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Abstract 

 

Within the field of automated logic design, the optimal synthesis of combinational logic has remained 

one of the most basic design objectives.  However, the computational complexity of this optimization 

problem has limited the practical application of optimal synthesis for large circuits. Since much of the exact 

synthesis literature predates many advances in both computer hardware as well as reasoning and search 

techniques, it was our objective to revisit optimal synthesis.  Through this investigation we hoped to 

complete optimal synthesis on more complex functions. 

In this dissertation, we provide a general formulation of logic synthesis as an expanding search problem 

and describe BESS, an optimal multi-level branch-and-bound synthesis algorithm for combinational 

circuits.  The formulation of synthesis as an expanding search problem provides insights into the difficulty 

of optimal synthesis.  The generality of the formulation provides the flexibility in the options under which 

synthesis could be completed.  Since BESS was created based on this formulation, it completes optimal 

synthesis under a variety of options while guaranteeing that an optimal network will be produced 

In this dissertation, we provide a comprehensive evaluation of BESS.  First we describe an extensive 

study of the search strategies for BESS, including both empirical and theoretical arguments which explain 

why these strategies are able to provide a more efficient search.  Then through an analysis of the algorithm, 

we provide proofs of both completeness and convergence as well as an analysis of the search space.   

Empirically, we discuss the findings yielded by BESS.   We give a database of optimal circuits.  

Optimal implementations of all 2-, 3-, and 4-input functions are given, including for the first time the 

optimal implementation of the 4-input xor function.  We then extend this database of know optimal circuits 

to include 4,745 5-input functions.  We also provide optimal networks and cost formula for n-input 

functions for a  variety of common functions based on an analysis of optimal network structures.  Finally, 

we provide networks for larger function that are with-in a known distance from optimal by modifying the 

bounding technique in BESS.  Networks with as many as 17 inputs and 16 outputs are completed. 
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Chapter 1  

Introduction 

 

1.1 Optimization in Automated Circuit Design 

In circuit design, the translation from behavioral model to circuit layout is an arduous task for a human 

designer.  For this reason, automatic synthesis was developed to take most of the burden off of the designer 

by automating many of the stages in the design process.  Since its creation in the 1950s, automated 

synthesis has grown quickly into a widely relied-upon technique for computer engineering.  As a direct 

result of Moore’s law on the growth in circuit density, digital logic designs have become both more 

complex and vastly more common.  Because of this, the demand for quick, simple, and efficient logic 

design automation tools has exploded into a multi-billion dollar market. 

There are three stages in the typical automatic digital design process.  In the first stage, behavioral 

synthesis, a high-level description of the logic system is translated to a register transfer level (RTL) 

implementation.  At the RTL, the logic system’s behavior is defined in terms of the transfer of data 

between registers and the logical operations performed on the data.  From the RTL implementation, logic 

synthesis is performed producing a gate-level description of the circuit using a pre-defined set of logic 

gates.  Next, placement, technology mapping and routing are completed, producing a physical layout of the 

circuit.  This layout is a representation of the integrated circuit which corresponds to the semiconductor 

layers that make up the components of the circuit. 

The automatic synthesis of a logic system that meets the specifications set by the designer is a difficult 

but feasible task.  However, there are many circuit layouts for a given behavioral model, some of which 

may be more desirable to the designer.  Thus, an optimal circuit layout is sought.  This additional 

optimality constraint adds a layer of complexity to the automated design process.  Since circuit design is 

divided into stages, the optimality of the final result imposes an optimality constraint on each stage of the 

design process.  In the work presented here, we focus on optimization within the logic synthesis portion of 

the overall automated design.  Logic synthesis is often further divided into sequential and combinational 

synthesis.  Sequential synthesis focuses on the registers in the RTL implementation while combinational 
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synthesis focuses on the logic operations that exist between the registers.  We consider only combinational 

synthesis in this work. 

Specifically, our work focuses on the task of optimal combinational logic synthesis: the translation of 

the combinational portion of a logic system to a netlist of gates while optimizing this netlist according to a 

set of criteria.  The criteria commonly used for combinational logic synthesis optimization includes one or 

more of the following: the area occupied by the logic gates and interconnect, the critical path delay of the 

longest path through the logic, the degree of testability of the circuit, and the power consumed by the logic 

gates.   

Combinational synthesis is often divided into two categories based on a gate delay constraint that may 

be placed on the resulting netlist.  In two-level synthesis, the critical path delay is restricted to two levels 

and the logic design is optimized based on the area occupied by the gates in the netlist.  In multi-level 

synthesis, the gate depth restriction is removed.  In this case, the optimal designs present trade-offs between 

area and delay of the circuit.  The area of a circuit can often be reduced from the minimum value obtained 

in two-level synthesis by trading an increase in the gate delay for this savings.  

The optimization problem of two-level logic synthesis is well-understood.  Many powerful tools 

[Coudert 03][Rudell 87][Sapra 03][McGeer 93] exist for solving two-level minimizations and functions 

with hundreds of inputs and outputs can be completed optimally with these tools. However, two-level 

synthesis has limited use in most VLSI designs as these systems typically require multiple levels of logic. 

The additional degree of freedom created by the removal of the delay restriction makes the optimization 

problem of multi-level synthesis much more complex than its two-level counterpart.  The increased 

potential for reusing gates in a netlist produces more freedom in the possible solution structures.  This 

increases the size of the solution space over the two-level optimization problem and, as a result, multi-level 

netlists are more difficult to synthesize optimally. 

Due to the difficulty of the optimization problem and yet the need for automated solutions to this 

problem, most of the research in the area of multi-level synthesis has been devoted to heuristics that meet 

constraints on selected criteria while attempting to minimize the other criteria as much as possible.  The 

goal of these heuristics is to find a near-optimal netlist in a reasonable amount of time for functions with a 

large number of inputs and outputs.  However, these heuristics forfeit the optimality of the solution. 

In spite of its difficulties, the problem of optimal multi-level combinational synthesis (or exact 

synthesis) has continued to intrigue researchers.  The optimization of combinational logic synthesis still 

remains one of the most basic objectives of conventional switching theory.  The “good enough” nature of 

the results produced by the heuristics has led the focus of multi-level synthesis away from the problem of 

optimality.   The purpose of this research is to return some focus back to the original problem.  

The long history of work in the area of optimal synthesis provides the basis for our research.  This 

previous work has allowed us to better understand the difficulty of optimal synthesis. Using this 
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knowledge, we improve upon these earlier methods by employing modern reasoning techniques such as 

exploiting functional symmetry and applying learning techniques and by employing more effective 

heuristics.  Further improvements due to advancements in computer and circuit technology are also 

observed.  Ultimately, we are led to a more efficient algorithm for optimally decomposing larger and more 

complex sets of functions.   

1.2 Methods for Optimal Synthesis 

The investigation of optimal synthesis has been quite limited compared to the research invested in 

heuristic methods for multi-level synthesis. However, there have been several different approaches taken 

towards completing synthesis optimally. The methods for optimal synthesis can be divided into categories 

based on these different approaches.   

The first such category takes a functional approach by using functional decomposition.  Synthesis is 

completed by performing repetitive decompositions until all functions of the decomposition are contained 

in the specified set of building blocks.  Optimal synthesis is performed by searching through all possible 

ways of performing these functional decompositions.  In the early works on logic synthesis this was the 

method used.  Originally the methods were completed using decomposition charts [Ashenhurst 59][Curtis 

61] but later more compact forms for manipulating the decompositions of Boolean functions were found 

[Karp 61][Roth 60][Roth 62].  These methods are well suited for finding a network implementation for the 

given function quickly.  Once an initial network has been completed, the remainder of the time is spent 

searching through the solution space either improving upon the initial network or proving that the found 

network is optimal.  Because of the functional decompositions employed by these algorithms, it is often 

difficult to switch among building block sets which are used to build the networks.  If a new set of building 

blocks is desired, a complete reworking of the decomposition rules is required. 

A structural approach through network enumeration forms the second category of methods used to  

complete optimal synthesis.  Network enumeration is based on the fact that all possible networks with n 

gates can be enumerated.  Using such an enumeration, the space of n gate networks can be searched for one 

that generates the desired function.  If this search process is repeated, beginning with n = 1, for an 

increasing number of gates then the first network found during the search is an optimal network with 

respect to a cost function based on the number of gates in the network.  The enumeration of these networks 

can be done either explicitly [Hellerman 63][Smith 65][Drechsler 98] or implicitly [Muroga 72].  When 

performed explicitly, each network in the enumeration is generated and the resulting function checked 

against the desired function.  When performed implicitly, the space of all possible networks are represented 

by a single structure.  A constraint problem is obtained from this structure such that a solution which 

satisfies all the constraints gives the network structure which generates the desired function.  The simplicity 

of the enumeration methods allow for an easy change of the logic gates used as building blocks.  Since an 
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optimal cost network is not found until all possible networks with smaller cost have been searched, the 

majority of the work done using these methods is completed before a network for the function is found. 

The third approach to optimal synthesis combines techniques from both the functional and structural 

methods of the previous two approaches.  These methods [Davidson 68b][Nakagawa 89] perform a search 

over the space of all networks which implement the function.  The search is performed by dividing the set 

of possible solution networks at a branching step into smaller sets until a set containing a single network is 

found.  The methods used to divide the search are based on both structural and functional properties of the 

networks. These methods are able to maintain some of the simplicity of the enumeration methods while 

incorporating the searching methods from the functional decomposition methods.  The search employed by 

these methods allows an initial network to be found relatively quickly for any function.  The bulk of the 

work is then spent on improving the network and proving the optimality of the final network. 

1.3 Contributions and Findings in Optimal Synthesis 

In this thesis we provide a theoretical and experimental evaluation of optimal synthesis. Using modern 

reasoning and search techniques as well as advancements in computer technology we complete optimal 

synthesis on more complex functions.  Over the course of this work we provide the following contributions 

and findings: 

1. A precise formulation of optimal synthesis as an expanding search problem. 

We provide a general formulation of multi-level logic synthesis as a dynamic search problem.  

The formulation of synthesis as a search problem provides insight into the difficulty of optimal 

synthesis observed by previous researchers.  Unlike many typical search algorithms, the entire 

set of decision variables is not known before the search begins.  Thus, as the network grows 

during synthesis, the search space expands as well.  The generality of this formulation allows us 

to easily adapt our method to provide flexibility in the options under which synthesis is 

completed.   

2. The development and analysis of an optimal synthesis algorithm BESS. 

Using the formulation provided, we created an optimal synthesis algorithm, BESS (Branch-and-

bound Exact Synthesis System).  Since this algorithm is based on the general formulation of 

synthesis through search, it can easily handle a variety of synthesis options while guaranteeing 

the optimality of the result.  Due to the branch-and-bound method used to complete the search, 

the algorithm also allows for the possibility of relaxing the optimality constraint so that 

networks for larger functions can be completed with near-optimal cost. 

When creating this algorithm, we performed an extensive study of various search strategies 

including branching heuristics, the propagation of both functional and structural implications, 

and the removal of redundant search through pruning rules.  The comprehensive evaluation 
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described here includes both empirical and theoretical arguments to explain why these 

strategies are able to provide a more efficient search. 

We also provide an analysis of this algorithm.  Our proof of completeness shows that BESS 

will explore all possible implementations of a Boolean function guaranteeing that the optimal 

implementation will be found.  In providing a proof of convergence we discuss three 

requirements that must be added to the initial path of the search in order to guarantee that an 

initial network will be completed and that the search will eventually complete.  Finally, we 

provide an analysis of the search space which shows, for the first time, the true difficulty of 

optimal synthesis. Using a conventional worst-case analysis of the width and height of the 

search tree a greater than double exponential upper bound on the size of search space is given 

based on the number of inputs.  Later, using empirical results we obtain a more reasonable 

estimate of the search space based on the number of gates in the optimal network. 

3. A database of optimal circuits for an extensive collection of functions 

Using BESS we completed a database of known optimal networks.  Previous work had 

provided optimal circuits for all 2-, 3-, and all but one 4-input functions.  We first confirmed the 

optimality of these existing results and then extended the database to include the additional 

unknown 4-input function (the 4-input xor function) as well as 4,745 new 5-input functions. 

In creating this database, we first observed the combinatorical difficulty of optimal synthesis.  

Despite the improvements made to the algorithm and the advancements in technology, the 

problem of optimal synthesis remains difficult for functions requiring more than 16 gates.  

While small, this is an advancement over previous results where networks could only be 

completed with a maximum of 12 gates. 

4. Optimal networks and cost formula for n-input functions for a variety of common functions 

By analyzing the empirical evidence provided by BESS on a variety of common functions we 

were able to identify patterns within their networks.  Using these patterns we provide optimal 

implementations and cost formula for the n-input functions from these classes and prove them 

to be optimal for half of the classes. 

5. Networks for larger functions that are a known-distance from optimal 

By modifying the bounding technique in BESS we obtain near-optimal networks for larger 

functions.  These networks are a known distance from optimal, yet are significantly larger than 

the results obtained by optimal synthesis.  Here we provide near-optimal networks for functions 

with as many as 17 inputs and 16 outputs. 
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1.4 Thesis Overview  

Over the course of this thesis we will provide the details of our work outlined in the previous section.  

We begin in Chapter 2 by giving the framework of optimal synthesis.  This introduces the definitions and 

the notation we use to describe the properties of Boolean functions as well as properties and terminology 

that are needed for discussing circuits and their representations. In the third chapter, we provide the 

theoretical framework for our optimal synthesis algorithm.  In addition to a description of the basic 

algorithm, we include a discussion of the solution space that the algorithm must search in order to produce 

an optimal circuit and also describe improvements that can be made to the algorithm which will help to 

reduce search space while still maintaining the optimality of the resulting circuit.   

Improvements and variations of BESS are the focus of Chapters 4 through 6.  In Chapter 4 we present 

the experimental evaluation of the algorithm.  In addition to producing optimal results, we also build upon 

the theoretical analysis given in Chapter 3.  An analysis of various classes of functions based on their 

optimal circuits are also given. Chapter 5 provides the results obtained from variations on the basic 

algorithm.  While still producing optimal circuits, these variations include changes to the fan-in and fan-out 

restrictions, to the building block set, to the level restrictions, and to the cost function.  A comparison of 

these variation results with the original results provides a way to more fully understand the problem of 

optimal synthesis.  The results from these variations are also used to compare BESS to other methods for 

completing optimal synthesis.  Finally, in Chapter 6, we present several variations on the algorithm which 

produce near-optimal results.  We evaluate methods for producing near-optimal results and finally use these 

results to evaluate an existing heuristic methods. 

We conclude this thesis with Chapter 7.  There, we discuss several possible directions for future 

research work including how to expand BESS for new variations, how this algorithm can be used to 

evaluate heuristic methods, or used in conjunction with heuristic methods.  Finally, we conclude with an 

overview of the contributions of the thesis. 
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Chapter 2  

Definitions and Notation 

 

2.1 Exact Synthesis Overview 

Combinational logic synthesis is the process of decomposing a set of Boolean functions into a design 

implementation in terms of a fixed set of logic gates.  Exact synthesis performs logic synthesis while 

minimizing a cost function over all possible implementations.  The specification for exact synthesis 

requires a set of Boolean functions for decomposition, a set of building blocks, and a cost function. 

The set of building blocks given in the problem specification is the fixed set of logic gates that are used 

in the design implementation of the Boolean functions.  This set of building blocks must be composed of a 

functionally complete set of logic gates.  A set of gates is functionally complete if any Boolean function 

can be realized using only gates from the set [Wernick 42].   

For example, the set of gates {AND, OR, NOT} is functionally complete.   Any set of gates which contains 

this set as a subset would also be functionally complete.  Other common complete sets of gates are the 

singleton sets {NAND} and {NOR}.   

A cost function will also be needed as part of the problem specification for exact synthesis.  This cost 

function must be a measurable attribute of a circuit.  The values produced by the cost function must have a 

strict ordering so that the cost of two circuits can be compared and the circuits ordered based on this 

function.  Such cost functions could include the number of gates in the circuit (active area of the circuit), 

the number of gates in the longest path of the circuit (depth of the circuit), or the number of literals needed 

for an algebraic expression representation of the circuit.  In addition, weights could be associated with each 

gate in the circuit while the cost function would be the sum of the weights to each gate in the circuit.  

Finally the cost function could be based on some combination of the above choices. 
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2.2 Function Representation 

Let ( )1
, ,

n
f x x… be a partially-specified n-variable Boolean function.  Such a function can be expressed by 

its on-, off-, and don’t-care sets.  Alternatively, the function can be expressed as an interval in the space of 

n-variable Boolean functions.   The algorithm is based on the on- and off-set representation.  The interval 

representation is used in derivations.
 

2.2.1 On-set/Off-set Representation 

( )1
, ,

n
f x x…  can be expressed in terms of three completely specified n-variable Boolean functions defined 

as follows: 

[ ]( )
( )1

1

1  when  , , 1
ON , ,

0  otherwise                   

n

n

f x x
f x x

=
= 


…

…  (1) 

[ ]( )
( )1

1

1  when  , , 0
OFF , ,

0  otherwise                   

n

n

f x x
f x x

=
= 


…

…  (2) 

[ ]( )
( )( ) ( )( )1 1

1

1  when  , , 0  and , , 1
DC , ,

0  otherwise                                                         

n n

n

f x x f x x
f x x

 ≠ ≠
= 


… …

…  (3) 

For simplicity, in what follows, we will drop these functions’ explicit dependence on 
1
, ,

n
x x… .  Thus, 

[ ]ON f should be implicitly understood to be a completely-specified n-variable Boolean function defined 

according to (1).  These three functions form a partition of the n-dimensional Boolean space, i.e., they are 

pair-wise disjoint and their union covers the entire space.  Thus, we only need to specify two of them to 

capture f.  In particular, if we choose to express f in terms of [ ]ON f and [ ]OFF f , then [ ]DC f  can be 

determined from: 

[ ] [ ] [ ]( ) [ ] [ ]DC ON OFF ON OFFf f f f f′ ′ ′= ∨ = ∧  (4) 

When [ ]DC f is identically 0, then f is completely specified.  Otherwise, f is partially specified.  The 

disjointness of the on- and off-sets can be expressed by the constraint 

[ ] [ ]( ) [ ] [ ]ON OFF =ON OFFf f f f′ ′ ′∧ ∨  (5)  

which insures that [ ]ON f and [ ]OFF f cannot be simultaneously true (i.e. equal to 1 for the same minterm). 
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2.2.2 Function Interval Representation 

( )1
, ,

n
f x x…  can also be expressed in terms of two completely-specified n-variable Boolean functions that 

define an interval in the space of n-variable Boolean functions.  Specifically, 

( ) [ ] [ ]1, , LB , UBnf x x f f =  …  (6) 

where the interval notation is a compact representation of the set of functions [ ] [ ]{ }| LB UBf f f f≤ ≤  

[Hachtel 96].  The two functions specifying the interval are referred to as the lower- and upper-bounds of 

the interval.  For the interval to be non-empty, the following constraint must be satisfied: 

[ ] [ ]( ) [ ] [ ]( )LB UB LB UBf f f f′≤ = ∨  (7) 

2.2.3 Relations Among Two Representations 

The functions used in these two representations are related as follows: 

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

ON LB

OFF UB

DC LB UB

f f

f f

f f f

=

′=

′= ∧

 (8) 

[ ] [ ]

[ ] [ ] [ ] [ ]

LB ON

UB ON DC OFF

f f

f f f f

=

′= ∨ =
 (9) 

2.3 Network Model 

The input to the synthesis problem is a set of p completely- or partially-specified n-variable Boolean 

functions: 

1
 Primary inputs: , ,

n
n x x…   

( )

( )

1 1

1

, ,

 Primary outputs: 

, ,

n n

n p n

f x x

p

f x x

+

+







…

�

…

 assumed to be completely- or partially-specified n-variable 

Boolean functions 

In addition, a set of building blocks and a cost metric are also required.  We will use NAND2 gates as the 

building block for the networks and the total number of gates in the network as the cost metric.  The output 

of the synthesis process is a minimum-cost multi-level network of NAND2 gates. (A description of the 

algorithm with alternate building blocks and cost metrics will be given in Chapter 5).  The network will be 

synthesized incrementally by adding NAND2 gates and by adding connections between those gates and 
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between the primary inputs and those gates.  During the synthesis process, the evolving multi-level 

implementation will be represented by a DAG with q nodes labeled with integers from 1 to q: 

• Nodes labeled 1, ,n… correspond to the primary inputs 

• Nodes labeled 1, ,n n p+ +… correspond to the primary output NAND2 gates 

• Nodes labeled 1, ,n p q+ + …  correspond to the internal NAND2 gates 

Primary output nodes and internal nodes will be referred to as gate nodes.  A gate node will be denoted 

by a 3-tuple ( ), ,i j k where i is the label of the node itself, and j and k are the labels of the nodes which are 

its fan-ins.  In other words, ( ), ,i j k specifies the existence of 3 nodes i, j, and k, and two edges ( ),j i and 

( ),k i .  An unconnected input of a gate node will be indicated by 0.  Thus ( ), ,0i j specifies a node with one 

unconnected input, and ( ),0,0i  specifies a node with two unconnected inputs.  Figure 2.1 illustrates this 

notation for a small example network. 

 

Figure 2.1: Network Notation Example 

Each node, including primary input nodes, will have an associated n-variable Boolean function 

( )1
, ,

i n
f x x… . 

• For primary input node i, ( )1
, ,

i n i
f x x x=…  

• For gate node ( ), ,i j k , ( ) ( ) ( )1 1 1
, , , , , ,

i n j n k n
f x x f x x f x x′ ′= ∨… … … .  If the gate node is a primary 

output node, its function is provided in the problem specification.  The functions of internal nodes are 

derived as part of the synthesis process. 

• For the pseudo-node 0, we define ( ) [ ]0 1
, , 0,1

n
f x x =… .  Note that [ ] [ ]0 0

ON OFF 0f f= = .  

During the synthesis process, node functions will generally be partially specified and represented by on- 

and off-sets.  To simplify notation, we use ONi and OFFi, to denote [ ]ON
i

f  and [ ]OFF
i

f  respectively.  

Figure 2.2 illustrates the Boolean functions associated with the nodes of the network from Figure 2.1. 

  

Primary Input Nodes: 1, 2 

 

Primary Output Node: (3, 4, 5) 

 

Internal Nodes: (4, 1, 6), (5, 6, 2), (6, 1, 2) 

 

1 

2 

3 

4 

5 

6 
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Figure 2.2: A Network and its Associated Boolean Functions:  The functions associated with the 

output node (3,4,5) is provided as part of the network specification. 

2.4 Basic NAND2 Relations 

Let ( ), ,i j k be a gate node.  The relations among the node’s input and output functions can be expressed as 

follows: 

[ ] [ ]LB , UB LB , UB LB , UB

UB UB ,LB LB

i i j j k k

j k j k

′ ′ = ∨ 

′ ′ ′ ′ = ∨ ∨ 

 (10) 

These relations can be expressed equivalently in terms of the on- and off-set functions: 

ON OFF OFF

OFF ON ON

i j k

i j k

= ∨

= ∧
 (11) 

Additionally, these relations along with (5) give us all the “implications” required to keep the inputs and 

output of the gate consistent when the on- and off-sets change during the synthesis process.  Specifically: 

• Forward implications (follow directly from (11)): 

OFF ON      and     OFF ON

ON ON OFF

j i k i

j k i

→ →

∧ →
 (12) 

• Backward implications (follow from (11) and (5)): 

OFF ON      and     OFF ON

ON ON OFF      and     ON ON OFF

i j i k

i j k i k j

→ →

∧ → ∧ →
 (13) 

These implications are used to update the on- and off-sets of the node functions as follows: 

• Forward updates: 

� If the off-set of input j expands (turning don’t-cares to 0s), the on-set of i may expand (turning 

don’t-cares to 1s).  From (12): 

ON : ON OFF
i i j

= ∨  (14) 

Node ONi OFFi 

1 1
x  

1
x′  

2 2
x  

2
x′  

(3, 4, 5) ( ) ( )1 2 1 2
x x x x′ ′∧ ∨ ∧  ( ) ( )1 2 1 2

x x x x′ ′∧ ∨ ∧  

(4, 1, 6) 1 2
x x′ ∨  

1 2
x x′∧  

(5, 6, 2) 1 2
x x′∨  

1 2
x x′ ∧  

(6, 1, 2) 1 2
x x′ ′∨  

1 2
x x∧  

1 

2 

3 

4 

5 

6 
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� Similarly, if the off-set of input k expands (turning don’t-cares to 0s), the on-set of i may 

expand (turning don’t-cares to 1s).  From (12): 

ON : ON OFF
i i k

= ∨  (15) 

� If the overlap of the on-sets of inputs j and k expands (turning don’t-cares in either node to 1s), 

the off-set of i may expand (turning don’t-cares to 0s).  From (12): 

( )OFF : OFF ON ONi i j k= ∨ ∧  (16) 

• Backward updates: 

� If the off-set of the output i expands, the on-set of both inputs may expand.  From (13): 

ON : ON OFF   and  ON : ON OFF
j j i k k i

= ∨ = ∨  (17) 

� If the overlap of the on-sets of output i and input j expands (turning don’t-cares in either node to 

1s), the off-set of the other input k may expand.  From (13): 

( )OFF : OFF ON ONk k i j= ∨ ∧  (18) 

� Similarly, if the overlap of the on-sets of output i and input k expands (turning don’t-cares in 

either node to 1s), the off-set of the other input j may expand.  From (13): 

( )OFF : OFF ON ON
j j i k

= ∨ ∧  (19) 

2.5 NAND2 Consistency Requirements 

During the synthesis process we need to know what functions can be connected to the inputs of a 

NAND2 gate knowing the function at its output.  Let’s assume that we know the functions at output i and 

input k.  We can solve for the permissible functions at input j by setting up the following “constraint” 

function: 

( ) ( ) ( )LB UB LB UB
i i i k k k i j k

f f f f f′ ′≤ ≤ ∧ ≤ ≤ ∧ = ∨  (20) 

This can be transformed to the normal form: 

( ) ( ) ( ) ( ) ( )( )LB UB LB UB 0i i i i k k k k i j kf f f f f f f′ ′ ′ ′ ′ ′∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ⊕ ∨ =  (21) 

Upon universally quantifying fi and fk , and applying Boole’s expansion in terms of fj , we obtain the 

following result: 
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( ) ( )
LB UB

UB LB UB LB UB

j i

j k i i k

′=

′ ′= ∧ ∨ ∧
 (20) 

This can be equivalently expressed as: 

ON OFF

OFF ON ON

j i

j i k

=

= ∧
 (21) 

During the synthesis process, Equation (21) identifies the functions that can be connected at input j from 

the knowledge of the functions at the output and the other input.  In particular, when the input k is 

unconnected its function [ ]0,1
k

f ∈ .  This leads to the following simplification of (21): 

ON OFF

OFF 0

j i

j

=

=
 (22) 

For a node l in the network to be connected to the input j of our NAND2 gate, two conditions must be 

satisfied.  First, the node l must be structurally consistent with our NAND2 gate node.  This is the case if l 

does not appear in the transitive fan-out of i.  Second, the node l must be functionally consistent with the 

functions at the output i and input k of this gate.  To determine if the node l is functionally consistent, the 

function [ ]LB , UB
l l l

f ∈  of the node l must satisfy the following condition: 

[ ]LB ,UB LB ,UBl l j j
 ∩ ≠ ∅   (23) 

After some algebra, this requirement can be stated as follows: 

OFF OFF 0

  and

ON ON ON 0

l i

l k i

∧ =

∧ ∧ =

 (24) 

In other words,  

• The intersection of the off-sets of fl and fi must be empty, and 

• The intersection of the on-sets of fl, fk, and fi must be empty. 

The second requirement is vacuously satisfied if there is nothing connected at input k ( ON 0
k

= ). 

The set of nodes in the network which are both structurally consistent and functionally consistent with a 

NAND2 gate node will make up the connectible set for this node.  
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2.6 Covering 

At any given point during the synthesis process we have a partial network of NAND2 gates.  The goal of 

the process is to find covers for the on-sets of all gates while observing three types of constraints: 

1. IO Constraints, i.e., the fact that the functions at the primary input nodes and primary output gate 

nodes are given and cannot be changed by the synthesis process (of course if some of the output 

functions are not completely specified, their on- and off-sets will be extended by the synthesis 

process.) 

2. Structural constraints that insure the evolving network remains acyclic 

3. Functional constraints (24) that insure consistency among the functions of NAND2 gate nodes 

A minterm m in the on-set of some gate node ( ), ,i j k is covered if the following condition is satisfied: 

OFF OFF
j k

m ≤ ∨  (25) 

i.e., m is contained in the off-set of either input.  The set of uncovered minterms for node ( ), ,i j k is 

( )UnCovered : ON \ OFF OFF ON OFF OFFi i j k i j k
′ ′= ∨ = ∧ ∧  (26) 

When UnCoveredi is empty for each gate node ( ), ,i j k  in a network, the network is called complete: 

( )
 gate nodes

UnCoveredi
i∈

= ∅∨ .  In a partial network at least one UnCovered set remains non-empty. 

A node l which is structurally and functionally consistent with node i can be used to cover the minterm 

UnCovered
i

m ∈ , if the following condition is satisfied: 

( ) ( )( )OFF DC OFF DC 0
l l l l

m m ′≤ ∨ ≡ ∧ ∨ =  (27) 

This condition takes into account the possibility of moving m from the don’t-care set to the off-set of fl.  By 

noting that ( )OFF DC ON
l l l

′∨ = , this condition can be simplified to: 

ON 0
l

m ∧ =  (28) 

Covering a minterm UnCovered
i

m ∈  can be accomplished in one of the following ways: 

1. If either 0j = or 0k = , i.e., an input of node i is unconnected, then it may be possible to find 

another node l which is structurally and functionally consistent with node i, such that it covers or 

can be made to cover minterm m.  The set of candidate nodes that meet these criteria must therefore 

satisfy functional consistency (24) and include: 
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a. Any primary input node l which already covers m, i.e., OFF
l

m ≤ . 

b. Any existing gate node l which either covers m ( OFF
l

m ≤ ) or can be made to cover m 

from its don’t-care set ( DC
l

m ≤ ). 

c. A new gate node l which is “designed” to cover m: ON 0, OFF
l l

m= = . 

2. If either j or k are non-zero, i.e., at least one input to the gate is already connected to an existing 

gate node, then we are assured that the structural and functional constraints have already been 

satisfied for this node and what remains to be done is to modify the off-set of the input to include 

m.  The input { },l j k∈ that can be modified in this way must satisfy DC
l

m ≤ . 

Let i be the output of a NAND2 gate, and m be a minterm in i's on-set.  When a new gate j is added to i's 

input with the goal of covering this particular minterm, its function should be specified as follows 

ON : OFF

OFF :

j i

j
m

=

=
 (29) 

When a new gate k is added to the other input of a NAND2 gate whose output is i and whose other input is j, 

its function should be specified as follows: 

ON : OFF

OFF : ON

k i

k jm

=

= ∨
 (30) 

Figure 2.3 summarizes the various formulas described here that will be used by the synthesis algorithm, 

BESS, given in Chapter 3. 
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 NAND2 Constraint ON OFF OFF
i j k

= ∨  OFF ON ON
i j k

= ∧  

Implications/Updates: Forward ON ON OFF

ON ON OFF

i i j

i i k

= ∨

= ∨
 

( )OFF OFF ON ONi i j k= ∨ ∧  

Backward ON ON OFF

ON ON OFF

j j i

k k i

= ∨

= ∨
 ( )

( )

OFF OFF ON ON

OFF OFF ON ON

k k i j

j j i k

= ∨ ∧

= ∨ ∧
 

 

Consistency 

Requirements:  

Structural  Transitive fanout of l i∉  

Functional ON ON ON 0
l k i
∧ ∧ =  OFF OFF 0

l i
∧ =  

Coverage: Constraint ON 0
l

m ∧ =  

Action OFF OFF
l l

m= ∧  ON ON OFF
l l i

= ∨  

Uncovered 
UnCovered ON OFF OFF

i i l k
′ ′= ∧ ∧  

Figure 2.3: Summary of Formulas used in the Synthesis Algorithm 

 

i 

l 

k 

j 

UnCoveredim∈

i 

j 

k 
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Chapter 3  

Optimal NAND2 Synthesis Algorithm 

3.1 Algorithm Description 

In this chapter we present the Branch-and-bound Exact Synthesis System (BESS).  In this algorithm, the 

synthesis of a network will be completed incrementally, driven by the covering of minterms of the gate 

nodes in the network.  These coverings are performed by (1) adding NAND2 gate nodes to the network, (2) 

adding connections between those nodes, and (3) updating the functions of the nodes.  The synthesis of the 

network is completed when each on-set minterm of every gate node in the network is covered, resulting in a 

final network implementation of the specified function(s).  The optimal network implementation of the 

function(s) is found by using a backtracking branch-and-bound search to explore all possible ways of 

performing these coverings.  This branch-and-bound search method for performing optimal synthesis is 

based on similar work by Davidson [Davidson 68b] and Nakagawa [Nakagawa 89].  In this version, 

improvements to the techniques used for decision heuristics, functional implications, and pruning are made.  

We also provide an analysis of the conflicts that may occur within the search and provide a proof of 

convergence for the algorithm. 

We begin the description of the NAND2 synthesis algorithm BESS by first presenting a simplified 

version.  The motivation here is to illustrate the necessary concepts of the search.  We will then discuss the 

issues that arise with this simplified version, which will lead to a more complete version of the algorithm. 

3.1.1 Synthesis Example 

The example provided in this section introduces the basic framework of BESS.  The tables on the 

following 7 pages provide a detailed trace of the execution of the algorithm that will follow.  In each table, 

the details of a single covering made in the algorithm are given for each decision. 

  The algorithm begins with a Boolean function (or set of Boolean functions) specified by the designer.  

In this example, a two-input XOR function is chosen for synthesis.  Based on this function an initial partial 

network is produced.  This network and the data associated with the nodes in the network are given in the 

Initialization step of the trace.  The initial network contains a single output node (node 3) and two primary 

input nodes (nodes 1 and 2).  The Boolean function associated with each input node is simply the primary 

input represented by the node.  The on-, off-, and dc-sets of these functions are given in columns four 
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through six in the table.  The Boolean function associated with the output node is the function chosen for 

synthesis (
1 2 1 2

x x x x′ ′∨  in this example).  The on-, off-, and dc-sets for this function are also provided in the 

table.   

The synthesis algorithm is driven by the covering of minterms.  Thus the uncovered set of minterms for 

each gate node must be maintained as the algorithm progresses.  Since NAND2 gates are used as the 

building block for synthesis, the uncovered set is made up of minterms from the on-set of the gate node.  In 

the initial network, the uncovered set for gate node 3 contains the entire set of on-set of minterms since no 

covering has yet been completed. 

The first step of the algorithm is described by Decision 1.   The minterm 
1 2

x x′  from the uncovered set of 

gate node 3 is chosen for covering.  Once a minterm is chosen for covering, a node must be selected to 

perform the covering.  A node selected to complete the covering must be both functionally and structurally 

connectible to the selected gate node as described in Chapter 2.  The first column in the table labeled 

“Struct”  indicates the set of nodes in the network which are structurally connectible to this gate node.  A 

node which is functionally connectible must satisfy two constraints: OFF OFF
l i
∧ and ON ON ON

l k i
∧ ∧ .  

The results for these tests are given for each node in columns 9 and 10.  Those nodes which are both 

functionally and structurally connectible will be indicated with a C in the “Conn” column of the table.  Any 

node marked as connectible may be used to complete the covering.   

In this first step, neither node 1 nor node 2 are functionally connectible to node 3.  Therefore no existing 

node can be used to cover the minterm 
1 2

x x′ .  This implies the that a new gate node must be added to the 

network to perform the covering.  We call this a structural implication. 

The details of the covering using a new gate node are given at the bottom of the Decision 1 table.  First 

a new gate node, node 4, is added to the network.  This node initially has an unspecified Boolean function.  

In order to cover the selected minterm, 
1 2

x x′ , this minterm is added to the off-set of node 4 and this node 

must be connected to node 3 as a fan-in.  Finally functional implications must be propagated through the 

network according to the rules outlined in Chapter 2.  Here, the on-set and uncovered sets of node 4 are 

changed, in addition to the uncovered set of node 3. 

Since both gate nodes 3 and 4 have uncovered minterms remaining, the network is not complete.  

Therefore the algorithm must continue. This leads to the second step of the algorithm described by 

Decision 2. 

Once again an uncovered minterm is selected for covering.  In this step, the minterm
1 2

x x′ ′  from gate 

node 4 is chosen.  Nodes 1 and 2 are found to be structurally connectible to the gate node 4, while only 

node 1 is functionally connectible.  This implies that node 1 is the only existing node which can be used to 

cover the selected minterm.  A new gate node can also be added to the network to complete the covering.  



 19 

In this step, node 1 is chosen to complete the covering.  Thus, node 1 is added as a fan-in of gate 4 and 

functional implications are propagated through the network  

In the resulting network, both gate nodes 3 and 4 have uncovered minterms remaining.  Therefore 

another covering must be completed.  The details of this covering are given under Decision 3.  This same 

process of covering is repeated until all on-set minterms from every gate node have been covered.  In this 

example, 8 coverings are required.  The network and final table given under Decision 8 provide the final 

NAND2 implementation for the 2-input xor function. 

Figure 3.1 provided at the end of the trace shows the search tree traversed by the synthesis algorithm for 

this example.  The nodes of the search tree represent the (node, minterm) pairs covered at a given decision 

step.  The edges of the tree describe the connection made in the network to complete the covering.  In some 

cases, multiple edges may leave a search tree node.  This indicates that a decision was made about which 

node would be used to cover the minterm.  In other cases, only a single edge leaves a search tree node.  

Here, no decision was necessary; an implication rather than a decision was made about the covering. 
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∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S C 1 1
x  

1
x′  0 −  0 0 0 

S  2 2
x  

2
x′  0 − ≠ 0 NA NA 

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 1 2

x x′     

 * 4 1 2 1 2
x x x x′ ′∨  

1 2
x x′  ≠ 0 1 2 1 2

x x x x′ ′∨     

• Two choices: node 1 and a new gate - Connect 1 and propagate updates 

• Forward: 
4 4 1 1 2

ON : ON OFF x x′= ∨ = ∨  

• ( )4 4 1 1 2
UnCovered : ON OFF 0 x x′′= ∧ ∧ =  

 

Decision 3 Cover (4, 1 2x x ):  i = 4, m = 1 2x x  

 

S
tr

u
ct

 

C
o

n
n

 

Node l ON
l  OFF

l  DC
l  UnCovered

l  

Functionally Consistent? (0 means yes) Can cover m? 

OFF OFF
l i
∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S  1 1
x  

1
x′  0 − 0 ≠ 0 NA 

S  2 2
x  

2
x′  0 − ≠ 0 NA NA 

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 1 2

x x′     

 * 4 1 2
x x′ ∨  

1 2
x x′   0 1 2

x x     

• Add new gate: 
5 5

ON OFF 0= = (Structural Implication) 

• Cover m: 
5 5 1 2

OFF : OFF m x x= ∨ =  

• Connect gate and propagate updates (functional implications) 

• Backward: 
5 5 4 1 2

ON : ON OFF x x′= ∨ =  

• 
5 5 1 2

UnCovered : ON x x′= =  

• 
4 4 5 1

UnCovered : ON OFF OFF 0′ ′= ∧ ∧ =  
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Decision 4 Cover (3, 1 2x x′ ):  i = 3, m = 1 2x x′  

 

S
tr

u
ct

 

C
o

n
n

 

Node l ON
l  OFF

l  DC
l  UnCovered

l  

Functionally Consistent? (0 means yes) Can cover m? 

OFF OFF
l i
∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S  1 1
x  

1
x′  0 − ≠ 0 NA NA 

S  2 2
x  

2
x′  0 − ≠ 0 NA NA 

 * 3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 1 2

x x′     

S  4 1 2
x x′ ∨  

1 2
x x′   0 0 0 ≠ 0 NA 

S  5 1 2
x x′  

1 2x x  ≠ 0 1 2
x x′  ≠ 0 NA NA 

• Add new gate: 
6 6

ON OFF 0= = (Structural Implication) 

• Cover m: 
6 6 1 2

OFF : OFF m x x′= ∨ =  

• Connect gate and propagate updates (functional implications) 

• Backward:  
6 6 3 1 2 1 2

ON : ON OFF x x x x′ ′= ∨ = ∨  

  ( )6 6 4 3 1 2
OFF : OFF ON ON x x′= ∨ ∨ =  

• 
6 6 1 2 1 2

UnCovered : ON x x x x′ ′= = ∨  

• 
3 3 4 6

UnCovered : ON OFF OFF 0′ ′= ∧ ∧ =  
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Decision 5 Cover (6, 1 2x x′ ′ ):  i = 6, m = 1 2x x′ ′  

 

S
tr

u
ct

 

C
o

n
n

 

Node l ON
l  OFF

l  DC
l  UnCovered

l  

Functionally Consistent? (0 means yes) Can cover m? 

OFF OFF
l i
∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S  1 1
x  

1
x′  0 − ≠ 0 NA NA 

S C 2 2
x  

2
x′  0 − 0 0 0 

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 0    

S  4 1 2
x x′ ∨  

1 2
x x′   0 0 0 0 ≠ 0 

S C 5 1 2
x x′  

1 2x x  ≠ 0 1 2
x x′  0 0 0 

 * 6 1 2 1 2
x x x x′ ′∨  

1 2
x x′  ≠ 0 1 2 1 2

x x x x′ ′∨     

• Three choices: nodes 2, 5, and a new gate - Connect 2 and propagate updates 

• Forward: 
6 6 2 1 2

ON : ON OFF x x′= ∨ = ∨  

• ( )6 6 2 1 2
UnCovered : ON OFF 0 x x′′= ∧ ∧ =  
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Decision 6 Cover (6, 1 2x x ):  i = 6, m = 1 2x x  

 

S
tr

u
ct

 

C
o

n
n

 

Node l ON
l  OFF

l  DC
l  UnCovered

l  

Functionally Consistent? (0 means yes) Can cover m? 

OFF OFF
l i
∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S  1 1
x  

1
x′  0 − ≠ 0 NA NA 

S  2 2
x  

2
x′  0 − 0 ≠ 0 NA 

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 0    

S  4 1 2
x x′ ∨  

1 2
x x′   0 0 0 ≠ 0 NA 

S C 5 1 2
x x′  

1 2x x  ≠ 0 1 2
x x′  0 0 0 

 * 6 1 2
x x′∨  

1 2
x x′  0 1 2

x x     

• Two choices: node 5, and a new gate - Connect 5 and propagate updates 

• Forward: 
6 6 5 1 2

ON : ON OFF x x′= ∨ = ∨  

• Backward: ( )5 5 2 6 1 2
OFF : OFF ON ON x x= ∨ ∧ =  

  
5 5 6 1 2 1 2

ON : ON OFF x x x x′ ′= ∨ = ∨  

• 
6 6 2 5

UnCovered : ON OFF OFF 0′= ∧ ∧ =  

• 
5 5 1 2 1 2

UnCovered : ON x x x x′ ′= = ∨  
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Decision 7 Cover (5, 1 2x x′ ):  i = 5, m = 1 2x x′  

 

S
tr

u
ct

 

C
o

n
n

 

Node l ON
l  OFF

l  DC
l  UnCovered

l  

Functionally Consistent? (0 means yes) Can cover m? 

OFF OFF
l i
∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S  1 1
x  

1
x′  0 − 0 ≠ 0 NA 

S C 2 2
x  

2
x′  0 − 0 0 0 

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 0    

  4 1 2
x x′ ∨  

1 2
x x′   0 0    

 * 5 1 2 1 2
x x x x′ ′∨  

1 2x x  ≠ 0 1 2 1 2
x x x x′ ′∨     

  6 1 2
x x′∨  

1 2
x x′  0 0    

• Two choices: node 2 and a new gate - Connect 2 and propagate updates 

• Forward: 
5 5 2 1 2

ON : ON OFF x x′ ′= ∨ = ∨  

• ( )5 5 2 1 2
UnCovered : ON OFF 0 x x′′ ′= ∧ ∧ =  
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Decision 8 Cover (5, 1 2x x′ ):  i = 5, m = 1 2x x′  

 

S
tr

u
ct

 

C
o

n
n

 

Node l ON
l  OFF

l  DC
l  UnCovered

l  

Functionally Consistent? (0 means yes) Can cover m? 

OFF OFF
l i
∧  ON ON ON

l k i
∧ ∧  ON

l
m ∧  

S C 1 1
x  

1
x′  0 − 0 0 0 

S  2 2
x  

2
x′  0 − 0 ≠ 0 NA 

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 0    

  4 1 2
x x′ ∨  

1 2
x x′   0 0    

  5 1 2
x x′ ′∨  

1 2x x  ≠ 0 1 2
x x′     

 * 6 1 2
x x′∨  

1 2
x x′  0 0    

• Two choices: node 1 and a new gate - Connect 1 and propagate updates 

• Forward: 
5 5 1 1 2

ON : ON OFF x x′ ′= ∨ = ∨  

• 
5 5 2 1

UnCovered : ON OFF OFF 0′ ′= ∧ ∧ =  

  1 1
x  

1
x′  0 −    

  2 2
x  

2
x′  0 −    

  3 1 2 1 2
x x x x′ ′∨  

1 2 1 2
x x x x′ ′∨  0 0    

  4 1 2
x x′ ∨  

1 2
x x′   0 0    

  5 1 2
x x′ ′∨  

1 2x x  ≠ 0 0    

  6 1 2
x x′∨  

1 2
x x′  0 0    
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Search Tree 

 

Figure 3.1: Trace and Search Tree for the Synthesis of a 2-input XOR function using NAND2 gates 

 

Legend 
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3.1.2 Data Structures 

Two principal data structures are required by BESS.  The network structure is used to keep track of all 

the nodes contained in the network while a node substructure is used to maintain the more detailed 

information for the individual nodes in the network.  Most of the interconnection information is maintained 

using the node substructure.  The network structure only needs to store the nodes as three sets: primary 

output gate nodes, primary input nodes, and internal gate nodes.  The network data structure will also store 

the value of the cost function for the network it describes.  Details for the network data structure are given 

in Figure 3.2. 

The node substructure maintains all the data needed to describe a particular node.  This includes the 

Boolean function associated with the node (stored in terms of the on- and off-sets), and the type of node 

(whether the node is an input node or gate node).  The node structure also maintains the data describing the 

relationships between this node and others in the network.  The two inputs to the node are stored as the Left 

and Right inputs.  The set of fan-out nodes and the set of connectible nodes are also stored by the node 

structure.  Finally, the node structure will keep a Boolean function that describes the uncovered on-set 

minterms at this node.  This uncovered function will determine whether synthesis on this node has been 

completed.  

 

Figure 3.2: Data Structures: Network structure and Node substructure 

3.1.3 Initial Network 

The input to the synthesis problem is a set of p completely- or partially-specified n-variable Boolean 

functions.  When synthesis begins, the network will contain only n primary input nodes and p primary 

output gate nodes.  The remainder of the nodes in the network will be added as synthesis progresses. 

As an example, the initial network for the set of functions ( ) ( ){ }1 1 2 1 2 2 1 2 1 2, , ,f x x x x f x x x x= ⊕ = ∧  is 

shown in Figure 3.3.  This network contains one primary input node for every variable used in the functions 

(2 in this case) and one primary output gate node for each function (also 2 in this case). 

Network Structure 
 Set of Nodes: OutputNodes 

 Set of Nodes: InputNodes 

 Set of Nodes: InternalNodes 

 Integer:       Cost 

 

Node Structure 
 Boolean Function: ON 

 Boolean Function: OFF 

 Node Type: Input or Gate  

 Node Input: Left 

 Node Input: Right 

 Set of Nodes: Fan-out 

 Set of Nodes: Connectible 

 Boolean Function: UnCovered 
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Figure 3.3: Initial Network for the set of functions ( ) ( ){ }1 1 2 1 2 2 1 2 1 2, , ,f x x x x f x x x x= ⊕ = ∧  

3.1.4 Synthesis Procedure 

The core procedure of BESS performs a single covering step, namely it covers one arbitrarily chosen 

uncovered minterm in the partial network.  This main computational step performs a covering of some 

uncovered minterm in the partial network.  Once the covering is made, a recursive call to the same 

procedure on the new network will continue the incremental synthesis of the network.  Pseudocode for the 

SynthesizeNetwork procedure and two of its subprocedures is given in Figure 3.4. 

The first step of the synthesis procedure is to determine if the network has been completed.  If the on-

set of every gate node in the network is covered, the network is complete.  Therefore it can be stored as the 

solution network and the procedure can terminate. 

If there are nodes remaining in the network that are not fully covered by their inputs then the network is 

not yet complete.  The procedure will attempt to cover an uncovered minterm from at least one node.  The 

covering process begins by first selecting an uncovered minterm, m, and its corresponding node, (i, j, k), 

from the network.  The minterm that is chosen by this procedure is guaranteed to be covered during this 

synthesis step.  It may be the case that additional uncovered minterms in the network are covered as well.  

This will depend on how the initial covering  is completed  

Once an uncovered minterm is selected, a node, l,  is chosen which can be used to cover this minterm.  

This node must satisfy the consistency and covering requirements described in Section 2.6.  It can be an 

existing node in the network or a new gate node added to the network specifically to perform this covering.  

The node l should be chosen from i’s connectible set to ensure that it is both functionally and structurally 

consistent as an input of i.  In addition it must also satisfy the covering constraint: ON 0
l

m ∧ = . 

Depending on the type of node l, the PerformCovering procedure will make different changes to the 

network. 

1. If l is a primary input node, then it is not yet connected to i.  Therefore the edge (l, i) must be 

added to the network.  Since l is a primary input node, l’s Boolean function is completely specified. 

Therefore the only uncovered portion of i that l can cover is the set of minterms: 

OFF UnCovered
l i
∧ .  The function OFF UnCovered

l i
∧  must contain m since l was selected by the 

procedure to perform the covering.  Therefore no change is required to the off-set of l. 

Node Boolean 

Functions 

1 x1 

2 x2 

3 
1 2 1 2

x x x x′ ′∨  

4 
1 2

x x∧  

1 

2 

3 

4 Primary output 

gate nodes 

Primary input 

nodes 
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2. If l is a gate node that already exists as an input of i, then the edge (l, i) already exists in the 

network.  Thus the only change that must be made is to add m to l’s off-set. 

3. If l is an existing gate node that is not an input of i, then an edge (l, i) must be added to the 

network. Since l was chosen to cover the minterm m, ONlm ≤/ .  However, it is possible that 

DClm ≤ .  If this is the case, then m must be added to l’s off-set.  

4. If l is a new gate node that is not yet connected within the network, then the edge (l, i) must be 

added to the network.  Since the global function of a new gate is initially the interval [0,1], l will 

not yet cover any minterm in i.  Therefore the minterm m must be added to the off-set of l.  

With these changes complete, the network returned by the PerformCovering procedure will be a network 

that has the minterm ONim ≤  covered by the node l.  

The process of covering m may add an edge between the nodes i and l and may change the function of 

node l.  Due to these changes, functional implications must be made throughout the network to keep the 

functions at the inputs and output of the gate nodes consistent.  Both forward and backward updates are 

made according to the rules given in Section 2.4: 

Forward updates:  ON : ON OFF
i i j

= ∨ , ON : ON OFF
i i k

= ∨ , and ( )OFF : OFF ON ONi i j k= ∨ ∧  

Backward updates: ON : ON OFF
j j i

= ∨ , ON : ON OFF
k k i

= ∨ , ( )OFF : OFF ON ONk k i j= ∨ ∧ , and 

( )OFF : OFF ON ON
j j i k

= ∨ ∧  

Using these implications, the changes made by a covering can be propagated throughout the network so 

that once complete, every gate node will satisfy the on- and off-set constraints.  This propagation is done by 

traversing through the network beginning at node (i, j, k) and making the necessary updates to the Boolean 

function at i and then proceeding to the inputs and outputs of i. 

Due to the functional changes that may occur in the network, a change in the uncovered set of the node i 

may also result.  The uncovered set for a node may increase if the on-set of the node i increased, while the 

uncovered set may decrease if some minterms are covered by either j or k.  For this reason,  UnCovered
i
 

should be updated as the on- and off-sets of node i are updated. 

Once the functional implications have been completed, the procedure updates the connectible set of 

each node in the network.  Since the Boolean functions may have changed for some nodes, the set of nodes 

that are now connectible may have also changed.  It is possible that previously covered nodes have now 

become uncovered, and therefore the set of connectible nodes will need to be computed for these nodes as 

well. The connectible set of each uncovered gate node in the network can be found according to the 

functional and structural consistency requirements described in Section 2.5.  Now that the covering has 

been completed, the same covering procedure is repeated on the new partial network to cover another 
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uncovered minterm.  The procedure terminates when the uncovered sets of all gate nodes have become 

empty. 

 

Figure 3.4: Pseudocode for NAND2 Synthesis Algorithm 

3.1.5 Algorithm Discussion 

There are several issues that arise with this initial version of the algorithm that must be addressed: 

1. Optimality: The optimality of the network is not guaranteed by this version of the algorithm.  

However, the basic computational steps described in this initial version can be used in a branch-

and-bound backtrack search method.  By searching the entire space of complete networks which 

implement the desired function(s) the optimal cost implementation can be determined.  Section 3.2 

describes how this search is performed. 

2. Decision Strategies: The synthesis procedure must make two decisions during its execution.  The 

first is the choice of which uncovered on-set minterm will be selected for covering in this step.  The 

second is the choice of which node will be used to cover this minterm.  The choices made at these 

decision points will effect both the final network produced by the algorithm as well as the number 

of coverings that will be required to complete the network.  In Section 3.3 we provide an 

investigation into how these choices effect the synthesis process and then use this analysis to 

provide a set of heuristics that can be used to make these decisions. 

SynthesizeNetwork (Network) 

 if
gate nodes

UnCovered 0
i

i∈

 
= 

 
∧  

  Return Network as solution 

 else 

  m, (i,j,k) ← SelectMintermForCovering 

  l ← SelectCoveringNode(m, (i,j,k)) 

  NewNetwork ← PerformCovering((i,j,k), l, m) 

  PropagateFunctionalImplications((i,j,k)) 

  UpdateConnectibleSet() 

  SynthesizeNetwork(NewNetwork) 

 

PerformCovering ((i,j,k), l, m) 

 //Perform structural change 

 if ( (l, i) is not an existing edge) 

Add the edge (l, i) to the network 

 //Perform functional change 

 if ( OFF
l

m ≤ ) 

  OFF : OFF
l l

m= ∨  

 Return Network; 

 

PropagateFunctionalImplications ( (i, j, k) ) 

 if ( )ON OFF 0i j
′ ′∧ ≠  

  ON : ON OFF
i i j

= ∨  

  ON : ON OFF
i i k

= ∨  

  ( )OFF : OFF ON ONi i j k= ∨ ∧  

  for (each ( ), , Fanout
i

o i n ∈ ) 

   ON : ON OFF
i i o

= ∨  

   ( )OFF : OFF ON ON
i i o n

= ∨ ∧  

 // Propagate Changes 

 if ( ON
i
or OFF

i
 changed) 

  //Backward Propagation  

  PropagateFunctionalImplications( (j, jj, kj) ) 

  PropagateFunctionalImplications( (k, jk, kk) ) 

  //Forward Propagation 

  for (each ( ), , Fanout
i

o i n ∈ )  

   PropagateFunctionalImplications( (o,i,n) ) 

   PropagateFunctionalImplications( (n, jn,kn) ) 

 //Uncovered Update 

 UnCovered : ON OFF OFF
i i j k

′ ′= ∧ ∧  
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3. Decision Implications: In many search procedures, the assignment of a value to a decision variable 

produces a chain of implications in the resulting problem instance.  Here, both structural and 

functional implications will result once a covering has been completed.   One type of functional 

implication was already described in the initial version of the algorithm.  Additional non-local 

functional implications are also possible based on certain structures that may exist in the network.  

In addition, structural implications may also be possible.  These implications effect the basic 

structure of the network rather than the functions at the nodes. 

4.  Conflicts: Since two choices must be made for each covering (both the minterm to be covered and 

the way in which it is covered) it is possible that the set of choices made may lead to a conflict.  In 

BESS a conflict occurs when an inconsistent Boolean function appears at the output or input of a 

NAND2 gate node.  We will discuss in Section 3.5 how these inconsistencies appear and how the 

algorithm handles the situation when they do. 

5. Search Space: In Section 3.6 we analyze the search space of the algorithm.  This space is quite 

unique compared to other search algorithms in that it is constantly changing as synthesis proceeds.  

Thus it is difficult to obtain bounds on the run-time and size of the search.  However, we will 

discuss two representations of the search space and then provide an analysis of its size based on 

these representations. 

6. Termination: As with any search algorithm, a proof of convergence is necessary to guarantee that 

the search will terminate and an optimal solution will be found.  The convergence proof for this 

branch-and-bound search algorithm is not as trivial as many such proofs are for similar types of 

search algorithms.  This is due to the fact the search space is constantly changing.  The proof we 

provide in Section 3.7 takes into account these changes while providing a guarantee that the search 

will terminate. 

7. Completeness: Just as the proof of convergence is complicated by the changing search space, so is 

the proof completeness.  Thus, we give a detailed proof in Section 3.8 that provides a guarantee 

that the algorithm will produce the optimal network with respect to the specified cost function (the 

number of gates in the network).   

8. Pruning: Due to the way that decisions are made in the search and certain properties of the 

networks being created, we have found that some partial networks may be regenerated at different 

points in the search.  A significant portion of the search space can be pruned by detecting and 

removing these repeated networks.  Section 3.9 describes how partial networks can be repeated and 

what can be done to prevent them from occurring. 
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3.2 Branch-and-Bound Backtrack Search 

By using the main computational steps described in the initial version of the algorithm (Section 3.1.4) a 

branch-and-bound backtrack search method can be created which will search for an optimal-cost network 

within the set of all network implementations. 

In the SynthesizeNetwork procedure given in Figure 3.4 the choice of the covering node l directs the 

algorithm towards a specific network implementation for the set of primary output functions.  If an 

alternate covering option was used instead to perform this same covering, an alternate network 

implementation would result.  Thus, a backtracking algorithm which generates all possible network 

implementations for a set of primary output functions can be created simply by extending the current 

SynthesizeNetwork procedure to explore each option that exists for covering a selected minterm.  The 

optimal cost network can then be determined by comparing the number of gates in each network.  The 

pseudocode for such an extension is provided in Figure 3.5. 

 

Figure 3.5: Pseudocode for Optimal NAND2 Synthesis Algorithm – Version 2 

While this algorithm will lead to an optimal network, it is possible to perform some pruning of the 

search through a bounding technique.  As synthesis of a network progresses, coverings are made in the 

network.  As we described in Section 3.1.4 there are four ways that a covering can be completed.  In each 

case the cost of the network, i.e. the number of gates in the network, either increases or remains the same.  

Thus, the cost of any complete network which can be created by completing a given partial network must 

have cost greater than or equal to this partial network.  This idea leads to the following bounding technique 

which can be employed in this synthesis search. 

Bounding Technique: Let S be the set of all complete networks which can be created by completely 

synthesizing a given partial network N.  A lower bound on the cost of the networks in S is the cost of the 

partial network N. 

Using this bounding technique, the SynthesizeNetwork procedure can be extended so that it will 

perform a branch-and-bound search.  The updated pseudocode is provided in Figure 3.6. 

SynthesizeNetwork v.2 (Network) 

 if
gate nodes

UnCovered 0
i

i∈

 
= 

 
∧  

  if (number gates in Network is smallest seen so far) 

   Store Network as current minimum 
 else 

  m, (i,j,k) ← SelectMintermForCovering 

  CovNodes ←←←← FindAllCoveringNodes(m, (i,j,k)) 

  for (all l ∈∈∈∈ CovNodes) 
   NewNetwork ← PerformCovering((i,j,k), l, m) 

   PropagateFunctionalImplications((i,j,k)) 

   UpdateConnectibleSet() 

   SynthesizeNetwork(NewNetwork) 
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Figure 3.6: Pseudocode for Branch-and-Bound version of Optimal NAND2 Synthesis Algorithm – 

Version 3 

3.3 Decision Strategies 

The synthesis procedure makes two decisions during its execution.  The first is the choice of which 

uncovered on-set minterm will be selected for covering in this step.  The second is the choice of which 

node will be used to cover this minterm.  In this section we investigate how these choices effect the order in 

which complete networks are generated by the algorithm and the number of covering steps required for the 

synthesis of a particular complete network.  The insights provided through this investigation will then lead 

to a set of heuristics that can be used to aid in making these decisions. 

3.3.1 Minterm Selection 

By definition, every on-set minterm of every gate node in the network must be covered before the 

network is considered complete.  However, the choice of which minterm to cover first can greatly effect the 

size of the search space.  The choice of the minterm can effect both the number of coverings needed to 

complete a network, i.e. the height of this path in the search tree, and the number of choices available for 

performing a covering, i.e. the width of this branch of the search tree.  For these reasons a heuristic should 

be employed which will attempt to select the minterm that will minimize both the height and width of the 

search tree under this branch. Therefore a correlation between the minterms available for covering and the 

resulting search trees based on these coverings must be discovered.   

First the correlation between the selection of a minterm and the width of the branch will be considered.  

The branching factor for a node in the search tree is the number of options that exist for covering the 

selected minterm.  In order to keep the width of the branches small, a minterm should be selected which has 

as few covering options as possible.  Fewer choices for covering will lead to a smaller branch width and a 

higher probability that the optimal solution is represented by the selected partial network. 

SynthesizeNetwork v.3 (Network) 

 if
gate nodes

UnCovered 0
i

i∈

 
= 

 
∧  

  if (number gates in Network is smallest seen so far) 

   Store Network as current minimum 

   UpperBound ←←←← CostNetwork 

 else 

  m, (i,j,k) ← SelectMintermForCovering 

  CovNodes ← FindAllCoveringNodes(m, (i,j,k)) 

  for (all l ∈ CovNodes) 

   NewNetwork ← PerformCovering((i,j,k), l, m) 

   PropagateFunctionalImplications((i,j,k)) 

   UpdateConnectibleSet() 

   if (CostNewNetwork < UpperBound) 
    SynthesizeNetwork(NewNetwork) 
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The selection of a minterm can also effect the height of the search tree.  The height of the search tree 

can be reduced when minterms are covered by functional implications.  When choosing a minterm for 

covering, the possibility that this minterm may be covered later as a result of an alternate minterm covering 

must be considered.  Since covering a minterm in one node in the network can cause functional 

implications throughout the entire network, a minterm from a node which is least likely to become covered 

through functional implications should be chosen first.   

Based on the relationships between the size of the search tree and the minterms available for covering 

several options exists for heuristic methods which will help to determine which uncovered minterm is the 

best choice for covering.  Many of these heuristics can be used in combination to produce a ranking of the 

minterms. 

SmallestCOV:  From the set of uncovered minterms, select the minterm that has the fewest covering 

options.   

DifficultCOV: From the set of uncovered minterms, select the minterm which has the most difficult 

covering rank:  The four methods for performing a covering can be ranked according 

to their difficulty.  From easiest to the most difficult:  

1. Gate node that already exists as an input 

2. Primary input node 

3. Existing gate node  

4. New gate node 

Covering a minterm with a node that already exists in the fan-in set of a node is the 

easiest type of covering for two reasons: (1) It is likely that this minterm could have 

been covered as part of functional implications resulting from previous coverings. 

(2) Very little change is made in the network when this covering is performed 

putting little constraint on the network.  The most difficult covering is performed by 

adding a new gate.  By adding a new gate to the network the cost increases and a 

whole new set of minterms must be covered. 

Using this list, minterms can be ranked according to their easiest covering option.  

The minterm with the most difficult covering label will then be chosen for covering 

first. 

SmallestFI:  From the list of uncovered nodes, select the node that has the smallest fan-in. (A 

node may have 0,1,or 2 nodes in its fan-in).   From the set of uncovered minterms for 

this node, choose an arbitrary minterm to cover. 

 SmallestCONN: From the list of uncovered nodes, select the node that has the smallest connectible 

set.  From the set of uncovered minterms for this node, choose an arbitrary minterm 

to cover. 
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Each of these heuristic methods uses an individual property of the nodes and minterms that remain to be 

covered in order to make a selection.  However, these individual properties do not provide enough 

granularity to distinguish between all possible uncovered minterms.  Therefore it is beneficial to use 

multiple heuristic methods in combination.   

For example, the SmallestFI method can be used to select the set of uncovered nodes which have the 

fewest number of input nodes.  This set can then be narrowed down using the SmallestCONN method to 

those nodes with the connectible sets of smallest size.  Finally an uncovered minterm from this set of nodes 

can be chosen according to the SmallestCOV method. 

The effectiveness of these heuristics is explored in Chapter 4. 

3.3.2 Covering Node Decision 

The choice of which node will be used to perform a covering drives the structure of the final complete 

network.  Even though, the entire set of complete networks is searched by the branch-and-bound version of 

this synthesis algorithm, this decision is still important.  It effects the order in which the complete networks 

are explored.  In an ideal situation, the partial network representing an optimal network will always be 

chosen first for further synthesis.  This way, the cost bound is set to the optimal value initially and later 

networks can be pruned earlier based on the bounding condition.  

The optimal networks are not known in advance however.  Therefore we cannot know which partial 

network will represent an optimal solution as the search is progressing.  For this reason, we create heuristic 

methods that can be used to select a covering option that is more likely to put partial networks representing 

optimal solutions towards the beginning. 

CovOrder: Order the nodes available for covering according to their covering rank: (1) a primary 

input node, (2) a gate node that already exists as a fan-in, (3) an existing gate node that 

is not connected as a fan-in, (4) a new gate node.  Nodes with lower covering rank are 

chosen first. 

CostOrder: Order the nodes available for covering acc                              

ording to the cost of the partial networks that result when the node is used for covering.  

Networks with lower cost are chosen first 

The CostOrder heuristic is more expensive but can potentially lead to better decisions since each new 

partial networks must be created to determine the ordering.  Once again, the effectiveness of these heuristic 

methods is discussed in Chapter 4.   
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3.4 Decision Implications 

Once a decision is made about the covering that is to be performed, implications of this covering can be 

propagated through the networks.  These implications provide additional information about functional and 

structural properties of the network, which help to make further decisions in the next set of covering steps.   

3.4.1 Functional Implications 

Functional implications are one type of implication that can result from a covering.  In this case, 

minterms of the don’t-care set are moved to the on- and off-sets of gate nodes.  These implications depend 

on the structure of the network and the Boolean functions at the nodes in the network. 

The set of local functional implications were described in the initial description of the synthesis 

algorithm (Section 3.1.4).  These implications are used to maintain the consistency of the functions at the 

immediate output and inputs of a gate node.  

3.4.2 Global Functional Implications 

Two types of global functional implications will be considered here.  Both are based on a network 

structure containing reconvergent fan-out.   These global function implications are similar to the recursive 

learning algorithm described by Kunz [Kunz 94]. 

3.4.2.1 Global Functional Implication 1: Simple Structure 

The first type of global functional implication will be based on the simple reconvergent structure shown 

in Figure 3.7.  Here, the fan-out of node 4 travels along two paths through nodes 2 and 3 until it converges 

again at node 1.  This structure is called simple since the two paths from 4 to 1 contain only 3 nodes. 

 

Figure 3.7: Simple Reconvergent Pattern 

The functional implication
1 4

ON ON→ that results from this structure is based on the fact that the fan-in 

set of node 1 has reached the limit of two nodes.  Therefore no additional node can be added to the fan-in of 

1 to cover the uncovered minterms from 1.  Thus, there are only two ways that minterms from the on-set of 

1 can be covered.   

Let m be a minterm from the on-set of node1.  If node 2 were to cover this minterm, then m must be 

contained in the on-set of 2.  Then by the backward implication rule:
2 4

OFF ON→ the minterm m would 

also be contained in the on-set of 4.  Alternately, if node 3 was used to cover this minterm, then m must be 

contained in the off-set of 3.  By the same backward implication rule:
3 4

OFF ON→ the minterm m would 

4 

3 

2 

1 
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once again be contained in the on-set of 4.  Thus every minterm in the on-set of 1 must appear in the on-set 

of 4, implying the implication rule:
1 4

ON ON→ . 

This functional implication rule can be used whenever a simple reconvergent fan-out structure exists in 

a partial network.  As with the local functional implications, this one implication may lead to further 

functional implications in the network.   

3.4.2.2 Global Functional Implication 2: General Structure 

The second type of global functional implication is based on a more general reconvergent fan-out 

structure which extends through more nodes as shown in Figure 3.8.  Once again, the fan-out of node 4 

travels along two distinct paths until it converges again at node 1.   In this general structure, however, the 

paths can be any length. 

 

Figure 3.8: General Reconvergent Pattern 

A simple functional implication rule is not possible in this case due to the variability in the structure of 

the network.  It is possible however that changes can be made to the Boolean function of some node in this 

structure based on the reconvergent pattern.  This type of learning is completed by temporarily performing 

alternate coverings at node 1 and examining the consequences of these coverings. 

This type of functional implication is best described with an example.  The network given in Figure 3.9 

contains the general reconvergent fan-out structure from Figure 3.8.  The fan-out of node 10 converges 

again at node 4.  The two paths that form this reconvergence are ( )10,9,8,5,4  and ( )10,6,4 .   

The fan-in set of node 4 has reached the maximum of two inputs which implies that there are only two 

ways that the three remaining uncovered minterms of 4 can be covered.   

If  node 5  is used to cover these minterms then each minterm would be added to off-set of 5 and then 

functional implications would be propagated through the network resulting in the following functional 

changes: 
8 2 3 1

ON x x x′= ∨  and 
7 1 2 3

ON x x x′ ′= ∨ ∨ .  If node 6 is used to cover these minterms then each 

minterm would be added to the off-set of 6 and these changes would be propagated through the networks 

using the functional implication rules.  The result this time would be: 
10 1 2 3

ON x x x′ ′= ∨ ∨ , 

9 2 3 1 3
OFF x x x x′= ∨ , and 

8 2 3 1 3
ON x x x x′= ∨  

If the functions that result from the two possible coverings are compared, the minterm 
1 2 3

x x x  appears in 

the on-set of node 8 in both cases while it does not appear in the on-set of 8 in the original network.  

4 

3 

2 

1 
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Therefore a functional implication exists where the on-set of 8 is expanded to include 
1 2 3

x x x : 

8 2 3 1 2
ON x x x x′= ∨ . 

 

Figure 3.9: Finding Functional Implications based on General Reconvergent Pattern 

Node l ON
l  

OFF
l  

UnCovered
l  

1 1
x  

1
x′  - 

2 2
x  

2
x′  - 

3 3
x  

3
x′  - 

4 
1 2 3 2 3 1 3 1 2

x x x x x x x x x′ ′ ′ ′∨ ∨ ∨  
1 2 3 1 2 3 1 2 3

x x x x x x x x x′ ′ ′ ′ ′∨ ∨  
1 2 1 3

x x x x′∨  

5 1 3 1 2 1 2 3
x x x x x x x′ ′ ′ ′∨ ∨  

1 2 3
x x x′ ′  0 

6 1 2 3 1 2 3 1 2 3x x x x x x x x x′ ′ ′ ′ ′∨ ∨  
1 2 3

x x x′ ′  
1 2 3 1 2 3

x x x x x x′ ′ ′ ′∨  

7 1
x′  

1 2 3
x x x′  0 

8 2 3
x x′  

1 3 1 2
x x x x′ ′ ′∨  0 

9 3 1 2x x x′ ′∨
 2 3

x x′  0 

10 2 1 3
x x x′ ′ ′∨  

1 2 3
x x x′  

1 2 3
x x x′ ′  

1 

2 

4 
3 

10 

9 

7 

8 

5 

6 

Choice 1: 5 covers minterms from 4 

1 2 3 1 2 3 1 2 3
M x x x x x x x x x′ ′ ′′ ′ ′′ ′ ′′ ′ ′= ∨ ∨= ∨ ∨= ∨ ∨= ∨ ∨  

 
5 5 1 2 3 1 2 1 3

OFF : OFF M x x x x x x x′ ′ ′= ∨ = ∨ ∨  

 

Propagate Local Implications: 

 Backward: 
8 8 5 2 3 1

ON : ON OFF x x x′= ∨ = ∨  

 Backward: 

7 7 5 1 2 3
ON : ON OFF x x x′ ′= ∨ = ∨ ∨  

Choice 2: 6 covers minterms from 4 

1 2 3 1 2 3 1 2 3
M x x x x x x x x x′ ′ ′′ ′ ′′ ′ ′′ ′ ′= ∨ ∨= ∨ ∨= ∨ ∨= ∨ ∨  

 
6 6 2 3 1 2 1 3

OFF : OFF M x x x x x x′ ′= ∨ = ∨ ∨  

 

Propagate Local Implications: 

 Backward: 
10 10 6 1 2 3

ON : ON OFF x x x′ ′= ∨ = ∨ ∨  

 Forward: ( )9 9 3 10 2 3 1 3OFF : OFF ON ON x x x x′= ∨ ∨ = ∨  

 Forward: 
8 8 9 2 3 1 3

ON : ON OFF x x x x′= ∨ = ∨  

Global Implications 

 

( ) ( ) ( ) ( )5 5 5 1 2 3 1 2 1 3 1 2 3 1 2 3OFF OFF  from Choice 1 OFF  from Choice 2 x x x x x x x x x x x x x′ ′ ′ ′ ′ ′ ′= ∧ = ∨ ∨ ∧ =  no change 

( ) ( ) ( ) ( )6 6 6 1 2 3 2 3 1 2 1 3 1 2 3OFF OFF  from Choice 1 OFF  from Choice 2 x x x x x x x x x x x x′ ′ ′ ′ ′ ′= ∧ = ∧ ∨ ∨ =  no change 

( ) ( ) ( ) ( )7 7 7 1 2 3 1 1ON ON  from Choice 1 ON  from Choice 2 x x x x x′ ′ ′ ′= ∧ = ∨ ∨ ∧ =  no change 

( ) ( ) ( ) ( )8 8 8 2 3 1 2 3 1 2 2 3 1 2ON ON  from Choice 1 ON  from Choice 2 x x x x x x x x x x x′ ′ ′= ∧ = ∨ ∧ ∨ = ∨  Func. Impl. 

( ) ( ) ( ) ( )9 9 9 2 3 2 3 1 3 2 3OFF OFF  from Choice 1 OFF  from Choice 2 x x x x x x x x′ ′ ′= ∧ = ∧ ∨ =  no change 

( ) ( ) ( ) ( )10 10 10 2 1 3 1 2 3 2 1 3ON ON  from Choice 1 ON  from Choice 2 x x x x x x x x x′ ′ ′ ′ ′ ′ ′ ′= ∧ = ∨ ∧ ∨ ∨ = ∨   no change 
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Implications based on this general type of reconvergent fan-out are more difficult to find than those 

from the simpler structure.  However, the reasoning behind why these implications can be made remains 

the same.  To find a general reconvergent structure all nodes whose fan-in set contains the maximum of two 

nodes must be considered.  The set of nodes which are descendents for each fan-in are then found.  If one 

node is common to both of these descendent sets, a reconvergent structure exists.  Once the structure is 

found, implications can be discovered by testing both covering options and comparing the functions of the 

nodes within the structure as in the example above.   

3.4.2.3 Global Functional Implication Procedures 

A new version of the SynthesizeNetwork procedure which includes both types of global implications is 

given in Figure 3.10.  
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Figure 3.10: Synthesize Network Function – Version 4 and Global Functional Implication Procedures 

3.4.3 Structural Implications 

Structural implications can also result from a covering decision.  Additional details about the partial 

network are learned based on the current state of the network.   

As we saw in the example given in Section 3.1.1, it is often the case that no existing node can cover a 

minterm (Decisions 1, 3, and 4).  The only “choice” for covering in this situation is to add a new gate to the 

network to cover the minterm.  This choice can be viewed as a structural implication of the previous 

covering since no choice remains as to how the minterm can be covered. 

GeneralGlobalFtnImpl (Network) 

 for ( )( ), ,i j k Network∈  

  if ( ), 0 and UnCovered 0ij k ≠ ≠  

   Descendentsj ← FindDescendents( j ) 

   Descendentsk ← FindDescendents( k ) 

   if ( )Descendents Descendentsj k∩ ≠ ∅  

    Networkj ← PerformCovering((i,j,k), j, UnCoveredi) 

    PropagateFunctionalImplications((i,j,k)) 

    Networkk ← PerformCovering((i,j,k), k, UnCoveredi) 

    PropagateFunctionalImplications((i,j,k)) 

    for ( l ∈ Network ) 

     Node  in jl j l Network←    

     Node  in kl k l Network←    

     if ( )ON ON ON
ll j l k      

∧ ≠  

      ON : ON ONl l j l k      
= ∧  

      PropagateFunctionalImplications((l,jl,kl)) 

     if ( )OFF OFF OFF
ll j l k      

∧ ≠  

      OFF : OFF OFFl l j l k      
= ∧  

      PropagateFunctionalImplications((l,jl,kl)) 

      

SimpleGlobalFtnImpl (Network) 

 for ( )( ), ,i j k Network∈  

  if ( ), 0 and UnCovered 0ij k ≠ ≠  

   if (j and k share an input l) 

    ON : ON ONl l i= ∨  

    PropagateFunctionalImplication((l,jl,kl)) 

SynthesizeNetwork v.4 (Network) 

 if
gate nodes

UnCovered 0i

i∈

 
= 

 
∧  

  if (number gates in Network is smallest seen so far) 

   Store Network as current minimum 

   UpperBound ← CostNetwork 

else 

  m, (i,j,k) ← SelectMintermForCovering 

  CovNodes ← FindAllCoveringNodes(m, (i,j,k)) 

  for (all l ∈ CovNodes) 

   NewNetwork ← PerformCovering((i,j,k), l, m) 

   PropagateFunctionalImplications((i,j,k)) 

   SimpleGlobalFtnImpl(NewNetwork) 

   GeneralGlobalFtnImpl(NewNetwork) 

   UpdateConnectibleSet() 

   if (CostNewNetwork < UpperBound) 
    SynthesizeNetwork(NewNetwork) 
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The additional information learned by completing structural implications immediately will often allow 

partial networks to be pruned earlier based on their cost.  This, in turn, can reduce the search required to 

find an optimal network.  The example given in Section 3.1.1 can be reduced from 8 decisions to 5. 

The SynthesizeNetwork procedure must be changed to include structural implications.  After the 

procedure propagates the functional implications of the covering, it then updates the connectible sets of the 

gate nodes.  Now a procedure AddNewGate can be called which will determine if any structural 

implications are possible and will add a new gate to the network for one of the structural implications that 

can be performed.  As long as new gates are added to the network, there remains potential for additional 

structural implications.  Therefore the two steps of computing the connectible sets and performing 

structural implications should be repeated until the network remains unchanged.   

The AddNewGate procedure detects and performs a single structural implication in a partial network.  

First detection of an implication must be completed.  Then the covering is completed as in the 

PerformCovering function described earlier. The new gate node is added to the network and is used to 

cover a minterm from the selected node that cannot be covered by any existing node. 

Notice that structural implications must be completed individually.  It is often the case that when a gate 

node is added to the network it can be used to cover many of the minterms that previously could not be 

covered by an existing node.  Thus, if a new gate node were added for every uncovered minterm an optimal 

network may be missed.  

More than one structural implication may be required.  If the added node is not connectible to an 

existing node which contains minterms that cannot be covered then a second call to the AddNewGate 

procedure may be required.  In addition, if an on-set minterm in the added node is not coverable by an 

existing node then a structural implication will exist at the new gate node and an additional call to the 

AddNewGate procedure will be needed to cover the minterm.   

Structural implications can also be performed as part of an initialization step for the algorithm.  When 

the initial partial network is created, it is possible that one or more of the output functions cannot be 

completely covered by only input nodes.  In this case, at least one new gate node must be added to the 

network to cover these nodes.  No complete networks will be eliminated by these structural implications 

since every network will require these additional gates.  This initialization can be performed by calling the 

AddNewGate procedure on the original partial network before the main SynthesizeNetwork procedure is 

begun. 
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Figure 3.11: Synthesize Network Procedure – Version 5 and Structural Implication Procedures 

3.5 Conflicts 

Conflicts can arise during the search because certain combinations of covering choices may result in a 

network which contains one or more gate nodes with an inconsistent Boolean function.  The propagation of 

functional implications after a covering is performed can help to eliminate many covering choices that 

would lead to conflicts.  Despite these efforts however, conflicts can still occur.   

Figure 3.12 provides a situation in which a conflict occurs.  The first partial network contains a node 7 

which is connectible to 8 according to the connectibility constraints and will cover the minterm 
1 2 3

x x x′ ′  in 8.  

To perform this covering, the edge (7,8) is added to the network and the resulting functional implications 

are propagated through the network.  The partial network that results however is invalid.  The function at 

node 4 is inconsistent since the intersection of the on- and off-sets is non-empty.   

When an invalid network is detected in the search, the algorithm will simply stop searching this portion 

of the search tree and backtrack to the previous decision.  In the case of the example from Figure 3.12, the 

algorithm would try adding a new gate to the network to cover node 8, since this second alternative had not 

yet been considered. 

Notice that the function of a node in a fan-out free network can never become inconsistent as long as 

the local functional implication rules and consistency requirements are used.  It is the reconvergent fan-out 

of the more complex networks which allow consistent coverings to be made only to have an inconsistency 

revealed through functional implications. 

SynthesizeNetwork v.5 (Network) 

 if
gate nodes

UnCovered 0i

i∈

 
= 

 
∧  

  if (number gates in Network is smallest seen so far) 

   Store Network as current minimum 

   UpperBound ← CostNetwork 

else 

  m, (i,j,k) ← SelectMintermForCovering 

  CovNodes ← FindAllCoveringNodes(m, (i,j,k)) 

  for (all l ∈ CovNodes) 

   NewNetwork ← PerformCovering((i,j,k), l, m) 

   PropagateFunctionalImplications((i,j,k)) 

   SimpleGlobalFtnImpl(NewNetwork) 

   GeneralGlobalFtnImpl(NewNetwork) 

   do 
    UpdateConnectibleSet() 

    AddNewGate (NewNetwork) 

   while ( nodes were added to NewNetwork) 

   if (CostNewNetwork < UpperBound) 
    SynthesizeNetwork(NewNetwork) 

AddNewGate (Network) 

 //Detect uncoverable node 

 for ( )( ), , Networki j k ∈  

  Uncoverable ← UnCoveredi 

  for { }( ), ,Connectibleil j k∈  

   Uncoverable Uncoverable ONl= ∧  

  if (Uncoverable ≠ 0) 

   Store i as the uncovered node; 

 

 // Perform Covering 

 Create a new gate node ( ),0,0l  in Network; 

 Add the edge ( ),l i to the network 

 ( )OFF : SelectMinterm Uncoverablel =  

 PropagateFunctionalImplications((i,j,k)) 
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Figure 3.12: Example of Conflict: an Invalid Network 

3.6 Search Space 

There are two ways to view the search space of this algorithm.  First it can be seen as the space of 

decisions that must be made to complete a network.  There are a set of (node, minterm) pairs that require 

Decision Cover (8,
1 2 3x x x′ ′ ): i = 8, m = 

1 2 3x x x′ ′  
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ct

 

C
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n
 

Node ONl OFFl UnCoveredl 

S  1 1x  
1x′  − 

S  2 2x  
2x′  − 

S  3 3x  
3x′  − 

  4 
1 2 3 1 2 3

1 2 3 1 2 3

x x x x x x

x x x x x x

′ ′ ′ ′∨ ∨

′ ′ ∨
 

1 2 3 1 2 3

1 2 3 1 2 3

x x x x x x

x x x x x x

′ ′ ′ ′∨ ∨

′ ′∨
 

1 2 3

1 2 3

x x x

x x x

′ ′ ∨
 

  5 
1 3 1 2

2 3 1 2 3

x x x x

x x x x x

′ ′ ′∨ ∨

′ ′∨
 

1 2 3x x x′ ′  0 

  6 
1 2 1 3

2 3 1 2 3

x x x x

x x x x x

′ ′ ′∨ ∨

′ ′∨
 1 2 3x x x′ ′  0 

S C 7 2x′  
1 2x x′  0 

 * 8 1 3 1 2x x x x′ ′∨  
1 2 3 1 2 3

1 2 3

x x x x x x

x x x

′ ′ ′ ′∨ ∨

′
 1 2 2x x x′ ′  

S  9 3 1 2x x x′ ′∨  
1 3x x′  0 

S  10 1x′  
1 2 3x x x′  0 

• Two choices: node 7 and a new gate - Connect 7 

� Backward:
7 7 8 2 1 3ON : ON OFF x x x′ ′= ∨ = ∨  

� Forward: ( )8 8 7 9 1 3 1 2 2 3OFF : OFF ON ON x x x x x x′ ′ ′ ′= ∨ ∧ = ∨ ∨  

� Forward: 
5 5 8 3 1 2 1 2ON : ON OFF x x x x x′ ′ ′= ∨ = ∨ ∨  

� Forward: 
6 6 8 2 1 3 1 3ON : ON OFF x x x x x′ ′ ′= ∨ = ∨ ∨  

� Forward: ( )4 4 5 6 2 3 1 2 3 1 2 1 3OFF : OFF ON ON x x x x x x x x x′ ′ ′ ′ ′= ∨ ∧ = ∨ ∨ ∨  

  1 1x  
1x′  − 

  2 2x  
2x′  − 

  3 3x  
3x′  − 

  4 
1 2 3 1 2 3

1 2 3 1 2 3

x x x x x x

x x x x x x

′ ′ ′ ′∨ ∨

′ ′ ∨
 

2 3 1 2 3

1 2 1 3

x x x x x

x x x x

′ ′ ′∨ ∨

′ ′∨
 1 2 3 1 2 3x x x x x x′ ′ ∨

 

  5 3 1 2 1 2x x x x x′ ′ ′∨ ∨  
1 2 3x x x′ ′  0 

  6 2 1 3 1 3x x x x x′ ′ ′∨ ∨  
1 2 3x x x′ ′  0 

  7 2 1 3x x x′ ′∨  
1 2x x′  0 

  8 1 3 1 2x x x x′ ′∨  
1 3 2 3 1 2x x x x x x′ ′ ′ ′∨ ∨  

1 2 2x x x′ ′  

  9 3 1 2x x x′ ′∨  
1 3x x′  0 

  10 1x′  
1 2 3x x x′  0 

Conflict: Inconsistent Function

4 4 1 2 3ON OFF x x x′ ′∩ =  
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10 
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covering (the variables in the decisions) and the alternate ways of performing these coverings (the values to 

be assigned).  A solution is found when all minterms have been covered.  The difference between this 

algorithm and that of a typical decision tree algorithm is that the set of variables is constantly changing.  

This makes it difficult to analyze the size of the search space based on the initial problem description since 

the number of minterms that must be covered can increase as networks are constructed. 

The algorithm can also be seen as a way to systematically generate complete network implementations 

of the chosen function(s).  As the algorithm uses the covering process to build a network, it is also 

searching through a space of circuits.  The covering decision is used to divide the space of complete 

networks.  An exhaustive search of this space must be completed in order to guarantee the optimality of the 

solution. 

While the first view of the search space follows naturally from the description of the algorithm, the 

second is useful for evaluating the properties of the search.  In this section, we will elaborate on the details 

of the search following both views, so that these concepts can be used later in discussions of the algorithm.  

Finally, we will use the first view to evaluate the size of the search space. 

3.6.1 Search Space Version 1 

BESS performs a search for an optimal network using a backtracking method.  As with many backtrack 

search algorithms, the solution space is explored by assigning all possible values to the decision variables.  

In this search, the decision variables are the (node, minterm) pairs that require covering in the partial 

network.  The values that can be assigned to these variables are the alternate ways that the covering of the 

(node, minterm) pair can be completed.   

At the beginning of the search, the set of decision variables will contain only those uncovered minterms 

which come from primary output nodes.  As the search progresses, (node, minterm) pairs are selected for 

covering.  Then a covering is performed within the network and the (node, minterm) is removed from the 

set of decision variables.  When a new gate is added to the network to complete this covering, or when 

functional implications are propagated through the network, new (node, minterm) pairs are then added to 

the set of decision variables.  The algorithm continues synthesis on this single network until the network is 

complete – the set of decision variables is empty.  From here, the algorithm will backtrack to a previous 

decision and create a new network based on an alternate covering for the selected node and minterm.  This 

pattern of single network synthesis and backtracking will continue until all covering options for every 

(node,minterm) decision have been exhausted.  This guarantees that every possible network has been 

explored. 

If the cost of the smallest network seen so far is stored as subsequent networks are being constructed, 

the algorithm can use the cost to prune the search space at a partial network.  The synthesis of a network 

can be stopped if the cost of this partial network exceeds the cost of the smallest complete network seen so 

far.  This is possible since the cost of any complete network generated by the current partial network will 
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be greater than or equal to the cost of the partial network.  This pruning allows us to reduce the size of the 

search space while still guaranteeing that an optimal network will be found. 

This backtrack search is unique since the set of decision variables will both shrink and grow during the 

search.  While the same (node, minterm) pair will never be added to the set of decision variables once it has 

been removed, it will be the case that additional (node, minterm) pairs will be added to the set of initial 

decision variables.  This property causes difficulty when analyzing the size of the search space based on the 

initial problem description since the number of decision variables is not known at the beginning of the 

search. 

3.6.2 Search Space Version 2 

This description of the search space must begin with the basic definitions for various types of networks 

produced by the algorithm along with relationships that can exist between these networks. 

A network is valid if it satisfies the functional and structural constraints: 

1. The network must be acyclic. 

2. The functions at the inputs and outputs of a node must be consistent. 

3. The functions at the nodes representing the outputs of the network must be equal to the 

desired output functions. 

Valid networks are categorized into two types.  A complete network is a valid network in which every 

node is completely covered by its inputs, while a partial network is a valid network that has at least one 

node which remains uncovered.  The functions of all gate nodes in a complete network are required to be 

completely specified. 

Valid networks can be related to each other based on similarities in their node sets, edge sets, and global 

functions.  A valid network G1=(V1, E1) is a subnetwork of the valid network G2=(V2, E2) if V1 ⊆ V2, 

E1 ⊆ E2, and for every node 
1

i V∈  there exists a corresponding node 
2

j V∈  such that ON ON
i j

≤  and 

OFF OFF
i j

≤ .  In this same case, G2 is a supernetwork of G1.  This subnetwork relationship implies that G1 

can be expanded to become G2.  The network G1 in Figure 3.13 is a subnetwork of G2.  



 

 47 

  

 

Figure 3.13: G1 is a Functional Subnetwork of G2 

If G1 is a subnetwork of G2 and G1 ≠ G2 then G1 is a proper subnetwork of G2.  This implies that there 

must be either some node or edge that exists in G2 that does not exist in G1, or the global function of a node 

in G1 is not as defined as the corresponding node in G2. 

 Based on the proper subnetwork relationship, the category of complete valid networks is divided 

further into elementary and non-elementary networks.  A complete valid network will be considered 

elementary if every proper structural subnetwork is not complete (i.e. the network is non-redundant).  

Similarly, a complete valid network is non-elementary if there exists a proper subnetwork which is also 

complete (i.e. the network is redundant).  An optimal network will be an elementary network which has 

minimum cost. 

By dividing the set of complete networks in this way, a limit can be placed on the algorithm so that it 

will search only elementary networks for an optimal network.  At least one network with minimum cost 

must be elementary since any non-elementary network with minimum cost will always have a complete 

proper subnetwork with cost less than or equal to it.   

The two networks given in Figure 3.14 are complete networks.  The network in (a) is elementary.  

Every proper structural subnetwork is not complete.  The network in (b) is non-elementary.  Notice that the 

network in (a) is a proper structural subnetwork of this network and it is complete. 
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  (a) Elementary Network (b) Non-elementary Network 

Figure 3.14: Elementary Networks 

The search space for the exact synthesis algorithm is the set of all elementary networks that implement 

the desired functions.  The algorithm will search this space for an optimal network using a 

branch-and-bound procedure that maintains a search tree.  A node in the search tree corresponds to a partial 

network.  A partial network is simply a representation of all complete networks of which it is a subnetwork.  

Therefore the search tree node corresponding to some partial network P represents the set of all elementary 

networks from the search space of which P is a subnetwork.   

The root of the search tree corresponds to an initial partial network.  This initial network must be a 

subnetwork for every elementary network in the search space.  A leaf in the search tree corresponds to an 

elementary network.  The set represented by an elementary network will be the singleton set containing 

only this elementary network. 

The branching part of the branch-and-bound algorithm occurs when a covering is performed in the 

partial network at a search tree node.  The alternate ways of performing this covering will create the 

branches of the search tree.  Each partial network that results from the covering will represent a child of 

this search tree node, and the set of elementary networks represented by the original partial network will be 

divided into subsets each represented by one of the new partial networks.  

The algorithm explores a single path in the search tree until a leaf is reached.  Once the leaf is reached, 

the algorithm backtracks to the previous decision point (a branch in the search tree) and then explores the 

next path in the search tree.  This pattern of branch exploration and backtracking will continue until all 

paths have been exhaustively searched.  Since the algorithm exhaustively searches the entire search space, 

it will generate every elementary complete network.  Therefore, it can determine which elementary network 

has the smallest cost. 
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If the cost of the smallest network seen so far is stored as the search tree is constructed, the algorithm 

can use the cost to prune the search at a partial network.  The algorithm will be able to stop exploring the 

subtree under a search tree node if the cost of the partial network representing this node is greater than the 

cost of the smallest elementary network seen so far.  This is possible since the cost of every elementary 

network represented by the partial network will be greater than or equal to the cost of the partial network.  

Using this cost bound technique, the size of the search tree can be reduced, while still guaranteeing that the 

minimum cost network will be generated. 

3.6.3 Search Space Analysis 

In order to analyze the run-time of the algorithm a bound must be given on the size of the search tree 

produced by the algorithm for a given function.  In general, the total number of internal nodes in a search 

tree is defined by
h 1

w 1

w 1

+
−

−
, where w is the width of the branches in the search tree and h is the height of the 

tree [Cormen 01]. 

3.6.3.1 Search Tree Width 

In order to give a worst-case analysis of the search space, the maximum width of a branch in the search 

tree must be considered.  The size of a branch in the search tree is determined by the number of covering 

options for the selected minterm.  There are at most n + g ways a single minterm could be covered, where n 

is the number of input nodes and g is the number of gate nodes in the network.  However g is dependent on 

the number of nodes in the network at any given time.  Therefore the width of any branch in the search tree 

will be at most w = n + Gmax where Gmax is the maximum number of gates that exists in any partial network 

encountered during the entire search.  Using this value for the width, the size of the search tree is bounded 

above by 
( )

h 1
1

1

max

max

n G

n G

+
+ −

+ −
. 

An alternate upper bound on the branch-width of the search tree can be obtained by considering the 

number of n-input Boolean functions that can cover a given minterm.  Given an arbitrary minterm, only 

half of the 
22

n

 possible functions that exist on n or fewer inputs (
2 12

n −
 functions) can cover the minterm.  

Using this value for a bound on the width of the search tree gives an upper bound on the size of the search 

tree: 
( )

h 1
2 1

2 1

2 1

2 1

n

n

+
−

−

−

−
.  The advantage to this bound is that it is not dependent on any property of the network 

generated by the algorithm and can be determined without knowing the size of the optimal network. 

3.6.3.2 Search Tree Height 

In the worst case, the algorithm will require one branch to be made for every on-set minterm in the 

network.  An upper bound on this number will be the number of gate nodes in the network G multiplied by 
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the maximum 2 1n −  minterms that may need covering per gate node.  Thus the height of the search tree 

will be less than ( )2 1nG − .   Since the gates cannot repeat Boolean functions, the maximum number of 

gates cannot exceed the number of possible Boolean functions using n or fewer variables.  Thus, 
22

n

G ≤ . 

Using this height value, a final bound on the size of the search tree can now be obtained: 

( ) ( )

( )
2 1 1

2
1

( )
1

n
max

n
max

G

max G

max

max

n G
O n G

n G

− +
+ −

= +
+ −

 or 
( )

( )
2

2

2 (2 1) 1
2 1

2

2 1

2 1
2

2 1

n
n

n

n

n
O

− +
−

−

−
=

−
. 

 

3.6.3.3 Further Search Space Analysis 

While this worst-case analysis gives an upper bound on the size of the search tree, the experimental 

results presented in Chapter 4 will show that this is a very loose over approximation of the actual size of the 

search tree.  In Chapter 4, further discussion of the search space of the algorithm will be provided using 

experimental evidence. 

3.7 Convergence 

As with any search algorithm, a proof of convergence is necessary to guarantee that the search will 

terminate and an optimal solution will be found.  An algorithm converges if it eventually halts after a finite 

number of steps.  A guarantee of the convergence of BESS can be given by showing that the search tree 

produced by the algorithm is finite and the procedures performed at each step of the recursion halt.   

Each of the sub-procedures in the SynthesizeNetwork procedure will complete after a finite number of 

steps.  In particular, the recursive PropagateFunctionalImplications procedure will halt after a finite number 

of calls.  Recursive calls will only be made by this procedure when minterms are moved from the don’t-

care set of a node to the on- or off-set.  In a network with a finite number of nodes, there is only a finite 

number of minterms that can be moved.  Therefore the procedures performed at each step of the recursion 

will halt after a finite number of steps.   

All that is left to show then is that the search tree produced by the algorithm is finite.  A finite search 

tree implies that both the width of each branch in the tree and the height of each path can be bounded 

above.  The width of a branch is bounded by the number of options that exist for covering the selected 

minterm.  An upper bound on this number is the number of nodes in the network.   

If the bound on the cost of the network is finite then each path in the search tree must be of finite length.  

At least one uncovered minterm is covered with every call to the SynthesizeNetwork procedure.  Since a 

minterm can never be uncovered once it has been covered, there is a finite upper bound on the number of 

steps that are needed to cover all uncovered minterms in a given network assuming no additional gate 
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nodes are added to the network.  If a new gate node is added to a partial network then additional uncovered 

minterms will be added as well.  However, since the bound on the cost of the network is finite, only a finite 

number of nodes can be added to the network.  Thus a finite upper bound on the number of steps needed to 

cover these new uncovered minterms exists as well.  

If the cost bound is not initially set to be some finite value, then the first path in the search tree will 

have an infinite cost bound.  In this case new gates can continually be added to cover minterms in the 

network and this path in the search tree will never be completed.  To prevent these situations, some simple 

rules can be added to the algorithm.  These additions will guarantee that a first network will eventually be 

completed.  Thus the initial path of the search tree will be finite and a finite value will be assigned to the 

cost bound.  

There are three rules that must be followed by BESS to ensure that the initial path of the search tree will 

eventually lead to a complete network:  

1. The initial complete network must be a fan-out free network (the fan-out of every gate node is 1).  

2. The first node chosen to cover a selected minterm should be an existing node rather than a new gate 

node when possible.   

3. When choosing an uncovered minterm for covering, preference should be given to a minterm 

which cannot be covered by a fan-in node. 

The first rule ensures that no network along the initial path will become invalid.  As we discussed in 

Section 3.5 fan-out free networks cannot become invalid due to the functional implications made after each 

covering step.  Therefore forcing the initial network to be fan-out free will guarantee that no backtracks 

will be necessary prior to finding the first complete network. 

In order to force the first complete network to be fan-out free, the algorithm must choose input nodes, 

fan-in nodes, and new gate nodes over non-fan-in gate nodes for the initial choice of covering.  This will 

ensure that the fan-out of every gate node in the network will be one.  

The second and third rules prevent the algorithm from producing an infinite chain of gate nodes in the 

first network.  The two situations that produce these infinite chains of gates are best explained through 

examples.  On the following two pages a trace of the algorithm is provided where an infinite chain of gates 

results.   

In this trace, the 3-input OR function will be synthesized. The trace begins with an initial partial network 

containing 3 primary input nodes and a single output node.  At each decision in the trace, a new gate is 

chosen to cover the selected minterm.  In Decision 1, a new gate node, node 5, is used to cover the minterm 

1 2 3
x x x from node 4.  In Decision 2, a new gate node, node 6, is used to cover the minterm 

1 2 3
x x x′ ′ ′ from 

node 5.  It is possible that this same type of decision could continue to be made.  If the cost bound for the 

network is infinite (as it is initially) then the network will continue to grow without bound.   
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The second rule prevents this type of infinite chain from occurring at the beginning of the search by 

requiring that an existing gate node be used to cover a minterm first (where possible).  The chain of gates 

shown in this trace would be stopped at Decision 2 where one of the input nodes would be chosen for 

covering.   

Algorithm Trace: Infinite Chain of Gates 
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Decision 3 Cover (6, 1 2 3x x x ):  i = 6, m = 1 2 3x x x  
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Figure 3.15: Trace and Search Tree for an infinite chain of gates that results when a new gate is 

repeatedly chosen for covering. 
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The order in which minterms are selected for covering can also lead to an infinite chain of gate nodes.  

The following trace shows how this type of chain occurs.   

In this trace the 3-input XOR function is synthesized. The trace begins with an initial partial network 

containing 3 primary input nodes and a single output node.  At each branching decision (decisions 3, 6, …) 

a minterm from the node second from the bottom is chosen for covering.  It is then covered by its one input 

node.  The result of this covering will always be two structural implications to add two new gates to the end 

of the chain.   

Decisions 1 and 2 in this trace are structural implications since both minterms selected for covering can 

only be covered by adding a new gate node to the network.  In decision 3, the minterm 
1 2 3

x x x′ from node 5 

is chosen for covering.  It is covered by the existing gate node, 6, which already exists as a fan-in to node 5.  

Following this decision two more structural implications are performed since both of the selected minterms 

can only be covered by adding a new gate to the network.  Decision 6 again selects an uncovered minterm, 

1 2 3
x x x′ , from a node second from the bottom of the chain, node 7.  This minterm is also covered by an 

existing gate node, 8, which already exists as a fan-in to node 7.   

It is possible that this same type of decision followed by structural implications could continue to be 

made.  If the cost bound for the network is infinite then the network will continue to grow without bound.   

The third rule prevents this type of chaining by requiring that a minterm should be selected from a node 

whose fan-in cannot be used to cover the minterm.  Using this rule, the chain of gates shown in this trace 

would be prevented at decision 3 where the uncovered minterm from node 6 would be chosen for covering 

rather than the node from 5.  
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Algorithm Trace: Infinite Chain of Gates (version 2) 
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Decision 3 Cover (5, 1 2 3x x x′ ):  i = 5, m = 1 2 3x x x′  
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Node ON
l  OFF

l  

 

UnCovered
l  

S  1 1x′  
1x  − 

S  2 2x′  
2x  − 

S  3 3x′  
3x  − 

  4 1 2 3x x x⊕ ⊕  ( )1 2 3x x x ′⊕ ⊕  
1 2 3 1 2 3

1 2 3

x x x x x x

x x x

′ ′ ′ ′∨ ∨
 

  5 ( )1 2 3
x x x ′⊕ ⊕  1 2 3x x x′ ′  

1 2 3 1 2 3x x x x x x′ ′ ′ ′∨  

 * 6 1 2 3x x x′ ′  
1 2 3 1 2 3x x x x x x′ ′∨  

1 2 3x x x′ ′  

• Add new gate 7 (Stuctural Implication) 

• Cover m, connect gate and propagate updates 

 

1 

2 4 

3 

6 5 

1 

2 4 

3 

7 6 5 



 

 57 

Decision 5 Cover (7, 1 2 3x x x′ ):  i = 7, m = 1 2 3x x x′  

 

S
tr

u
ct

 

C
o

n
n

 

Node ON
l  OFF

l  

 

UnCovered
l  

S  1 1x′  
1x  − 

S  2 2x′  
2x  − 

S  3 3x′  
3x  − 

  4 1 2 3x x x⊕ ⊕  ( )1 2 3x x x ′⊕ ⊕  
1 2 3 1 2 3

1 2 3

x x x x x x

x x x

′ ′ ′ ′∨ ∨
 

  5 ( )1 2 3
x x x ′⊕ ⊕  1 2 3x x x′ ′  

1 2 3 1 2 3x x x x x x′ ′ ′ ′∨  

  6 1 2 3x x x′ ′  
1 2 3 1 2 3x x x x x x′ ′∨  0 

 * 7 1 2 3 1 2 3x x x x x x′ ′∨  
1 2 3x x x′ ′  

1 2 3 1 2 3x x x x x x′ ′∨  

• Add new gate 8 (Structural Implication) 

• Cover m, connect gate and propagate updates  

 

Decision 6 Cover (7, 1 2 3x x x′ ):  i = 7, m = 1 2 3x x x′  

 

S
tr

u
ct

 

C
o

n
n

 

Node ON
l  OFF

l  

 

UnCovered
l  

S  1 1x′  
1x  − 

S  2 2x′  
2x  − 

S  3 3x′  
3x  − 

  4 1 2 3x x x⊕ ⊕  ( )1 2 3x x x ′⊕ ⊕  
1 2 3 1 2 3

1 2 3

x x x x x x

x x x

′ ′ ′ ′∨ ∨
 

  5 ( )1 2 3
x x x ′⊕ ⊕  1 2 3x x x′ ′  

1 2 3 1 2 3x x x x x x′ ′ ′ ′∨  

  6 1 2 3x x x′ ′  
1 2 3 1 2 3x x x x x x′ ′∨  0 

 * 7 1 2 3 1 2 3x x x x x x′ ′∨  
1 2 3x x x′ ′  

1 2 3x x x′  

S C 8 1 2 3x x x′ ′  
1 2 3x x x′  

1 2 3x x x′ ′  

• Two choices: node 8 and a new gate 

 Use node 8 

•  Cover m and propagate updates 

 

1 

2 4 

3 

8 7 6 5 

1 

2 4 

3 

8 7 6 5 
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 Search Space 

 

Figure 3.16: Trace and Search Tree for an infinite chain of gates that results when a poor selection of 

(node, minterm) pair is chosen for covering. 

Adding these three techniques to BESS guarantees that the first path in the search tree will lead to a 

complete network after a finite number of recursive calls even if the cost bound is infinite.  Once a 

complete network is found, the cost bound will be set to a finite value, and the remaining paths in the 

search tree will be finite because of this bound.  Therefore the search tree will be finite.   

3.8 Completeness 

In addition to the property of convergence, a proof of completeness of a search algorithm is necessary 

to guarantee that the search will produce an optimal solution.  BESS is complete if the search tree produced 

by the algorithm on a specific instance contains all optimal networks for this instance.  This will then 

guarantee that the network found by the BESS is optimal.   

(4,1) 

(5,3) 

(5,5) 

(6,1) 

(7,3) 

5→4

6→5

6→5

7→6

•  

•  

•  

(7,5) 

7→5

8→7

8→7 9→7

(8,1) 

Legend 
 

 (node, minterm) 

 

 

l → i If not connected already, 

connect node l to node i and 

adjust function 

 

 Connect to a new node 

 

 Connect to an existing node 

 

 Adjust function of already-

connected node 

(i,m) 
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Before this proof is given, some additional notation must be introduced.  The portion of the search tree 

produced by the algorithm whose root node is represented by the network R is denoted by (((( ))))T R .  

Therefore, if I is the initial network for a problem instance then ( )T I describes the entire search tree.  To 

simplify the proof, we will assume that the algorithm does not prune based on the cost of the partial 

network.  This pruning will be added in once completeness under these simpler assumptions have been 

proven.  Note that when cost-based pruning is not used, each leaf of the search tree represents an 

elementary network.   

The following lemmas and theorem provide the proof of completeness for BESS.  The first lemma 

establishes the relationship between partial and complete networks when a covering is performed.  The 

second lemma uses the first to establish a relationship between the search tree under the partial network and 

the complete network.  Finally, the theorem pulls together the proof of completeness. 

Lemma 3.1 If a partial network P is a proper subnetwork of a complete network S then for any uncovered 

minterm m in P there exists at least one possible way of covering m such that the resulting network is also a 

subnetwork of S. 

Proof:  If m is an uncovered minterm in P then m must belong to the on-set of some node iP in P. Since P is  

a  subnetwork of S, m must also belong to the on-set of the corresponding node iS in S.  In addition, the 

minterm m must be covered in iS since S is a complete network. Let lS be the node which covers m in S.  

Since P is a subnetwork of S there may or may not be a node in P that corresponds to this node lS. 

If there does not exist a node in P that corresponds to lS, then iP must have less than two nodes in its 

fan-in set.  This is the case since the edge set of P must be contained in the edge set of S and the fan-in 

restriction on the gate nodes is 2.   Since iP does not have two inputs, the uncovered minterm m can be 

covered by adding a new gate node lP to P along with the edge ( ),
P P

l i .  Based on the covering and 

functional implication rules, the function at lP will be ON OFF
P Pl i=  and OFF

Pl
m= .  Thus, 

ON ON
P Sl l≤ since OFF OFF

P Si i≤  and ON =OFF
S Sl i .  Simiarly, OFF OFF

P Sl l≤ since lS covers the 

minterm m.   The resulting network will be a subnetwork of S since the added gate node and edge 

correspond to an existing gate node and edge in S and the function at lP will be a subset of the function 

at lS.   

If there already exists a node lP in P that corresponds to lS then lP must be connectible to iP and 

ON 0
Pl

m ∧ = . This must be the case since P is a subnetwork of S.  Therefore lP can be used to cover m 

by adding the edge ( ),
P P

l i  to the network P (if it is not already there) and adding m to the off-set of lP 

(if it is not already there).  The resulting network will be a subnetwork of S since the added edge in P 

corresponds to an existing edge in S and lS covers the minterm m in iS so OFF OFF
P Sl l≤ . □ 
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Lemma 3.2 Let S be an elementary network and let P be a subnetwork of S.  Any search tree ( )T P  will 

contain the elementary network S as one of its leaf nodes. [Nakagawa 89] 

Proof:  Suppose the search tree ( )T P  does not contain the network S as one of its leaf nodes.  In this 

search tree, there must exist a network �P  that is a subnetwork of S but represents a node in the search 

tree such that the only network in �( )T P that is a subnetwork of S is �P .  Since �P is a subnetwork of S, 

two cases are possible: either �P S=  or �P  is a proper subnetwork of S.  If �P S= then this contradicts 

the assumption that S is not contained in the search tree ( )T P .  Therefore �P is a proper subnetwork of 

S.  Since S is an elementary network, this implies that �P  is not complete.  Let m be an uncovered 

minterm in �P .  Since �P is a proper subnetwork of S, then by Lemma 3.1 there is at least one way to 

cover the minterm m such that the resulting network will also be a subnetwork of S.  Therefore at least 

one network representing a child of �P  in the search tree �( )T P  must be a subnetwork of S.  This too is 

a contradiction however as �P  is the only network in �( )T P  that is a subnetwork of S. □ 

Theorem 3.1. A search tree T produced by BESS will contain all optimal networks. 

Proof:  If Lemma 3.2 is applied to the case where I is the initial network then the search tree ( )T I  will 

contain every elementary network.  By definition, every optimal network is an elementary network, this 

implies that the search tree will contain every optimal network. □ 

Theorem 3.1 proves that a version of BESS which does not use pruning is complete.  The pruning part 

of the algorithm will only remove sections of the search tree which have networks with cost greater than 

the current cost bound.  The cost bound is set when a complete network is reached; therefore the cost bound 

will never be less than the cost of the optimal networks.  This implies that the version of BESS which uses 

pruning based on the cost bound will only remove sections of the search tree which have networks with 

cost greater than the cost of the optimal networks.  Therefore an optimal network will be produced by 

BESS when pruning based on cost is used. 

3.9 Pruning 

Using BESS, it is often the case that a specific partial networks will be generated more than once at 

different points in the search.  One reason for this regeneration is the fact that both inputs to a node may 

cover the same minterm (overlapped covering).  Another reason comes from the symmetry that is present 

in the network: either symmetry of the NAND gate with respect to its inputs (local symmetry) or the 

symmetry of the output functions with respect to the primary inputs (global symmetry).  By being of aware 

of the possibilities that repetitive networks may exist and knowing how they can be created, pruning 
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techniques can be added to the algorithm to check for these situations and prune repetitive portions of the 

search tree. 

3.9.1 Pruning Based on Overlapped Covering 

The definition of covering from Section 2.6 stated that a minterm contained in the on-set of a node 

(i,j,k) is covered if the minterm appears in the off-set of either input.  This definition leaves the possibility 

that the minterm will appear in the off-set of both of the nodes j and k.  In this case both nodes will cover 

the minterm.  This overlap in covering may lead to the same network being generated in two separate steps 

of the synthesis algorithm.   

To demonstrate how this overlapped covering can result in a regeneration of a network, we provide a 

portion of a trace on the following three pages.  This trace shows the synthesis of the 4-input function 

1 2 3 4x x x x∨ .  In Decision 2, the minterm 
1 2 3 4

x x x x  from node 5 is selected for covering.  There are two 

options for covering this minterm, the existing input node 6 can be used or a new gate node can be added to 

the network to cover the minterm. 

When node 6 is used to cover, decisions 3 through 7 follow producing the complete network shown in 

Decision 7.  When a new node is used in the covering, decisions 8 through 11 follow producing the 

complete network shown in Decision 11.  A comparison of the two complete networks shows that both 

paths eventually lead to the same complete network.  Therefore we can conclude that one of these paths is 

redundant. 

This repetition results from an overlap in the covering of the minterm 
1 2 3 4

x x x x  in node 5 at Decision 2.  

If the algorithm did not allow node 6 to cover the minterm 
1 2 3 4

x x x x  in any network created from the 

second branch (Decisions 8 through 11), then the duplicate complete network would never be created, thus 

pruning unnecessary portions of this search tree. 
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Algorithm Trace: Repetitive Network Example based on Overlapped Covering 

INITIALIZATION 

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 4x x x x∨  

 

 

 

 

Decision 1 Cover (5, 12):  i = 5, m = 12 

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 4x x x x∨  

• Add new gate 6 (Structural Implication) 

• Cover m, connect gate and propagate updates 

 

 

 
Decision 2 Cover (5, 15):  i = 5, m = 15 

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 1 2 4

3 4

x x x x x x

x x

∨ ∨
 

6 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  1 2 3 4x x x x′ ′  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 6 and a new gate 

• Cover m with node 6 and propagate updates 

 
Decision 3 Cover (6, 4):  i = 6, m = 4 

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 3 4 2 3 4

1 2 3 4 1 2 3 4

x x x x x x

x x x x x x x x

′ ′∨ ∨

′ ′∨
 

6 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 4 1 2 3 4x x x x x x x x′ ′ ∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 1 and a new gate 

•  Connect node 1 and propagate updates 

 

Decision 4 Cover (6, 1 2 3 4x x x x′ ′ ′ ):  i = 6, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 3 4 2 3 4

1 2 3 4 1 2 3 4

x x x x x x

x x x x x x x x

′ ′∨ ∨

′ ′∨
 

6 1 2 3 2 4x x x x x′ ′ ′ ′ ′∨ ∨  
1 2 3 4 1 2 3 4x x x x x x x x′ ′ ∨  

1 2 3 1 2 4x x x x x x′ ′ ′ ′∨  

• Two choices: node 2 and a new gate 

• Connect node 2 and propagate updates 
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Decision 5 Cover (5, 1 2 3 4x x x x′ ′ ):  i = 5, m = 1 2 3 4x x x x′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  1 3 4 2 3 4x x x x x x′ ′∨  

6 1 2x x′ ′∨  
1 2x x  0 

• Add new gate 7 (Structural Implication) 

• Cover m, connect gate and propagate updates 

 

Decision 6 Cover (7, 1 2 3 4x x x x′ ′ ′ ):  i = 7, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  0 

6 1 2x x′ ′∨  
1 2x x  0 

7 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 3 4 2 3 4x x x x x x′ ′∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 3 and a new gate 

• Connect node 3 and propagate updates 

 

Decision 7 Cover (7, 1 2 3 4x x x x′ ′ ′ ):  i = 7, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  0 

6 1 2x x′ ′∨  
1 2x x  0 

7 3 1 4 2 4x x x x x′ ′ ′ ′ ′∨ ∨  
1 3 4 2 3 4x x x x x x′ ′∨  

1 3 4 2 3 4x x x x x x′ ′ ′ ′∨  

• Two choices: node 4 and a new gate 

• Connect node 4 and propagate updates 

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  0 

6 1 2x x′ ′∨  
1 2x x  0 

7 3 4x x′ ′∨  
3 4x x  0 

 

Decision 2 Cover (5, 1 2 3 4x x x x ):  i = 5, m = 1 2 3 4x x x x  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 1 2 4

3 4

x x x x x x

x x

∨ ∨
 

6 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 4x x x x′ ′  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 6 and a new gate 

• Connect new gate 7, cover m, and propagate updates 
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Decision 8 Cover (6, 1 2 3 4x x x x′ ′ ′ ):  i = 6, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 3 4 2 3 4

1 2 3 4 1 2 3 4

x x x x x x

x x x x x x x x

′ ′∨ ∨

′ ′∨
 

6 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 4x x x x′ ′  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

7 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  1 2 3 4x x x x  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 1 and a new gate 

• Connect 1 and propagate updates 

 

Decision 9 Cover (6, 1 2 3 4x x x x′ ′ ′ ):  i = 6, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  
1 2 3 4 1 2 3 4

1 2 3 4

x x x x x x x x

x x x x

′ ′∨ ∨

′

 

6 
1 2 3 2 4x x x x x′ ′ ′ ′ ′∨ ∨  

1 2 3 4x x x x′ ′  
1 2 3 1 2 4x x x x x x′ ′ ′ ′∨  

7 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  1 3 4 2 3 4x x x x x x′ ∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 2 and a new gate 

• Connect 2 and propagate updates 

 

Decision 10 Cover (7, 1 2 3 4x x x x′ ′ ′ ):  i = 7, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  0 

6 1 2x x′ ′∨  
1 2x x  0 

7 ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  3 4x x  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  

• Two choices: node 3 and a new gate 

• Connect 3 and propagate updates 

 

Decision 11 Cover (7, 1 2 3 4x x x x′ ′ ′ ):  i = 7, m = 1 2 3 4x x x x′ ′ ′  

 

Node ON
l  OFF

l  UnCovered
l  

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  0 

6 1 2x x′ ′∨  
1 2x x  0 

7 3 1 4 2 4x x x x x′ ′ ′ ′ ′∨ ∨  
3 4x x  

1 2 3 4 1 2 3 4

1 2 3 4

x x x x x x x x

x x x x

′ ′ ′ ′ ′∨ ∨

′ ′ ∨
 

• Two choices: node 4 and a new gate 

• Connect 4 and propagate updates 

5 1 2 3 4x x x x∨  ( )( )1 2 3 4x x x x′ ′ ′ ′∨ ∨  0 

6 1 2x x′ ′∨  
1 2x x  0 

7 3 4x x′ ′∨  
3 4x x  0 
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 Search Tree 

 
 

Figure 3.17: Trace and Search Tree for an overlapped covering example 

In general, the only time this type of pruning can be done is after a fan-in node has been used to cover a 

minterm.  If a node l in the connectible set is a fan-in of the node (i, j, k) and l is used to cover the minterm 

m then for the remaining networks created by the alternate coverings of m, m can be added to the on-set of 

the node l.  The result will be that the every network contained in the portion of the search space 

represented by each of these new networks will not have the node l covering m.  This in turn prevents a 

network from the space where l covers m to be repeated.  

An updated version of the SynthesizeNetwork procedure is given in Figure 3.18 to include this pruning 

technique. Once a node l is used to cover the minterm m, if l is an input of (i, j, k), the minterm m can be 

added to the on-set of l ensuring that l will not be able cover m for the rest of the partial networks created 

from this call.   
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Figure 3.18: SynthesizeNetwork Procedure –Version 6 - Pruning based on Overlapped Covering 

In order for this pruning technique to be useful, it must maintain the completeness of BESS.  The search 

tree produced by the algorithm must still contain all optimal solutions.   

Lemma 3.3  Given a partial network P, let m be an uncovered minterm of some gate (i, j, k) in P where j is 

an input of the node that can cover the minterm m.  Let P1 and P0 be the partial networks where P1 has m in 

the on-set of j and P0 has m in the off-set of j.  All elementary networks in the search tree ( )T P  are in 

( ) ( )1 0
T P T P∪ . [Nakagawa 89] 

Proof:  For every elementary network S in ( )T P , P is a subnetwork of S.  Therefore at least one of P1 or 

P0 is a subnetwork of S.  By applying Lemma 3.2 to the cases when P = P1 and P = P0 every elementary 

network contained in ( )T P  will also be contained in either ( )1
T P or ( )0

T P . □ 

Theorem 3.2. A version of BESS using the pruning technique based on overlapped covering will generate 

every optimal solution. [Nakagawa 89] 

Proof:  Let P be a partial network in the search tree of the algorithm and let R1, …, Rk be the children of P 

in the search tree.  These networks are the networks created by the alternate ways of covering an 

uncovered minterm m from P.  If the pruning technique was not used to in this step, then Lemma 3.2 

states thar every optimal solution contained in ( )T P  is contained in one of ( ) ( )1
, ,

k
T R T R… .   

If the pruning technique was used in this step then R1 = P0 from Lemma 3.3 and P1 from Lemma 3.3 

will be a subnetwork of each of the networks R2, … , Rk and this lemma implies that every optimal 

SynthesizeNetwork v.6 (Network) 

 if
gate nodes

UnCovered 0i

i∈

 
= 

 
∧  

  if (number gates in Network is smallest seen so far) 

   Store Network as current minimum 

   UpperBound ← CostNetwork 

else 

  m, (i,j,k) ← SelectMintermForCovering 

  CovNodes ← FindAllCoveringNodes(m, (i,j,k)) 

  for (all l ∈ CovNodes) 

   NewNetwork ← PerformCovering((i,j,k), l, m) 

   PropagateFunctionalImplications((i,j,k)) 

   SimpleGlobalFtnImpl(NewNetwork) 

   GeneralGlobalFtnImpl(NewNetwork) 

   do 
    UpdateConnectibleSet() 

    AddNewGate (NewNetwork) 

   while ( nodes were added to NewNetwork) 

   if (CostNewNetwork < UpperBound) 
    SynthesizeNetwork(NewNetwork) 

   if {{{{ }}}}(((( )))),l j k∉∉∉∉  

    ONl := ONl ∨∨∨∨ m 
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network is either in R1 or P1.  By using Lemma 3.1 at least one of the search trees ( ) ( )2
, ,

k
T R T R…  

will contain each optimal network described by P1.  Therefore no optimal networks in the search tree 

( )T P  will be lost.   □ 

3.9.2  Pruning based on Local Symmetry 

The NAND function is symmetric in its inputs implying that the NAND function on the inputs x and y (i.e.  

( , )f x y x y′ ′= ∨ ) produces the same result no matter the order of x and y, ( , ) ( , )f x y f y x= .  Therefore the 

order in which two nodes are connected to a NAND gate does not matter in terms of the resulting function.  

The two nodes (i, j, k) and (i, k, j) in Figure 3.19 will have the same Boolean function.   

 

Figure 3.19: Symmetry of the NAND gate 

Duplicate networks based on this type of symmetry are generated when two nodes l1 and l2 can be used 

to cover a single minterm in a gate node (i, j, k).  When the minterm m is selected for covering, two 

networks are created: P1 is the network which adds the edge (l1, i) to cover m and P2 is the network which 

adds the edge (l2, i) to cover m.  In subsequent calls on these networks a minterm from node (i, j, k) may 

again be selected for covering and the opposite node used to cover this minterm. (i.e. the edge (l2, i) is 

added in P1 and the edge (l1, i) is added in P2) Thus producing identical networks except for the order in 

which the fan-in nodes appear in the node (i ,j, k).  The goal of symmetric pruning is to prohibit the second 

duplicate partial network from being produced while not eliminating any elementary networks from the 

search space. 

The trace that follows illustrates this type of repetition and suggests a potential solution.  In this trace, 

the two-input AND function is synthesized.  The entire search of the algorithm is shown in the trace.  

At decision 2, the minterm 
1 2

x x′ ′  from node 4 is selected for covering.  There are three possible ways to 

cover this minterm which implies that three partial networks are created. Each of these coverings is shown 

in the trace.  The first, labeled Decision 2, uses node 1 to cover the minterm.  The second, labeled Decision 

2b, uses node 2 to cover the minterm.  The third, labeled Decision 2c, uses a new gate node, node 5, to 

cover the minterm.  When the SynthesizeNetwork procedure is called from each of these networks, a 

minterm from node 4 is selected for covering.  These covering steps are given in Decisions 3, 4, and 5.   

Due to the symmetry of the NAND gate, duplicate networks will result from this covering at these decision 

points.  The networks created from Decisions 3 and 4 are the same while the networks that result from 

Decisions 3b and 5 are the same.  

j 
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i 

k 

j 
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Algorithm Trace: Repetitive Network Example based on Local Symmetry 

INITIALIZATION 

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  

1 2
x x  

 

Decision 1 Cover (3, 1 2x x ):  i = 3, m = 1 2x x  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  

1 2
x x  

• Add new gate: node 4 (Structural Implication) 

• Cover m, connect gate and propagate updates  

 

Decision 2 Cover (4, 1 2x x′ ′ ):  i = 4, m = 1 2x x′ ′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2
x x′ ′∨  

• Three choices: nodes 1, 2, and a new gate. 

• Connect node 1 and propagate updates 

 

Decision 3 Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2
x x′  

• Two choices: node 2 and a new gate 

• Connect node 2 and propagate updates 

 

Decision 3(b) Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2
x x′  

• Two choices: node 2 and a new gate 

• Connect a new gate, node 5, cover m, and propagate 

updates  

 

Decision 2(b) Cover (4, 1 2x x′ ′ ):  i = 4, m = 1 2x x′ ′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2
x x′ ′∨  

• Three choices: nodes 1, 2, and a new gate 

• Connect node 2 and propagate updates 
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3 4 
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2 
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Decision 4 Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2x x′  

• Two choices: node1 and a new gate 

• Connect node 1 and propagate updates 

 

Decision 4(b) Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2x x′  

• Two choices: node1 and a new gate 

• Connect a new gate, node 5, cover m, and propagate 

updates 

 

Decision 2(c) Cover (4, 1 2x x′ ′ ):  i = 4, m = 1 2x x′ ′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2
x x′ ′∨  

• Three choices: nodes 1, 2, and a new gate 

• Connect a new gate, node 5, cover m, and propagate 

updates 

 

Decision 5 Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2 1 2
x x x x′ ′∨  

5 1 2
x x  

1 2
x x′ ′  

1 2
x x  

• Three choices: nodes 2, 5, and a new gate 

• Connect node 2 and propagate updates 

 

Decision 5(b) Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2 1 2
x x x x′ ′∨  

5 1 2
x x  

1 2
x x′ ′  

1 2
x x  

• Three choices: nodes 2, 5, and a new gate 

• Connect node 5, cover m, and propagate update 

 

1 

2 

3 4 

1 

2 

3 

5 

4 

1 

2 

3 

5 

4 

1 

2 

3 

5 

4 

1 

2 

3 

5 

4 



 

 70 

Decision 5(c) Cover (4, 1 2x x′ ):  i = 4, m = 1 2x x′  

 

Node l ON
l  OFF

l  UnCovered
l  

3 1 2
x x  

1 2
x x′ ′∨  0 

4 1 2
x x′ ′∨  

1 2
x x  

1 2 1 2
x x x x′ ′∨  

5 1 2
x x  

1 2
x x′ ′  

1 2
x x  

• Three choices here: nodes 1, 5, and a new gate 

• Connect a new gate, node 6, cover m, and propagate 

updates 

 

 Search Space 

 

 
Figure 3.20: Trace and Search Tree for a Repetitive Network Example based on Local Symmetry 

The algorithm will simply be repeating the search of an already explored subspace if the 

SynthesizeNetwork procedure is called on both networks in these pairs of equivalent partial networks.  

Instead, the algorithm should determine that the space represented by the partial network has already been 

searched and then prune the partial network based on that information. 

To prune these duplicate partial networks, a non-connectible set can be added to the node structure.  If a 

node l is in the non-connectible set of a node i then l cannot be used to cover anything in i.  l should never 

appear in the connectible set of i.  This non-connectible set can then be used to prevent partial networks 

from being repeated.  If at some step in the algorithm nodes l1 and l2 can be used to cover a minterm in a 

gate node (i, j, k), then as before, two partial networks are created P1 with the edge (l1, i) added and P2 with 

the edge (l2, i) added.  However, P2 will also have l1 added to the non-connectible set of i. In subsequent 

calls on these partial networks when a minterm from node i is again selected for covering, the edge (l2, i) 

can be added in P1, but the edge (l1, i) cannot be added in P2.  Therefore the partial network that has l1 and 

l2 as the two inputs of node i will only occur once. 

In the above trace, the non-connectible set of node 4 in decision 2(b) is the set {1}.  Therefore, when the 

minterm 1 2x x′  from 4 is selected for covering in decision 4, the node x1 cannot be used as one of the options 

(3,3) 
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for performing this covering.  The result would be that only the network from decision 4(b) will be 

generated.  Similarly, the non-connectible set of node 4 in decision 2(c) would be the set {1,2}, so the 

network at decision 5 would not be generated.The SynthesizeNetwork procedure is changed to include this 

symmetric pruning.  Once a node l is used to cover the minterm m, l is added to the non-connectible set of i.  

Therefore l will appear in the non-connectible set for the rest of the partial networks created in this step.   

 

Figure 3.21: SynthesizeNetwork Procedure – Version 7 - with Local Symmetry Pruning 

In addition to the change in the SynthesizeNetwork procedure, the UpdateConnectibleSets procedure 

must also be changed.  This procedure must ensure that any node contained in the connectible set of a node 

does not also appears in the node’s non-connectible set. 

Once again, this pruning technique can only be used in the synthesis algorithm if it maintains the 

completeness of BESS.  This implies that the search tree of the algorithm must still contain all optimal 

solutions.   

Lemma 3.4 Let P be a partial network containing two nodes i and l.  Let P1 and P0 be two supernetworks of 

P such that ( )1
T P  and ( )0

T P  form a partition of ( )T P .  ( )0
T P is the subset of the networks in ( )T P  

that do not contain the edge ( ),l i .  ( )1
T P is the subset of the networks in ( )T P  that contain the edge 

( ),l i .  [Nakagawa 89] 

SynthesizeNetwork v.7 (Network) 

 if
gate nodes

UnCovered 0i

i∈

 
= 

 
∧  

  if (number gates in Network is smallest seen so far) 

   Store Network as current minimum 

   UpperBound ← CostNetwork 

else 

  m, (i,j,k) ← SelectMintermForCovering 

  CovNodes ← FindAllCoveringNodes(m, (i,j,k)) 

  for (all l ∈ CovNodes) 

   NewNetwork ← PerformCovering((i,j,k), l, m) 

   PropagateFunctionalImplications((i,j,k)) 

   SimpleGlobalFtnImpl(NewNetwork) 

   GeneralGlobalFtnImpl(NewNetwork) 

   do 
    UpdateConnectibleSet() 

    AddNewGate (NewNetwork) 

   while ( nodes were added to NewNetwork) 

   if (CostNewNetwork < UpperBound) 
    SynthesizeNetwork(NewNetwork) 

   if { }( ),l j k∉  

    ONl := ONl ∨ m 

   else if (((( ))))l
m OFF∈∈∈∈  

    Add l to NonConnectiblei 
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Proof: For every optimal solution S in ( )T P , P is a subnetwork of S.  Therefore either the network P1 

which contains the edge ( ),l i  is subnetwork of S or the network P0 which does not contain the edge 

( ),l i  is a subnetwork of S.  By applying Lemma 3.2 to the cases when P = P1 and P = P0 we have every 

optimal solution contained in ( )T P  contained in either ( )0
T P  or ( )1

T P . □ 

Theorem 3.3. A version of BESS using the pruning technique based on local symmetry will generate every 

optimal solution. [Nakagawa 89] 

Proof:  Let P be a partial network in the search tree of the algorithm and let R1, …, Rk be the children of P 

in the search tree.  These networks are the networks created by the alternate ways of covering an 

uncovered minterm m from P.  If the pruning technique was not used to in this step, then Lemma 3.2 or 

Theorem 3.2 states every optimal solution contained in ( )T P  is contained in one of ( ) ( )1
, ,

k
T R T R… .   

If the pruning technique was used in this step then R1 = P1 from Lemma 3.4 and P0 from Lemma 3.4 

will be a subnetwork of each of the networks R2, … , Rk.  Lemma 3.4 implies that every optimal 

network is either in R1 or P0.  By using Lemma 3.1 at least one of the search trees ( ) ( )2
, ,

k
T R T R…  

will contain each optimal network in P0.  Therefore no optimal networks in the search tree ( )T P  will 

be lost.   □  

3.9.3 Pruning based on Global Symmetry 

While there are many types of symmetry, we will only consider one other type that exists in some 

synthesis instances.  In total symmetry, the function(s) remains invariant under all possible permutations of 

the variables. Such symmetry can be found within the three networks given in Figure 3.22.  All three 

networks are implementations of the function
1 2 3

x x x′ ′ ′∨ ∨ .  In addition, each network can be retrieved from 

the others by simply permuting the input nodes {1, 2, 3}.  

 

Figure 3.22: Duplicate Networks from Global Symmetry 

This type of duplicate network exists for every totally symmetric function.   

Lemma 3.5 Let S and �S be elementary networks such that �S is simply S with the set of input nodes 

( )1, , n…  permuted to ( )1
, ,

n
h h… .  For any node i in S, if 

i
F  is the global function at i and �

i
F  is the global 

function at the corresponding node i in �S , then � ( ) ( )
11

, , , ,
ni n i h h

F x x F x x=… … . 
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Proof: (by induction) 

The only nodes at level n = 0 are the input nodes.  An input node i has global functions 
i i

F x=  

and �
ii hF x= .  Therefore � ( ) ( )

11
, , , ,

ni n i h h
F x x F x x=… … . 

Assume for all nodes i with level less than n, � ( ) ( )
11

, , , ,
ni n i h h

F x x F x x=… … . 

A gate node (i, j, k) in S at level k with two inputs j and k will have a global function ( )i j kF F F
′

= ∧  

while the corresponding node in �S will have a global function � � �( )i j k
F F F

′
= ∧ .  The nodes j and k will 

have level less than n so by the induction assumption, 

� ( ) ( )
11

, , , ,
nj n j h h

F x x F x x=… … and� ( ) ( )
11

, , , ,
nk n k h h

F x x F x x=… … .  

Therefore � ( ) ( ) ( )( ) ( )
1 1 11

, , , , , , , ,
n n ni n j h h k h h i h h

F x x F x x F x x F x x
′

= ∧ =… … … … . 

A gate node (i, j, 0) in S at level n with one input j will have a global function 
i j

F F ′=  while the 

corresponding node in �S  will have a global function � �
i j

F F
′

= .  The node j will have level less than n so 

by the induction assumption, � ( ) ( )
11

, , , ,
nj n j h h

F x x F x x=… … .  

Therefore � ( ) ( )( ) ( )
1 11

, , , , , ,
n ni n j h h g h h

F x x F x x F x x
′

= =… … … . □ 

Theorem 3.4. For any function f which is symmetric in the set of variables { }1, , ,i i jx x x+ …   if S is a 

network which implements the function f then any permutation of the set of input nodes representing the 

variables { }1, , ,i i jx x x+ …  in S will also be an implementation of the function f.   

Proof: Let ( )1
, ,

n
x x…  be the set of variables on which the function f is defined.  Let ( )1

, ,
n

z z…  be a 

permutation of the variables such that 
i i

x z→  and ( ) ( )1 1
, , , ,

n n
f x x f z z=… …  (i.e. only symmetric 

variables are permuted).  Assume the input nodes in S are permuted in the same way to produce the 

network �S .  By Lemma 3.5, the global functions at the output of S and �S  will be ( )1
, ,

n
f x x…  and 

( )1
, ,

n
f z z…  which are equal. □ 

The networks S and �S  are called symmetric networks if �S is simply the network S with some subset of 

the input nodes permuted and both S and �S produce the same output function.   

Once these symmetric networks are known to exist and the procedure is known for how one can be 

generated one from another, the search tree produced by BESS can be pruned to prevent all symmetric 

elementary networks from being generated.  As long as one is generated all the others can be obtained by 
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making permutations.  All symmetric partial networks are removed from the search to prevent all 

symmetric elementary networks from being generated. The description of how this pruning can be done is 

best explained with an example.  A partial trace of the algorithm on the function 
1 2 3

f x x x′ ′ ′= ∨ ∨  is given 

in Figure 3.23.  

 

Figure 3.23: Trace of 
1 2 3

f x x x′ ′ ′= ∨ ∨  for Output Symmetry Pruning 

The algorithm is first called on network 1 in the top row.  In this first call to the SynthesizeNetwork 

procedure, the minterm 
1 2 3

x x x′ ′ ′  from node 4 is chosen for covering.  The possible covering options are 

found to be {1, 2, 3, new gate}.  The output function 
1 2 3

f x x x′ ′ ′= ∨ ∨  is symmetric in the variables x1, x2, 

and x3.  Theorem 3.4 implies that every elementary network contained in the set represented by the partial 

network 3 is symmetric to an elementary network represented by the partial network in 2 (and likewise for 

partial networks 4 and 2).  Therefore there is no reason to continue to explore the solution space 

represented by the partial networks 3 and 4.  These can be pruned immediately based on the symmetry of 

the output function. 
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In order for the algorithm to avoid symmetric partial networks of this type, a symmetric check in the 

FindConnectibleSet procedure can be added.  This check should remove an input node from the connectible 

set if two conditions are satisfied:   

(1) There must exist a second input node in the connectible set such that the output function of the 

circuit is symmetric in the primary inputs represented by these nodes. 

(2) Both of these input nodes must have empty fan-out sets.  Neither of these input nodes can be used 

in the partial network currently. 

 The second condition stipulates that this type of pruning can only be done the first time one of the 

symmetric input nodes is assigned as a fan-in to any node in the network.  If the output function is 

symmetric with respect to the primary inputs x1, x2, and x3 and the input node 1 has already been used as a 

fan-in of some node in the network, then a node that has the connectible set {1,2,3} must use nodes 1 and 2 

for covering but can skip node 3.  The symmetric pruning does not work for the pair of input nodes with 

one already used in the network.  The elementary networks contained in the set represented by each of the 

partial networks will no longer be symmetric.   

This idea of symmetric pruning can also be extended to networks with multiple output functions.  In 

this case each of the output functions must be symmetric in the same set of variables in order for the 

pruning to work.  The process remains the same for the common set of symmetric variables. 

3.10 Summary 

In this chapter we provided an in-depth description of the NAND2 synthesis algorithm, BESS.  After an 

initial description of the core procedure, we addressed eight issues that arose from the simple algorithm in 

order to produce an optimal NAND2 network as efficiently as possible.   

We first showed that the optimality of the network is guaranteed by using a branch-and-bound 

backtrack search method which searches the set of all possible network implementations.  Next we 

discussed heuristic methods that can be used to aid in making the two decisions required during the 

execution of the algorithm.  The choices made at these decisions effect the efficiency of the search.  

Implications of the decisions made by the algorithm were also discussed.  Both structural and functional 

implications may result from a completed covering, and both can help to make decisions in the next set of 

covering steps.  Conflicts may also result when a choice is made by the algorithm.  We discussed how 

conflicts can occur and how BESS handles these situations.   

In this chapter we also provided an analysis of BESS.  First we analyzed the search space of the 

algorithm.  This space is quite unique compared to other search algorithms in that it is constantly changing 

as synthesis proceeds. Two representations of the search space were given.    Next, a proof of convergence 

was provided which guarantees that the search will terminate.  A proof of completeness was provided to 
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guarantee that BESS will produce the optimal network with respect to the specified cost function (the 

number of gates in the network).   

Finally, several pruning techniques were discussed.  These techniques are able to prune significant 

portions of the search space by detecting and removing repeated networks.  The use of these pruning 

techniques reduces the size of the search space and improves the efficiency of the algorithm. 
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Chapter 4  

Optimal Synthesis Results with NAND2 Gates 

In this chapter, results of the branch-and-bound exact synthesis algorithm, BESS, are presented. In 

Section 4.1 we will describe the various sets of functions that will be used to evaluate the algorithm. In 

Section 4.2 we will provide experimental justifications for the algorithmic improvements described in 

Chapter 3.  In Section 4.3, results of BESS on various function classes will be presented.  We will discuss 

these results both in terms of the complexity of the algorithm and in terms of the complexity of each 

function class.  Finally, in Section 4.4 we will return to the search tree analysis from Chapter 3.  Another 

estimate of the size of the search tree will be given based on the experimental data.  Here, we will discuss 

the bounds on the run time and present experimental results to help demonstrate the complexity. 

4.1 Experimental Data 

The evaluation of BESS requires a variety of Boolean functions on which the algorithm can perform 

synthesis.  In this section, we describe three categories of functions that will be used to execute this 

evaluation. 

4.1.1 Representative Function Sets 

An evaluation of the improvements added to BESS such as the decision heuristics, pruning techniques, 

and implications cannot be considered complete unless a wide variety of network structures and functional 

combinations are seen.  One way to ensure this is to evaluate the algorithm on the set of all functions with n 

or fewer variables.  This set will allow us to evaluate BESS on every possible function type.  There are 22
n

 

functions with n or fewer variables, however.  This makes evaluating the algorithm on the entire set of 

functions with more than three variables difficult. Therefore we will select representative functions from 

the set of all n-input functions which will provide all possible structures found in the entire set of n-input 

Boolean functions but will be more manageable in size for the values of n we plan to consider.   The 

Boolean function equivalence classes P and NPN  [Harrison 63][Muroga 79][Slepian 53] are both good 

candidates for generating these representative functions. 

Two Boolean functions are P-equivalent if one function can be transformed into the other by permuting 

the input variables.  If two functions f and g are P-equivalent, then a NAND gate network can be created for 

g from the network producing f  by performing the same permutation on the input variables as is required to 
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transform the function g to f.  This implies that all functions contained in the same P-equivalence class will 

have the same NAND network structure.  Therefore the set of n-input functions can be reduced down to only 

those which are not P-equivalent and the result will be a set of functions which will represent all structures 

possible for the entire set of n-input functions.  Figure 4.4 compares the number of P-equivalence classes 

on n inputs to the number of Boolean functions dependent on all n variables for specific values of n.  This 

table shows that the set of functions provided by the representatives from the P-equivalence classes greatly 

reduces the number of functions from the set of all n-input functions.  However, the size of these sets is still 

be prohibitively large once n = 5.  For this reason the NPN-equivalence is also considered.   

Two Boolean functions are NPN-equivalent if one function can be transformed into the other by one or 

more of the following transformations: permutation of the input variables, negation of the input variables, 

negation of the output.  Based on these transformations, if a NAND gate network is given for a Boolean 

function f  then a NAND gate network can be created for any function NPN-equivalent to the function f  by 

permuting the variables, and/or adding or removing NAND gate inverters at the inputs and/or output of the 

network. 

The functions 
1 2 3

f x x x= ∧ ∧  and 
1 2 3

g x x x= ∨ ∨  are NPN-equivalent.  The function g can be 

obtained from the function f by negating each of the variables and the output: 

 ( )

( )

1 2 3

1 2 3

1 2 3
, ,

g x x x

x x x

f x x x

= ∨ ∨

′′ ′ ′= ∧ ∧

′ ′ ′ ′=

 

A NAND2 gate implementation of g can be created from a NAND2 gate implementation of f based on 

these same transformations.  The network given in Figure 4.1 is a minimum NAND2 gate implementation of 

f. 

 

Figure 4.1: Minimum cost NAND2 network for
1 2 3

f x x x= ∧ ∧= ∧ ∧= ∧ ∧= ∧ ∧  

A NAND2 gate implementation for g can be created from the network for f by removing the inverter 

(single input NAND2 gate) from the output and adding an inverter at each of the inputs.  The resulting 

network is shown in Figure 4.2. 

1 

2 3 4 

3 

5 6 
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Figure 4.2: Minimum cost NAND2 network for
1 2 3

g x x x= ∨ ∨= ∨ ∨= ∨ ∨= ∨ ∨  

Unlike the P-equivalence class, functions within the same NPN-equivalence class may have different 

minimum networks with different structures and the structure obtained by transforming a NAND2 

implementation for the one function in the class from a representative function may not always produce an 

optimal solution.  For example, the functions 
1 2 1 3

f x x x x′ ′= ∨ and
1 2 1 3

g x x x x= ∨  are NPN-equivalent.  

However, the transformation of the minimal network for f to a network for g does not provide an optimal 

network for g.  Figure 4.3 provides the optimal networks for functions f and g, networks (a) and (c) 

respectively.  Network (b) is obtained by transforming the optimal network for f into a network for g.  A 

comparison of networks (b) and (c) shows that the network which results from transformations within the 

NPN-equivalence class does not provide an optimal network for the NPN-equivalent function.  A closer 

comparison of the networks (a) and (c) reveals that the basic structure inherent in the optimal networks for f 

and g are different.   

 

Figure 4.3: Networks for NPN-Equivalent Functions
1 2 1 3

f x x x x′ ′′ ′′ ′′ ′= ∨= ∨= ∨= ∨ and
1 2 1 3

g x x x x= ∨= ∨= ∨= ∨  

Some experiments on functions from the NPN-equivalence classes for n = 2, 3, and 4 show that out of 

64,822 functions, 72% had a minimum network smaller than the network obtained by NPN 

transformations.  Of these non-minimum networks, the largest difference between the derived network and 

the actual optimal implementation was 7 gates while on average the difference was 1.9 gates. 

(a) Optimal Network for 
1 2 1 3

f x x x x′ ′= ∨  (b) Network for
1 2 1 3

g x x x x= ∨ obtained by NPN 

transformations from
1 2 1 3

f x x x x′ ′= ∨  

(c) Optimal Network for
1 2 1 3

g x x x x= ∨   
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These experiments show that the NPN-equivalence classes cannot be used as a replacement for the 

entire set of functions as the P-equivalence classes can.  Using the NPN-equivalence classes in this way 

would not allow all possible structures to be seen.  However, the NPN-equivalence class can be used as a 

way to select a “good” representative subset for the entire set of functions.  If a representative set for all n-

input functions on which to run experiments is desired but the size of the set must be significantly smaller 

than what can be provided using the P-equivalence classes, then the NPN-equivalence classes are well 

suited.  With this set, a good variety of the possible structures from the entire set of n-input functions will 

be seen but the size of the set will be drastically smaller than the set generated by the P-equivalence class. 

The final column in Figure 4.4 gives the number of NPN-equivalence classes on the set of functions 

with n inputs for specific values of n.  The size of the NPN sets created by selecting one representative 

function from each equivalence class for a given value of n will give a group of functions more manageable 

in size for performing experiments on larger values of n. 

n 

Number of Boolean 

functions with n or 

fewer variables 

Number of Boolean 

functions which depend 

on exactly n variables 

Number of P-equivalence 

classes on functions with 

exactly n variables 

Number  of NPN-equivalence 

classes on functions with 

exactly n variables 

0 2 2 2 1 

1 4 2 2 1 

2 16 10 8 2 

3 256 218 68 10 

4 65,536 64,594 3,904 208 

5 4,294,967,296 4,294,642,034 37,329,264 615,904 

6 1.8 × 10
19

 1.8 × 10
19

 2.5 × 10
16

  2.0 × 10
14

 

Figure 4.4:  Size of Representative Sets 

Two function sets have emerged from this discussion.  The P representative set is composed of one 

function from each P-equivalence class for an input n.  The NPN representative set is created similarly 

from the NPN-equivalence classes.  The functions included in these representative sets are given in the 

Appendix.   

4.1.2 Function Classes 

The second group of functions used to evaluate BESS is composed of common Boolean functions.  

Each class will contain Boolean functions which evaluate a logic operation on an increasing number of 

inputs.  The eleven function classes that will be used are: AND, NAND, OR, NOR, XOR, XNOR, MAJORITY, 

MULTIPLEXER, ADDER, DECODER, and THRESHOLD.  The individual functions that make up each function 

class are given in the Appendix. 

These function classes are used for two reasons.  First the classes will be used to provide insight into the 

structures of minimum circuits.  A structural analysis of these function classes will be performed based on 

the optimal networks provided by BESS.  A general formula for the optimal cost of a function in a class can 

be extrapolated using these results.  In some cases, this formula is proven to give the optimal cost as a 
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function of the number of inputs n.  This analysis will allow us to then use the structure of these classes to 

relate and classify these and other classes of functions. 

The results of BESS on these classes will also be used in the evaluation of the search performed by the 

algorithm.  Since all of the functions in a given function class will have the same basic structure they can be 

used to estimate the size of the search space as a function of the number of inputs n. 

4.1.3 Benchmark Functions 

The final group of functions that will be used to evaluate BESS is a selection of industry benchmarks.  

The functions are selected from the set of MCNC benchmarks [Yang 91].  This group of functions will 

allow us to evaluate BESS on a larger variety of circuits.  The goal will be to determine what benchmark 

functions the algorithm can complete and what structures these optimal networks will contain.  There are a 

variety of functions contained in this suite so BESS will be evaluated on functions with both large and 

small numbers of variables, and also on multi-output functions.  

4.1.4 Experiments 

In the experiments that follow, the base algorithm will be the final version of BESS given in Chapter 3 

including all pruning techniques, structural implications, and heuristics described there.  Descriptions of 

alternate versions of the algorithm will be based on this version. 

4.2 Specifics of the Algorithm 

4.2.1 Decision heuristics 

In Section 3.3 several heuristics for the two decisions that must be made during the course of the 

algorithm were described.  This section provides experimental justification for the combination of 

heuristics which produce the smallest search tree.  We use the representative sets outlined in Section 4.1.1 

to compare the algorithm using different combinations of heuristic methods.   

4.2.1.1 Minterm Selection Heuristics 

In Section 3.3.1 we gave four options for a minterm selection heuristic.  A description of why each of 

these methods would help to reduce the size of the search tree produced by the algorithm was also given.  

The heuristic options were: 
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SmallestCOV:  From the set of uncovered minterms, select the minterm that has the fewest covering 

options.   

DifficultCOV: From the set of uncovered minterms, select the minterm which has the most difficult 

covering rank:  The four methods for performing a covering can be ranked according 

to their difficulty.  From easiest to the most difficult:  

1. Gate node that already exists as an input 

2. Primary input node 

3. Existing gate node  

4. New gate node 

SmallestFI:  From the list of uncovered nodes, select the node that has the smallest fan-in. (A 

node may have 0,1,or 2 nodes in its fan-in).   From the set of uncovered minterms for 

this node, choose an arbitrary minterm to cover. 

 SmallestCONN: From the list of uncovered nodes, select the node that has the smallest connectible 

set.  From the set of uncovered minterms for this node, choose an arbitrary minterm 

to cover. 

By combining these heuristics and adding the option of randomly selecting a minterm, the following 

minterm ordering schemes are created: 

A. Randomly select a minterm for covering from all uncovered minterms (Random) 

B. Select an uncovered minterm with the fewest covering options (SmallestCOV) 

C. Select an uncovered minterm from a node with the smallest fan-in set (SmallestFI) 

D. Select an uncovered minterm from a node with the smallest connectible set (SmallestCONN) 

E. First select a node with the smallest fan-in set,  (SmallestFI) 

then select an uncovered minterm from this node with the fewest covering options (SmallestCOV) 

F. First select a node with the smallest connectible set, (SmallestCONN) 

then select an uncovered minterm from this node with the fewest covering options (SmallestCOV) 

G. First find the set of nodes with the smallest fan-in, (SmallestFI) 

then from this set, select a node with the smallest connectible set (SmallestCONN) 

finally select an uncovered minterm from this node with the fewest covering options.(SmallestCOV) 

H. Select an uncovered minterm with the most difficult covering label (DifficultCOV) 

I. First find the set of minterms with the most difficult covering label (DifficultCOV) 

from this set, select the minterm with the fewest covering options (SmallestCOV) 

The results of the experiments on these nine heuristic schemes are given in Figure 4.5.  The evaluation 

is performed on the set of representative functions from the P-equivalence class for functions with 2, 3, and 

4 inputs.  There are a total of 3,980 representative functions from these 3 equivalence classes.  Table (a) 
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provides the number of these functions on which the algorithm completed within the three hour time limit 

imposed for each instance.  It also gives the total time required by the algorithm to attempt all 3,980 

functions.   

Since not all of the heuristics were able to complete the search for all functions, we took a subset of the  

3,980 representative functions on which all heuristics were able to complete the optimal network search.    

The results presented in Table (b) provide the details of the search on these 933 functions.  These details 

include the total amount of time it took for the algorithm to complete the search for all functions, the total 

number of nodes from all search trees produced by the algorithm on these functions, the average height of a 

path in these search trees, and the average width of a branch in these trees.  

Table (c) provides details of the search for a subset of the heuristic methods.  The three methods shown 

in this table completed all 3,980 functions from the P-equivalence classes.  The details of the search on the 

entire set of P-equivalence classes is given for each heuristic method.  

Heuristic Networks 

Completed 

Time for 

Completion 

A 2,223 934.6 hrs 

B 2,872 757.4 hrs 

C 3,945 344.2 hrs 

D 1,841 603.4 hrs 

E 3,980 32.5 hrs 

F 1,411 539.8 hrs 

G 3,980 25.5 hrs 

H 3,952 283.8 hrs 

I 3,980 30 hrs 

(a) Table of Results for all Minterm Heuristics 

Heuristic Networks 

Completed 

Time for 

Completion 

Size of 

Search Tree 

Avg. Path 

Height 

Avg. Branch 

Width 

A 933 136 hrs 9,443 × 10
5
 18.478 2.575 

B 933 16.4 hrs 1,516 × 10
5
 16.467 2.180 

C 933 34.4 min 40 × 10
5
 10.242 2.528 

D 933 133.2 hrs 9,608 × 10
5 18.945 2.243 

E 933 5.1 min 8 × 10
5
 9.381 2.314 

F 933 223.8 hrs 19,290 × 10
5
 20.705 2.099 

G 933 4.8 min 7 × 10
5
 9.436 2.287 

H 933 21.3 min 26 × 10
5
 9.940 2.469 

I 933 6.5 min 9 × 10
5
 9.633 2.319 

(b) Table of Results for all Minterm Heuristics on the 933 functions completed by all methods 

Heuristic Networks 

Completed 

Time for 

Completion 

Size of 

Search Tree 

Avg. Path 

Height 

Avg. Branch 

Width 

E 3,980 32.5 hours 76,191,110 12.86 2.47 

G 3,980 25.5 hours 63,097,950 12.95 2.41 

I 3,980 30.0 hours 69,851,781 13.22 2.42 

(c) Table of Results for Minterm Heuristics which completed all test functions 

Figure 4.5: Minterm Heuristic Results 
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The results obtained from this experiment support the relationships discussed in Section 3.3.1 between 

the size of the search tree and the properties of the minterm heuristics.  The first is a relationship between 

the number of covering possibilities for the chosen uncovered minterm and the width of a branch in the 

search tree.  Based on this relationship, a heuristic method which uses the smallestCOV scheme should 

reduce the average branch width in the search tree and by extension reduce the size of the search tree.  The 

experimental results show that this is the case.  Heuristics B, E, F, and I have a smaller average branch 

width and a smaller total search tree size than their corresponding heuristics A, C, D, and H which do not 

use this minterm scheme.   

The second relationship described in Section 3.3.1 exists between the height of the search tree and the 

possibility of covering minterms through functional implications.  Heuristic methods smallestCONN and 

smallestFI were created to select nodes that have the least chance of being covered by functional 

implications. Here, the experimental results confirm that by using only smallestFI (heuristic C) compared 

to the random selection of a minterm (heuristic A) the average height of a path in the search tree is reduced 

and the total size of the search tree is also reduced.  However, when smallestCONN is the only heuristic 

used, an increase in both the path height and search tree size results.  The smallestCONN scheme is still a 

useful technique as long as it is used in conjunction with other methods.  By combining the smallestCONN 

scheme with the smallestFI scheme (heuristic G) a further reduction of the search space can be obtained 

compared to when the smallestFI scheme is used alone (heuristic E).   

The final relationship described exists between the type of coverings that can be performed and the size 

of the search tree.  When the difficultCOV heuristic method is used to rank minterms based on the 

difficulty of covering the minterms, similar improvements on the search tree are gained as compared to 

those using the smallestFI methods over the random selection of a minterm.  

Based on the results presented here, a combination of heuristic schemes provides the greatest reduction 

of the search tree.  Both heuristic methods G and I use a scheme to minimize the width of a branch and the 

height of a path. While the heuristic for minimizing the height differs in these two heuristics, the same 

approximate improvement in the size of the search tree is achieved with each.  Both G and I showed an 

average 100% improvement in the size of search tree over the random heuristic.  Since G shows the better 

performance when all of the test functions are considered, we will use this as the minterm selection 

heuristic for the remainder of our experiments. 

4.2.1.2 Network Ordering Heuristics 

The second decision that must be made during the course of the search is the order in which the 

branches of the search tree are explored. Section 3.3.2 gave two heuristics which provided an ordering for 

how the partial networks created by a covering are explored.   
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CovOrder: Order the nodes available for covering according to their covering rank: (1)  a primary 

input node, (2) a gate node that already exists as an input, (3) an existing gate node, (4) a 

new gate node.  Nodes with lower covering rank are chosen first. 

CostOrder: Order the nodes available for covering according to the cost of the partial networks that 

result when the node is used for covering.  Networks with lower cost are chosen first 

Based on these two heuristic methods, the following ordering heuristics were created: 

A. Random (Random) 

B. Order only the connectible set (CovOrder) 

C. Order the networks based only on the cost (CostOrder) 

D. Order both the connectible set and then the networks based on their cost (CovOrder), 

(CostOrder) 

The results of the experiments with these network ordering schemes are given in Figure 4.6.  The 

evaluation is performed on the set of representative functions from the P-equivalence class for functions 

with 2, 3, and 4 inputs.  The first column in the table indicates the heuristic used during the search.  The 

following five columns give the details of the search.  These details include the total amount of time it took 

for the algorithm to complete the search, the total number of nodes from all search trees produced by the 

algorithm, the average height of a path in these search trees, the percentage of the search tree completed 

before the optimal network was found, and a measure of the distance the initial network found by the 

algorithm was to the optimal network. 

Heuristic 
Time for 

Completion 

Size of 

Search Tree 

Average 

Path 

Height 

Portion of Search 

Tree Completed to 

Optimal Network 

Avg. Difference 

of Initial to 

Optimal Cost 

A 36.1 hours 245 × 10
6 12.244 45% 4.384 

B 32.6 hours 215 × 10
6
 12.169 47% 4.366 

C 28.4 hours 205 × 10
6
 12.987 34% 4.912 

D 25.7 hours 169 × 10
6
 12.953 32% 4.952 

Figure 4.6: Results of Network Ordering Heuristics 

These results show that the heuristic scheme D performed the best, however not for the reason proposed 

in Section 3.3.2.  The ultimate goal of the heuristic methods is to shrink the size of the search tree which 

does indeed happen with heuristic D (by 31% compared to random).  However, the last three columns of 

the table shows that this reduction is a result of the optimal network being found sooner in the search rather 

than as a result of a smaller cost for the initial complete network or a reduction in the height of the paths in 

the search tree as hypothesized in Section 3.3.2. 

A comparison of  Figure 4.5 and Figure 4.6 shows that the network ordering does not have as large of 

an impact on the size of the search tree as the selection of the minterm for covering does.  On average, the 

reduction in the search tree size for the best minterm heuristic version over random selection was 1,134,501 

while the reduction in the search tree size for the best network heuristic versions over random selection was 
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only 6,693.  This difference is a result of the fact that all of the choices for covering must be explored no 

matter what order is chosen, while only one of the many possible minterms is selected for covering.  The 

network order heuristic can only effect where in the search the optimal network will be found, while the 

minterm selection can effect the height of every path and the width of every branch in the search tree. 

4.2.2 Structural Implications 

In this section, we will provide experimental evidence to support the use of the structural implications 

described in Section 3.4.3 to reduce the size of the search space.  Structural implications provide additional 

information about a partial network which can then be used to reduce the height of the search tree.  The 

idea behind these implications is that new gate nodes can be added to a partial network whenever they 

become necessary.  This will eliminate the nodes in the search tree with a branch width of one.  In addition 

these implications also increase the possibility that a partial network can be pruned earlier further reducing 

the size of the search tree.   

The results of the experiments on structural implications are given in Figure 4.7.  In these results, the 

nodes of the search tree are divided into three types.  A branch node is a node of the search tree where there 

exists at least two ways of covering the selected minterm.  An implication node is a node of the search tree 

where only one possibility for covering exists.  A leaf node is a node of the search tree which is either a 

solution or where the algorithm can prune based on the cost of the network.  In this experiment a version of 

the algorithm which uses structural implications is compared against a similar version without structural 

implications.  Once again the evaluation is performed on the set of representative functions from the P-

equivalence classes for 2-, 3-, and 4-input functions.   

Structural 

Implications? 

Networks 

Completed 

Time for 

Completion 

Size of Search Tree Structural 

Implications 

Avg. 

Path 

Height 
Branch Implication Leaf 

Yes 3,980 21.0 hrs 59,528,859 77,365,086 96,952,916 73,771,080 12.94 

No 3,970 99.6 hours 233,014,252 203,973,773 374,975,848 – 18.60 

Figure 4.7: Experimental Results of Structural Implications 

The number of branches in the search tree is reduced 74% through an increase in the ratio of 

implications to branches performed during the search.  By performing implications as soon as they become 

available, some partial networks can be pruned earlier based on cost, thus reducing the overall size of the 

search tree.  Since the algorithm was able to reduce the size of the search tree with little or no effect to the 

time needed to complete the search, structural implications are an effective addition to BESS.   

4.2.3 Pruning 

Three pruning techniques were presented in Section 3.9 which remove repetitive portions of the search 

tree.  The first technique was based on overlapped covering.  This type of repetition is removed by adding 

the minterm m to the on-set of the existing fan-in node l for the remaining coverings of m after l. The 

second pruning technique was based on the symmetry of the NAND gate.  This type of repetition is removed 
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through the use of the non-connectible set.  Experimental results evaluating the use of these two pruning 

techniques to improve the search tree size are summarized in Figure 4.8.  The first two columns of the table 

indicate the combination of pruning techniques used by the algorithm.  The third column gives the number 

of functions from the P representative set that the algorithm was able to complete within the time limit set 

for each instance.  The last four columns of the table present the results of the algorithm on only those 

functions (3,976) which all versions were able to complete. 

Overlapped 

Covering 

Gate 

Symmetry 

Networks 

Completed 

Time for 

Completion 

Size of 

Search Tree  

Overlapped 

Cover Prevention 

Symmetric 

Prevention 

No No 3,976 55.8 hours 391,368,196 - - 

No Yes 3,980 41.6 hours 312,657,042 - 81,271,926 

Yes No 3,980 27.6 hours 195,711,549 5,422,268 - 

Yes Yes 3,980 20.8 hours 158,742,445 2,868,728 46,371,311 

Figure 4.8: Experimental Results of Pruning Techniques 

These results confirm what was proposed in Section 3.9, the search tree is reduced by using both 

pruning techniques.  In addition, any time added to each step of the algorithm in order to perform the 

pruning is more than made up for in the amount of time saved by shrinking the search tree. 

When the overlapped covering technique is used by itself, a 50% reduction is made in the size of the 

search tree.  While it is difficult to count the number of times pruning is actually performed a count of the 

number of times the steps are performed to prevent this type of repetition can be made.  For an average 

function, overlapped covering prevention was performed in 6.94% of all calls to the SynthesizeNetwork 

procedure.   

When only the pruning technique based on the symmetry of the NAND gate is used, an improvement is 

again made in the size of the search tree: a 20% reduction in the total size of the search tree.  The reduction 

is smaller than that made by the overlapped covering technique but is still significant enough to be used as 

a way to improve BESS.  The steps needed to prevent this type of repetition were performed in 67% of the 

calls to the SynthesizeNetwork procedure.  Thus, while the steps to prevent this type of repetition were 

performed quite often a smaller savings was seen compared to the previous method. 

The final row of the table in Figure 4.8 gives the results of the algorithm when both pruning techniques 

are used.  The data in this row show that further gains can be made in reducing the size of the search tree by 

combining these two techniques.  The size of the search tree is reduced by 59% compared to the search tree 

when no pruning techniques are used, 49% when only overlapped covering pruning is used, and 19% when 

only gate symmetry pruning is used.   

The third pruning technique described Section 3.9 is based on the symmetry of the output function.  

This pruning technique removes repetition in the search tree by forcing the algorithm to only generate one 

network from the set of symmetric networks.  Since this pruning technique can only be performed when 

symmetries exist in the output function, this pruning technique was only tested on functions that contain 
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some input symmetry.  Figure 4.9 shows the number and type of symmetric functions that exist in each of 

the representative sets.    

Inputs Size of 

Representative Set 

Functions with 

no Symmetry 

Max 

Symmetry = 2 

Max 

Symmetry = 3 

Max 

Symmetry = 4 

2 8 2 6 - - 

3 68 14 40 14 - 

4 3904 2209 1509 172 14 

Figure 4.9: Symmetric Functions in Representative Sets 

The experimental results of the algorithm both with and without this symmetric pruning technique are 

given in Figure 4.10.  The last three columns of the table present the results of the algorithm on only those 

functions (1,754) which both versions were able to complete.  Once again, a decrease in the size of the 

search tree is achieved when the pruning is added to the algorithm.  On average a 10% reduction in the size 

of the search tree occurs for an individual function.  Counting the number of times input variables are left 

out of the connectible set (column 5) gives an indication of how often this type of pruning is performed.  In 

the functions where symmetric variables exist, this type of pruning is performed in only 0.3% of all calls to 

the SynthesizeNetwork procedure.   

Symmetry Networks 

Completed 

Time for 

Completion 

Size of 

Search Tree  

Symmetric 

Prevention 

No 1754 22.5 hours 170,421,562 0 

Yes 1755 15.8 hours 118,186,427 137,106 

Figure 4.10: Pruning Based on Symmetry of the Output Function 

Figure 4.11 presents the results of the algorithm using each possible combination of pruning techniques.  

These results show that each pruning technique helps to reduce the size of the search tree.  Therefore to 

complete the search in the shortest amount of time all pruning techniques should be used.  The last five 

columns of the table present the results of the algorithm on only those functions (3,973) which all versions 

were able to complete. 

Overlapped 

Covering 

Gate 

Symmetry 

Function 

Symmetry 

Networks 

Completed 

Time for 

Completion 

Search 

Tree Size 

Overlapped 

Cover 

Prevention 

Gate 

Symmetry 

Prevention 

Function 

Symmetry 

Prevention 

No No No 3,974 70.4 hrs 484,519,235 0 0 0 

No No Yes 3,976 51.5 hrs 362,914,729 0 0 111,238 

No Yes No 3,975 45.5 hrs 348,396,748 0 88,526,077 0 

No Yes Yes 3,980 39.0 hrs 294,877,292 0 76,051,744 263,127 

Yes No No 3,976 30.9 hrs 218,295,023 6,091,604 0 0 

Yes No Yes 3,980 26.0 hrs 185,138,381 5,132,389 0 81,545 

Yes Yes No 3,979 22.9 hrs 178,037,335 3,098,995 50,948,072 0 

Yes Yes Yes 3,980 19.6 hrs 150,908,100 2,752,075 43,907,273 153,940 

Figure 4.11: Results of All Pruning Types on the Size of the Search Tree 

4.2.4 Global Functional Implications 

In Section 3.4.2 two types of global functional implications that could be added to the algorithm to help 

reduce the size of the search space were described.  These functional implications were based on a 
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reconvergent structure that exists in the partial network.  These functional implications provide additional 

information about the Boolean functions for some gate nodes in the partial network.  This helps to reduce 

the size of the search space by limiting some of the covering options in the partial network.   

The results of the experiment using the two types of global functional implications are given in Figure 

4.12.  In this experiment a version of the algorithm which uses each type of functional implication is 

compared against a version using both types and a version using neither. Once again the evaluation is 

performed on the set of representative functions from the P-equivalence classes for 2-, 3-, and 4-input 

functions.  

Simple 

Pattern 

General 

Pattern 

Networks 

Completed 

Time for 

Completion 

Size of 

Search Tree 

Implications 

based on Simple 

Implications based 

on Extended 

No No 3,980 27.4 hours 207,166,060 - - 

No Yes 3,980 37.5 hours 167,212,434 - 35,649,311 

Yes No 3,980 26.0 hours 186,786,193 8,657,042 - 

Yes Yes 3,980 39.5 hours 172,282,510 9,131,129 27,284,213 

Figure 4.12: Experimental Results for Functional Implications from Bridges 

These results show that the each type of functional implication is able to reduce the size of the search 

tree.  Using general pattern alone the search space is reduced by 19%, while a 10% reduction occurs when 

only the simple pattern is used.  A larger reduction occurs when the general pattern is used since this 

method encompasses more structures.  When functional implications based on this general pattern are 

added to the algorithm, however, the time for the algorithm to complete is increased.  The algorithm 

requires an average of 8.1 seconds to produce 10,000 search tree nodes when using general pattern for 

global functional implications compared to requiring an average of only 4.8 seconds for every 10,000 

search tree nodes when no global implications are performed.  The increase of time occurs because this 

type of implication is difficult to detect, so more work must be performed each time a global functional 

implication is sought.  Only a slight increase in the time per search tree node is found when implications 

based on the simple pattern are made.  A simple method is used for finding these structures and a fast 

method is used to detect and perform the implications. 

In this implementation of the general pattern for global functional implications, a check for every node 

in the network is performed to determine what structures exist in the network.  However, the only possible 

structural change made in the network once a single covering is made is the addition of a single edge.  

Therefore if new global functional implications were to exist they should be based on a reconvergent fan-

out structure that would result from this new covering.  Thus a second implementation of the general 

reconvergent pattern was created which only searches for the reconvegent pattern in a set of  nodes which 

contains the node l used to cover the minterm.  The same experiments as in Figure 4.12 were performed 

using this new implementation.  The results are given in Figure 4.13.  These results show an improvement 

in the time for completion (about a 12% reduction) than what was seen in the previous results. A decrease 

in the number of implications performed (by more than 25%) also occurs.  While the time per search tree 
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node was reduced to 7.2 seconds for 10,000 search tree nodes, this modification still does not provide 

enough of a reduction in the size of the search space to make up for the increased time for performing the 

implications.  Therefore global functional implications based only on the simple reconvergent pattern are a 

worthwhile improvement to BESS. 

Simple 

Bridge 

Extended 

Bridge 

Networks 

Completed 

Time for 

Completion 

Size of 

Search Tree 

Implications 

based on Simple 

Implications based 

on Extended 

No No 3,980 27.4 hours 207,166,060 - - 

No Yes 3,980 33.3 hours 166,485,877 - 26,752,015 

Yes No 3,980 26.0 hours 186,786,193 8,657,042 - 

Yes Yes 3,980 34.6 hours 169,740,706 8,990,562 19,791,640 

Figure 4.13: Functional Implication Experiments with Modified Extended Bridge 

4.3 Optimal Results 

4.3.1 Optimal Results for Equivalence Classes 

One of the goals for exact synthesis is to provide a database of minimum circuits.  Several works 

previous to this have completed such databases with different constraints.  

Ninomiya [Ninomiya 61] provides a catalog of minimal {NOR, NAND} networks for all functions with 4 

or fewer variables.  The cost function used to optimize the networks is based on the number of transistors 

required to complete the circuit.  Thus the cost of an n-input NAND or NOR gate is n, the number of inputs to 

the gate.  In addition to the NAND and NOR gates, Ninomiya allows the use of a wired-AND at no cost.  

Under these constraints, he completes the catalog for all 222 NPN-representative functions of 4 or fewer 

inputs. 

Hellerman [Hellerman 63] uses an explicit enumeration method to give a catalog of minimal NOR 

network and minimal NAND networks for all functions with 3 or fewer variables.  The cost criteria placed 

on these networks prioritized the number of gates in the network first and the number of connections in the 

network second.  In these networks, both a fan-in and fan-out restriction of 3 is placed on the networks.  He 

completes the catalog for 79 out of the 80 P-representative functions of 3 inputs or fewer.  The three-input 

XOR function required more than 7 gates with the restrictions placed on the network and was not completed 

in the time allotted. 

Smith [Smith 65] uses the same method to give a similar catalog of minimal NOR networks and minimal 

NAND networks for all functions with 3 or fewer variables when both complemented and uncomplemented 

inputs are available and no restriction is placed on the fan-in and fan-out of the gates.  In this catalog, 

networks for all 80 P-representative functions are given with the largest network requiring 5 gates. 

Baugh et. al. [Baugh 69] use an implicit enumeration method to provide a catalog of minimal {NOR, 

AND} networks for all functions with 3 or fewer variables.  For these networks, no fan-in or fan-out 

restrictions are applied.  The cost function is based first on the number of gates in the network and second 
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on the number of connections.  Optimal networks for all 80 representative functions from the P-equivalence 

classes were found.  The maximum number of gates in a network is 6.  A second catalog of results was 

presented using this method as well.  [Culliney 71] gives a catalog of 438 minimal {NOR} networks for 

functions with 4 or fewer variables towards the goal of completing all 3,984 functions.  

Davidson [Davidson 68b] uses a branch-and-bound method similar to the one described here to give a 

catalog of minimal {NAND} networks for all functions with 3 or fewer variables.  In this work, optimality is 

determined only by the number of gates in the network.  No limits on the fan-in set of the gate nodes or the 

levels of the network are imposed.  Optimal networks for all 77 functions were found.  The maximum cost 

for an optimal network was seven gates. 

Culliney et. al. [Culliney 79] also uses a similar branch-and-bound method to provide a catalog of 

minimal networks.  These networks are built from AND and OR gates.  The catalog presented contains 

networks for all functions with four or fewer variables.  Inputs to the networks are available in both 

complemented and uncomplemented form.  Optimality is determined first by the number of gates, and 

second by the number of connections.  No fan-in or fan-out restrictions are imposed on the gates.  Since 

both complemented and uncomplemented variables are available only representative functions from the 

NPN-equivalence classes were completed.  Optimal networks for all 222 functions are found with the 

exception of the function x1 ⊕ x2 ⊕ x3 ⊕ x4 where the optimal network with respect to the number of gates 

only is found.  The maximum number of gates in a network here is 9. 

We present yet another catalog of optimal networks extending this previous work.  The catalog 

presented here will use NAND2 gates and a cost function which depends only on the number of gates in the 

networks.  The variations of BESS required to match the synthesis options used in these previous works 

will be presented in Chapter 5.  Due to space constraints, the complete databases under these constraints are 

not provided here, but are given at www.eecs.umich.edu/~ebroerin/OptimalSynthesis. 

As described in Section 4.1.1, optimal results for only one representative function from each 

P-equivalence class needs to be obtained in order for optimal networks of all functions on n inputs to be 

completed.  Using these representative sets and BESS a table of results for all n-input functions can be 

created.  Such a table for 2-input functions is given in Figure 4.14.  The far left column gives the binary 

representation for the Boolean function while the second column gives the integer representation taken 

from this binary representation.  These representations are obtained from the truth table for the function 

with the most significant digit representing the truth table line 
1 2

x x′ ′  and the least significant digit 

representing the truth table line x1x2.   For example the function x1 ∨ x2 has the truth table: 

 

 

Therefore the binary representation of 
1 2

x x∨ is 0111 and the integer representation is 7. 

x1 0 0 1 1 

x2 0 1 0 1 

1 2
x x∨ 0 1 1 1 
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Since optimal networks for only a subset of the two-input functions are given, the remaining functions 

are indicated according to their P-equivalence class representative.  These are given in the third column of 

the table.  The P-equivalent relationship implies that optimal networks for the functions indicated in this 

column can be obtained from the optimal network given by permuting the input variables.  The final two 

columns of the table give the optimal network for the function both in a text and graphical format.  In some 

cases, more than one network structure has optimal cost for a function.  Only one of these will be presented 

here, however the number of such networks is given in column 4. 
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Function 
P-Equivalent 

Functions 

Optimal Network 

Binary Integer Number Text Format Graphical Format 

0001 1  1 

 O = NAND( I1 ) 

 I1 = NAND( a, b ) 

 

0010 2 4 1 

 O = NAND( I1 ) 

 I1 = NAND( a, I2 ) 

 I2 = NAND( b ) 

 

0110 6  1 

 O = NAND( I1, I2 ) 

 I1 = NAND( a, I3 ) 

 I2 = NAND( b, I3 ) 

 I3 = NAND( a, b )  

0111 7  1 

 O = NAND( I1, I2 ) 

 I1 = NAND( a ) 

 I2 = NAND( b ) 

 

1000 8  1 

 O = NAND( I1) 

 I1 = NAND( I2, I3 ) 

 I2 = NAND( a ) 

 I3 = NAND( b )  

1001 9  3 

 O = NAND( I1, I2) 

 I1 = NAND( a, b ) 

 I2 = NAND( I3, I4 ) 

 I3 = NAND( a ) 

 I4 = NAND( b ) 

 

1011 11 13 1 

 O = NAND( I1, b) 

 I1 = NAND( a ) 

 

1110 14  1 

 O = NAND( a, b ) 

 

Figure 4.14: Optimal Networks for all 2-Input Functions 

Similar tables for 3-, 4-, and 5-input functions are given in the Appendix.  Optimal networks for all 3-

input functions are given but due to space considerations, only the optimal cost for the 4- and 5-input 

functions are given.  Networks for all of these functions can be found at 

www.eecs.umich.edu/~ebroerin/OptimalSynthesis.  Both the number and size of the 5-input representative 
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functions prohibit us from completing all these optimal networks.  However, BESS was run on 5,533 

functions from this class.  We limited the amount of time that the algorithm was allowed to search for an 

optimal network to 48 hours.  Out of 5,533 five-input functions, BESS completed the search on 4,745 of 

them.  The table given in the appendix includes the functions on which BESS did not complete the search.  

A star has been placed next to them to indicate they were not completed.  For these functions, the network 

cost shown in the table is the cost of the smallest network found during the search before it was terminated. 

The graphs shown in Figure 4.15 represent all the data presented in the appendix.  The cost of the 

optimal network for each function completed is shown. These graphs give an indication of the size of an 

average network for each of the input classes.  The maximum cost of a 3-input network was 10 while the 

minimum was 2 and the average was 5.96.  For four-input functions, the maximum cost network was 14, 

the minimum was 3, and the average was 9.72.  Of the five-input networks found, the maximum cost was 

16, the minimum was 5, and the average was 11.5. 



 

  

9
5

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

O
p

ti
m

a
l 
N

e
tw

o
rk

 
C

o
s
t

Function Index

2 Inputs

0

1

2

3

4

5

6

7

8

9

10

11

0 50 100 150 200 250

O
p

ti
m

a
l 
N

e
tw

o
rk

 C
o

s
t

Function Index

3 Inputs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 10000 20000 30000 40000 50000 60000

O
p

ti
m

a
l 
N

e
tw

o
rk

 
C

o
s
t

Function Index

4 Inputs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1 10 100 1000 10000 100000 1000000 10000000 100000000 1E+09

O
p

ti
m

a
l 
N

e
tw

o
rk

 
C

o
s
t

Function Index

5 Inputs

 

Figure 4.15: Graph of Optimal Network Cost for Equivalence Class Functions 
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The size of the networks completed gives an indication of the improvements that have been made over 

previous work.  Earlier works were only able to complete networks with a maximum of 9 gates.  A 

combination of improved computing power as well as improvements made to the algorithm has allowed us 

to extend the database of optimal circuits. 

4.3.2 Optimal Results for Function Classes 

Results of BESS on the function classes described in Section 4.1.2 can be used in several ways.  First, 

they give an indication of the complexity of the algorithm and can show how large a function the algorithm 

can complete.  In addition, they can show what factors play a role in the size of the search tree produced by 

the algorithm across all the classes.  In this section, we will use the results of BESS on the function classes 

to gain insight into the structure of minimum circuits.  Using the optimal networks found by BESS, we can 

gain an understanding of the complexity of the circuits for each class by finding the patterns in the 

structures that exist in these networks as well as a formula to determine the cost of the network.   

For each function class, we will give a table of results containing the cost of the optimal network and 

details about the algorithm’s search for functions from this class.  Circuit diagrams for the smaller functions 

from the class will also be given.  Some function may have multiple networks with minimum cost.  In this 

case each of the networks will be provided in the diagram.  These diagrams will help to illustrate the 

structural pattern that emerges for many of the classes.  Based on the results and diagrams a formula for the 

cost of the optimal network will be presented for a function in the class with n inputs.  After the results for 

each function class have been presented, we will conclude with a discussion of these results and what they 

mean in terms of the complexity of the algorithm as well as the complexity of the function classes.   

4.3.2.1 AND Class 

The table in Figure 4.16 gives the results of BESS on the functions from the AND class.  The algorithm 

was able to complete the search for functions up to 7 inputs with the largest network containing 12 gates.  

The search for an optimal network for the 8-input function was stopped after three days with the smallest 

network found thus far containing 14 gates. 

Inputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 2 0 s 5 

3 4 0 s 7 

4 6 0 s 25 

5 8 0 s 310 

6 10 9 s 13,885 

7 12 16.2 min 1,401,599 

8* 14 3 days 284,712,649 

Figure 4.16: AND Class Results 

Figure 4.17 gives the optimal networks for the AND functions when 2,3,4n = .  Two minimum-cost 

networks are given for the 4-input function.  A pattern emerges within the structure of these optimal 
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networks.  Each network is a combination of (n – 1) two-input AND networks.  Since a two-input AND 

network requires two NAND2 gates the cost of an optimal network of an n-input AND function is 2(n – 1).  

 

Figure 4.17: Optimal Networks for AND Class 

This construction gives an upper bound on the optimal cost of an n-input AND network, AND
n

.  The 

following shows that this formula also gives a lower bound on the optimal cost. 

Theorem 4.1. The number of gates required in an optimal network for an n-input AND function is at least 

( )2 1n − .  ( )AND 2 1
n

n≥ − . 

Proof: (by induction)  The results of the algorithm prove that the optimal network for a 2-input AND 

function is the network shown in Figure 4.17 and requires 2 gates.  Thus
2

AND 2≥ . 

Assume for some integer m > 2, ( )AND 2 1
m

m≥ − . 

Let n = m + 1 and let C be a minimal size network for ANDn.  Since C is a minimal size network for 

ANDn, the function realized by C is
C 1 n

f x x= ∧ ∧… .   

We will first establish some properties of the network.  Assume there exists a gate (i, j, 0) in C that 

contains only a single input node in its fan-in set.   Let the primary input represented by this input node 

be xj.  i cannot be the output of the network since n > 2 therefore there must be a gate node (l, i, k) in C 

that contains i in its fan-in set.  This portion of the network C is shown in Figure 4.18. 

2-input AND function

3-input AND function

4-input AND function
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Figure 4.18: Part of the Network C 

Consider the 2 cases when xj is replaced by a constant.  If xj is replaced by the constant 1 then  fi = 0 

and fl = 1, no matter what else is connected to the gate l.  Therefore, the edge (k, l) is unnecessary in this 

case.   In the second case, if xj is replaced by the constant 0 then fi = 1 which implies 
l k

f f ′= .  When xj 

is replaced by the constant 0, however, the network will realize the function fC = 0.  In this case, this 

entire portion of the network could be replaced by the constant 0.  Therefore the edge (k, l) is 

unnecessary in this case as well.  These two cases imply that an edge (k, l) is redundant.  This edge can 

be removed from the network while still maintaining the functionality of the circuit.  Therefore we can 

assume when the node (i, j, 0) exists in the network, then the node (l, i, 0) must also exist.  This 

situation however results in a double negation in the network: 
i j

f x′=  and 
l i j

f f x′= = .  Therefore both 

gates i and l can be removed from the network C with j replacing l.  The result is a network that 

implements ANDn and contains 2 fewer gates than C.  This would imply that C is not an optimal cost 

network for ANDn.  Therefore the assumption that such a gate (i, j, 0) exists in the network is false. 

According to the previous argument, there must exist a gate (i, j, k) in the network such that j and k 

are primary inputs. Through the symmetry of the ANDn function we can assume that j = 1 and k = 2.  

Since n > 2, i cannot be the output to the network.  Thus, there must exist some gate (l, i, h).  In this 

case, 
1 2i

f x x′ ′= ∨  and
l i h

f f f′ ′= ∨ .  If either x1 or x2 is replaced by the constant 0 then 1
i

f =  and 

l h
f f ′= .  Since the network will realize the function fC = 0 in these cases, the edge (h, l) is not 

necessary.  If both x1 and x2 are replaced by the constant 1 then 0
i

f =  and 1
l

f = .  Again the edge (h, l) 

is unnecessary in this case as well.  Therefore, the edge (h, l) is redundant.  This edge can be removed 

from the network while still maintaining the functionality of the network.  Hence we can conclude that 

the structure of this part of the network must contain the nodes (i, 1, 2) and (l, i, 0).  This structure is 

shown in Figure 4.19.  l must be the only fan-out of i since the above argument will hold for any gate 

which contains i in its fan-in set. 

 

Figure 4.19: Part of the Network C 

  Now that this structure of C has been established, consider the network �C created from C where x1 

is replaced by the constant 1.  
2i

f x′= , 
2l

f x= , and the network will realize the 

function
� 2C n

f x x= ∧ ∧… .  In this new network, the gates i and l are redundant and can be removed with 

l replaced by the node 2.  The result will be a network that implements the function ANDn-1 and contains 

1 

l i 

2 

j 

l 

i 

k 
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2 less gates than C.  By the induction assumption, |ANDn-1| ≥ 2(n – 2).  So � ( )C 2 2n≥ − .  Therefore 

( ) ( )AND C 2 2 2 2 1
n

n n= ≥ − + = − . □ 

4.3.2.2 OR Class 

The table in Figure 4.20 gives the results of BESS on the functions from the OR class.  The algorithm 

was able to complete the search for functions up to 6 inputs with the largest network containing 15 gates.  

The search for an optimal network for the 7-input function was stopped after three days with the smallest 

network found thus far containing 18 gates. 

Inputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 3 0 s 5 

3 6 0 s 16 

4 9 0 s 129 

5 12 4 s 6,796 

6 15 29.7 min 2,527,493 

7* 18 3 days 312,663,276 

Figure 4.20: OR Class Results 

Figure 4.21 gives the optimal networks for the OR function when 2,3,4n = .  These diagrams show that 

the optimal network for an n-input OR function is a combination of (n – 1) two-input OR networks.  Since a 

two-input OR network requires three NAND2 gates, the cost of the optimal network of an n-input OR function 

will be ( )3 1n − .   
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Figure 4.21: Optimal Networks for OR Class 

Once again, this construction gives an upper bound on the optimal cost of an n-input OR network, 

OR
n

.  The following shows that this formula also gives a lower bound on the optimal cost. 

Theorem 4.2. The number of gates required in an optimal network for an n-input OR function is at least 

3(n-1).  |ORn| ≥ 3(n-1). 

Proof: (by induction)  The results of the algorithm prove that the optimal network for a 2-input OR function 

is the network shown in Figure 4.21 and requires 3 gates.  Thus 
2

OR 3≥ . 

Let n > 2, and assume that for 2 ≤ m < n, ( )OR 3 1
m

m≥ − . 

Let C be a minimal size circuit for ORn.  The function realized by C is 
C 1 n

f x x= ∨ ∨… .   

Let us first establish some properties of the network C.  There must exist a gate (i, j, 0) in C that 

contains only primary inputs as fan-in.  Assume (i, j, k) has two inputs xj and xk.  If xj is replaced by the 

constant 1 then 
i k

f x′=  and C will realize the function fC = 1.  Therefore the second fan-in to i is not 

needed in this case.  If xj is replaced by the constant 0, 1
i

f = and the network C will realize the function 

fC = x1 ∨ . . . ∨ xj-1 ∨ xj+1 ∨ . . . ∨ xn.  Therefore the input node xk is used elsewhere in the network and is 

not needed as a fan-in to node i in this situation either.  These two cases imply that the edge (k, i) is 

redundant.  This edge can be removed from the network while still maintaining the functionality of the 

circuit. Therefore we can assume that the only fan-in to the gate node i is j.  This argument proves that 
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any gate in C which contains a primary input in its fan-in set contains only this input node in its fan-in 

set.   

Let the (i, 1, 0) be the gate from C which contains the primary input x1 in its fan-in set.  The gate i 

can not be the output of the network since n > 2.  Let gate (j, i, k) be a gate in the network that contains i 

as a fan-in.  j must contain a second node, k,  in its fan-in set and by the previous argument it must be a 

gate node.  Based on the symmetry of the OR function, we can assume that (k, 2, 0) also contains an 

input node in its fan-in set and that j is not the output node for the network either since n > 2.  Thus 

there must be a gate node (l, j, h) from C that contains j as a fan-in.  This portion of the network is 

shown in Figure 4.22. 

 

Figure 4.22: Part of Network C 

Now we can show that the edge (h, l) is redundant. If the input nodes 1 and 2 are replaced by the 

constants 0 and 1, the gates i, j, k, and l and the network C will compute the following values:   

x1 x2 fi fk fj fl fC 

0 0 1 1 0 1 x2 ∨ … ∨ xn 

0 1 1 0 1 h
f ′  1 

1 0 0 1 1 h
f ′  1 

1 1 0 0 1 h
f ′  1 

In each case, the edge (h, l) can be removed from the network and fC will remain unchanged.  

Therefore we can assume that this portion of the network will have the structure shown in Figure 4.23.  

This property will be true for any gate in the fan-out of j, so l must be the only fan-out of j. 

 

Figure 4.23: Part of Network C 

Let �C be the network C with input node 1 replace by the constant 0.  In this network,  fi = 1, 

j k
f f ′= , and 

l k
f f= .  The network will realize the function 

� 2C n
f x x= ∨ ∨… .  Since fi = 1, every fan-

out gate of i will compute the same function as if the edge between i is removed.  Therefore i has 

become redundant in �C  and can be removed from the network.  Similarly, since l now compute the 

function k, the node l can be replaced by the node k.  This implies that gates j and l are no longer needed 

in the network, and can be removed.  The result is a network that realizes the function ORn-1 and 
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contains 3 less gates than C.  By the induction assumption, |ORn-1| ≥ 3(n – 2), so �C 3( 2)n≥ − .  

Therefore ( ) ( )OR C 3 2 3 3 1
n

n n= ≥ − + = − . □ 

4.3.2.3 NAND Class 

The table in Figure 4.24 gives the results of BESS on the functions from the NAND class. The algorithm 

was able to complete the search for functions up to 7 inputs with the largest network containing 11 gates.  

The search for an optimal network for the 8-input function was stopped after three days with the smallest 

network found thus far containing 13 gates. 

Inputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 1   0 s 5 

3 3   0 s 7 

4 5   0 s 25 

5 7   0 s 310 

6 9   8 s 13,885 

7 11 15.7 min 1,401,599 

8* 13 3 days 295,212,881 

Figure 4.24: NAND Class Results 

Figure 4.25 gives the optimal networks for the NAND function when 2,3,4n = .  The pattern that 

emerges from these networks is based on the combination of (n − 2) two-input AND networks with an 

additional NAND gate at the output connecting two disjoint AND networks.  Since a two-input AND network 

requires two NAND2 gates, the cost of an optimal network for an n-input NAND function is 2(n − 2) + 1. 
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Figure 4.25: Optimal Networks for NAND Class 

This construction gives an upper bound on the optimal cost of an n-input NAND network, NAND
n

.  The 

following theorem shows that this formula also gives a lower bound on the optimal cost. 

Theorem 4.3. The number of gates required in an optimal network for an n-input NAND function is at least 

( )2 2 1n − + .  ( )NAND 2 2 1
n

n≥ − + . 

The proof of the AND lower bound can be used to prove this lower bound as well.  

4.3.2.4 NOR Class 

The table in Figure 4.26 gives the results of BESS on the functions from the NOR class.  The algorithm 

was able to complete the search for functions up to 6 inputs with the largest network containing 16 gates.  

The search for an optimal network for the 7-input function was stopped after two days with the smallest 

network found thus far containing 19 gates. 

Inputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 4 0 s 5 

3 7 0 s 16 

4 10 0 s 129 

5 13 4 s 6,796 

6 16 30.9 min 2,527,493 

7* 19 3 days 301,275,147 

Figure 4.26: NOR Class Results 
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Figure 4.27 gives the optimal networks for the NOR function when 2,3,4n = .  Similar to the NAND 

class, the optimal network for an n-input NOR function uses OR networks.  Here, the combination of an n-

input OR network and an inverting NAND2 gate produces an n-input NOR network.  Since an n-input OR 

circuit requires 3(n − 1) NAND2 gates, the cost of an optimal network of an n-input NOR function is 

3(n − 1) + 1.   

 

Figure 4.27: Optimal Networks for NOR Class 

Once again, this construction gives an upper bound on the optimal cost of an n-input NOR 

network, NOR
n

.  The following shows that this formula also gives a lower bound on the optimal cost. 

Theorem 4.4. The number of gates required in an optimal network for an n-input NOR function is at least 

3(n-1)+1.  |NORn| ≥ 3(n-1)+1. 

The proof of the OR lower bound can be used to prove this lower bound as well. 

4.3.2.5 XOR Class 

The table in Figure 4.28 gives the results of BESS on the functions from the XOR class.  The algorithm 

was able to complete the search for functions up to 5 inputs with the largest network containing 16 gates. 
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Inputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 4 0 s 13 

3 8 0 s 416 

4 12 36 s 48,025 

5 16 22 hrs 163,486,233 

Figure 4.28: XOR Class Results 

Figure 4.29 gives the optimal networks for the XOR function when 2,3,4n = .  Assuming the pattern 

continues, these networks show that the optimal network for an n-input XOR function will be a combination 

of (n – 1) two-input XOR circuits. Since a two-input XOR circuit requires four NAND gates, we conjecture 

that the cost of an optimal network for an n-input XOR function will be 4(n − 1).   

 

 

Figure 4.29: Optimal Networks for XOR Class 

4.3.2.6 XNOR Class 

The table in Figure 4.30 gives the results of BESS on the functions from the XNOR class.  The algorithm 

was able to complete the search for functions up to 4 inputs with the largest network containing 13 gates.  

The search for an optimal network for the 5-input function was stopped after three days with the smallest 

network found thus far containing 17 gates. 
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Inputs Cost of 

Optimal 

Time for 

Completion 

Search 

Tree Size 

2 5 0 s 15 

3 9 0 s 338 

4 13 2.0 min 167,496 

5* 17 3 days 223,605,759 

Figure 4.30: XNOR Class Results 

Figure 4.31 gives the optimal networks for the XNOR function when 2,3,4n = .  Just like the NOR and 

NAND networks, the XNOR networks are created from a combination of XOR networks.  Here, (n – 2) two-

input XOR networks are combined with a two-input XNOR network to create an n-input XNOR network.  

Many optimal networks exist as n increases since the two-input XNOR network can appear anywhere within 

the basic structure. Based on this evaluation, we conjecture that the cost of an optimal network of an n-

input XNOR function is ( )4 2 5n − + .   

 

Figure 4.31: Optimal Networks for XNOR Class 

4.3.2.7 MAJORITY Class 

The table in Figure 4.32 gives the results of BESS on the functions from the MAJORITY class.  The 

algorithm was able to complete the search for functions up to 5 inputs with the largest network containing 

15 gates.  The search for an optimal network for the 6-input function was stopped after three days with the 

smallest network found thus far containing 31 gates. 
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Inputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 2 0 s 5 

3 6 0 s 51 

4 8 0 s 425 

5 15 38.3 hrs 170,359,437 

6* 31 3 days 177,955,331 

Figure 4.32: MAJORITY Class Results 

Figure 4.33 gives the optimal networks for the MAJORITY function when 2,3,4n = .  This class of 

networks is more difficult to analyze than the previous examples.  No simple structure repeats for larger 

sized networks.  Further discussion on the complexity of this class will be given Section 4.3.2.11. 

 

Figure 4.33: Optimal Networks for MAJORITY Class 

4.3.2.8 Multiplexer Class 

The table in Figure 4.34 gives the results of BESS on the functions from the MUX class.  The inputs of the 

multiplexer can be divided into two groups: the variables and the selectors.  The value of the selection 

inputs determine which variable is connected to the output.  At least 
2

logs v=     selectors will be required 

for v variables.  In the case when 
2

logs v<  multiple encodings may be possible.  The number of possible 

encodings is provided in the column under the “Possible Functions” heading.   Details of the algorithm are 

then provided for all of these possible functions.   

The algorithm was able to complete the search for functions up to 6 inputs with the largest network 

containing 11 gates.  The search for an optimal network for the 8-input functions was stopped after three 

days with the smallest network found thus far containing 18 gates. 
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Inputs Variables Selectors Possible 

Functions 

Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

3 2 1 1 4 0 s 10 

5 3 2 4 8 - 9 0 s 242 – 868 

6 4 2 1 11 33 s 49,095 

8* 5 3 56 18 3 days 320,642,269 

Figure 4.34: MUX Class Results 

Figure 4.35 gives the optimal networks for the MUX function when 3,6n = .  These diagrams show that 

when 
2

logs v=  the optimal network for an n-input MULTIPLEXER function can be made from a v-input OR 

network with s additional NAND gates: ( )Cost 3 1v s= − + . 

When the number of variables for the encoding falls between 2
s-1

 and 2
s
, there are multiple ways that 

the encoding can be performed.  Different encodings of the variables will produce different sized networks.  

Since a network can be created by taking the optimal network which encodes all 2
s
 variables and removing 

the unused variables, the optimal network will have cost  ( )( ) ( )3 2 1 2
s s

s v≤ − + − − = 2
s+1 

+ s + v – 3. In the 

3 variable case where n = 5, the cost of the network must be less than or equal to 10. The encoding (11, 01, 

10) results in an optimal network of cost 8, while the other three encodings (11, 01, 00), (11, 10, 00), (01, 

10, 00) produce networks of cost 9.  This same formula implies that the cost of the network with 8 inputs (5 

variables and 3 selectors) should have cost less than or equal to 31. 

 

Figure 4.35: Optimal Networks for MUX Class 

4.3.2.9 Threshold Functions 

The table in Figure 4.36 gives the results of BESS on functions from the THRESHOLD class.  A function 

from this class with n inputs and a threshold of k evaluates to true when at least k of the n inputs are true.  

These threshold functions include two classes of functions discussed previously.  When k = 1 the threshold 
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function is simply the OR function on n inputs.  When k = n the threshold function is the AND function on n 

inputs.  The results presented in the table are only for those functions on which the search was completed.  

For the threshold function, we were not able to obtain enough data to construct a formula for the cost of an 

optimal network based on the number of inputs to the function.   

Inputs 

(n) 

Threshold 

(k) 

Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

2 1 3 0 s 5 

3 1 6 0 s 16 

4 1 9 0 s 129 

5 1 12 3 s 6,796 

6 1 15 30 min 2,527,493 

2 2 2 0 s 5 

3 2 6 0 s 51 

4 2 11 18 s 32,651 

3 3 4 0 s 7 

4 3 8 0 s 425 

4 4 6 0 s 25 

5 4 13 36 min 3,289,916 

5 5 8 0 s 310 

6 6 10 9 s 13,885 

7 7 12 16 min 1,401,599 

Figure 4.36: THRESHOLD Class Results 

4.3.2.10 Adder Class 

The table in Figure 4.37 gives the results of BESS on the functions from the ADDER class.  The 

algorithm was able to complete the search for functions up to 4 inputs with the largest network containing 

14 gates.  The search for an optimal network for the 5-input function was stopped after three days with the 

smallest network found thus far containing 18 gates. 

Adder Inputs Outputs Cost of 

Optimal 

Time for 

Completion 

Search Tree 

Size 

Half 2 2 5 0 s 48 

Full 3 2 9 0 s 1,212 

2 bit without carry 4 3 14 81 s 121,951 

2 bit with carry* 5 3 18 3 days 179,645,168 

Figure 4.37: ADDER Class Results 

Figure 4.38 gives the optimal networks for the first three adders.  
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Figure 4.38: Optimal Networks for ADDER Class 

The optimal cost networks found by the algorithm give the basic structure expected for the adders.  The full 

adder is created from a combination of two half adders, while the 2-bit adder is created from a combination 

of a full and half adder. Assuming this pattern continues for larger functions, larger adders can be created 

by simply adding full adders to the network of smaller size.  Therefore the cost an optimal network for an n 

bit adder is 9n.   

The work by Lai and Muroga [Lai 79] performs a similar analysis for the ADDER class using NOR gates.  

Their work shows that when no fan-in, fan-out or level restriction is placed on the network then an optimal 

network of NOR gates for an n bit adder requires 7n + 1 gates.  In this work they show that the optimal 

network for the n bit adder will be composed of one-bit adder modules similar to the modular construction 

we have seen here. 

4.3.2.11 Analysis of Results 

Using the class results presented the function classes can be categorized based on the size of the optimal 

solutions and the difficulty of the search for finding these optimal solutions.  The first graph in Figure 4.39 

shows a plot of the cost formulas for the optimal networks for six of the function classes where a cost 

formula was obtained based on the modular structure of the networks.  From this graph an ordering of these 

classes can easily be obtained.  This ordering indicates that the XOR and XNOR classes are more difficult to 

implement with NAND2 gates than the OR and NOR classes which in turn require more gates to implement 

than the AND and NAND classes. 
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(a) Function classes where a cost formula was obtained based on a modular structure 
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(b) All Function classes 

Figure 4.39: Cost Formula for Optimal Networks for Function Classes 

If data from the other classes of functions are plotted along with these 6 classes, then a comparison with 

these classes can be made.  The second graph in Figure 4.39  indicates that the multiplexer formula falls 

between the AND/NAND classes and the OR/NOR classes in difficulty.  The ADDER formula follows the XOR 

and XNOR classes.  This is to be expected after looking at the structure of the networks given in Figure 4.38. 

Using the data obtained by the algorithm on the majority and threshold functions, a similar analysis can 

be performed.  The plot of the majority function, in relation to the other functions, gives an indication of 



 

 112 

why a formula was not easily found for this class.  The data do not follow the linear pattern found in other 

function classes, implying that this class of functions is inherently different than the others.   

In the threshold class the two sub-classes of the AND and OR functions are seen with the data points that 

follow the data lines for these two classes.  There are not enough additional data points from this function 

class to provide further analysis, however it does appear that these functions will follow a linear pattern 

similar to the AND and OR classes. 

The networks presented in the previous sections show that most of the function classes possess a 

modular pattern.  Larger networks are created by cascading smaller networks of the same class.  The 

exception to this pattern is the majority function.  The modular pattern results in a linear function which 

describes the cost of the network.  The size of the repetitive portion of the network gives the slope of the 

line, and therefore indicates the complexity of this class. 

4.3.3 Optimal Results for Benchmarks  

In this section, results of the exact synthesis algorithm on the set of benchmark functions are presented. 

These data allow us to evaluate the algorithm on large functions with varying number of inputs and outputs.  

Figure 4.40 gives a table of results for the benchmark functions.  Here the function along with its 

description (number of inputs and number of outputs) are given in the first three columns.  Following that, 

the results of the algorithm are presented for each function.  This includes the cost of the optimal network, 

the time it took for the algorithm to complete and the size of the search tree.   

Many of the functions are too large for the algorithm to complete in the allotted time of three hours.  

These functions are indicated with a * by their name.  The details of the search are included for the 

functions as well the cost of the smallest network found during the search.  In addition to these functions, 

on still more functions the algorithm was not able to find an initial network at all.  These functions are 

indicated with a 
+
 by their name.  The cost given for these functions is the size of the network when the 

algorithm terminated due to the size of the search tree.   
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Name Inputs Outputs Cost Time Search 

Tree Size 

Avg. 

Height 

Avg. 

Width 

2bit_adder* 5 3 34 3 hrs 5,032,408 83.620 2.809 

4bit_adder+ 9 5 166     

alu2+ 10 6 100     

b1 3 3 10 0 s 682 11.407 2.450 

C17 5 2 6 0 s 44 9.000 2.389 

cc+ 21 15 53     

cm138a* 6 8 79 3.0 hrs 1,413,961 148.674 2.684 

cm151a+ 12 2 137     

cm152a* 11 1 41 3.0 hrs 5,364,285 104.689 2.589 

cm162a+ 14 5 75     

cm163a+ 16 5 23     

cm42a* 4 10 65 3.0 hrs 1,903,469 115.828 3.274 

cm82a* 4 3 59 3.0 hrs 5,020,141 130.785 1.930 

cm85a* 11 3 193 3.0 hrs 26,098 908.972 5.145 

cmb* 16 4 120 3.0 hrs 537,475 558.258 2.871 

cu+ 14 11 77     

decod* 5 16 138 3.0 hrs 166,357 237.499 3.042 

f51m+ 8 8 277     

majority 5 1 9 2 s 6,886 14.567 2.419 

muroga 3 1 7 0 s 110 7.328 2.224 

oai22 4 1 7 0 s 99 6.410 2.450 

partialMux 6 1 12 18 s 35,801 17.453 2.562 

pcle+ 19 9 38     

pm1+ 16 13 33     

sct+ 19 13 66     

small 3 1 2 0 s 7 3.250 2.000 

tcon+ 17 8 30     

x2* 10 7 130 3.0 hrs 761,098 898.725 2.896 

z4ml* 7 4 200 3.0 hrs 224,283 592.582 3.211 

Figure 4.40: MCNC Benchmark Results 

The results presented here give us an idea of how the algorithm would perform on larger more varied 

functions.  These results show that once the combination of inputs and outputs becomes larger than 8 an 

optimal solution can no longer be found in the allotted time.  The cost of these networks confirms what was 

suggested by the previous results.  Networks requiring more than 16 gates can not be completed in less than 

3 hours no matter the number of inputs or outputs.  Once the combination of inputs and outputs becomes 

large the size of the optimal network must also increase, thus the likelihood reduces that the algorithm will 

be able to find an initial network before the search space becomes too large.   

4.4  Search Tree Analysis 

In Section 3.6 the search space of the algorithm was discussed and bounds on the size of the search tree 

produced by the algorithm were given.  This section will use the experimental results of the algorithm to 

evaluate these bounds.  Additional run-time analysis will then be provided for the algorithm based on these 

results. 
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4.4.1 Search Tree Size 

As described earlier, the total number of nodes in a search tree is defined by 
h 1

w 1

w 1

+
−

−
, where w is the 

width of a branch in the search tree and h is the height of the tree.  The width of a branch in the search tree 

is determined by the number of options for covering an uncovered minterm.  The height of a path in the 

search tree is the number of coverings that are performed before a complete network is found or the current 

partial network exceeds the cost of the current minimum.  Therefore determining the maximum width and 

height of the search tree for a given function will determine an upper bound for the size of the tree.   

4.4.1.1 Branch Width 

In Section 3.6.3.1 two bounds were given for the width of a branch in the search tree.  The first was 

based on the number of inputs n of the function and the maximum number of nodes that exist in a partial 

network, Gmax.  In this case w < Gmax  + n.  The second bound was based on the number of n-input Boolean 

function that could cover a minterm.  In this case 2 12
n

w −< .  

Using experimental data these bounds can now be evaluated by comparing the actual width of the 

branches in the search tree to the value of these bounds.  The table of results in Figure 4.41 gives the details 

of the branch width from the search trees that were produced when the algorithm was run on functions from 

the P-equivalence class sets of 2, 3, and 4 inputs.  These results show that the average branch width for all 

functions is between 2 and 3 while the maximum branch width seen for any function in the sets is 21.  

Comparing these experimental values with the bounds obtained in Section 3.6 shows that both bounds 

represent significant over approximations of the maximum branch width: by more than twice in the best 

case and by almost 25 times in the worst case. 

Inputs Functions 
Search Tree Size Branch Width 

Gmax  + n 2 12
n

−  Min Avg. Max Min Avg. Max 

2 8 5 8 1 2 2.0 2 8 18 

3 68 7 96 1,809 1 2.2 8 20 119 

4 3904 9 47,843 9,548,355 0 2.4 21 40 540 

Figure 4.41: Branch Width Data on P-Equivalence Class Functions 

One characteristic of the algorithm which contributes to this low average value for the branch width is 

the gate fan-in bound.  Since the fan-in is limited to two inputs, the number of coverings possible for a node 

which has a complete fan-in set will never exceed 2.  The more nodes with complete fan-in sets which 

require covering, the more the average branchwidth will be pulled down to 2. 

Some of the algorithmic improvements made to the algorithm also effect the width of the branches in 

the search tree. The first is the minterm selection heuristic.  One of the goals for this heuristic is to 

minimize the width of the branch.  This is accomplished by choosing the minterm for covering which has 

the smallest connectible set.  Because of this selection, the width of most branches will be fairly small, 
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much smaller than the maximum value obtained with the bounds described earlier.  The second algorithmic 

improvement that can effect the width of a branch in the search tree is the use of structural implications.  

By performing these implications as part of a covering rather than as an individual covering, almost all of 

the branches with the width of 1 will be eliminated.  By combining these two improvements the average 

width of a branch will be kept between 2 and 3.   

  While the width bounds provided in Section 3.6 do give an upper bound on the width of a branch in 

the search tree, they do not give a good indication of what the actual size will be and therefore will provide 

a poor indication of the size of the search tree.  A better estimate for the width of a branch in the search tree 

can be found by considering the average branch width from the experiments.  The graphs provided in 

Figure 4.42 compare the average branch width of the search tree for numerous functions with respect to the 

number of inputs in the function and the cost of the optimal network.  These graphs show that that the 

average width of a branch remains under three even for functions with more than 4 inputs and for functions 

with cost as high as 16. Comparing these two graphs, it appears that the cost of the optimal network is the 

better indication of the average branch width.  The line through the data shown in the graph provides a 

trend for the average width based on the size of the optimal network.  Using this equation in the search tree 

equation above, the size of the search tree can be approximated by 
h 1

(.04 2) 1

.04 1

c

c

+
+ −

+
, where c is the cost of 

the optimal network. 
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Figure 4.42: Branch Width as a Function of Input Size and Network Cost 

4.4.1.2 Search Tree Height 

In Section 3.6 an upper bound for the height of a search tree was given based on the assumption that 

every minterm in every node may need to be covered by an individual branching step before the network is 

covered.  This gave the bound ( )2 1
N

maxh G< −  for the height of the search tree.  While this provides an 

upper bound on the height of the search tree, it will not be necessary to perform a covering for every on-set 

minterm of every node in the network. Many minterms will be covered as a result of functional and 

structural implications performed after a single covering is made.   
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Once again the results of the algorithm on the P-equivalence class functions with 2, 3, and 4 inputs can 

be used to provide data on the actual height of the search tree.  The table in Figure 4.43 provides the details 

of these results. This table shows that the bound provided in Section 3.6 over approximates the maximum 

path height by 2 to 6 times the actual path height.   

Inputs Functions 
Search Tree Size Path Height ( )2 1

N

maxG −  
Min Avg. Max Min Avg. Max 

2 8 5 8 1 2 3.29 7 18 

3 68 7 96 1,809 2 6.77 30 119 

4 3904 9 47,843 9,548,355 2 13.31 72 540 

Figure 4.43: Path Height Data on P-Equivalence Class Functions 

 A better estimate of the average height of the search tree can be obtained using the results of the 

experiments.  The graphs in Figure 4.44 compare the average height of a path in the search tree with the 

number of inputs in the network on the left and the optimal cost of the network on the right.  Again the cost 

of the optimal network gives a better indication of the average path height.  The line through the data in this 

graph is an exponential function which provides a trend for the average height based on the size of the 

optimal network.  Using this equation in the search tree equation gives an approximation of the size of the 

search tree of 

0.16
2.8 1(.04 2) 1

.04 1

c
ec

c

++ −

+
, where c is the cost of the optimal network. 
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Figure 4.44: Average Path Height as a Function of Input Size and Network Cost 

4.4.1.3 Search Tree Size 

Now that both the height and width of the search tree have been analyzed based on experimental results, 

the approximations of the search tree size can be compared to the actual size of the search trees to 

determine how well the equations model the actual data.  The two equations obtained in Section 3.6 that 

provide upper bounds on the size of the search tree were 
( ) ( )

( )
2 1 1

2
1

( )
1

n
max

n
max

G

max G

max

max

n G
O n G

n G

− +
+ −

= +
+ −

 and 

( )
( )

2

2

2 (2 1) 1
2 1

2

2 1

2 1
2

2 1

n
n

n

n

n
O

− +
−

−

−
=

−
.  In this section experimental evidence has been used to provide a better 
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approximation for the size of the search tree: ( )
0.16

2.8 1
2(.04 2) 1

.04 1

c

c
ec

O c
c

++ −
=

+
.  The graph on the left in 

Figure 4.45 provides a comparison of this new model with the actual data obtained from the various P-

equivalence and functions classes organized according to the cost of the optimal network.  This graph 

shows that the search tree size appears to follow a greater than exponential trend which is bounded above 

by this approximation equation.   

The analysis thus far has shown that the cost of the optimal network provides the best indication of the 

size of the search tree.  Therefore we can use this property to find a model directly from the search tree 

data.  The second graph in Figure 4.45 shows the average search tree size as a function of the number of 

gates in the optimal network.  These data are modeled by a greater than exponential function given by the 

dotted line in the graph.  This model gives an indication that the size of the search tree for the average case 

given the cost of the optimal network. 



 

 120 

 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

0 5 10 15 20

S
e

a
rc

h
 T

re
e

 S
iz

e

Cost of Optimal Network
 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

0 5 10 15 20

S
e

a
rc

h
 T

re
e

 S
iz

e

Cost of Optimal Network
 

Figure 4.45: Search Tree Analysis Based on the Cost of the Optimal Network 

4.4.2 Search Space Analysis using Function Classes 

The function classes can also provide a view of the search space.  Since the optimal solution for every 

function in a class will be constructed from the same pattern of nodes, the search tree produced by the 

algorithm on these classes should follow a pattern as well.  The table and graph in Figure 4.46 give the size 

of the search tree for seven NAND functions. 

0.162.8 1
(.04 2) 1

.04 1

ce
c

S
c

+
+ −

=
+

2
0.1 0.1 1.82 c cS + +=
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Input Minimum Cost Search Tree Size Branches 

2 1 5 2 

3 3 7 3 

4 5 17 8 

5 7 91 40 

6 9 1,724 626 

7 11 69,590 23,525 
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Figure 4.46: Search Tree Size for NAND functions 

These points fit the equation ( ) 1.52
n

S n = .  Once again a double exponential model for the size of the 

search tree appears.  The algorithm begins the search for an optimal network of an n-input NAND function 

by performing the exact same steps as performed in the search for an optimal network of an (n – 1)-input 

NAND function.  Within this search, the optimal network is found.  The optimal network is always the first 

network found for this class of functions.  The remainder of the search space is used to prove the optimality 

of the network.  Within this search, the search for an m-input NAND network is repeated for every m < n. 

4.4.3 Search Space Analysis Conclusions 

The results of both search space analyses provide a general idea of the complexity of the algorithm.  

First it was discovered that the cost of the optimal solution provides the best indication for the size of the 

search tree produced by the algorithm.  It was discovered that the size of the search tree is double 

exponential in the cost of the optimal solution.  This type of growth explains the sharp cutoff that occurred 

between the functions that the algorithm was able to complete and those which it was not in Section 4.3.  

Networks with cost between 13 and 16 provide the boundary of the algorithm.  The algorithm was able to 

complete the search providing networks with cost up to 16, while in some cases the algorithm was not able 
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to complete the search for networks with cost as little as 13. Using the search tree approximation, the size 

of an average search tree for a network requiring 13 gates should be approximately 1.1 × 10
6
.  When the 

optimal network increases to 16 gates, we expect the average size of the search tree to increase to 5.4 × 10
8
. 

4.5 Conclusions 

In this chapter experimental results were provided for the algorithm presented in Chapter 3.  First, 

experimental justifications for the algorithmic improvements were given.  Next, optimal results for several 

groups of Boolean functions were provided.  The P- and NPN-equivalence classes provided a database of 

optimal networks for functions with 5 or fewer inputs.  The function classes gave results on larger functions 

and through analysis of the structures of the networks gave formulas for optimal networks within certain 

classes.  The benchmark functions gave even larger functions which allowed us to evaluate the algorithm 

on a more varied group of functions.  Here evaluations of the algorithm with respect to network size, input 

size and output size could be made.  This chapter concluded with an analysis of the search using 

experimental results.  An approximation for the size of the search tree in terms of optimal network cost was 

obtained. 
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Chapter 5  

Variations on Optimal Synthesis 

The optimal synthesis algorithm, BESS, used to provide the results given in Chapter 4 used a very 

specific set of constraints for the networks generated.  One of the advantages of BESS is that many of these 

constraints can easily be changed. In this chapter we will explore some of the variations that are possible.  

For each variation we will describe how the algorithm needs to be changed to produce the variation as well 

as how the variation effects the optimal network results and the performance of the algorithm.  Then we 

will provide results of the algorithm on select functions.  Finally, we will compare these results to similar 

results found in the literature.   

5.1 Summary of Previous Results 

Since the results from Chapter 4 will be used repeatedly for comparison purposes, we summarize those 

results here.  Figure 5.1 gives a summary of the results of BESS on the representative function sets for 

inputs 2, 3, and 4 and a summary of the results of the algorithm on eight classes of functions.  The 

algorithm was allowed 3 hours to complete each function. For the classes, functions on an increasing 

number of inputs were evaluated until the search could no longer be completed in the allotted time.  The 

number given in the second column of table (b) gives the largest function on which the algorithm found and 

proved an optimal network. 
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Inputs Functions Complete Cost 
Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 24 58 3.25 2.00 

3 68 68 405 6,013 6.71 2.20 

4 3,904 3,904 37,936 169,979,553 12.95 2.41 

       

(a) Representative Functions 
       

Function 

Class 

Max Input 

Completed 
Cost 

Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

AND 7 42 1,415,831 12.90 2.10 

NAND 7 36 1,415,831 12.90 2.10 

OR 6 45 2,534,439 10.37 2.25 

NOR 6 50 2,534,439 10.37 2.25 

XOR 4 24 48,454 16.13 2.38 

XNOR 4 27 167,849 13.74 2.50 

MAJ 5 31 170,359,918 12.64 2.29 

MUX 6 50 51,653 11.04 2.40 

       

(b) Classes of Functions 

Figure 5.1: Results of BESS on Representative Functions 

In both tables, the last 4 columns give the information from the search for all functions in the class.  

First, the sum of the costs for the optimal networks of all functions in the class is given.  Next the total size 

of the search trees for all functions is given.  The last two rows show the average height of a path in the 

search trees and the average width of a branch in the search trees. 

5.2 Fan-in and Fan-out Restrictions 

Restrictions on both the fan-in and fan-out of the gate nodes can be enforced.  In the original version a 

fan-in restriction of 2 is enforced on the gate nodes.  The same type of restriction can be placed on the fan-

out of the node as well.  In this section different fan-in and fan-out restrictions are placed on the gate nodes.  

In addition, the case when no restriction is used for the fan-in and fan-out sets will be considered. 

5.2.1 Variation: Fan-out = 1 

In our first variation we will restrict the fan-out of the gate nodes to 1.  This fan-out restriction limits the 

structure of the resulting networks.  This results in a simpler synthesis problem since the reuse of gate 

nodes within the network is no longer possible. 

5.2.1.1 Changes to the Algorithm 

In order to accommodate the new fan-out restriction, the computation of the connectible set must be 

changed .  In the original version there are four types of nodes that can be used to cover an uncovered on-

set minterm of a given node i: (1) primary input nodes, (2) existing gate nodes that already exist as an input 
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of i, (3) existing gate nodes that are not an input of i, and (4) new gate nodes.  The fan-out restriction limits 

the type of covering nodes down to only three: (1) primary input nodes, (2) existing gate nodes that already 

exist as an input of i, (3) existing gate nodes that are not an input of i, (3) new gate nodes.  Existing gate 

nodes that are not connected as an input of node i can not be used since the fan-out of these nodes would 

become greater than one if used to cover in this situation.  Thus the UpdateConnectibleSet 

procedure will only need to consider nodes of types (1), (2), and (4) as options for inclusion in a node’s 

connectible set.  The result of this procedural change is that at most (n + 2) nodes (where n is the number of 

input nodes) need to be searched each time the connectible set is updated rather than (n + g) nodes (where g 

is the number of gate nodes in the network) as in the original version. 

With this simple change made, the algorithm will now optimally synthesize Boolean functions into fan-

out free networks.  However, one additional modification can be made to improve the efficiency of the 

search.  This modification removes the global functional implications used in the original version of the 

algorithm.  All functional implications made based on these structures are no longer possible since 

reconvergent fan-out cannot exist if the base node has only a single fan-out.  The algorithm can save time 

by skipping the search for these structures altogether.   

5.2.1.2 Experimental Results  

Two tables of results are given using this variation of the algorithm where the fan-out set of the gate 

nodes is limited to 1.  Table (a) in Figure 5.2 shows the results of this variation on the set of representative 

functions for the P-equivalence classes on 2, 3, and 4 inputs.  The details of the search are given in columns 

4 – 7.  Table (b) in  Figure 5.2 shows the results of this variation on the classes of functions.  A comparison 

of these results with results from the original version is given in the graphs of Figure 5.3.  All functions 

from the three P-equivalence classes and 8 function classes are plotted along the x-axis according to their 

cost and  search tree size, respectively.  The first graph compares the cost of the optimal network for each 

function while the second graph compares the size of the search tree for each function. 
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Inputs Functions Complete Cost 
Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 25 50 3.02 2.00 

3 68 68 449 11,531 6.14 2.02 

4 3,904 3,904 47,329 609,213,354 14.31 2.06 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost 

Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

AND 8 56 973,982 19.80 2.09 

NAND 8 49 973,982 19.80 2.09 

OR 6 63 445,634 14.25 2.01 

NOR 6 69 445,634 14.25 2.01 

XOR 4 42 11,588,443 17.30 2.07 

XNOR 4 41 9,429,410 16.30 2.05 

MAJ 5 34 533,873 11.77 2.04 

MUX 6 56 7,832 12.47 2.05 

      

(b) Classes of Functions 

Figure 5.2: Results of Fan-out = 1 
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Figure 5.3: Graphs of Results when Fan-out = 1 
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The most obvious effect that this fan-out restriction has is on the size of the optimal networks.  By 

removing the possibility for interconnections between the gate nodes in a network, larger networks must 

now be created for functions which previously required gate nodes of larger fan-out.  This includes 

functions from the XOR and XNOR classes where the networks increased by as many as 11 gates.  Some 

optimal networks will remain the same however as these networks originally had a fan-out free structure.  

This is true for the functions from the AND, NAND, OR, and NOR classes.  From the results we found that out 

of the 3,980 representative functions, 3,421 had optimal fan-out free networks with larger cost than the 

optimal network found by the original version.  Of these networks, the largest increase in cost was 92% (11 

gates) while the average was 27% (2.8 gates). 

The changes made to the algorithm to produce these networks effect the search that is performed.  Since 

existing gate nodes can no longer be used in the covering, the options for covering are greatly reduced from 

(n + g) to (n + 2).  This reduction has two effects on the search.  The first is that the search time for the 

connectible set is reduced as fewer nodes must be searched.  This reduction, along with a reduction in the 

time needed to propagate functional implications through the network, provide a reduction in the average 

time spent on a single branch in the search tree.  The experimental results show that the average number of 

branches of the search tree that can be explored in 1 second is increased from 815 to 1,186.  

  The second effect that a reduction in the covering options has on the search is that the size of the 

connectible sets is reduced. This effects the width of the branches in the search tree.  The experimental 

results show that the average width of a branch in the search tree is reduced 14%. 

With the reduction in the width of the branches of the search tree, we would expect to see a reduction in 

the total size of the search tree.  This is not always the case however.  The second graph in Figure 5.3 

shows that for about half of the functions a larger search must be completed.  The increased size of the 

network plays a role in this increase.  When the number of nodes is not increased, a reduction in the search 

tree size is seen.  This is the case of the functions classes AND, OR, NAND, and NOR.  However, when the 

number of nodes increases in the network, more on-set minterms must be covered in order for the network 

to be complete. Therefore we expect when the cost of the minimal network increases the size of the search 

tree will also increase.  This is true for the function classes XOR and XNOR. 

5.2.2 Variation: Fan-in = 3, Fan-out = 3 

In the previous variation, the algorithm was changed to limit the fan-out of the gate nodes.  The 

variation described here shows that any restriction can be placed on the fan-in and fan-out of the gate 

nodes. We increase both the fan-in and fan-out restrictions from the previous variation to 3.   
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5.2.2.1 Changes to the Algorithm 

One change that must be made to the algorithm when any fan-in or fan-out restriction is used occurs 

within the UpdateConnectibleSet procedure.  When finding the connectible set of a gate node i, the 

procedure must guarantee that using a node l from the connectible set for covering will not increase the size 

of the fan-in set of i and the fan-out set of l past the restrictions. 

A change must also be made to the PropagateFunctionalImplications procedure.  When the fan-

in limit was 2, the local function of a gate node (i, j, k) was 
i j k

f f f′ ′= ∨ .  Based on this relationship the 

functional implications followed:  

• Forward implications : 

OFF ON      and     OFF ON

ON ON OFF

j i k i

j k i

→ →

∧ →
 

• Backward implications: 

OFF ON      and     OFF ON

ON ON OFF      and     ON ON OFF

i j i k

i j k i k j

→ →

∧ → ∧ →
 

Now that three nodes are allowed in the fan-in set of a gate node, the local function of a gate node (i, j, 

k, l) is 
i j k l

f f f f′ ′ ′= ∨ ∨ .  Therefore the functional implications should be extended to: 

• Forward implications : 

OFF ON      and     OFF ON      and     OFF ON

ON ON ON OFF

j i k i l i

j k l i

→ → →

∧ ∧ →
 

• Backward implications: 

OFF ON      and     OFF ON      and     OFF ON

ON ON ON OFF      and     ON ON ON OFF      and     ON ON ON OFF

i j i k i l

i k l j i j l k i j k l

→ → →

∧ ∧ → ∧ ∧ → ∧ ∧ →

 

These same implications can be extended for any finite value assigned as the fan-in restriction.  The on-

set of a gate node is updated any time the off-set of one of its fan-in nodes is changed.  The off-set of a 

node is only updated when the fan-in limit of the gate node has been reached.   

All pruning techniques, global functional implications, and structural implications can remain 

unchanged from the original version since the properties of the network that allowed for these techniques to 

be used has remained unchanged as a result of the fan-in and fan-out restrictions. 

5.2.2.2 Experimental Results  

The two tables of results using this variation of the algorithm are given here.  Table (a) in Figure 5.4 

shows the result of this variation on the set of representative functions for the P-equivalence classes on 2, 3, 

and 4 inputs.  Table (b) shows the results of this variation on eight of the classes of functions.  Details of 
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the optimal cost and size of the search tree for individual functions are given in the graphs in Figure 5.5.  

These graphs compare this version of the algorithm to the previous version from Section 5.2.1 where the 

fan-in sets are limited to 2 nodes and the fan-out sets are limited to 1.  

Inputs Functions Complete Cost 
Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 24 58 3.25 2.00 

3 68 68 328 3,467 6.50 2.18 

4 3,904 3,904 29,764 793,162,813 13.82 2.45 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost 

Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

AND 8 32 439,738 18.28 2.11 

NAND 8 25 439,738 18.28 2.11 

OR 6 33 100,014 8.16 2.29 

NOR 6 38 100,014 8.16 2.29 

XOR 4 22 14,506,324 15.68 2.35 

XNOR 4 23 550,491 13.56 2.43 

MAJ 5 23 7,079,041 11.02 2.24 

MUX 6 25 2,321 10.41 2.63 

      

(b) Classes of Functions 

Figure 5.4: Results of Fan-out = 3, Fan-in = 3 Variation 
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Figure 5.5: Graphs of Results when Fan-in = 3 and Fan-out = 3 
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By increasing the fan-in and fan-out restrictions in this variation compared to the previous variation, the 

cost of the optimal networks will decrease since more connections between the gates are allowed.  The 

increase in the number of possible connections results in an increase in the size of the connectible sets.  

However, this results in an increase of the branch-width by an average of 19% to approximately 2.45.  

Fewer implications occur in the search as a result of the fan-in increase.  This can cause the size of the 

search tree to increase for some functions.  However, a decrease in the optimal cost will cause the size of 

the search tree to be reduced for other functions.  Overall, a majority of the functions see a decrease in the 

size of the search tree. 

5.2.3 Removal of Fan-in and Fan-out Restrictions 

The final variation on the algorithm with regards to the fan-in and fan-out restrictions is the removal of 

both restrictions.  The gate nodes in these networks can have any size fan-out sets as in the original 

networks, however now the fan-in sets can be any size as well.  By removing the fan-in and fan-out 

restrictions there is greater freedom in the connections that can be made within the network.   

5.2.3.1 Changes to the algorithm 

Once again the UpdateConnectibleSet procedure must be changed to allow any valid connectible 

node into a connectible set regardless of the size of the fan-in or fan-out sets.   

The PropagateFunctionalImplications procedure will need to be changed as well.  Now that the 

fan-in limit has been removed, the function of a gate node (i, j0, j1, … , jk) is 
0 1 ki j j jf f f f′ ′ ′= ∨ ∨ ∨� .  Since 

a new node can always be added to the fan-in set of a gate node, a pseudo-node 0, with function 

[ ]0
0,1f = must always be considered as an input to the gate node when functional implications are 

performed.  Thus the relation between a node’s input and output function is expressed as follows: 

0

0

ON OFF OFF 0

OFF ON ON 0

k

k

i j j

i j j

= ∨ ∨ ∨

= ∧ ∧ ∧

�

�

 

Therefore functional implications can only be made to the on-set of the global functions.  These 

implications are:   

• Forward implications: 

0
OFF ON  ,  , OFF ON

kj i j i→ →…  

• Backward implications: 

0
OFF ON  ,  , OFF ON

ki j i j→ →…  

The global functional implications must be removed as well.  Both types of global functional 

implications were based on the assumption that one of the two fan-in nodes at the point of the reconvergent 

fan-out must cover the on-set minterm from this origin node.  This assumption can no longer be made with 
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this variation since a new node can always be added to the fan-in set of a gate node to cover a minterm.  

Thus, global functional implications of this type can no longer be performed. 

All other pruning techniques and structural implications can remain unchanged since the properties of 

the network that allowed for these techniques to be used have remained unchanged. 

5.2.3.2 Experimental Results 

Two tables of results using this variation are given in Figure 5.6.  The fan-in and fan-out of the gate 

nodes are unrestricted.  Table (a) gives a summary of the results obtained with this variation on the set of 

representative functions for the P-equivalence classes of 2, 3, and 4 inputs.  Table (b) gives a summary of 

results obtained with this variation on the classes of functions.  A comparison of these results with the 

results from the original version is given in the graphs of Figure 5.7.  The first graph compares the cost of 

the optimal network for each function while the second graph compares the size of the search tree for each 

function. 

Inputs Functions Complete Cost 
Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 24 54 3.15 2.00 

3 68 68 327 1,904 5.68 2.09 

4 3,904 3,904 27,861 12,401,238 11.13 2.38 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost 

Search 

Tree Size 

Avg. 

Height 

Avg. 

Width 

AND 9 16 96 4.571 2.000 

NAND 9 8 96 4.571 2.000 

OR 8 42 7,349 9.506 2.223 

NOR 9 49 7,349 9.506 2.223 

XOR 4 21 167,763 12.760 2.344 

XNOR 4 22 135,983 15.617 2.367 

MAJ 5 21 5,867,720 10.863 2.188 

MUX 6 34 285 7.184 2.347 

      

(b) Classes of Functions 

Figure 5.6: Results of Fan-in and Fan-out Restriction Removal 
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Figure 5.7: Graphs of Results when Fan-in and Fan-out Restrictions are Removed 

1

10

100

1000

10000

100000

1000000

10000000

S
ea

rc
h

 T
re

e 
S

iz
e

Functions

Fan-in = 2 Unlimited Fan-in



 135 

The removal of the fan-in limit on the gate nodes has several effects on the search.  The first is on the 

cost of the optimal network.  By allowing a larger fan-in set for the gate nodes, more nodes can contribute 

in the covering of the on-set minterms from the global function of a gate node, and thus fewer nodes will be 

required to complete a network.  The cost of an optimal network from this variation is always less than or 

equal to the cost of the optimal network found with the original version.  The results show that 95% of the 

functions saw a reduction in the optimal cost for a network.  The average optimal cost was reduced by 

approximately 25% or 2.5 gates.  Of the 3,980 function from the P-equivalence classes, 3,907 had optimal 

networks containing gates with fan-in larger than two.  The maximum fan-in of a gate was six.  Twenty-

two of the networks had a gate with six inputs. 

The second effect that results from allowing unlimited fan-in is that fewer functional implications are 

possible.  Without the fan-in bound, only a single level of functional implications is possible for any change 

in the global function of a node.  This can reduce the time spent updating the network after a covering is 

made.  It can also cause more coverings to be necessary since fewer coverings will be performed simply as 

a result of the functional implications.  The result would be an increase in the height of the search tree.  

However, such an increase is not seen.  The reduction in the number of gates in the network counteracts 

any increase in the number of coverings required due to fewer functions implications.   

The cost of the network plays the largest role in determining the size of the search tree here.  The 

significant decrease in the size of the optimal networks results in an equally significant decrease in the size 

of the search trees.  An average 25% decrease in the cost of the networks translates into an average 86% 

reduction in the size of the search tree. 

Since the optimal networks tend to be smaller compared to the original results, optimal networks for 

more of the functions from the classes of functions are able to be completed within the time limit.  

However on closer inspection one can discover that the algorithm was unable to find and prove optimal 

networks for functions that require more than 16 gates.  This is similar to the limitations discovered on the 

original version of the algorithm in Chapter 4. 

5.3 Level Restriction 

A reduction in the size of the search space can be achieved by imposing a level restriction on the 

network. This allows the algorithm to complete the search on functions requiring larger cost networks than 

what has been completed previously.  A level restriction will be added to two versions of the algorithm.  

The first version will be based on the original version where gate nodes have a fan-in restriction of 2.  With 

both a level and fan-in restriction, networks for some functions may no longer exist under these constraints.  

An evaluation of which functions can be completed and which cannot be completed will be given.  The 

second version will then remove the fan-in restriction so that only a level restriction is placed on the 

networks.  This will allow optimal networks for all functions to be found within the restriction.  A 

comparison of these results to those obtained in Section 5.2.3 can then be completed. 
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5.3.1 Restrictions: Level = 3, Fan-in =2 

The algorithm is able to enforce this level restriction with a simple change in the 

UpdateConnectibleSet procedure.  In addition to the functional and structural constraints that a node 

must fulfill in order to be included in a connectible set, a level constraint must also be added.  This level 

constraint specifies that the addition of the node l as an input to a gate node i will not create a network with 

more than 3 levels.  Aside from this additional constraint no other changes need to be made to the original 

version. 

The purpose of adding this level restriction was to reduce the size of the search space.  However, 

because of this level restriction a rise in the cost of an optimal network should be expected as well. 

Results of this version are given in Figure 5.8.  As expected, networks for only a very few number of 

functions could be found because of the restrictions placed on the networks. The details of the search in the 

tables are given for only those functions on which the search was completed and a network found.  The 

largest network that was completed contained 7 gates.   There were 7 such functions, one with 3 inputs and 

the remaining with 4 inputs.  As the tables indicate, when the number of inputs to the network increase, 

fewer networks are to be created because of the restrictions.  Only 1% of the 4-input functions have 

networks, while all 2-input functions have a network.  Because the networks that were found are so small, it 

is hard to perform a real comparison to detect how this restriction effects the search space.  Thus the fan-in 

restriction must be removed. 

Inputs Functions Complete Cost 
Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 24 64 3.26 2.03 

3 68 23 97 909 3.89 2.09 

4 3904 45 233 42,260 3.10 2.07 

       

(a) Representative Functions 
       

Function 

Class 

Max Input 

Completed 
Cost 

Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

AND 2 2 5 2.67 2.00 

NAND 4 9 29 3.60 2.00 

OR 2 3 5 2.67 2.00 

NOR 2 4 5 2.67 2.00 

XOR 2 4 15 5.88 2.00 

XNOR 2 5 29 5.18 2.00 

MAJ 2 2 5 2.67 2.00 

MUX 3 4 10 4.00 2.25 

       

(b) Classes of Functions 

Figure 5.8: Results of Level = 3 Restriction 
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5.3.2 Restriction: Level = 3, Unrestricted Fan-in 

The two tables of results using this variation of the algorithm are given in Figure 5.9.  Table (a) shows 

the result of this variation on the set of representative functions for the P-equivalence classes on 2, 3, and 4 

inputs.  Table (b) shows the results of this variation on the classes of functions. 

Now that the fan-in restriction has been removed, networks for all functions are completed.  Effects of 

this level restriction can be discovered when they are compared to the results given in Figure 5.6.  A 

comparison of these two versions in terms of the optimal network cost and search tree size for individual 

functions are shown in Figure 5.10.  The first graph in Figure 5.10 shows that the search tree size is reduced 

for most functions when the fan-in limit is imposed.  On average the search tree was reduced by 41% when 

the level constraint was added due to the reduction in the solution space.  The overall reduction in the 

search tree size results in a 22% reduction in the amount of time required to complete the search.  While the 

search space was reduced due to a reduction in the overall size of the solution space, the cost of the optimal 

networks increased as shown in the second graph in Figure 5.10.  For an average function, the cost 

increased by approximately 8%. 

The details of the search tree changed as expected.  The average width of a branch in the search tree 

increased over the previous results with no level restriction.  This increase is due to the necessary increase 

in the size of the fan-in of a gate node when a level restriction is imposed.  The search tree height also 

increased due to an increase in the number of gates in the optimal network that are necessary to maintain 

the level restriction.  

Inputs Functions Complete Cost 
Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 24 56 3.14 2.04 

3 68 68 334 1,620 5.88 2.19 

4 3904 3904 30,344 1,637,156 12.11 2.45 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost 

Search Tree 

Size 

Avg. 

Height 

Avg. 

Width 

AND 9 16 96 4.571 2.000 

NAND 9 8 96 4.571 2.000 

OR 9 52 138 4.601 2.000 

NOR 9 60 96 4.571 2.000 

XOR 4 25 48,867 15.293 2.603 

XNOR 4 26 9,780 13.874 2.556 

MAJ 9 257 13,999 7.875 2.012 

MUX 9 33 2,769 2.380 2.380 

      

(b) Classes of Functions 

Figure 5.9: Results of Level Restriction = 3 and No Fan-in Restriction
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Figure 5.10: Graphs of Results of Level Restriction = 3 and No Fan-in Restriction 
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This level restriction produces an increase in the number of gates for an optimal network, while a 

decrease in the size of the search tree is seen.  Because of the reduction in the search space larger functions 

from some of the function classes were completed within the time limit.   

5.4 Alternate Cost Functions 

The cost function used in the original version of the algorithm is based solely on the number of gates in 

the network.  Alternate properties of the network can be used as part of the cost function however.  In this 

section results of the algorithm with several different cost functions are provided.  These demonstrate the 

types of cost functions available as well as the effects that these cost functions have on the algorithm and 

the optimal networks. 

5.4.1 Cost Function using Gates and Interconnect 

The first cost function that will be employed ranks networks according to the number of gates in the 

network as well as the number of interconnections that exist between nodes in the networks.  These two 

properties of the network can be combined into a cost function as follows: ( )Cost 10 gates edges= + .  This 

cost function prioritizes the number of gates as the first objective while including the number of edges as a 

second objective.  In some cases an increase in the number of gates may be traded for a steep reduction in 

the number of interconnections. 

5.4.1.1 Changes to the Algorithm 

The only change that must be made in the algorithm is the computation of the cost function.  In the 

original version, the value of the cost function for a given network is maintained by the network data 

structure.  When a new gate is added to the network the cost is increased.  The same process can be 

performed for this variation, but now the cost function must be updated any time a gate or edge is added to 

the network. 

5.4.1.2 Experimental  

Because additional constraints are added to the cost function, the size of the search tree should increase.  

More of the solution space must be explored to guarantee the optimality of the network with regards to both 

the number of gates and the number of interconnections.   

The tables in Figure 5.11 give the results of the algorithm using this new cost function.  In table (a), the 

fourth column give the sum of the costs of the optimal networks for all functions in the class; the fifth and 

sixth columns give the specific details of this cost dividing it into the sum of the gates and the sum of the 

edges of the optimal network.  Similar details for the cost function are given in columns three through five 

in table (b).  The remainder of each table gives the details of the search performed by the algorithm.  The 
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graphs in Figure 5.12 compare the number of gates in the optimal circuit and the size of the search tree for 

individual functions when this variation and the original version are used.  

Inputs Functions Complete Cost Gates Edges 
Search 

Tree 

Avg. 

Height 

Avg. 

Width 

2 8 8 277 24 37 70 3.27 2.02 

3 68 68 4,730 405 680 33,441 7.89 2.25 

4 3,904 3,904 448,278 37,936 68,918 1,797,451,468 15.81 2.49 

         

(a) Representative Functions 

   

Function 

Class 

Max Input 

Completed 
Cost Gates Edges 

Search 

Tree 

Avg. 

Height 

Avg. 

Width 

AND 7 483 42 63 7,918,363 15.56 2.27 

NAND 7 417 36 57 7,918,363 15.56 2.27 

OR 6 510 45 60 4,448,834 11.21 2.39 

NOR 6 565 50 65 4,448,834 11.21 2.39 

XOR 4 288 24 48 948,844 18.77 2.51 

XNOR 4 318 27 48 2,199,586 19.48 2.74 

MAJ 4 188 16 28 4,539 8.66 2.24 

MUX 6 591 50 91 531,457 13.66 2.48 

        

(b) Classes of Functions 

Figure 5.11: Results with Cost Function: ( )Cost 10 gates edges= +  
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Figure 5.12: Graphs of Results with Gate and Edges Cost Function 
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Due to the weight placed on the number of gates in this cost function, no trade-off was made to reduce 

the number of interconnections by increasing the number of gates in the optimal network of a function.  

The cost function only ranked networks with the same number of gates based on the number of edges in the 

network.  Of the 3,980 functions, 1,937 of them had networks with fewer edges than the one found by the 

original version.   

Since the cost function is based on both the number of gates and number of edges in the network, more 

of the solution space must be searched in order to guarantee the optimality of the network under both 

constraints in the cost function.  On the P-equivalence class functions, the search tree produced by the 

algorithm increased by an average of 858%.   

5.4.2 Cost Function using Gates and Levels 

An alternate version of the cost function uses both the number of gates and the number of levels to rank 

networks.  Once again, these two properties can be combined into a single cost function: 

( )Cost 2 gates levels= + .  With this cost function, the number of gates is prioritized as the first objective 

although not as strongly as in the previous cost function variation, while the number of levels in the 

networks is the second priority.  With this cost function, more cases are expected where an increase in the 

number of gates is traded for a reduction in the number of levels. 

5.4.2.1 Experimental Results 

The tables in Figure 5.13 give the results of the algorithm using this new cost functions.  In table (a) of 

Figure 5.13 the fourth column gives the sum of the costs of the optimal networks for all functions in the 

class; the fifth and sixth columns give the specific details of this cost dividing it into the sum of the gates 

and the sum of the levels of the optimal networks.  Similar details for the cost function are given in 

columns three through five in table (b).  The remainder of each table gives the details of the search 

performed by the algorithm including the time for the search to complete, the size of the search trees 

produced by the algorithm and the average width and height for these search trees.    The graphs in Figure 

5.14 compare the number of gates in the optimal circuit and the size of the search tree for individual 

functions when this variation and the original version are used.  
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Inputs Functions Complete Cost Gates Levels 
Search 

Tree Size 

Avg. 

Height 

Avg. 

Width 

2 8 8 67 24 19 64 3.28 2.03 

3 68 68 1,081 405 271 6,532 6.84 2.20 

4 3904 3904 97,662 38,104 21,454 167,541,866 13.59 2.49 

         

(a) Representative Functions 

   

Function 

Class 

Max Input 

Completed 
Cost Gates Levels 

Search 

Tree Size 

Avg. 

Height 

Avg. 

Width 

AND 7 112 42 28 307,976 11.82 2.15 

NAND 7 94 36 22 307,976 11.82 2.15 

OR 6 112 45 22 169,322 9.28 2.29 

NOR 6 127 50 27 169,322 9.28 2.29 

XOR 4 63 24 15 72,397 16.13 2.54 

XNOR 4 69 27 15 105,756 16.23 2.66 

MAJ 4 42 16 10 277 6.12 2.16 

MUX 6 127 50 27 65,556 11.00 2.44 

        

(b) Classes of Functions 

Figure 5.13: Results with Cost Function: ( )Cost 2 gates levels= +  
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Figure 5.14: Graphs of Results with Gate and Levels Cost Function 
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The results show that there are some cases where the number of gates in the network is increased to 

obtain a decrease in the number of levels, producing a lower cost network.  This only happens however on 

a few of the larger functions.  166 of the 3,980 functions have more gates in the optimal network found 

here than the one found with the original version.  The largest network from this group uses 15 gates rather 

than 14 previously. 

The majority of functions saw a slight increase in the size of the search tree.  This is due to an increase 

in the amount of the search space that must be considered. The increase was much smaller than the increase 

observed with the previous cost function; however, it was large enough to prohibit four networks from the 

classes of functions from being completed in the allotted time.  These four were the 6-input OR, the 6-input 

NOR, the 5-input MAJORITY, and the 6-input MULTIPLEXER.  In each of these four cases this version of the 

algorithm found a network with the same number of gates as the basic version of the algorithm but since a 

larger portion of the solution space must be searched to determine if the network is optimal with respect to 

both the number of gates and the number of levels, the search was not able to be completed in time. 

5.5 Alternate Building Blocks 

We chose to use the building block set {NAND2} for our original version for several reasons including 

the simplicity of the set as well as the prevalence of this gate in logic synthesis.  However, the algorithm 

can be changed to perform synthesis with any complete set of logic gates.  This will require a reworking of 

the covering conditions and the functional implications in the algorithm.  In this section the details on how 

this can be done and results of the algorithm using the complete sets {NOR2} and {AND2, OR2, NOT} are 

given.   

5.5.1 Building Block Set {NOR2} 

5.5.1.1 Changes to the Algorithm 

The duality of the Boolean functions NAND and NOR make the conversion of the algorithm using NAND 

gates to one that uses NOR gates relatively simple.  In Chapter 2 the relationship among a node’s input and 

output functions was given for the NAND2 gate.  This same relationship for a NOR2 gate  is: 

ON OFF OFF

OFF ON ON

i j k

i j k

= ∧

= ∨
 

Maintaining the consistency of this relationship requires the following functional implications: 

• Forward implications: 

ON OFF      and     ON OFF

OFF OFF ON

j i k i

j k i

→ →

∧ →
 

• Backward implications: 
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ON OFF      and     ON OFF

OFF OFF ON      and     OFF OFF ON

i j i k

i j k i k j

→ →

∧ → ∧ →
 

This relationship was also used to determine the set of functionally consistent nodes as described in 

Section 2.5.  This is the set of nodes l that that can be connected as an input to node i without violating the 

function constraints of the node.  The consistency constraint for a NOR2 gate can be stated as follows: 

ON ON 0

  and

OFF OFF OFF 0

l i

l k i

∧ =

∧ ∧ =

 

The final property dependent on the local function of a gate is the covering property.  A minterm m in 

the off-set of  a NOR gate (i, j, k) is covered if ON ON
j k

m ≤ ∨ , i.e., m is contained in the on-set of either 

input.  This implies that the off-set of the NOR gate nodes will be divided into two sets: the covered and the 

uncovered sets. 

5.5.1.2 Experimental Results 

By employing these functional changes into the procedures of the algorithm a new version is created 

which provides the optimal network using NOR2 gates.  The results of this version are presented in Figure 

5.15 and Figure 5.16.  

Inputs Functions Complete Cost Search Tree 
Avg. 

Height 

Avg. 

Width 

2 8 8 24 58 3.25 2.00 

3 68 68 405 5,971 6.72 2.21 

4 3904 3904 37936 161,779,078 12.93 2.41 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost Search Tree 

Avg. 

Height 

Avg. 

Width 

AND 6 45 2,534,439 10.37 2.25 

NAND 6 50 2,534,439 10.37 2.25 

OR 7 42 1,415,828 12.90 2.10 

NOR 7 36 1,415,828 12.90 2.10 

XOR 4 26 167,927 13.51 2.40 

XNOR 4 25 48,376 16.36 2.48 

MAJ 4 20 32,707 8.77 2.19 

MUX 6 52 54,843 11.33 2.40 

      

(b) Classes of Functions 

Figure 5.15: Results with Building Block {NOR2} 
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Figure 5.16: Graphs of Results with Building Block {NOR2} 
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As expected, the duality of the NAND and NOR functions causes the algorithm to produce similar results 

when the NOR gate is used as a building block. The graphs in Figure 5.16 show a comparison of the cost of 

an optimal network and the size of the search tree for each function using the original version compared 

with the data of its dual function using NOR gates.  Thus, the costs of the two networks are the same.  The 

second graph shows that this version of the algorithm searches the space in the same way producing search 

trees which are similar to those produced when NAND gates are used. 

5.5.2 Building Block Set {AND2, OR2, NOT} 

The algorithm can also be converted to find optimal networks using the building blocks AND2, OR2, and 

NOT.  This will require some additional work since more than one gate type exists in this building block set.  

First the relationship among a node’s input and output functions must be determined  for each gate type.  

Then from this the functional implications, functional connectibility constraint and covering definition for 

each gate type is generated.   

5.5.2.1 Algorithmic Changes 

The relationship among a node’s input and output functions for gate type AND2, OR2, and NOT  can be 

expressed as follows: 

The AND gate (i, j, k): ON ON ON

OFF OFF OFF

i j k

i j k

= ∧

= ∨

 

The OR gate (i, j, k): ON ON ON

OFF OFF OFF

i j k

i j k

= ∨

= ∧

 

The NOT gate (i, j): ON OFF

OFF ON

i j

i j

=

=

 

The consistency of these relationships is maintained using the following implication rules: 

AND gate 

• Forward implications: OFF OFF      and     OFF OFF

ON ON ON

j i k i

j k i

→ →

∧ →

 

• Backward implications: ON ON      and     ON ON

OFF ON ON      and     OFF ON ON

i j i k

i j k i k j

→ →

∧ → ∧ →

 

OR gate 

• Forward implications: ON ON      and     ON ON

OFF OFF OFF

j i k i

j k i

→ →

∧ →

 

• Backward implications: OFF OFF      and     OFF OFF

ON OFF OFF      and     ON OFF OFF

i j i k

i j k i k j

→ →

∧ → ∧ →
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NOT gate 

• Forward implications: OFF ON

ON OFF

j i

j i

→

→

 

• Backward implications: OFF ON

ON OFF

i j

i j

→

→

 

Finally, the functional consistency constraint determines the set of nodes l that can be connected as an 

input of the node i while maintaining the functional relationship of the gate.  The consistency constraints 

for each gate type can be stated as follows:   

AND gate:  OFF ON 0  and  ON OFF ON 0
l i l k i
∧ = ∧ ∧ =  

OR gate:  ON OFF 0  and  OFF ON OFF 0
l i l k i
∧ = ∧ ∧ =  

NOT gate:  OFF OFF 0  and  ON ON 0
l i l i
∧ = ∧ =  

Finally, the gate type determines the covering property that drives the search.  For an AND gate, the 

minterms in the off-set of  a node (i, j, k) are covered if the minterms appear in the off-set of  either j or k.  

The minterms in the on-set of an OR gate (i, j, k) are covered if the minterms appear in the on-set of either j 

or k.  For the NOT gate, the minterms in both the on- and off-set must be covered by the gate’s only fan-in.  

Thus either the on-set or off-set is sufficient for use in this covering property.  When these additions are 

made in the appropriate procedures of the algorithm, the gate type will be used to determine which function 

properties should be followed.   

The use of multiple gate types in the network adds to the complexity of adding a new gate to the 

network.  When a new gate is added, a choice of which type of gate it will be is necessary.  Thus a single 

branch in the network becomes three branches.  This implies that structural implications are no longer 

possible in this case. A structural implication in the original version occurred when the only option for 

covering a minterm was by adding a new gate to the network.  When only one gate type existed, there was 

only one possible way to perform this covering so an implication rather than a branch resulted.  However, 

with this set of building blocks, when the only option for covering a minterm is to add a new gate to the 

network, a choice remains as to which type of gate should be used.  Thus a branching step rather than an 

implication is needed.  This leads to a removal of the structural implication procedure from the algorithm 

for this version and an additional rule to the minterm selection.  The minterm selection heuristic will now 

select a node first if the only option is to add a new gate to the network.  If no such node exists, then the 

heuristic will proceed as before. 

5.5.2.2 Experimental Results 

The results of the algorithm using the building block set {AND2, OR2, NOT} are given in Figure 5.17 and 

Figure 5.18.  Table (a) from Figure 5.17 shows the result of this variation on the set of representative 

functions for the P-equivalence classes on 2, 3, and 4 inputs, while table (b) shows the results of this 

variation on eight of the classes of functions.  The graphs in Figure 5.18 compare this version with the 
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original version.  The cost of the optimal network as well as the size of the search tree is compared for 

individual functions.  

Inputs Functions Complete Cost Search Tree 
Avg. 

Height 

Avg. 

Width 

2 8 8 18 572 3.90 3.38 

3 68 68 329 390,515 7.21 3.54 

4 3,904 3,120 26,195 13,815,224,078 15.01 3.85 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost Search Tree 

Avg. 

Height 

Avg. 

Width 

AND 6 15 3,060 2.60 2.20 

NAND 6 20 4,979 3.20 2.20 

OR 6 15 2,805 2.60 2.60 

NOR 6 20 6,216 3.20 2.20 

XOR 3 12 17,632 5.00 2.00 

XNOR 3 12 10,852 5.00 2.00 

MAJ 4 12 101,913 3.33 2.33 

MUX 3 4 93 3.00 3.00 

      

(b) Classes of Functions 

Figure 5.17: Results with Building Blocks {AND2, OR2, NOT} 
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Figure 5.18: Graph of Results with Building Blocks {AND2, OR2, NOT} 
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Significant changes to both the cost of the optimal networks and the size of the search trees result when 

this new set of building blocks is used.  One change is that the cost of the optimal network decreases for a 

majority of the functions.  This is to be expected since more gates are available to construct the networks.  

On average, the cost of the network was reduced by 1 gate.    

The increase in the number of building blocks available also creates significant changes in the size of 

the search tree.  Every time a new gate is added to the networks, the choice of which type of gate to use 

must be considered. This increases the  width of the branches by an average of 1.5.  This will also cause the 

height of the paths in the search tree to increase since structural implications are no longer possible.  The 

average path height increases from 12 nodes to 15.   These changes to the properties of the search tree 

result in the dramatic increase in the size of the search trees seen in the second graph t in Figure 5.18. 

5.5.3 General Building Block Set 

Any complete set of building blocks can be employed in this synthesis algorithm.  The logic operations 

described here are vertex functions [Karp 61].  Each function evaluates to one of its values (1 or 0) for 

exactly one assignment of the input variables and the opposites values for all others.  These types of 

functions lend themselves to the covering process very easily.  Let ( ),f x y  be a vertex function which 

evaluates to { }0,1b∈ on the input assignment a and evaluates to { }0,1 \ b  for every other assignment.  If f 

is used as a building block, then the relationship among the node’s input and output functions is based on 

the function f.  The functional implications and functional consistency constraint will then follow from this 

relationship. The covering property for this gate is determined by the value b.  If b = 0 then the off-set of 

gate node must be covered by the input nodes.  If b = 1 then the on-set of the gate node must be covered by 

the input nodes. 

More complex functions can also be used as building blocks.  Once again the relationship among the 

node’s input and output functions, the functional implications required to maintain this relationship, and the 

functional consistency constraint will all depend on the function used for this building block.  When a non-

vertex function is used as a building block, both the on- and off-sets of the gate must be covered by its 

inputs.   

For example, the function relationship, forward implications, and covering rule for a an XOR gate node are 

as follows: 

� The relations among the XOR gate node’s input and output function:  

( ) ( )

( ) ( )

ON ON OFF OFF ON

OFF ON ON OFF OFF

DC DC DC

i j k j k

i j k j k

i j k

= ∧ ∨ ∧

= ∧ ∨ ∧

= ∨

 

� Forward implications for the XOR gate: 
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( )

( )

( )

( )

ON OFF ON

OFF ON ON

ON ON OFF

OFF OFF OFF

j k i

j k i

j k i

j k i

∧ →

∧ →

∧ →

∧ →

 

� The global functions at the inputs of the XOR gate must cover both on- and off-sets for the gate to be 

considered covered.  Since the covering minterms are dependent on the relationship between global 

functions of the fan-in nodes, the covering must be performed by considering pairs of fan-in nodes.   

5.6 Complemented Inputs 

The final variation on BESS will be to allow complemented inputs as input nodes to the network.  This 

will allow the network more options to use in the covering with no cost penalty.  The result should be 

smaller networks and a smaller search tree.  This change should allow the algorithm to find optimal 

solutions for a larger set of functions. 

5.6.1.1 Changes to the Algorithm 

The only addition that is necessary in order for the algorithm to complete this version is to add 

complemented input nodes to the initial network before the first SynthesizeNetwork procedure is called.  For 

example, the initial network for the set of function { }1 1 2 2 1 2
,g x x g x x= ⊕ = ∧  will go from the network 

shown on the left in Figure 5.19 to the network shown on the right. 

 

Figure 5.19: Initial Network with Complemented Inputs 

5.6.1.2 Experimental Results 

The results of the algorithm which allows for complemented inputs are given in Figure 5.20 and Figure 

5.21.  Figure 5.20 gives tables of results from this variation on the set of representative functions for the P-

equivalence classes on 2, 3, and 4 inputs and the classes of functions.  The graphs in Figure 5.21 compare 

the results of this variation to the original version on individual functions.  The optimal cost and search tree 

size are compared.  
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Inputs Functions Complete Cost Search Tree 
Avg. 

Height 

Avg. 

Width 

2 8 8 15 48 2.95 2.00 

3 68 68 294 4,249 5.84 2.08 

4 3,904 3,904 30,555 72,447,331 12.62 2.34 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost Search Tree 

Avg. 

Height 

Avg. 

Width 

AND 7 42 2,863,646 14.49 2.16 

NAND 7 36 2,863,646 14.49 2.16 

OR 7 36 255,603 11.64 2.08 

NOR 7 42 255,603 11.64 2.08 

XOR 4 20 120,344 14.64 2.30 

XNOR 4 20 28,794 10.75 2.24 

MAJ 5 25 258,362 10.40 2.19 

MUX 6 44 22,546 12.12 2.34 

      

(b) Classes of Functions 

Figure 5.20: Results with Complemented Inputs 
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Figure 5.21: Graphs of Results with Complemented Inputs 
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The results show that the cost (number of gates) of the optimal networks is reduced for 96% of the 

functions.  The average decrease is about 1.8 gates.  This reduction in the cost helps to reduce the size and 

height of the search tree for the majority of functions as well.  The size of the search tree is reduced by as 

much as 99% for some functions.  The reductions are the result of the fact that separate nodes do not need 

to be created in order for the negation of the inputs to be used.  This saves in the cost of the optimal 

network since fewer gate nodes are required to complete the network and it saves in the size of the search 

tree since fewer gate nodes require covering.   

The average width of a branch in the search trees remains approximately the same despite the fact that 

twice as many input nodes are available to the network.  This is due to the fact that it is not possible for 

both an input node and its complement to cover the same minterm.  Therefore the branch width will not 

increase due to these additional complemented input nodes. 

Similar reductions to the size of the optimal networks and the search required to complete these 

networks can be seen when the {AND2, OR2, NOT} building block set is used.  In this case, however, the 

addition of the complemented inputs to the network allows us to eliminate the NOT gate from the building 

block set while still maintaining the completeness of the set.  This allows further reductions in the search.   

The results of the algorithm which allows complemented inputs and uses the building block set {AND2, 

OR2, NOT} are given in Figure 5.22 and Figure 5.23, while the same results using the building block set 

{AND2, OR2} are given in Figure 5.24 and Figure 5.25.   

Inputs Functions Complete Cost Search Tree 
Avg. 

Height 

Avg. 

Width 

2 8 8 12 304 3.48 3.50 

3 68 68 268 339,328 6.44 3.64 

4 3,904 3,284 23,702 4,295,000,870 12.81 3.85 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost Search Tree 

Avg. 

Height 

Avg. 

Width 

AND 6 15 41125 13.79 3.60 

NAND 6 15 17585 13.30 3.64 

OR 6 15 18855 13.24 3.64 

NOR 6 15 40902 14.74 3.60 

XOR 3 10 32122 7.78 3.63 

XNOR 3 10 29240 7.71 36.3 

MAJ 4 12 101643 7.97 3.62 

MUX 5 31 436885 11.89 3.84 

      

(b) Classes of Functions 

Figure 5.22: Results with Complemented Inputs and Building Block Set {AND2, OR2, NOT} 
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Figure 5.23: Graphs of Results with Complemented Inputs and Building Block Set {AND2, OR2, NOT} 
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When the results here are compared to those presented in Figure 5.17 where the building block set 

{AND2, OR2, NOT} was used with only uncomplemented inputs to the network, similar observations can be 

made to those observed when {NAND2} gates were used.  The cost of an optimal network is reduced for 

90% of the functions.  The average decrease is approximately 1.4 gates.  The reduction in the cost of the 

network helps to reduce the size of the search tree in this case too.  The size of the search tree is reduced by 

as much as 100%. 

Further reductions in the search are made when the NOT gate is removed from the building block set.  

The first graph in Figure 5.25 shows that the cost of the optimal network will increase for some functions 

while decreasing for other functions compared to the case when complemented input are not provided to 

the network.  Despite these increases, the second graph in Figure 5.25 shows that for the vast majority of 

the functions the search can be reduced by adding the complemented inputs and removing the NOT gate 

from the building block set.  The additional reduction in the size of the search tree can be attributed to a 

reduction in the options for gate types.  

Inputs Functions Complete Cost Search Tree 
Avg. 

Height 

Avg. 

Width 

2 8 8 12 115 3.09 2.69 

3 68 68 272 653,202 6.07 2.75 

4 3904 3,196 23,560 4,665,373,338 13.08 3.03 

       

(a) Representative Functions 

 

Function 

Class 

Max Input 

Completed 
Cost Search Tree 

Avg. 

Height 

Avg. 

Width 

AND 6 15 7,727 14.45 2.73 

NAND 6 15 8,735 14.20 2.74 

OR 6 15 8,812 14.53 2.74 

NOR 6 15 6,990 15.31 2.73 

XOR 3 12 305,105 9.32 2.84 

XNOR 3 12 274,507 9.13 2.86 

MAJ 4 12 28,608 7.45 2.77 

MUX 5 31 146,842 12.63 3.00 

      

(b) Classes of Functions 

Figure 5.24: Results with Complemented Inputs and Building Block Set {AND2, OR2} 
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Figure 5.25: Graphs of Results with Complemented Inputs and Building Block Set {AND2, OR2} 
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5.7 Previous Work on Exact Synthesis 

Now that we have presented our algorithm BESS in detail and given results for several variations, we 

can relate this work to previous work in the area of exact synthesis.  These algorithms, as described in 

Chapter 1, can be divided into three groups according to what method they use to approach synthesis.  We 

will discuss the previous work by providing details about the algorithms within these categories.  We will 

then consider some of these algorithms in more detail and compare their results to what we have presented 

thus far.  We expect to see improvements in the size of the networks completed due to improvements in the 

algorithm and improved computer technology. 

5.7.1 Functional Decomposition 

 One method for solving the problem of exact synthesis is by using functional decomposition.  The 

decomposition of a logic function ( )1
, ,

n
f x x…  is the process of identifying a set of functions 

{ }1
, , ,

m
h g g…  such that ( ) ( ) ( )( )1 1 1, , , ,n m mf x x h g X g X=… … , where { }1 1

, ,
m n

X X x x∪ ∪ =� … . A 

decomposition is disjoint if the sets 
1
, ,

m
X X…  form a partition of the variables { }1

, ,
n

x x… .  A 

decomposition where the intersection of at least one pair of Xi and Xj is not empty is a non-disjoint 

decomposition.   

Logic synthesis is completed using functional decomposition by performing repetitive decompositions 

of the form ( ) ( ) ( )( )1 1 1, , , ,n m mf x x h g X g X=… …  until all functions { }1
, , ,

m
h g g…  are contained in the 

specified set of building blocks.   

Ashenhurst was the first to consider the problem of designing multi-level networks of Boolean 

functions with his work on disjoint decomposition [Ashenhurst 59].  In this work, Ashenhurst presents the 

theoretical result which describes the criteria that must be satisfied for a Boolean function to have a 

“simple” disjoint decomposition of the form ( ) ( )( )1 1 2, , ,nf x x h X g X=…  where X1 and X2 form a 

partition of the set { }1
, ,

n
x x… .  He then goes on to present a method for detecting such decompositions.  

His algorithm uses decomposition charts to identify the decompositions that exist for a given Boolean 

function including incompletely specified functions.  He concludes his work by defining complex 

decompositions in terms of simple decompositions.  This work culminates in a procedure which determines 

the complex decomposition structure (the tree network) for a function based on its set of simple 

decompositions using the decomposition charts.   

Curtis [Curtis 61] extends the theoretical and algorithmic work of Ashenhurst to the case of 

decompositions of the form ( ) ( ) ( )( )1 1 1 1 2, , , , ,n mf x x h g X g X X=… …  where X1 and X2 form a partition of 

the set { }1
, ,

n
x x… .  This decomposition is used to produce “generalized” tree networks.  The theoretical 
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results presented give criteria for determining if such decompositions exist.  The corresponding algorithm 

illustrates an extension of Ashenhurst’s method using decomposition charts to identify the decompositions 

that exist for a given function.  In an attempt to solve the optimality part of the synthesis problem, Curtis 

outlines a procedure for determining the “best” tree network based on cost bounds associated with the 

functions used in each available decomposition [Curtis 59].  The generation of the best tree network 

however is based on a greedy heuristic of selecting the decomposition with the least estimated cost as the 

one most likely to produce an economical network. 

In both the work of Curtis and Ashenhurst, synthesis is performed by a series of specific 

decompositions.  Decompositions of this form are repeated on portions of the resulting structure until they 

are no longer possible.  There is no pre-specified set of building blocks which are used for the 

decomposition.  This makes it difficult to assign cost functions to the resulting networks. 

In [Roth 60], Roth extends the functional decomposition work of Ashenhurst and Curtis to a synthesis 

framework where a set of building blocks and related costs are part of the problem specification.  Roth 

presents an algorithm for finding a minimum-cost tree network which implements a given Boolean function 

in terms of a given set of logic gates.  Each gate contained in the set of building blocks used for 

constructing the network has a cost value associated with it and the cost of a network is the sum of costs 

over all gates used in the network.  Roth moves away from the decomposition charts used by Ashenhurst 

and Curtis to a more compact normal form representation for Boolean function.  A change in format for 

representing Boolean functions also requires a new way for finding decompositions.  A calculus for 

performing logic operations is developed and a projection operator is created to determine the 

decompositions that exist.   

To this point, algorithms for exact synthesis using functional decomposition only produce networks 

which have a tree structure.  The algorithm presented by Karp et. al. [Karp 61] makes the leap to general 

networks.  The algorithm described in [Karp 61] produces a multi-level network using a set of logic gates 

with unlimited fan-in and fan-out as building blocks.  However, there still remains one restriction on this 

algorithm.  Only “vertex functions” are allowed as building blocks.  A vertex function is defined to be a 

Boolean function which evaluates to one of its values (1 or 0) for exactly one assignment of the input 

variables and the opposite value for all other values.  The Boolean functions AND and OR are examples of 

vertex functions.  The authors note that vertex functions have useful properties that allow for gains in the 

efficiency of the program but in practice little is lost by restricting to only this set since most primitive 

gates used for synthesis are vertex functions.  In a later work [Roth 62] this vertex function restriction is 

removed and the same algorithm is presented for any set of building blocks.  Once again a key to this 

algorithm is the representation of incompletely specified Boolean functions.   

In [Karp 61] and [Roth 62] on- and off-arrays are used to describe incompletely specified functions and 

these on- and off-arrays are represented in a normal form similar to [Roth 60].  The algorithm is a branch-

and-bound algorithm which searches systematically through valid decomposition sequences to determine 
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the sequence which will produce a minimum cost network.  Each branch is a choice of existing 

decompositions and the algorithm bounds when (a) a network is completed, (b) the cost of the network 

exceeds an upper bound, or (c) a cyclic network is generated.  Using an implementation of the proposed 

algorithm the authors were able to obtain results on several functions ranging from three to five inputs.  

However, they soon discovered that the size of the search space quickly becomes a problem.  “A search of 

over five hours failed to improve the implementation.  It was determined, however, that the search was far 

from complete.  Further, it was determined that almost all the search time was spent working on an array of 

three variables or less.”   

Schneider and Dietmeyer [Schneider 68] further extend the previous work to handle complex logic 

operations as building blocks.  They use a goal-based method similar to those from game playing 

algorithms to make the decomposition choices but stop searching once the first network is found.  The 

authors admit that the algorithm described is a heuristic method for the optimal problem since only a small 

portion of the entire search space is explored.  However, they go on to mention that using this method to 

exhaustively search the solution space is possible and will result in the discovery of the minimum cost 

circuit.  Doing this of course will “cause exponential increases in the amount of time and effort expended 

by the algorithm.” [Schneider 68]   

Lawler [Lawler 64] approaches the problem of optimal multi-level synthesis by extending results from 

two-level synthesis to multi-level synthesis.  Lawler’s approach is to generalize the idea of prime 

implicants from two-levels to n-levels.  Using the new definition of prime implicants, he extends the prime 

implicant based two-level synthesis to the multi-level case.  Since his algorithm minimizes the number of 

literals in the multi-level expression, the results of this algorithm are tree networks where the number of 

connections to the inputs is minimized.  His approach is a unique direction that is different than any 

attempts at the problem to this point. 

From this set of previous work we can see that the ideas of functional decomposition originally 

introduced by Ashenhurst and Curtis can be used as a tool to perform exact synthesis.  We have seen that 

this method works for any type of logic function used as building blocks including simple functions as in 

[Karp 61] or more complex functions as in [Schneider 68].  We have also seen that completely-specified as 

well as incompletely-specified functions can be optimally synthesized using these techniques.  As expected 

the intractability of the optimization problem became evident when implementations of the algorithms were 

executed on larger examples.  The advantage of the branch-and-bound nature of these algorithms is that a 

network implementing the given function (and often the optimal one) is found quickly. The remainder of 

the time is spent searching through the solution space proving that the network is optimal. 

5.7.2 Network Enumeration 

 Network enumeration is a structural method for approaching the problem of exact synthesis.  It is based 

on the fact that all possible networks with g gates can be enumerated.  Using such an enumeration the space 
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of g gate networks can be searched for one that generates the desired function.  If this search process is 

repeated, beginning with g = 1, for an increasing number of gates then the first network found during the 

search is an optimal network with respect to a cost function based on the number of gates in the network. If 

optimization with a second criterion is desired then all networks with g gates must be searched before the 

algorithm can complete to guarantee optimality. 

5.7.2.1 Explicit Enumeration Algorithms 

There are three main results which use explicit enumeration to perform exact synthesis.  Hellerman 

[Hellerman 63] was the first to use this method.  His goal was to provide optimal {NAND} and optimal 

{NOR} networks for all Boolean functions on three or fewer variables.  Therefore network enumeration 

provides an efficient way to generate all of these networks at once.  He  is able to provide optimal {NAND} 

networks and optimal {NOR} networks for all but one representative function from the P-equivalence class 

for functions with 3 or fewer inputs.  He uses a cost functions based first on the number of gates in the 

network and second on the number of connections in the network.  He also restricts the number of fan-in 

and fan-out of the gates to 3. With this enumeration algorithm he is able to complete all functions which 

require networks with 7 or fewer gates.  The function 
1 2 3

x x x⊕ ⊕  requires 8 gates so an optimal network 

for this function was not proven optimal. 

Smith [Smith 65] extends the work of Hellerman by presenting a similar table of results for networks 

where both complemented and uncomplemented inputs exist.  The same cost function is used; however the 

fan-in and fan-out restrictions are removed.  With this enumeration algorithm, networks for all functions 

from the P-equivalence class with 3 or fewer variables were completed.  He found that only 18 networks 

structures exist for all 80 functions.  Rearrangement of the input values in these structures provides 

implementations for each of the functions.  The largest of these 18 networks requires 5 gates.   

Finally, Drechsler and Günther present an updated version of this structural enumeration algorithm in 

[Drechlser 98].  They are able to extend the results of Hellerman past all 3-input functions to include some 

4-input functions and some larger.  They did this through the addition of extensive pruning techniques to 

minimize the search space.  They still were not able to complete some 4-input functions, however.  Their 

work focused on {NAND} networks with a fan-in restriction of 2 but no fan-out restriction.  In addition to 

{NAND} networks, they also present results using AND, OR, and NOT gates.  The main results from 

[Drechsler 98] can be compared to those given in Figure 5.1.  They found that this method was only 

applicable to networks with up to 12 gates.   

Some of the improvement seen in our results over these earlier results can be attributed to the 

improvement in computer technology over time.  However, a comparison (Figure 5.26) of an 

implementation of the algorithm from [Drechsler 98] with BESS shows that there are more factors 

involved.  Our experiments showed that the limiting factor on finding an optimal network for both 

algorithms was the number of gates needed for the optimal network.  For the network enumeration 
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algorithm, any function which required more than 9 gates was not able to be completed within the specified 

one hour time limit.  For BESS, this limit was raised to 13 gates.  The limit of 9 gates prohibits the 

enumeration algorithm from completing those four-input functions that require a larger number of gates. 

Inputs 

Network Enumeration BESS 

Completed 

Functions 

Avg. # 

Connections 

Avg. 

Time 

Completed 

Functions 

Avg. # 

Branches 

Avg. 

Time 

2 8 32 0 s 8 3 0 s 

3 67 337,610 46 s 68 37 0 s 

4 73 22,500,000 3400 s 207 44,415 64 s 

Figure 5.26: Comparison of a Network Enumeration with BESS 

These results show that BESS is able to find and prove the optimal network in less time than the other 

method.  Further comparison of the two algorithms reveals two advantages our algorithm has over this 

enumeration method.  First, the search space that it searches is on average smaller.  BESS only has to 

search the set of all networks that implement the desired function whereas the enumeration algorithm must 

search the entire set of all networks.  Second, a smaller portion of the search space is repeated BESS.  

While repetition does still occur in the search, the enumeration algorithm must repeat the entire search 

completed for the previous iteration.   

5.7.2.2 Implicit Enumeration Algorithms 

The enumeration that is performed by the previous set of algorithms can be performed implicitly using 

constraint satisfaction.  The set of all possible networks with n gates is represented as a universal network 

where all connections between gates in the network are included.  This universal network is then encoded 

as an instance of a constraint satisfaction problem (CSP) such that a solution to the CSP will provide the 

edges that should remain in the network to produce the desired functions. 

[Muroga 72] presents an algorithm which uses integer programming to solve the constraint problem 

created by the universal network.  With this algorithm optimal {NOR} and {NOR, AND} networks were 

completed for all representative functions from the P-equivalence classes with 3 or fewer inputs.  The cost 

function used minimizes the number gates in the network as the primary criteria and the number of 

connections within the network as the secondary criterion.  No fan-in or fan-out restrictions were imposed 

on the networks.  The authors discovered that networks containing 9 or fewer gates could be completed.  

Additional similar results were presented in [Baugh 69] [Culliney 71] [Baugh 72] [Muroga 76]. 

It appears that little was gained by performing the enumeration implicitly.  The results presented using 

this method are not all that different than the results we saw with the explicit enumeration algorithms.  The 

algorithm must search the same space so improvements can only come from the speed at which the CSP 

solver is able to complete the search.  In addition, the same repetition will occur in this search as in the 
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explicit enumeration since the entire search of the previous number of gates must be repeated when the 

number of gates is increased. 

A comparison (Figure 5.27) of an implementation of an implicit enumeration algorithm using a SAT 

solver to solve the CSP instances (presented as quantified Boolean formulas) with BESS confirms these 

results.  Using this method, optimal results were obtained for all two- and three-input functions as well as 

some four-input functions when the search time per function was limited to one hour.  Once again the 

number of gates in the optimal network provides the limiting factor for completing the search.  The number 

of gates in a universal network determines the number and size of constraints as well as the number of 

variables needed in the quantified Boolean formula.  Therefore the larger the universal network that must 

be used to find a solution the more work is required for the SAT solver.  From this experiment we 

discovered that functions requiring more than 9 gates could not be completed in the allotted time. 

Inputs 

Network Encoding BESS 

Completed 

Functions 

Avg. #  

SAT calls 

Avg. 

Time 

Completed 

Functions 

Avg. # 

Branches 

Avg. 

Time 

2 8 29 0 s 8 3 0 s 

3 64 4,116 99 s 68 37 0 s 

4 42 69,487 3021 s 207 44,415 64 s 

Figure 5.27: Comparison of Network Encoding with BESS 

Whether implicitly or explicitly performed, network enumeration provides a simpler way to perform 

exact synthesis compared to functional decomposition.  The work by Hellerman and Smith use it to 

generate tables of results for a given number of inputs with minimal overlap of work.  [Drechsler 98] and 

[Ibaraki 72] show that it can be used to solve individual synthesis problems as well.  The simplicity of these 

algorithms allow for easy change of the logic gates used as building blocks since none of the complicated 

decomposition criteria from the functional methods are required to be reworked.  However the simplicity 

leads to disadvantages as well.  Unlike the branch-and-bound methods, the majority of the work done here 

is done before a network is found.  In addition, the incremental nature of the method forces a large portion 

of the search to be repeated each time the number of gates is increased. 

5.7.3 Functional and Structural Methods 

The last set of algorithms that we will examine is the set of branch-and-bound algorithms which provide 

the basis for the algorithm presented here.  Sections 5.7.2.1 and 5.7.2.2 showed why this was our preferred 

method for completing exact synthesis.  This section allows us to observe the results of our updates to this 

branch-and-bound method.   

The first presentation of this algorithm was given by Davidson in [Davidson 68b][Davidson 69].  This 

work uses the branch-and-bound algorithm to provide optimal {NAND} networks for all representative 

functions from the P-equivalence class with 3 or fewer inputs.  Multiple cost functions are used with 
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different rankings on the number of gates and the number of interconnection in the network.  Results both 

with and without fan-in and fan-out restrictions are presented.  In addition to the 3-input single output 

functions, Davidson provides results of the algorithm on 11 other functions as well.  These functions and 

details of how BESS performed on these function is given in Figure 5.28.  For these functions, no fan-in or 

fan-out constraints were used and the cost function is simply the number of gates in the network. 
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Function Optimal 

Network 

Search Space Time 

Prather: 
1 2 3 1 2 3

2 1 2 3

3 1 2 2 3

4 2 3 1 3

5 3

f x x x x x

f x x x

f x x x x

f x x x x

f x

′ ′= ∨

′ ′= ∨

′= ∨

′ ′ ′ ′= ∨

′=

 11 gates 686 0 s 

Gimpel 1:  

1 4 2 3 4 2 3 4
f x x x x x x x x′ ′ ′ ′ ′= ∨ ∨  

6 gates 102 0 s 

Gimpel 2:  

1 2 3 1 2 3 1 2 3 1 2 4
f x x x x x x x x x x x x′ ′ ′ ′ ′ ′ ′= ∨ ∨ ∨  

7 gates 324 1 s 

2 out of 5:  

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

f x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x

′ ′ ′ ′ ′ ′ ′ ′ ′= ∨ ∨

′ ′ ′ ′ ′ ′ ′ ′ ′∨ ∨ ∨

′ ′ ′ ′ ′ ′ ′ ′ ′∨ ∨ ∨

′ ′ ′∨

 

27 gates
*
 17,851,755 Stopped after 24 hrs 

MM: 

1 2 1 4 7 8 1 4 5 6 1 5 7 8

3 4 7 8 2 3 4 5 6 2 3 5 7 8

x x x x x x x x x x x x x x
f

x x x x x x x x x x x x x x

′′∨ ∨ ∨ 
=  

′ ′ ′∨ ∨ ∨ 
 

11 gates
* 

96,607,727 Stopped after 24 hrs 

sandd: 

1 3 4 5

2 3 4 5

3 1 3 1 4 2 3 2 4 5

4 3 4

f x x x

f x x x

f x x x x x x x x x

f x x

′= ∨ ∨

′ ′= ∨ ∨

′ ′ ′ ′ ′ ′ ′ ′= ∨ ∨ ∨ ∨

′= ∨

 

8 gates 270 0 s 

4-input Decoder 32 gates 195 0 s 

Stifel 1: 

1 1 5

2 2 5

3 4 8

4 4 9

5 3 5 3 7 3 8 3 9

6 1 5 4 8 4 9 3 6

3 7 3 8 3 9

f x x

f x x

f x x

f x x

f x x x x x x x x

f x x x x x x x x

x x x x x x

=

=

=

=

= ∨ ∨ ∨

= ∨ ∨ ∨

∨ ∨ ∨

 

16 gates
* 

79,318,582 Stopped after 24 hrs 

1-stage adder: 
1 1 2 3

2 1 2 1 3 2 3

f x x x

f x x x x x x

= ⊕ ⊕

= ∨ ∨

 8 gates 437 0 s 

2-stage adder:  43 gates
* 

645,870 Stopped after 24 hrs 

3-stage adder 57 gates
* 

29,655 Stopped after 24 hrs 

Figure 5.28: Results of BESS on Functions from [Davidson 68b] 

Some improvements to Davidson’s branch-and-bound algorithm were suggested by Nakagawa, Lai, and 

Muroga [Nakagawa 89].  Using this improved algorithm, the authors were able to obtain {AND, OR} 

networks for all function from the NPN-equivalence class with 4 or fewer variables [Culliney 79].  They 
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used a cost function based first on the number of gates in the network and second on the number of 

interconnections in the network.  They did not restrict the fan-in or the fan-out of the gates and allowed for 

complemented inputs to the network.  The maximum number of gates required for a network was 9; this 

network implemented the function 
1 2 3 4

x x x x⊕ ⊕ ⊕ .  The network found for this function contains the 

minimum number of gates but it was not proven that it contained the minimum number of interconnections.    

Thus this algorithm can only find optimal networks containing 8 or fewer gates.  When running BESS 

using the same constraint we are able to reproduce the results obtained in this work, plus an optimal 

network for the function requiring nine gates was also obtained. This algorithm was also used to provide 

the results in [Lai 74] for the same functions shown in Figure 5.28. 

5.7.4 Previous Work Discussion 

A comparison of the branch-and-bound method with both the explicit and implicit enumeration methods 

shows that this method performs the best.  The branch-and-bound method searches a smaller solution space 

and less of the search is repeated.  It also has the flexibility of changing building blocks and cost functions 

without expanding the search space. 

A comparison of our branch-and-bound algorithm to a variety of previous algorithms shows that an 

update of the algorithm has allowed us to extend the results of previous work.  We were able to expand the 

maximum network size from twelve to sixteen gates under the same constraints.  This improvement was 

achieved through a combination of additional pruning of the search space and an increase in the speed with 

which the algorithm is able to search through this space. 

5.8 Summary 

In this chapter we discussed variations that can be made to the original algorithm presented in Chapter 

3.  We described the changes required within the algorithm for each variation and then provided 

experimental results with this variation.   Insights into how the properties of the optimal network can effect 

the search performed by the algorithm were gained through an analysis of the results.  We learned that 

tighter restrictions on the fan-in and fan-out sets of the gate nodes caused the cost of the optimal networks 

to increase, which resulted in longer search times for the algorithm as well.  Larger cost networks also 

resulted when a level restriction was placed on the network but the smaller solution space in this case 

resulted in shorter search times for the algorithm.  The number of gates in the optimal networks remains the 

same when additional parameters are added to the cost function, however the search time increases since 

more of the solution space must be searched.  Adding complemented inputs to the input set of the network 

results in smaller cost optimal networks and this implies shorter search times for the algorithm.  Finally, we 

saw that increasing the number of building blocks available will reduce the cost of the optimal networks but 

the increase in the gate choices results in longer search times for the algorithm. 
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We concluded this chapter with a discussion of previous work.  An overview of three categories of 

exact synthesis algorithms was presented.  We then used the results presented here to compare previous 

algorithms for exact synthesis to BESS. 
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Chapter 6  

Near-optimal Results 

6.1 Motivation 

The experimental results from Chapters 4 and 5 showed that the exact synthesis algorithm, BESS, can 

find optimal networks for functions with up to 16 gates in a reasonable amount of time.  Given enough 

time, the algorithm can find and prove optimal networks for any function.  However, as the search space 

discussion in Section 4.4 showed, this will not be feasible as the size of the networks increases.  Figure 4.40 

showed that very few of the synthesis benchmark functions that were attempted were completed due to the 

large search space.  In this section we will relax the optimality constraint of the algorithm to allow the 

algorithm to complete these larger networks. 

The nature of the algorithm lends itself very well to generating near-optimal networks. An initial 

complete network is found very quickly by the search. Additional networks are completed only if they have 

a cost lower than the cost of this initial network.  Therefore the search can be stopped at any time and the 

smallest complete network found thus far can be used as the implementation of the function. 

The table in Figure 6.1 shows that the first network found by the algorithm occurs very early in the 

search and that in many cases this initial network is optimal or very close to optimal.  Since a small initial 

network leads to a smaller search space, the heuristic and pruning techniques discussed in Chapter 3 help to 

produce an initial network that is close to optimal.  The data show that on average, the initial network cost 

is within 2.9 gates or 27% of optimal and the optimal network is found within the first 38% of the search.  

Thus, the networks found early in the search can be used as a close-to-optimal result for synthesis. 
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Function Group 
Total 

Optimal Cost 

Average 

Optimal Cost 

Total Number of 

Branches in 

Search Tree 

Total 

Initial Cost 

Average 

Initial Cost 

Number of 

Branches at 

Initial Network 

2-input Reps from 

P-Equiv Class 
24 3.00 31 24 3.00 31 

3-input Reps from 

P-Equiv Class 
405 5.96 2,080 419 6.16 572 

4-input Reps from 

P-Equiv Class 
37,936 9.72 65,428,000 49,298 12.63 78,092 

2-7 input AND  42 7.00 601,235 42 7.00 33 

2-6 input OR 45 9.00 1,006,037 45 9.00 45 

2-4 input XOR 24 8.00 6,055 26 8.67 36 

2-5 input MAJORITY 31 7.75 66,692,278 44 11.00 69 

3-6 input MULTIPLEXER 50 8.33 20,432 63 10.50 100 

Figure 6.1: Algorithm Results Comparing the Initial Network with the Optimal Network  

While the results from Figure 6.1 show that the average initial cost is within 27% optimal, the range is 

actually between 0% and 170% of optimal.  As with any near-optimal result, the ability to control this 

range is desired.  This control would allow us to guarantee that the network found by the algorithm is 

within a set number of gates or a fixed percentage of optimal.  This control can be accomplished by 

changing the bounding technique and allowing the algorithm to fully complete the search rather than 

stopping the algorithm partway through the search.  The parameters that can be used to perform this 

suboptimal control will be given in Section 6.2 along with experimental results of these methods. 

Near-optimal results for larger functions including those benchmark functions which were previously 

too large to be completed optimally are presented in Section 6.2.5.  We then use these results to test a well-

established multi-level synthesis heuristic, ABC, in Section 6.3.  We use both the optimal and near-optimal 

results to test the networks produced by ABC. This comparison allows us to evaluate how well ABC is able 

to produce near optimal networks. 

6.2 Near-optimal Methods 

The goal for the near-optimal methods described here is to reduce the amount of the space that must be 

searched in order for the algorithm to complete synthesis on as many functions as possible.  There are three 

ways that near-optimal results can be produced by the algorithm with this goal in mind.  The first method 

will simply stop the search after a set amount of time and then use the lowest cost network found by the 

algorithm at that time.  This method provides a guarantee for the amount of time required by the search, but 

the distance that the network will be in relation to optimal cannot be determined. 

The second method lowers the upper bound of the cost function by a set amount every time a new 

network is found.  This will cut the amount of the solution space that the algorithm must search since 

partial networks can be pruned earlier due to their costs.  When the algorithm finishes the search, the 
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network will be within a known number of gates of optimal because all networks with cost less than the 

cost bound will have been searched. 

The third method also lowers the bound for the cost function by a fixed amount.  However, in this 

method, the lowering of the cost bound will be based on the amount of the search that has been completed.  

Therefore, as the search tree grows larger, the cost bound will be made smaller and so more of the search 

can be pruned.  This method will provide a trade-off between a reduction in the solution space searched and 

an increase in the distance the final network will be from optimal.   

6.2.1 Test Functions 

The following is a description of the functions that will be used to evaluate the variations of the 

algorithm to produce near-optimal results.  The variations will be tested using both large and small 

functions.  This will ensure that the near-optimal methods will be tested on functions where the search has 

been completed and optimal results are known as well as on functions where the search space was 

previously too large to be completely searched and an optimal network remains unknown. 

The first two sets of functions will be drawn from those functions for which BESS is able to complete 

the search and produce optimal networks.  The Equiv set is composed of all 3,904 P-representative 

functions with two through four inputs.  The Class 1 set includes the AND functions with 2 – 7 inputs, the 

OR functions with 2 – 6 inputs, the XOR functions with 2 – 4 inputs, the MAJORITY functions with 2 – 5 

inputs, and the MULTIPLEXER function with 3, 5, and 6 inputs.  Since an optimal network has been found for 

each of these functions, we can use the optimal results to determine the exact distance a near-optimal result 

is from optimal.  We can also use the details of the search for these optimal networks to compare the 

savings that are gained by relaxing the optimality constraint. 

The second two sets of functions will be drawn from those functions for which an optimal network was 

not found by BESS.  The Bench set is composed of the 18 benchmark functions from Figure 4.40.  The 

Class 2 set includes 13 functions:  functions from the AND class with 8 – 9 inputs, functions from the OR 

class with 7 – 9 inputs, functions from the XOR class with 5 - 7 inputs, functions from the MAJORITY class 

with 6 - 8 inputs, and functions from the MULTIPLEXER class with 8 and 9 inputs.  BESS did not complete 

the search for these functions so a comparison of the near-optimal and optimal networks and searches 

cannot be made.  However these function sets will allow us to evaluate the increase in the size of the 

functions that can be synthesized using the near-optimal versions of the algorithm. 

6.2.2 Near-optimal Method: Time Constraint 

In the first near-optimal method, the search will simply be stopped after a fixed amount of time.  The 

last network found by the algorithm will be the network with smallest cost chosen for implementing the 

function.  The amount of time the algorithm is allowed to search is a tunable parameter for this method.  

Assigning different values to this parameter will determine which value gives the best results with the least 
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amount of work.  First, the algorithm will be stopped as soon as the first network is found.  Then the 

algorithm will be stopped after 1, 5, 10, and 24 hours. 
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Figure 6.2: Time Constraint Method 

Figure 6.2 gives the results of the experiments using these parameters.  Graph (a) in Figure 6.2 shows 

the decrease that occurs in the average cost as the time bound increases while (b) shows the increase in the 

size of the search as the time bound increases.  Together these two graphs show the trade-off between the 

cost of the network found by the algorithm and the size of the search that must be completed to produced 

this network. 

For the first two function sets, the algorithm completed an optimal network for every function within 

the first hour.  However, the algorithm required between 1 and 5 hours to complete the search in some 

cases.  The time spent by the algorithm after the optimal network is found is only used to prove optimality 

of the network. 

A similar pattern was found for the Class 2 set of functions.  No improvements were made to the cost of 

the networks past the first hour of the search.  On the set of benchmark functions, improvements to the cost 

of the networks were made for at least one function within each time interval.  In this case, the longer the 
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algorithm is allowed to run, the smaller the cost of the network becomes.  However, the improvements tend 

to plateau.  For 63% of the functions, at least one improvement in the network cost for the function was 

made within the first hour of the search.  Between the first and 24th hour however, only 11% of the 

functions saw an improvement. There are two possible reasons for this plateau.  The first is that the 

network found is optimal and the remainder of the search will be used to explore the remaining solution 

space proving that no network has a smaller cost. The second is that a smaller network does exist for the 

function but this network has a different structure than the current known network and therefore will not 

appear until much later in the search.   

6.2.3 Near-optimal Method: Lowering the Cost Bound 

A second method for producing near-optimal results is based on modifications to the cost bound.  When a 

complete network is found by the SynthesizeNetwork procedure of the algorithm (Figure 3.21), the global 

variable UpperBound is set to the cost of the complete network.  Then for the remainder of the search, all 

networks must have cost less than this value UpperBound.  To reduce the amount of the solution space that 

is searched, the algorithm can artificially lower this UpperBound value below the cost of the network each 

time a complete network is found.  This will cause some partial networks to be pruned earlier in the search 

due to the lower value on the cost bound.  Thus the overall search will be reduced.  In addition, when the 

algorithm completes we will be able to determine the distance that the network is from optimal.  For 

example, if the value UpperBound is set to (CostNetwork - 5) then the cost of the final network found by the 

algorithm will be within 5 gates of optimal.  This is the case since all networks with lower cost were 

searched by the algorithm.  Using this lower bound on the cost of the network and the cost of the last 

network found by the algorithm as an upper bound, a cost interval can be determined for each function. 

The parameter used to control the size of the search and the optimality of the result in this method is the 

value by which the UpperBound is reduced from the cost of the found network.  This type of bounding 

modification can be done either with a fixed number of gates or with a percentage of the cost of the 

network.  In our experiments we tried several versions of each type.   

First, we lower the cost bound by a constant of c = 5, 20, 50, and 100 gates.  The summary of these 

results are given in Figure 6.3.  The algorithm was allowed to run for 3 hours on each function instance.  

For each function, the network found by the search is within the value c of optimal.  As the value c 

increases, more of the search space can be pruned, creating smaller search trees. 
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Figure 6.3: Constant Lowering of UpperBound 
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Graph (a) of Figure 6.3 shows the increase in the number of functions on which the search is completed 

as the value of c is increased.  The first two sets contain functions which were completed by the optimal 

version of the algorithm.  Therefore no change is seen here.  In the second two sets, the increase in the 

number of functions completed is seen.  We found that the minimum value of c required in order for the 

synthesis of one new function to be completed was 2 and that at the maximum reduction of 100 gates, 24 of 

the 31 functions with unknown optimal cost could now be completed. 

A decrease in the size of the search space explored by the algorithm results as the constant value is 

increased.  This is shown in graph (b) of Figure 6.3.  The search space can be reduced to only 7% of it 

original size by lowering the cost bound 5 gates below the actual cost of the network.  When this is 

increased to 100 gates, the search space is lowered to 0.06% of the search space size when the optimal 

search is performed.  The decrease in the amount of solution space searched produces the increase in the 

number of networks completed by the search as seen in graph (a).  The increases seen in (b) for the sets of 

functions with unknown optimal cost are due to the increases in the number of completed functions. 

Graphs (c) and (d) in Figure 6.3 show the penalty incurred for the saving gained in the search as the 

value of c increases.  An increase in the constant c results in an increase in the cost of the networks found 

by the near-optimal versions of the algorithm.  For the first two sets of functions, the cost of the networks 

increases to 17% above optimal when c = 5.  At c = 100, the costs increase to an average of 30% above 

optimal.  In some cases, the optimal cost interval shown in graph (d) is lower than the value of c.  This is 

due to the fact that the lower bound of the optimal cost interval must be greater than 0.  Therefore, if c is 

greater than the current cost bound, the bound will only be lowered to a value of 0.  The result is then an 

optimal cost interval smaller than c. 

The trade-off between the size of the cost interval and the size of the search tree is quite evident by 

comparing graphs (b) and (c).  To maximize the number of networks that can be completed by the 

algorithm, the constant value must be increased to a value of 100.  While the search can be performed very 

quickly with c at this value, the costs of the networks completed tend to be further from optimal.  

A second bounding modification for this method can be performed by reducing the cost bound by a 

percentage of the network cost.  Here the value UpperBound will be set to (CostNetwork × (1 − p)) where p is 

some percentage.  Thus, the size of the reduction of the network is based on the current size of the network.  

This modification will reduce the larger networks enough so that the search can be completed but will not 

increase the cost of the smaller networks unnecessarily. Again this modification was tested with different 

values for the parameter p.  Results from these experiments are given in Figure 6.4.  Just as in the previous 

results, an increase in the percentage p allowed for more of the search space to be pruned, creating smaller 

search trees while increasing the optimal cost interval. 
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Graph (a) in Figure 6.4 shows the increase in the number of functions on which the search is completed.  

The value p = 20% was the minimum percentage required in order for the search to be completed on at 

least one additional function.   At the maximum value p = 90%, 25 out of the 31 functions were completed 

from the sets Class 2 and Bench. 

The graph in Figure 6.4 (b) displays the correlation between an increase in the percentage p and a 

decrease in the size of the search performed by the algorithm.  At the smallest percentage, p = 10%, the 

search space of the first two sets of functions reduces to 28% of optimal.  At the maximum value, p = 90%, 

the search space for these sets is reduced to only 0.06% of optimal.  The large reduction in the search space 

allows for the increase in the number of functions completed from the function sets Class 2 and Bench. 

The increase in the search space seen in the Class 1 and Bench function sets is due to an increase in the 

cost upper bound for some functions as the percentage increases.  A higher cost bound requires more of the 

solution space to be searched.  For example, the initial network found by the algorithm for the 5-input 

majority function requires 27 gates.  When p = 20% a second network is found containing 16 gates and the 

final  value for UpperBound is 12.8 based on this network.  However, when p = 50%,  UpperBound is set to 

13.5 following the completion of the initial network containing 27 gates.  In this case, the second network 

containing 16 gates will not be found, but the value UpperBound is larger than when p = 50% so more of 

the solution space must be searched. 

Graphs (c) and (d) in Figure 6.4 indicate that both the cost and the cost intervals increase as the value of 

p increases. With the value of p at 10%, the cost of a network from the Equiv and Class 1 sets increases to 

only 4% above optimal.  When p is increased to 90%, the average cost of a network for these same 

functions is increased to nearly 30% over optimal.  The cost is increased more for the larger functions from 

the Class 2 and Bench sets. 

While the trade-off between the distance from optimal guarantee and the size of the search tree remains 

evident from these results, they are not as pronounced as when a constant reduction was used. The average 

cost and cost intervals are smaller for each of the functions when a percentage value is used to modify the 

cost bound compared to when a constant value is used.  At the same time, the search space remains small 

enough in both cases that approximately the same number of functions can be completed.  Thus the 

percentage reduction keeps the suboptimality of the smaller circuits low while reducing the search space of 

the larger networks to allow the search to be completed. 

6.2.4 Near-optimal Method: Parameterized Lowering of Cost Bound 

One final method for producing near-optimal results also lowers the cost bound to help prune the search 

space.  In this version, the cost bound is lowered based on the number of branches that have been explored 

in the search tree.  By using the number of branches explored as a parameter in the lowering of the cost 

bound, finer control is possible over the trade-off between the amount of the solution space explored by the 

algorithm and the size of the optimal cost interval.  The goal of this parameterization is to reduce the search 
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for each individual function in such a way that the search is small enough to be completed while keeping 

the optimal cost interval as small as possible. 

For this near-optimal method two parameters must be tuned.  The first is the value by which the cost 

bound is lowered.  Once again, this can be either a constant value or a percentage of the current cost bound.  

We will use the constant values c = 1 and 2 and percent values p = 1% and 2%.  The second value that can 

be altered is the number of branches that are explored before a reduction in the cost bound is performed.  

The smaller the value, the more often the reduction will be performed and the larger the portion of the 

search space that can be pruned.  We will experiment with the values b = 100, 500, and 1000.  With this 

formulation the value UpperBound will be reduced by a constant c or a percent p for every b search tree 

branches created by the algorithm.  
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Figure 6.5: Parameterized Lowering of UpperBound  
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A summary of the results of our experiments with this near-optimal method are given in Figure 6.5.  

Graph (a) shows that as the values of c and p increase and the value of b decreases, the search can be 

completed on a larger number of functions.  The maximum number of functions completed, 28 out of 31, 

occurs first when c = 2 and b = 500.  The increase in the number of functions for which the search was 

completed is a direct result of the decrease in the size of the search tree.  The results given in graph (b) 

show that when c = 2 and b = 500, the search tree size is reduced to 1.7% of the size of the search required 

to complete an optimal network.  Larger reductions are possible by increasing c or p or lowering b.  

However, little effect is gained in the number of networks that can be completed. 

Since the cost bound reduction is based on the number of branches completed, the cost of the network 

and the cost interval for the optimal network remains small for those functions where an optimal network is 

found and the entire search completed.  Graphs (c) and (d) show that when c = 2 and b = 500, the network 

found by the near-optimal version of the algorithm is only an average 6% larger than the optimal network.  

For these same networks, the cost interval only increases to 2 gates.  For those functions which were not 

completed optimally, the size of the average cost interval is increased to 32 gates.   

This method further improves the previous near-optimal method.  The suboptimality of the smaller 

networks are kept very low, while the suboptimality of the larger networks is increased to allow for a larger 

reduction in the search space.  This allows for the search to be completed on a larger number of the 

functions.  

6.2.5 Method Selection & Additional Results 

6.2.5.1 Method Comparison 

If all of the methods are compared together, we can evaluate the best method for completing near-

optimal synthesis.  The table in Figure 6.6 compares the best version from each method which completes 

the most functions.  For each function class, the number of networks completed by the search, the average 

size of the search for these functions, the average network cost, and the average size of the optimal cost 

interval are given.  The results given for each set are based on only those functions on which the search 

completed.   

The Time Constraint method is able to obtain a network for each function in all four of the function 

sets.  However, the optimal cost intervals for this method are large since a lower bound on the cost is not 

obtained.   

Little improvement is seen over this first method when the second method of lowering the cost bound 

by 90% is applied.  In order to shrink the search space significantly enough to allow for a larger number of 

functions to be completed, too much of the search space is pruned from the smaller functions so that the 

cost intervals become too large.  Little is gained from this method. 
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The final method using a parameterization to lower the cost bound is an effective method.  Because the 

cost bound is lowered based on the size of the search, little additional pruning is performed for the smaller 

functions where an optimal function can be found.  Thus this method can provide a better guarantee about 

the optimality of the networks produced.  For the larger functions, frequent lowering of the cost bounds 

allows the search to be pruned significantly enough that the search can be completed for all but 3 of the 

functions.  Enough of the search is completed to obtain a comparable cost network and since the search is 

completed a lower bound on the optimal cost can be given.  This results in a much smaller interval for the 

optimal cost. 

From this comparison, we obtain a near-optimal method for completing synthesis.  We will combine the 

parameterized lowering method with the time constraint method.  If the first method is not able to complete 

the search after 3 hours then the time constraint method will be used.   

  
Time 

Constraint 

Lower Cost Bound 

(p = 90%) 

Parameterized 

Lowering 

(c = 2, b = 500) 

Equiv 

Completed 3980 3980 3980 

Avg. Search Space 5,069.92 53.17 1,442.07 

Avg. Network Cost 9.64 12.50 10.22 

Avg. Cost Interval 9.64 11.25 1.77 

Class 1 

Completed 24 24 24 

Avg. Search Space 7,612.13 32.08 974.83 

Avg. Network Cost 8.00 9.17 8.21 

Avg. Cost Interval 8.00 8.25 1.25 

Class 2 

Completed 12 10 11 

Avg. Search Space 232,259.25 1,003.20 20,608.73 

Avg. Network Cost 58.00 30.70 35.09 

Avg. Cost Interval 58.00 27.63 26.73 

Bench 

Completed 15 15 17 

Avg. Search Space 1,869,649.07 1,714.07 44,837.65 

Avg. Network Cost 50.07 48.67 49.94 

Avg. Cost Interval 50.07 43.80 38.71 

Figure 6.6: Near-optimal Method Comparison 

6.2.5.2 Additional Results 

Using the chosen near-optimal method, a table of results for functions from both the function classes 

and the benchmark set of functions can be completed.  These tables are given in Figure 6.7 and Figure 6.9.  

Those functions indicated with a * could only be completed using the Time Constraint method.  Those 

without a star indicate the search was completed using the parameterized method.  The optimal cost interval 

is the interval in which the optimal cost network must fall.  The lower bound of this interval is the value of 

the cost bound when the algorithm completed the search.  Since the search completed, all networks with 
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cost smaller than this cost bound have been searched and no network was found.  Therefore the optimal 

network must have cost greater than this value.  If the search is not completed, then this value must be 0 

since the entire solution space was not searched.  The upper bound of the interval is the value of the 

network found during the search.  Any optimal cost network for the function must have cost at most equal 

to the cost of this network. 
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Function Class Inputs Outputs 
Network 

Cost 

Optimal 

Cost Interval 
Time 

Search 

Tree Size 

AND 8 1 14 (6, 14] 3 s 4,239 

AND 9 1 16 (6, 16] 5 s 5,402 

NAND 8 1 13 (5, 13] 2 s 4,239 

NAND 9 1 15 (5, 15] 4 s 5,402 

OR 7 1 18 (10, 18] 4 s 4,902 

OR 8 1 21 (9, 21] 6 s 6,672 

OR 9 1 24 (10, 24] 7 s 8,740 

NOR 7 1 19 (11, 19] 4 s 4,902 

NOR 8 1 22 (10, 22] 5 s 6,672 

NOR 9 1 25 (11, 25] 7 s 8,740 

XOR 5 1 17 (9, 17] 4 s 4,956 

XOR 6 1 21 (9, 21] 6 s 7,194 

XNOR 5 1 40 (10, 40] 1 min 41,825 

XNOR 6 1 111 (9, 111] 18 min 165,540 

MAJ 6 1 36 (8, 36] 22 s 19,379 

MAJ 7 1 73 (9, 73] 2 min 54,989 

MAJ 8 1 118 (8, 118] 7 min 96,686 

MUX 8 1 23 (9, 23] 7 s 12,325 

MUX 9 1 28 (8, 28] 14 s 13,537 

ADDER 5 3 34 (10, 34] 1 min 37,513 

ADDER 6 4 76 (12, 76] 3 min 53,805 

DECODER 4 16 90 (36, 90] 27 min 36,738 

Figure 6.7: Near-optimal Results for Function Classes 
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Function Class Inputs Outputs 
Network 

Cost 

Optimal 

Cost Interval 
Time 

Search 

Tree Size 

THRESH 1 7 1 18 (10, 18] 3 s 4,902 

THRESH 1 8 1 21 (9, 21] 5 s 6,672 

THRESH 1 9 1 24 (10, 24] 7 s 8,740 

THRESH 2 5 1 25 (9, 25] 8 s 10,000 

THRESH 2 6 1 31 (9, 31] 15 s 14,997 

THRESH 2 7 1 34 (8, 34] 18 s 16,605 

THRESH 2 8 1 39 (9, 39] 27 s 20,342 

THRESH 2 9 1 85 (9, 85] 3 min 66,096 

THRESH 3 5 1 18 (8, 18] 4 s 6,183 

THRESH 3 6 1 50 (8, 50] 38 s 28,565 

THRESH 3 7 1 68 (8, 68] 2 min 51,743 

THRESH 3 8 1 105 (7, 105] 11 min 126,174 

THRESH 3 9 1 209 (7, 209] 2 hrs 323,678 

THRESH 4 6 1 36 (8, 36] 22 s 19,379 

THRESH 4 7 1 73 (9, 73] 2 min 54,989 

THRESH 4 8 1 158 (8, 158] 34 min 209,536 

THRESH 4 9          

THRESH 5 6 1 21 (7, 21] 5 s 8,030 

THRESH 5 7 1 47 (7, 47] 43 s 29,629 

THRESH 5 8 1 118 (8, 118] 7 min 96,686 

THRESH 5 9          

THRESH 6 7 1 36 (8, 36] 15 s 18,040 

THRESH 6 8 1 84 (8, 84] 2 min 57,669 

THRESH 6 9 1 195 (7, 195] 55 min 221,570 

THRESH 7 8 1 49 (7, 49] 29 s 26,526 

THRESH 7 9 1 144 (6, 144] 6 min 104,039 

THRESH 8 8 1 49 (7, 49] 29 s 26,526 

THRESH 8 9 1 144 (6, 144] 6 min 104,039 

THRESH 9 9 1 16 (6, 16] 4 s 5,402 

Figure 6.8: Near-optimal Results for Threshhold Class 
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Name Inputs Outputs 
Network 

Cost 

Optimal 

Cost Interval 
Time 

Search 

Tree Size 

2bit_adder 5 3 34 (10, 34] 1 min 37513 

b1 3 3 10 (10, 10] 0 s 450 

C17 5 2 6 (6, 6] 0 s 23 

cm138a 6 8 59 (13, 59] 2 min 46108 

cm152a 11 1 57 (5, 57] 2 min 42735 

cm42a 4 10 35 (15, 35] 29 s 13796 

cm82a 4 3 34 (12, 34] 1 min 32276 

cmb 16 4 121 (7, 121] 2 hrs 146648 

decod 5 16 131 (35, 131] 21 min 91384 

majority 5 1 11 (9, 11] 0 s 1459 

muroga 3 1 7 (7, 7] 0 s 105 

oai22 4 1 7 (7, 7] 0 s 87 

partialMux 6 1 12 (10, 12] 1 s 1913 

small 3 1 2 (2, 2] 0 s 7 

tcon 17 8 25 (19, 25] 33 min 4186 

x2 10 7 103 (13, 103] 7 min 84235 

z4ml 7 4 195 (11, 195] 2 hrs 259315 

Figure 6.9: Near-optimal Results for Benchmarks 

Relaxing the optimality constraint has allowed us to complete the search for functions with as many as 

17 inputs and 16 outputs.  Networks as large as 209 gates were completed.  The minimum cost interval 

contains 2 gates while the maximum contains 202 and the average contains 45 gates. 

6.3 Comparison with Established Heuristic Method 

By combining the optimal results presented in Chapter 4 with the larger near-optimal results presented 

here, enough data have been compiled so that an evaluation of a heuristic multi-level synthesis methods can 

be performed.  As an example of this evaluation, we have chosen to evaluate the well-known synthesis 

package ABC [ABC 07].  

An evaluation of the networks produced by ABC compares the distance between the network produced 

by ABC and the optimal cost for the function.   For those functions where optimal networks are known, we 

will be able to compare the networks produced by ABC to these optimal networks.  For those larger 

networks where only near-optimal results are known, we can determine if the network produced by ABC 

falls within the range determined by the near-optimal results and compare the cost of the network produced 

by ABC to the near-optimal network found by the BESS. 

The networks used for this comparison were created using the {NAND2} building block set and the cost 

function which counts the number of gates in the network.  Thus the library we will use for ABC will 

contain a primary input port, a primary output port, and a 2-input, 1-output NAND gate.  We will have ABC 

use the script resyn2 and map for area optimization.   

Figure 6.10 provides a comparison of the results obtained using ABC to those found using BESS.  

Graph (a) gives the results for functions where an optimal network has been found; graph (b) compares the 
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algorithms on functions where only an optimal cost interval can be given.  In both graphs, each function is 

represented as a position on the x-axis.  The costs of the networks are plotted on the y-axis.  The results 

found by ABC are the points given in gray.  In graph (a), the black points indicate the optimal cost of the 

network.  In graph (b), the points indicated with + give the upper bound of the cost interval, while the 

points denoted with — give the lower bound for the cost interval.  

ABC was able to produce an optimal network for 340 out of 4,043 functions where the optimal network 

is known.  For those functions where ABC did not produce an optimal network it was an average of 36% 

larger than the optimal network, with the largest network requiring 14 additional gates.  

For those functions where only an interval for the optimal solution is known, ABC produced a network 

that was within this interval for 52 out of the 60 functions.  Of these functions 15 had the same cost as the 

upper bound on the interval (the cost of the network found by the near-optimal version of BESS), and 37 

had cost smaller than the upper bound.  For those 8 functions on which ABC produced a network with cost 

outside of the optimal cost interval, the cost of a network was on average 19% larger than the network 

found by BESS, with the largest using only 10 additional gates.   
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Figure 6.10: Results of ABC on Optimal Networks 

This comparison shows that ABC performs well for a majority of functions.  Since ABC was able to 

produce networks within the cost interval for the majority of the larger functions, we can conclude BESS 

can provide a way to evaluate the networks produced by heuristic methods for multi-level synthesis but 

cannot act as a robust heuristic for performing synthesis on any problem.   

6.4 Summary 

The exact synthesis algorithm, BESS, described in this work has a structure that lends itself well to 

producing near-optimal results.  The branch-and-bound nature of the algorithm allows complete networks 

to be found quickly and then improvements upon the cost of network made as the search continues.  In this 

chapter we explored ways that we can exploit this property of BESS to provide near-optimal results. 
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First we investigated four variations on the near-optimal algorithm providing reasons to consider each 

variation and results of this variation on smaller functions where the optimal cost is known and larger 

functions where it is not.  By comparing the methods we were able to determine that a combination of the 

parameterization method and the Time Constraint method was the best choice.  We are able to complete 

synthesis for all of the functions which did not complete earlier and an interval for the optimal cost was 

given for these functions. 

We concluded this chapter by using both the optimal and near-optimal results of BESS to evaluate a 

heuristic synthesis method, ABC.  We were able to determine that for 10% of the functions attempted, 

ABC was able to complete either an optimal network or a network contained within the optimal cost 

interval.  For the remaining functions, the networks produced by ABC were an average of 36% larger than 

either the optimal cost or the optimal cost interval.  
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Chapter 7  

Conclusions 

7.1 Future Directions and Applications 

There are several directions in which the investigation presented here can be taken.  Modifications to 

BESS can be made to allow for different versions of synthesis similar to those described in Chapter 5.  

Additional techniques can also be investigated to improve the search of BESS for specialized synthesis 

options or specific types of functions.  Finally, the results of our exact synthesis method can be integrated 

into existing heuristic methods. 

7.1.1 Further Modification of the Algorithm 

The flexibility of BESS allows for the design of optimal networks under arbitrary restrictions on the 

networks.  Thus, additional modifications to the algorithm similar to those presented in Chapters 5 and 6 

can be made.  Synthesis with new cost functions and building blocks can be performed with these 

modifications.  We saw several cost functions in Chapter 5 that could be used.  These cost functions can be 

extended to any function based on a property of the network including the traditional properties of area, 

critical path delay, and power consumption or alternate properties such as the number of literals in the 

factored form.  Combinations of these cost functions with fan-in, fan-out, and level restrictions can be 

performed using the techniques outlined in Chapter 5.   

Alternate building block sets can also be employed.  Following the process outlined in Chapter 5, the 

relationship between the node’s input and output functions, the functional implications required to maintain 

this relationship, and the functional consistency constraint can be determined based on the chosen building 

blocks.   

Building blocks with multiple outputs could also be considered.  For example, the NAND-AND gate 

could be used as a building block.  In this case, the node data structure of the algorithm must keep track of 

the minterm covering for each output of the gate.  The connectible properties of the gate must also 

incorporate both outputs.  The covering details for the individual functions will remain the same, however. 

Finally, modifications for specific building block sets and cost functions can be made to the algorithm 

to optimize the search on this particular specification of the synthesis problem.  While many of the 

algorithmic techniques added to the algorithm in this thesis are helpful no matter what synthesis problem 
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was solved, some were specifically tuned to the use of NAND2 gates and optimization under the number of 

gates.  In the future, lower bounding techniques on the number of gates can be used in cases when 

structural implications are not possible or when the number of interconnections or number of levels are 

incorporated in the cost function. 

7.1.2 Parallelization & Random Restarts 

The algorithm presented here lends itself easily to parallelization.  At the beginning of the search, the 

alternate methods of covering the first several selected minterms can be given to separate processors.  The 

only data that need to be shared among the processes are the cost of the current smallest network.  When a 

possible solution network is found this must be broadcast to all of the other processors so that the search 

can be pruned accordingly. 

The obvious benefit of performing the search in parallel is that less time will be required since the 

search is split among multiple processors.  Additionally, by splitting the search in this way, the amount of 

the solution space that has to be searched may shrink as well.  The original algorithm searches the space in 

a depth-first manner.  Thus, if a poor choice is made at the beginning of the search it may be the case that a 

low cost network is not found until a significant portion of the search has been completed.  However, by 

distributing the search among several processors at the beginning of the search, some breadth is added to 

this depth-first search.  Therefore the low cost network can be found by one processor and the cost shared 

with the others.  This will prune the search significantly for those cases when, while running on a single 

processor, the optimal network is not found until later in the search and will do no harm for those cases 

when the optimal network is the initial network found. 

The utilization of random restarts of the algorithm could also help to improve the run-time of the 

algorithm.  As in parallelization, if a poor choice is made at the beginning of the search then a restart of the 

algorithm will allow some breadth to be added into the search.  It is possible that a low-cost network can be 

found sooner by exploring a new branch early in the search.  The disadvantage of using the restart is that 

the entire search must still be completed following the restart.  Thus, portions of the search space must be 

repeated. 

7.1.3 Conflicts and Constraint Learning 

Chapter 3 presented several situations that may result in a conflict during the search.  Currently the 

algorithm simply backtracks from this conflict and proceeds with the search.  However, each conflict 

presents an opportunity for learning.  Similar to constraint learning employed in satisfiablity algorithms, 

information about the network when a conflict occurs can be used to learn which covering sequences result 

in this type of conflict.  The savings in the size of the search will be evident as portions of the search tree 

which lead to such conflicts are removed. 

The difference between the search performed here and a typical backtracking search makes the process 

of learning more difficult.  In this search, the set of decision variables is constantly changing.  This makes it 
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difficult to analyze the decisions which led to the conflict and how to represent the learned constraint in 

each new network.   

7.1.4 Heuristic Methods 

As we briefly described in Chapter 6, methods for exact synthesis can be used within the broader scope 

of logic synthesis. We described how the results of BESS can be used to evaluate existing heuristic 

methods for synthesis by comparing both optimal and near-optimal networks to those produced by the 

heuristic method.  Additional research can be employed in this area.  First, the set of functions on which 

heuristic methods are evaluated can be expanded.  Larger functions and networks can be created by 

combining two or more optimal networks into one larger network.  These new test functions will have a 

known upper bound for the optimal cost of the network. 

The optimal results given here can also be used to synthesize larger functions.  There are two ways that 

this can be accomplished.  Given an initial network for a function, the network can be partitioned into 

smaller more manageable pieces, and then these subnetworks optimized using the exact synthesis 

algorithm.  A second method would be to use the optimal networks produced by the algorithm as the 

building blocks within a heuristic method.  The networks produced by either of these methods will be a 

reasonable although not necessarily optimal implementation of the function being composed of optimal 

subnetworks.  

Finally, BESS can be used as a pre-processing technique for more robust heuristic methods.  As 

Chapter 6 showed, the initial network found by the algorithm was very often close to (if not exactly) the 

optimal network.   Therefore this initial network found by the algorithm can be used to produce near-

optimal initial partial networks for a set of functions which can then be given to such a heuristic method for 

further improvements.  

7.1.5 Catalog of Optimal Networks 

The database of optimal  networks provided here can be extended providing more information about the 

structures of optimal circuits.  The completion of optimal networks for all 5-input functions was limited in 

this work due to the total number of possible functions.  While further progress could be made in 

completing this database, a more useful direction for future work would be the construction of a catalog of 

optimal networks for a selection of “interesting” functions.  Similar to those results presented in Section 

4.3.2 a catalog of common functions seen often in synthesis would be useful to logic designers when 

completing synthesis for more complex systems.  This catalog should contain optimal networks for these 

functions under a variety of synthesis constraints. 
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7.2 Summary of Thesis 

In this thesis we provided a theoretical and experimental investigation of exact synthesis.  We began by 

providing a general formulation of optimal synthesis as a dynamic search problem and described a branch-

and-bound search algorithm, BESS, that can be used for completing optimal synthesis based on this 

formulation.   

By formulating optimal synthesis as a search problem, we were able to analyze the solution space that is 

searched by the algorithm and precisely define the decision variables which drive the search.  As part of 

this analysis we provided a proof of completeness which showed that the algorithm will explore all possible 

implementations of a Boolean function guaranteeing that the optimal implementation will be found.  We 

also gave a proof of convergence.  In this proof, we discussed the three requirements needed for the initial 

path of the search to guarantee that an initial complete network would be found and that the search would 

complete.  Finally, we performed a worst-case analysis of the search space using conventional height and 

width analysis of the search tree.  This analysis showed a greater than double exponential size for the 

search tree based on the number of inputs to the function.   

From this formulation we constructed a branch-and-bound search algorithm, BESS, to complete optimal 

synthesis.  Through our description of BESS we demonstrated its three key features.  The first is the 

flexibility of the algorithm. The algorithm can easily handle a variety of synthesis options as we 

demonstrated in Chapter 5.  The second is its completeness: given enough resources, the algorithm will 

produce an optimal implementation for a given Boolean function.  Finally, in Chapter 6, we showed that 

the algorithm provides for the possibility of relaxing the optimality constraint so that complete networks for 

large functions can be produced with near-optimal cost. 

Since the problem of optimal synthesis is known to be combinatorially difficult, when constructing 

BESS we performed an extensive study of various search strategies which helped to provide a more 

efficient search.  In Chapters 3 and 4 we gave both the theoretical and empirical arguments to support the 

use of these strategies including decisions heuristics, decision implications, and pruning rules. 

In the second half of this thesis we discussed the experimental results we obtained using BESS.  First, 

we constructed a database of optimal networks for over 8,000 functions with five or fewer variables.  These 

networks were created using 2-input NAND gates and were optimized over the number of gates in the 

network.  We completed the database by optimally synthesizing one representative function for each P-

equivalence class.  This database confirmed the optimal networks previously known for all 2-, 3-, and all 

but one 4-input functions and provided new optimal results for the last 4-input function and 4,745 5-input 

functions. 

We also used BESS to construct networks for larger functions.  First, by analyzing the structures of the 

optimal networks on a variety of common functions we provided optimal implementations and cost formula 

for the n-input functions from these classes.  For four of these classes (AND, NAND, OR, and NOR) we proved 
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the optimality of the results.  Second, by relaxing the optimality constraint we used BESS to construct 

larger networks which are close to optimal.  The branch-and-bound nature of the algorithm allowed us to 

easily modify the bounding constraint to produce networks which are a known distance from optimal.  

Using this technique we completed near-optimal networks for a selection of functions from the MCNC 

benchmark suite. 

Finally, we investigated one way in which the results provided here can be used within the broader 

scope of logic synthesis.  Using both the optimal and near-optimal results, we evaluated the heuristic 

synthesis system ABC.  This evaluation determined that ABC produced optimal results for 10% functions 

attempted, and for the remaining functions, the networks produced by ABC were an average of 36% larger 

than either the optimal cost or the optimal cost interval provided by BESS 
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Appendix 

A.1 Representative Sets 

The following three tables are representative functions selected from the P- and NPN-equivalence 

classes for functions with 2, 3, and 4 inputs.  Each functions is described by an integer representation, 

binary representation, and Boolean function.  The binary representation is obtained from the truth table for 

the function with the most significant digit representing the truth table line 
1 2

x x′ ′  and the least significant 

digit representing the truth table line x1x2.    

For example the function x1 ∨ x2 has the truth table: 

 

Therefore the binary representation of 
1 2

x x∨ is 0111 and the integer representation is 7. 

         2 input P representative set 

Integer 

Representation 

Binary 

Representation 

Boolean 

Function 

1 0001 ab 

2 0010 ab' 

6 0110 ab' + a'b 

7 0111 a + b 

8 1000 a'b' 

9 1001 ab + a'b' 

11 1011 a + b' 

14 1110 a' + b' 

x1 0 0 1 1 

x2 0 1 0 1 

1 2
x x∨ 0 1 1 1 
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3 input P representative set

Integer 

Representation 

Binary 

Representation Boolean Function 

1 00000001 abc 

2 00000010 abc' 

6 00000110 abc' + ab'c 

7 00000111 ab + ac 

8 00001000 ab'c' 

9 00001001 abc + ab'c' 

11 00001011 ab + ac' 

14 00001110 ac' + ab' 

22 00010110 abc' + ab'c + a'bc 

23 00010111 ab + ac + bc 

24 00011000 ab'c' + a'bc 

25 00011001 bc + ab'c' 

26 00011010 ac' + a'bc 

27 00011011 ab + ac' + bc 

30 00011110 ac' + ab' + a'bc 

31 00011111 a + bc 

40 00101000 ab'c' + a'bc' 

41 00101001 abc + ab'c' + a'bc' 

42 00101010 ac' + bc' 

43 00101011 ab + ac' + bc' 

44 00101100 ab' + a'bc' 

45 00101101 ac + ab' + a'bc' 

46 00101110 ac' + ab' + bc' 

47 00101111 a + bc' 

61 00111101 ac + ab' + bc + a'b 

62 00111110 ac' + ab' + bc' + a'b 

104 01101000 ab'c' + a'bc' + a'b'c 

105 01101001 abc + ab'c' + a'bc' + a'b'c 

106 01101010 ac' + bc' + a'b'c 

107 01101011 ab + ac' + bc' + a'b'c 

110 01101110 ac' + ab' + bc' + b'c 

111 01101111 a + bc' + b'c 

126 01111110 
ac' + ab' + bc' +  

a'b + b'c + a'c 

127 01111111 a + b + c 

128 10000000 a'b'c' 

Integer 

Representation 

Binary 

Representation Boolean Function 

129 10000001 abc + a'b'c' 

130 10000010 abc' + a'b'c' 

131 10000011 ab + a'b'c' 

134 10000110 abc' + ab'c + a'b'c' 

135 10000111 ab + ac + a'b'c' 

137 10001001 b'c' + abc 

138 10001010 ac' + b'c' 

139 10001011 ab + ac' + b'c' 

142 10001110 ac' + ab' + b'c' 

143 10001111 a + b'c' 

150 10010110 abc' + ab'c + a'bc + a'b'c' 

151 10010111 ab + ac + bc + a'b'c' 

152 10011000 b'c' + a'bc 

154 10011010 ac' + b'c' + a'bc 

155 10011011 ab + ac' + bc + b'c' 

158 10011110 ac' + ab' + b'c' + a'bc 

159 10011111 a + bc + b'c' 

168 10101000 b'c' + a'c' 

169 10101001 b'c' + a'c' + abc 

171 10101011 c' + ab 

172 10101100 ab' + b'c' + a'c' 

173 10101101 ac + ab' + b'c' + a'c' 

174 10101110 c' + ab' 

188 10111100 ab' + a'b + b'c' + a'c' 

189 10111101 
ac + ab' + bc +  

a'b + b'c' + a'c' 

190 10111110 c' + ab' + a'b 

191 10111111 a + b + c' 

232 11101000 b'c' + a'c' + a'b' 

233 11101001 b'c' + a'c' + a'b' + abc 

234 11101010 c' + a'b' 

235 11101011 c' + ab + a'b' 

239 11101111 a + c' + b' 

254 11111110 c' + b' + a' 

 



 

 

 197 

4 input NPN representative set

Integer 

Representation 

Binary 

Representation 
Boolean Function 

1 0000000000000001 abcd 

6 0000000000000110 abcd' + abc'd 

7 0000000000000111 abc + abd 

22 0000000000010110 abcd' + abc'd + ab'cd 

23 0000000000010111 abc + abd + acd 

24 0000000000011000 abc'd' + ab'cd 

25 0000000000011001 acd + abc'd' 

27 0000000000011011 abc + abd' + acd 

30 0000000000011110 abd' + abc' + ab'cd 

31 0000000000011111 ab + acd 

61 0000000000111101 abd + abc' + acd + ab'c 

105 0000000001101001 
abcd + abc'd' + ab'cd' + 

ab'c'd 

107 0000000001101011 abc + abd' + acd' + ab'c'd 

111 0000000001101111 ab + acd' + ac'd 

126 0000000001111110 
abd' + abc' + acd' + ab'c 

+ ac'd + ab'd 

127 0000000001111111 ab + ac + ad 

278 0000000100010110 
abcd' + abc'd + ab'cd + 

a'bcd 

279 0000000100010111 abc + abd + acd + bcd 

280 0000000100011000 abc'd' + ab'cd + a'bcd 

281 0000000100011001 acd + bcd + abc'd' 

282 0000000100011010 abd' + ab'cd + a'bcd 

283 0000000100011011 abc + abd' + acd + bcd 

286 0000000100011110 
abd' + abc' + ab'cd + 

a'bcd 

287 0000000100011111 ab + acd + bcd 

300 0000000100101100 abc' + ab'cd' + a'bcd 

301 0000000100101101 abd + abc' + bcd + ab'cd' 

303 0000000100101111 ab + acd' + bcd 

316 0000000100111100 abc' + ab'c + a'bcd 

317 0000000100111101 
abd + abc' + acd + ab'c + 

bcd 

318 0000000100111110 
abd' + abc' + acd' + ab'c 

+ a'bcd 

319 0000000100111111 ab + ac + bcd 

360 0000000101101000 
abc'd' + ab'cd' + ab'c'd + 

a'bcd 

361 0000000101101001 
bcd + abc'd' + ab'cd' + 

ab'c'd 

362 0000000101101010 
abd' + acd' + ab'c'd + 

a'bcd 

363 0000000101101011 
abc + abd' + acd' + bcd + 

ab'c'd 

366 0000000101101110 
abd' + abc' + acd' + ac'd 

+ a'bcd 

367 0000000101101111 ab + acd' + ac'd + bcd 

382 0000000101111110 
abd' + abc' + acd' + ab'c 

+ ac'd + ab'd + a'bcd 

383 0000000101111111 ab + ac + ad + bcd 

Integer 

Representation 

Binary 

Representation 
Boolean Function 

384 0000000110000000 ab'c'd' + a'bcd 

385 0000000110000001 bcd + ab'c'd' 

386 0000000110000010 abcd' + ab'c'd' + a'bcd 

387 0000000110000011 abc + bcd + ab'c'd' 

390 0000000110000110 
abcd' + abc'd + ab'c'd' + 

a'bcd 

391 0000000110000111 abc + abd + bcd + ab'c'd' 

393 0000000110001001 ac'd' + bcd 

395 0000000110001011 abc + abd' + ac'd' + bcd 

399 0000000110001111 ab + ac'd' + bcd 

406 0000000110010110 
abcd' + abc'd + ab'cd + 

ab'c'd' + a'bcd 

407 0000000110010111 
abc + abd + acd + bcd + 

ab'c'd' 

408 0000000110011000 ac'd' + ab'cd + a'bcd 

409 0000000110011001 acd + ac'd' + bcd 

410 0000000110011010 
abd' + ac'd' + ab'cd + 

a'bcd 

411 0000000110011011 
abc + abd' + acd + ac'd' + 

bcd 

414 0000000110011110 
abd' + abc' + ac'd' + 

ab'cd + a'bcd 

415 0000000110011111 ab + acd + ac'd' + bcd 

424 0000000110101000 ac'd' + ab'd' + a'bcd 

425 0000000110101001 ac'd' + ab'd' + bcd 

426 0000000110101010 ad' + a'bcd 

427 0000000110101011 ad' + abc + bcd 

428 0000000110101100 
abc' + ac'd' + ab'd' + 

a'bcd 

429 0000000110101101 
abd + abc' + ac'd' + ab'd' 

+ bcd 

430 0000000110101110 ad' + abc' + a'bcd 

431 0000000110101111 ab + ad' + bcd 

444 0000000110111100 
abc' + ab'c + ac'd' + ab'd' 

+ a'bcd 

445 0000000110111101 
abd + abc' + acd + ab'c + 

ac'd' + ab'd' + bcd 

446 0000000110111110 ad' + abc' + ab'c + a'bcd 

447 0000000110111111 ab + ac + ad' + bcd 

488 0000000111101000 
ac'd' + ab'd' + ab'c' + 

a'bcd 

489 0000000111101001 ac'd' + ab'd' + ab'c' + bcd 

490 0000000111101010 ad' + ab'c' + a'bcd 

491 0000000111101011 ad' + abc + ab'c' + bcd 

494 0000000111101110 ad' + ac' + a'bcd 

495 0000000111101111 ab + ad' + ac' + bcd 

510 0000000111111110 ad' + ac' + ab' + a'bcd 

829 0000001100111101 
abd + abc' + acd + ab'c + 

bcd + a'bc 

854 0000001101010110 ac'd + ab'd + bcd' + a'bc 

855 0000001101010111 ad + bc 
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Integer 

Representation 

Binary 

Representation 
Boolean Function 

856 0000001101011000 ab'd + a'bc + abc'd' 

857 0000001101011001 
acd + ab'd + bcd + a'bc + 

abc'd' 

858 0000001101011010 abd' + ab'd + bcd' + a'bc 

859 0000001101011011 bc + abd' + acd + ab'd 

862 0000001101011110 
abd' + abc' + ac'd + ab'd 

+ bcd' + a'bc 

863 0000001101011111 ab + ad + bc 

872 0000001101101000 
a'bc + abc'd' + ab'cd' + 

ab'c'd 

873 0000001101101001 
bcd + a'bc + abc'd' + 

ab'cd' + ab'c'd 

874 0000001101101010 
abd' + acd' + bcd' + a'bc 

+ ab'c'd 

875 0000001101101011 bc + abd' + acd' + ab'c'd 

876 0000001101101100 abc' + ac'd + a'bc + ab'cd' 

877 0000001101101101 
abd + abc' + ac'd + bcd + 

a'bc + ab'cd' 

878 0000001101101110 
abd' + abc' + acd' + ac'd 

+ bcd' + a'bc 

879 0000001101101111 ab + bc + acd' + ac'd 

892 0000001101111100 
abc' + ab'c + ac'd + ab'd 

+ a'bc 

893 0000001101111101 
ad + abc' + ab'c + bcd + 

a'bc 

Integer 

Representation 

Binary 

Representation 
Boolean Function 

894 0000001101111110 

abd' + abc' + acd' + ab'c 

+ ac'd + ab'd + bcd' + 

a'bc 

961 0000001111000001 ab'c' + bcd + a'bc 

965 0000001111000101 
abd + ac'd + ab'c' + bcd 

+ a'bc 

966 0000001111000110 ac'd + ab'c' + bcd' + a'bc 

967 0000001111000111 bc + abd + ac'd + ab'c' 

980 0000001111010100 ac'd + ab'd + ab'c' + a'bc 

981 0000001111010101 ad + ab'c' + bcd + a'bc 

982 0000001111010110 
ac'd + ab'd + ab'c' + bcd' 

+ a'bc 

983 0000001111010111 ad + bc + ab'c' 

984 0000001111011000 ab'd + ac'd' + ab'c' + a'bc 

985 0000001111011001 
acd + ab'd + ac'd' + ab'c' 

+ bcd + a'bc 

987 0000001111011011 
bc + abd' + acd + ab'd + 

ac'd' + ab'c' 

988 0000001111011100 ac' + ab'd + a'bc 

989 0000001111011101 ad + ac' + bcd + a'bc 

990 0000001111011110 
ac' + abd' + ab'd + bcd' + 

a'bc 
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A.2 Function Classes 

The functions given here represent common Boolean functions.  Each set will contain Boolean 

functions which evaluate the logic operation on an increasing number of inputs.  The ten function classes 

are: AND, NAND, OR, NOR, XOR, XNOR, MAJORITY, MULTIPLEXER, ADDER, and DECODER.

AND 

Input 

Variables 

Boolean 

Function 

2 ab 

3 abc 

4 abcd 

5 abcde 

6 abcdef 

7 abcdefg 

8 abcdefgh 

9 abcdefghi 

NAND 

Input 

Variables 
Boolean Function 

2 a' + b' 

3 a' + b' + c' 

4 a' + b' + c' + d' 

5 a' + b' + c' + d' + e' 

6 a' + b' + c' + d' + e' + f' 

7 a' + b' + c' + d' + e' + f' + g' 

8 a' + b' + c' + d' + e' + f' + g' + h' 

9 a' + b' + c' + d' + e' + f' + g' + h' + i' 

OR 

Input 

Variables 
Boolean Function 

2 a + b 

3 a + b + c 

4 a + b + c + d 

5 a + b + c + d + e 

6 a + b + c + d + e + f 

7 a + b + c + d + e + f + g 

8 a + b + c + d + e + f + g + h 

9 a + b + c + d + e + f + g + h + i 

NOR 

Input 

Variables 

Boolean 

Function 

2 a’b' 

3 a'b'c' 

4 a'b'c'd' 

5 a'b'c'd'e' 

6 a'b'c'd'e'f' 

7 a'b'c'd'e'f'g' 

8 a'b'c'd'e'f'g'h' 

9 a'b'c'd'e'f'g'h'i' 

XOR 

Input 

Variables 
Boolean Function 

2 a ⊕ b 

3 a ⊕ b ⊕ c 

4 a ⊕ b ⊕ c ⊕ d 

5 a ⊕ b ⊕ c ⊕ d ⊕ e 

6 a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f 

7 a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g 

8 a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g ⊕ h 

9 a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g ⊕ h ⊕ i 

XNOR 

Input 

Variables 
Boolean Function 

2 (a ⊕ b)′ 

3 (a ⊕ b ⊕ c)′ 

4 (a ⊕ b ⊕ c ⊕ d)′ 

5 (a ⊕ b ⊕ c ⊕ d ⊕ e)′ 

6 (a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f)′ 

7 (a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g)′ 

8 (a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g ⊕ h)′ 

9 (a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g ⊕ h ⊕ i)′ 

MAJORITY 

Input 

Variables 
Boolean Function 

2 ab 

3 a (b + c) + bc 

4 a (b (c + d) + cd )+ bcd 

5 a (b (c + d + e) + c (d + e) + de ) + b (c (d + e) + de) + cde 

6 a (b (c (d + e + f) + d (e + f) + ef ) + c ( d (e + f) + ef ) + def ) + b ( c ( d (e + f) + ef) + def ) + cdef  
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MULTIPLEXER (MUX) 

Input 

Variables 
Boolean Function 

3 ac + a′b 

5 a′b′c + a′bd + ab′e 

5 a′b′c + a′bd + abe 

5 a′bc + ab′d + abe 

5 a′bc + ab′d + abe 

6 a′b′c + a′bd + ab′e + abf 

8 a′bc′d + abc′e + ab′c′f + ab′cg + abch 

9 a′bcd + a′bc′e + abc′f + ab′c′g + ab′ch + abci 

ADDER 

Description 
Input 

Variables 
Boolean Functions 

Half 2 
S = a ⊕ b 

C = ab 

Full 3 
S = a ⊕ b ⊕ c 

C = ab + ac + bc 

2 bit 4 

S0 = a0 ⊕ b0 

S1 = a1 ⊕ b1 ⊕ (a0b0) 

C1 = a1b1a0b0 

3 bit 6 

S0 = a0 ⊕ b0 

S1 = a1 ⊕ b1 ⊕ (a0b0) 

S2 = a2 ⊕ b2 ⊕ (a1b1a0b0) 

C2 = a2b2a1b1a0b0 

 

DECODER 

Input 

Variables 

Boolean 

Functions 

2 

f1 = a′b′ 

f2 = a′b 

f3 = ab′ 

f4 = ab 

3 

f1 = a′b′c′ 

f2 = a′b′c 

f3 = a′bc′ 

f4 = a′bc 

f5 = ab′c′ 

f6 = ab′c 

f7 = abc′ 

f8 = abc 

4 

f1 = a′b′c′d′ 

f2 = a′b′c′d 

f3 = a′b′cd′ 

f4 = a′b′cd 

f5 = a′bc′d′ 

f6 = a′bc′d 

f7 = a′bcd′ 

f8 = a′bcd 

f9 = ab′c′d′ 

f10 = ab′c′d 

f11 = ab′cd′ 

f12 = ab′cd 

f13 = abc′d′ 

f14 = abc′d 

f15 = abcd′ 

f16 = abcd 

THRESHOLD 

Input 

Variables 

Threshold 

Level 
Boolean Function 

2 1 a + b 

3 1 a + b + c 

4 1 a + b + c + d 

5 1 a + b + c + d + e 

6 1 a + b + c + d + e + f 

7 1 a + b + c + d + e + f + g 

8 1 a + b + c + d + e + f + g + h 

9 1 a + b + c + d + e + f + g + h + i 

2 2 ab 

3 2 ab + ac + bc 

4 2 ab + ac + ad + bc + bd + cd 

5 2 ab + ac + ad + ae + bc + bd + be + cd + ce + de 

6 2 
ab + ac + ad + ae + af + bc + bd + be + bf + cd + ce + cf + de + df 

+ ef 

7 2 
ab + ac + ad + ae + af + ag + bc + bd + be + bf + bg + cd + ce + cf 

+ cg + de + df + dg + ef + eg + fg 

8 2 

ab + ac + ad + ae + af + ag + ah + bc + bd + be + bf + bg + bh + cd 

+ ce + cf + cg + ch + de + df + dg + dh + ef + eg + eh + fg + fh + 

gh 

9 2 

ab + ac + ad + ae + af + ag + ah + ai + bc + bd + be + bf + bg + bh 

+ bi + cd + ce + cf + cg + ch + ci + de + df + dg + dh + di + ef + eg 

+ eh + ei + fg + fh + fi + gh + gi + hi 

3 3 abc 
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Input 

Variables 

Threshold 

Level 
Boolean Function 

4 3 abc + abd + acd + bcd 

5 3 abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde 

6 3 
abc + abd + abe + abf + acd + ace + acf + ade + adf + aef + bcd + 

bce + bcf + bde + bdf + bef + cde + cdf + cef + def 

7 3 

abc + abd + abe + abf + abg + acd + ace + acf + acg + ade + adf + 

adg + aef + aeg + afg + bcd + bce + bcf + bcg + bde + bdf + bdg + 

bef + beg + bfg + cde + cdf + cdg + cef + ceg + cfg + def + deg + 

dfg + efg 

8 3 

abc + abd + abe + abf + abg + abh + acd + ace + acf + acg + ach + 

ade + adf + adg + adh + aef + aeg + aeh + afg + afh + agh + bcd + 

bce + bcf + bcg + bch + bde + bdf + bdg + bdh + bef + beg + beh 

+ bfg + bfh + bgh + cde + cdf + cdg + cdh + cef + ceg + ceh + cfg 

+ cfh + cgh + def + deg + deh + dfg + dfh + dgh + efg + efh + egh 

+ fgh 

9 3 

abc + abd + abe + abf + abg + abh + abi + acd + ace + acf + acg + 

ach + aci + ade + adf + adg + adh + adi + aef + aeg + aeh + aei + 

afg + afh + afi + agh + agi + ahi + bcd + bce + bcf + bcg + bch + 

bci + bde + bdf + bdg + bdh + bdi + bef + beg + beh + bei + bfg + 

bfh + bfi + bgh + bgi + bhi + cde + cdf + cdg + cdh + cdi + cef + 

ceg + ceh + cei + cfg + cfh + cfi + cgh + cgi + chi + def + deg + 

deh + dei + dfg + dfh + dfi + dgh + dgi + dhi + efg + efh + efi + 

egh + egi + ehi + fgh + fgi + fhi + ghi 

4 4 abcd 

5 4 abcd + abce + abde + acde + bcde 

6 4 
abcd + abce + abcf + abde + abdf + abef + acde + acdf + acef + 

adef + bcde + bcdf + bcef + bdef + cdef 

7 4 

abcd + abce + abcf + abcg + abde + abdf + abdg + abef + abeg + 

abfg + acde + acdf + acdg + acef + aceg + acfg + adef + adeg + 

adfg + aefg + bcde + bcdf + bcdg + bcef + bceg + bcfg + bdef + 

bdeg + bdfg + befg + cdef + cdeg + cdfg + cefg + defg 

8 4 

abcd + abce + abcf + abcg + abch + abde + abdf + abdg + abdh + 

abef + abeg + abeh + abfg + abfh + abgh + acde + acdf + acdg + 

acdh + acef + aceg + aceh + acfg + acfh + acgh + adef + adeg + 

adeh + adfg + adfh + adgh + aefg + aefh + aegh + afgh + bcde + 

bcdf + bcdg + bcdh + bcef + bceg + bceh + bcfg + bcfh + bcgh + 

bdef + bdeg + bdeh + bdfg + bdfh + bdgh + befg + befh + begh + 

bfgh + cdef + cdeg + cdeh + cdfg + cdfh + cdgh + cefg + cefh + 

cegh + cfgh + defg + defh + degh + dfgh + efgh 

9 4 

abcd + abce + abcf + abcg + abch + abci + abde + abdf + abdg + 

abdh + abdi + abef + abeg + abeh + abei + abfg + abfh + abfi + 

abgh + abgi + abhi + acde + acdf + acdg + acdh + acdi + acef + 

aceg + aceh + acei + acfg + acfh + acfi + acgh + acgi + achi + adef 

+ adeg + adeh + adei + adfg + adfh + adfi + adgh + adgi + adhi + 

aefg + aefh + aefi + aegh + aegi + aehi + afgh + afgi + afhi + aghi 

+ bcde + bcdf + bcdg + bcdh + bcdi + bcef + bceg + bceh + bcei + 

bcfg + bcfh + bcfi + bcgh + bcgi + bchi + bdef + bdeg + bdeh + 

bdei + bdfg + bdfh + bdfi + bdgh + bdgi + bdhi + befg + befh + 

befi + begh + begi + behi + bfgh + bfgi + bfhi + bghi + cdef + 

cdeg + cdeh + cdei + cdfg + cdfh + cdfi + cdgh + cdgi + cdhi + 

cefg + cefh + cefi + cegh + cegi + cehi + cfgh + cfgi + cfhi + cghi 

+ defg + defh + defi + degh + degi + dehi + dfgh + dfgi + dfhi + 

dghi + efgh + efgi + efhi + eghi + fghi 

5 5 abcde 

6 5 abcde + abcdf + abcef + abdef + acdef + bcdef 

7 5 

abcde + abcdf + abcdg + abcef + abceg + abcfg + abdef + abdeg + 

abdfg + abefg + acdef + acdeg + acdfg + acefg + adefg + bcdef + 

bcdeg + bcdfg + bcefg + bdefg + cdefg 

8 5 

abcde + abcdf + abcdg + abcdh + abcef + abceg + abceh + abcfg + 

abcfh + abcgh + abdef + abdeg + abdeh + abdfg + abdfh + abdgh + 

abefg + abefh + abegh + abfgh + acdef + acdeg + acdeh + acdfg + 

acdfh + acdgh + acefg + acefh + acegh + acfgh + adefg + adefh + 

adegh + adfgh + aefgh + bcdef + bcdeg + bcdeh + bcdfg + bcdfh + 

bcdgh + bcefg + bcefh + bcegh + bcfgh + bdefg + bdefh + bdegh + 
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Input 

Variables 

Threshold 

Level 
Boolean Function 

bdfgh + befgh + cdefg + cdefh + cdegh + cdfgh + cefgh + defgh 

9 5 

abcde + abcdf + abcdg + abcdh + abcdi + abcef + abceg + abceh + 

abcei + abcfg + abcfh + abcfi + abcgh + abcgi + abchi + abdef + 

abdeg + abdeh + abdei + abdfg + abdfh + abdfi + abdgh + abdgi + 

abdhi + abefg + abefh + abefi + abegh + abegi + abehi + abfgh + 

abfgi + abfhi + abghi + acdef + acdeg + acdeh + acdei + acdfg + 

acdfh + acdfi + acdgh + acdgi + acdhi + acefg + acefh + acefi + 

acegh + acegi + acehi + acfgh + acfgi + acfhi + acghi + adefg + 

adefh + adefi + adegh + adegi + adehi + adfgh + adfgi + adfhi + 

adghi + aefgh + aefgi + aefhi + aeghi + afghi + bcdef + bcdeg + 

bcdeh + bcdei + bcdfg + bcdfh + bcdfi + bcdgh + bcdgi + bcdhi + 

bcefg + bcefh + bcefi + bcegh + bcegi + bcehi + bcfgh + bcfgi + 

bcfhi + bcghi + bdefg + bdefh + bdefi + bdegh + bdegi + bdehi + 

bdfgh + bdfgi + bdfhi + bdghi + befgh + befgi + befhi + beghi + 

bfghi + cdefg + cdefh + cdefi + cdegh + cdegi + cdehi + cdfgh + 

cdfgi + cdfhi + cdghi + cefgh + cefgi + cefhi + ceghi + cfghi + 

defgh + defgi + defhi + deghi + dfghi + efghi 

6 6 abcdef 

7 6 abcdef + abcdeg + abcdfg + abcefg + abdefg + acdefg + bcdefg 

8 6 

abcdef + abcdeg + abcdeh + abcdfg + abcdfh + abcdgh + abcefg + 

abcefh + abcegh + abcfgh + abdefg + abdefh + abdegh + abdfgh + 

abefgh + acdefg + acdefh + acdegh + acdfgh + acefgh + adefgh + 

bcdefg + bcdefh + bcdegh + bcdfgh + bcefgh + bdefgh + cdefgh 

9 6 

abcdef + abcdeg + abcdeh + abcdei + abcdfg + abcdfh + abcdfi + 

abcdgh + abcdgi + abcdhi + abcefg + abcefh + abcefi + abcegh + 

abcegi + abcehi + abcfgh + abcfgi + abcfhi + abcghi + abdefg + 

abdefh + abdefi + abdegh + abdegi + abdehi + abdfgh + abdfgi + 

abdfhi + abdghi + abefgh + abefgi + abefhi + abeghi + abfghi + 

acdefg + acdefh + acdefi + acdegh + acdegi + acdehi + acdfgh + 

acdfgi + acdfhi + acdghi + acefgh + acefgi + acefhi + aceghi + 

acfghi + adefgh + adefgi + adefhi + adeghi + adfghi + aefghi + 

bcdefg + bcdefh + bcdefi + bcdegh + bcdegi + bcdehi + bcdfgh + 

bcdfgi + bcdfhi + bcdghi + bcefgh + bcefgi + bcefhi + bceghi + 

bcfghi + bdefgh + bdefgi + bdefhi + bdeghi + bdfghi + befghi + 

cdefgh + cdefgi + cdefhi + cdeghi + cdfghi + cefghi + defghi 

7 7 abcdefg 

8 7 
abcdefg + abcdefh + abcdegh + abcdfgh + abcefgh + abdefgh + 

acdefgh + bcdefgh 

9 7 

abcdefg + abcdefh + abcdefi + abcdegh + abcdegi + abcdehi + 

abcdfgh + abcdfgi + abcdfhi + abcdghi + abcefgh + abcefgi + 

abcefhi + abceghi + abcfghi + abdefgh + abdefgi + abdefhi + 

abdeghi + abdfghi + abefghi + acdefgh + acdefgi + acdefhi + 

acdeghi + acdfghi + acefghi + adefghi + bcdefgh + bcdefgi + 

bcdefhi + bcdeghi + bcdfghi + bcefghi + bdefghi + cdefghi 

8 8 abcdefgh 

9 8 
abcdefgh + abcdefgi + abcdefhi + abcdeghi + abcdfghi + abcefghi 

+ abdefghi + acdefghi + bcdefghi 

9 9 abcdefghi 
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A.3 Database of Optimal Networks 

The optimal networks provided here use NAND gates with a fan-in limit of 2 as building blocks.  The 

optimality of the networks is proven based on the number of gates in the network.  Only one optimal 

network is given per function even though some functions may have multiple networks of optimal cost. 

2 Input Representative Functions from P-Equivalence Class 

Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal Network 
Binary Integer 

0001 1 2 1 
O = N(I1) 

I1 = N(a, b) 

0010 2 3 1 

O = N(I1) 

I1 = N(I2, a) 

I2 = N(b) 

0110 6 4 1 

O = N(I1, I3) 

I1 = N(I2, b) 

I2 = N(a, b) 

I3 = N(a, I2) 

0111 7 3 1 

O = N(I1, I2) 

I1 = N(b) 

I2 = N(a) 

1000 8 4 1 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(b) 

I3 = N(a) 

1001 9 5 3 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(b, I3) 

I3 = N(b, a) 

I4 = N(a, I3) 

1011 11 2 1 
O = N(I1, b) 

I1 = N(a) 

1110 14 1 1 O = N(a, b) 
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3 Input Representative Functions from P-Equivalence Class

Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

00000001 1 4 1 

O = N(I1) 

I1 = N(a, I2) 

I2 = N(I3) 

I3 = N(b, c) 

00000010 2 5 2 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(I4) 

I4 = N(a, b) 

00000110 6 6 4 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(b, c) 

I3 = N(I4, I5) 

I4 = N(a, c) 

I5 = N(b, a) 

00000111 7 3 1 

O = N(I1, I2) 

I1 = N(a, c) 

I2 = N(a, b) 

00001000 8 6 2 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(I4) 

I4 = N(I5, a) 

I5 = N(b) 

00001001 9 7 13 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(c, b) 

I4 = N(I5) 

I5 = N(I6, a) 

I6 = N(b, I3) 

00001011 11 4 2 

O = N(I1) 

I1 = N(I2, a) 

I2 = N(c, I3) 

I3 = N(b) 

00001110 14 3 1 

O = N(I1) 

I1 = N(I2, a) 

I2 = N(b, c) 

00010110 22 8 2 

O = N(I1, I6) 

I1 = N(I2, I3) 

I2 = N(a, b) 

I3 = N(I4, I5) 

I4 = N(b, c) 

I5 = N(a, c) 

I6 = N(I7, I4) 

I7 = N(I2) 

00010111 23 6 4 

O = N(I1, I5) 

I1 = N(b, I2) 

I2 = N(I3, I4) 

I3 = N(c) 

I4 = N(a) 

I5 = N(a, c) 

00011000 24 7 2 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(a, b) 

I3 = N(I4, I5) 

I4 = N(b, c) 

I5 = N(a, I6) 

I6 = N(c) 

Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

00011001 25 7 11 

O = N(I1, I2) 

I1 = N(b, c) 

I2 = N(I3, I4) 

I3 = N(c) 

I4 = N(I5) 

I5 = N(I6, a) 

I6 = N(b) 

00011010 26 6 5 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(a, c) 

I3 = N(I4, I5) 

I4 = N(b, c) 

I5 = N(a) 

00011011 27 4 1 

O = N(I1, I2) 

I1 = N(b, c) 

I2 = N(I3, a) 

I3 = N(c) 

00011110 30 6 5 

O = N(I1, I5) 

I1 = N(I2, I3) 

I2 = N(a, b) 

I3 = N(I4, I5) 

I4 = N(b, c) 

I5 = N(a, I4) 

00011111 31 3 1 

O = N(I1, I2) 

I1 = N(b, c) 

I2 = N(a) 

00101000 40 7 4 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(I4, I6) 

I4 = N(I5, b) 

I5 = N(a, b) 

I6 = N(a, I5) 

00101001 41 8 5 

O = N(I1, I9) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(a, b) 

I4 = N(I5, I7) 

I5 = N(I3, b) 

I7 = N(a, I3) 

00101010 42 4 1 

O = N(I1, I3) 

I1 = N(I2, b) 

I2 = N(c) 

I3 = N(a, I2) 

00101011 43 5 2 

O = N(I1, I4) 

I1 = N(I2, b) 

I2 = N(c, I3) 

I3 = N(c, a) 

I4 = N(a, I3) 

00101100 44 7 13 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c, b) 

I3 = N(I4, I6) 

I4 = N(I5, b) 

I5 = N(a, b) 

I6 = N(a, I5) 

00101101 45 7 5 

O = N(I1, I5) 

I1 = N(I2, I8) 

I2 = N(I3, I5) 

I3 = N(I4, b) 

I4 = N(c) 

I5 = N(a, I3) 
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Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

00101110 46 4 1 

O = N(I1, I3) 

I1 = N(I2, b) 

I2 = N(c, b) 

I3 = N(a, I2) 

00101111 47 4 1 

O = N(I1, I3) 

I1 = N(I2, b) 

I2 = N(c) 

I3 = N(a) 

00111101 61 6 2 

O = N(I1, I4) 

I1 = N(I2, b) 

I2 = N(a, I3) 

I3 = N(c) 

I4 = N(a, I5) 

I5 = N(b) 

00111110 62 5 2 

O = N(I1, I3) 

I1 = N(I2, b) 

I2 = N(a, c) 

I3 = N(a, I4) 

I4 = N(b) 

01101000 104 10 47 

O = N(I1, I13) 

I1 = N(I2, I8) 

I2 = N(b, I3) 

I3 = N(I4, I6) 

I4 = N(a, I5) 

I5 = N(a, c) 

I6 = N(I5, c) 

I8 = N(I6, I11) 

01101001 105 8 1 

O = N(I1, I13) 

I1 = N(I2, I3) 

I2 = N(b, I3) 

I3 = N(I4, I6) 

I4 = N(I5, c) 

I5 = N(a, c) 

I6 = N(a, I5) 

01101010 106 7 1 

O = N(I1, I6) 

I1 = N(I2, c) 

I2 = N(I3, c) 

I3 = N(I4, I5) 

I4 = N(b) 

I5 = N(a) 

I6 = N(I3, I2) 

01101011 107 8 2 

O = N(I1, I12) 

I1 = N(I2, I6) 

I2 = N(b, I3) 

I3 = N(b, I4) 

I4 = N(I5, c) 

I5 = N(a, c) 

I6 = N(I4, I3) 

01101110 110 7 9 

O = N(I1, I3) 

I1 = N(I2, c) 

I2 = N(b, c) 

I3 = N(I4) 

I4 = N(I5, I7) 

I5 = N(a, I2) 

01101111 111 7 7 

O = N(I1, I3) 

I1 = N(I2, c) 

I2 = N(b, c) 

I3 = N(I4) 

I4 = N(I5, I6) 

I5 = N(a) 

I6 = N(b, I2) 

Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

01111110 126 7 1 

O = N(I1, I3) 

I1 = N(I2, c) 

I2 = N(a) 

I3 = N(I4, I7) 

I4 = N(I5, I2) 

I5 = N(b) 

01111111 127 6 1 

O = N(I1, I2) 

I1 = N(c) 

I2 = N(I3) 

I3 = N(I4, I5) 

I4 = N(b) 

I5 = N(a) 

10000000 128 7 1 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(I4) 

I4 = N(I5, I6) 

I5 = N(b) 

I6 = N(a) 

10000001 129 8 2 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(b) 

I4 = N(I5, I8) 

I5 = N(I3, I7) 

I7 = N(a) 

10000010 130 8 13 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(I4) 

I4 = N(I5, I7) 

I5 = N(b, I6) 

I6 = N(b, a) 

I7 = N(a, I6) 

10000011 131 8 24 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(b, a) 

I4 = N(I5) 

I5 = N(I6, I8) 

I6 = N(b, I3) 

10000110 134 9 18 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(c, a) 

I4 = N(I5, I11) 

I5 = N(I6, I7) 

I6 = N(b, I7) 

I7 = N(a, I3) 

10000111 135 8 5 

O = N(I1, I6) 

I1 = N(I2, I10) 

I2 = N(I3, I6) 

I3 = N(I4, I5) 

I4 = N(c) 

I5 = N(b) 

I6 = N(a, I3) 

10001001 137 6 3 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(b, a) 

I4 = N(b, I5) 

I5 = N(c) 
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Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

10001010 138 5 2 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(b, I4) 

I4 = N(a) 

10001011 139 5 4 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(a, b) 

I4 = N(b, I3) 

10001110 142 6 7 

O = N(I1) 

I1 = N(I2, I5) 

I2 = N(c, I3) 

I3 = N(a, I4) 

I4 = N(a, b) 

I5 = N(b, I4) 

10001111 143 5 3 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(a) 

I4 = N(b, I3) 

10010110 150 9 7 

O = N(I1, I11) 

I1 = N(I2, I5) 

I2 = N(c, I3) 

I3 = N(b, I4) 

I4 = N(b, a) 

I5 = N(I6, I11) 

I6 = N(I3, I9) 

10010111 151 9 7 

O = N(I1, I6) 

I1 = N(I2, I9) 

I2 = N(c, I3) 

I3 = N(c, I4) 

I4 = N(I5, I7) 

I5 = N(b, I6) 

I6 = N(b, a) 

I7 = N(a, I6) 

10011000 152 6 1 

O = N(I1, I7) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(a, b) 

I4 = N(b, I2) 

10011010 154 6 1 

O = N(I1, I7) 

I1 = N(I2, I3) 

I2 = N(c, I3) 

I3 = N(b, I4) 

I4 = N(a) 

10011011 155 6 3 

O = N(I1, I6) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(c, b) 

I4 = N(b, I3) 

10011110 158 8 4 

O = N(I1, I7) 

I1 = N(I2, I5) 

I2 = N(c, I3) 

I3 = N(b, I4) 

I4 = N(a) 

I5 = N(b, I6) 

I6 = N(c, b) 

I7 = N(a, I6) 

10011111 159 6 2 

O = N(I1, I6) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(c, b) 

I4 = N(b, I3) 

Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

10101000 168 4 1 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(a, b) 

10101001 169 5 1 

O = N(I1, I5) 

I1 = N(I2, I3) 

I2 = N(c, I3) 

I3 = N(a, b) 

10101011 171 2 1 
O = N(I1, c) 

I1 = N(a, b) 

10101100 172 5 2 

O = N(I1) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(a) 

I4 = N(a, b) 

10101101 173 5 1 

O = N(I1, I4) 

I1 = N(I2, I3) 

I2 = N(c) 

I3 = N(a, b) 

I4 = N(c, a) 

10101110 174 3 1 

O = N(I1, c) 

I1 = N(I2, a) 

I2 = N(b) 

10111100 188 6 3 

O = N(I1, I5) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(b) 

I4 = N(a, b) 

I5 = N(a, I4) 

10111101 189 6 1 

O = N(I1, I5) 

I1 = N(I2, I4) 

I2 = N(c, I3) 

I3 = N(b) 

I4 = N(a, b) 

I5 = N(a, c) 

10111110 190 6 7 

O = N(I1, I3) 

I1 = N(I2, b) 

I2 = N(a, b) 

I3 = N(I4) 

I4 = N(c, I5) 

I5 = N(a, I2) 

10111111 191 5 2 

O = N(I1, I2) 

I1 = N(b) 

I2 = N(I3) 

I3 = N(I4, c) 

I4 = N(a) 

11101000 232 7 8 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(b, c) 

I3 = N(a, I4) 

I4 = N(I5, I6) 

I5 = N(c) 

I6 = N(b) 

11101001 233 8 9 

O = N(I1, I9) 

I1 = N(I2, I3) 

I2 = N(b, c) 

I3 = N(a, I4) 

I4 = N(I5, I7) 

I5 = N(c, I2) 

I7 = N(b, I2) 

11101010 234 4 2 

O = N(I1) 

I1 = N(I2, I3) 

I2 = N(b, c) 

I3 = N(a, c) 
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Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

11101011 235 5 2 

O = N(I1, c) 

I1 = N(I2, I4) 

I2 = N(b, I3) 

I3 = N(b, a) 

I4 = N(a, I3) 

Functions Minimum 

Cost 

Number of 

Optimal 

Networks 

Optimal 

Network Binary Integer 

11101111 239 4 2 

O = N(I1, I2) 

I1 = N(a) 

I2 = N(I3) 

I3 = N(b, c) 

11111110 254 3 1 

O = N(a, I1) 

I1 = N(I2) 

I2 = N(b, c) 
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4 Input Representative Functions from P-Equivalence Class 

For these functions we give only the optimal cost and integer representation to preserve space. 

Optimal 

Cost 

Number of 

Functions 
Function Index 

3 2 855, 43774 

4 12 171, 239, 939, 1007, 3822, 3839, 43691, 43759, 61152, 61162, 61167, 65262 

5 42 

7, 14, 31, 174, 191, 254, 427, 495, 511, 943, 991, 2747, 2766, 2767, 2783, 2798, 2814, 3003, 3055, 

3071, 3838, 4094, 34954, 34959, 43178, 43179, 43180, 43183, 43260, 43261, 43263, 43694, 43711, 

44031, 60142, 60143, 60159, 61154, 61171, 61178, 61182, 65534 

6 108 

1, 11, 27, 42, 46, 47, 127, 168, 234, 287, 319, 431, 582, 599, 682, 718, 719, 735, 750, 766, 767, 854, 

863, 938, 974, 1022, 1911, 1967, 1983, 2047, 2731, 2746, 2782, 2799, 2811, 3002, 3039, 3066, 3067, 

4081, 4091, 8191, 34953, 34955, 34984, 34987, 34988, 34991, 35002, 35007, 35064, 35066, 35067, 

35498, 35514, 35515, 35530, 35534, 35535, 35551, 35578, 35582, 35583, 35771, 35807, 35839, 

36863, 39322, 39323, 39327, 43181, 43199, 43244, 43246, 43247, 43262, 43688, 43692, 43710, 

43720, 43726, 43727, 43754, 43756, 43772, 43773, 43980, 43983, 43997, 44014, 44015, 44028, 

44030, 44284, 44285, 44286, 44287, 44541, 44782, 44798, 44799, 45052, 45054, 60139, 60158, 

61155, 61179, 65279 

7 244 

2, 23, 26, 43, 61, 62, 111, 137, 138, 139, 143, 169, 172, 173, 235, 303, 393, 425, 426, 447, 491, 559, 

575, 583, 590, 591, 598, 607, 650, 651, 683, 686, 687, 714, 746, 751, 859, 904, 906, 907, 911, 936, 

937, 942, 959, 968, 971, 973, 989, 1003, 1005, 1006, 1021, 1638, 1655, 1727, 1774, 1790, 1791, 

1935, 1962, 1963, 2031, 2032, 2035, 2039, 2040, 2042, 2043, 2046, 2184, 2216, 2218, 2219, 2235, 

2296, 2298, 2299, 2303, 2734, 2751, 2760, 2762, 2794, 2808, 2812, 2813, 3054, 3070, 3808, 3818, 

3823, 3824, 3825, 3834, 3835, 4082, 4087, 4088, 6906, 6907, 6910, 6911, 7099, 7163, 7167, 7920, 

7934, 7935, 8176, 8177, 8186, 8187, 8190, 10922, 10986, 10990, 10991, 11007, 12014, 12015, 

12030, 12031, 12287, 16126, 16127, 34944, 34968, 34971, 34975, 34989, 34990, 35000, 35001, 

35004, 35055, 35065, 35070, 35241, 35243, 35259, 35311, 35323, 35327, 35499, 35503, 35519, 

35528, 35531, 35546, 35549, 35550, 35566, 35567, 35576, 35579, 35580, 35823, 35835, 36590, 

36606, 36607, 36856, 39320, 39337, 39339, 39353, 39357, 39359, 39417, 39419, 39899, 39903, 

43144, 43177, 43182, 43208, 43212, 43245, 43437, 43517, 43689, 43693, 43708, 43722, 43723, 

43725, 43736, 43737, 43740, 43743, 43755, 43757, 43979, 43996, 43999, 44010, 44011, 44012, 

44029, 44268, 44269, 44270, 44271, 44280, 44525, 44540, 44543, 44778, 44780, 44783, 44784, 

44785, 44787, 44789, 44794, 44795, 44796, 44797, 45041, 45043, 45048, 45051, 45053, 60074, 

60096, 60104, 60106, 60136, 60140, 60394, 60399, 61153, 61158, 61160, 61163, 61170, 61176, 

61434, 61438, 61439, 65256, 65258, 65263 

8 487 

6, 8, 9, 25, 30, 44, 110, 142, 152, 154, 155, 159, 188, 189, 190, 279, 283, 299, 317, 392, 394, 395, 

399, 409, 411, 424, 429, 430, 494, 510, 554, 558, 597, 602, 606, 639, 648, 654, 655, 667, 671, 703, 

706, 710, 711, 712, 716, 727, 730, 734, 858, 862, 895, 905, 908, 910, 921, 923, 927, 940, 941, 962, 

964, 965, 966, 967, 969, 970, 981, 983, 985, 986, 987, 988, 990, 1002, 1004, 1654, 1695, 1702, 1710, 

1711, 1782, 1783, 1910, 1931, 1951, 1955, 1957, 1959, 1966, 1978, 1979, 2019, 2023, 2030, 2034, 

2186, 2187, 2191, 2220, 2222, 2223, 2232, 2234, 2239, 2282, 2286, 2287, 2302, 2457, 2473, 2475, 

2479, 2489, 2491, 2543, 2553, 2555, 2559, 2722, 2723, 2728, 2732, 2736, 2739, 2744, 2750, 2752, 

2754, 2758, 2759, 2763, 2768, 2775, 2776, 2778, 2779, 2780, 2781, 2784, 2788, 2795, 2796, 2801, 

2802, 2803, 2804, 2806, 2807, 2992, 2993, 2995, 3007, 3033, 3038, 3040, 3045, 3050, 3051, 3056, 

3057, 3059, 3060, 3061, 3063, 3064, 3068, 3069, 3810, 3826, 3827, 4086, 6330, 6331, 6394, 6395, 

6398, 6399, 6553, 6570, 6585, 6587, 6591, 6649, 6651, 6655, 6842, 6843, 6846, 6847, 6874, 6876, 

6878, 6879, 6896, 7089, 7098, 7103, 7129, 7131, 7135, 7140, 7150, 7151, 7152, 7153, 7156, 7157, 

7162, 7164, 7165, 7166, 7922, 7930, 8178, 8179, 10410, 10411, 10475, 10479, 10492, 10493, 10495, 

10926, 10927, 10943, 10956, 10958, 10959, 10965, 10973, 10975, 11004, 11005, 11006, 11246, 

11247, 11263, 11500, 11502, 11503, 11516, 11517, 11518, 11519, 11745, 11757, 11759, 11760, 

11772, 11773, 11775, 12002, 12016, 12017, 12018, 12019, 12027, 12029, 12272, 12273, 12274, 

12275, 12277, 12279, 12282, 12283, 12284, 12285, 12286, 15580, 15599, 15613, 15614, 15837, 

15868, 15869, 15871, 16110, 16381, 16382, 32898, 32899, 32904, 32906, 32907, 32910, 32911, 

32938, 32942, 32943, 32959, 33023, 34945, 34946, 34947, 34951, 34958, 34960, 34961, 34970, 

34976, 34978, 34979, 34985, 34992, 34994, 34995, 35006, 35050, 35056, 35059, 35063, 35225, 

35227, 35242, 35247, 35257, 35258, 35263, 35320, 35321, 35322, 35502, 35518, 35544, 35545, 

35547, 35548, 35562, 35581, 35770, 35775, 35802, 35803, 35822, 35832, 35834, 35836, 35838, 

36858, 36859, 36862, 39048, 39065, 39066, 39067, 39071, 39096, 39098, 39099, 39103, 39160, 

39162, 39166, 39167, 39312, 39313, 39315, 39336, 39341, 39343, 39352, 39354, 39356, 39416, 

39422, 39642, 39645, 39646, 39647, 39867, 39897, 39931, 39935, 43145, 43146, 43147, 43148, 

43151, 43160, 43161, 43163, 43196, 43197, 43198, 43210, 43215, 43224, 43228, 43229, 43231, 

43240, 43417, 43432, 43434, 43435, 43436, 43439, 43453, 43485, 43501, 43503, 43516, 43519, 

43709, 43712, 43716, 43721, 43733, 43738, 43739, 43742, 43752, 43964, 43967, 43976, 43977, 

43981, 43982, 44013, 44236, 44252, 44253, 44256, 44272, 44282, 44283, 44509, 44517, 44524, 

44527, 44528, 44533, 44536, 44542, 44768, 44770, 44786, 44791, 45042, 45044, 45047, 48380, 

48381, 48383, 48894, 48895, 49151, 59626, 59627, 59630, 59631, 59646, 59647, 60075, 60078, 
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Optimal 

Cost 

Number of 

Functions 
Function Index 

60079, 60095, 60098, 60105, 60107, 60110, 60111, 60117, 60120, 60121, 60122, 60124, 60125, 

60127, 60141, 60156, 60157, 60377, 60392, 60396, 60398, 60415, 61159, 61174, 61175, 61177, 

61431, 61432, 61435 

9 728 

24, 40, 45, 106, 126, 128, 130, 131, 232, 281, 282, 286, 298, 301, 302, 316, 318, 367, 383, 415, 428, 

445, 489, 490, 555, 574, 576, 578, 579, 586, 596, 603, 605, 622, 623, 642, 649, 652, 666, 680, 684, 

702, 704, 707, 708, 715, 717, 726, 731, 732, 733, 747, 748, 764, 765, 830, 856, 857, 878, 879, 892, 

894, 898, 899, 909, 920, 922, 925, 958, 961, 984, 1000, 1639, 1678, 1679, 1706, 1719, 1726, 1762, 

1766, 1775, 1778, 1779, 1786, 1919, 1928, 1930, 1934, 1952, 1954, 1956, 1958, 1960, 1964, 1965, 

1968, 1970, 1971, 1973, 1975, 1980, 1982, 2022, 2026, 2027, 2033, 2038, 2041, 2185, 2200, 2201, 

2203, 2208, 2217, 2221, 2224, 2233, 2236, 2238, 2280, 2283, 2288, 2297, 2458, 2459, 2463, 2474, 

2478, 2490, 2492, 2493, 2495, 2539, 2552, 2554, 2721, 2729, 2733, 2737, 2738, 2745, 2755, 2761, 

2769, 2770, 2771, 2773, 2774, 2777, 2785, 2786, 2787, 2789, 2790, 2792, 2797, 2809, 2994, 3000, 

3001, 3004, 3006, 3024, 3027, 3030, 3031, 3034, 3035, 3041, 3043, 3044, 3052, 3053, 3058, 3062, 

3065, 3809, 3811, 3819, 3830, 3831, 3832, 4089, 5886, 6043, 6047, 6058, 6063, 6079, 6126, 6127, 

6143, 6296, 6298, 6328, 6334, 6335, 6392, 6393, 6554, 6555, 6559, 6569, 6571, 6574, 6575, 6586, 

6588, 6589, 6638, 6648, 6650, 6654, 6826, 6832, 6833, 6858, 6862, 6863, 6875, 6877, 6890, 6894, 

6897, 6901, 6904, 6905, 6908, 6909, 7088, 7091, 7097, 7101, 7120, 7121, 7130, 7134, 7136, 7141, 

7146, 7147, 7148, 7149, 7154, 7155, 7158, 7159, 7160, 7161, 7918, 7921, 7923, 7931, 8183, 8184, 

8185, 10408, 10414, 10415, 10430, 10476, 10478, 10494, 10923, 10942, 10944, 10948, 10954, 

10955, 10957, 10972, 10987, 10988, 11210, 11212, 11214, 11215, 11220, 11228, 11229, 11230, 

11231, 11242, 11243, 11244, 11260, 11261, 11262, 11501, 11504, 11508, 11756, 11761, 11765, 

11768, 12000, 12003, 12010, 12012, 12021, 12023, 12026, 12028, 12276, 12278, 12280, 15561, 

15565, 15581, 15583, 15595, 15596, 15597, 15598, 15852, 15853, 15855, 16111, 16124, 16125, 

28398, 28414, 28415, 28671, 32767, 32897, 32903, 32905, 32920, 32921, 32922, 32927, 32936, 

32939, 32940, 32941, 33002, 33006, 33007, 33022, 33152, 33160, 33161, 33162, 33163, 33167, 

33194, 33195, 33199, 33215, 33263, 33279, 33408, 33411, 33414, 33415, 33416, 33418, 33419, 

33420, 33422, 33423, 33450, 33454, 33455, 33470, 33471, 33472, 33474, 33475, 33478, 33479, 

33484, 33486, 33487, 33495, 33503, 33518, 33534, 33535, 33664, 33665, 33666, 33671, 33672, 

33673, 33674, 33675, 33676, 33679, 33706, 33707, 33711, 33727, 33728, 33730, 33731, 33734, 

33735, 33740, 33743, 33751, 33759, 33775, 33791, 34688, 34690, 34691, 34696, 34698, 34699, 

34703, 34725, 34726, 34727, 34730, 34735, 34740, 34741, 34743, 34751, 34800, 34803, 34807, 

34815, 34963, 34977, 34980, 34981, 34983, 34993, 34996, 34997, 34999, 35005, 35040, 35042, 

35043, 35048, 35051, 35057, 35058, 35224, 35226, 35231, 35232, 35233, 35235, 35240, 35245, 

35246, 35251, 35256, 35260, 35261, 35307, 35310, 35312, 35313, 35326, 35488, 35490, 35491, 

35496, 35500, 35504, 35505, 35506, 35507, 35512, 35513, 35516, 35520, 35522, 35523, 35529, 

35536, 35539, 35541, 35543, 35552, 35563, 35564, 35568, 35570, 35571, 35573, 35575, 35577, 

35760, 35763, 35768, 35772, 35792, 35794, 35795, 35799, 35800, 35801, 35806, 35819, 35820, 

35824, 35826, 35827, 35828, 35829, 35831, 35833, 35837, 36591, 36602, 36603, 36848, 36850, 

36851, 36855, 36857, 39049, 39051, 39055, 39056, 39057, 39058, 39059, 39070, 39080, 39082, 

39083, 39086, 39087, 39097, 39102, 39161, 39163, 39314, 39318, 39319, 39326, 39328, 39329, 

39330, 39331, 39333, 39334, 39335, 39340, 39342, 39344, 39345, 39346, 39347, 39348, 39349, 

39351, 39358, 39407, 39408, 39409, 39410, 39411, 39414, 39415, 39418, 39594, 39608, 39610, 

39611, 39615, 39626, 39630, 39631, 39640, 39641, 39643, 39644, 39674, 39678, 39679, 39864, 

39865, 39866, 39868, 39871, 39902, 39918, 39919, 39929, 39932, 40959, 43149, 43150, 43165, 

43167, 43211, 43213, 43214, 43225, 43226, 43230, 43242, 43243, 43418, 43419, 43420, 43421, 

43423, 43452, 43455, 43465, 43468, 43469, 43471, 43481, 43487, 43497, 43500, 43502, 43518, 

43714, 43715, 43717, 43719, 43735, 43965, 43966, 43968, 43971, 43972, 43974, 43975, 43978, 

43988, 43989, 43991, 43992, 43993, 43994, 43995, 43998, 44008, 44232, 44234, 44239, 44255, 

44259, 44264, 44266, 44273, 44275, 44276, 44277, 44279, 44281, 44506, 44508, 44511, 44512, 

44513, 44519, 44526, 44529, 44531, 44532, 44535, 44537, 44538, 44539, 44769, 44771, 44772, 

44773, 44774, 44776, 44779, 44781, 44788, 44790, 44792, 45046, 45049, 48332, 48348, 48364, 

48366, 48367, 48382, 48605, 48620, 48636, 48637, 48639, 48878, 48879, 48892, 49148, 49149, 

49150, 59560, 59562, 59625, 59883, 59887, 60094, 60097, 60099, 60102, 60103, 60118, 60119, 

60123, 60126, 60137, 60350, 60351, 60375, 60376, 60379, 60383, 60393, 60397, 60412, 60413, 

60414, 61161, 61430, 61433, 65259 

10 958 

22, 41, 104, 105, 107, 129, 134, 135, 158, 233, 280, 296, 297, 300, 361, 363, 366, 384, 385, 387, 398, 

408, 410, 444, 446, 488, 556, 557, 572, 573, 577, 584, 585, 587, 600, 604, 638, 640, 643, 646, 647, 

653, 664, 665, 670, 681, 685, 705, 709, 713, 725, 728, 729, 744, 745, 749, 829, 872, 874, 875, 876, 

893, 896, 897, 901, 903, 924, 956, 957, 980, 982, 1001, 1632, 1634, 1635, 1642, 1646, 1647, 1650, 

1651, 1658, 1662, 1663, 1672, 1674, 1675, 1689, 1691, 1696, 1698, 1699, 1700, 1701, 1703, 1704, 

1705, 1707, 1708, 1709, 1712, 1715, 1717, 1718, 1722, 1723, 1725, 1760, 1763, 1767, 1768, 1770, 

1776, 1777, 1784, 1785, 1787, 1914, 1915, 1918, 1920, 1923, 1927, 1929, 1945, 1946, 1947, 1953, 

1961, 1969, 1972, 1976, 1977, 1981, 2016, 2017, 2018, 2024, 2025, 2176, 2190, 2202, 2207, 2210, 

2211, 2212, 2213, 2227, 2237, 2272, 2274, 2289, 2290, 2291, 2295, 2456, 2465, 2467, 2472, 2476, 

2477, 2480, 2481, 2488, 2494, 2529, 2537, 2538, 2542, 2544, 2545, 2547, 2558, 2724, 2726, 2727, 

2740, 2741, 2743, 2748, 2749, 2753, 2772, 2791, 2996, 2997, 2999, 3005, 3025, 3026, 3032, 3042, 
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3046, 3047, 3048, 3049, 3814, 3815, 3816, 3833, 5786, 5790, 5802, 5806, 5822, 5823, 5866, 5870, 

5887, 6024, 6025, 6026, 6027, 6030, 6031, 6041, 6042, 6046, 6056, 6059, 6060, 6061, 6062, 6076, 

6077, 6078, 6120, 6122, 6123, 6142, 6280, 6297, 6299, 6312, 6314, 6315, 6318, 6319, 6323, 6329, 

6332, 6378, 6382, 6384, 6387, 6552, 6568, 6572, 6573, 6576, 6577, 6579, 6584, 6590, 6634, 6639, 

6640, 6641, 6643, 6816, 6817, 6819, 6821, 6827, 6830, 6831, 6834, 6835, 6837, 6839, 6840, 6841, 

6851, 6856, 6859, 6864, 6865, 6866, 6867, 6869, 6872, 6873, 6880, 6884, 6885, 6888, 6891, 6892, 

6893, 6895, 6898, 6899, 6900, 6903, 7090, 7092, 7093, 7096, 7100, 7102, 7122, 7123, 7126, 7127, 

7128, 7137, 7138, 7139, 7142, 7143, 7144, 7145, 7904, 7905, 7906, 7907, 7914, 7915, 7919, 7926, 

7927, 7928, 8182, 10376, 10412, 10413, 10428, 10431, 10440, 10444, 10461, 10472, 10474, 10477, 

10665, 10667, 10669, 10671, 10729, 10733, 10735, 10748, 10749, 10751, 10920, 10924, 10925, 

10945, 10947, 10949, 10952, 10964, 10967, 10968, 10969, 10970, 10974, 10984, 10989, 11199, 

11209, 11211, 11213, 11221, 11223, 11224, 11225, 11226, 11245, 11468, 11469, 11484, 11485, 

11488, 11489, 11490, 11491, 11498, 11499, 11505, 11506, 11507, 11509, 11510, 11511, 11512, 

11513, 11514, 11515, 11741, 11744, 11747, 11749, 11751, 11752, 11753, 11758, 11762, 11763, 

11764, 11767, 11769, 11770, 11771, 11774, 12001, 12006, 12007, 12011, 12013, 12020, 12022, 

12024, 12025, 12281, 15554, 15558, 15559, 15560, 15562, 15563, 15566, 15575, 15576, 15577, 

15579, 15582, 15592, 15594, 15833, 15836, 15839, 15854, 15870, 16106, 16107, 16108, 16109, 

27306, 27328, 27336, 27338, 27370, 27374, 27375, 27391, 27627, 27631, 27647, 28384, 28386, 

28387, 28390, 28394, 28399, 28403, 28406, 28410, 28662, 32494, 32510, 32511, 32766, 32768, 

32776, 32778, 32779, 32783, 32902, 32923, 32937, 32956, 32957, 32958, 33003, 33154, 33155, 

33177, 33179, 33183, 33192, 33193, 33197, 33198, 33258, 33259, 33262, 33409, 33412, 33413, 

33417, 33421, 33430, 33431, 33433, 33435, 33439, 33451, 33473, 33476, 33477, 33480, 33481, 

33482, 33483, 33485, 33493, 33494, 33497, 33498, 33499, 33500, 33501, 33502, 33514, 33515, 

33516, 33519, 33532, 33668, 33669, 33670, 33677, 33678, 33687, 33689, 33691, 33693, 33695, 

33704, 33708, 33710, 33724, 33726, 33729, 33732, 33733, 33736, 33737, 33738, 33739, 33741, 

33742, 33749, 33750, 33753, 33754, 33755, 33756, 33757, 33758, 33770, 33771, 33772, 33774, 

33788, 33789, 33790, 34433, 34434, 34435, 34439, 34446, 34447, 34455, 34468, 34469, 34470, 

34471, 34478, 34479, 34485, 34486, 34487, 34494, 34495, 34528, 34543, 34545, 34550, 34551, 

34558, 34559, 34689, 34694, 34697, 34707, 34710, 34711, 34720, 34722, 34723, 34724, 34728, 

34729, 34731, 34732, 34733, 34736, 34737, 34739, 34742, 34744, 34747, 34748, 34749, 34785, 

34786, 34787, 34791, 34795, 34799, 34801, 34802, 34808, 34810, 34811, 34950, 34962, 34966, 

34967, 34974, 34982, 34998, 35041, 35046, 35047, 35049, 35062, 35216, 35217, 35219, 35234, 

35236, 35237, 35239, 35244, 35248, 35249, 35250, 35253, 35255, 35262, 35296, 35305, 35306, 

35314, 35315, 35318, 35319, 35489, 35493, 35495, 35497, 35501, 35509, 35511, 35517, 35521, 

35526, 35527, 35537, 35538, 35540, 35542, 35553, 35554, 35555, 35556, 35557, 35560, 35565, 

35569, 35572, 35574, 35761, 35762, 35769, 35773, 35774, 35793, 35808, 35809, 35811, 35813, 

35815, 35816, 35817, 35818, 35821, 35825, 35830, 36576, 36584, 36586, 36587, 36592, 36593, 

36594, 36595, 36599, 36600, 36601, 36849, 38530, 38534, 38535, 38551, 38552, 38553, 38554, 

38555, 38558, 38559, 38570, 38590, 38591, 38654, 38655, 38786, 38787, 38790, 38791, 38806, 

38809, 38810, 38811, 38815, 38826, 38827, 38831, 38847, 38911, 39040, 39042, 39050, 39072, 

39073, 39075, 39076, 39077, 39078, 39081, 39084, 39085, 39088, 39089, 39090, 39091, 39092, 

39093, 39095, 39100, 39101, 39146, 39150, 39151, 39152, 39153, 39154, 39155, 39159, 39332, 

39350, 39392, 39393, 39395, 39399, 39400, 39401, 39402, 39403, 39589, 39590, 39593, 39595, 

39599, 39600, 39601, 39602, 39603, 39605, 39607, 39609, 39612, 39613, 39614, 39616, 39617, 

39619, 39624, 39625, 39627, 39632, 39633, 39635, 39636, 39637, 39639, 39662, 39663, 39664, 

39665, 39669, 39671, 39672, 39673, 39675, 39676, 39677, 39857, 39859, 39861, 39863, 39869, 

39870, 39888, 39889, 39891, 39895, 39896, 39898, 39912, 39914, 39915, 39916, 39917, 39920, 

39921, 39923, 39924, 39925, 39926, 39927, 39928, 39930, 39933, 39934, 40696, 40702, 40703, 

40944, 40945, 40946, 40947, 40950, 40951, 40952, 40953, 40954, 40955, 40958, 43136, 43139, 

43140, 43141, 43162, 43164, 43166, 43200, 43204, 43209, 43221, 43227, 43241, 43416, 43438, 

43464, 43467, 43480, 43482, 43483, 43484, 43486, 43496, 43499, 43713, 43718, 43732, 43734, 

43753, 43969, 43970, 43973, 44009, 44224, 44235, 44237, 44238, 44240, 44248, 44250, 44254, 

44257, 44258, 44260, 44261, 44267, 44274, 44278, 44504, 44505, 44507, 44510, 44515, 44516, 

44520, 44521, 44522, 44523, 44530, 44534, 44775, 44793, 48328, 48330, 48331, 48333, 48335, 

48349, 48351, 48360, 48361, 48362, 48363, 48365, 48601, 48602, 48603, 48607, 48616, 48621, 

48622, 48623, 48638, 48874, 48875, 48876, 48877, 48893, 59528, 59561, 59563, 59564, 59565, 

59566, 59567, 59583, 59817, 59880, 59882, 59886, 59903, 60072, 60076, 60077, 60116, 60378, 

65257 

11 759 

150, 151, 278, 362, 382, 386, 390, 391, 414, 552, 601, 618, 619, 620, 636, 637, 641, 644, 645, 660, 

662, 663, 668, 669, 700, 701, 724, 873, 877, 900, 902, 916, 917, 918, 919, 926, 1659, 1664, 1666, 

1670, 1671, 1673, 1680, 1681, 1682, 1683, 1686, 1687, 1688, 1690, 1694, 1697, 1714, 1716, 1720, 

1721, 1724, 1771, 1912, 1921, 1922, 1926, 1936, 1937, 1938, 1939, 1942, 1943, 1944, 1950, 1974, 

2177, 2178, 2179, 2183, 2192, 2193, 2194, 2195, 2206, 2209, 2214, 2215, 2225, 2226, 2228, 2229, 

2230, 2231, 2273, 2275, 2278, 2279, 2281, 2294, 2448, 2449, 2451, 2464, 2466, 2468, 2469, 2470, 

2471, 2482, 2483, 2485, 2528, 2530, 2531, 2535, 2536, 2546, 2550, 2551, 2742, 2793, 5770, 5782, 

5785, 5791, 5804, 5807, 5820, 5821, 5871, 6015, 6016, 6017, 6018, 6019, 6022, 6023, 6038, 6039, 
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6040, 6057, 6272, 6273, 6282, 6283, 6287, 6288, 6289, 6302, 6303, 6304, 6305, 6306, 6307, 6313, 

6316, 6317, 6320, 6321, 6322, 6325, 6333, 6368, 6370, 6371, 6375, 6376, 6379, 6383, 6385, 6386, 

6390, 6391, 6544, 6545, 6547, 6560, 6561, 6562, 6563, 6564, 6565, 6566, 6567, 6578, 6581, 6583, 

6624, 6626, 6627, 6630, 6631, 6632, 6633, 6635, 6642, 6646, 6647, 6818, 6820, 6824, 6825, 6829, 

6836, 6838, 6844, 6845, 6848, 6849, 6850, 6855, 6868, 6870, 6871, 6881, 6882, 6883, 6886, 6887, 

6889, 6902, 7095, 7910, 7911, 7929, 10368, 10370, 10371, 10373, 10378, 10379, 10380, 10381, 

10382, 10383, 10392, 10393, 10396, 10397, 10409, 10429, 10432, 10433, 10434, 10435, 10436, 

10437, 10438, 10439, 10441, 10442, 10443, 10445, 10446, 10447, 10452, 10453, 10455, 10456, 

10457, 10458, 10459, 10460, 10463, 10473, 10649, 10664, 10666, 10668, 10684, 10685, 10687, 

10688, 10689, 10696, 10697, 10700, 10701, 10709, 10712, 10713, 10716, 10717, 10731, 10732, 

10734, 10940, 10941, 10946, 10950, 10951, 10953, 10966, 10971, 11196, 11197, 11198, 11200, 

11201, 11202, 11203, 11204, 11205, 11207, 11208, 11227, 11240, 11241, 11456, 11457, 11458, 

11459, 11464, 11465, 11466, 11470, 11471, 11472, 11473, 11474, 11475, 11476, 11477, 11479, 

11480, 11481, 11486, 11487, 11492, 11493, 11494, 11495, 11496, 11497, 11728, 11729, 11730, 

11731, 11733, 11735, 11736, 11738, 11740, 11742, 11743, 11746, 11748, 11750, 11754, 11755, 

11766, 12004, 12005, 12008, 15553, 15556, 15557, 15572, 15573, 15574, 15578, 15593, 15829, 

15831, 15832, 15835, 15838, 15848, 15849, 15850, 15851, 16104, 26760, 26777, 26797, 26856, 

26858, 26859, 26862, 26863, 26878, 26879, 27033, 27049, 27050, 27053, 27113, 27115, 27118, 

27119, 27135, 27305, 27310, 27311, 27327, 27330, 27331, 27334, 27339, 27342, 27343, 27349, 

27352, 27353, 27354, 27355, 27356, 27357, 27358, 27359, 27368, 27371, 27372, 27373, 27388, 

27389, 27390, 27609, 27611, 27614, 27626, 27629, 27630, 27646, 28391, 28392, 28395, 28402, 

28407, 28409, 28411, 28663, 28664, 28665, 28666, 28667, 28670, 32495, 32769, 32770, 32771, 

32775, 32782, 32795, 32799, 32808, 32810, 32812, 32814, 32815, 32828, 32831, 32895, 32918, 

32919, 32926, 33000, 33071, 33087, 33158, 33159, 33166, 33175, 33176, 33178, 33196, 33212, 

33213, 33214, 33278, 33345, 33347, 33350, 33351, 33358, 33365, 33366, 33367, 33375, 33429, 

33432, 33434, 33436, 33437, 33438, 33448, 33452, 33468, 33492, 33496, 33517, 33533, 33623, 

33631, 33685, 33686, 33688, 33690, 33692, 33694, 33705, 33709, 33725, 33748, 33752, 33773, 

34432, 34440, 34441, 34442, 34443, 34449, 34450, 34451, 34454, 34458, 34462, 34463, 34464, 

34465, 34466, 34467, 34474, 34475, 34480, 34482, 34483, 34484, 34530, 34534, 34542, 34544, 

34546, 34547, 34679, 34702, 34704, 34705, 34706, 34712, 34713, 34714, 34715, 34718, 34719, 

34721, 34734, 34738, 34745, 34746, 34750, 34784, 34790, 34794, 34798, 34806, 34814, 35218, 

35223, 35238, 35252, 35297, 35299, 35302, 35304, 35492, 35494, 35508, 35510, 35558, 35559, 

35561, 35764, 35765, 35767, 35798, 35810, 35812, 35814, 36577, 36578, 36579, 36585, 36598, 

36854, 38536, 38538, 38542, 38543, 38574, 38575, 38792, 38794, 38795, 38799, 38808, 38814, 

38829, 38830, 38844, 38845, 38846, 38895, 38910, 39041, 39043, 39054, 39062, 39063, 39074, 

39079, 39094, 39138, 39144, 39147, 39158, 39394, 39398, 39584, 39588, 39591, 39592, 39597, 

39598, 39604, 39606, 39618, 39623, 39634, 39638, 39648, 39653, 39656, 39658, 39660, 39661, 

39666, 39667, 39668, 39670, 39856, 39858, 39860, 39890, 39894, 39904, 39906, 39907, 39908, 

39909, 39910, 39911, 39913, 39922, 40686, 40687, 40688, 40691, 40694, 40695, 40697, 40698, 

40699, 43137, 43138, 43142, 43143, 43156, 43157, 43159, 43201, 43202, 43203, 43205, 43207, 

43220, 43223, 43413, 43454, 43456, 43457, 43459, 43460, 43461, 43463, 43466, 43470, 43477, 

43498, 44225, 44227, 44228, 44229, 44231, 44233, 44241, 44243, 44244, 44245, 44247, 44249, 

44251, 44262, 44263, 44265, 44496, 44497, 44500, 44501, 44503, 44514, 44518, 44777, 48320, 

48323, 48324, 48327, 48329, 48334, 48341, 48344, 48345, 48346, 48347, 48350, 48597, 48600, 

48604, 48606, 48617, 48618, 48619, 48872, 59529, 59530, 59531, 59534, 59535, 59544, 59545, 

59547, 59551, 59580, 59581, 59582, 59801, 59816, 59818, 59819, 59820, 59821, 59823, 59836, 

59837, 59839, 59902, 60073, 60092, 60093, 60348, 60349, 60374, 60382 

12 411 

360, 406, 407, 553, 616, 617, 621, 661, 1633, 1641, 1643, 1665, 1667, 1713, 1761, 1769, 1913, 2182, 

2198, 2199, 2450, 2454, 2455, 2462, 2484, 2486, 2487, 2534, 2998, 3817, 5742, 5743, 5758, 5759, 

5762, 5766, 5767, 5768, 5771, 5774, 5775, 5783, 5784, 5787, 5800, 5801, 5803, 5805, 5864, 5865, 

5867, 6014, 6121, 6274, 6275, 6281, 6286, 6290, 6291, 6308, 6309, 6311, 6324, 6326, 6327, 6369, 

6374, 6377, 6546, 6550, 6551, 6558, 6580, 6582, 6625, 6822, 6823, 6828, 6854, 6857, 7094, 7912, 

10369, 10372, 10374, 10375, 10377, 10390, 10394, 10395, 10398, 10399, 10454, 10462, 10644, 

10648, 10651, 10652, 10653, 10655, 10670, 10686, 10690, 10691, 10692, 10693, 10694, 10695, 

10698, 10699, 10702, 10703, 10708, 10710, 10711, 10715, 10718, 10719, 10728, 10730, 10750, 

10921, 10985, 11206, 11222, 11460, 11461, 11462, 11463, 11467, 11478, 11482, 11483, 11732, 

11734, 11737, 11739, 12009, 15828, 15830, 15834, 16105, 26776, 26792, 26793, 26794, 26796, 

26798, 26799, 26812, 26814, 26857, 27030, 27034, 27039, 27048, 27051, 27054, 27055, 27068, 

27069, 27070, 27071, 27112, 27114, 27134, 27304, 27307, 27309, 27326, 27329, 27335, 27337, 

27348, 27350, 27351, 27369, 27582, 27583, 27606, 27608, 27610, 27615, 27624, 27625, 27628, 

27644, 27645, 28385, 28408, 32488, 32490, 32491, 32774, 32777, 32791, 32792, 32793, 32794, 

32798, 32809, 32811, 32813, 32829, 32830, 32874, 32875, 32878, 32879, 32894, 33001, 33047, 

33048, 33049, 33050, 33051, 33055, 33064, 33065, 33066, 33067, 33068, 33069, 33070, 33084, 

33085, 33086, 33135, 33150, 33151, 33182, 33256, 33257, 33320, 33322, 33323, 33324, 33325, 

33326, 33327, 33340, 33341, 33342, 33343, 33344, 33346, 33352, 33353, 33354, 33355, 33359, 

33364, 33368, 33370, 33371, 33372, 33373, 33374, 33388, 33390, 33404, 33405, 33406, 33407, 
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33428, 33449, 33453, 33469, 33512, 33596, 33597, 33599, 33624, 33626, 33627, 33630, 33644, 

33646, 33647, 33660, 33661, 33662, 33663, 33684, 33768, 33769, 34406, 34418, 34419, 34422, 

34423, 34448, 34457, 34459, 34472, 34473, 34476, 34477, 34481, 34490, 34491, 34492, 34493, 

34529, 34531, 34535, 34538, 34539, 34554, 34555, 34680, 34682, 34683, 34687, 34809, 35222, 

35230, 35254, 35298, 35303, 35766, 36582, 36583, 38528, 38531, 38537, 38539, 38569, 38571, 

38573, 38588, 38589, 38635, 38638, 38639, 38784, 38785, 38793, 38798, 38824, 38825, 38828, 

38891, 38894, 39046, 39047, 39136, 39137, 39139, 39142, 39143, 39145, 39585, 39586, 39587, 

39596, 39622, 39650, 39651, 39652, 39654, 39655, 39657, 39659, 39862, 39905, 40679, 40681, 

40682, 40683, 40689, 40690, 43158, 43206, 43222, 43412, 43414, 43415, 43422, 43458, 43462, 

43476, 43478, 43479, 43990, 44226, 44242, 44246, 44498, 44499, 44502, 48321, 48322, 48325, 

48326, 48340, 48342, 48343, 48596, 48598, 48599, 48873, 59520, 59546, 59550, 59802, 59803, 

59806, 59807, 59822, 59838 

13 135 

1640, 1656, 1657, 5736, 5738, 5739, 5760, 5761, 5763, 5769, 6278, 6279, 6294, 6295, 6310, 7913, 

10388, 10389, 10391, 10645, 10647, 10650, 10654, 10714, 26758, 26761, 26762, 26763, 26766, 

26774, 26775, 26778, 26779, 26782, 26783, 26795, 26813, 26815, 27031, 27032, 27035, 27038, 

27052, 27308, 27324, 27325, 27581, 27607, 28393, 32489, 32790, 32872, 32873, 33054, 33128, 

33130, 33131, 33134, 33174, 33321, 33369, 33384, 33385, 33386, 33387, 33389, 33391, 33513, 

33598, 33622, 33625, 33640, 33641, 33642, 33643, 33645, 34400, 34401, 34402, 34403, 34407, 

34408, 34409, 34410, 34411, 34414, 34415, 34424, 34425, 34426, 34427, 34430, 34431, 34456, 

34488, 34489, 34536, 34537, 34552, 34553, 34678, 34681, 34686, 34792, 34793, 38505, 38506, 

38507, 38510, 38511, 38526, 38527, 38529, 38568, 38572, 38633, 38634, 38783, 38888, 38889, 

38890, 39649, 40672, 40673, 40674, 40675, 40678, 40680, 44230, 59521, 59522, 59523, 59526, 

59527, 59800 

14 18 
5737, 10646, 26752, 26753, 26754, 26755, 26759, 26767, 27580, 33046, 33129, 38504, 38632, 

38782, 59542, 59543, 59798, 59799 
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5 Input Representative Functions from P-Equivalence Class 

For these functions we give only the optimal cost and integer representation to preserve space. 

Optimal 

Cost 

Number of 

Functions 
Function Index 

5 4 855, 43774, 44031, 65534 

6 17 
171, 239, 939, 1007, 1911, 2047, 3822, 3839, 8191, 43691, 43759, 44799, 61152, 61162, 61167, 

65262, 65279 

7 50 

7, 14, 31, 174, 191, 254, 427, 431, 495, 511, 863, 943, 991, 2746, 2747, 2766, 2767, 2783, 2798, 

2814, 3003, 3055, 3067, 3071, 3838, 4094, 7167, 11007, 12031, 12287, 34954, 34959, 43178, 

43179, 43180, 43183, 43260, 43261, 43263, 43694, 43711, 44015, 60142, 60143, 60159, 61154, 

61171, 61178, 61182, 61439 

8 139 

1, 11, 27, 42, 46, 47, 127, 168, 234, 287, 303, 319, 425, 582, 598, 599, 607, 682, 686, 718, 719, 735, 

750, 766, 767, 854, 895, 938, 959, 974, 1006, 1022, 1967, 1983, 2035, 2039, 2731, 2782, 2794, 

2799, 2811, 3002, 3007, 3039, 3066, 3823, 3824, 4081, 4091, 6911, 7099, 7135, 11263, 16127, 

34953, 34955, 34984, 34987, 34988, 34991, 35002, 35007, 35064, 35066, 35067, 35327, 35498, 

35514, 35515, 35530, 35534, 35535, 35551, 35578, 35582, 35583, 35771, 35807, 35839, 36863, 

39320, 39322, 39323, 39327, 43177, 43181, 43199, 43244, 43246, 43247, 43262, 43517, 43519, 

43688, 43692, 43710, 43720, 43722, 43725, 43726, 43727, 43754, 43756, 43772, 43773, 43967, 

43980, 43983, 43997, 44014, 44028, 44030, 44284, 44285, 44286, 44287, 44541, 44543, 44782, 

44798, 45052, 45054, 49151, 60139, 60158, 60415, 61155, 61179, 61438, 66047, 66135, 66391, 

66399, 66475, 66559, 68351, 68607, 69375, 69631 

9 306 

2, 23, 26, 30, 43, 61, 62, 111, 137, 138, 139, 143, 169, 172, 173, 235, 283, 383, 393, 395, 426, 430, 

447, 491, 494, 559, 575, 583, 590, 591, 602, 606, 639, 650, 651, 655, 683, 687, 706, 710, 714, 746, 

751, 859, 904, 905, 906, 907, 911, 936, 937, 942, 966, 967, 968, 969, 971, 973, 988, 989, 1003, 

1004, 1005, 1021, 1638, 1655, 1727, 1774, 1790, 1791, 1919, 1928, 1935, 1962, 1963, 1979, 2031, 

2032, 2040, 2042, 2043, 2046, 2184, 2216, 2218, 2219, 2235, 2282, 2296, 2298, 2299, 2303, 2555, 

2559, 2734, 2751, 2760, 2762, 2763, 2781, 2808, 2812, 2813, 3051, 3054, 3056, 3059, 3070, 3808, 

3818, 3825, 3834, 3835, 4082, 4087, 4088, 6079, 6143, 6587, 6655, 6906, 6907, 6910, 7155, 7163, 

7920, 7934, 7935, 8176, 8177, 8179, 8186, 8187, 8190, 10922, 10927, 10986, 10990, 10991, 11519, 

12014, 12015, 12030, 15871, 16110, 16126, 28398, 32767, 34944, 34947, 34968, 34970, 34971, 

34975, 34985, 34989, 34990, 35000, 35001, 35004, 35055, 35065, 35070, 35225, 35241, 35242, 

35243, 35259, 35311, 35323, 35499, 35503, 35519, 35528, 35531, 35546, 35549, 35550, 35566, 

35567, 35576, 35579, 35580, 35775, 35823, 35835, 36590, 36606, 36607, 36856, 39065, 39099, 

39167, 39312, 39313, 39336, 39337, 39339, 39353, 39357, 39359, 39417, 39419, 39645, 39647, 

39679, 39899, 39903, 39935, 40959, 43144, 43161, 43182, 43208, 43212, 43245, 43432, 43435, 

43437, 43689, 43693, 43708, 43723, 43736, 43737, 43740, 43743, 43755, 43757, 43979, 43996, 

43999, 44010, 44011, 44012, 44029, 44236, 44268, 44269, 44270, 44271, 44280, 44525, 44540, 

44778, 44780, 44783, 44784, 44785, 44787, 44789, 44794, 44795, 44796, 44797, 45041, 45043, 

45048, 45051, 45053, 48383, 48639, 48878, 48894, 48895, 49150, 60074, 60096, 60104, 60106, 

60136, 60140, 60394, 60399, 61153, 61158, 61160, 61163, 61170, 61176, 61434, 65256, 65258, 

65263, 65963, 66031, 66303, 66441, 66443, 66479, 66511, 66525, 66527, 66543, 66557, 67503, 

67583, 68267, 68283, 68303, 68347, 68603, 69359, 69627, 73471, 73727 

10 619 

6, 8, 9, 25, 44, 45, 106, 110, 142, 152, 154, 155, 159, 188, 189, 190, 279, 298, 299, 301, 302, 317, 

367, 392, 394, 399, 409, 411, 424, 428, 429, 490, 510, 554, 558, 574, 578, 579, 586, 597, 605, 648, 

654, 666, 667, 671, 680, 702, 703, 707, 711, 712, 715, 716, 717, 727, 730, 733, 734, 748, 764, 858, 

862, 879, 908, 909, 910, 921, 923, 927, 940, 941, 962, 964, 965, 970, 981, 983, 985, 986, 987, 990, 

1002, 1654, 1663, 1695, 1702, 1706, 1710, 1711, 1782, 1783, 1910, 1930, 1931, 1951, 1955, 1957, 

1959, 1960, 1966, 1971, 1975, 1978, 2019, 2023, 2030, 2034, 2185, 2186, 2187, 2191, 2200, 2201, 

2217, 2220, 2222, 2223, 2232, 2233, 2234, 2236, 2239, 2286, 2287, 2297, 2302, 2457, 2473, 2474, 

2475, 2479, 2489, 2491, 2543, 2553, 2554, 2722, 2723, 2728, 2732, 2736, 2739, 2744, 2750, 2752, 

2754, 2755, 2758, 2759, 2768, 2770, 2773, 2775, 2776, 2777, 2778, 2779, 2780, 2784, 2788, 2795, 

2796, 2801, 2802, 2803, 2804, 2806, 2807, 2992, 2993, 2995, 3033, 3034, 3035, 3038, 3040, 3041, 

3044, 3045, 3050, 3057, 3060, 3061, 3063, 3064, 3068, 3069, 3810, 3826, 3827, 4086, 6031, 6047, 

6063, 6296, 6330, 6331, 6394, 6395, 6398, 6399, 6553, 6570, 6585, 6591, 6649, 6651, 6826, 6842, 

6843, 6846, 6847, 6874, 6876, 6878, 6879, 6896, 7089, 7091, 7098, 7103, 7129, 7131, 7136, 7140, 

7150, 7151, 7152, 7153, 7156, 7157, 7162, 7164, 7165, 7166, 7922, 7930, 8178, 8183, 10410, 

10411, 10474, 10475, 10479, 10492, 10493, 10495, 10923, 10926, 10943, 10944, 10956, 10958, 

10959, 10965, 10973, 10975, 11004, 11005, 11006, 11199, 11243, 11246, 11247, 11488, 11500, 

11502, 11503, 11504, 11516, 11517, 11518, 11745, 11757, 11759, 11760, 11765, 11772, 11773, 

11775, 12002, 12010, 12016, 12017, 12018, 12019, 12026, 12027, 12029, 12272, 12273, 12274, 

12275, 12277, 12279, 12282, 12283, 12284, 12285, 12286, 15580, 15581, 15599, 15613, 15614, 

15837, 15868, 15869, 16124, 16381, 16382, 27328, 27370, 27374, 27391, 28414, 28415, 28671, 

32494, 32510, 32511, 32766, 32897, 32898, 32899, 32903, 32904, 32906, 32907, 32910, 32911, 
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Optimal 

Cost 

Number of 

Functions 
Function Index 

32938, 32942, 32943, 32959, 33023, 33411, 33474, 33475, 33503, 33535, 33664, 33666, 33672, 

33673, 33675, 33676, 33731, 33734, 33740, 33743, 33759, 33791, 34945, 34946, 34951, 34958, 

34960, 34961, 34963, 34976, 34977, 34978, 34979, 34981, 34992, 34993, 34994, 34995, 35006, 

35050, 35056, 35058, 35059, 35063, 35227, 35240, 35247, 35257, 35258, 35263, 35320, 35321, 

35322, 35502, 35518, 35544, 35545, 35547, 35548, 35562, 35581, 35770, 35802, 35803, 35822, 

35832, 35834, 35836, 35838, 36858, 36859, 36862, 39048, 39056, 39066, 39067, 39071, 39080, 

39082, 39096, 39098, 39103, 39160, 39162, 39166, 39315, 39328, 39329, 39341, 39343, 39345, 

39352, 39354, 39356, 39416, 39422, 39610, 39611, 39642, 39646, 39867, 39897, 39931, 43145, 

43146, 43147, 43148, 43149, 43151, 43160, 43163, 43196, 43197, 43198, 43210, 43213, 43215, 

43224, 43228, 43229, 43231, 43240, 43417, 43434, 43436, 43439, 43453, 43468, 43485, 43500, 

43501, 43503, 43516, 43709, 43712, 43716, 43721, 43733, 43738, 43739, 43742, 43752, 43964, 

43976, 43977, 43981, 43982, 44013, 44239, 44252, 44253, 44256, 44272, 44282, 44283, 44509, 

44517, 44524, 44527, 44528, 44533, 44536, 44542, 44768, 44770, 44786, 44791, 45042, 45044, 

45047, 48380, 48381, 59626, 59627, 59630, 59631, 59646, 59647, 60075, 60078, 60079, 60095, 

60098, 60105, 60107, 60110, 60111, 60117, 60120, 60121, 60122, 60124, 60125, 60127, 60141, 

60156, 60157, 60377, 60392, 60396, 60398, 61159, 61174, 61175, 61177, 61431, 61432, 61435, 

65823, 65839, 65855, 65929, 65931, 65945, 65961, 65962, 65967, 66111, 66118, 66119, 66134, 

66143, 66255, 66271, 66367, 66395, 66431, 66440, 66445, 66447, 66473, 66474, 66495, 66499, 

66503, 66505, 66507, 66508, 66509, 67447, 67495, 67499, 67519, 67567, 67571, 67575, 67771, 

67833, 67835, 67839, 68257, 68266, 68271, 68282, 68287, 68297, 68298, 68299, 68317, 68319, 

68321, 68331, 68334, 68335, 68337, 68341, 68346, 68349, 68539, 68587, 68591, 68595, 69345, 

69358, 69361, 69374, 69617, 69619, 69623, 72447, 72635, 72639, 72671, 72699, 72703, 73713, 

73723 

11 965 

24, 40, 126, 128, 129, 130, 131, 135, 232, 281, 282, 286, 297, 300, 316, 318, 385, 387, 398, 408, 

410, 415, 444, 445, 489, 555, 576, 587, 596, 603, 604, 622, 623, 642, 643, 647, 649, 652, 653, 664, 

665, 681, 684, 704, 705, 708, 709, 725, 726, 728, 731, 732, 747, 765, 830, 856, 857, 876, 878, 892, 

893, 894, 896, 898, 899, 903, 920, 922, 924, 925, 956, 958, 961, 980, 984, 1000, 1001, 1634, 1639, 

1647, 1650, 1651, 1672, 1674, 1678, 1679, 1689, 1698, 1700, 1701, 1718, 1719, 1726, 1762, 1766, 

1770, 1775, 1776, 1778, 1779, 1784, 1786, 1927, 1934, 1945, 1947, 1952, 1953, 1954, 1956, 1958, 

1964, 1965, 1968, 1970, 1972, 1973, 1976, 1980, 1982, 2016, 2017, 2018, 2022, 2024, 2026, 2027, 

2033, 2038, 2041, 2202, 2203, 2208, 2210, 2211, 2221, 2224, 2227, 2238, 2280, 2283, 2288, 2290, 

2291, 2456, 2458, 2459, 2463, 2472, 2478, 2488, 2490, 2492, 2493, 2495, 2539, 2552, 2721, 2729, 

2733, 2737, 2738, 2745, 2748, 2753, 2761, 2769, 2771, 2772, 2774, 2785, 2786, 2787, 2789, 2790, 

2792, 2797, 2809, 2994, 2997, 2999, 3000, 3001, 3004, 3006, 3024, 3025, 3026, 3027, 3030, 3031, 

3032, 3043, 3048, 3052, 3053, 3058, 3062, 3065, 3809, 3811, 3819, 3830, 3831, 3832, 4089, 5886, 

5887, 6015, 6041, 6043, 6058, 6059, 6126, 6127, 6280, 6297, 6298, 6314, 6328, 6334, 6335, 6392, 

6393, 6552, 6554, 6555, 6559, 6568, 6569, 6571, 6574, 6575, 6584, 6586, 6588, 6589, 6634, 6638, 

6648, 6650, 6654, 6816, 6817, 6831, 6832, 6833, 6840, 6858, 6862, 6863, 6864, 6866, 6872, 6873, 

6875, 6877, 6880, 6884, 6885, 6890, 6894, 6895, 6897, 6898, 6899, 6901, 6904, 6905, 6908, 6909, 

7088, 7093, 7097, 7101, 7120, 7121, 7123, 7127, 7130, 7134, 7141, 7146, 7147, 7148, 7149, 7154, 

7158, 7159, 7160, 7161, 7904, 7918, 7921, 7923, 7931, 8184, 8185, 10376, 10408, 10414, 10415, 

10430, 10431, 10444, 10472, 10476, 10478, 10494, 10749, 10751, 10942, 10948, 10949, 10952, 

10954, 10955, 10957, 10972, 10987, 10988, 11200, 11210, 11212, 11214, 11215, 11220, 11228, 

11229, 11230, 11231, 11242, 11244, 11260, 11261, 11262, 11468, 11501, 11508, 11509, 11512, 

11744, 11749, 11756, 11761, 11768, 12000, 12003, 12012, 12021, 12023, 12028, 12276, 12278, 

12280, 15560, 15561, 15565, 15573, 15575, 15583, 15594, 15595, 15596, 15597, 15598, 15829, 

15836, 15852, 15853, 15855, 16106, 16111, 16125, 26879, 27135, 27375, 27390, 27627, 27647, 

28394, 28399, 28410, 28662, 32902, 32905, 32920, 32921, 32922, 32923, 32927, 32936, 32939, 

32940, 32941, 32956, 32958, 33002, 33006, 33007, 33022, 33152, 33154, 33155, 33160, 33161, 

33162, 33163, 33167, 33193, 33194, 33195, 33199, 33215, 33263, 33279, 33408, 33413, 33414, 

33415, 33416, 33418, 33419, 33420, 33421, 33422, 33423, 33430, 33450, 33454, 33455, 33470, 

33471, 33472, 33478, 33479, 33484, 33486, 33487, 33495, 33501, 33502, 33518, 33534, 33665, 

33670, 33671, 33674, 33677, 33679, 33687, 33706, 33707, 33711, 33727, 33728, 33730, 33735, 

33736, 33737, 33741, 33742, 33751, 33757, 33775, 34551, 34559, 34688, 34690, 34691, 34696, 

34698, 34699, 34703, 34710, 34711, 34720, 34724, 34725, 34726, 34727, 34730, 34735, 34740, 

34741, 34743, 34751, 34800, 34803, 34807, 34815, 34950, 34980, 34982, 34983, 34996, 34997, 

34999, 35005, 35040, 35042, 35043, 35048, 35051, 35057, 35217, 35224, 35226, 35231, 35232, 

35233, 35235, 35237, 35244, 35245, 35246, 35249, 35251, 35256, 35260, 35261, 35305, 35307, 

35310, 35312, 35313, 35315, 35326, 35488, 35490, 35491, 35493, 35496, 35500, 35504, 35505, 

35506, 35507, 35512, 35513, 35516, 35520, 35522, 35523, 35529, 35536, 35538, 35539, 35541, 

35543, 35552, 35563, 35564, 35568, 35569, 35570, 35571, 35572, 35573, 35575, 35577, 35760, 

35763, 35768, 35772, 35792, 35794, 35795, 35799, 35800, 35801, 35806, 35818, 35819, 35820, 

35824, 35826, 35827, 35828, 35829, 35831, 35833, 35837, 36591, 36592, 36602, 36603, 36848, 

36850, 36851, 36855, 36857, 39049, 39050, 39051, 39055, 39057, 39058, 39059, 39070, 39081, 

39083, 39086, 39087, 39097, 39100, 39101, 39102, 39161, 39163, 39314, 39318, 39319, 39326, 
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Optimal 

Cost 

Number of 

Functions 
Function Index 

39330, 39331, 39332, 39333, 39334, 39335, 39340, 39342, 39344, 39346, 39347, 39348, 39349, 

39351, 39358, 39407, 39408, 39409, 39410, 39411, 39414, 39415, 39418, 39594, 39608, 39615, 

39626, 39630, 39631, 39640, 39641, 39643, 39644, 39674, 39678, 39864, 39865, 39866, 39868, 

39871, 39902, 39918, 39919, 39929, 39932, 40703, 43150, 43164, 43165, 43167, 43209, 43211, 

43214, 43225, 43226, 43230, 43242, 43243, 43416, 43418, 43419, 43420, 43421, 43423, 43452, 

43455, 43465, 43469, 43471, 43481, 43487, 43497, 43502, 43518, 43713, 43714, 43715, 43717, 

43719, 43732, 43735, 43965, 43966, 43968, 43971, 43972, 43974, 43975, 43978, 43988, 43989, 

43991, 43992, 43993, 43994, 43995, 43998, 44008, 44232, 44234, 44237, 44238, 44255, 44259, 

44264, 44266, 44273, 44275, 44276, 44277, 44279, 44281, 44506, 44508, 44511, 44512, 44513, 

44519, 44521, 44526, 44529, 44531, 44532, 44535, 44537, 44538, 44539, 44769, 44771, 44772, 

44773, 44774, 44776, 44779, 44781, 44788, 44790, 44792, 45046, 45049, 48332, 48348, 48349, 

48364, 48366, 48367, 48382, 48605, 48620, 48636, 48637, 48879, 48892, 49148, 49149, 59560, 

59562, 59625, 59883, 59887, 59903, 60094, 60097, 60099, 60102, 60103, 60118, 60119, 60123, 

60126, 60137, 60350, 60351, 60375, 60376, 60379, 60383, 60393, 60397, 60412, 60413, 60414, 

61161, 61430, 61433, 65259, 65817, 65819, 65835, 65853, 65919, 65935, 65960, 65965, 65966, 

65983, 66025, 66027, 66030, 66046, 66094, 66095, 66113, 66115, 66127, 66133, 66138, 66139, 

66175, 66241, 66243, 66246, 66247, 66252, 66253, 66263, 66269, 66301, 66390, 66394, 66442, 

66444, 66457, 66459, 66463, 66472, 66477, 66478, 66496, 66497, 66500, 66501, 66504, 66510, 

66517, 66519, 66523, 66524, 66539, 66540, 66541, 66542, 66556, 66558, 67191, 67215, 67247, 

67311, 67319, 67327, 67455, 67471, 67493, 67507, 67511, 67515, 67569, 67579, 67737, 67769, 

67775, 68009, 68011, 68027, 68091, 68095, 68259, 68265, 68269, 68270, 68273, 68281, 68289, 

68291, 68295, 68296, 68302, 68305, 68309, 68313, 68315, 68316, 68320, 68325, 68330, 68336, 

68339, 68340, 68343, 68345, 68348, 68350, 68529, 68531, 68543, 68571, 68575, 68577, 68592, 

68593, 68596, 68597, 68602, 68604, 68605, 68606, 69344, 69355, 69360, 69363, 69370, 69371, 

69616, 69618, 69626, 69630, 71615, 71679, 72107, 72123, 72187, 72191, 72379, 72383, 72415, 

72443, 72625, 72667, 72687, 72689, 73457, 73715, 75947, 76029, 76031, 76459, 76463, 76479, 

76495, 76523, 76526, 76527, 76543, 76779, 76783, 76799, 77037, 77039, 77053, 77055, 77281 

12 1237 

22, 41, 104, 105, 107, 134, 150, 158, 233, 280, 296, 361, 362, 363, 366, 384, 386, 391, 446, 488, 

556, 557, 572, 573, 577, 584, 585, 600, 601, 618, 620, 636, 638, 640, 645, 646, 662, 668, 669, 670, 

685, 700, 713, 724, 729, 744, 745, 749, 829, 872, 874, 875, 897, 900, 901, 902, 918, 919, 926, 957, 

982, 1632, 1635, 1642, 1646, 1658, 1662, 1666, 1670, 1673, 1675, 1686, 1687, 1690, 1691, 1694, 

1696, 1699, 1703, 1704, 1705, 1707, 1708, 1709, 1712, 1715, 1716, 1717, 1721, 1722, 1723, 1724, 

1725, 1760, 1763, 1767, 1768, 1777, 1785, 1787, 1912, 1914, 1915, 1918, 1920, 1922, 1923, 1926, 

1929, 1939, 1943, 1944, 1946, 1961, 1969, 1974, 1977, 1981, 2025, 2176, 2179, 2190, 2207, 2209, 

2212, 2213, 2214, 2215, 2225, 2226, 2228, 2237, 2272, 2273, 2274, 2281, 2289, 2295, 2448, 2449, 

2464, 2465, 2466, 2467, 2469, 2476, 2477, 2480, 2481, 2482, 2483, 2485, 2494, 2529, 2530, 2531, 

2536, 2537, 2538, 2542, 2544, 2545, 2546, 2547, 2550, 2551, 2558, 2724, 2726, 2727, 2740, 2741, 

2743, 2749, 2791, 2793, 2996, 3005, 3042, 3046, 3047, 3049, 3814, 3815, 3816, 3833, 5759, 5786, 

5790, 5791, 5802, 5806, 5820, 5822, 5823, 5866, 5870, 6023, 6024, 6025, 6026, 6027, 6030, 6039, 

6042, 6046, 6056, 6060, 6061, 6062, 6076, 6077, 6078, 6120, 6122, 6123, 6142, 6281, 6299, 6303, 

6304, 6312, 6315, 6318, 6319, 6320, 6323, 6329, 6332, 6368, 6370, 6378, 6382, 6384, 6387, 6544, 

6545, 6560, 6561, 6562, 6572, 6573, 6576, 6577, 6579, 6590, 6624, 6626, 6630, 6633, 6639, 6640, 

6641, 6643, 6647, 6818, 6819, 6821, 6824, 6825, 6827, 6830, 6834, 6835, 6836, 6837, 6839, 6841, 

6848, 6850, 6851, 6856, 6859, 6865, 6867, 6869, 6881, 6882, 6888, 6891, 6892, 6893, 6900, 6903, 

7090, 7092, 7095, 7096, 7100, 7102, 7122, 7126, 7128, 7137, 7138, 7139, 7142, 7143, 7144, 7145, 

7905, 7906, 7907, 7914, 7915, 7919, 7926, 7927, 7928, 8182, 10380, 10393, 10396, 10409, 10412, 

10413, 10428, 10432, 10435, 10440, 10441, 10452, 10453, 10456, 10460, 10461, 10477, 10649, 

10665, 10667, 10669, 10671, 10697, 10700, 10717, 10729, 10731, 10733, 10735, 10748, 10920, 

10924, 10925, 10945, 10947, 10964, 10967, 10968, 10969, 10970, 10971, 10974, 10984, 10989, 

11203, 11204, 11208, 11209, 11211, 11213, 11221, 11223, 11224, 11225, 11226, 11245, 11456, 

11458, 11459, 11469, 11471, 11472, 11473, 11475, 11484, 11485, 11487, 11489, 11490, 11491, 

11492, 11493, 11496, 11498, 11499, 11505, 11506, 11507, 11510, 11511, 11513, 11514, 11515, 

11728, 11741, 11747, 11751, 11752, 11753, 11758, 11762, 11763, 11764, 11767, 11769, 11770, 

11771, 11774, 12001, 12004, 12006, 12007, 12008, 12011, 12013, 12020, 12022, 12024, 12025, 

12281, 15553, 15554, 15556, 15557, 15558, 15559, 15562, 15563, 15566, 15572, 15576, 15577, 

15579, 15582, 15592, 15831, 15833, 15839, 15850, 15854, 15870, 16107, 16108, 16109, 26856, 

27115, 27306, 27336, 27338, 27342, 27343, 27349, 27371, 27630, 27631, 28384, 28386, 28387, 

28390, 28402, 28403, 28406, 28411, 28663, 28670, 32490, 32495, 32768, 32770, 32771, 32776, 

32778, 32779, 32782, 32783, 32810, 32814, 32815, 32831, 32918, 32919, 32937, 32957, 33003, 

33159, 33166, 33177, 33179, 33183, 33192, 33197, 33198, 33258, 33259, 33262, 33409, 33412, 

33417, 33431, 33433, 33434, 33435, 33438, 33439, 33451, 33473, 33476, 33477, 33480, 33481, 

33482, 33483, 33485, 33493, 33494, 33496, 33497, 33498, 33499, 33500, 33514, 33515, 33516, 

33519, 33532, 33668, 33669, 33678, 33688, 33689, 33691, 33692, 33693, 33695, 33704, 33708, 

33710, 33724, 33726, 33729, 33732, 33733, 33738, 33739, 33748, 33749, 33750, 33752, 33753, 

33754, 33755, 33756, 33758, 33770, 33771, 33772, 33774, 33788, 33789, 33790, 34432, 34433, 
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34434, 34435, 34439, 34440, 34442, 34446, 34447, 34454, 34455, 34468, 34469, 34470, 34471, 

34478, 34479, 34484, 34485, 34486, 34487, 34494, 34495, 34528, 34534, 34542, 34543, 34544, 

34545, 34547, 34550, 34558, 34689, 34694, 34697, 34706, 34707, 34721, 34722, 34723, 34728, 

34729, 34731, 34732, 34733, 34734, 34736, 34737, 34739, 34742, 34744, 34747, 34748, 34749, 

34750, 34784, 34785, 34786, 34787, 34791, 34795, 34799, 34801, 34802, 34808, 34810, 34811, 

34962, 34966, 34967, 34974, 34998, 35041, 35046, 35047, 35049, 35062, 35216, 35219, 35234, 

35236, 35238, 35239, 35248, 35250, 35252, 35253, 35255, 35262, 35296, 35306, 35314, 35318, 

35319, 35489, 35492, 35495, 35497, 35501, 35508, 35509, 35511, 35517, 35521, 35526, 35527, 

35537, 35540, 35542, 35553, 35554, 35555, 35556, 35557, 35560, 35565, 35574, 35761, 35762, 

35764, 35769, 35773, 35774, 35793, 35808, 35809, 35811, 35813, 35815, 35816, 35817, 35821, 

35825, 35830, 36576, 36584, 36586, 36587, 36593, 36594, 36595, 36599, 36600, 36601, 36849, 

38530, 38531, 38534, 38535, 38551, 38552, 38553, 38554, 38555, 38558, 38559, 38570, 38575, 

38590, 38591, 38654, 38655, 38786, 38787, 38790, 38791, 38806, 38809, 38810, 38811, 38815, 

38826, 38827, 38831, 38847, 38911, 39040, 39042, 39043, 39062, 39072, 39073, 39074, 39075, 

39076, 39077, 39078, 39084, 39085, 39088, 39089, 39090, 39091, 39092, 39093, 39095, 39146, 

39150, 39151, 39152, 39153, 39154, 39155, 39159, 39350, 39392, 39393, 39394, 39395, 39399, 

39400, 39401, 39402, 39403, 39584, 39589, 39590, 39592, 39593, 39595, 39597, 39599, 39600, 

39601, 39602, 39603, 39605, 39606, 39607, 39609, 39612, 39613, 39614, 39616, 39617, 39619, 

39624, 39625, 39627, 39632, 39633, 39634, 39635, 39636, 39637, 39638, 39639, 39662, 39663, 

39664, 39665, 39669, 39671, 39672, 39673, 39675, 39676, 39677, 39857, 39859, 39861, 39863, 

39869, 39870, 39888, 39889, 39890, 39891, 39895, 39896, 39898, 39912, 39914, 39915, 39916, 

39917, 39920, 39921, 39923, 39924, 39925, 39926, 39927, 39928, 39930, 39933, 39934, 40686, 

40696, 40702, 40944, 40945, 40946, 40947, 40950, 40951, 40952, 40953, 40954, 40955, 40958, 

43136, 43139, 43140, 43141, 43143, 43156, 43157, 43162, 43166, 43200, 43203, 43204, 43205, 

43220, 43221, 43227, 43241, 43438, 43456, 43457, 43464, 43467, 43470, 43480, 43482, 43483, 

43484, 43486, 43496, 43499, 43718, 43734, 43753, 43969, 43970, 43973, 44009, 44224, 44233, 

44235, 44240, 44241, 44245, 44248, 44250, 44254, 44257, 44258, 44260, 44261, 44267, 44274, 

44278, 44504, 44505, 44507, 44510, 44515, 44516, 44520, 44522, 44523, 44530, 44534, 44775, 

44793, 48328, 48330, 48331, 48333, 48335, 48351, 48360, 48361, 48362, 48363, 48365, 48601, 

48602, 48603, 48604, 48607, 48616, 48621, 48622, 48623, 48638, 48874, 48875, 48876, 48877, 

48893, 59528, 59535, 59545, 59561, 59563, 59564, 59565, 59566, 59567, 59581, 59583, 59801, 

59817, 59821, 59880, 59882, 59886, 60072, 60076, 60077, 60116, 60378, 65257, 65834, 65837, 

65838, 65852, 65903, 65921, 65923, 65928, 65930, 65947, 65951, 65964, 65981, 66026, 66090, 

66091, 66093, 66109, 66110, 66114, 66121, 66122, 66123, 66126, 66132, 66137, 66141, 66142, 

66159, 66240, 66244, 66245, 66261, 66265, 66267, 66270, 66300, 66365, 66393, 66398, 66415, 

66429, 66432, 66433, 66434, 66435, 66439, 66446, 66458, 66461, 66476, 66498, 66502, 66506, 

66520, 66521, 66522, 66526, 66536, 66537, 66538, 67175, 67183, 67199, 67209, 67211, 67231, 

67239, 67241, 67242, 67243, 67245, 67246, 67255, 67259, 67263, 67303, 67307, 67310, 67315, 

67318, 67322, 67323, 67326, 67451, 67465, 67467, 67487, 67489, 67491, 67492, 67496, 67497, 

67498, 67501, 67509, 67555, 67559, 67562, 67563, 67566, 67568, 67576, 67577, 67578, 67739, 

67761, 67763, 67773, 67824, 67825, 67827, 67993, 67995, 68001, 68008, 68010, 68013, 68015, 

68025, 68031, 68073, 68075, 68079, 68089, 68090, 68256, 68258, 68261, 68264, 68268, 68272, 

68275, 68277, 68279, 68280, 68285, 68288, 68290, 68304, 68307, 68311, 68312, 68314, 68318, 

68323, 68324, 68329, 68332, 68333, 68338, 68342, 68344, 68528, 68536, 68537, 68538, 68563, 

68569, 68570, 68579, 68581, 68586, 68588, 68590, 68599, 68600, 68601, 69346, 69347, 69362, 

69622, 69624, 69625, 71423, 71551, 71577, 71583, 71595, 71599, 71663, 71865, 71867, 71929, 

71931, 71935, 72089, 72091, 72105, 72121, 72127, 72185, 72353, 72361, 72362, 72363, 72367, 

72369, 72377, 72378, 72393, 72395, 72399, 72411, 72413, 72414, 72417, 72427, 72431, 72433, 

72435, 72437, 72442, 72446, 72627, 72633, 72657, 72659, 72665, 72683, 72686, 72691, 72693, 

72695, 72697, 72698, 72701, 73440, 73441, 73443, 73451, 73455, 73456, 73459, 73466, 73467, 

73470, 73712, 73719, 73722, 73726, 75945, 76011, 76458, 76462, 76481, 76492, 76493, 76509, 

76511, 76522, 76525, 76541, 76542, 76735, 77025, 77036, 77040, 77041, 77052, 467985435 

13 1004 

151, 278, 360, 382, 390, 407, 414, 552, 619, 637, 641, 644, 660, 661, 663, 701, 873, 877, 916, 917, 

1656, 1659, 1664, 1665, 1667, 1671, 1680, 1681, 1682, 1683, 1688, 1697, 1713, 1714, 1720, 1761, 

1771, 1921, 1936, 1937, 1938, 1942, 1950, 2177, 2178, 2183, 2192, 2193, 2194, 2195, 2206, 2229, 

2230, 2231, 2275, 2278, 2279, 2294, 2451, 2468, 2470, 2471, 2484, 2487, 2528, 2534, 2535, 2742, 

5762, 5767, 5770, 5774, 5775, 5782, 5784, 5785, 5787, 5804, 5805, 5807, 5821, 5871, 6016, 6017, 

6018, 6019, 6022, 6038, 6040, 6057, 6272, 6273, 6275, 6282, 6283, 6287, 6288, 6289, 6290, 6291, 

6302, 6305, 6306, 6307, 6308, 6313, 6316, 6317, 6321, 6322, 6324, 6325, 6333, 6371, 6374, 6375, 

6376, 6379, 6383, 6385, 6386, 6390, 6391, 6547, 6563, 6564, 6565, 6566, 6567, 6578, 6580, 6581, 

6583, 6625, 6627, 6631, 6632, 6635, 6642, 6646, 6820, 6822, 6828, 6829, 6838, 6844, 6845, 6849, 

6854, 6855, 6857, 6868, 6870, 6871, 6883, 6886, 6887, 6889, 6902, 7910, 7911, 7929, 10368, 

10370, 10371, 10373, 10377, 10378, 10379, 10381, 10382, 10383, 10392, 10397, 10429, 10433, 

10434, 10436, 10437, 10438, 10439, 10442, 10443, 10445, 10446, 10447, 10455, 10457, 10458, 

10459, 10462, 10463, 10473, 10664, 10666, 10668, 10670, 10684, 10685, 10687, 10688, 10689, 
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10691, 10696, 10701, 10709, 10712, 10713, 10716, 10730, 10732, 10734, 10750, 10921, 10940, 

10941, 10946, 10950, 10951, 10953, 10966, 10985, 11196, 11197, 11198, 11201, 11202, 11205, 

11207, 11227, 11240, 11241, 11457, 11460, 11462, 11464, 11465, 11466, 11470, 11474, 11476, 

11477, 11479, 11480, 11481, 11486, 11494, 11495, 11497, 11729, 11730, 11731, 11733, 11735, 

11736, 11738, 11740, 11742, 11743, 11746, 11748, 11750, 11754, 11755, 11766, 12005, 15574, 

15578, 15593, 15828, 15832, 15834, 15835, 15838, 15848, 15849, 15851, 16104, 26760, 26776, 

26777, 26792, 26794, 26797, 26858, 26859, 26862, 26863, 26878, 27033, 27048, 27049, 27050, 

27051, 27053, 27055, 27113, 27114, 27118, 27119, 27305, 27307, 27310, 27311, 27327, 27330, 

27331, 27334, 27335, 27339, 27352, 27353, 27354, 27355, 27356, 27357, 27358, 27359, 27368, 

27369, 27372, 27373, 27388, 27389, 27607, 27609, 27611, 27614, 27615, 27626, 27628, 27629, 

27644, 27646, 28391, 28392, 28395, 28407, 28408, 28409, 28664, 28665, 28666, 28667, 32769, 

32775, 32777, 32792, 32793, 32794, 32795, 32798, 32799, 32808, 32811, 32812, 32813, 32828, 

32829, 32830, 32874, 32878, 32895, 32926, 33000, 33070, 33071, 33087, 33158, 33175, 33176, 

33178, 33196, 33212, 33213, 33214, 33278, 33320, 33324, 33325, 33327, 33340, 33342, 33343, 

33344, 33345, 33346, 33347, 33350, 33351, 33354, 33355, 33358, 33359, 33365, 33366, 33367, 

33370, 33371, 33372, 33373, 33374, 33375, 33405, 33407, 33428, 33429, 33432, 33436, 33437, 

33448, 33452, 33453, 33468, 33492, 33517, 33533, 33596, 33599, 33622, 33623, 33626, 33631, 

33660, 33663, 33684, 33685, 33686, 33690, 33694, 33705, 33709, 33725, 33773, 34406, 34423, 

34441, 34443, 34448, 34449, 34450, 34451, 34457, 34458, 34462, 34463, 34464, 34465, 34466, 

34467, 34474, 34475, 34480, 34481, 34482, 34483, 34491, 34530, 34531, 34546, 34679, 34702, 

34704, 34705, 34712, 34713, 34714, 34715, 34718, 34719, 34738, 34745, 34746, 34790, 34794, 

34798, 34806, 34809, 34814, 35218, 35223, 35254, 35297, 35298, 35299, 35302, 35303, 35304, 

35494, 35510, 35558, 35559, 35561, 35765, 35767, 35798, 35810, 35812, 35814, 36577, 36578, 

36579, 36582, 36585, 36598, 36854, 38528, 38536, 38538, 38542, 38543, 38574, 38784, 38792, 

38794, 38795, 38799, 38808, 38814, 38829, 38830, 38844, 38845, 38846, 38895, 38910, 39041, 

39054, 39063, 39079, 39094, 39138, 39144, 39147, 39158, 39398, 39585, 39586, 39588, 39591, 

39598, 39604, 39618, 39622, 39623, 39648, 39653, 39654, 39656, 39658, 39660, 39661, 39666, 

39667, 39668, 39670, 39856, 39858, 39860, 39894, 39904, 39905, 39906, 39907, 39908, 39909, 

39910, 39911, 39913, 39922, 40687, 40688, 40691, 40694, 40695, 40697, 40698, 40699, 43137, 

43138, 43142, 43159, 43201, 43202, 43206, 43207, 43223, 43413, 43454, 43459, 43460, 43461, 

43463, 43466, 43476, 43477, 43498, 44225, 44226, 44227, 44228, 44229, 44231, 44243, 44244, 

44247, 44249, 44251, 44262, 44263, 44265, 44496, 44497, 44498, 44500, 44501, 44503, 44514, 

44518, 44777, 48320, 48323, 48324, 48325, 48327, 48329, 48334, 48340, 48341, 48344, 48345, 

48346, 48347, 48350, 48597, 48600, 48606, 48617, 48618, 48619, 48872, 59529, 59530, 59531, 

59534, 59544, 59547, 59551, 59580, 59582, 59816, 59818, 59819, 59820, 59822, 59823, 59836, 

59837, 59839, 59902, 60073, 60092, 60093, 60348, 60349, 60374, 60382, 65815, 65818, 65822, 

65832, 65833, 65836, 65854, 65899, 65902, 65920, 65922, 65927, 65934, 65943, 65944, 65946, 

65980, 65982, 66024, 66092, 66108, 66112, 66120, 66136, 66140, 66154, 66158, 66174, 66264, 

66268, 66364, 66366, 66392, 66411, 66414, 66428, 66430, 66437, 66438, 66453, 66455, 66456, 

66460*, 66492, 66493, 66494, 66516*, 66518, 67169, 67171, 67174, 67187, 67190, 67201, 67203, 

67206, 67207*, 67223, 67225, 67233, 67235, 67237, 67238, 67240*, 67251, 67253*, 67254, 67257, 

67297, 67299, 67302, 67305, 67306, 67312, 67313, 67314, 67321, 67457, 67459, 67463, 67464, 

67466, 67479, 67481, 67483, 67488, 67490, 67494, 67500, 67502, 67504, 67505, 67508, 67510, 

67512, 67513, 67514, 67516, 67517, 67552*, 67553, 67561, 67570, 67574, 67582, 67729, 67743, 

67760, 67762, 67765, 67826, 67830, 67831, 67985, 67999, 68000, 68003, 68005, 68012, 68017, 

68019, 68024, 68026, 68029, 68074, 68078, 68080, 68081, 68082, 68083, 68088, 68260, 68263, 

68274, 68276, 68284, 68286, 68294, 68306, 68308, 68310*, 68322, 68326*, 68327, 68328*, 68530, 

68533, 68535, 68541, 68561, 68562, 68567, 68568, 68574, 68576, 68580, 68583*, 68585, 68589, 

68594, 68598, 69351, 69353, 69354, 69366, 69367, 69368, 69369, 71359, 71563, 71567, 71575, 

71579, 71593, 71613, 71659, 71817, 71819, 71823, 71832, 71833, 71835, 71843, 71848, 71849, 

71850*, 71851, 71853, 71855, 71857, 71864, 71866, 71869*, 71871, 71907, 71915, 71921, 71923, 

71928, 72095, 72097, 72104, 72106, 72109, 72111, 72113, 72115, 72120, 72122, 72125, 72171, 

72174, 72175, 72179, 72186, 72352, 72357, 72368, 72371, 72376*, 72382, 72392*, 72394*, 72401, 

72409, 72410, 72412*, 72416, 72419, 72421, 72423, 72426, 72429, 72430, 72432, 72436, 72441, 

72445, 72624, 72629, 72631, 72634, 72637, 72663, 72666, 72670, 72672, 72673, 72675, 72677, 

72679, 72681*, 72682, 72685, 72688, 72692, 72702*, 73450, 73454, 73458, 73463, 73465, 73714, 

73721, 75913, 75929, 75944, 75946, 75948*, 75949, 75951, 75967, 75969, 75977*, 75981, 75989, 

75997, 76008*, 76009, 76012, 76013, 76015, 76028, 76201, 76203, 76265, 76269, 76271, 76285, 

76287, 76457, 76460, 76461, 76478*, 76483, 76485, 76488*, 76489, 76491, 76501, 76503, 76505, 

76508, 76540, 76745*, 76747, 76748, 76749, 76751, 76757, 76759, 76765, 76767, 76782, 76797, 

76993*, 76995, 77004, 77005, 77007, 77009, 77020, 77021, 77024, 77027*, 77033*, 77038, 77043, 

77045*, 77049, 77054, 77265*, 77277, 77279*, 77280, 77283, 77285 

14 601 

406, 553, 616, 617, 621, 1633, 1640, 1641, 1643, 1657, 1769, 1913, 2182, 2198, 2199, 2450, 2454, 

2455, 2462, 2486, 2998, 3817, 5738, 5742, 5743, 5758, 5760, 5763, 5766, 5768, 5769, 5771, 5783, 

5800, 5801, 5803, 5864, 5865, 5867, 6014, 6121, 6274, 6286, 6309, 6310, 6311, 6326, 6327, 6369, 
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6377, 6546, 6550, 6551, 6558, 6582, 6823, 7094, 7912, 7913, 10369, 10372, 10374, 10375, 10388, 

10389, 10390, 10391, 10394, 10395, 10398, 10399, 10454, 10644, 10645, 10646, 10648, 10651, 

10652, 10653, 10655, 10686, 10690, 10692, 10693, 10694, 10695, 10698, 10699, 10702, 10703, 

10708, 10710, 10711, 10714, 10715, 10718, 10719, 10728, 11206, 11222, 11461, 11463, 11467, 

11478, 11482, 11483, 11732, 11734, 11737, 11739, 12009, 15830, 16105, 26752, 26754, 26758, 

26762, 26766, 26767, 26775, 26778, 26793, 26795, 26796, 26798, 26799, 26812, 26814, 26815, 

26857, 27030, 27034, 27035, 27039, 27054, 27068, 27069, 27070, 27071, 27112, 27134, 27304, 

27308, 27309, 27325, 27326, 27329, 27337, 27348, 27350, 27351, 27582, 27583, 27606, 27608, 

27610, 27624, 27625, 27645, 28385, 32488, 32491, 32774, 32790, 32791, 32809, 32872, 32875, 

32879, 32894, 33001, 33047, 33048, 33049, 33050, 33051, 33054, 33055, 33064, 33065, 33066, 

33067, 33068, 33069, 33084, 33085, 33086, 33134, 33135, 33150, 33151, 33174, 33182, 33256, 

33257, 33322, 33323, 33326, 33341, 33352, 33353, 33364, 33368, 33369, 33384, 33385, 33388, 

33390, 33391, 33404, 33406, 33449, 33469, 33512, 33597, 33598, 33624, 33625, 33627, 33630, 

33640, 33641, 33643, 33644, 33646, 33647, 33661, 33662, 33768, 33769, 34403, 34408, 34415, 

34418, 34419, 34422, 34425, 34427, 34456, 34459, 34472, 34473, 34476, 34477, 34488, 34490, 

34492, 34493, 34529, 34535, 34538, 34539, 34552, 34553, 34554, 34555, 34678, 34680, 34682, 

34683, 34687, 34792, 34793, 35222, 35230, 35766, 36583, 38529, 38537, 38539, 38568, 38569, 

38571, 38572, 38573, 38588, 38589, 38635, 38638, 38639, 38785, 38793, 38798, 38824, 38825, 

38828, 38890, 38891, 38894, 39046, 39047, 39136, 39137, 39139, 39142, 39143, 39145, 39587, 

39596, 39649, 39650, 39651, 39652, 39655, 39657, 39659, 39862, 40679, 40681, 40682, 40683, 

40689, 40690, 43158, 43222, 43412, 43414, 43415, 43422, 43458, 43462, 43478, 43479, 43990, 

44230, 44242, 44246, 44499, 44502, 48321, 48322, 48326, 48342, 48343, 48596, 48598, 48599, 

48873, 59520, 59546, 59550, 59800, 59802, 59803, 59806, 59807, 59838, 65816, 65897, 65898, 

65918, 66088, 66089, 66153, 66155, 66172*, 66173*, 66260*, 66262*, 66410*, 66412*, 66436*, 

66462*, 67170*, 67182*, 67186*, 67198*, 67200*, 67222*, 67227*, 67232*, 67234*, 67236*, 

67244*, 67252*, 67258*, 67262*, 67296*, 67298*, 67320*, 67446*, 67450*, 67456*, 67458*, 

67462*, 67470*, 67482*, 67506*, 67518*, 67554*, 67558*, 67560*, 67731*, 67986*, 67987*, 

67994*, 67998*, 68002*, 68014*, 68016*, 68018*, 68021*, 68030*, 68064*, 68066*, 68067*, 

68070*, 68072*, 68086*, 68087*, 68094*, 68262*, 68532*, 68540*, 68542*, 68560*, 68566*, 

68578*, 68582*, 68584*, 69350*, 71295*, 71321*, 71327*, 71341*, 71343*, 71357*, 71401*, 

71403*, 71407*, 71422*, 71561*, 71594*, 71597*, 71598*, 71656*, 71657*, 71658*, 71662*, 

71678*, 71816*, 71834*, 71839*, 71854*, 71856*, 71859*, 71868*, 71870*, 71905*, 71911*, 

71919*, 71920*, 71930*, 71934*, 72088*, 72099*, 72110*, 72112*, 72124*, 72126*, 72162*, 

72163*, 72166*, 72170*, 72176*, 72177*, 72178*, 72183*, 72184*, 72190*, 72355*, 72372*, 

72373*, 72375*, 72381*, 72385*, 72387*, 72391*, 72398*, 72400*, 72402*, 72403*, 72405*, 

72407*, 72408*, 72418*, 72420*, 72424*, 72425*, 72428*, 72434*, 72439*, 72440*, 72444*, 

72626*, 72628*, 72632*, 72636*, 72638*, 72656*, 72658*, 72662*, 72674*, 72676*, 72678*, 

72680*, 72684*, 72690*, 72694*, 72696*, 72700*, 73442*, 73447*, 73449*, 73464*, 73718*, 

73720*, 75907*, 75912*, 75915*, 75916*, 75933*, 75950*, 75964*, 75965*, 75971*, 75976*, 

75979*, 75980*, 75983*, 75991*, 75993*, 75996*, 76010*, 76014*, 76030*, 76205*, 76207*, 

76221*, 76223*, 76233*, 76237*, 76249*, 76253*, 76267*, 76268*, 76456*, 76477*, 76480*, 

76482*, 76484*, 76487*, 76490*, 76494*, 76500*, 76504*, 76507*, 76510*, 76521*, 76524*, 

76733*, 76736*, 76737*, 76739*, 76740*, 76741*, 76743*, 76744*, 76746*, 76750*, 76756*, 

76758*, 76761*, 76763*, 76764*, 76766*, 76777*, 76778*, 76780*, 76781*, 76796*, 76798*, 

77011*, 77013*, 77023*, 77026*, 77029*, 77035*, 77042*, 77044*, 77047*, 77048*, 77050*, 

77051*, 77264*, 77269*, 77276*, 77282*, 401139735, 467199015, 518119710 

15 230 

5736, 5737, 5739, 5761*, 6278*, 6279*, 6294*, 6295*, 10647, 10650, 10654, 26755, 26759, 26761, 

26763, 26774, 26779, 26782, 26783, 26813, 27031, 27032, 27038, 27052, 27324, 27580, 27581, 

28393, 32489, 32873, 33131, 33321, 33386, 33387, 33389, 33513, 33642, 33645, 34400, 34401, 

34402, 34407, 34409, 34410, 34411, 34414, 34424, 34426, 34430, 34431, 34489, 34536, 34537, 

34681, 34686, 38504, 38505, 38506, 38507, 38510, 38511, 38526, 38527, 38632, 38633, 38634, 

38783, 38888, 38889, 40672, 40673, 40674, 40675, 40678, 40680, 59521, 59522, 59523, 59526, 

59527, 59543, 65814*, 65926*, 65950*, 66152*, 66156*, 66157*, 66408*, 66409*, 66413*, 

66454*, 67168*, 67177*, 67178*, 67179*, 67192*, 67193*, 67194*, 67195*, 67202*, 67216*, 

67217*, 67219*, 67224*, 67226*, 67230*, 67248*, 67249*, 67250*, 67256*, 67260*, 67261*, 

67304*, 67448*, 67449*, 67454*, 67472*, 67473*, 67475*, 67478*, 67480*, 67486*, 67728*, 

67730*, 67767*, 67984*, 67992*, 68006*, 68007*, 68020*, 68023*, 68028*, 68065*, 68071*, 

68278*, 68534*, 69352*, 71279*, 71305*, 71307*, 71311*, 71319*, 71323*, 71337*, 71338*, 

71339*, 71400*, 71402*, 71406*, 71555*, 71559*, 71560*, 71562*, 71576*, 71578*, 71592*, 

71596*, 71612*, 71614*, 71808*, 71818*, 71840*, 71841*, 71852*, 71904*, 71906*, 71912*, 

71914*, 71918*, 71922*, 71927*, 72080*, 72081*, 72083*, 72096*, 72098*, 72114*, 72117*, 

72119*, 72161*, 72167*, 72168*, 72360*, 72365*, 72366*, 72370*, 72384*, 72404*, 72664*, 

75904*, 75905*, 75906*, 75914*, 75917*, 75919*, 75928*, 75966*, 75968*, 75982*, 75999*, 

76185*, 76200*, 76202*, 76239*, 76245*, 76247*, 76255*, 76284*, 76476*, 76506*, 76520*, 

76734*, 76760*, 76762*, 76776*, 76992*, 76994*, 76997*, 77001*, 77006*, 77008*, 77017*, 
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77028*, 77031*, 77032*, 77034*, 77266*, 77267*, 77268*, 77278* 

16 95 

26753*, 33046*, 33128*, 33129*, 33130*, 38782*, 59542, 59798, 59799*, 65896*, 65942*, 

66452*, 67218*, 67474*, 67735*, 67764*, 67766*, 67991*, 68004*, 68022*, 71297*, 71299*, 

71303*, 71342*, 71550*, 71552*, 71553*, 71554*, 71558*, 71566*, 71809*, 71811*, 71824*, 

71825*, 71827*, 71845*, 71847*, 71858*, 71860*, 71861*, 71863*, 71913*, 71926*, 72087*, 

72101*, 72103*, 72108*, 72160*, 72169*, 72182*, 72356*, 72359*, 72364*, 72380*, 72386*, 

72422*, 72630*, 73448*, 75909*, 75931*, 75935*, 75973*, 75975*, 75978*, 75992*, 75995*, 

76187*, 76189*, 76191*, 76225*, 76227*, 76232*, 76235*, 76236*, 76251*, 76252*, 76264*, 

76270*, 76286*, 76486*, 76732*, 76999*, 77000*, 77003*, 77010*, 77015*, 77016*, 77019*, 

77022*, 77030*, 77271*, 77272*, 77273*, 77275*, 77284* 

17 36 

67176*, 71275*, 71296*, 71304*, 71336*, 71574*, 71810*, 71822*, 71826*, 71831*, 71842*, 

71844*, 71910*, 72354*, 73462*, 75911*, 75918*, 75925*, 75927*, 75932*, 75970*, 75972*, 

75988*, 76181*, 76224*, 76229*, 76231*, 76244*, 76246*, 76248*, 76738*, 76742*, 76996*, 

76998*, 77274*, 381479235* 

18 26 

67990*, 71273*, 71306*, 71356*, 71815*, 72100*, 72102*, 72406*, 75908*, 75930*, 75974*, 

75994*, 75998*, 76183*, 76184*, 76204*, 76206*, 76226*, 76228*, 76238*, 76254*, 76266*, 

77002*, 77012*, 77046*, 77270* 

19 29 

67734*, 71294*, 71298*, 71310*, 71320*, 71322*, 71340*, 71358*, 71838*, 71862*, 72374*, 

72438*, 75910*, 75924*, 75934*, 76220*, 76222*, 76230*, 76250*, 77018*, 379234774*, 

379251045*, 379311780*, 379513185*, 380492385*, 395241585*, 397207635*, 434234910*, 

434365980* 

20 26 

71272*, 71274*, 71302*, 71846*, 72082*, 72086*, 72116*, 72118*, 72358*, 72390*, 73446*, 

76190*, 76502*, 77014*, 379184790*, 379231845*, 379233989*, 379235411*, 379235417*, 

379235539*, 379235673*, 379238085*, 379243380*, 379496913*, 397199985*, 434562585* 

21 25 

71326*, 71582*, 71814*, 72094*, 75990*, 379184670*, 379184677*, 379184745*, 379184775*, 

379237575*, 379238853*, 379239525*, 379249815*, 379251030*, 379297380*, 379312740*, 

379316580*, 379500225*, 379500900*, 379500993*, 379501665*, 379512465*, 380230215*, 

380426775*, 380492433* 

22 31 

71830*, 72090*, 75926*, 76186*, 76188*, 76234*, 379184662*, 379234140*, 379234241*, 

379234257*, 379234260*, 379234759*, 379235537*, 379235779*, 379235793*, 379237740*, 

379239495*, 379245101*, 379245221*, 379249005*, 379249731*, 379249763*, 379250229*, 

379250281*, 379299796*, 379300293*, 379301313*, 379303617*, 381475365*, 395896350*, 

396011220* 

23 32 

71278*, 76180*, 76182*, 379183691*, 379183751*, 379231585*, 379237830*, 379238599*, 

379242932*, 379242933*, 379247013*, 379248956*, 379249181*, 379249261*, 379249687*, 

379249725*, 379249747*, 379249799*, 379250325*, 379251033*, 379305153*, 379308468*, 

379311012*, 379315764*, 380423025*, 381467715*, 394166551*, 394166760*, 395227860*, 

395228370*, 395880135*, 395896343* 

24 16 

379183725*, 379183973*, 379184700*, 379185507*, 379231593*, 379245165*, 379248925*, 

379248985*, 379249213*, 379249301*, 379249437*, 379249500*, 379249557*, 379315860*, 

394165992*, 395896373* 

25 12 
379183916*, 379183917*, 379183980*, 379185453*, 379249497*, 379249556*, 379297128*, 

379308964*, 379312548*, 379315092*, 380226405*, 380429145* 

26 7 71318*, 379310952*, 379312488*, 379493985*, 380422807*, 380495442*, 396012753* 

27 2 380429205*, 395895390* 

28 1 395765865* 

29 5 379185452*, 379185462*, 380225894*, 380430675*, 395765783* 

30 5 379185468*, 380225912*, 381479190*, 395896935*, 396027993* 

31 3 394193025*, 396028005*, 417851160* 

33 2 379185510*, 380217814* 

37 1 379185430* 

40 1 380495250* 

42 2 380423061*, 380496210* 

43 1 1771476585* 

46 2 380234070*, 384428310* 
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