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ABSTRACT

By feature unification we mean the transformation of a specific feature into a desirable
and isolated representation. Due to the global nature and hon-uniqueness properties of the
Constructive Solid Geometry (CSG) scheme, a feature on an object may be represented
by different sets of primitives, which may yet scatter around the CSG tree. A tree
reconstruction algorithm which groups these primitives as close as possible is therefore
needed before the feature can be unified into a desirable format suitable for applications
(such as process planning). Lee and Fu earlier proposed such a tree reconstruction
algorithm which works well in most cases, but fails to move primitives in some difficult
situations. In this paper, we investigate thoroughly the formal properties of moving nodes
in CSG trees, and propose a new tree reconstruction algorithm based on a well-defined
single-step move-up operation. This new table-driven algorithm is more powerful because
the cases failed by the previous algorithm are either overcome or elaborated. It is also

simple to understand, easy to implement, and very efficient.
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1 Introduction

In the areas of computer-aided design and manufacturing (CAD/CAM), the Constructive Solid
Geometry (CSG) scheme is one of the most widely used solid modeling schemes for representing
3-D objects. It represents an object as a Boolean combination or construction of solid primitives
(e.g., cylinders, cubes, cones, spheres, and tori) via the regularized set operators unions, differ-
ences, and intersections. The resulting representation of an object is a tree (called CSG tree) with
the solid primitives as terminal nodes and the regularized set operators as non-terminal nodes. The
CSG scheme has many advantages [2,12,17]: it is informationally complete (i.e., unambiguous)
and concise; it has a wide range of geometric coverage; objects are easy to construct and their
validity is automatically ensured by the syntax; application algorithms based on the tree structure
of CSG are easy to program, relatively numerically stable, inherently parallel, and efficient for
some operations. Therefore, many contemporary solid modeling systems use the CSG scheme;
for example, PADL-1 [15], PADL-2 [4], GMSOLID (3], TIPS [11], GDP [16], SYNTHAVI-
SION [6], UNISOLIDS, Applicon SOLIDS MODELING II, Catronix CATSOFT, Control Data
ICEM SOLID MODELER, Sperry SOLID MODELER, etc.

While the CSG scheme has many advantages, it has two problems with feature applications
such as feature recognition and extraction [10,18]. First, its global nature may scatter the solid
primitives of a feature throughout a CSG tree. Extracting a feature must go through the whole CSG
tree to find these primitives and check their relationships. Second, its non-uniqueness nature may
result in multiple CSG representations for an object, that is, a physical object can be represented
by many different CSG trees of different structures and primitives. The task of defining feature

models for matching is thus very difficult, if not impossible.

The problems resulting from both the global and non-uniqueness natures of the CSG scheme
can, however, be alleviated if there exist some reliable tree reconstruction algorithms which can
move the solid primitives around in a CSG tree and/or replace a CSG subtree by another equivalent
one. The CSG trees after reconstruction must of course represent the same objects and, hopefully,

are more suitable for the underlying applications.

The tree reconstruction technique has been employed by researchers in different applications.

CSG Tree 1
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Kakazu and Okino [9], in their Group Technology Code generation, first convert an arbitrary CSG
tree into a canonical form (i.e., the union of all real existence primitives difference the union of
all removal primitives) and are then able to apply a pattern recognition procedure to obtain the
GT code. Goldfeather et al. [7] also use a tree reconstruction algorithm to transform a CSG tree
into a normal form (i.e., a union of simpler subtrees) which can then be traversed to generate
quadratic coefficients and operation codes for fast displaying the object by their Pixel-Powers
Graphics System. In a similar work, Sato e al. [14] also reconstruct CSG trees for fast image

generation.

Feature unification [10] is another application domain where the tree reconstruction technique
seems to be useful. By feature unification, a specific feature is transformed into an isolated,
desirable representation. Due to the global and non-uniqueness nature of CSG, a feature on an
object may be represented by different sets of primitives, which may yet scatter around the CSG
tree in a number of different ways. A tree reconstruction algorithm which groups these primitives
as close as possible is therefore needed before the feature can be unified or mapped into a desirable

format suitable for applications (such as process planning).

Lee and Fu [10] earlier proposed a tree reconstruction algorithm based on the move-up and the
shuffle operations. The move-up operation either moves a node up one level in the CSG tree or
changes the node’s environment so that it can be moved up later. The shuffle operation performs
the exchange of a node with its uncle twice so as to pair together two “cousins-german” in the
CSG tree. Figure 1 illustrates how to pair together two nodes A and B in a CSG tree rooted
at R. Nodes A and B are respectively raised level by level through the move-up operation until
becoming the “cousins-german” under the same grandparent R’. They are then brought together

under the same parent Y by the shuffle operation.

This algorithm sometimes must stop because the move-up operation fails to move primitives.
To solve this problem and make it more powerful, we propose in this paper a new tree reconstruc-
tion algorithm which follows the same ideas of moving-up and shuffling nodes but is based on
a well-defined single-step move-up operation. All the cases failed by the previous algorithm are
either overcome or elaborated. The new algorithm is simple to understand, easy to implement,

and very efficient.

2 CSG Tree
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Figure 1: Pairing of Two Nodes.

This paper consists of six sections. The next section defines the problem to be studied and
describes the proposed set-theoretical approach to solving this problem. In Section 3, basic terms
necessary for this study are defined and various ways to move nodes are discussed. Four useful
properties are observed from this section. In Section 4, two state tables are derived and then
optimized by the state reduction technique. A new table-driven algorithm is also developed to
move nodes for feature unification. In Section 5, a comparison of this new algorithm with the
previous one is made with respect to their primitive operations, control strategy, number of inputs
used, and their power of moving up nodes. Finally the last section concludes this paper and

describes two future works.

2 Problem and Proposed Approach

As mentioned before, a tree reconstruction algorithm which groups primitives for feature unifica-
tion may be based on the move-up and the shuffle operations. Since the existing algorithm [10]

does not guarantee the success of moving up nodes in all cases, it appears essential to closely

CSG Tree 3
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reexamine all possibilities that a node in different environments can be moved up. The problem
can be reduced to the problem of one-level move-up, as it is the basic step for moving a node up
several levels to a desirable position. If an operation with well-formed behavior can be defined,
it can then be plugged into any tree reconstruction algorithm which needs to move up nodes. In

sum, the main problem to be studied in this paper can be stated as follows:

Given a CSG tree in which solid primitives are constructed by the regularized set operators
unions and differences only, how can a node in different situations be moved up one level yet

without duplicating the node itself?

In this problem, the intersection operator is not included because it can be implemented by
the difference operation (e.g., AN B=A — (A — B)) and it is less important than the union and
difference operations which are sometimes analogous to the welding of assembly operation and
the machining operation [8], respectively. In addition, a criterion we must insist in this study is
that no duplication of the nodes being moved should be made. The purpose of feature unification
is to group together all the primitives of a feature and convert them into another form, while the
duplication of these nodes will ultimately leave their copies ungrouped and unconverted. Note

however that the sibling of the node being moved is allowed to be duplicated if necessary.

Our approach to solving this problem is purely set-theoretical. A CSG tree can be one-to-one
mapped to a mathematical set expression where variables are the solid primitives, operators are the
regularized set operators' unions and differences, and parentheses enforce the CSG tree structure.
Since this mapping can be isomorphic, a tree reconstruction can be achieved by applying se:-
theoretical identities to a set expression and transforming it to an equivalent one. The study of
moving a node up one level in the CSG tree is therefore equivalent to the search of appropriate
set-theoretical identities which can be applied to the corresponding set expression to yield a new

expression in which the node is effectively one level higher than it was before.

'Hereafter we will omit the word regularized in the context.

4 CSG Tree
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Figure 2: Up-two-level Environment of A.

3 One-level Move Up

3.1 Basic Terms

We will first define some necessary terms.

A working node is defined as the node or subtree to be moved in a CSG tree. The level of a
node or a subtree is defined as the number of ancestors along its parent chain to the root of the
CSG tree. The level of the root is defined as 0. A move is an application of one set-theoretical
identity to the CSG tree which results in the changes of the environment (defined below) of a
working node. One-level move-up is defined as the result of one or several moves such that the
level of a working node is one less than it was before the move or moves (i.e., the working node
is at the same level as its"‘original parent).

An environment of a working node is characterized by, along its parent chain, the positions
of itself to its ancestors and the operator types of these ancestors. A up-two-level environment
of a working node is thus defined as a state which specifies the operator types of the working
node’s parent and grandparent, and the relationship of this node to its parent (either leftchild or
rightchild) and that to its grandparent (either in leftsubtree or in rightsubtree). This term is so
named because only two levels of ancestors (i.e., parent and grandparent) are referenced. In the
example of Figure 2, the up-two-level environment of the working node A is characterized by the

U, — operators, and A as in the leftsubtree of its grandparent and a rightchild of its parent.

From the Up-two-level environment point of view, a working node can only be in one of the

16 possible environments because the operators of its parent and grandparent can be either unions

CSG Tree 5
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State | Set-theoretical Representation
1 (AuB)UC
2 (Bu4duc
3 CU(AUB)
4 CU(BUA)
5 C -(AUB)
6 C-(BUA)
7 (A-B)-C
8 (B-4)-C
9 (AuB)-C
10 (Bud)-C
11 (A-ByuC
12 (B-AuCl
13 CU(4- B)
14 CuU(B - 4)
15 C-(4-B)
16 C - (B-4)

Table 1: Definition of 16 States.

or differences and it can be either in rightsubtree or in leftsubtree to its parent and grandparent
(2%2 2 %2 =16). Since these 16 possible environments are important in forming the basis of
the moving-up analysis, they are defined as 16 states shown in Table | where A is the working

node to be moved, B is its sibling, and C its uncle.

The 16 states determine how a working node is moved up. However, information on some
of these states is not enough for this decision so that more environmental information must be
used. The environmental information beyond up-two-level is thus considered as the inputs for

moving up the working node. The environmental information (i.e. operator type, and left- or

6 CSG Tree
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TRD TRD DRT DRT

Input a Input b Input ¢ Input d

Figure 3: Definition of Inputs

right-subtree) of each level beyond the up-two-level is regarded as an input, and thus collectively
forms an input string starting from the upward third-level to the root. Since each environmental
information consists of the operator type (either union or difference) and the position of working
node (either in left- or in right- subtree), there are 4 possible combinations for each input. We use
a,b,c,d to represent these combinations, as listed in Figure 3 where T is the subtree containing

the working node, and the subtree D is the sibling of T

3.2 Node Move-up

In this section, we will investigate how a working node in the 16 different possible states be
moved up one level in a CSG tree. Some of these states do not need to reference any input and
the working node can be directly moved up, but some of them needs one or more inputs. The
results are summarized by several properties.

Consider State 1 (i.e., (AU B) U C) in Table 1. According to the precedence rule of the
parenthesis, the working node A must operate with B first and then operate with C. Therefore A
is at the same level as B and one level below C. However, if adequate set-theoretical identities
(e.g., (AU ByuC = AU (B UC)) can be applied to transform State I into another expression
(A U (B UQC), in this case) in which A is outside the parenthesis, and B, C are enclosed in a
pair of parenthesis, then A is one level higher than both B and C, which means that A is already
moved up one level by the set-theoretical identities.

Similarly, a working node in State 2 to State 8 in Table 1 can be directly moved up one level
because the following set-theoretical identities hold. (Note that each expression on the left side

corresponds to a state, from State 1 to State 8, in Table 1.)

CSG Tree 7
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1. (AUB)UC=(CUB)UA
2. (BUAUC=(BUC)UA
3. CU(AUB)=AU(CUB)
4. CU(BUA)=AU(BUC)
5.C-(AUB)=(C-B)- 4
6. C-(BUA)=(C-B)- A4
7.(A=B)-C=A-(BUC)
8. B-A)-C=(B-0C)-4

Property 1: For one-level move-up in a CSG tree, State 1 to State 8 in Table | can directly
move the working node up one level without duplicating nodes and referencing any inputs.

Consider State 11 (ie., (A — B) U C) in Table 1. Since there is no simple set-theoretical
identities which can be applied to move up A, input information from larger environment will be
used. For State 11, the first input (i.e., the upward third-level environment) is enough to decide

the movement.

1. Input is a. The environment of the working node A becomes (A — B) U C) U D. Since
the set-theoretical identity ((A - BYUC)U D = (D U C)U (A — B) holds and the A in the
expression at right side is one level higher than that at left side, A is moved up one level

by this set-theoretical identity.

2. Input is b. The environment of the working node A becomes ((4 — B) U C) — D. It can

be easily observed that the following set-theoretical identities hold:

(A-ByuC)y-D

((A-B)-D)u(C - D)

(A - (BU D) U(C - D)

Comparing the last and first expressions, A4 has been moved up one level.

8 CSG Tree
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Present State Input

T TUD T-D DUT D-T
(A-BYUC | (DUC)UA-B) | (A—(BUD)UC -D) | (A-B)UDUC)|(D-C)-(A-B)
(B-AUC | (DUC)UB-A) | (B-D)—AUC-D)|(B-AHUDUC)|(D-C)-(B-4)
CUA-B) | (DUC)UA-B)|(C-D)UA-(BUD)) |(A-B)UCUD)|(D-C)-(4d-B)
CUB-A) || (CUD)UB-4) | (C-D)U(B-D)-4) |(B-AUCUD)|(D-C)-(B-4)

Table 2: Move up A in State 11, 12, 13, 14.

3. Input is c¢. The environment of the working node A becomes D U ((4 — B) U C). Since
the set-theoretical identity D U ((A — B)UC) =(A - B)U(D U C) holds, A can be moved

up one level by applying this set-theoretical identity.

4. Input is d. The environment of the working node A becomes D — ((4 — B) U C). Since
the set-theoretical identity D — (A — B)UC) = (D - C) — (A — B) holds, A can be moved

up one level.

Similarly, State 12, 13, and /4 can also move up nodes using only one input. The results are

shown in Table 2 and Property 2.

Property 2: For one-level move-up in a CSG tree, State 11, 12, 13 and State 14 in Table 1
can directly move the working node up one level by only referencing one input.

Now let us consider the remaining states. For Szate 9, (AU B) — C, no simple set-theoretical
identities can be applied to directly move A up. However, since the identity (A U B) - C =
(A= C)U(B - C) holds, State 9 can be converted by this identity to State 11 (A is a leftchild, in
the left subtree of its grandparent, its parent is —, and grandparent is U). Once converted to State
11, the working node A can be moved up one level as shown in Table 2. By the same token,
State 10 can be first converted to Stare 13 by the identity (BU A) - C =(B -C)U (4 - (), and
A can then be moved up as the same way in State 13. For State 15, i.e., C — (4 — B), it can be
converted to State /2 by the identity C — (4 — B) = (C — A) U(C - (C — B)). A can then be

moved up in the way shown in Table 2 although more nodes (i.e., C) are duplicated. The results

CSG Tree 9
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Present State Input
T TuD T-D DuT D-T

(AuB)-C (DU(B-0)) (A-(CUDy (A-Cyu (D—-(B-0CY
U4 - C) U(B-C)- D) (Du(B-20C) -4 -0)

(Bu4i)-C ((B-C)u D) (B-C)-D) (A-CHu (D-(B-0)
ud -20) U4 - (CuD (B-C)u D) -(4-0)

C-(A-B) | (DUC-(C-B))| «(C-D)-AU (C-Au (D -(C-(C-B))
u(C - 4) (C-(C-B)y-D) | (DU -(C- By —-(C - 4)

Table 3: Move up A in State 9, 10, 15.

State

Set-theoretical Representation

16.a

(C-B-4A)uD

16.b

(C-(B-4)-D

16.¢c

Du(C - (B - 4))

16.d

D-(C-(B-4)

Table 4: Elaboration of State 16.

of moving up A are shown in Table 3 and Property 3.

Property 3: For one-level move-up in a CSG tree, State 9, 10 and State 15 in Table 1 can be

converted to State 11, 13, 12, respectively, and the working node in these states can then be moved

up one level by only referencing one input.

Finally let us consider the State 16, C — (B — A). This state is the most difficult one where

neither can simple set-theoretical identities be directly applied nor can it be converted to another

states in order to move up the working node one level. Since a larger environment and more inputs

must be used, we define four new states by elaborating State 16 with the first input augmented.

These new states are defined in Table 4. We will analyze them in detail.

Case State 16.a ((C — (B — A))U D) : Now if we temporarily consider (B — A) as a working

10

CSG Tree




RSD-TR-21-87

Present State Input

T TUE T-FE EUuT E-T

C-B-AHUD) (DUBU | (C-E)-(B-4) |(C-(B-4)| (E-D)-
(C —(B - 4) u(D - E) WEUD) |(C~-(B-4)

DuU(C - (B - A4)) (DU E) (D - E)J (C—-(B-4) (E - D)-

(C-(B-4)|(C-E)-(B-4)| UWDUE) |(C-(B-4)

Table 5: Move up A in State 16.a, 16.c.

node, then State 16.a becomes State 12, and the operations listed in Table 2 can be applied. Once
(B — A) is moved up, so does the A. Since State 12 needs an input, we need the second input
to decide the movement of State 16.a. Assume E, from the second input, is the sibling of the
subtree denoted as State 16.a. The results are listed in Table 5.

Case State 16.b ((C — (B — A)) — D) : This state is the easiest one in State 16 because,
without referencing any input further, its working node can be moved up by the set-theoretical
identity: (C — (B - A)-D=(C - D)-(B - 4).

Case State 16.c (DU(C — (B — A))) : Similar to State 16.a, if we temporarily consider (B — 4)
as a working node, then State 16.c becomes State 14, and the operations listed in Table 2 can be
applied. Once (B — A) is moved up, so does the A. Since State 14 also needs an input, we need
the second input to decide the movement of State 16.c. The results are listed in Table 5.

Case State 16.d (D — (C — (B — A))) : This is the most difficult case because no simple
set-theoretical identities can be used. Even though we temporarily consider (B — A4) as a working
node, State 16.d become State 16 again. It means there is recursion here. Assume the second
input is used, by the analysis of State 16.a, 16.b and 16.c, it is enough to move the working node
if this input is b, or it may need one more input if the input is a or ¢. However, if the second

input is d again, then the recursion occurs and more inputs are needed until the input is not d.

Property 4: For one-level move-up in a CSG tree, State 16 needs to reference one, two or
more inputs in order to move up the working node. If the first input is b, then this input is enough.

If the input is a or c, then an extra one is enough. However, if the input is d, then more inputs are

CSG Tree 11
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needed until the input is not d.

4 New Algorithm for Feature Unification

Last section has shown how to move up a working node one level in different states. However,
for the purpose of feature unification, a working node must be kept on moving up until a desirable
position. This means that we need to know not only how to move up a node in different states but
also what the next states are after the node has been moved. In this section, we will first derive
two tables: one is the action table (or output table) for actually moving the working node, the
other is the next state table which decides the working node’s next state after moving. We will
then apply the state minimization technique to reduce the states and also the sizes of these two
tables. A driver equipped with these two tables becomes our new algorithm for moving nodes

up. Finally, this new move-up algorithm is used to develop a new feature unification algorithm.

4.1 Output Table and Next State Table

Two tables will be created in this section for continuously moving nodes up. One is the output
table (or action table) which specifies what actions should be taken to move up one level the
working node at different states. The other is the next state table which specifies what the next
state is after the working node is moved up one level. The next state will determine the next
move-up action.

In Section 3, we have studied how to move nodes up one level. The results are listed in
Table 2, Table 3, Table 5 and those set-theoretical identities in Section 3.2. By combining these
tables and identities, we then have an output table, which is shown in Table 6. Although Srate I
to State 8 do not need any input for moving nodes, the results after their movement are augmented
with the first input for consistency with other states and for the derivation of next states. (Note
that, in Table 6, State 16.d needs more inputs until the incoming input is not d, then it is converted

to one of the State 16.a, 16.b, or 16.c and the associated action can be performed.)

The next state table can be built by observing the states of the working node after it is moved

by Table 6. For example, for the State 11, if the input is a, according to the operation specified

12 CSG Tree
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in Table 5.)

in Table 5.)

Present Input
State
T TuD T-D DuT D-T
(AuB)uC || (CUBYUAUD (CUBY)UA)-D Du((CuB)UA) | D-((CUBYU4Y
(BUdul || (BUOYUAHUD (BUCGYUA-D DU((BUCYUA) | D-((BUC)YU 4)
CU(AUB) | (Au(CuB)yUD (Au(CuB)-D DUAUCUB)) | D-(Au(CuU B))
Cu(Bu4d) | (AUBUCHUD (Au(BuUCy)-D DUAUBUQC) | D-(AUuBUOY
C-(AUuB) | (C-B)-AUD ([C-B)y-4)-D DuUu((C-B)-A) | D-(C-B)-4)
C-(BUAd) | (C-B)-AUD {C-B-4)-D Du((C-B)-4) | D-(C-B)-4)
A-B)-C | (A-(BUC)UD (A-(BUC)-D DUu(A-(BUCQC) | D-(A-(BUO)
B-4H-C||((B-C)-AHUD B-0)-4-D DUu((B-C)-A | D-((B-C)-4)
(AuB)-C (DU(B-0)) (A-(CuDy A-Cwu (D-(B-0)
U4 -0) U(B-C)-D) (DU(B -0y -(4-0)
(Bud-C (B-0CyuD (B-C)- D) (4-C)W (D-(B-0)
U4 - 0) U(A-(CuD) (B-CyuD -(4-0)
A-BUulC | DUOUA-B)|A-BUDHUC-D)| (A-BUDUOC) |(D-0C)-(A-DB)
B-AHAUulC | (DUOUB-4) |(B-D)-AHLuC-D)| (B-AHUDUC) |(D-C)—-(B-4)
CUMA-B) || (DUCYUA-B) | (C-DYyUA-BUD) | A-BuCubD)|(D-C)-A-B)
CUB-A | CUDUB-A|(C-DYu((B-D)-A) | B-AHUCUD) |(D-C)-(B-4)
C-(A-B)|| (DU -(CC-B ((C - D)y - A)u (C-Au(D (D-(C-(C-B)
NU(C - 4) (C-(€-B)-D U - (C - By ) —(C = 4)
C-(B-4) ( see State 16.a (C-D)y-(B-4) ( see State 16.c ( need more input

to resolve.)

CSG Tree

Table 6: The Output Table (Action Table) for Move-Up.

13
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by the table, the working node A will be moved to the state (D U C) U (A — B), which is the
State 13 as far as A’s environment is concerned. Therefore, the next state of State /1 with input
a is State 13. State 16 is the one where its next states can not be immediately observed. If the
input is b, the next state is State 16 from Table 6. If its input is a or ¢, Table 5 must be used
because another input is required. According to the Table 5, however, each entry in the row for
State 16.a or State 16.c specifies that the next state for A is always State 16 even after two inputs
are used. For State 16.d, it must wait until an input is not d. Once that input occurs, the states
will become one of 16.a,16.b, or 16.c in order to move up the subtree which contains A. As we
just mentioned, the next state of all these three is State 16. Therefore, the next state of 16.d is

State 16. The next state table is shown in Table 7.

4.2 State Minimization of Tables

If we look into Table 6 and Table 7 carefully, we will soon find that several states seems to be
equivalent. Consider State I and State 2, for example. Their associated set expressions ((AUB)UC
and (B U A) U C) are set-theoretical equivalent. Their corresponding entries in the next state table
are identical, and their corresponding expressions in the output table are also equivalent. It seems
that we may merge them into a single state. In this section, we will apply the state reduction [5]
or state minimization [1] techniques to reduce the number of states in both tables.

In the state reduction method, there is a partitioning algorithm which can effectively partition
states into blocks of equivalent states. The algorithm first partitions all states into blocks in which
every state has the same output for each input symbol. It then applies each input to the states
of the same block to see if their next states are in the same block. If true, put them in the same
block for next partition; otherwise, put them into different blocks in next partition. This process
is iterated until two consecutive partitions are equivalent. Then all the states in the same block
in final partition are considered as equivalent and merged to one state.

Now we apply this partition algorithm. Consider the Table 6. Two outputs are equivalent
if their expressions are set-theoretical equivalent. Therefore, we may partition the 16 states into
nine blocks: {1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}, {11, 13}, {12, 14}, {15}, {16}. Then

we consider the next state table Table 7, and apply each input to the states in same block to see

14 CSG Tree



CSG Tree

Present State Input
State T TUD | T-D|DuUT|D-T
1 (AuByuUC 2 10 4 6
2 | (BuaucC 2 10 4 6
3 | CU(AUB) 1 9 3 5
4 | CU(BUA 1 9 3 5
5 |C-(AUB) 12 8 14 16
6 |C-(BUA 12 8 14 16
7 |A-B)-C 11 7 13 15
8 |(B-4-C 12 8 14 16
9 |AuB-C 13 11 11 15
10 [ (Bu4)-C 13 13 11 15
11 {(A-B)ucC 13 11 11 15
12 | (B-4)uC 14 12 12 16
13 |Cu(A-B) 13 13 11 15
14 | CU(B-4) 14 14 12 16
15 | C—-(4- B) 14 12 12 16
16 |C - (B-4) 16 16 16 16

Table 7: The Next State Table for Move-Up.

RSD-TR-21-87
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State | Corresponding Original States

i {1,2,3,4}

2 {56}

3 {7}

4 {8}

5 {9,10}

6 {11,13 }

7 {12,14 }

8 {15}

9 {16}

Table 8: Definition of New States.

whether new partitions are generated. After the application, we find that no block needs to be
split. This means the initial partition is also the final partition, and all the states in each of the
nine blocks are equivalent so that they can be merged into single state. Therefore we define these
nine new states in Table 8, and create the reduced output table and next state table as shown in

Table 9 and Table 10.

4.3 The New Algorithm

With the given output table and next state table in Table 9 and Table 10 respectively, it is very
easy to write a driver routine to move up nodes to a desired level in a CSG tree. Table 9 and
Table 10 can be implemented by array data structures of two indices. The first index specifies
one of the nine states in Table 8, and the second one specifies one of the four possible inputs.
Each entry in these two tables can then be addressed (accessed) through the two indices. Listed
below is the driver routine MoveUp, which uses the table-lookup technique to move a working

node A to a desired level L as specified by its caller.
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Present Input
State
T TuD T-D DUT D-T
1 (AuBuUCHUD (Au(BUC)-D DU(AU(BUC)) | D-(AU(BUOD))
2 (C-B)y-AuD ((C-B)-A4)-D DU(C-B)-4) | D-((C-B)-4)
3 (4-(BuC)uUD (A-(BUC)-D DU(A—-(BUC)) | D-(4-(BUC))
4 (B-C)-AHuD (B-C)-A)-D DU((B-C)-4) | D-((B-C)-4)
5 (DU(B - 0)) (A - (CuDy (A-0Owu (D - (B - 0))
U - C) U((B - C) — D) (DU (B -C)) —(A-0)
6 (DUC)U(A-B) |(A-(BUD)U(C-D)| (A-BYUDUC) | (D-C)-(4-B)
7 (DUC)UB-A4) |(B-D)-AHUC-D)| (B-AHUDUC) | (D-C)-(B - 4)
8 (DU(C - (C - By ((C-D)- Ay (C - AU (D-(C-(C-B))
u(C - 4) (C-(C-B)-D) | (DU -(C-DhBy —=(C - 4)
9 ( see State 16.a (C-D)—(B-4) ( see State 16.c ( need more input
in Table 5.) in Table 5.) to resolve.)
Table 9: The New Output Table (Action Table) for Move-Up.
CSG Tree 17
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Present State Input
T TUD|T-D|DUT |D-T
I i 5 1 2
2 7 4 7 9
3 6 3 6 8
4 7 4 7 9
5 6 6 6 8
6 6 6 6 8
7 7 7 7 9
8 7 7 7 9
9 9 5 9 9

Table 10: The New Next State Table for Move-Up.

procedure MoveUp ( A : CSGnode; L :integer);
begin
S := current state of A;
repeat
I := the input from A’s environment;
perform the action specified in
OutputTable( S, I ),
S := NextStateTable( S, I ),
until L = level of A;

end; { MoveUp }

To illustrate this algorithm, let us consider the example (((w — z) — y) U z) — t. The working
node w, at level 4 in the tree, is to be moved up two levels. w is at the state 3, thus § = 3.

The environment at the upward third level determines the input, which is a, and thus [ = a.
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®O

State of w: S =3 S =6 S =6
Input of w: I'=a I=b I = € (no input)
Level of w: Lv=4 Lv=3 Lv=2

Figure 4: Example of Moving Up w Two Levels.

To perform the action specified in OutputTable(3,a), the original subtree (w — z) — y) U z is
converted to (A — (B U C)) U D where the working node A = w, its sibling B = z, its uncle
C =y, and ancesto; D = z. The result is a new tree ((w — (z U y)) U 2) — ¢, in which the w, at
level 3, is moved up one level. Now according to NeztStateTable(3,a), the next state is 6, that
is, S = 6. Then the loop in MoveUp is iterated again. The new input [ = b, and the CSG tree is
replaced by (A — (B U D))U(C — D), specified in OutputTable(6,b), where A =w, B = (z U ¥),
C =z,and D =t. The final result is the tree (w — ((z U y) U t)) U (z — £), and the working node,

now at level 2, is moved up two levels already. This example is shown in Figure 4.

With the MoveUp procedure above, we may construct the algorithm for feature unification.
As mentioned before, the most important task for feature unification is to group together relevant
primitives after they are recognized by a feature recognizer or feature extractor. Once they are
grouped together under a subtree, they are ready to be directly converted to other desirable formats.

Listed below is the algorithm to group nodes. Assume that all the primitives recognized by a

CSG Tree 19
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feature recognizer are collected in a set, call Bag. This algorithm starts with the Bag and, pair
by pair, groups together all the nodes in the Bag under a CSG subtree. The Shuf fle’s function
includes two consecutive exchanges: A’s sibling is first exchanged with A’s uncle, and then B’s

sibling is exchanged with B’s uncle.

procedure GroupNode ( Bag : set of CSG subtrees);
begin
repeat
pick up two elements a and b from Bag;
r = the latest common ancestor of a and b;
lv=level of r + 2;
MoveUp(a, lv);
M oveUp(b, lv);
Shuf fle(a, b);
put the parent of a and b back into Bag;
until only one element in Bag;
return the only element in Bag;

end; { GroupNode }

5 Comparison to the Existing Algorithm

In this section we will compare this new algorithm and the previous one [10] for feature unification.
Both algorithms employ the same paradigm to group nodes: first moving them up and then
shuffling them together. The real differences between these two algorithms are the operations
of moving nodes. Therefore, we will briefly review the moving-up operation, called Up, of the
previous algorithm before comparing it with its counterpart, MoveUp, of the new algorithm.
The previous algorithm also differentiates the working node’s environment as 16 states (as
we did in Section 3, Table 1), and the procedure Up performs adequate operations in response to

these 16 states. The basic operations of Up are the switch of nodes with their uncles provided
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that appropriate set-theoretical identities are applicable. For those states that can not be supported
by the basic operations, they are converted to other states so as to apply the basic operations.
States can be converted either by duplication of nodes (e.g., (AU B)-C=(A-C)U(B - ())
or by escaping the working node to its parent and trying to move up the new working node. If
an escaped working node needs another escape (which is determined by the states of the working
node), it is then released back to the original working node so as to keep on moving. The
algorithm fails, unfortunately, if the next operation after a release is still an escape, since it then
leads to a cyclic situation where the escape and the release simply alternate the working node and
its parent.

In the following, we compare the procedures Up and MoveUp from several perspectives:
primitive operations, control strategy, number of inputs, power.

primitive operations. The primitive operations that Up uses are switch, duplication, escape,
and release. The switch exchanges a working node with its uncle with possible update of tree
structure and operator types. The duplication copies nodes and, if necessary, updates operator
types too. The escape and the release simply modify the pointers to tree nodes. All primitive
operations are simple and efficient, but the movement of a node up one level might require several
primitive operations. On the other hand, the primitive operations of MoveUp, which are defined
in the output table Table 9, are a little bit more complicated. They might also update the tree
structure, operator types, and duplicate nodes. However, as far as moving nodes up one level
is concerned, each primitive operation always succeeds by itself—no cooperation of others is
needed. It is more efficient than its counterpart in which several operations may be involved and
the working node is possibly escaped and released back and forth.

control strategy. The control strategy that is used in Up for governing the continuation of
moving is basically a state-transition paradigm which identifies the current state and performs
corresponding actions. This simple control strategy is, however, complicated by the introduction
of the escape-release mechanism. In comparison, the control strategy used in MoveUp is a table-
driven mechanism which is defined by the next state table and the output table. It is very simple,

uniform, and easy to understand and to implement.

number of inputs. The actions of the procedure Up are determined by the current state and
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the status of the control flag for escape and release. After the node is moved, a new current
state is formed by its upward two level environment. A new input (i.e., the upward second level
information) is augmented here to form the state before operation. Therefore, the procedure Up
uses only upward two level information each time to decide operations. On the other hand, the
procedure MoveUp uses more input information to determine its operations. It is obvious from
Table 9 and Table 10 that more than upward two level information is used. Besides the upward
two level information which forms the current state, one, two, or more inputs must be used.
power. By the meaning of power we mean the ability of moving a node up at different
environment. The new procedure MoveUp is definitely more powerful than the previous procedure
Up. The less power of procedure Up is because it does not use enough environmental information
to make decisions so that the escape and release control mechanism abandons too early on states
which are possible to succeed. There are two categories of states which are failed by Up due to
cycles. The first one is those states which need two consecutive escapes. It includes (C' — (A —
BYuD,DU(C-(A-B)),D-(C-(A-B),(C-(B-A)UuD,DU(C - (B - A)), and
D — (C - (B — A)) (assume that A is the working node). The second category is those states in
which the working node A’, which was previously escaped from A, now needs another escape. It
includes (X —AHUY,YU(X - 4),and Y — (X — A’) where X,Y are CSG subtrees. However,
just from the output table Table 6, or Table 9 in MoveUp, the working node in all these failure
cases can actually be moved up except the D — (C — (B — A)), i.e. State 16.d. In the procedure
MoveUp, a working node in State 16.d can still have a chance to be moved up if one of its inputs
is not d. Therefore, the new procedure MoveUp is more powerful than the previous procedure

Up.

6 Conclusion and Discussion

6.1 Conclusion

In this paper, we have studied the problem of how to move a node up one level in a CSG tree
without duplicating itself. Mathematical set theory is employed to solve this problem. All 16

possible states in which a working node may reside are identified, and set-theoretical identities are
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applied to move the node up. Several significant and interesting results are discovered (Section 3):
on the feasibility issue, a node at any of the 16 different states is possible to be moved up one
level; on the implementation issue, the ways of moving up a node at different states are realized
and an algorithm is suggested.

Based on this study, the state tables (i.e., output table and next state table) for moving a node
up one level are created. They are further refined by the state reduction (minimization) technique
so as to have a minimal number of states, i.e., 7 , instead of 16. These two tables plus a simple
driver routine constitute a new procedure, called MoveUp, which can move up a node several
levels. Our new algorithm thus relies on the procedure MoveUp to move nodes around a CSG
tree for grouping primitives and unifying features.

Finally we compare the new algorithm with its predecessor with respect to moving up nodes.
They— Procedure MoveUp and its counterpart, Procedure Up— are compared from four different
points of view: primitive operations, control strategy, number of inputs, and power. Although
the new procedure MoveUp has slightly complex primitive operations, it is usually more efficient
in time because Up sometimes needs several of its primitive operations to move a node up one
level while MoveUp needs only one. MoveUp also has a simple and uniform control strategy
(i.e., a table-driven control). Since it references more inputs, Procedure MoveUp is more power
than Procedure Up in moving up nodes. All the cases failed by Up are identified and overcomie
in MoveUp except for the case State 16.d. The case State 16.d is elaborated because a working

node in that state can still be moved up as long as one of its incoming inputs is not the input d.

6.2 Discussion

Although all the cases failed in the previous algorithm are resolved, the new algorithm still can
not move up a node if it is at Stare 16.d and all of its incoming inputs are d. In practice, such a
situation seldom happens because designers rarely design features in this way. Nevertheless, for
theoretical completeness, we are still in search of adequate set identities that can either directly
move the node or convert this state to other states.

While the new algorithm MoveUp is designed originally for feature unification, it can be

used in other applications where the CSG primitives also need to be moved. Feature recognition
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can be such an example. Since a feature on an object may be represented by different sets of
primitives which may yet scatter around the CSG tree, the tasks of defining feature models and
matching the models with CSG trees would be difficult and complex. However, if some rough
information about a feature is available (e.g., a feature must be composed of certain types of
primitives or certain primitives that have specific relationship in their principal axis directions),
then these candidate primitives can be moved and grouped together under a CSG subtree before
they are matched or recognized. This would reduce the complexity of feature recognition because
the feature matching can be performed locally and feature models can be defined with less variety
considered. At present, we are also investigating the application of the new algorithm MoveUp

along this direction.
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