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Abstract

A new representation scheme PAR (Principal Axis Representation) for rotational
parts is proposed as an internal representation scheme for Constm;:tive-Solid Geometry
(CSG). The key idea of PAR is to represent an object by its principal axis and a set
of boundary curves. Based on a mathematical framework, an algorithm, is designed to
convert a CSG tree into a PAR, which represents the same object as the ‘CSG tree does
but is in an evaluated form. Geometrical properties of parts can then ’be computed more
directly and efficiently from this evaluated représenta.,tion than from.the original CSG
tree. In addition to its computational efficiency, the PAR is a unigue representation

scheme.
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1 Introduction

Solid modeling techniques have been considered as one of the keys to the integration of
computer-aided design and manufacturing (CAD/CAM)[Bee82]. Two of the prevailing ge-
ometric schemes in solid modeling are Boundary Representation (B-rep) scheme and Con-
structive Solid Geometry (CSG) scheme[ReV82]. B-rep represents an object by segmenting
its boundary into a finite number of bounded subsets usually called faces or patches, and
representing each face by (for example) its bounding edges and vertices. CSG scheme rep-
resents objects as constructions or combinations, via the regularized set operators, of solid
components. While B-rep in general is in an evaluated form, which explicitly shows what
and where each geometric entity is, CSG is not. The much more concise CSG is easy to
construct and to check the validity of the object being constructed. The tradeoff between
the evaluatedness and conciseness seems to be clear but the choice between B-rep and CSG

has never been easy.

As a means to integrate design and manufacturing, solid modeling techniques not only
display objects but also compute important properties of objects. A more comprehensive
understanding of the geometric representation by the computer becomes so important that
shape features can then be extracted, parts classified, processes planned, and etc.. Several
interesting researches have been done along the direction of enhancing machine’s under-
standing of part geometric representations. Woo[Wo077] focused on cavity recognition in
studying problems of transforming volumetric designs of parts into numerical control (NC)
descriptions. Staley et al.[StHA83], without specific application emphasized, also dealt with
cavity recognition but using syntactic pattern recognition techniques. Grayer[Gra76] com-
pares the part in B-rep with its initial work part in order to compute NC tool paths. In
addition to NC path generation, Armstrong{ArCP84] also considered the determination of
fixture orientation. For global understanding of part geometry, Woo[Wo082] suggested a
convex hull technique which transforms a boundary representation into an expression of al-
ternating sum of volumes. To generate a part code for group technology, Kyprianou[{Kyp80]

used syntactic pattern recognition techniques to extract features characterized by protru-
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sions and depressions. Jakubowski[Jak82] also used syntactic methods to develop a part
description language primarily for the determination of part shapes. Henderson[Hen84] was
able to use PROLOG and expert system techniques to extract features and organize them

in a feature graph so as to facilitate automatic process planning.

While most of the work mentioned above is based on B-rep, very little has been done
on CSG. In CSG, a machine part is represented as a tree with some primitive solids as
terminal nodes and the regularized set operations (union and difference) and movement
operations as non-terminal nodes. Properties of the machine part can be computed by
evaluating the CSG tree. The evaluation procedure is basically a tree traversal routine that
combines CSG subtrees into higher level CSG subtrees. The algorithm is simple but the
computation involved in calculating the intersection (the major computation of unfton and
difference operations) of two solids are complex and time-ccnsuming.

Without evaluation, Lee and Fu[LeK86] proposed an approach to the problem of feature
extraction. The approach is based on the spatial relationships among axes of primitive
solids. They also suggested a unification process using tree reconstruction to unify feature
representations so that properties can be computed more easily. As more general cases
for this approach are yet to be studied, there are algorithms that convert CSG into B-
rep[BoG82]. Not surprisingly, such algorithms are often called for when certain properties
must be computed from a CSG tree[KaO84]. However, the conversion often appears to be
computationally expensive or, being worse, a waste to simply compute the specific property.

There are part families for which CSG should be an excellent representation scheme
and, furthermore, a transformation into B-rep can actually be avioded. A such example,
rotational parts, is investigated in this study. Instead of B-rep, a new representation scheme
PAR (Principal Axis Representation) is proposed as an internal representation scheme for
rotational parts that are initially described by CSG. The key idea of PAR is to represent
an object by a principal axis and a set of boundary curves. Based on a mathematical
framework, an algorithm is designed and implemented to convert a CSG tree into a PAR,
which represents the same object as the CSG tree does but is in an evaluated form. From

PAR, the profile of the part can be efficiently computed. Other properties such as length
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and maximum diameter can also be obtained easily.

The conversion algorithm is much simpler than the one converting CSG into B-rep. The
main reason is that one dimensional curves (e.g. lines and arcs) are used to characterize
the rotational parts and the evaluation of PAR is performed on two dimensional space, e.g.
the intersection of two lines on the same plane rather than that of two solids on a three
dimensional space. In additiou to its computational ease, the PAR is proved to be a unique
representation scheme. Being unique, it facilitates feature definition and thus simplifies the

tasks of feature extraction. The possible extension of PAR is discussed in Section 6.

2 The Problem and Proposed Approach

2.1 Problem

Rotational parts include all parts that are symmetrical with respect to their principal axes.
In this study, however, the primitive solids are limited to cylinders, cones, and tori only.
The problem is formulated as follows:

Given a CSG tree of a machine part, which is

1. axis-symmetrical, and

2. constructed from cylinders, cones and tori in an arbitrary order of combination such

as union and difference.
can we:

1. by utilizing the property of axis-symmetry, efficiently derive its profile and some geo-
metric properties such as length and diameter so that part classification and process

planning can possibly be supported?

2. develop an internal scheme which not only supports the above computation but also

represents the part uniquely?
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2.2 Basic Ideas

If a machine part is axis-symmetrical, it can be viewed as a Z%D object and represented
by the union of components, each being generated by rotating its boundary curve segments
with respect to the principal axis. For example, a cylinder can be represented by rotating
a line segment around its axis where the axis and the line segment are parallel to each
other and their distance is the radius of the cylinder. Other primitive solids like cones and
tori can also be represented in a similar way. Since the machine part is axis-symmetrical,
each component solid depicted by a CSG subtree can also be represented by a collection of
principal axis segments, each being associated with several pairs of boundary curves. For
each boundary curve pair, rotating it around the associated axis segment would generate a

volume layer for the corresponding component solid.

This idea of representing axis-symmetrical machine parts by a principal axis and a
set of bounded curves can be exploited to develop efficient algorithms to evaluate CSG
trees and deduce their geometrical properties because the computational complexity of the
algorithms can be reduced significantly. For example, in the course of evaluating CSG trees,
instead of testing the intersection of two three dimensional solids, we need only to test the
intersection of a few one dimensional curves on the same plane, where the number of the 1D

curves needed to be tested depends on the complexity of the two original 3D solids involved.

To evaluate a CSG tree and convert it into this kind of representation, new operations
such as union, difference, and movement operated on this new representation scheme must
be defined in order to maintain the actual semantics as their counterpart operations do in
the CSG tree representation scheme. To deal with the movement operation is easy; if all
the coordinates of the segments and boundary curves are relative to a principal axis, then
the result of the movement operation is merely applying the movement transformation to
the principal axis, and others remain unchanged. But the union and difference operations

are not so simple to deal with, as more elaborate processing would be required.

After a CSG tree is converted to the new representation, the profile and other geometric

properties of the corresponding part can be easily computed. These properties may be
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computed all at the same time after the CSG tree is converted into the new representation.
To compute the desired geometric properties directly from the CSG tree, on the other hand,
is complex and time-consuming.

In summary, the proposed approach includes the following:

1. To define a new representation scheme (Principal Axis Representation) for axis-

symmetrical machine parts
2. To convert CSG trees into their new representations.

3. To derive desired geometrical properties from this new representation, and it is be-

lieved to be easier and more efficient.

4. To prove that the Principal Axis Representation is a unique representation scheme
for axis-symmetrical machine parts.
3 Formulation of Principal Axis Representation

3.1 Terminology

Definition: Principal Axis

A Principal Azis A of an axis-symmetrical object O is a line segment in the three
dimensional space such that the object O is represented in a way that starts from and ends

at the two end points of A, and O is symmetrical with respect to A.
Definition: Axis Segment

An Azis Segment S is a line segment ( i.e. subset ) of a Principal Axis which has two

end points.
Definition: Principal Axis Coordinate System

A curve C and a principal axis A form a coordinate system if they are co-plane and,

on this plane, the horizontal axis is the line containing A and its vertical axis is the line
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perpendicular to A and passing through the start point of A. This 2-D coordinate system

is called principal azis coordinate system.
Definition: Bounded Curve

A curve C is bounded at [a b] with respect to a principal axis A iff in the principal axis
coordinate system formed from C and A, there exist two real numbers a and b ( a<b ) such
that the curve C is differentiable within the interval (a b). a and b are called the bound
points of the curve C, and [a b] is called a pasr of bounds of C.

Definition: Range of a Bounded Curve

If C is a bounded curve within [a b] with respect to a principal axis A, the range of C at

x , x € [a b}, on the principal axis coordinate system is C(x), i.e. the mapping of C from x.
Definition: Arc

An Arc i3 a bounded curve which is also a subset of a circle.

Note that : a line segment is a bounded curve.
Definition: Bounded Curve Set

A Bounded Curve Set i3 a set of Arcs and/or Line Segments.
Definition: Principal Axis Representation ( PAR )

If an object O is an axis-symmetrical machine part which can be characterized by a
Principal Axis A, then its Principal Azis Representatson PAR(O, A) can be defined as a set
of tuples (S;, C;) ,i=1,..,n, n € N, such that

1. S;is an Axis Segment, and S; C A, U; S; = A, 31,57 < n, S;US; is either a point (i.e.
their common bound point) if 5 = ¢ + 1 or @, otherwise; that is, { S; } is a partition

of A.

2. C;={Ci|5=1,..,2m; } is a Bounded Curve Set.

6 A New Representation Scheme for Rotational Parts
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3. Ja,b € R such that all C;; ’s and S; have the same bound [a b] with respect to A.
4. all C;; ’s do not intersect within their bound interval (a b).

5. all C;; ’s are differentiable (i.e. their first derivatives exist ) within (a b), and 3 a
curve Ci € C; such that Cj; is not differentiable at the bound point a, and 3 a curve

C;i € C; such that Cy is not differentiable at the bound point b.
Theorem 1:

For a Principal Axis Representation of an axis-symmetrical machine part O and its
Principal Axis A, PAR(O, A) = {(S;, Ci) |i=1,.n }. Vi<n ,allC;; 3 (Ci;; €C; ,j =
1,..,2r; ), within (a b) which is the bound of S; with respect to A, form a total ordersng.

Proof: let’s denote C;j(x) to be the range of the bounded curve C;; at x, x € (a b).

For Cy and Cim € C;, k # m, 3z €(a b), Cix(x) and C;m(x) € R, and Cix(x) # Cim(x);
otherwise C;; and Cj,, intersect at x within (a b) and this contradicts to the definition of
PAR(O, A). Therefore either Cix(x) < Cim(x) or Cix(x) > Cim(x) is true. And we prove
that all C;j(x), C;j € C;, form a total ordering at some x, x € (a b).

Next, we will prove that the total orderings of all C;; (j =1, 2, .., 2r;) at all x, x € (a
b) are consistent.

For z; and z; € (a b), z; # z3, if the total ordering of all C;; (j = 1, 2, .., 2r;) at z;
and that of all C;; (j = 1, 2, .., 2r;) at z; are not consistent, then there must exist two
different curves, C;; and Cy, such that Cii(z;) < Cy(z;) and Ci(z2) > Ci(z2). It means
that there must exist some value z; between z; and z, such that C;; and C;; intersect at
z3. This contradicts to the definition of PAR. Therefore the total orderings of all Cy; (j =
1,2, .., 2r;) at all x, x € (a b), must be consistent, and we may conclude that all C;; (j =
1, 2, .., 2r;) within (a b) form a unique total ordering. Q.E.D.

Note: this total ordering will be used to determine the relation among those curves
within some bound.

Using the concept of Theorem 1, we may define the concept of a layer.

Definition: Layer and Layer Set

A New Representation Scheme for Rotational Parts 7
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For PAR(O, A), S; is an Axis Segment and C; is its associated bounded curve set. C;;
’s (j =1,..,2m;) are those bounded curves in C; and they are sorted in such a sequence :
Ci > Ci2 > C3 > .. > Ciam;. Then a layer within this Axis Segment S is defined as a
pair of curves C;; and Ciz4, ,denoted as [CitCiry1], k =1, 3,..., 2m;-1. The set of layers {
[CikCir+1] | k =1, 3,..., 2m¢-1 } is called a layer set.

Note: a layer with its bound actually generates a volume of the object by rotating the

curves in the layer with respect to its corresponding Axis Segment.

3.2 Represent Primitive Solids by PAR

1. Use PAR to represent cylinder

PAR( cylinder, A) = { (S, C) | C = { C1,C2 }, C; and C; are line segments;
S = A = C;; C, || C2; | Cy — C2 | = radius of the cylinder; [a b] is the bound for S and C
where a and b are the horizontal coordinates of the starting and ending points, respectively,
of A in the Principal Axis Coordinate System formed by A and C;. }

Notice that the statement “C; | C;” means that the line segment C, is parallel to the

line segment C3, and the statement “| Cy — C; |” denotes the distance between C; and C,.
2. Use PAR to represent cone

PAR( cone, A) = { (S, C) | C = { C1,C2 }, C; and C; are line segment;
S = A = C»; [a b] is the bound for S and C where a and b are the horizontal coordinates of
the starting and ending points, respectively, of A in the Principal Axis Coordinate System
formed by A and C;; C; and C; intersect at b, and the distance of C; and C; at a is the

radius of the cone. }
3. Use PAR to represent torus

PAR( torus, A) = { (S, C) | S = A; C = { (1,0 }, [a b] is the bound for S and C
where a and b are the horizontal coordinates of the starting and ending points, respectively,
of A in the Principal Axis Coordinate System formed by A and C; C,,C, are Arcs of the

circle with the radius equal to the local radsus of the torus and with its center located at (x
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y) in the Principal Axis Coordinate System where z = (a + b)/2 , and y is the global radsus
of the torus, C; is the upper half and C; is the lower half of the circle. }

3.3 Operations on PAR

Definition: Overlap of Two Layers

The overlap of two layers [c11¢12] and [e21¢22] with respect to some bound [a b] is defined
as either a layer [c3;¢32] with respect to [a b] if ¢33 = min(e11, ¢21), €32 = max(ey2, ¢22) and

31 > c32; or O, otherwise.
Definition: Layer-Union of Two Layers

The layer-union of two layers [c11¢12] and [c21¢22] with respect to some bound [a b]
is defined as either the layer [es1cs2] where ¢33 = max(eys,€21), es2 = min(e2, ¢22) if the
overlap of [¢;1¢12] and [e21¢22] i3 not @; or the two layers [c;1¢12] and [e21¢22] , otherwise.

The result layer or layers are with respect to the same bound[a b).
Definition: Layer-Union of Two Layer Sets

The layer-union of two layer sets Ly and L, is defined as a layer set which is the set
unton of all layer-union’s of two layers, one from L; and the other from L, respectively.

Ly, Ly and the resulting layer set are all with respect to the same bound.
Definition: Maximum Union-able Layer Set

The mazimum union-able layer set of two layer sets L; and L is defined as a layer
set which is the transitive closure of applying the layer-union operation to the resulting
layers of the layer-union of Ly and L;; that is, if Ls is the layer-union of L, and L,, then
the mazimum union-able layer set of L; and L, is the results of repeatedly applying the
layer-union operation to the layers in Ls until the resulting set is no more changed. Ly, L,

and the maximum union-able layer set are all with respect to the same bound.

Definition: Union of Two PAR’s

‘A New Representation Scheme for Rotational Parts 9
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For two PAR’s, PAR(O,, A;) and PAR(O3, A2), if A; and A; are subsets of a line, then
the union of PAR(O;, A,) and PAR(O;, A;) is defined as a mapping from PAR x PAR
to PAR such that if PAR(Oy, A;) = { (S}, C}) | i = 1,..,n1, [a}b}] is the bound of S} },
PAR(Oz, A2) = { (S?, C?) | i = 1,..,n7 , [a2b?] is the bound of S? }, and there exists a
PAR(O;, A3) = { (53, C?) | i =1,..n, [a}b}] is the bound of S} }, then

1. 03=01U02;A3=A1UA2;

2. S} is a line segment of As with bounds [a?b}], i=1,..,n; and there exists a set of bounds

[d3,e3], m = 1, 2, ..,ns (ns 2 n) which is a partition of the set of bounds [a}b}] and

there exists a bounded curve set K3, for each bound [d3,e},] where

K}, = C} with adjusted bound [d},e3,] if A [afbf] 2 [d},e3], 1 = 1,...n2

K3 = C} with adjusted bound [d},¢3,] if A [a}b]] 2 [d3,el,],1=1,..n,

K}, = maximum union-able layer set of C} and C} with respect to a bound [d},e,] if

[a}8}] 2 [dhueRn], and [a3b}] 2 [d5,ep,] for some j, k.

3.C}=¥%

' m=z; 36'3_

K3, (2, y; are integers) if [d3,¢3,] for m = z;,..., y; is a partition of [a]

NOTE: This mapping is from PAR x PAR to PAR, the non-differentiable properties of
curves across the bound [a}b}] for the resulting PAR should be preserved by the definiticn
of PAR.

Definition: Layer-Diiference of Two Layers

The layer-difference of two layers [e11¢12] and [e21¢22] with respect to some bound [a b]

is defined as
1. the layer [c11¢12) if €11 < 22 OF €12 2 e21;
2. the layer [e22¢12] if €21 2 €11 2 €22 > €12;
3. the layer [e11¢21] if €11 > €21 2 €12 2 €225

4. the layers [c11¢21] and [e22¢12] if c11 > €21 > ¢22 > €125

10 A New Representation Scheme for Rotzational Parts
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5.0if ey 211 > €122 €22;

The result layer or layers is with respect to the same bound|a b).
Definition: Layer-Difference of Two Layer Sets

The layer-difference of two layer sets Ly and L, (assume Ly = { [e;eia] |1 =1, 3,...,
2n-1} is the first operand and L; = { [didi34] | i = 1, 3,..., 2m-1 } is the second operand)
is defined as a layer set which is the set unson of all the set OV} (k = 1, 2,..., n) where each
OV is the overlap of all the layers lg; (j = 1, 2,..., m), l; = the layer-difference of [c25— c2k]

to [d2j—1ds;]. L1, Ly and the resulting layer set are all with respect to the same bound.
Definition: Minimum Difference-able Layer Set

The minimum difference-able layer set of two layer sets Ly and L, with respect to some

bound {a b] is the layer-difference of L, to Ly with respect to the same bound [a b].
Definition: Difference of Two PAR’s

For two PAR’s, PAR(O,, A,;) and PAR(O3, A;), if A; and A; are subsets of a line, then
the difference of PAR(O,, A,) and PAR(O,, A,) is defined as a mapping from PAR x PAR
to PAR such that if PAR(Oy, 4;) = { (S}, C}) | i = 1,.,ny, [a}b}] is the bound of S} },
PAR(O;, A;) = { (S?, C?) | i = 1,..,n2, [a?}?] is the bound of S? }, and there exists a
PAR(Os, As) = { (S?, C?) |i=1,..n, [a}b}] is the bourd of S? }, then

1. O3 = 01 - 09; A3 C Ay;

2. 82 is a line segment of As with bounds [a8?], i=1,..,n; and there exists a set of bounds
[d3e3], m =1, 2, ..;ns (ns > n) which is a partition of the set of bounds [a3b}] and
there exists a bounded curve set K3, for each bound [d3,¢3,] where
K, = C} with adjusted bound [d},e},] if A [afb]] 2 [d3,e3],1=1,.,n,

K> =0if Alafb}] 2 [d3ed), 1=1,.m
K3, = minimun difference-able layer set of C} and C7 with respect to a bound [d}, 3]

if [a}b}] 2 [d3,eh], and [afbf] D [d3,e3,] for some j, k.

A New Representation Scheme for Rotational Parts 11
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3. C} = Uki=,, Ko, , (2i, yi are integers) if [d},e},] for m = =;,..., y; is a partition of

[a363] -

Definition: Movement of a PAR

The movement of a PAR(O, A) is defined as a mapping from PAR to PAR such that
the new PAR(O,B) after movement is the same as PAR(O,A) except that A is transformed
to B in 3-D space by applying the movement operation specified.

Note: The bounds in PAR are with respect to A ,and therefore movement-invariant.

3.4 Relation between PAR and CSG

In this subsection, the relation between CSG and PAR representation schemes is investi-

gated. It is the basis of our algorithm to convert a CSG tree into a PAR.
Theorem 2.

For a CSG tree with unson as its root, the object represented by this CSG tree is identical
to that represented by a PAR which is the unson of two PAR’s, each corresponding to either
the left- or right- subtree of the original CSG tree.

Proof : Assume that O3 = O; U O; in CSG domain where O3 is the CSG tree, and
O, and O are its left- and right- subtrees, respectively. In the PAR domain, assume O,
and O; are represented by PAR(O;,4,) and PAR(O3,A;), respectively. Also assume A3 =
A U A,

Now we want to prove PAR(O,,A;)UPAR(O3,A;) represents Os. In this proof, we may
view an object as a set of points in 3-D space and use the notation V( layers ) to denote
the volume generated by rotating the layers with respect to a principal axis in 3-D space.

Step 1: To prove O3 C V( layers of (PAR(0;,4;) U PAR(O;,4,)) ).

For every point p of O3, p € Oy or p € Oz is true in CSG domain because O3 =
0;UO;. But O; and O, can be represented by PAR(0;,4;) and PAR(O;,A,), respectively.
Therefore, p € V( layers of (PAR(O4,4;) ) or p € V( layers of (PAR(O,,A4;) ). More

specifically, on the principal axis coordinate system, the horizontal coordinate of p must lie

12 A New Representation Scheme for Rotational Parts
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5. 0if eg1 > €11 > c12 2 €22

The result layer or layers is with respect to the same bound[a b].
Definition: Layer-Difference of Two Layer Sets

The layer-difference of two layer sets Ly and L, (assume Ly = { [e;eipq] |1 =1, 3,...,
2n-1 } is the first operand and L; = { [didiy4] | i = 1, 3,..., 2m-1 } is the second operand)
is defined as a layer set which is the set union of all the set OV} (k = 1, 2,..., n) where each
OV is the overlap of all the layers li;; (j = 1, 2,..., m), lz; = the layer-difference of [eo5—; ¢2¢]

to [d2j—1ds;]. L1, Ly and the resulting layer set are all with respect to the same bound.
Definition: Minimum Difference-able Layer Set

The minimum difference-able layer set of two layer sets L; and L, with respect to some

bound [a b] is the layer-difference of L, to L, with respect to the same bound [a b.
Definition: Difference of Two PAR’s

For two PAR’s, PAR(O;, A;) and PAR(O3, A;), if A; and A; are subsets of a line, then
the difference of PAR(O,, A,) and PAR(O,, A;) is defined as a mapping from PAR x PAR
to PAR such that if PAR(Oy, 4,) = { (S}, C}) | i = 1,..,ny, [a}b}] is the bound of S} },
PAR(O2, Az) = { (S?, C?) | i = 1,..,n2, [a?}?] is the bound of S? }, and there exists a
PAR(Os, As) = { (S?, C}) |i =1,..n, [a?b}] is the bourd of S} }, then

1. O3 = 0 - 0y; A3 C Ay;

3

2. S} is a line segment of A3 with bounds [a}}}], i=1,..,n; and there exists a set of bounds

[d3e3], m =1, 2, ..,ns (ns > n) which is a partition of the set of bounds [a3b}] and
there exists a bounded curve set K3, for each bound [d3,¢3,] where

K3, = C} with adjusted bound [d},e},] if A [afbf] D [d3,ed),1=1,.,n,

K3 =0if A[a}b}] 2 [d3ed], 1 =1,..m

K;, = minimun difference-able layer set of C} and C} with respect to a bound [d},e3,]

if [a}b]] 2 [dhe3.], and [afbf] 2 [d},ed,] for some j, k.

A New Representation Scheme for Rotational Parts 11
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3. C} = Uli=,, K3, , (2, yi are integers) if [d},e},] for m = z;,..., y; is a partition of

[a353] -

Definition: Movement of a PAR

The movement of a PAR(O, A) is defined as a _mapping from PAR to PAR such that
the new PAR(O,B) after movement is the same as PAR(O,A) except that A is transformed
to B in 3-D space by applying the movement operation specified.

Note: The bounds in PAR are with respect to A ,and therefore movement-invariant.

3.4 Relation between PAR and CSG

In this subsection, the relation between CSG and PAR representation schemes is investi-

gated. It is the basis of our algorithm to convert a CSG tree into a PAR.
Theorem 2.

For a CSG tree with unson as its root, the object represented by this CSG tree is identical
to that represented by a PAR which is the unson of two PAR’s, each corresponding to either
the left- or right- subtree of the original CSG tree.

Proof : Assume that O3 = O; U O; in CSG domain where O3 is the CSG tree, and
O; and O3 are its left- and right- subtrees, respectively. In the PAR domain, assume O,
and O3 are represented by PAR(0;,A;) and PAR(O;,A3), respectively. Also assume A; =
A; U A,.

Now we want to prove PAR(0,,4;)UPAR(0O2,A43) represents O;. In this proof, we may
“view an object as a set of points in 3-D space and use the notation V( layers ) to denote
the volume generated by rotating the layers with respect to a principal axis in 3-D space.

Step 1: To prove Og C V( layers of (PAR(Oy,4;) U PAR(0,,4,)) ).

For every point p of O3, p € O; or p € O is true in CSG domain because O3 =
0;UO0,. But O, and O, can be represented by PAR(O;,A4,) and PAR(O,A;), respectively.
Therefore, p € V( layers of (PAR(O,,4,) ) or p € V( layers of (PAR(O2,42) ). More

specifically, on the principal axis coordinate system, the horizontal coordinate of p must lie
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in some bounds [a;bs], which is a subset of [a}bl] of PAR(Oy,4;) or a subset of [afb7] of
PAR(O2,A;) for some j or k.

1. if [a;b] is a subset of [a}b}] but not a subset of [a}3], then p € V( layers specified by
C} of PAR(Ol,Al) )

2. if [a;b;] is a subset of [afbf] but not a subset of [a}b}], then p € V( layers specified by
C? of PAR(O2,42) ).

3. if [a;;] is both a subset of [a3b}] and a subset of [a}b}], then p € V( [emem41] )
or p € V( [dndnt1] ) where [¢memi1] and [dndpyy] are some layers of PAR(Oy,4;)
and PAR(O;,Az), respectively. By the definition of layer-unson of two layers and
Mazimum Union-able Layer Set, p € V( layer-union of [¢mem+1] and [dndn+1] ), and
therefore p € V( maximum union-able layer set of L; and L, ) where L; and L, are

the layer sets with the bound [a;b;] that contain [¢pmem+1] and [dpdn41], respectively.

Thus, from the definition of the unson of two PAR’s, p € V( layers of (PAR(Oy,4;) U
PAR(0O2,A42)) ). And we prove that O3 C V( layers of (PAREO;,A;) U PAR(0,,42)) ).
Step 2: To prove O3 2 V( layers of (PAR(O;,4;) U PAR(0,,4;)) ).
For every point p, p € V( layers of (PAR(O;,4;) U PAR(O;,A;)) ), by the definition of

the union of two PAR’s, there are three possible cases for p:

1. p € V( [emtm+1] ) where [¢mem41], Which is bounded by some bound [a b] C [a}b}
but € [0252] is a layer of PAR(O,,4,). In this case, since PAR(O,,4,) represents Oy,
p € O; and therefore p € O; U O3 = Os.

2. p € V( [dndn41] ) where [dndn4] , which is bounded by some bound [a b] C [a3b7
but Z [alb}], is a layer of PAR(O2,42). In this case, since PAR(O;,A4;) represents Oa,
p € Oz and therefore p € O; U O3 = Os.

3. p € V( maximum union-able layer set of L; and L, ) where L, and L, are the sets
of layers of PAR(0O4,A;) and PAR(O;,A4,) at some bounds [a b}, respectively. By the

definition of the maximum unicn-able layer set, there are three possible cases for p:
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(a) p € V( [c,,.cm.H] C Ly but Z Lz) Thus, pPEO; C (01 U 02) = (C;.
(b) p € V( [dndn41] € L2 but € L;). Thus,p € 02 C (01U 02) = 0;.

(c) p € V( [ere141] ) where [e; e144] € (L1 N L2) . In this case, p € (V(L1) N V(Ly)).
Thatisp € (01 n 02) Cc (Ox U 02) = QOs.

Therefore we prove that O3 2 V( layers of (PAR(O,,4,) U PAR(0,,4,)) ).
From Step 1 and Step 2, we prove the theorem. Q.E.D.
Notice that the union operator on PAR performs the actual semantics of the union

operator on CSG.
Theorem 3.

For a CSG tree with difference as its root, the object represented by this CSG tree
is identical to that represented by a PAR which is the difference of two PAR’s, which
correspond to the left- and right- subtrees of the original CSG tree.

Proof : Instead of using the concept of mazimum unson-able layer set and the definition
of the union of two PAR’s, the concept of minsmum difference-able layer set and the defi-
nition of the difference of two PAR’s may be used here to prove this theorem in a similar
way as in Theorem 2. Q.E.D.

Notice that the difference operator on PAR performs the actual semantics of the differ-

ence operator on CSG.
Theorem 4.

For a CSG tree with movement as its root, the object represented by this CSG tree is
identical to that represented by a PAR which is the movement of a PAR, which corresponds
to the subtree of the original CSG tree.

Proof : By the definition of movement of a PAR, the object represented by the PAR after
applying a movement operation is the same as the object represented by the opiginal PAR
(i.e. the structure of the object is not changed) except that the location and orientation of

the object are changed. In the CSG representation scheme, an object represented by a CSG

14 A New Representation Scheme for Rotational Parts



RSD-TR-14-86

subtree has the same structure as the object represented by the CSG tree after applying
a movement operation to the original CSG subtree except these two objects have different
location and orient_ation in 3-D space.

Therefore, after the same transformation matrix (i.e. movement operation) is applied to
both the PAR and the original CSG subtree which represent the same object, the resulting
objects should be identical; that is, they not only have the same structure but also have the
same location and orientation in the 3-D space. Q.E.D.

Notice that the movement operator on PAR performs the actual semantics of the move-

ment operator on CSG.
Theorem 6.

An axis-symmetrical machine part represented by a CSG tree can be evaluated on PAR
domain and the final resulting PAR after evaluation represents the same object as the CSG
tree represents.

Proof : A CSG tree is composed of operators (union, difference, movement) as non-_
terminal nodes and primitive solids (cylinder, cone, torus) as terminal nodes in this study. It
is shown in Section 3.2 that these primitive solids can be represented by their corresponding
PAR’s. If the CSG tree is converted in bottom-up fashion from leaves to root, by Theorem
2, 3 and 4, the final resulting PAR should represent the identical object as the CSG tree
represents. Q.E.D.

Notice that by this theorem, a given CSG tree can be evaluated in PAR domain to
obtain an identical object as the CSG tree represents. This theorem is the theoretical basis

of our algorithms in Section 4.
Theorem 6. Uniqueness

. Any axis-symmetrical machine part has a unsque PAR representation.
Proof : Our theorem may be rephrased as follows:
For two representations, PAR(O;,A;) and PAR(O2,4;), if O; = O, then PAR(O,,4,) =
PAR(02,4,).
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Assume that the object O; ( or O; ) is in some 3-D coordinate system. Then there must

be a unique Principal Axis for the object in this coordinate system, thus 4; = A,.
Our proof procedure consists of two steps:

Step 1: To prove PAR(O;,A4,) and PAR(O,,A2) have the same Axis Segment bounds
with respect to A; and A;, respectively. That is, if PAR(Oy,4;) = { (S},C}) | i =1,..n;
S} is “ounded by [a} b}] }, PAR(O3,4;) = { (S?,C?) | i =1,..,m; S? is bounded by [a? b?]

} then we want to prove n = m, and a}=a? and b}=b? , for all i= 1,..n.

By the definition of PAR, all the curves within a bound must be differentiable and there
exists at least one curve non-differentiable at one of its lower and upper bounds. This
means that the bounds on the Principal Axis are uniquely defined by the discontinuity of
the first derivatives of the curves specifying the object. Because the object has fixed shape
and the bounded curve to specify some part of the shape of an object can be either an arc
or a line segment ‘but not both, the bounded curve to describe the object shape and thus
the discontinuity points of the bounded curve can be uniquely specified in PAR. Therefore,
there is a unique way to partition the ePrincipa.l Axis in PAR and this unique partition

decides a unique set of bounds.

Step 2: Within each bound of (S},C}) and (S-2 C?) of PAR(Oy,4;) and PAR(0,,4,),

respectively, we want to prove C} = C? if §} =

This can be proved by contradition. Assume C} # C?. Since C! and C?, both are
composed of a set of layers, if C} # C?, there must exist, for some j, a layer [e};eliza] in
C} and its corresponding layer [¢;c};,,] in C} such that [ef;c]; ] # [¢%c%,,], and generate
different volumes for O, and O;. In this case O; # O,, which contradicts to our initial

assumption Oy = O,. Therefore, C} = C? if S}=§2.

From the proofs of Stepl and Step2, in PAR, there is a unique set of bounds on the
Principal Axis for an object, and on each pair of bounds there is a unique set of layers
( 1.e. pairs of curves) to represent the object. Therefore, we conclude that there is only
one unique PAR for an axis-symmetrical object and further PAR is a unique representation

scheme. Q.E.D.
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4 Algorithm to Convert CSG Representation to PAR

In this section, we will describe how to convert a CSG representation to its corresponding
Principal Axis Repesentation (PAR). Section 4.1 first describes the data structure for PAR.
The algorithm is described in Section 4.2, while Section 4.3 describes how to combine
(either unson or difference) two PAR’s into one. The combination procedure is definitely a

key component of the conversion algorithm.

4.1 Data Structure for PAR

Since a PAR is composed of a set of tuples (S;, C;), we may use a record to represent
each tuple and a link list to link these records together. Being a pair of bounds on the
principal axis, each S; can thus be represented by a pair of real numbers and stored in the
tuple record. Each C; consists of a set of curves Cy;, and can therefore be represented by
a pointer to a link list where each element stores the parameters of one curve pair C;; and
Cij+1, that is, a record representing a layer of the machine part.

We will assume the link list for tuples is sorted in the order of their bounds. Within
each record for a tuple, the link list for the pairs of curves C;; is also kept sorted in their
ordering (from Theorem 1). This makes the concept of layers easy to deal with because each

pair of the curves enumerating from the beginning of the sorted sequence is just a layer.

4.2 Conversion from CSG Representation to PAR

The conversion algorithm basically traverses the CSG tree from bottom to top. It first con-
verts the CSG leaf nodes to their corresponding PAR’s, and then combines (either unton
or difference) the PAR subtrees into composite PAR subtrees in higher levels. The com-
bination procedure is repeated until the root is visited. The following recurive procedure

describes this algorithm.

function EvaluateCSG ( T : CSG_tree ) : principal_axis_rep;
var

P, P1, P2 : principal_axis_rep;

A New Representation Scheme for Rotational Parts 17



RSD-TR-14-86

begin

case T.type of

movement : P := EvaluateCSG ( T.left_child” );
Transform ( T.movement, P );
return ( P );

union,

difference: P1 := EvaluateCSG ( T.left_child" );
P2 := EvaluateCSG ( T.right_child" );
P := Combine ( T.type, P1, P2 );
return ( P );

primitive : P := BuildAxisRep ( T );
return ( P );

end; { case }

end; { EvaluateCSG }

To convert a CSG tree, its root can be passed to this function, which will recursively
walk the whole CSG tree and transform it into a PAR. We assume that each node of the
CSG tree is either a primitive solid (cylinder, cube, or torus) or an operator (movement,
union or difference).

Primitives (i.e. the CSG-tree leaf nodes) are converted to corresponding PAR’s by Buil-
dAzisRep procedure, which is based on the framework of Section 3.2. Using the data struc-
ture representation in Sectiond.1, the BusldAzisRep procedure simply creates one record to
represent the primitive . In this record, the pair of bounds (in terms of the line parameter
values of its principal axis) of the primitive solid are stored. A pair of curves representing
a layer is also stored within the record. For a cylinder or cone, the outer curve of the pair
is the line specifying the outer shape of the primitive solid and the inner curve is just the

principal axis. For a torus, this pair is just the outer and inner half circles of the torus.

18 A New Representation Scheme for Rotational Parts



RSD-TR-14-86

For the movement node in the CSG tree, its subtree (i.e. left-subtree) is evaluated
first, then the transformation matrix stored within the movement node is applied to the
evaluated subtree. The transformation matrix is a 4 by 4 matrix denoting the translation
and rotation components of the movement. Since all the curves in PAR are specified relative
to the principal axis, procedure Transform needs only transform the principal axis, not the
whole set of curves. In fact, the transformation matrix is applied only to the two ending
points of the principal axis.

To deal with the union or difference node, its two subtrees are evaluated first, then
the Combsne procedure is called to union or difference them together. To implement the
definitions of union and difference of two PAR’s developed in Section 3.3, the Combine

procedure includes four passes. We will describe these four passes in the next section.

4.3 Union and Difference of Two PAR’s

This algorithm (the procedure Combine) basically employs the split-and-merge paradigm,
splitting the two composite axes into segments, computing the union or difference of two
segments and then merging all the resulting segments into a new PAR. It has four steps

(passes).
Step 1. Find New Pairs of Bounds

In this stage, the two operand subtrees being combined are represented in the PAR
form, each being a link list of segments (records) in the order of the values of the bounded
pairs. The function of this step is to compute the new bounded pairs for the resulting PAR.

Since the values of the bounds in each operand PAR are in terms of line parameters
of its own principal axis, we must first convert these values so that they are in terms
of the line parameters of the resulting principal axis. Depending on the operation to be
performed, the resulting principal axis can be chosen either as that of the first operand for
difference operation or as the union of those of the two operands for the union operation.
This selection process can be easily accomplished by simply checking the two ending points

of the two operand principal axes. We assume that the two operands have the principal
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axes in the same or opposite direction if they are to be combined. (Note that the opposite
direction may occur because cones are not symmetrical in its top and buttom and thus have
two directions.)

After the resulting principal axis is roughly chosen and the values of the bounds are
adjusted in term of this resulting axis, we may determine the pairs of all bounds for the
resulting PAR. This process is simply the merge-and-sort procedure by repeatedly inputing
two values of the bounds from each operand PAR and choosing the smaller value for the
new bound. The state transition diagrams of this procedure are shown in Figure 1 and
Figure 2.

In Figure 1 and Figure 2, we may imagine that there are two stacks for two operand
PAR’s. Each stack stores the bounds of one operand PAR which are in ascending order
with the smallest one on the top of the stack. A pair of bounds is just an even-odd pair
of values on the stacks if the top element of the stack is numbered from zero. This implies
that a common bound of two neighboring segments has duplicate values on the stack. Let’s
also assume that a is the top element of the first operand stack A and b is the top element
of the second stack B, respectively.

Now the following four states in the state transition diagrams can be defined.

e State “-0” means a upper bound of a pair in stack A and a upper bound of a pair in

stack B have just been popped out.

o State “+0” means a lower bound of 2 pair in stack A and a upper bound of a pair in

stack B have just been popped out.

o State “+1” means a lower bound of a pair in stack A and a lower bound of a pair in

stack B have just been popped out.

e State “-1” means a upper bound of a pair in stack A and a lower bound of a pair in

stack B have just been popped out.

The starting and final state is State “-0”. The notation { condition/ actionl; cction?; ....

} is used in the state transition diagrams to indicate that, if the condition is satisfied, the
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{a<=b / u=pop(A); output{l u}; l=u}

Figure 1: State Transition to Compute the New Bounds for Union.

actions specified in the bracket are executed and the new state is pointed to by the arrow
sign. Let’s also use | and u to denote lower bound and upper bound of a bound pair. Note
that these state transition diagrams may generate null bound pairs like [c ¢, where c is a

real number, and they should be discarded.
Step 2. Refine the Pairs of Bounds

After Step 1, a set of pairs of bounds is obtained for the resulting PAR. For those pairs
of bounds which are not subirtervals common to both operands, the resulting shape within
them can be immediately determined by the curves from the original (i.e. operand PAR)
bound pairs. For those new bound pairs which are subintervals of both original operand
PARs, the story is, however, not so simple. They should be refined. That is, subdivision
of them must be considered because the resulting shape within a pair of bounds might be
determined by curves from both original PARs.

To refine the pairs of bounds which are the subintervals of both original PARs, we
compute the intersection points of the curves within them. After sorting these intersecting
points, a set of refined pairs of bounds may be created. The resulting curves within these

refined pairs of bounds are then determined by the subcurves of the original curves.
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{a>b / u=pop(B);
outputl u]; I=u}

Figure 2: State Transition to Compute the New Bounds for Difference.

a0 al a3 a4 a2 a5

Figure 3: Refine a Pair of Bounds by Computing Intersection Points.
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Consider the example of Figure 3. A cone and a torus are combined ( either union
or difference). The cone is specified by lines A and B, and the torus is specified by the
upper half circle C and lower half circle D within the bounds [ay a2]. Since [a; a2] obtained
after Step 1 is both a subinterval of the [ao a2} of the cone and of the [a; as] of the torus,
we compute the intersection points for the curves A, B, C, D. Two intersection points a,
and ay are obtained, then we create three refined bound pairs [a, as], [as a4, and [a4 ay)
to replace the [a; az]. The curve shape within these three refined intervals can then be
uniquely determined, which depends on the operation to be performed. We will discuss it
in the next step of the algorithm.

Step 3. Apply the Union or Difference Operation

In this stage, the resulting curve shape within each pair of bounds can be determined.
For those pairs of bounds created from Step 1 but not refined by Step2, that is, they are
subintervals that belong to only one original pair of bounds, the curves within the original
pair of bounds are directly copied into the newly created bound pair with the two ending
points of the curves adjusted so as to be consistent with the new bounds. This works for
the union operation. For the difference operation, the bound pairs contributed solely by
the second operand are simply thrown away, but those bound pairs from the first operand
should be kept and the curves defined within these bound pairs should also be copied.

For those refined bound pairs from Step 2, it is assured that there is no curve intersection
within them, thus from Theorem 1, the curves within them form a total ordering. This
property of total ordering together with the concepts of mazimum union-able and minsmum
difference-able layer sets is useful for determining which curves from the original ones
contribute to the resulting curves.

Here we use the concept of layer to determine the resulting curves. A layer is an area
bounded by two curves within some interval. Because the curves of layers of the two
operands within the bound pair form a total ordering, they are topologically eqivalent to
lines which are parallel to the principal axis within that bound pair. At any point within the

bound pair, a line, passing this point and perpendicular to the principal