T T T T T Ty e n e e n nβ β β ε= + + + + + + + + +β X β U X B U B X B U B        (9) 

where [ ]1 2 3, , Tx x x=X  and [ ]1 2 3 4, , , Tu u u u=U .  Estimated model parameters are 

0 2.25β = , [ ]1 0.075 0.063 0.232T = − −β , [ ]2 0.425 0.282 0.144T = −β , 3 0β = , 

4 0.05β = − , [ ]1 0 0.588 0T =B , [ ]2 0 0 0.557T = −B , [ ]3 0.063 0.125 0T = −B , and 

[ ]4 0 0.094 0.106T = −B .  Other controllable factors not appearing in the model can be 

set according to economic advantages during the production.  The uncertainty of 

estimated model parameters Σβ%  is 4 21 214.084 10− ×× ⋅I , as can be obtained as a standard 

output of statistical regression process. 

2.3.2 Implemented Process Control Strategy 

This section first develops the robust parameter design and the optimal control 

scheme for the injection molding.  They will be implemented under both the cautious 

control strategy and certainty equivalence control strategy in the next section. 

1) Robust Parameter Design: According to the transmitted variance model 

approach (Wu and Hamada, 2000), the variance of ŷ  is:  

( ) ( )
( )

1

1

2 2
1 2 2 3

2 2
2 3

ˆ 0.05 0.0625 0.125 0.0938 0.1063

0.5875 0.5563 .

n

e

Var y x x u u

x u

σ

σ

= − + − − +

+ −
        (10) 

To minimize the transmitted variance ˆ( )Var y  over the experimental region, the 

robust settings can be obtained as 1 2 2 3( , , , ) (0.4664,0, 0.2222,0)x x u u = −  by solving a 

quadratic problem for continuous xi’s and ui’s.  Factors u1 and x3 are significant effects in 

the response model but not in the transmitted variance model, so they are set to values 

between -1 and +1 to bring the expected response close to target value, which means: 
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* * * *
3 10.4664 0 ,  0.2222 0

T T
x u⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦X U           (11) 

where u1 and x3 are given in Table 2-4, based on different target value (percent shrinkage) 

t . 

Table 2-4 Settings of factor u1 and x3  in terms of percent shrinkage 

Percent shrinkage t Factor *
1u  Factor *

3x  
≤1.85 -1 1 

(1.85, 2.25]  -1 -1 
(2.25, 2.70]  1 1 

>2.70 1 -1 

 

2) Optimal Control: The model (9) has one measurable noise factor e1 and one 

immeasurable noise factor n1.  Assuming the variance of the immeasurable noise factor n1 

is 
1

2
nσ and the measurement uncertainty of the measurable noise factor e1 is 

1

2
eσ % , the 

objective loss function for this application example becomes: 

( )
( )

( ) ( )
( ) ( )

1

1

1 10 1 2 3 4

1

2
2

0 1 2 3 1 1 1 2 1

3 1 2 3 1 2

4 3 4 4 3 4

2 2 2 2 2 2
1 1

ˆˆ, ,

ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ   

ˆ ˆˆ ˆ ˆ ˆ  
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T T T T
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J e

t β e e e
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e e

e
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σ β

σ σ σ σ

= + − + + + + +

+ + + ∑ + +

+ + + ∑ + +

+ + ∑ + ∑ + + + ∑

+

Bβ β

X U β

β X β U X B U B

B X B U B X B U

B X B U B X B U

X X U U X X

%

% % % % % %

1 12 3 4

2 2 2
1 .T T T

n nσ σ∑ + ∑ + ∑B B BU U X X U U% % %

                           (12) 

Thus the closed-form control law of *U can be obtained as a function of X  (see 

Appendix 2 for details):  
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                 (13) 

As aforementioned, the optimal off-line setting *X  can be obtained by first 

substituting the opt imal * * * *
1 2 3

T
u u u⎡ ⎤= ⎣ ⎦U  as (13) into the quadratic loss function (12), 

and then minimizing (12) by integrating over the distribution of e1.   

2.3.3 Case Study 

A simulated case study is conducted here to evaluate and compare the 

performance of (i) robust parameter design, (ii) control law proposed in literature (Shi et 

al., 2005), and (iii) on-line cautious process control developed in this paper.  

The residual term ε in model (9) represents the model accuracy, which is 

determined by the DOE model structure, factor test levels, effect de-aliasing, sensitivity 

analysis, and parameter estimation methods. Therefore, reduction of the model residual 

can only be obtained by improved designed experiments and/or modeling algorithms.  A 

control strategy alone can not reduce the variation contributed by the residual noise in the 

model. Thus, the following performance evaluation will compare only the response value 

of the predicted model without considering the regression residual ε , or the residual 

variance 2
εσ .  

The optimization problems were solved by using DIRECT, an algorithm that is 

able to search the global minimum of a multivariate function subject to simple bounds on 

the variables (Jones et al., 1993; Björkman and Holmström, 1999).  The optimization was 

carried out by using Matlab. 

If the measurement uncertainty ∑e%  is considered, the optimal control law is 

known as “cautious control (CC) law”.  The basic idea is that magnitudes of the 

controllable factors adjustments consider both the estimated noise factor levels and the 
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covariance of the estimator errors.  When the measurement errors e%  is not considered, 

i.e., ∑ =e 0% , the designed controller is known as “certainty equivalence (CE) control”.  

Furthermore, if a controller does not consider the model parameter estimation error, nor 

the measurement error, it is a traditional APC controller. 

The process performances of robust parameter design and on-line process control 

are compared, and APC is carried out under cautious control, certainty equivalence 

control and traditional control. 

In this simulation study, both n1 and e1 are assumed to follow zero-mean normal 

distributions with variance of 0.25, i.e. 1 ~ N(0,0.25)n , 1 ~ N(0,0.25)e .  Thus 95% of the 

random noises will fall in the region of [-1, 1].  1̂e  is the measurement of e1 with certain 

observation errors, and the performance of the control laws are compared under different 

levels of noise estimation uncertainties.  The model parameter uncertainties are set to 
44.084 10−×  , which is obtained from the deigned experiment data. 

 Figure 2-2 shows the comparison of the performances of different controllers.  

The horizontal axis of the figure is the ratio of uncertainty of sensor noise (
1e

σ % ) to that of 

measurable noise factor (
1e

σ ).  The vertical axis is the ratio between controller 

performances and robust design performance (JAPC/JRPD), and thus a value smaller than 1 

indicates a preference of employing the corresponding APC strategy at that noise level.  

The figure shows that robust design is outperformed by both control strategies at a lower 

noise level, since it ignores the uncertainties of model parameter estimation and 

observation.  However, CE control works well only if there is no (or small) estimation 

errors.  As the uncertainties get larger, (
1 1
/ 0.24e eσ σ >%  in this study), the CE controller 

deteriorates and performs worse than the RPD.  While a CC further considers the 

observation uncertainty and is ‘cautious’ about each control action it takes, thus its 

performance is better than the RPD until a large noise level.  
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Figure 2-2  Comparison of variability of ŷ  under RPD and APC Strategies 
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Figure 2-3 shows an example of 100 runs of observable noise e and online 

controllable factor u3.  The control amount is adjusted according to the changes of 

observed noise. 

The control performances for different target values are also compared, as shown 

in Figure 2-4.  The horizontal axis indicates that the comparison of the performances is 

carried out under shrinkage percentages ranging from 1% to 3.6%.  This range contains 

the designed experimental range, within which the correctness of the DOE regression 

model can be ensured.  The vertical axis in Figure 2-4 represents the performances (or 

quadratic loss) under different control strategies.  The peaks of the RPD are resulted from 

the adjustment of u1 and x3 according to different target regions. 

A closer look of Figure 2-4 indicates that (i) the control performance is improved 

by considering modeling error; and (ii) the control performance is still acceptable when 

other strategies are not functioning properly.  It is also observed that the controller 

performance gets worse closer to the edge of target range.  This performance 

deterioration is because the optimal controlled solution is close to being out of the 

experimental region and needs to be set to the boundary, which greatly decreases the 

control efficiency. 
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Figure 2-4  Comparison of quadratic losses of the three approaches 
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Figure 2-5 provides a zoom-in comparison from Figure 2-4.  This figure focuses 

on the two APC control strategies, ranging from 2.0% to 2.6 %, which is in the center of 

the previously mentioned working range of controllers.  This closer look clearly shows 

that APC with consideration of modeling errors is consistently better than that without 

considering them.  
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Figure 2-5  Comparison of quadratic losses of two APC 

2.4 Conclusion 

An automatic process control strategy is developed based on regression models 

obtained from design of experiments.  The control strategy takes into account modeling 

and observation uncertainties and demonstrated superior performance when the 

uncertainties are large.  The performances of the proposed control strategy and existing 

control approaches have been compared via a case study on an injection molding process.  

Generally, the proposed strategy can significantly improve the control performance by 

considering in-process observation of noise factors and errors in parameter estimation.  

The comparison study also indicates that the certainty equivalence control provides better 

performance than robust design when on-line sensing uncertainties are small. 
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There are some open issues to be addressed in the future research.  Some 

examples of those topics include (a) incasing the model (3) complexity by including high 

interaction terms among control variables and noise variables; (b) considering model 

uncertainties due to model structure errors; (c) investigating the sensitivity of the control 

performance to the model assumptions.  More efforts are needed to consider the 

integrated system modeling and control to achieve better control performance. 
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Appendix 1: Proof of (5) 
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(16) holds because ˆ ˆ ˆ ˆ( ) ( ) ( )Cov Cov Cov= + = ∑ee e e e e e %% . 

Thus the expected quadratic loss function is given by:  
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This proves (5). 

Appendix 2: Proof of (13) 

From (12), take the first-order partial derivative of ( )1
ˆˆ, , ,APCJ eX U X β  on U and 

set it zero,  
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This proves (13). 
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CHAPTER 3 
 

FEED-FORWARD PREDICTIVE CONTROL STRATEGY WITH 
CONSIDERATION OF MODEL UNCERTAINTY FOR MULTISTAGE 

MANUFACTURING PROCESSES 

Abstract 

Active control for dimensional variation reduction in multistage manufacturing 

processes is a challenging issue for quality assurance.  It is desirable to implement a 

system-level control strategy to minimize the end-of-line product variance, which is 

propagated from upstream manufacturing stages.  Research has been conducted to realize 

such objective, based on the mathematical variation propagation model derived according 

to the designated parameters from product and process design.  However, due to the 

uncertainties caused by the significant changes of process parameters from their nominal, 

such designated model will be different from the one of the real process, and will not 

accurately represent the physics of the process.  Thus, the performance of controller may 

degrade under process uncertainties if it is designed based on the designated model.  This 

paper proposed a feed-forward control strategy for multistage assembly process that 

explicitly takes into account the uncertainties of model coefficients.  The case study 

demonstrates that the controller derived from the proposed approach outperformed the 

one without considering the model uncertainty. 

3.1 Introduction 

Dimensional variation reduction is a critical yet challenging problem in quality 

assurance of multistage manufacturing processes (MMPs).  In MMPs, multiple operation 

stages are involved in generating designated Key Product Characteristics (KPCs) or 

functionality of a product.  At a certain stage k, special causes, such as part fabrication 

error, fixture error, welding gun error and robot positioning error, will increase the 
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measurements variation of some KPCs to a level that exceeds their specification limits.  

Compounded with the input quality transmitted from preceding stages, these quality 

problems will be further propagated to the downstream stages and accumulated to the 

final product.  This variation propagation makes the process monitoring and root cause 

diagnosis especially challenging.  

In order to increase the process stability and reduce the product variation, three 

types of approaches are widely adopted in practice: i) robust process design, which aims 

to reduce the impact of variation sources at the design stage; ii) Statistical Process 

Control (SPC), which detects variation sources from quality measurements on KPCs; and 

iii) in-process active control, which compensates the error based on in-process 

measurements.  Among them, robust design is usually conducted in the design phase of 

product realization and will not react to in-process disturbances; SPC focuses mainly on 

fault detection, rather than process adjustment; in-process control actively corrects 

deviation of each assembly, and can thus achieve variation reduction on a part-by-part 

base. 

Application of in-process control in MMPs is complicate, in the sense that 

variation is propagated and accumulated throughout the production line.  Therefore, a 

successful control strategy for MMPs should be the one that compensates error at an 

intermediate stage, aiming at achieving the overall best quality at the final stage, rather 

than the best quality at the stage where the control action is taken.  In other words, the 

system-level optimal, not the stage-level optimal, is the control objective.  

In-process control for MMPs has received intensive study and promising results 

have been reported in literatures, which will be reviewed in the following paragraph.   

There are two basic mechanisms in control theory, namely feedback control and feed-

forward control.  Feedback control mechanism, by utilizing information from 

downstream stages to determine the control actions at the current stage, is effective when 

the control objective is to reduce the shift in mean values.  This is because that in discrete 

party manufacturing, the observation made on a particular product at a specific 

downstream stage is not correlated with the quality of another product at the current 

stage.  If a mean shift presents in the process, all parts will be affected in a deterministic 
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way until a corrective control action is taken, and thus feedback control will be effective 

in correcting mean shifts.  However, when the variance of process increases, the random 

KPC deviations will be different from a downstream product to the one at the current 

stage.  Under this situation, the control actions derived based on the downstream 

observation may not effectively correct the random deviation at the current stage.  Thus, 

only feed-forward control scheme fits the research objective of this paper, which is the 

process variation reduction in MMP. 

Many research efforts have been reported in the literature on feed-forward control 

in manufacturing processes.  Most of them are focused on stage-level variation reduction.  

For example, feed-forward control with sensor system has been employed in various 

assembly processes (Svensson, 1985; Wu and Hamada, 2000), and also adopted by 

automobile manufacturers such as Nissan (Sekine et al., 1991).  However, stage-level 

active control does not consider the propagation and cross-stage relationship of variation 

from previous stages.  Thus it is effective at the last stage of an MMP, or if the 

compensated KPC is located on parts that will not be affected by downstream operations.  

Otherwise, the stage-level optimal compensation may not be optimal at system-level and 

deliver the best final product at the end of the MMP.  

For system-level active control, an optimal control scheme was proposed in 

mechanical assembly using state transition models (Mantripragada and Whitney, 1999).  

This approach treats control as stochastic discrete-time linear optimal regulator problem, 

and obtains a deterministic controller, considering parts as the only source of variation in 

the process.  A similar optimal control problem is analyzed, with the application in 

semiconductor manufacturing (Fenner et al., 2005).  The authors used Dynamic 

Programming (DP) as the optimization tool, taking the control magnitudes in each 

direction on each single part, or controllable environmental variables at each 

manufacturing stage, as the decision variable.  However, a MMP, such as an automobile 

assembly line, usually involves large numbers of stages and assemblies, with each 

subassembly introducing three degrees of freedom as the decision variables, even only 

consider the slip plane as a 2-D case.  Thus the possible control actions for a MMP will 

form a solution space with extremely high dimensions, and the curse of dimensionality 

for DP will limit the application of the above mentioned analytical global-optimal 
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controller in MMP control.  In such case of a high dimensional solution space, a simpler 

sub-optimal controller with adequate performance will be an ideal alternative to the one 

targeting to solve global optima.  Under this simplified objective, controller that  adjusts 

the position of fixtures and tool path to improve the final product quality was proposed 

for multistage machining process (Djurdjanovic and Zhu, 2005).  The realization of feed-

forward control using PT in multistage assembly process is also analyzed, with the 

minimization target being deviations of KPCs, rather than variation of the final product 

(Djurdjanovic and Ni, 2006).  A feed-forward controller that aims at reducing final part 

KPC variation, considering controllability and measurement noises is developed later 

(Izquierdo et al., 2007).  These studies investigated control strategies, considering 

controllability and actuator capabilities respectively, without taking into account the 

model uncertainty.   

In real assembly processes, uncertainties can enter the system not only as noises 

of the sensors, disturbances in system, but also as variation of the system model itself.  

The uncertainty of model is generated as a result of part fabrication process, such as part 

initial errors from stamping, errors accumulated from previous stages, fixture, welding 

gun and robot error, and other process uncertainties, which are inevitable in real-life 

production.  The system models used in previous works are obtained from the first 

principle, where the parameters come from the designed blue print.  However, the model 

coefficients will randomly deviate from their designated values because of the former 

mentioned model uncertainties.  A control strategy derived from the nominal model 

without considering model uncertainty may lead to even worse control performances than 

ordinary production, especially under large noise environment. 

The problem of model uncertainty has drawn much attention in control 

community.  In control systems, due to the imperfect data, lack of process knowledge and 

system dynamics and/or complexity, models of the system to be controlled always have 

inherent errors.  The research dealing with the above mentioned unknown dynamics and 

disturbances has formed the area of robust control, with a variety of methodologies 

developed.  Among them, Model Reference Active Control (MRAC) catches the system 

dynamic by designing the controller with parameters that can be updated according to 
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system output (Åström, 1996); 2H  or H∞  control (Basar and Bernhard, 1995; 

Kwakernaak, 2002) seeks to minimize the maximum power or energy gain of the system 

so as to stabilize it; Fuzzy Control (Tanaka and Sugeno, 1992) has the ability to control 

without requirement for complex mathematical modeling.  However, due to the different 

nature of manufacturing systems, those well-developed robust control techniques cannot 

be directly applied in the context of MMP.   

This paper proposes a Stream of Variation model based predictive controller for 

MMPs variation reduction, as illustrated in Figure 3-1.  The enablers of online feed-

forward control in MMP include actuators, such as Programmable Tooling (PT), real-

time sensing technologies, as well as a mathematical variation propagation model, as 

shown bold border blocks in Figure 3-1.  PT allows the high precision automatic 

adjustment of locators and clamps that are used to mount the parts, and thus it provides 

the capability of variation reduction on a part-by-part adjustment base.  Accurate real-

time dimensional measurement sensors, such as OCMM system, can obtain real-time 

quality information for in-line controller to decide control action.  The last but not least 

critical element in control of MMP, is a mathematical model of the process that links the 

final product quality with variation sources in upstream stages, and precisely predicts the 

final quality.  This paper will focus on the SoV model with model uncertainties and the 

derived predictive controller. 
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Figure 3-1 Diagram of control scheme in MMP 
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 The rest of this paper is organized as follows: section 3.2 introduces the SoV 

model and extends the model representation to explicitly represent potential model 

uncertainty; section 3.3 derives predictive control strategy based on this model 

considering uncertainties; section 3.4 demonstrates the effectiveness of the proposed 

method with a real life production example.  The method will be summarized in section 

3.5. 

3.2 Stream of Variation Model and Model Uncertainty 

This section introduces the uncertainty of SoV model, and extends the model 

representation to consider model uncertainty generated from geometric errors, such as 

part fabrication problems, or errors accumulated from previous stages. 

3.2.1 Representation of Part Deviations 

State space model was introduced to mathematically represent the dimensional 

variation propagation in MMP (Jin and Shi, 1999; Shi, 2006).  Two coordinate systems 

are necessary to properly represent part deviation in such a process, namely global (or 

body) coordinate system and part coordinate system, with the former one remain 

unchanged for all stages, and the latter one attached onto each part or assembly.  Each 

part is characterized by its deviation from nominal position, which can be represented by 

x, y, and z as translation coordinate variables, and α, β, and φ as corresponding rotation 

coordinate variables.  In most assembly circumstances, parts are joined on slip planes, 

where the deviations can be simplified into a 2-D case, since the 3rd direction is 

constrained by part connecting surface (Ding et al., 2000).  This simplified deviation is 

represented by 3 coordinate variables, x, y and β, as shown in Figure 3-2.  The subscripts 

(i, k) of coordinate variables in Figure 3-2 indicate part i on stage k, for i=1,…, np, 

k=1,…, N, where np is the total number of parts, and N is the total number of stages in 

MMPs.  For a subassembly that consists of more than one part, the subscript becomes (s, 

k) with s denoting the index of subassembly. 
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LP2,i,k

LP1,i,k

SDi,k

βi,k

x

y

z
β

α

φ

 

Figure 3-2 Representation of part deviation 

Two reference points are necessary to represent each part coordinate in 2-D space, 

denoted as LP1,i,k and LP2,i,k.  The position of a part at stage k can then be represented by 

the position of LP1,i,k, i.e., ( ) ( )( )1, , x 1, , z, i k i kLP LP  in global coordinate system, together with 

the part orientation represented by the angle between the line connecting LP1,i,k and LP2,i,k 

and the x-axis of global coordinate system, i.e., βi,k in Figure 3-2.  In 2-D rigid body 

assembling, the 4-way hole and 2-way slot pair that are used to mount the subassembly, 

are usually chosen as the reference points for the subassembly for simplicity, and are 

denoted as LS1,s,k and LS2,s,k. 

Under ideal production condition, parts are positioned in their designed location, 

with neither fixture variation nor part variation.  However in reality, locating tools and/or 

part fabrications are not perfect, the part will deviate from its nominal position.  Instead 

of using the absolute global coordinate, the actual position of an assembly in space is 

described by its deviations from the nominal positions, i.e.,  

, , , , , , ,

T

i k i k i k i k i k i k i kx y zδ δ δ δα δβ δφ⎡ ⎤≡ ⎣ ⎦x .  It denotes the random deviations 

associated with each of the six degrees of freedom (d.o.f’s) of part i at stage k, where the 

notation δ in front of a coordinate variable represents a small deviation.  xi,k for a 2-D 

assembly can be simplified as   , , ,

T

i k i k i kx zδ δ δβ⎡ ⎤⎣ ⎦ , since the part will only have two 

d.o.f.’s of translation and one d.o.f. of rotation under the constraint.  For all the np parts 

emerged in the assembly process, the deviation of the whole assembly on stage k can be 

expressed as 1, ,p

T
T T

k k n k
⎡ ⎤≡ ⎣ ⎦x x xL , which is usually referred to as the state of the part.  
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If part i has not yet appeared in stage k, the corresponding xi,k = 0.  The deviation state 

notation, qs,k, is used for a multi-part subassembly s at stage k, to differentiate from xi,k 

which is used for individual parts. 

In MMPs with control system, parts or subassemblies are held by the locators of 

actuators, such as Programmable Tooling (PT), at the locating holes/slots, i.e., at LS1,s,k 

and LS2,s,k.  The actuator control action vector, denoted by uk at stage k, contains the 

movements of each part represented by its locator pair deviation.  For example, for the 

locator pair that supports subassembly s on stage k, its control action will be described as 

( ) ( ) ( ) ( )
1, , 1, , 2, , 2, ,, s k s k s k s k

T

s k LS LS LS LSu x u z u x u zδ δ δ δ⎡ ⎤= ⎣ ⎦u , where each element denotes 

the adjustment in each direction respectively.   For all the nk locator pairs used on stage k, 

the control action vector is 1, ,k

TT T
k k n k⎡ ⎤≡ ⎣ ⎦u u uL . 

The general SoV modeling procedures requires part design knowledge, in 

particular, the designed geometric layout, eg., the CAD model and/or assembly process 

plan.  The models derived in literature are assumed to remain constant through the 

production process.  However in practice, as stated earlier, the inherent uncertainties in 

all process will introduce variation into the state transition matrices of SoV model and 

will further impact on decisions made based on the model, including control actions.  The 

following sections of this paper will present the SoV model considering these model 

uncertainties first.  New notations will be engaged to differentiate the designated and real 

process models.  An original matrix represents the one derived from the part/process 

design geometry; matrix with superscript )  is the one with true process parameters, and 

matrix with superscript  %  is the deviation of the true matrix from its designed value, e.g., 

= +R R R
)

% .  With this notation system, the two necessary corollaries for model 

derivation (Shi, 2006) can be extended as Lemma 1. 

Lemma 1 If subassembly s at stage k is mounted at points LS1,s,k and LS2,s,k, then 

its deviation state due to small deviations at the locating points is  
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1, ,

1, ,, ,
, 3 3 ,

2, ,

2, ,

( )
( )
( )
( )

s k

s ks k s k
s k s k

s k

s k

LS x
LS z
LS x
LS z

δ
δ
δ
δ

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

q R R u
) )

, (1) 

where 

, , ,
3 3 3

, , , ,

, , , ,

1 0 0 0
0 1 0 0

sin cos sin cos

s k s k s k

s k s k s k s k

s k s k s k s kSD SD SD SD
β β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = +
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

R R R
)

%
) ) ) )

) ) ) )

, (2) 

and SDs,k is the distance between LS1,s,k and LS2,s,k. 

The next lemma characterizes the re-orientation operation, which induces 

deviation on a part when a subassembly is transferred from one stage to the next, even if 

the current locating points are free of error. 

Lemma 2 Suppose that subassembly s is mounted at LS1,s,k and LS2,s,k at stage k 

and also assume that these two locating points are free of error at the current stage k.  The 

deviation state of subassembly s on stage k when moving from stage k-1 to stage k can be 

expressed as a linear combination of deviations accumulated in its locating points LS1,s,k 

and LS2,s,k at the previous stage k-1. 

1, , 1

1, , 11,
, 4

2, , 1

2, , 1

( )
( )

,
( )
( )

s k

s kk k
s k

s k

s k

LS x
LS z
LS x
LS z

δ
δ
δ
δ

−

−−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

q R
)

 (3) 

where 

1, 1, 1,
4 4 4

, , , ,

, , , ,

1 0 0 0
0 1 0 0

sin cos sin cos

k k k k k k

s k s k s k s k

s k s k s k s kSD SD SD SD
β β β β

− − −

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥= − = +
⎢ ⎥
⎢ ⎥
− −⎢ ⎥
⎢ ⎥⎣ ⎦

R R R
)

%
) ) ) )

) ) ) )

. (4) 
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The above two lemmas are used to derive the state space model. 

3.2.2 SoV Model with Part Induced Uncertainty 

Figure 3-3 illustrates the stream of variation in a multistage manufacturing 

process.   Parts from supplier enter the production at Stage 1 with initial fabrication 

errors, 0x .  In Stage 1, the part control action 1u  is applied through PT first, while other 

un-modeled process errors, such as process background disturbances, higher order terms 

due to linearization, 1w , also add to the variation of the parts.  The designed operation at 

Stage 1 then takes place, and the state of the subassembly changes to 1x .  The 

subassembly is then transferred to the next stage, and the variations propagate and 

accumulate similarly as more parts/subassemblies are joined together, until the finished 

assembly exits the production line at the final Stage N.  The KPC will be monitored at the 

final Stage N as well as some intermediate stages such as Stage k.  The measurement yk is 

obtained with sensor errors vk. 

 

Station 1 Station r Station k Station N
x0 x1 xr-1 xr xk-1 xk xN-1 xN

u1 w1 ur wr uk wk uN wN

vr

yr

vN

yN

 

Figure 3-3 Multistage manufacturing process 

Based on the two lemmas presented in the previous section, temporarily without 

considering model uncertainties, a state space model can be build to mathematically 

represent the variation propagation in MMPs, as defined in (5), 

1 1 ,  1, ,k k k k k k

k k k k

k N− −= + +⎧
=⎨ = +⎩

x A x B u w
y C x v

K . (5) 

The first equation is called the state equation, where matrix n n
k

×∈A  is the 

reorientation matrix, which describes the error transferred from previous stage through 
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part reorientation.  Matrix n p
k

×∈B  describes the impact of fixture deviations on the 

state of the system.  The second equation is called the observation equation, where matrix 
m n

k
×∈C  represents how the part deviation will be transformed to the deviation of KPC.  

This flow chart also shows un-modeled disturbance, n
k ∈w , and the measurement 

noises, m
k ∈v .  The modeling details and procedures can be found in literature (Ding et 

al., 2000; Shi, 2006).  Ny  is the deviation of final product KPCs, whose 

variance/covariance, 
N

Σy , is the index that a control strategy should aim to minimize.  

Let the state transition matrix , 1 2 ,  k i k k i k i− −= >Φ A A AK  describe the deviation transited 

between stage i and k, and ,i i n n×=Φ I , which is an identity matrix, then (5) can be written 

in an input-output format (Ding et al., 2000), 

0 01 1

N N
N i i i i Ni i= =
= + + +∑ ∑y Γ u Γ x Ψ w v

, (6) 

where ,i N N i i=Γ C Φ B ,  0 ,0N N=Γ C Φ , and ,i N N i=Ψ C Φ . 

Assuming measurements taken at stage r, i.e., ry  is known, rx  can be obtained 

through the inverse of observation equation in (5), as †ˆ r r=x C y .  The superscript †  

represents generalized inverse, since C  is typically not a square matrix due to the 

measurement redundancy.  The output-input format then becomes, 

1 1
ˆN N

N i i r r i i Ni r i r= + = +
= + + +∑ ∑y Γ u Ψ x Ψ w v . (7) 

Thus the sensors are not mandatory to be installed in the same stage as the 

actuators, which releases the requirements proposed in previous works (Izquierdo et al., 

2007). 

However, the deviations of subassembly from the designated dimensions, will not 

only appear as part errors in state vector kx  as considered in literature, but will also 

change the state transition matrices which is derived from the design geometry.  The 

model uncertainty is thus introduced into the production system.  With the same notation 

mechanism as in (5), the system can be described as 
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1 1 ,  1, , ,
,

k k k k k k

k k k k

k N− −⎧ = + +⎪ =⎨
= +⎪⎩

x A x B u w
y C x v

) )

K  (8) 

where kA
)

 denotes the true state transition matrix, whose coefficients randomly deviates 

from that of the designate kA .  The deviation matrix is denoted by k k k= −A A A
)

% .  The 

sets of notations kB  and kΓ  are defined in a similar way.  In the following derivation, 

kC  is considered constant, which means the locating points are monitored directly and 

precisely.  By using model (8) instead of (5), the model uncertainty will be explicitly 

considered in control algorithm development. 

3.3 Predictive Control Strategy 

In MMP with control capability, when the subassemblies are mounted onto the 

fixtures, the sensors take measurements of the part deviations as input to the predictive 

controller.  The controller then decides the corrective action based on these 

measurements as well as control actions taken in previous stages, which can be read from 

the Programmable Logic Controller (PLC).  The control action is carried out by PT, 

before the subassemblies are joined together, and moved to next stage.  This controller is 

called model predictive controller because it is designed based on the variation of KPCs 

at the final stage predicted by process model. 

This section proposes a predictive control strategy with consideration of model 

uncertainty.  It is first formulated as an optimization problem, and then a general optimal 

control strategy is derived. 

3.3.1 Model Predictive Control Index 

Model predictive control (MPC) refers to computer control algorithms that utilize 

an explicit process model to predict the future response of a process (Maciejowski, 2002).  

The controller employed can be any widely used control algorithms, such as Linear-

Quadratic-Gaussian (LQG), and common model forms such as Input–output (IO), first-

principles (FP), in linear and non-linear systems (Qin and Badgwell, 2003).  MPC has 
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been widely used in industries such as chemicals industry (Lee and Cooley, 1997), 

mining, and on automotive actuators (Cairano et al., 2007).  However, MPC requires a 

mathematical model that can predict the final product quality with respect to the process 

adjustments.  Due to the lack of analytical process models, the application of MPC in 

MMP was limited in literature, and the presence of SoV modeling method has provided 

the possibility. 

In MPC for MMP, the objective of predictive control is to improve quality 

through minimizing the variances of final product quality Ny .  With this purpose, the 

control action should also be punished based on its magnitude, since large control 

adjustment might result in unstable system response.  The more important reason for 

punishing large control action is that it may result in the part geometry falling out of 

linearity approximation range, which is one assumption of SoV model.  Taking the 

evaluations of quality and control penalty both into account, the optimization index at 

stage k can be written as  

/ /ˆ ˆT T
k N k N N k k k kJ E ⎡ ⎤= +⎣ ⎦y Q y u R u , (9) 

where /ˆ N ky  denotes the final product quality of stage N that is predicted at stage k, and 

penalty coefficients m m
N

×∈Q  and n n
k

×∈R  are the weight matrices.  Similar to the 

common requirements in control theory, NQ  is assumed to be semi-positive definite, and 

kR  is positive definite to make sure the inevitability of the analytic solution.   

Dynamic Programming (DP) is the desirable tool to solve a globally optimal 

solution for the objective function (9) in MMP, however, since each subassembly 

introduces 6 d.o.f’s into the system, the curse of dimensionality of DP will result in the 

search in an extremely high dimensional solution space, which is not applicable.  

Approximation is necessary to analytically derive the control action for part currently at 

stage k.  This is because that when part is mounted in stage k, all downstream control 

actions are not yet decided, and will be dependant on the decision at current stage.  

Considering this dependency, one possible approximated control strategy can be the one 

that assumes no control actions will take place in later stages, i.e., 0,  1k i i N k+ = < < −u .  
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This approximation provides a sub-optimal controller whose efficiency can be 

demonstrated in later sections, and the controller serves as an ideal alternative for a 

global optimal one.  This assumption can be formulized as a constraint to the objective 

function presented in (9), and lead to 

*
/ /ˆ ˆmin min

        . . 0,  1 .
k k

T T
k k N k N N k k k k

k i

J J E

s t i N k+

⎡ ⎤= = +⎣ ⎦

= < < −
u u

y Q y u R u

u
 (10) 

Thus the optimization index (10) considers the variation impact on final product 

as well as the constraints on large control actions. 

3.3.2 Control Law Derivation 

To optimize the control objective, the following assumptions are necessary: 

A1. As stated previously, 0,  1,k i i N k+ = = −u K , for stage k; 

A2. The uncertainty matrix is assumed to be zero-mean, and the covariance 

between two uncertainty matrices is assumed to be known, e.g., kE ⎡ ⎤ =⎣ ⎦B 0% , 

k

T
k kE ⎡ ⎤ = Σ⎣ ⎦ BB B %
% % , etc.  The latter covariance can be obtained either from geometric 

relationship derivation, or from Monte Carlo simulation of the process errors.  The 

expectation of higher order interactions are assumed to be ignorable, i.e., 0; 

A3. The expectations of un-modeled system errors and measurement noises are 0, 

i.e. [ ]iE =w 0  and [ ]iE =v 0 , and their variances are know. 

Under the above three assumptions, the optimal ku  that minimizes the index 

/ /ˆ ˆT T
k N k N N k k k kJ E ⎡ ⎤= +⎣ ⎦y Q y u R u , can be obtained by solving 0k

k

dJ
d

=
u

.  The solution to 

this optimization problem is  

( )
( ){

( ) }

1

1

1

ˆ .

T T T T
k k N k k N k k N k k N k k

k T T T T
k N i k N i k N i k N i ii r

T T T T
k N r k N r k N r k N r r

E E E

E E E

E E E

−

−

= +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤× + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤+ + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑

u Γ Q Γ Γ Q Γ Γ Q Γ Γ Q Γ R

Γ Q Γ Γ Q Γ Γ Q Γ Γ Q Γ u

Γ Q Ψ Γ Q Ψ Γ Q Ψ Γ Q Ψ x

% % % %

% % % %

% %% %

 (11) 
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The detailed derivation procedure is presented in Appendix 1.  The minimum is 

guaranteed by the positive-definite second order derivative.  If model uncertainty is not 

considered, then model uncertainty terms can be ignored, and equation (11) will converge 

to ( ) ( ){ }1 1

1
ˆkT T T

k k N k k k N i i k N r ri r

− −

= +
= − + × +∑u Γ Q Γ R Γ Q Γ u Γ Q Ψ x , i.e., the result derived 

using traditional optimal control, without considering model uncertainty. 

3.4 Case Study 

In this section, a real production case is studied to illustrate the effectiveness of 

the control strategy developed above. 

3.4.1 Product and Process Description 

Figure 3-4 shows an assembly process that joins two parts, a hinge pillar inner 

panel and a bracket.   

 

             
  (a) Contour of the parts before welding     (b) Parts after welding 

Figure 3-4 Hinge pillar inner panel and bracket  

Figure 3-4 (a) shows the individual parts before welding.  In this contour plot, the 

part on the left-hand-side is the hinge pillar, which is denoted as Panel (2) in Table 3-1.  

The smaller part on the right-hand-side of Figure 3-4 (b) is the bracket, denoted as 

Bracket (1) in Table 3-1.  Figure 3-4 (b) shows the relative position of the two parts after 



 

51 

the welding operation, with the bracket contour highlighted.  The annotation P j
i  in these 

plots represents the locating hole/slot of each part.  The superscript j indicates the index 

of the part (either 1 or 2), and subscript i indicates whether it is a 4-way hole (1) or a 2-

way slot (2).  Both of the two measurement points (MLPs) are located on bracket (M1 and 

M2), and are marked using asterisks. 

Table 3-1 shows the designated global coordinates of each locating pin/holes in a 

tabular form.  Y coordinates are not needed under 2-D rigid part assumption, and is not 

presented in the table.  The global coordinates of the two measurement points are shown 

in Table 3-2. 

Table 3-1 Coordinates of fixture locators (PLPs) (Unit: mm) 

4-way Pin (1) 2-way Pin (2) Part Name x Z X Z 
Bracket (1) 2250 955 2250 905 
Panel (2) 2200 900 2000 900 

 

Table 3-2 Coordinates of measurement points (MLPs) (Unit: mm) 

MLP M1 M2 
(x, z) (2284.54, 991.73) (2280, 850) 

 

The corresponding SoV model can be derived as shown in Appendix 2. 

3.4.2 Control Performance 

The controller can be obtained by plugging process variables into equation (11), 

where ,k N N k k=Γ C Φ B , and kR  and kQ  follow the common definition in control area, 

i.e. k λ=Q I  and k k= −R I Q , where I  is an identity matrix of appropriate dimension. 

ˆ rx  is the observed system state in intermediate measurement stage r.  The analytic 

solution is solvable, but this process is tedious and thus the detailed format will be 

omitted here. 
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Assume the standard deviations of the fabrication error of all parts are equally 

1.5mm.  Also assume the measurement noise level, i.e., each element of 
i

σw , is 0.05mm, 

and that un-modeled noise level 
2

σ v  is as small as 0.0005mm, which is smaller than 

usual un-modeled error assumptions, because considering modeling error would 

significant reduce that uncertainty. 

The simulation results of 100 car samples are shown in Table 3-3.  The first 

number in each cell of the table is the mean of performances 2J  under each situation, and 

the second number in apprentice is the corresponding standard deviation.  From this 

table, the application of optimal control strategy not only improves the mean by 37.23% 

comparing to a controller without considering modeling error, but also achieves a 

reduction in variations of all KPCs. 

Table 3-3 Simulated mean and std for 2J  under different control (Units: mm) 

 M1.x M1.z M2.x M2.z 
No control 0.18 (4.97) -0.01 (4.59) -0.08 (2.20) 0.00 (4.42) 

Control without 
modeling error -0.03 (0.18) 0.02 (0.18) 0.01 (0.10) 0.03 (0.16) 

Control with 
modeling error -0.01 (0.13) 0.02 (0.14) 0.02 (0.09) 0.02 (0.13) 

 

Figure 3-5 shows the mean of controller performances 2J  over different noise 

level.  The horizontal axis is the level of part fabrication uncertainty in terms of standard 

deviation, and the vertical axis is the final part quality measured by 2J .  *
kJ and 2J  

represent the performance of controller that considering and without considering 

modeling error respectively. 

The proposed controller outperforms the one without considering modeling 

uncertainty, especially under conditions when part fabrication processes have high 

variations.  This indicates that the proposed controller is more robust under modeling and 

observation uncertainties within certain ranges.  This result also shows the possibility of 

releasing the tolerances allocated to suppliers when assembly process is incorporated 
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with this control strategy.  The above simulated case study shows the efficiency of the 

proposed controller in MMP.  
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Figure 3-5 Control performances of different controllers 

3.5 Conclusion 

In MMP, random part fabrication and process induced errors will introduce 

uncertainty to the variation propagation models that are derived from nominal 

product/process design data.  A control methodology without considering the model 

uncertainty will result in a degradation of the controller performance in practice.  A 

controller that is robust to the noises would be preferable under such cases of model 

uncertainties.  This paper first derives a mathematical MMP variation propagation model 

with model uncertainties considered.  Based on the proposed model, a predictive control 

strategy is derived, with consideration of model uncertainty.  The effectiveness of the 

proposed control strategy has been demonstrated through a case study of a simulated 

assembly processes.   
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The proposed approach also has limitations when number of stages of a MMP is 

large.  A complete SoV model can be derived from process design blue print, however 

the analytic solution can become too complicated due to the high order interaction terms 

of variations of model parameters.  Numeric approximations should be introduced under 

such conditions, which can be the future work in extending the application of the 

proposed methodology. 
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Appendix 1: Derivation of (11) 

Denoted the prediction of Ny  at stage k as /ˆ N ky , which can be expended in 

similar way to (7) as, 

| 1
ˆ ˆN

N k i i r ri r= +
= +∑y Γ u Ψ x

))
, (12) 

where  1i N N i i i i−= = +Γ C A A B Γ Γ
) )) )

%K , 1i N N i i i−= = +Ψ C A A Ψ Ψ
) ) )

%K , and Stage r is the 

intermediate measurement stage.  It can be easily observed that, iΓ%  is a function of all 

jA ’s, jA% ’s, jB ’s and jB% , , , 1j i N= −K .  Similarly, 1i N N i i i−= = +Ψ C A A Ψ Ψ
) ) )

%K .   

Equation (12) can then be written as: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1

1 1

ˆ

ˆ

N N
N i i i r r r i i i Ni r i r

k N
k k k i i i r r r i i i Ni r i r

= + = +

−

= + = +

= + + + + + +

= + + + + + + + +

∑ ∑
∑ ∑

y Γ Γ u Ψ Ψ x Ψ Ψ w v

Γ Γ u Γ Γ u Ψ Ψ x Ψ Ψ w v

% %%

% %% %
 

Plug the above equation into the expression of Jk, 
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ˆ

ˆ
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The derivation with respect to ku  is: 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )
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Each of the above 3 terms can be calculated as: 
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Set the derivative to 0, thus the sub-optimal ku can be obtained as: 
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The above expression takes a common format of an optimal control law. 

The second derivate of Jk with respect to uk is ( ) ( )T

k k k k kE ⎡ ⎤+ + +⎢ ⎥⎣ ⎦
Γ Γ Q Γ Γ R% % , 

which is positive definite, which grantees that it is the optimal minimal point.  

Appendix 2: Corresponding state transition matrices for case study 

1

1 0 0 1 0 55
0 1 0 0 1 50
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , 

 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0.0200 0.0004 0.0200 0.0004 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0.0050 0 0.0050

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎣ ⎦

B ,  

2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0.0050 0 0.0050 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0.0050 0 0.0050

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎣ ⎦

B , and  



 

57 

2

1 0 91.37 0 0 0
0 1 84.54 0 0 0
1 0 50 0 0 0
0 1 80 0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

C . 
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CHAPTER 4 
 

EXPERIMENTAL VALIDATION OF A STREAM OF VARIATION MODEL 
AND PROCESS CONTROLLABILITY IN A PRODUCTION ENVIRONMENT  

Abstract 

Stream of Variation models, which capture variation propagation in multistage 

manufacturing processes, have been thoroughly studied in various applications, such as 

process modeling, fault identification, resource allocation.  This paper presents 

experiments that test the validity of a Stream of Variation model of an automotive body 

assembly process, as well as testing the controllability of online part-by-part feed-forward 

control.  The experiments were carried out in an automotive assembly plant that was 

equipped with Programmable Tooling and an in-line measurement system.  The results 

support the validity of the SoV model and indicate the feasibility of a part-by-part 

compensation scheme in a real-life manufacturing environment. 

4.1 Introduction 

In a multistage manufacturing process (MMP), products are manufactured 

through multiple operations or stages.  The product quality is typically reflected by the 

variations of Key Product Characteristics (KPCs).  During production, the KPCs of a 

subassembly will deviate from nominal position due to part variations and process 

variations, such as fixture error and welding gun error, at each stage.  These variations 

will be carried to the next stage and further interact with the assembly process, and thus 

these variations can be propagated to the downstream stages and accumulate to the final 

product. If the final accumulation is large enough, the production process will have 

quality problems. 
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The propagation of variation in a MMP raises a challenge for feed-forward 

control.  This is because when doing optimization for a MMP at each intermediate stage, 

the target to be optimized should be the product quality at the end of production line, 

rather than at the current stage.  Minimizing the variation of subassembly at the current 

stage alone may not lead to the best final product quality.  To achieve effective online 

feed-forward control in a MMP, three components are necessary.  These enablers include 

a model that captures the variation flow, i.e., the Stream of Variation model, real-time 

sensing technologies to measure the variation, and Programmable Tooling (PT) to 

perform control actions to suppress the variation. 

SoV modeling has been proposed to describe the propagation of variation in a 

MMP, through exploring the relationship of variation sources and geometric information 

of each operating station based on design information, especially product and process 

geometry (Jin and Shi, 1999).  It has then been utilized as the mathematical basis in 

various applications such as process modeling, design evaluation, diagnosis, tolerance 

synthesis, active control, and other areas (Shi, 2006). 

Theoretical studies of SoV models have been thoroughly investigated, however, 

validation of the model has been carried out through numerical simulation and calibration 

with commercial software (Ding et al., 2000), or through experimental validation in a 

research lab (Zhou et al., 2004).  To our knowledge, no accounts of validation 

experiments in a real production environment have appeared in the literature, nor has any 

controllability study for the application of active dimensional control been published.  To 

fill this gap, this paper will present experiments testing the validity of a SoV model and 

studying the controllability of the process.  Thus the first task of this paper is the 

validation of a SoV model in a real-life manufacturing environment.  

The second task of this paper is to test the feasibility of active dimensional control 

in a MMP.  Programmable Tooling (PT) was initially installed for production flexibility 

in the process studied.  It mounts the subassembly/part onto locators and clamps that can 

be adjusted precisely according to computer commands to produce several different 

products on the same equipment.  This has the beneficial side effect that it also provides 
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the capability of making adjustments in real-time, thus, in principle, enabling variation 

reduction by making part-by-part adjustments to counteract measured deviations. 

In-process active control for final product variation reduction is a newly emerging 

application area of SoV models, and simulations that show promising results have been 

reported in the literature.  In MMP, the possible control actions form a high dimensional 

solution space because of the large numbers of stations and assemblies involved.  To 

avoid unnecessary complication, a simpler sub-optimal controller with good-enough 

performance can be used as an alternative to the global optimal one obtained through 

Dynamic Programming.  In the literature, a controller for improving final product quality 

was first proposed for a multistage machining process (Djurdjanovic and Zhu, 2005), and 

then for a multistage assembly process (Djurdjanovic and Ni, 2006), taking the path of 

deviation minimization, rather than variation reduction.  This strategy brings the mean of 

KPC deviations as close as possible to 0, but will not necessarily reduce the variation of 

these deviations.  A feed-forward controller that aims to minimize final part KPC 

variation was developed later (Izquierdo et al., 2007), and a controller with model 

uncertainty is also proposed to consider the part fabrication and process induced errors 

(Zhong et al., 2008).  

In this paper, we study the relationship between control actions in an upstream 

experimental station and measurements downstream at the end-of-line (EOL). The 

objective is to verify the model predictions as well as the effectiveness of the control 

action.  The paper is organized as follows.  Section 4.2 introduces SoV modeling, and 

Section 4.3 describes the characteristics of the selected station, parts and experimental 

setup, and presents the derived SoV model for this particular experiment.  Section 4.4 

analyzes the results and Section 4.5 gives the conclusions.  

4.2 Stream of Variation Modeling 

This section presents the SoV model, which is used to describe the impact that the 

corrections have on the final product quality (Jin and Shi, 1999; Shi, 2006). 
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Figure 4-1 Multistage manufacturing process 

Figure 4-1 illustrates the stream of variation in a multistage manufacturing 

process.   Parts enter the production line from Station 1 with initial fabrication errors, 0x .  

In Station 1, the part control action 1u  is first applied through PT, while other un-

modeled process errors, 1w , will add to the variation of the parts.  The designed operation 

at Station 1 then takes place and the state of the subassembly changes to 1x .  The 

subassembly is then transferred to the next station, and the variations propagate and 

accumulate similarly as more parts/subassemblies are joined together, until the finished 

assembly exits the production line at the final Station N.  The KPC will be measured at 

the final Station N as well as some intermediate stations such as Station k.  The 

measurement yk is obtained with sensor errors vk. 

This process can be built to mathematically represent the variation propagation in 

MMP (Jin and Shi, 1999), 

1 1k k k k k k− −= ⋅ + ⋅ +x A x B u w  (1) 

k k k k= ⋅ +y C x v  (2) 

where equation (1) is a state equation, with n
k ∈ℜx  representing the state of the system 

(part deviations from the nominal) in stage k.  Variables p
k ∈ℜu  and n

k ∈ℜw represent 

the fixture adjustments and the disturbances respectively.  To facilitate the application of 

in real life, the dimension of system matrices are kept unchanged throughout the process, 

and thus the partition of state and control vectors that corresponding to parts that not yet 

emerged at station k are set to 0.  Matrix n n
k

×∈ℜΑ  stands for the reorientation matrix, 

which relates the error transferred between two adjacent stages (k-1 and k).  The effects 
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of fixture deviations on the state of the system are determined by matrix n p
k

×∈ℜΒ .  

Equation (2), the observation equation, is used to determine the deviations of the 

measurement points m
k ∈ℜy , which usually correspond to the KPCs of the product.  

They are obtained from the state through the observation matrix m n
k

×∈ℜC  adding 

measurement noise m
k ∈ℜv .  

By defining the state transition matrix ,k iΦ  to describe the deviation transmission 

between stages i and k (Ding et al., 2000), where , 1 2 1k i k k i i− − +≡Φ A A A AL , k>i; ,i i ≡Φ I  

(I is an identity matrix), the observation equation can be written as, 

0 0
1 1

N N

N k k k k N
k k= =

= + + +∑ ∑y Γ x Γ u Ψ w v , (3) 

where ,k k N k k=Γ C Φ B , 0 ,0N N=Γ C Φ and  ,k k N k=Ψ C Φ . 

4.3 Experimental Test-bed 

4.3.1 Description of the Selected Station and Parts 

In this study, an assembly station was selected at an automotive assembly plant, 

where one bracket is joined to an inner panel.  The final station is an existing OCMM 

(Optical Coordinate Measuring Machine) inspection station at the end of the underbody 

line (EOL).  

The station selected is a secondary assembly line that is connected to the main 

assembly at an intermediate assembly station, and the production quality, represented by 

the variation of the KPCs of the final product, is measured at the end of the production 

line.  Figure 4-2 presents a schematic view of the production line.  The selected station is 

marked as Station s and circled in bold, and enters the main production line at station k.  

Station N is a measurement station at end-of-line.   
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Station 1 

Station k 

Station N 

Station s

Main Production Stream

 

Figure 4-2 Schematic of the assembly flow 

Figure 4-3 (a) and (b) present overviews of the parts with locators, and Table 4-1 

gives their locations in a global coordinate frame, called the body coordinate frame. This 

frame has its origin at a fixed point in the car body and remains unchanged all through 

the production.  Figure 4-4 shows the position of this subassembly on the car underbody.  

 

                        (a) Pillar inner panel                                     (b) Bracket 

Figure 4-3 View of the parts with locators 

Table 4-1 Coordinate of locators (Unit: mm) 

Hole Slot Part Name X Y Z X Y Z 
Panel 2236 700.7 1000 1850 734.5 1000 

Bracket 2280 700.7 1045 2240 700.7 860 

 

Hole 
Hole

Slot

Slot 
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Figure 4-4 Location of the panels in the underbody 

In this selected station, the panel is located on fixed fixtures, while the bracket is 

located by a PT unit, serving as a control actuator.  The bracket assembled in the selected 

station is rigid enough to behave as a rigid body, and the connection between the two 

parts is slip plane, which means the movement of the bracket is constrained in the flat 

surface defined by the panel, as illustrated in Figure 4-5 (a).  Although SoV models have 

variations to deal compliant parts (Camelio et al., 2001; Hu and Camelio, 2006) or other 

types of joints as illustrated in Figure 4-5 (b) and (c) (Liu et al., 2007), the rigid bracket 

part and  its lap joint attachment to the inner panel in the selected station simplifies the 

model and its validation. 

 

 

Figure 4-5 Cross sectional view of the joints 

The assembly process of interest can be divided in two sequential stations. The 

first one is the assembly at selected station, where the bracket is joined onto the panel, 

and the second one is the final measurement process at EOL measurement station.  

Panel (L) Panel (R) 
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During the assembly process in selected station, both parts are held at their own 

locating points by PTs, and its model is presented in Equation (4) (Ding et al., 2000).  

The initial parts are assumed to be perfect ( 0 =x 0 ), and the fixture variation of the panel 

and other process disturbances can be considered negligible compared with the shim 

magnitudes applied on the bracket.  

1 0 0 1 1 1

1 1 1 1

= ⋅ + ⋅ +
= ⋅ +

x A x B u w
y C x v

 (4) 

In this assembly station with active control, the production procedure is to first 

load the part, take measurement before welding, then calculate and apply control action, 

and finally apply welding and move to next station.  Since the control action is taken 

before welding, it will not be effective if welding process introduces too large noise.  To 

study this impact, the part after welding is also measured using the same sensor system.  

Equation (4) can be further divided into two steps to explain this procedure. 

11 0 0 11

11 1 11 11

= ⋅ +
= ⋅ +

x A x w
y C x v

, (5) 

and 

1 11 1 1 12

1 1 1 12

= + ⋅ +
= ⋅ +

x x B u w
y C x v

. (6) 

Equation (5) reflects the positioning of parts, where 11x  is the part status before 

welding and 11y  is its observation.  Equation (6) captures the variation introduced by 

control action and welding process, with 1u  representing the control action and 1x  as the 

part status after welding.  12w  includes not only the ordinary process uncertainties, but 

also the variation introduced by welding process.  If this noise term is small, then (5) and 

(6) can be combined into (4), and the measurement taken before welding is capable to be 

used as input for control determination. 

In the second station, the subassembly is virtually fixed using the locating points 

of the panel.  Equation (7) represents the model of the process in the second station.  In 
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this application, part are already joined together and no control action is applied, i.e., 

2 =u 0 . 

2 1 1 2 2 2

2 2 2 2

= ⋅ + ⋅ +
= ⋅ +

x A x B u w
y C x v

 (7) 

Here 2w  captures all the process variation introduced by operations between 

selected station and EOL.  The prediction of SoV model at the EOL is 

( )2 1 1 2 2 1 1 1ˆ = ⋅ + ⋅ = ⋅ ⋅x A x B u A B u , so if the comparison between 2x̂  and 2x  shows great 

consistence, this will ensures the correctness of SoV model of the process. 

The whole validation experiments will sequentially test, i) the level of sensor 

noises, 1v  and 2v , to validate if the sensor system is capable for the process; ii) the 

variation introduced by welding, it can be ignored if the total uncertainty is at the same 

level of sensor noise; and iii) the model prediction, 2x̂ , and measurements at the EOL, 

2x .  These three steps together validate the SoV modeling and the controllability in the 

production line. 

4.3.2 Measurement Points on Selected Parts 

Two OCMM sensors were installed in the selected station for the experiment. 

These are optical sensors that use a laser beam and a camera to calculate the position of a 

feature by triangulation.  The sensors measure the upper and lower corners of the bracket, 

and provide four measurements in total, namely, the X and Z coordinates of two corners 

of the bracket.  These measurements will be referred to as XUpper, ZUpper, XLower, ZLower, 

respectively in later sections.  Figure 4-6 shows a view of the sensors in the selected 

station.  
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Figure 4-6 Upper view of the station with cameras  

Different points are measured at the EOL by OCMM and CMM systems.  Figure 

4-7 presents the actual location of the measurement points on the part, both in the 

selected station and at EOL, while only 3 directions are of interest at EOL by OCMM and 

CMM.  Table 4-2 and Table 4-3 then present these measurement locations in body 

coordinates.  For the convenience of comparison, this paper will convert all measurement 

point deviations to the bracket deviation and rotation.  The panel is also measured at 

EOL, on the locating hole and slot. 

 

 

(a) In selected station    (b) At EOL and CMM 

Figure 4-7 Location of measurement points on the bracket 

Table 4-2 Location of measurement points on bracket at selected station (Unit: mm) 

Selected Station X Z 
Upper Corner 2315.53 1113.4 
Lower Corner 2303.54 791.81 
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Table 4-3 Location of the measurement points on bracket at the EOL (Unit: mm) 

EOL X Z 
Upper Surface 2280.7 1118.8 

Upper Pin 2315.5 1096.0 
Lower Pin 2303.5 835.0 

 

Denote the panel as Part 1 and bracket as Part 2, then the state vector ix  can be 

defined as [ ]11 11 1 21 21 2
T

i i i i i i ix z x zθ θ=x , which is the stack up of the deviations 

and rotation of both parts.  Further denote locating hole as point 1 and slot as point 2, 

then the control vector in station 1 can be represented as 

[ ]1 11 11 12 12 21 21 22 22
Tx z x z x z x z=u , where jkx  represents the deviation of 

locating point k of part j in X direction, and jkz  is defined similarly.  Finally, the vectors 

showing deviations of the measurement points at the selected station can be defined as 

1 upper upper lower lower

T
x z x z⎡ ⎤= ⎣ ⎦y   , and the one at the EOL can be defined as 

2 upper surface upper surface upper pin upper pin lower pin lower pin

T
x z x z x z⎡ ⎤= ⎣ ⎦y .  The corresponding 

SoV model coefficients can be obtained using location information provided in Table 4-1 

and Table 4-2, which is shown in the Appendix. 

4.4 Validation of SoV Model 

4.4.1 In-line Sensing System Capability Validation 

As the prerequisite of the experiments, the sensing systems have to be validated to 

ensure their capability to the process.  The purpose of this experiment is to show that the 

systems provide reliable and sufficient information of the process state for both statistical 

and automatic process control. 

To validate the in-line sensing system, three tests were performed:  

1. Sensor Repeatability and Reproducibility (R&R) study in the selected station; 
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2. Correlation study between the measurements taken at EOL and in an off-line 

CMM room, which is the benchmark of product quality; 

3. Correlation study between the measurements taken in the selected station and 

at EOL. 

The R&R test provides information about the capability of sensors for a given 

process (Montgomery, 2005), which is important in system control.  R&R is a measure of 

the capability of sensors to obtain the same measurement reading every time when 

measuring the same characteristic, which indicates the consistency and stability of the 

measurement system.  This test compares the variation of sensors taking repeated 

measurements, with the tolerance of the process.  If the ratio of the measurement 

variation and the process tolerance is small (usually less than 0.25 in application), then 

the sensors and the measurement procedure are considered to be capable for the process. 

The correlation analysis between OCMM measurement at EOL and that of the 

off-line CMM is required. This is because CMM measurement, rather than OCMM 

measurement, of final product quality is the benchmark used in automotive industry.  

However, CMM measurement is very time consuming, and is performed just on a few 

samples of final assemblies, to ensure the general production trend to be in control, and 

thus the in-line measurement of each product can only be provided by OCMM system.  

Under this circumstance, if the measurement taken by OCMM is proven to be consistent 

with CMM, then the EOL OCMM measurements can be used in subsequent analyses for 

real-time control purpose. 

The correlation analysis between the selected station and EOL provides 

information about the relationship between the intermediate stations and EOL.  If the 

measurements in the selected station are correlated with the ones at EOL, and the 

measurements at EOL are correlated with CMM, then the measurements in the selected 

station will be consistent with CMM and can be used for control purposes.  A direct 

correlation study between the selected station and CMM was not performed because of 

realistic constraints that the measurements taken in the selected station are not measured 

by CMM. 

1. Sensor Gauge R&R test 
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Gauge R&R test is the study of the repeatability and reproducibility of a 

measurement system.  The repeatability refers to the inherent variation of the gage, and 

the reproducibility to the variability of the operator (Montgomery, 2005). Since in this 

application, measurements were performed by automatic systems, only the repeatability 

is of interest.   

The ratio of measurement variation to tolerance, also known as precision to 

tolerance (P/T), is used as the measure of the process capability.  The measurement 

variation is calculated as six times the standard deviation of the gage and the tolerance as 

the upper specification limit minus the lower specification limit (2mm). Table 4-4 

presents the precision to tolerance ratios of the four measurements.  

Table 4-4 Measurement variation to tolerance ratio at selected station 

 X Low Z Low X Top Z Top 
Ratio 0.11 0.15 0.05 0.04 

 

The ratios of all measurement points are less than 0.25, and thus the measurement 

system is capable of the process. 

2. Correlation between OCMM at EOL and CMM 

The correlation analysis between EOL and CMM measurements was performed 

comparing the deviations of the parts obtained from the measurements in both stations. 

The OCMM sensors at EOL inspect 100% of the assemblies, while in the CMM room 

only a few samples are inspected.  Since the CMM measurement is an industrially-

accepted measurement standard, the objective of this test is to verify the agreement 

between OCMM and CMM.  If the correlation is high, the OCMM measurements at EOL 

can be considered accurate in subsequent analyses. 

Table 4-5 presents the results of the study, where the notation in second column, 

error, is defined as the CMM measurement minus the OCMM measurement.  The linear 

correlation coefficient (r) of the two systems reveals whether the OCMM measurements 

follow the same trend as CMM measurements.  
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Table 4-5 Correlation coefficients between CMM and OCMM measurements 

       Error (mm)  Measurement Point mean σ r 

I/P Upper Surface(Z) 1.57 0.09 0.97 
I/P Upper Pin (X) 0.66 0.26 0.82 
I/P Lower Pin (X) -0.58 0.23 0.78 
Panel 2-Way  (Z) 0.30 0.06 0.95 
Panel 4-Way  (X) -0.11 0.26 0.72 
Panel 4-Way  (Z) 0.50 0.07 0.91 

 

The correlation is high for each measurement points; thus, it is reasonable to 

consider the EOL-OCMM as a reliable measurement system. 

3. Correlation between selected station and OCMM at EOL 

Table 4-6 presents the deviation correlation of the three degrees of freedom of the 

bracket between the selected station and EOL, based on the measurements performed 

during the shim test that is discussed in the next section.  The correlations are close to 1, 

which means measurement in the selected station is similar to what is observed at EOL.  

Table 4-6 Correlations between selected station and EOL (shim test) 

Rotation X Z 
0.99 0.99 0.99 

 

4.4.2 Design of Experiment of Shim Test 

The validation is carried out using a shim test, which is to purposely adjust the 

positions of locators held by PT in the selected station, while observing the responses at 

the EOL.  The validity of the SoV model is tested by comparing its predictions of the 

response to the shim inputs to the true deviations of the bracket observed at EOL.  

The number of runs of the shim test was limited by the length of a work shift and 

by the available manpower. Due to this and the presence of unknown and uncontrollable 

production factors, a Design of Experiments (DOE) method was utilized to decide the 
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combination of shim commands that would maximize the amount of information 

obtained (Wu and Hamada, 2000).  

Since the bracket has 3 degrees of freedom (d.o.f.) in the X-Z plane, the shim test 

has 3 factors: two translations (ΔX, ΔZ) and one rotation (Δθ).  For each variable, the 

experimental range was decided as the maximum displacement of the measurement 

points to be within 2 mm.  Accordingly, the maximum displacements of the hole of the 

bracket in ΔX and ΔZ directions were equal to 1 mm, and the rotation (Δθ) was limited to 

be within 0.25 degrees.  Thus 3 different levels for each variable were defined, which are 

(-1, 0, 1 mm) for translations, and (-0.25, 0, +0.25 degrees) for rotation.  A 33
III full 

factorial design will have 27 different runs, but due to time constraints on the realization 

of the experiment in plant, a factorial design which consists of 9 tests was selected 

instead, as shown in Table 4-7 (a).  This fractional design used confounding of C=AB 

(Wu and Hamada, 2000), where A corresponds to ΔX, B corresponds to ΔZ, and C 

corresponds to Δθ, in this experiment respectively.  Due to experimental constraints, the 

DOE was applied in Z and θ (Test 1), and then in X (Test 2) separately.   

The sequence of tests was randomized to diminish the effect that sequencing 

could have in the results.  The actual carried out experiment sequence is shown in Table 

4-7 (b).  Successive replicates were also used for each run level, as shown in the column 

next to shim. 

Table 4-7 Experimental matrices for shim test (Unit: mm) 

(a) Randomized 3 1
III3 −  fractional factorial experimental design 

DOE Factor Run ΔX ΔZ Δθ 
1 0 0 0 
2 -1 -1 0.25 
3 -1 1 0 
4 1 1 -0.25 
5 -1 0 -0.25 
6 0 -1 -0.25 
7 1 0 0.25 
8 1 -1 0 
9 0 1 0.25 
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(b) Matrix of carried out experiment 

Test 1 Test 2 Run ΔX ΔZ Δθ Replications ΔX Replications
1 0 0 0 5 0 5 
2 0 -1 0.25 3 0 3 
3 -1 1 0 3 1 3 
4 0 1 -0.25 3 -1 3 
5 -2 0 -0.25 3 -0.5 2 
6 -1 -1 -0.25 3 -0.5 3 
7 2 0 0.25 3 0.5 3 
8 1 -1 0 3 0.5 3 
9 1 1 0.25 3 1 3 
10 0 1 0.25 3 1 3 
11 -1 0 -0.25 3 0 3 
12 0 0 0 5 0 4 

 

The reason for using large shims in the testing is that, in this particular 

experiment, there are a large number of successive stations between the selected station 

and EOL, which introduces extra noise to that of the bracket placement and will 

overwhelm the correlation during normal production.  For large shims, these noises are 

still ignorable compared to control amount, thus the high correlation presented in the 

shim test result.   

4.4.3 SoV Model and System Controllability Validation 

The experimental data are analyzed in two steps.  The correlation analysis first 

compares measurements taken before and after welding in the selected station, which 

analyses the impact of the welding process.  The analysis then focuses on correlation 

between the measurements in EOL and the predicted deviation using the commanded 

shims as input to the model, which tests the SoV model’s correctness under large 

deviation, as well as the controllability in selected station.  

1. Correlation between before and after welding 

The purpose of this experiment is to test if the welding process introduces 

variation into the system.  If this variation is significant, then the measurements taken 
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before welding process will not be able to be used to determine the control action, 

because the position after welding cannot be predicted precisely.  On the other hand, if 

the measurements before and after welding have high correlation, a control strategy can 

be developed. 

To check this correlation, the measurements taken before welding are compared 

with those taken just after the bracket is welded to the panel.  Figure 4-8 shows the 

comparison of before and after welding of the 40 parts in Test 1.   
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Figure 4-8 Comparison of part location before and after welding in the selected station  
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Table 4-8 presents the correlations between measurements taken before and after 

welding, which are close to one.  This high correlation indicates that welding process 

does not introduce significant variation into assembly in selected station, and using 

measurement before welding for part-by-part correction is effective. 

Table 4-8 Correlation between before and after welding 

 X Z θ 
Correlation 0.99 0.99 0.98 

 

A t-test on the above set of experimental data was carried out, which shows that 

the difference is not statistically different from zero, which supports the conclusion of 

welding process does not introduce extra errors in to the production.  Thus the welding 

effect does not need to be modeled, and using the measurements before welding as the 

basis of feed-forward control is valid.   

As a consequence, the suggested sequence in real-life control is, first locate the 

part, then take measurements of its location, then apply a calculated control action, and 

finally close clamps and finish the rest of the cycle including welding. 

2. Correlation between expected and measured deviation of bracket at the EOL 

To validate the SoV model, the inputs (ΔX, ΔZ, Δθ) from Table 4-7 (b) are 

commanded to the programmable tooling at station s, and the corresponding part 

deviation is measured by an OCMM at the end of production line.  At the same time, 

these same inputs are applied to the SoV model to make predictions at the end of line.  

By comparing the measurement from real production with the predicted from the SoV 

model, the consistency will indicate whether the SoV model is adequate.  This validation 

process is illustrated as in Figure 4-9. 
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Figure 4-9 Model validation process 

Figure 4-10 shows the comparison among shim command, model prediction and 

the true part deviation and rotation at EOL.  The high linearity between measurements in 

selected station and EOL in test 1 is reflected in Figure 4-10, where all three correlations 

are close to one. 
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(b) Comparison for Test 2 

Figure 4-10 Comparison between measurements and model prediction (Unit: mm) 

Table 4-9 Correlations between measurements in selected station and EOL for Test 1  

d.o.f. X Z Θ 
Correlation 0.97 0.99 0.99 

 

The above results show that given the shim command in the selected station, the 

SoV model closely predicts the final deviation of the bracket at the EOL.  The experiment 

also shows the control action taken in selected station has the expected impact on the 

final assembly, and thus control can be applied if process information is complete.   

4.5 Conclusion 

The experiment described in this paper is the first to verify the SoV model in a 

production environment and to demonstrate the feasibility and controllability using 

control actions in an intermediate stage on the final product.  The results show that, in the 

selected station, welding has little impact on the part deviation, and the deviations 

introduced in selected station will appear at the EOL as SoV model predicts.  This 

validates the SoV model in real-life production and shows the controllability of the 

process based on the SoV modeling technique.  
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Appendix: SOV Model of Selected Station 

Following steps of standard SOV model derivation (Shi, 2006), using location 

information provided in Table 4-1 and Table 4-2, the SoV model of selected station can 

be obtained as, 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Process variation reduction through automatic control has been investigated in the 

literature ever since the advancement of sensing technology and active control systems.  

In such a system, a controller generates the proper control action based on mathematical 

models of the process, which comes from either statistical modeling or from 

product/process design knowledge. Uncertainties in process mathematical models, both 

data-driven and engineering-driven models, however, may lead to control actions that are 

responses to noise and that decrease the system performance.  This dissertation is the first 

to explore a control strategy in a multistage manufacturing process that compensates for 

the final product quality, taking into consideration the existence of modeling 

uncertainties. 

The major achievements of this dissertation can be summarized in four aspects: 

1. Development of a control strategy that takes into consideration modeling 

uncertainties for data-driven models 

The objective of this study was to develop a control strategy for processes whose 

mathematical models cannot be derived from engineering design knowledge.  For this 

type of process, statistical models are usually obtained from designed experiments on the 

system, where model parameters are estimated from experimental data.  The parameter 

estimation inevitably contains uncertainties, which are due to unknown disturbances and 

randomness in experiments.  A controller that generates the control action without 

considering these uncertainties will underestimate the process variation and may 

introduce even more noise to the final product.  The proposed control strategy derives the 

control action based not only on DOE models and in-process measurements data, but also 
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on the knowledge of model uncertainty and observation noise.  These uncertainties can be 

obtained from statistical regression procedures, and sensor specifications or gauge R&R, 

respectively.  The application of this controller can significantly improve robustness and 

dimensional quality, well beyond the improvement offered by an ordinary controller.  

2. Design of a control strategy for quality improvement in multistage manufacturing 

processes 

The objective of this research was to develop a part-by-part deviation control 

technique for multistage manufacturing systems, one that takes into consideration the 

uncertainties of product and processes.  Stream of Variation modeling methodology 

generates the mathematical model from design blueprint data to describe variation 

propagation in production flow.  The SoV model has been widely applied in research on 

multistage manufacturing systems, including process modeling, diagnosis, and active 

control.  However in production, since part geometry (a) deviates from the nominal 

because of errors inherited from the part fabrication process, or (b) is accumulated from 

previous assembly stations, the true process model will deviate from theoretical models 

accordingly.  The proposed controller captures this model variation and these observation 

uncertainties, and can significantly improve part quality, process robustness, and cost in 

MMPs. 

3. Validation of the Stream of Variation model in multistage manufacturing processes  

The objective of this work was to validate the correctness and effectiveness of the 

SoV model.  The theoretical applications of the SoV model have been thoroughly studied 

in literature, but its validation in real manufacturing systems has never been carried out.  

An experiment has been performed in a selected station where parts perform as a rigid 

body on a slip plane contact surface.  The shim test intentionally adjusts the position of 

parts in the selected station, and compares the observed responses with the ones predicted 

by the SoV model.  Statistical analysis has validated the model by comparing predictions 

given by the model with actual product dimensions.  This effort fills the gap of the 

validation of the SoV model in real manufacturing environments. 

4. Validation of automatic control feasibility in real manufacturing environments 
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The objective of this research was to validate control feasibility in MMPs.  This is 

a necessary and essential step before the final realization of active control in a real MMP 

environment.  The control feasibility is also shown through a shim experiment.  In this 

experiment, an adjustment in a selected station is applied, and its impact on KPCs is 

monitored at the end of the production line.  The desired control amounts were observed 

at the end-of-line as expected in theory, and thus the control feasibility is verified in real-

life production environment.  This validation provides the application basis for future 

realization of control systems in multistage manufacturing. 

5.2 Future Work 

To further implement active control in a multistage manufacturing system, there 

are many more topics that can be explored.  Some of the proposed future areas of focus 

are: 

1. Optimal Sensor Placement 

Sensor distribution plays an important role in automatic deviation control since it 

determines the system diagnosibility. Studies have been done previously on sensor 

placement for diagnosis (Ding et al., 2002; Chin et al., 2005) and control (Izquierdo et 

al., 2007) in multistage assembly processes.  However, taking into consideration model 

embedded uncertainties in realistic processes can change the sensitivity of sensor 

locations.  The problem of sensor placement can be approached from two perspectives: 

station level and part level. The station level perspective focuses on determining the 

appropriate stations along the process.  Part level perspective focuses on determining the 

appropriate features of the parts that should be measured in order to improve the 

estimation of the part deviation.  

2. Robust Fixture/Process Design Considering Modeling Errors 

Robust fixture design has been studied so as to minimize the impact of process 

variations.  When obtaining a process model with uncertainty explicitly expressed, the 

design can be less conservative, and can utilize additional process knowledge, including 

tolerance information. 
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3. Tolerance Allocation for Controlled Multistage Assembly Systems 

With higher controllability in production, the tolerance allocated to non-key 

features/parts can be released, as greater levels of control are devoted to key features.  

This wider tolerance will result in more efficient budgeting and reduction in total cost.   
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