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CHAPTER 1

Introduction

1.1 Background

Large scale computer networks are an integral part of today’s information soci-

ety. They are large, multi-layered distributed systems that accommodate a large

number of users with diverse needs and quality-of-service requirements. The vari-

ability of the underlying traffic demands and the complexity of their interactions

present constant challenges to service providers, in their effort to match available

network resources to demands. A significant effort by network engineers is devoted

to develop network measurement systems and techniques. The objective of network

measurement is to provide the necessary data for characterizing the state of the net-

work, the performance experienced by users and control actions required. The latter

range from the deployment of new network infrastructure to improve performance,

to dynamically rerouting traffic to alleviate congestion, to detecting and neutraliz-

ing network attacks. Further, the time scales involved in such actions range from

seconds for rerouting, to minutes and hours for attack detection to months for in-

frastructure upgrades. Other network management and engineering tasks for which

network measurements prove useful include usage based accounting, service level

agreement verification, fault detection and quality of service provisioning.

Over the years two approaches have emerged for obtaining network measurements:

an active one, where probe packets are sent between network nodes and their loss

1



2

and delay characteristics measured and passive measurements, where actual traffic

packet information is collected. The first approach led to the development of the

active network tomography field [34] and is most suitable for characterizing network-

wide quality of service performance. The second approach is useful for capturing

aggregate demand and for characterizing traffic patterns. However, as link capac-

ity has increased at an extremely fast rate over the years, passive measurement

techniques can lead to enormously large volumes of data. For example, on a 100

megabit/sec Ethernet link operating at 20% constant utilization rate, the number of

packets traversing it per minute is approximately 100,000.

As pointed out in [17], the current need for measurement capabilities is because

they were not incorporated in the original design of network protocols. The basic

network TCP/IP protocol is based on best effort service model, that offered no hard

performance guarantees. The goal of the protocol was to provide reliable delivery of

packets from source to destination. However, the introduction of more time sensi-

tive services -from Web browsing to Internet telephony and television- and the need

by service providers to differentiate traffic in accordance to service level agreements

requires more fined grained measurements. Traditionally, routers were capable of

providing aggregate traffic statistics; e.g. total number of packets processed over a

five minute period. Detailed measurements, both at a fine time scale and at the

traffic flow level, became technically feasible only over the last few years with the

introduction of new generation routers equipped with extremely fast memory. Never-

theless, as indicated above, collection of detailed measurements becomes practically

infeasible for high-speed networks. A scalable alternative is provided by sampling

techniques. Several recent types of routers implemented systematic sampling; i.e.

one out of K packets processed was selected for detailed measurement. The latest

versions enable probabilistic sampling.

We briefly discuss next some basic network components. Data are transmitted



3

between hosts across the network in packets, which are forwarded along a network

path comprised of one or more links joined by network elements such as routers or

switches. Packets are organized in traffic flows ; a flow is a collection of packets with

a common property, known as the flow key. The flow key is usually specified by

the protocol header of each packet. For example, the transmission of the packets

belonging to an e-mail message constitute a flow, since they have the same source

and destination and belong to the same application. With this structure, passive

measurements can be divided into Packet Monitoring and Flow Monitoring.

Packet monitoring entails copying a stream of packets from the internal fast mem-

ory, then selecting, storing, analyzing and exporting information on these packets.

Hence, sampling a packet requires copying to an external memory. Flow Monitoring

is the way to collect statistics at the flow level. The flow cache memory of a router

is where the keys of active flows are maintained. Recent recommendations regard-

ing packet and flow sampling have appeared in the Internet Engineering Task Force

working groups [24] and its implementation in high-speed routers [5]. One thing to

notice is that flow monitoring is different from packet monitoring due to the possible

heavy-tailed nature of flows. As noticed in [53], a small proportion of the flows may

contain most of the packets/bytes. Therefore, omission of a single flow can lead to

biased results.

Many sampling schemes along with inferences have been proposed in the literature,

which can be basically summarized in two main categories: packet sampling, and

hash-based data streaming approaches.

The most popular packet sampling techniques in commercial networks are sFlow

[25] and NetFlow [5], where Bernoulli or systematic samplings are applied on the

packets, and flow records are inferred from the samples keeping track of information

such as the number of packets/bytes in the flow, the timestamp of the first and last

packets, et al. Statistical inference of NetFlow sampled data is further investigated by
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Duffield et al.[13], where they addressed the problem of estimating the distribution of

the flow length (in terms of number of packets per flow) from NetFlow sampled TCP

flows data. Subsequently Bruno Ribeiro et al. [38] extended this work by provid-

ing the Fisher information matrix and the Cramer-Rao bound for the corresponding

estimations. These two papers are the most closely related ones to our flow charac-

teristics estimation from sampled data, but it is worth noting that both of them are

limited to NetFlow selected TCP flows, which is not necessary in our approach. In

order to address the heavy-tailed distribution issue in the computer network, several

other approaches that target longer flows have been proposed in the literature. Es-

tan and Varghese [21] proposed a sample and hold approach, as well as multistage

filters, which takes a constant number of memory references per packet and uses a

small amount of memory. A cache lookup is performed for the key of each incoming

packet, updated for the existing key but with a certain probability for the new key.

A similar idea appeared in [29] RATE, where sampling two-runs automatically bi-

ases the samples towards the larger flows, therefore making the estimation of these

sources more accurate. These sampling schemes lead to significantly smaller memory

requirement compared to random sampling schemes, but introduce bias; hence, there

is an inherent trade-off between estimation accuracy and flow cache size. Physical

hard resource limitations impose serious constraints in practice even with sampling,

because large flows may produce too many samples thereby overflowing the cache

memory. A number of papers [4, 19, 28] discussed specifically the problem of sam-

pling under hard resource constraints. A recent progress on sampling under hard

resource constraints is achieved in Cohen[8] and Duffield[9], where a number of new

sampling designs extend the Netflow and sample and hold approaches by allowing

changes in the sampling rate. Another development is that sampling may also be

applied directly to collected flow records. Duffield, Lund and Thorup in a serial of

papers [14, 15, 18] proposed a threshold sampling in this scenario where longer flows
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are more heavily sampled, since they exceed a predetermined threshold. In [15] and

Choi et al. [3], this idea is extended to the situation where the sampling rate can be

controlled and altered.

Other interesting topics in the literature include hash-based sampling and its

extension to trajectory sampling[20]. In hash-based techniques, the router computes

a flow label on the packet header on each packet arrival, where the flow label is

determined by a hash function. Each router maintains a table of the flows it is

currently monitoring. Although the focus of our study is mainly on packet sampling

for inference at the flow level, hash-based sampling is also of interest since it allows

to directly sample flows. In this sense, our proposed Two-Stage Sampling in Section

2.7.2 can be justified in practice. A number of related papers have appeared in the

literature. For example, [30] estimates the flow size distribution from hash-based

sampled flows by inverting the hash collision process in the counter array using an

EM algorithm. The motivation of this paper is very similar to ours in the sense of

estimation of flow size distribution, but it focuses on recovering of hash collision in

the data streaming procedure while ours is on packet sampling recovery. Recently

[31, 45] extend this work to subpopulation distribution estimation, and a network-

wide approach, respectively. Other important work related to hash-based sampling

are [47, 43] to name a few.

Apart from sampling schemes to recover flow level information on a single router/link,

it is also important to study the traffic across the entire network. However, traffic

can be observed multiple times at different observation points. The resulting mea-

surements are likely to contain duplicates. This issue is briefly considered in Duffield

et al. [12] studies the combination of sampled traffic measurements at multiple ob-

servation points to achieve an unbiased estimation of the total traffic. However, this

study was based on the assumption that flow selection is feasible without a one-to-one

mapping hash technique, and this is not practical in an outline feature to the best
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of our knowledge. In chapter 4, we discuss our findings on sampling packets across

the network, a novel topic in the literature. Some related network-wide sampling

design issues deal with selecting observation points on a network [46]. This problem

is different from the one addressed in Chapter 4, where our focus is on allocating

samples to different observation points.

1.2 A Brief Review of Some Sampling Techniques

In this section we provide a brief overview of some basic concepts in sampling

theory.

Consider a finite population of size N , which is relevant in networking applica-

tions. A sample of size n is collected according to some sampling mechanism without

replacement. Let Yi, i = 1, 2, ..., N denote the values of a variable of interest in the

population and denote by yj, j = 1, 2, .., n the observed values in the sample. A

quantity of interest is the population mean Ȳ =
∑

Yi/N , or the population total

Y =
∑N

i=1 Yi. These statistics are also of interest in a networking context, since they

provide information about the total and/or average amount of traffic in a link over

a fixed amount of time.

The objective is to estimate these quantities from the sampled measurements.

Under many sampling schemes (discussed below), the sample mean is an unbiased

estimate of the population mean. Further, an unbiased estimator of the population

total is given by the Horvitz-Thompson estimator [7], also called the π estimator

[42], given by

(1.1) Ŷ =
n∑

j=1

yj

πj

,

where πj correspond to sampling weights. πj = p in Bernoulli sampling , and

πj = 1/n in Systematic sampling, which will be discussed later in this chapter.

An attractive property of this estimator is its unbiasness [6].
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We discuss next some popular and fairly easy to implement sampling schemes. In

Bernoulli (also known as binary) sampling, each unit in the population is selected

with common probability p, independently of everything else. Hence, πj = p for all

j and the Horvitz-Thompson estimator takes the form

(1.2) Ŷ =
n∑

j=1

yj/p.

The variance of the estimate of the population total is given by

(1.3) Var(Ŷ ) = (1/p− 1)
N∑

i=1

y2
i

The main advantage of Bernoulli sampling is its easy implementation, which makes

it particularly suitable for network traffic. However, it is difficult to control the final

sample size in the sense of large variation on the sample size especially with small

sampling rate.

Simple Random Sampling (SRS) overcomes the problem of the controlling the

size of the samples collected. The mechanism is to select n units out of the N such

that every one of the Cn
N distinct samples has an equal probability of being drawn.

In practice, it can be carried out by a draw-sequential or list-sequential scheme as

illustrated in [7] and [42]. The resulting inclusion probability is πi = n
N

, i = 1, ..., N ,

another constant sampling probability design. The estimator for the population total

and mean under SRS have the same form as under Bernoulli sampling, the only

difference being replacing p by the selection ratio f = n
N

. Occasionally people call

the process of dividing the numerator of the π estimator by p in Bernoulli sampling

or f in SRS normalization.

Systematic Sampling is often used as a substitute for SRS, because of its simple

implementation mechanism. As mentioned in the previous section, the first sampling

scheme available in commercial routers was systematic sampling. In principle, a first

element is selected at random among the first a elements in the population list with

equal probability. The rest of the sample is determined by systematically taking
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every a-th element thereafter, until the end of the list. With this mechanism, there

are a possible samples, each with chance of 1
a

being drawn. It can be seen that only

a single random draw is required to determine the sample, which leads to a constant

computational complexity. When the order of the elements in the population is

randomized or can be regarded as random, i.e., the Y ′
j s are independent and drawn

from the same population, systematic sampling can be analyzed as SRS. It is well

known that systematic sampling can lead to biased results, if the items being sampled

exhibit periodic characteristics.

The three previously discussed sampling schemes have a constant selection prob-

ability for each item in the population and are therefore called uniform sampling

schemes. However, these schemes can lead to biased results. For example, suppose

that the items in the population correspond to packets, which are organized in flows.

Further, suppose that one is interested in the characteristics of the flows, but only

packets can be sampled. If the distribution of the flow lengths is heavy tailed, it

is more likely under any of these schemes that packets from longer flows are more

likely to be observed. Therefore, the collected sample would not be representative

for studying flow characteristics.

Alternatives to uniform sampling that address this shortcoming are stratified and

clustered sampling mechanisms. In Stratified Sampling, the population under study is

first divided into L non-overlapping subpopulations, called strata. Items in the same

strata are of certain similar characteristics, based on some external knowledge. A

SRS is then taken in each stratum. Cluster Sampling also requires non-overlapping

subpopulations, called clusters in this scenario. However, in cluster sampling, a

two-stage mechanism is employed. In the first stage a random sample of clusters is

obtained and at the second stage, a random sample of items from the selected samples

is chosen. Both stratified and clustered sampling are useful for traffic measurements,

although their implementation may add an extra layer of computational complexity.
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In this study, clustered sampling is used for estimating network flow characteristics,

where we are given that packets within a flow share same flow key (see Section 2.4.2).

1.3 Traffic measurement topics considered

The importance of sampling mechanisms for traffic measurement was discussed

in the introductory section. In this study we primarily focus on the following prob-

lems: estimation of the flow length and byte size distribution on a single link. The

importance of this problem in networking stems from the fact that simple averages

are not adequate for scheduling-routing purposes, as well as capacity planning, since

the right tail (upper quantiles) of the flow length and byte size distribution play a

crucial role. New types of sampling designs will be addressed and compared with

the uniform sampling procedures. Further, extensions of monitoring packet and byte

totals across the entire (or part) of the network with given topology are discussed in

the context of allocation of a fixed number of samples.



CHAPTER 2

Non-Parametric Estimation of Network Traffic Flow
Characteristics on a Single Router

2.1 Introduction and Literature Review

Understanding the characteristics of traffic flows is crucial for allocating the nec-

essary resources (bandwidth) to accommodate users’ demand. The problem of using

sampled flow statistics in order to estimate the number of active flows in a link

and their packet length and to a lesser extent bytes distribution has attracted some

attention in the literature. Duffield [13] addressed the problem of estimating the

distribution of the flow length (in terms of number of packets per flow) from sam-

pled data. He proposed a non-parametric maximum likelihood estimator for the flow

length distribution of the actual traffic and discussed the use of external information

obtained from SYN packets for TCP flows. This is the closest work to the problem

under consideration. In [13], the flow length distribution and the number of active

flows in a link are treated separately, leading to an inaccurate estimate for the latter

quantity. Further, not particular attention was paid to longer flows. The problem of

estimating the byte size distribution has not been addressed before in the networking

literature.

An earlier work on this topic was by Hohn and Veitch [23]. It mainly focuses

on sampling the flows themselves, rather than estimating their characteristics from

their packets. Further, it is assumed that the number of active flows traversing the

10
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link is known a priori.

2.2 Framework

We assume that the data have been generated by the following hierarchical mech-

anism. First, a random variable M is generated from a discrete uniform probability

distribution on the integers {1, · · · , ∆} to represent the number of total active flows,

where ∆ is a large number reflecting the capacity of the link under consideration.

These M flows are comprised of Nm, m = 1, ..., M packets each. The number of

packets in each flow is referred to as the flow length. Flow lengths Nm’s are generated

independently according to a discrete probability distribution φ = {φ1, φ2, ..., φN},

where φi is the probability that a flow of length i. It is assumed that the maximum

length of a flow is bounded by a large integer N . Further, the payload of each

packet consists of Z
(`)
m , ` = 1, ..., Nm bytes, generated independently from a certain

distribution H. Hence the size of the m-th flow in bytes is given by Bm =
∑Nm

`=1 Z
(`)
m ,

which is referred to as the flow size.

This mechanism generates a total of T packets given by T =
∑M

m=1 Nm. Subse-

quently, packets are sampled from the generated flows using a Bernoulli sampling

scheme; i.e. each packet is selected with pre-defined probability p, independent of

any other characteristic and its size Z
(`)
m observed and recorded. We can see that

the total number t of packets sampled follows a Binomial distribution with param-

eters T and p. Further, sampled packets can be assigned to a particular flow, by

observing its flow key obtained from information available in the packet header [17].

Let nm ≥ 0 be the number of sampled packets from flow m. Note that we may not

sample all M flows and we have no information about the number of nm’s that are

zero. Therefore, our data is only the set of all positive nm’s, which are referred to as

sample lengths of flow m. For the sampled packets, we also have their corresponding

byte sizes, and thus we also have the sample flow sizes bm =
∑nm

`=1 Z`
m. Obviously,
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there is no information about the composition of active flows for which none of their

packets are contained in our sample. Let

Im` =





1 if the `th packet on the mth flow is sampled

0 if the `th packet on the mth flow is not sampled

where ` = 1, ..., Nm, m = 1, · · · ,M . We can see that

nm =
∑

`

Im`;

and therefore, the conditional distribution of nm given Nm is Binomial (Nm = i, p).

See (2.5) below for the unconditional distribution of nm’s. Further we will call

’sampled flows’ the ones that result after sampling packets from the link and organize

them into flows according to their key. The true flows traversing the network will be

called the ’original’ ones. These two populations in our hierarchical mechanism are

illustrated in Figure 2.1

Our objective is twofold:

(i) estimate the discrete flow length distribution φ;

(ii) estimate the flow size (expressed in bytes) distribution H.

REMARK: Observe, that in our setup the numbers of packets within each flow

{Nm}M
m=1 are themselves random variables given M . Therefore, our framework differs

from the classical setup in statistical sampling theory, where the flow-sizes {Nm}M
m=1

would be considered the target population and the goal would then be to estimate

the ”population” distribution of flow lengths corresponding to the Nm’s, detailed in

Appendix.

In our application, it is not appropriate to consider the {Nm}M
m=1 as a fixed pop-

ulation and then to try to estimate the resulting distribution. This is because this

distribution changes for different traces and observation periods. Indeed, in practice,

when observing the link at a different point of time will typically lead to different
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n
M

n
1

Population of Sampled Flows

N
M

N
1

Population of Original Flows

M Samples of Sampled Flows M Samples of Original Flows

Figure 2.1: Two Populations in the Hierarchical Mechanism

collections of Nm’s and often very different flow distributions. In our context, we

assume that the Nm’s are generated from a single non-random distribution φ, which

we then try to estimate from sampled data.

Let G = {G0, ..., GN}, where Gj denotes the number of flows for which j packets

have been sampled and j = 1, ..., N and G0 is the number of unobserved flows. We

can write

(2.1) Gj =
M∑

m=1

I(nm = j), j = 0, · · · , N,

where I(·) denotes the indicator function.

(2.2) M =
N∑

j=0

Gj.

Notice that under this hierarchical mechanism, all flows have the same probability

of belonging to the Gj-th group; namely, of having j of their packets sampled. This
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probability is calculated as follows,

(2.3)

πij ≡ Prob(a flow of length i and j of its packets sampled, i ≥ j)

= Prob(nm = j and Nm = i) = Prob(nm = j|Nm = i)Prob(Nm = i)

= φi




i

j


 pj(1− p)i−j ≡ φiπj|i

for any m = 1, ..., M ; where πj|i is the probability that a flow has j packets sampled

given original flow length i, which follows Binomial distribution, i.e.

(2.4) πj|i =




i

j


 pj(1− p)i−j.

Hence, the probability that a flow has j of its packets sampled is given by

(2.5)
Prob(flow has j of its packets sampled) ≡ πj = P(nm = j)

=
∑N

i=1 Prob(nm = j and Nm = i) =
∑N

i=1 φiπj|i

for any m = 1, ..., M .

It can then be seen from equations (2.1), (2.2) and (2.5) that the conditional

distribution of the Gj’s, given the total number of active flows M , is a Multinomial

distribution with parameters (M, {πj}N
j=0). We can then write the joint probability

mass function of the Gj’s as follows:

(2.6)

Prob(G0 = g0, ..., GN = gN) =
∑∆

M=1 Prob(G0 = g0, ..., GN = gN |M)fM

= 1
∆

∑∆
M=1 Prob(G0 = g0, ..., GN = gN |M)

= 1
∆

∑∆
M=1




M

(M −∑N
j=1 gj), g1, ...gN


 ∏N

j=0 π
gj

j

= 1
∆

∑∆
M=1




M

(M −∑N
j=1 gj), g1, ...gN


 ∏N

j=0(
∑N

i=1 φiπj|i)gj

where g0 = M −∑N
j=1 gj.
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From the above results of hierarchical mechanism, the likelihood of φ based on

the observed frequencies {gj}N
j=1 of flows with j > 0 packets sampled is given by

(2.7) L(φ) =
1

∆

∆∑
M=1




M

(M −∑N
j=1 gj), g1, ...gN




N∏
j=0

(
N∑

i=1

φiπj|i)
gj .

The objective becomes to maximize this likelihood function subject to the follow-

ing constraints:
∑N

i=1 φi = 1, and φi ≥ 0

Remark: Note that Duffield et al.[13] postulated a similar model, but treated the pa-

rameter M as given; specifically, it is estimated by (1/p)
∑

j=1 gSY N
j , where

∑
j=1 gSY N

j

is the total number of sampled SYN flows. In our work, we treat m as a random

variable. Further, we provide a proper framework for justifying the above derived

likelihood, and loose the restriction of TCP flows.

2.3 First EM Algorithm

We derive an Expectation-Maximization algorithm for maximizing the likelihood

function given in (2.7). The main idea is that if the frequencies of all the original

flows whose length is i packets were observed, then the estimation of φ would be

rather trivial; hence, the EM algorithm [36] imputes such values (E-step) and then

maximizes the likelihood over the parameters of interest (M-step). Its main steps

are described next:

E-step:

We consider all the flows under study, and let

(2.8) {Fij =
M∑

m=1

I(nm = j and Nm = i), j = 0, · · · , N ; i = 1, · · · , N}

denote the number of flows that contain i packets out of which j have been sampled.

We have that

(2.9) M =
N∑

i=1

N∑
j=0

Fij.



16

Further, notice that the Fij variables uniquely determine the observed variables Gj;

specifically, we have Gj =
∑N

i=1 Fij, j = 1, ..., N , and G0 =
∑N

i=1

∑N
j=0 Fij−

∑N
j=1 Gj.

From equations (2.8), (2.9) and (2.3), we know that {F10, ..., FNN |M} follows a

Multinomial distribution with parameters (M, {πij}). Then, the joint probability

distribution of the Fij and M is given by

(2.10)

Prob(F10 = f10, ..., Fij = fij, ..., FNN = fNN ,M = m)

= Prob(F10 = f10, ..., Fij = fij, ..., FNN = fNN |M)fM(m)

= 1
∆




M

f10...fNN


 ∏N

i=1

∏N
j=0 π

fij

ij

where πij is defined by equation(2.4). And hence the likelihood is given by

L(φ) ∝




M

F10...FNN




N∏
i=1

N∏
j=0

(φiπj|i)
Fij .

Therefore, log-likelihood is given by

(2.11) lc(φ) = log[




M

F10...FNJ


] +

N∑
i=1

N∑
j=0

Fijlog(φiπj|i).

The expectation Q(φ, φ(k)) of lc conditional on variables {Gj}N
j=1 and {φ(k)

i }, the

estimated at the k−th step of the algorithm, is given by:

(2.12)
Q(φ, φ(k)) = E(log[




M

F10...FNN


]|{Gj = gj}N

j=1, φ
(k))

+
∑N

i=1

∑N
j=0 E(Fij|{Gj = gj}N

j=1, φ
(k))log(φiπj|i)

.

The first term can be ignored, because it does not contain the parameters of

interest {φ}, which are to be estimated in the M-step. For the second term, notice

that Fij|({Gj}N
j=1, φ

(k)) is determined uniquely by Fij|({Gj, φ
(k)}) when j ≥ 1, which

follows a Multinomial distribution with parameters (Gj, π
(k)
i|j ), where

(2.13) π
(k)
i|j =

φ
(k)
i πj|i∑N

j=` φ
(k)
` πj|`



17

is the probability that given a flow with sample size j, it contains actually i packets

in total, j = 0, 1, ..., N and i = j, ..., N . Therefore,

(2.14) E(Fij|({Gj}N
j=1, φ

(k))) = Gjπ
(k)
i|j .

However, when j = 0 a specific form for E(Fi0|({Gj}N
j=1, φ

(k))) can not be ob-

tained, since the variable G0 is not observed. Further, there is no specific distribu-

tional assumption connecting G0 and the Gj’s, j ≥ 1. In order to overcome this

difficulty, the nuisance parameter G
(k)
0 is introduced and updated by

G
(k)
0 =

∑
i φ

(k−1)
i ci0

1−∑
i φ

(k−1)
i ci0

r,

weighting the updated odds ratio, defined by the probability of observing a sampled

flow of length zero over the probability of observing non-zero flow lengths, on the

number of observed flows r =
∑N

j=1 Gj. We then get that

(2.15) E(Fi0|({Gj}N
j=1, φ

(k))) = G
(k)
0 π

(k)
i|0 ,

M (k) = r + G
(k)
0 .

M-step: Define φ(k+1) = arg maxQ(φ, φ(k)), such that

(2.16)
N∑

i=1

φi = 1, and φi ≥ 0 for i = 1, 2, ..., N.

The method of Lagrange multipliers gives

(2.17) φ
(k+1)
i =

∑
i≥j≥1 Gjπi|j + G

(k)
0 πi|0∑N

i=1(
∑

i≥j≥1 Gjπi|j + G
(k)
0 πi|0)

,

where πi|j again corresponds to the probability that for a flow of length i given j of

its packets have been sampled.
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In the implementation of its algorithm, we initialize the φ
(0)
i by the corresponding

observed frequency of j = xipy as follows:

(2.18) φ
(0)
i =

gj∑N
k=1 gk + g

(0)
0

,

where g
(0)
0 is estimated by the odds ratio

(2.19) g
(0)
0 =

∑N
i=1

gj∑N
k=1 gk

ci0

1−∑N
i=1

gj∑N
k=1 gk

ci0

r,

and r is the number of observed flows given by r =
∑J

j=1 gj.

The algorithm iterates between the E- and the M-steps until a prespecified con-

vergence criterion is met.

Remark: Theoretically, we would get an estimate of {φi}N
i=1. In practice, for speed-

ing up the algorithm we focus on a limited set of i values, determined by the set

SI = {x j
p
y

⋃
x 1

2p
y}, for j ∈ SJ the collection of observed sample lengths. The intu-

ition behind this selection is that given flow length i, the sampled packets j are drawn

from a Binomial distribution with parameters i and p. We then have E(j) = ip, which

guides our selection of SI .

2.4 Estimation of Flow Lengths given Sampled Lengths

The next objective is to come up with an estimate of the length of sampled

flows. Given the estimated flow length distribution φ, we can, through a straightfor-

ward application of Bayes formula, obtain the posterior probability distribution of a

flow being of length L given that K of its packets have been sampled. Specifically,

let P(L|K), K = 1, 2, ..., N, L = 1, 2, ..., N denote this probability distribution,

P(L,K) the joint distribution of flow lengths and sampled flow lengths and P(K)

the distribution of observing a sampled flow of length K. We then have that

(2.20) P(L|K) =
P(L,K)

P(K)
=

πK|LφL∑N
L=1 πK|LφL

.
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For any given sampled flow of length K = k, we provide next two estimators of

the original flow length L(k).

(1) Average.

(2.21) L̂(k) = E(L(k)) =
N∑

L=1

LP(L|K = k).

This estimator (the posterior mean) is the weighted average of all possible flow

lengths.

(2) Maximum a posteriori estimator.

(2.22) L̃(k) = argmaxN
L=1P(L|K = k).

The estimated length corresponds to the value that maximizes the probability of

observing a sampled flow of length k.

The attraction of the second estimator (L̃(k)) is that it minimizes the total risk,

where the risk function is given by

R(L̂(k), L) = E[LOSS(L, L̂(k))||True flow length is L],

with the loss function LOSS being

LOSS(A,B) =





1 if A 6= B

0 if A = B

On the other hand, the first estimator ( ˆL(k)) gives smoother estimates, and our

performance evaluation focuses on the first estimator.

2.5 Estimate on the Flow Size

The next task is to estimate both the flow size distribution H (in bytes) and the

size of the active flows Bm : nm > 0,m = 1, 2, ..., M nonparametrically. The fol-

lowing observation motivates the proposed estimation procedure. One can view the

sampling process of flow sizes as a one-stage cluster sampling scheme [7]; therefore,
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the classical estimator is given by B̂m = (
∑nm

`=1 Z
(`)
m )/p. Subsequently, one can esti-

mate non-parametrically the distribution H, using the estimates B̂m as data. The

above procedure works well for light tailed distributions, but proves problematic for

heavy tailed ones, due to inherent length biasedness of the sampling scheme, i.e.,

long flows are more likely to be selected.
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Figure 2.2: Histograms of Flow Lengths (left) and Flow Sizes (right) in log scale from NetFlow data

In order to overcome this deficiency, we propose a nonparametric model based on

the general framework

(2.23) HB(B0) =
N∑

i=1

Prob(Flow size B = B0|Flow length L = i)φi.

We have already nonparametrically estimated flow length distribution φ, the next

main issue to estimate flow size distribution H is to estimate conditional density
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function Q(B|L) according to equation(2.23). Shape of the distribution of flow size

is roughly the same as the flow length distribution empirically as shown in the plot

2.2. We thereby postulate a linear relationship between flow length and flow size for

any flow, given by

Q(B|L)





1 if B = γ0 + γ1L

0 o.w.

i.e. B(L) = γ0 + γ1L. The parameter γ0 corresponds to an estimate in bytes of

non-sampled very short flows, while γ1 captures the correlation between flow length

and size. They are estimated based on the following regression model:

b(j) = γ0 + γ1j + ε, for all j;

i.e. the sampled size of the flow in bytes is a linear function of the number of observed

packets from that flow with the same parameters γ0 and γ1. By obtaining the least

squares estimates γ̂0 and γ̂1, we can subsequently estimate (predict) the flow sizes

from

B̂(L) = γ̂0 + γ̂1L,

We proceed to estimate the distribution of the flow sizes H. From equation (2.23),

H(B) =





φL if B = γ0 + γ1L

0 o.w.

.

This yields an estimation

Ĥ(B) =





φ̂L if B = γ̂0 + γ̂1L

0 o.w.

,

for L = 1, ..., N . Therefore, estimates B̂(L) provides a collection of possible flow

sizes with corresponding support SB, whose mass function is determined by the

corresponding flow length distribution φ.

To combine the shape of φ and the mass point of collection SB, for implementa-

tion purpose, we propose an Adaptive EM algorithmic scheme. Since the sampling
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scheme for the flow sizes is Bernoulli, the previously described EM algorithm is also

suitable for the flow size distribution H. However, when we restricted attention to

flow lengths only, the collection of possible flow lengths SI (i.e. the support of the

distribution φ) remained fixed throughout the iterations. In the implementation of

the original EM algorithm, φ was estimated based on SI , which is not the same as

L̂(SJ); however, the support SB of the flow size distribution depends only on L̂(SJ).

Hence, the difference in the supports of the two distributions make it difficult to

utilize flow length information in the estimation of the flow size distribution. How-

ever, by updating each L in SI by L̂(SJ) as in equation (2.21), where L(0)(SJ) is

initialized by {xj/py
⋃

x1/2py} as before, the two supports are made comparable.

Consequently, by updating the support SI within the iterations, the support SB of

the flow size distribution coincides with the updated one for the flow length SI . It can

then be seen that φ̂ is the maximum likelihood estimate of the flow byte distribution

as well.

In Figure 2.3, the quantile-quantile plot of the original flow size vs the estimated

one (sampling rate p = 0.01) for 1,000 Poisson flows of mean length 5,000 and

uniform size distribution with support [1200, 1500] using the adaptive EM algorithm

is shown. It can be seen that with the exception of the tails of the distribution, the

estimate is highly accurate.

2.6 Statistical Inference

We briefly discuss next some of the asymptotic properties of the derived maxi-

mum likelihood estimator. Theorem 11.3.3 in [27] and its remark gives that ‘If Ω

is compact, EθsupΩW < ∞, and Pω 6= Pθ for all ω 6= θ, then under Pθ, θ̂ →p θ’.

In our context, first, notice that the parameter space Ω = {φ :
∑N

i=1 φ = 1, φ ≥ 0}

of the posited multinomial model is closed and compact. In addition, the model

satisfies the following: for all ω 6= θ in the parameter space Ω, the distribution
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Figure 2.3: Quantile-quantile plot of the true vs the estimated flow size for 1,000 Poisson flows with
uniformly distributed byte sizes

Pω(G0, ..., GN) 6= Pθ(G0, ..., GN). This is because 0 ≤ πj|i ≤ 1 and
∑N

i=1 φi = 1 for

all φ ∈ Ω, which implies

{
N∑

i=1

θiπj|i}N
j=0 6= {

N∑
i=1

ωiπj|i}N
j=0

if ω 6= θ. This can easily be seen for j = 0, where πj|i > 0 and then

N∑
i=1

(ωi − θi)πj|i = 0 if and only if ω = θ.

Further, from the previous discussion

Pφ(G0 = g0, ..., GN = gN) =
1

∆

∆∑
M=1




M

(M −∑N
j=1 gj), g1, ...gN




N∏
j=0

(
N∑

i=1

φiπj|i)
gj .

Hence Pω(G0, ..., GN) 6= Pθ(G0, ..., GN) if ω 6= θ.

In order to establish consistency, the following condition also needs to be satisfied.

(2.24) EθsupΩW < ∞,

where W (ω) = log[L(ω)
L(θ)

]. ω = φ̃ ∈ Ω = {φ :
∑N

i=1 φ = 1, φ ≥ 0} is another set

of values of these parameters, and θ = φ in this context. We show next the above
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condition holds for the model.

EθsupΩW = EθsupΩ[l(ω)− l(θ)] = supΩl(ω)− Eθl(θ)

(2.25) l(ω) = log[
∆∑

M=1




M

(M −∑N
j=1 gj), g1, ...gN




N∏
j=0

(
N∑

i=1

φ̃iπj|i)
gj ] ≤ log(∆).

Eθl(θ) =
∑

x log[
∑∆

M=1




M

(M −∑N
j=1 gj),1 , ...gN


 ∏N

j=0(
∑N

i=1 φiπj|i)gj ]

×[
∑∆

M=1




M

(M −∑N
j=1 gj), g1, ...gN


 ∏N

j=0(
∑N

i=1 φiπj|i)gj ]

.

Since
∑

φi = 1, and πj|i > 0 for i ≥ j,
∑

i φiπj|i > 0, and for M >
∑

gj,




M

(M −∑N
j=1 gj),1 , ...gN


 > 0.

Hence,

∆∑
M=1




M

(M −∑N
j=1 gj),1 , ...gN




N∏
j=0

(
N∑

i=1

φiπj|i)
gj > 0,

which implies

Eθl(θ) > −∞,

and

EθsupΩW < ∞.

We can then conclude that the maximum likelihood estimator converges to the true

parameter vector φ; i.e.

(2.26) (φ̂) →p φ as r →∞,

where r =
∑N

j=1 Gj.
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Given the consistency result, if Fisher Information Matrix for φ exists, and second

derivative of the likelihood function with respect to φ exists and continuous in φ, we

can obtain an asymptotic distribution for the estimated flow length distribution φ̂.

However, our φ̂ is calculated from the related EM algorithm instead of directly from

the likelihood function. Here we implemented Louis’ [35] procedure for obtaining the

observed information matrix when using the EM Algorithm. First, gradient vectors

of the complete log-likelihood take the following form:

(2.27) S = (
F1

φ1

, ...,
FN

φN

)′.

Then, the observed Information Matrix is given by

(2.28) Iobs =
N∑

i=1

S(F̂i, φ̂)S(F̂i, φ̂)′,

where F̂i is calculated from Eφ̂[
∑

j fij|fij ∈ R] with all the notations stay the same as

discussed before. fij is the frequency matrix stemming from the multinomial model

as in equation (2.10). And R is defined as all the sets of complete data which yield

the same result for the incomplete data, i.e. R(j) = {fij :
∑

i(fij) = ej}, where ej is

a N dimensional indicator vector with all the elements, except the jth one gj, being

0.

The resulting observed Information Matrix is symmetric with the lower triangular

component given by

(2.29)




∑N
j=1 π2

1|jgj

φ̂2
1∑N

j=1 π1|jπ2|jgj

φ̂1φ̂2

∑N
j=1 π2

2|jgj

φ̂2
2

... ...
∑N

j=1 π1|jπN|jgj

φ̂1φ̂N
......

∑N
j=1 π2

N|jgj

φ̂2
N




Assuming the regularity conditions ([35], [27],[58]) on existence of fisher informa-

tion matrix and second derivative existence of the original likelihood with respect to

φ hold, the above calculated observed information matrix can be inverted to find the

covariance matrix of φ̂.
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Recall that the posterior mean estimator for the an original flow length given a

sampled one of length k is defined to be

L(k) ≡ L̂(k) ≡ E(L(k)) =

∑
L Lπk|Lφ̂L∑
L πk|Lφ̂L

,

and is continuous in φ. By an application of the Delta method [58], we then get that

(2.30) V̂ar( ˆL(k)) = ∇Lφ̂I
−1
obs∇L′φ̂.

The continuity of the above defined functional in φ gives that
√

r(L̂(k) − L(k)) is

approximately Normal with variance Var(L̂(k)), where Var(L̂(k)) is estimated by

V̂ar(L̂(k)). The significance of this result is, that simultaneous confidence intervals

for the original flow lengths given sampled ones, can be constructed, thus providing

a measure of uncertainty about the obtained estimates.

Remark: For this study, our contribution is mainly on the well formulated deriva-

tion of likelihood function. The derived EM Algorithm is for practical implementa-

tion, which shows convergency numerically. We have not theoretically researched on

the convergence of this EM algorithm. The above discussion on the statistical infer-

ence is based on the fact this convergency holds. Otherwise, observed information

matrix and the succeeding confidence interval for the original flow lengths would not

be valid; however, the consistency of MLE holds regardless the convergency of the

EM algorithm.

2.7 Estimating Mixture Distributions from Sampled Data

Experimental evidence suggests that the proposed maximum likelihood estimator

does not perform well with several real network traces, since both the packet length

and consequently the byte size distribution are mixtures of two components; the

first, representing short flows, and the second representing considerably longer flows.

An example of such a scenario with data obtained from the link that connects the

campus of the University of North Carolina at Chapel Hill to the Internet is shown
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in Figure 2.4. The estimation using the proposed Adaptive EM is shown in Figure

2.23, where we see the gaps from the empirical distribution; both the support and

the overall distribution are shifted to the right somehow. In particular, the estimate

of the number of active flows proves highly problematic, due to the severe nature of

the biased length sampling issue in such a setting; namely, the first component of

the distribution is heavily under-sampled. We propose next two procedures that deal

with the problem of estimating mixture distributions. The first approach is based

on the original Bernoulli sampling scheme, but employs a two-stage EM algorithm

suitable for mixture distributions. The second approach looks at the problem from

a different point of view and relies on an alternative sampling scheme.
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2.7.1 Two Stage EM Algorithm

It is assumed that the original flow length distribution φ ≡ F (and consequently

the flow size one H) is a mixture of two components; i.e.

F = αF1 + (1− α)F2,

with mixing coefficient α ∈ (0, 1). In the remainder of the section, we will focus on

the case where the first component is a point mass at 1; i.e. F1 ≡ δ1, since with a
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small sampling rate p at most one packet would be sampled from short flows. This

assumption simplifies somewhat the derivations, but nevertheless the proposed two-

stage EM algorithm works for the general case provided that the two components

are adequately separated [44].

The main idea behind the proposed algorithm is as follows: in the first stage,

the adaptive EM algorithm previously described is used to estimate the relative

frequencies φ, the support of the distribution SI and the number of active flows.

In the second stage, another EM algorithm is employed that based on the current

estimates of these parameters, estimates the mixing coefficient α. Therefore, the two-

stage algorithm splits the parameters of interest into two subsets (blocks) and in each

iteration alternates between the blocks by fixing the parameters of the other block

in their current values. The theory of block relaxation algorithms [10] guarantees

convergence to a local maximum. However, there are some subtle issues that need

to be carefully considered. Notice that in the first stage, the sampled information

on the point mass component has been included, since it is not possible to directly

separate whether a sampled flow of length one comes from the first or the second

component. By conditioning, we can separate gj(1) = g1
j (1) + g2

j (1) with proportion

of P (Flow length 1|j = 1) and P (Flow length i ∈ S2
I |j = 1) respectively, where S2

I

denotes the support of the second component SI − {1}. Then, g2
j (1) is used in the

first stage EM algorithm, together with the remaining gj’s. On the other hand, all

the gj’s (including g1
j ) are used in the second stage to estimate α. We discuss next

the second stage of the EM algorithm that estimates the mixing coefficient α.

EM Algorithm for estimating the mixing coefficient α

Now we fix M , φ and SI at the estimations achieved from the Adaptive EM as

in section 2.5, and target on estimating mixing coefficient α. Given the hierarchical

mechanism, we still have all the flows have the same probability of sample length j,

denoted by πj. A similar derivation as (2.7) follows. The so-called profile likelihood
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function for α is then given by the probability function of {G0, ..., GN} as follows.

L(α) =
∑∆

M=1




M

g0, g1, ..., gN


 ∏N

j=0(πj)
gj

=
∑∆

M=1




M

g0, g1, ..., gN


 ∏N

j=0[απj|1 + (1− α)πj|S2
I
]gj .

It is expressed as a mixture of two conditional densities for the two mixture

components, where πj|S2
I

=
∑

i∈S2
I
πj|iφi is the estimated probability that the length

of a sampled flow from the second component will be j packets; πj|1 is the estimated

probability that the length of a sampled flow from the first component will be j

packets. Note that πj|S2
I

stays identical for all the flows assigned to the second

component. In fact, one could interpret this model as an extension of the hierarchical

mechanism, in the sense that adding an additional layer assigning flows to either

first component or the second one based on probability given by mixing coefficient;

then for the ones in the second component, flow lengths are again independently

determined by a discrete probability function {φi}i∈SI
which is estimated in the

Adaptive EM step.

Correspondingly, the likelihood function for α based on the complete data {gj, yjk}N,2
j=0,k=1

treats yjk, an indicator variable that identifies the mixture component (k = 1, 2) that

a sampled flow of length j belongs to, as missing data and estimates them as condi-

tional expectations. Number of unobserved flows g0 is estimated in the Adaptive EM

step as ĝ0 = M̂ − r. The likelihood function for the complete data can be written as

L(α) =
∏
j≥0

(αyj1π
yj1

j|1 (1− α)yj2π
yj2

j|S2
I
)gj .

Notice that E(y
(t)
j1 |gj, α

(t)) =
α(t)π

(t)
j|1

α(t)π
(t)
j|1+(1−α(t))π

(t)

j|S2
I

. The steps of the EM algorithm are

given next:

Initialize α(0) by the empirical estimate g1/r.

E-step
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Eα(t)(log L(α)|gj) = (
∑

j≥0 Eα(t)(yj1|gj)gj)logα+

(
∑

j≥0 Eα(t)(yj2|gj)gj)log(1− α)

M-step

By taking the derivative of Eα(t)(log L(α)|gj) with respect to α and setting it to

0 we obtain

α̂(t+1) =

∑
j≥0(Eα(t)(yj1|gj)gj)

M̂

Iterate E-step and M-step until a pre-specified convergence criterion is satisfied.

2.7.2 Two-Stage Sampling Scheme

We discuss next an alternative procedure that relies on a different sampling

scheme. It still follows the hierarchical mechanism, where the number of flows M se-

lected based on the discrete Uniform distribution (1, ∆); and flow lengths {Nm}M
m=1

are then determined independently according to the discrete probability function

{φ}; while now the third layer of the hierarchical mechanism is applied in a two-

stage sampling way after all the flows and packets are collected and to be sampled.

In the first stage flows are sampled uniformly with probability pf irrespective of their

lengths; while in the second stage, packets are sampled uniformly with probability

pp from the flows selected from the first stage. The resulting outcome observation is

{Gj}, j = 00, 1, ..., N , where G00 is the number of flows selected at the first stage

but no packets selected on the second stage and thus observed. Such a sampling

procedure is feasible if different flows go through different queues on a router. It

can be seen that this two stage sampling scheme overcomes the difficulty posed by

length biased sampling, since each flow has an equal probability of being selected.

Notice that another difference compared to the original Bernoulli sampling scheme

is that the two tasks of estimating the total number of active flow M , and the flow

length/bytes distributions are well separated. A trivial unbiased estimator for the

number of active flows is given by M̂ = r
pf

[7]. Also note that under the hierarchical
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mechanism {G0, G1, ..., GN}|M ∼ Multinomial(M, π̌j) still holds, where π̌j now is

given by
∑N

i=1 φipf π̌j|i for j > 1, and π̌j|i updates p in πj|i by pp; the main differ-

ence is that G0 now is comprised of two components G0ns representing the number

of unobserved flows, and G00 representing the number of flows selected at the first

stage but no packets selected on the second stage and thus observed. Therefore,

π̌0 = π̌0ns + π̌00 =
∑N

i=1 φi(1− pf ) +
∑N

i=1 φipf π̌0|i.

The likelihood function for φ given observed data under this sampling scheme is

given by

(2.31)

L(φ) =
∑∆

M=1




M

g0, g1, ...gN


 ∏N

j=0(π̌j)
gj

=
∑∆

M=1




M

g0ns, g00, g1, ...gN


 ∏

j=0ns,00,1,...,N(π̌j)
gj .

Once again, direct maximization of the likelihood function is challenging and hence

we resort to using the EM algorithm, whose steps are described next:

(1) Initialize φ
(0)
i by the corresponding observed frequency of j = xipy , i.e,

(2.32) φ
(0)
i =

gj∑N
k=00 gk

,

(2) E-step: We are given the complete set of data ({Fij}i=1,...,N ;j=0,...,N , G0ns),

where Fij are the observed flows with i original packets and j of them sampled.

From the hierarchical mechanism, ({Fij}i=1,...,N ;j=0,...,N , G0ns|M) follows a multino-

mial distribution with parameters M =
∑N,N

i=1,j=0 Fij + G0ns and ({π̌ij}, π̌0ns), where

π̌ij = φipf π̌j|i, and π̌0ns =
∑N

i=1 φi(1 − pf ). The likelihood based on the complete

data is then given by

(2.33) Lc(φ) =

N,N∏
i=1,j=0

(π̌ij)
Fij × (π̌0ns)

G0ns ,

The expectation Q(φ, φ(k)) of log-likelihood conditional on the known frequencies
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gj is given by:

(2.34)
Q(φ, φ(k)) =

∑
i≥j≥0 Eφ(k)(Fij|Gj)log(φiπ̌j|ipf )

+Eφ(k)(G0ns|Gj)log[
∑N

i=1 φi(1− pf )].

Again, notice that

Eφ(k)(Fij|{G00, ..., GN}) = Gjπ̌
(k)
i|j .

Meanwhile, Eφ(k)(G0ns|{G00, ..., GN}) = M (k) −∑N
j=00 Gj.

(3) M-step: φ(k+1) = arg maxQ(φ, φ(k)), such that

(2.35)
∑
i∈SI

φi = 1, and φi(j) ≥ 0 for i ∈ SI .

Iterate steps (2)-(3) until a pre-specified convergence criterion is satisfied.

In order to obtain estimates of the flow sizes (in bytes) we can apply the various

regression models discussed in Section 2.5.

2.8 Experimental Evaluation

In this section, we provide empirical evidence of the performance of the derived

estimators for a variety of simulated and real network traffic traces.

We start by examining both the original EM Algorithm proposed in Section 2.3,

as well as the Adaptive EM algorithm developed for mixture distributions and the

one based on the Two-stage sampling scheme, using synthetic and real data sets.

2.8.1 Simple Flow Length Distribution

The first set of experiments is to evaluate the performance of estimation on flow

lengths distribution φ and the number of active flows M . To be specific, for different

setting of M , we first generate independent M variables Ñm from the following

distributions: (i) uniform with domain [0, 10000], (ii) Poisson with mean 5,000 and

(iii) Pareto with shape parameter 100/99, scale parameter 50. And we then take

flow lengths Nm = xÑmy as the close discrete integers below the generated Ñm. The

parameters for these three distributions were set so as to match their expected values.
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Theoretically, for the shape parameter of Pareto distribution k > 1, the smaller the

value of k, the skewer the Pareto distribution would be. And hence, our setting of

k = 100/99 represents a very heavy right tail distribution.

We first look at the estimates (M̂) of the true number of flows, plotted against

the true ones (M), where the flow length distribution is Poisson with mean 5,000

for varying values of M with a sampling rate of p = .01 (see Figure 2.6). It can be

seen that the estimated number of flows is extremely accurate, a result also obtained

for the uniform distribution. However, this estimate becomes problematic for very

heavy-tailed distribution, as shown with real NetFlow traces (Section 2.2).
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Figure 2.6: Scatter plot of true vs estimated number of active flows, where flow length distribution
is Poisson with mean 5,000 for varying values of M with a sampling rate of p = .01

We examine next quantile-quantile plots, in Figures 2.7-2.9, of the true flow

lengths, vs the non-parametrically estimated flow length distribution for M = 1, 000

flows, whose lengths follow a mean 5,000 Poisson, Uniform and Pareto distributions

respectively with 0.05 sampling rate. For the two-stage sampling scheme, p = 0.05

is implemented by choosing pf = 0.5, pp = 0.1 to make it comparable with other

methods. However, the optimal choice of pf and pp is still not clear so far, and

requires further study. It can be seen the high degree of agreement between the true
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Figure 2.7: Quantile-quantile plot of the true vs the estimated flow length distribution for 1,000
Poisson flows with .05 sampling rate (pf = 0.5, pp = 0.1 in Two-Stage Sampling)

and estimated distributions for all these scenarios. Moreover, the two-stage scheme

provides a better estimation than the algorithms based on Bernoulli sampling in the

more realistic Pareto scenario. Similar conclusions are reached by examining the his-

tograms (bar plots) (Figures 2.10-2.12) of the true and estimated distributions. We

further provide plots (Figures 2.13-2.15) of their cumulative density function (CDF)

that reveal some interesting features. Specifically, solid lines with a star (*) mark

show the ’true’ distribution, while the dashed lines correspond to estimated CDFs

obtained by sampling a number of times from the true data. It is interesting to see

that the adaptive EM and the two-stage sampling scheme improve substantially over

the original EM algorithm in the Poisson case but less obvious in the Uniform or

Pareto case. Further, the upper quantiles of the Pareto and uniform distributions are

estimated extremely accurately, whereas the lower quantiles prove problematic for

the Pareto distribution. This is mainly due to the heavy tailed nature of the distri-

bution that leads to undersampling of short flows. A further remark on the Poisson

distribution is that its original variance is quite small with most of its mass centered

around the mean. All the proposed methods estimate the mean very accurately,

but not particularly well the upper and lower quantiles. The accurate estimation of

the right tail is the most important feature in a networking context and hence the

adaptive EM and the two-stage scheme prove particularly useful. However, in other

applications where the entire body of the distribution is of interest, one has to use

either some other sampling mechanism or increase the sampling rate (e.g. p = 0.10).
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(c) Two-stage Sampling

Figure 2.8: Quantile-quantile plot of the true vs the estimated flow length distribution for 1,000
Uniform flows with .05 sampling rate (pf = 0.5, pp = 0.1 in Two-Stage Sampling)
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(c) Two-stage Sampling

Figure 2.9: Quantile-quantile plot of the true vs the estimated flow length distribution for 1,000
Pareto flows with .05 sampling rate (pf = 0.5, pp = 0.1 in Two-Stage Sampling)
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Figure 2.10: Bar plot of the estimated flow length distribution for 1,000 Poisson flows with .05
sampling rate (pf = 0.5, pp = 0.1 in Two-Stage Sampling)
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Figure 2.11: Bar plot of the estimated flow length distribution for 1,000 Uniform flows with .05
sampling rate (pf = 0.5, pp = 0.1 in Two-Stage Sampling)
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Figure 2.12: Bar plot of the estimated flow length distribution for 1,000 Pareto flows with .05
sampling rate (pf = 0.5, pp = 0.1 in Two-Stage Sampling)
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Figure 2.13: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for 1,000 Poisson flows with .05 sampling rate (pf = 0.5, pp = 0.1
in Two-Stage Sampling); solid line with ’*’ is CDF Curve of the true flow length
distribution
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Figure 2.14: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for 100 Uniform flows with .05 sampling rate (pf = 0.5, pp = 0.1
in Two-Stage Sampling); solid line with ’*’ is CDF Curve of the true flow length
distribution
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Figure 2.15: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for 1,000 Pareto flows with .05 sampling rate (pf = 0.5, pp = 0.1
in Two-Stage Sampling); solid line with ’*’ is CDF Curve of the true flow length
distribution
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In order to obtain a better perspective about the effect of the sampling rate, the

estimated flow length distribution for 1,000 Poisson flows of mean length 5,000 are

given in Figures 2.16 and 2.17, corresponding to sampling rates of p = .01 and .05.

It can be seen that with a higher sampling rate the number of possible sampled flow

lengths (SJ in our notation) increases significantly, thus allowing a more accurate

estimate of the underlying distribution.
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Figure 2.16: Estimated flow length distribution of 1,000 Poisson flows with .01 sampling rate

Moreover, the confidence intervals obtained for the original flow length estimates

ˆL(k), when a sampled flow of length k was observed for 100 Poisson flows of mean

length 5,000 are shown in Figure 2.18. It can be seen that the confidence intervals

are fairly tight except at the two ends, which reflects the higher uncertainty of our

estimates for the corresponding φi parameters.

In Table 2.1 we give χ2-distances between the true and estimated flow length

distributions, together with mean squared errors (MSE) of the L̂(k) estimates for a

variety of models, where χ2 =
∑

i∈SI

(φ̂i−φi)
2

φi
as a measurement of how close the two
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Figure 2.17: Estimated flow length distribution of 1,000 Poisson flows with .05 sampling rate
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Figure 2.18: Confidence intervals for 100 Poisson Flows with sampling rate 0.01
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Table 2.1: Statistics from Simulated Data(I)
χ2 Statistics

Uniform Poisson Pareto
n=100 p=0.01 225.6667 437.2905 1.24E+03

p=0.05 121.8333 285.0726 88.1264
n=1000 p=0.01 4.7457e+04 1.2491e+05 2.92E+06

p=0.05 4.9931e+03 3.8215e+04 4.45E+05
n=2500 p=0.01 3.2981e+05 2.3523e+05 6.23E+07

p=0.05 3.5027e+04 2.2789e+05 6.61E+06
MSE

Uniform Poisson Pareto
n=100 p=0.01 3.9394e+005 2.9761e+004 3.73E+04

p=0.05 7.9572e+004 1.0548e+004 3.48E+03
n=1000 p=0.01 4.0625e+05 3.7223e+04 8.30E+04

p=0.05 8.8508e+04 1.3122e+04 1.88E+04
n=2500 p=0.01 4.5259e+05 1.7896e+04 2.45E+05

p=0.05 9.0463e+04 1.6553e+04 1.51E+04

distributions are; and MSE(L̂) =
∑

j∈SJ
(L̂(k) − L(k))2 + Var(L̂(k)) as a combined

measure of variation and biasedness of estimated L(k). Therefore, the smaller the

χ2 statistics and MSE the better the estimations are. We only list χ2 statistics in

the table instead of p-value, because the corresponding p-values are very small con-

sidering the small sampling rate, the difficulty of this nonparametric estimation and

the roughness of the nonparametric support. The corresponding degrees of freedom

are the number of nonparametric point mass in the support SI , which increases as

sampling rate increases. From this table, it can be seen that as the sampling rate

increases both performance measures decrease, which presents a better estimation.

Further, MSE shows rather comparable performance for the relatively large amount

of data with 2500 flows among all the three simulated flow lengths distributions, this

makes the estimation on heavy-tailed Pareto distribution remarkable.

Table 2.2 shows the comparison between the true 25, 50, 75, 90 and 95-percentiles

and the estimated one with the proposed algorithms. It can be seen that the esti-

mated ones match the true ones remarkably well.
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Table 2.2: Statistics from Simulated Data(II)-Percentiles
Percentiles 25 50 75 90 95

Poisson Distribution
True 4953 5000 5052 5094.5 5120.5

First EM 4840 5000 5160 5320 5380
Adaptive EM 4980 5005 5033 5056 5073

Two-Stage Sampling 4870 4990 5110 5230 5290
Uniform Distribution

True 2576.5 5167 7588.5 9056.5 9423.5
First EM 2640 5180 7600 9020 9420

Adaptive EM 2599 5148 7597 9169 9332
Two-Stage Sampling 2700 5490 7750 8980 9320

Pareto Distribution
True 2489.5 5096.5 7431 8996 9494

First EM 2500 5140 7420 9020 9420
Adaptive EM 2520 5100 7440 8960 9400

Two-Stage Sampling 2540 4820 7540 8920 9360

Table 2.3: Statistics from NS2 Simulator
χ-Statistic MSE
UDP/CBR TCP UDP/CBR TCP

p=0.01 122.5285 765.3391 5.2948e+003 7.4811e+05
p=0.05 17.0740 242.1123 1.5526e+003 7.8458e+04

2.8.2 Application to NS and Real Data

Another set of simulated data were obtained from the ns2 network simulation

package [51]. Two networking scenarios were considered. In the first scenario lasting

2 minutes, 100 constant bit rate sources generated traffic, whose duration followed

a Pareto distribution with shape parameter 1.5 and scale parameter 100/3. Packet

sizes were identical within the same flow (source), but different across flows, following

a normal distribution with mean 800 and standard deviation 100. In the second

scenario 100 ftp transmissions were generated on a link, whose duration follows

the previously defined Pareto distribution. Table 2.3 evaluates the original EM

Algorithm by statistics, sharing the similar interpretation as in the simulated data

above. Whereas Figure 2.19 of QQplot for the generated UDP data reveals more

inherent problems of the estimation in the case of heavy-tailed distribution.

Two real data sets were also considered to examine the first EM Algorithm. The
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Figure 2.19: Quantile-quantile plot of the true vs the estimated flow length distribution for simu-
lated UDP flows, sampling rate 0.05

first one contains 34,514 network flows collected over a 2 hour period at the router of

a small local area network. The average flow length consists of 29 packets, but the

variance is 4.5 × 105. The second data set contains 256,835 flows connecting at the

gateway link of the UNC campus network. The average flow length consists of 39

packets with a variance of 3.22 × 105. The distribution of the true flow lengths (in

log-scale) for these data sets are shown in Figures 2.20 and 2.21, respectively. It can

easily be seen that both data sets have heavy right-tailed flow length distributions.

Figures 2.22 and 2.23 show the estimated flow length distribution for LAN and

UNC flow data, respectively. We applied rather low sampling rate, 1% for LAN flow

data, and 0.1% for UNC flow data because of the large volume of data. Compare

these two with the original flow length distribution in Figures 2.20 and 2.21, the

estimated nonparametric distributions illustrates some discrepancy from the original

distributions, although they both capture some patterns of the distributions. We
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Figure 2.20: Empirical distribution (in log-scale) of the LAN flow data
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Figure 2.21: Empirical distribution (in log-scale) of the UNC flow data

have to admit that this estimation is not as good as in the regular distributions in

section 2.8.1. Figure 2.24 is the multi-cdf curves we made based on LAN flow data.

It reveals the similar problem.
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Figure 2.22: Estimated LAN flow length distribution
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Figure 2.23: Estimated UNC flow length distribution

A very sever problem exists in the estimate of the number of active flows M̂ for

these heavy-tailed distributions. In the uniform and poisson case, it is estimated

almost perfectly. Whereas with pareto distribution, it starts underestimate by re-
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Figure 2.24: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for LAN data with .01 sampling rate (pf = 0.1, pp = 0.1 in Two-Stage
Sampling); solid line with ’*’ is CDF Curve of the true flow length distribution
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porting around 70% of the true flows with 5% sampling rate. Although the observed

number of flow is even much less than what we recovered, we still do not like our es-

timator for such downside. It becomes worse with the real data of much heavier tails.

2.8.3 Mixture Flow Length and Byte Size Distributions

We turn our attention to mixture distributions (both flow length and byte size)

and evaluate the three proposed algorithms. Specifically, we consider simulated flow

length data from M = 1, 000 active flows obtained from a mixture distribution with

point mass at 1, while the second component follows a: (i) uniform with domain

[3000, 7000], (ii) Poisson with mean 5,000 and (iii) Generalized Pareto with shape

parameter 100/90, location and scale parameter 50. The parameters for these three

distributions in the second component were set so as to match their expected values.

The flow sizes were generated for all cases from a uniform distribution with domain

[100, 500] bytes. The mixing coefficient α was set to 0.3, 0.5 and 0.7, while the

sampling rate to p = 0.01 and 0.05.

An example of one realization of such a mixture distribution (α = 0.7 and sam-

pling rate p = .05) and its estimate, where the second component is Poisson dis-

tributed, is shown in Figures 2.25 and 2.26, respectively. It can be seen that the

two-stage EM estimate captures very well the support of the original distribution

and the mixing coefficient α, as well as the second component. It should be noted

that the apparent visual discrepancy between the original and the estimated distri-

butions is mostly to the somewhat large bin size used in the histogram of the original

one.

In Figure 2.27, boxplots for the two-stage EM estimates of α = .7, the mean

flow length (5,000 packets) and the mean flow size (464,000 bytes) of the second

component are shown. It can be seen that the estimates are very good, with a fairly



46

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

log(Flow Length)

F
re

qu
en

cy

Original flow length distribution

Figure 2.25: Original flow length distribution
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Figure 2.26: Estimated flow length distribution, through a two stage EM algorithm
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Figure 2.27: Boxplots of various parameters of a mixture distribution

In Table 2.4, the mean squared errors (MSE) obtained from 100 replications, for

the estimates of the number of active flows M , the mean and variance of the flow

length (in packets) and size (in bytes) are shown for different mixing coefficients α

for the three distributions under consideration.

It can be seen that the MSE for the estimated weight is extremely small, indi-

cating a very precise estimate for all values of α. Further, as the contribution of

the second component increases (smaller α) the quality of the estimates for both the

mean number of packets improves for all distributions. This is because less infor-

mation on the second component is available when α is larger. On the other hand,

the MSE for the mean number of bytes exhibits the opposite behavior, while the

MSE for the corresponding variances are of the similar order for all values of α. This

phenomenon is due to the fact that longer flows are of more variability. These re-
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Table 2.4: Mean squared errors for various parameter estimates obtained through the 2-stage EM
algorithm for different distributions, with sampling rate p = 0.01.

α α̂ Mean Packets Var Packets Mean Bytes Var Bytes
Poisson Distribution

0.7 0.0053 1.23E+07 5.26E+06 1.69E+10 9.48E+09
0.5 0.0162 1.23E+07 5.26E+06 1.69E+10 9.48E+09
0.3 0.0043 2.26E+06 5.26E+06 3.97E+10 7.77E+10

Uniform Distribution
0.7 4.35E-06 1.19E+07 3.42E+06 2.19E+10 1.28E+10
0.5 6.19E-06 6.06E+06 5.06E+06 2.53E+10 3.01E+10
0.3 4.38E-06 2.10E+06 3.74E+06 3.90E+10 7.38E+10

Pareto Distribution
0.7 0.0573 2.13E+07 4.13E+08 1.37E+11 1.22E+13
0.5 0.1801 1.04E+07 2.75E+08 3.63E+11 2.64E+13
0.3 0.4086 5.46E+06 3.47E+07 7.10E+11 1.57E+13

sults indicate the difficulty of estimating non-parametrically mixture distributions,

especially in the presence of a dominant point mass, and also demonstrate that pro-

cedures that ignore the mixture structure would not fare well. Similar conclusions are

reached when the sampling rate increases to p = 0.05. The main difference is that due

to the higher sampling rate the performance of the estimators improves considerably.

We examine next the performance of the maximum likelihood estimator based on

the two stage sampling mechanism for the same set of mixture distributions. How-

ever, in this case we consider a range of sampling rates for the flows (pf parameter)

while fixing the sampling rate for the packets.

An example of one realization of such a mixture distribution (α = 0.7 and sam-

pling rates pf = 0.5 and pp = 0.2, respectively) and its estimate, where the second

component is uniformly distributed is shown in Figures 2.28 and 2.29, respectively.

It can be seen that the estimate captures very well the support of the original dis-

tribution and to a large extent the mixing coefficient α.

In Figure 2.30, boxplots for the estimates of M , the mean flow length (1,500

packets) and the mean flow size ( 464,000 bytes) of the entire distribution are shown.

It can be seen that once again the estimates are very good, exhibiting a fairly narrow
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Figure 2.28: Original flow length distribution
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Figure 2.29: Estimated flow length distribution, through a two stage sampling scheme
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Figure 2.30: Boxplots for various parameters of a mixture distribution

In Table 2.5, the mean squared errors (MSE) obtained from 100 replications, for

the estimates of the number of active flows M , the mean and variance of the flow

length (in packets) and size (in bytes) are shown for different flow sampling rates pf

for the three distributions under consideration.

It can be seen that as the sampling rates of the flows increases, the quality of

the estimates improves, as expected. The reason is that by sampling more flows,

we are able to better capture their characteristics, even when the packet sampling

rate is very small. Further, the results are comparable for the estimates of M for

all three distributions, but vary for the other parameters. For example, the quality

of estimates for the flow lengths and sizes deteriorates for the heavy-tailed Pareto

distribution. There is an interesting interplay between the two sampling rates for
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Table 2.5: Mean squared errors for various parameter estimates obtained through the 2-stage sam-
pling scheme for different distributions, with sampling rate p = 0.01.

pf M Mean Packets Var Packets Mean Bytes Var Bytes
Poisson Distribution

0.05 17232 1.01E+05 2.67E+04 1.05E+10 1.24E+10
0.1 8871 5.12E+04 9.89E+03 6.19E+09 8.04E+09
0.3 1900 9.32E+03 2.07E+03 1.18E+09 5.17E+09
0.5 923.24 5.00E+03 1.33E+03 6.92E+08 4.44E+09

Uniform Distribution
0.05 23212 8.96E+04 3.63E+04 1.09E+10 1.75E+10
0.1 8383 4.40E+04 2.31E+04 6.28E+09 1.28E+10
0.3 2110 1.70E+04 6.29E+03 1.59E+09 6.47E+09
0.5 982.32 6.18E+03 2.83E+03 6.55E+08 6.12E+09

Pareto Distribution
0.05 18548 7.28E+06 4.88E+08 8.16E+11 5.57E+13
0.1 7491 4.02E+06 4.13E+08 4.54E+11 4.70E+13
0.3 2660 8.97E+05 2.44E+08 1.05E+11 2.85E+13
0.5 865.64 4.15E+05 1.33E+08 5.51E+10 1.63E+13

flows and packets within flow, but at present its full understanding is not available

and is a topic of further study. Experience suggests that a flow sampling rate pf = 0.3

performs well, even when coupled with a very small packet sampling rate, so that

the overall rate p = pf × pp remains small.

Similar qualitatively results are obtained for a larger packet sampling rate of 0.05,

although the accuracy of the estimates naturally improves. However, the improve-

ments are not usually large enough to compensate for the increased computational

complexity both in the data collection and processing.

The following Figures 2.31-2.33 show a number of estimated CDF curves from the

various distributions obtained from sampling a number of times from the true data

and the true CDF curve, for mixtures of uniform, poisson and pareto respectively.

The sampling methods used here are Bernoulli sampling with the adaptive EM algo-

rithm and Two-Stage Sampling. Once again we see good agreement between the true

and estimated CDF, although a large degree of variability is exhibited regarding the

mixture coefficient α. It can further been seen that the Two-stage sampling scheme

clearly outperforms Bernoulli sampling.

Remark: As indicated in Chapter 1, it is hard to implement online a 2-stage sam-
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Figure 2.31: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for Mixture of spike at 1 and 100 Uniform flows, sampling rate is 0.05
(pf = 0.1, pp = 0.1 in Two-Stage Sampling); solid line with ’*’ is CDF Curve of the
true flow length distribution
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(a) Two-Stage EM

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Estimated and Empirical CDF of Flow Length

(b) Two-Stage Sampling

Figure 2.32: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for Mixture of spike at 1 and 100 Poisson flows, sampling rate is 0.05
(pf = 0.1, pp = 0.1 in Two-Stage Sampling); solid line with ’*’ is CDF Curve of the
true flow length distribution
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(b) Two-Stage Sampling

Figure 2.33: Dash lines are CDF Curves of the estimated flow length distribution from different
sampled data for Mixture of spike at 1 and 100 Pareto flows, sampling rate is 0.05
(pf = 0.1, pp = 0.1 in Two-Stage Sampling); solid line with ’*’ is CDF Curve of the
true flow length distribution
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pling scheme at the flow level. What is feasible, is to implement it at the proto-

col/application level. For example, present day routers are capable of distinguishing

between packets belonging to flows that are given different priorities either because

of the underlying protocol (Real Time Protocol vs TCP) or because of terms in the

service level agreement.

The following plots (Figures 2.34–2.36) correspond to QQ-plots for flow byte size

distributions. The true data are simulated from Pareto, Poisson and uniform dis-

tributed flows with bytes per packet following a Normal(1350,100). The adaptive

EM algorithm with sampling rate p=0.05 is applied. From these three QQ-plots we

see good agreement for the flow bytes distribution, since all the dots are along the

45◦ line fairly tight.
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Figure 2.34: QQplot for true vs estimated flow size distribution from 100 pareto flows with bytes
per packet following normal(1350,100); Adaptive EM with sampling rate is p=0.05
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Figure 2.35: QQplot for true vs estimated flow size distribution from 1000 poisson flows with bytes
per packet following normal(1350,100); Adaptive EM with sampling rate is p=0.05

2.8.4 Application to Abilene Data

We consider an application of the proposed methods to a real network trace ob-

tained from the router of the Abilene network at Denver in June of 2005. The trace

covers a 5-minute period and contains 65,535 active flows. The average flow length

consists of 3 packets, but the variance takes a value of 430. Similarly, the average

flow size is 2.7141× 103 bytes, while the variance is 1.9377× 1010. The distributions

of the true flow lengths and bytes (in log-scale) for this data set are shown in Figures

2.2. It can easily be seen that both distributions are heavy tailed, and to a large

extent comprised of two separate components.

The data were sampled by both Bernoulli and two-stage sampling mechanisms,

and the flow length and size distributions estimated by the proposed algorithms of

two-stage EM and EM for two-stage sampling. The rate for single stage Bernoulli
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Figure 2.36: QQplot for true vs estimated flow size distribution from 100 uniform flows with bytes
per packet following normal(1350,100); Adaptive EM with sampling rate is p=0.05

sampling was p = 0.01, while the rates for the two stage mechanism were pf = 0.05

and pp = 0.2. The estimate for the number of active flows under Bernoulli sampling

was about 15,000, an underestimation of the true value. On the other hand, the

estimate under the 2-stage sampling mechanism is almost perfect, M̂ = 66, 208.

In Figures 2.37-2.40, the estimates of the flow length and size distributions are

shown.

It can be seen that the 2-stage EM algorithm captures well the first component and

the support of the flow length distribution, while it focuses on the second spike in the

original distribution for the flow sizes. This is mainly due to the fact that due to the

severe underestimation of the number of active flows, the algorithm mainly focuses on

the second component comprised of larger flows. The estimates produced by the two
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Figure 2.37: Estimated flow length distribution (in log-scale) of Abilene trace using a 2-stage EM
algorithm
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Figure 2.38: Estimated flow size distribution (in log-scale) of the Abilene trace using a 2-stage EM
algorithm
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Figure 2.39: Estimated flow length distribution (in log-scale) of the Abilene trace using a 2-stage
sampling mechanism
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Figure 2.40: Estimated flow size distribution (in log-scale) of the Abilene trace using a 2-stage
sampling mechanism
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stage sampling scheme exhibit similar characteristics, although the spike in the flow

length distribution is shifted slightly to the right. In this case, the difficulty comes

from the fact that the flow sampling rate was set to a fairly small value (pf = 0.05),

which is as noted above does not produce particularly good estimates. This data

example shows the challenging nature of the problem at hand, and its sensitivity

both to the shape of the underlying distribution and the need to balance accuracy

with computational efficiency.

Table 2.6: Mean squared errors for various parameter estimates obtained through the 2-Stage Sam-
pling algorithm for different distributions, with sampling rate p = 0.01, and M=1000.

pf M̂ Mean Packets Var Packets Mean Bytes Var Bytes

Pareto Distribution

0.05 16616 3.23E+07 1.74E+09 2.06E+13 1.11E+15

0.1 7710 1.57E+07 1.26E+09 1.00E+13 8.00E+14

0.5 1104 1.69E+06 3.08E+08 1.05E+12 1.95E+14

Uniform Distribution

0.05 18384 1.59E+05 3.09E+04 1.02E+11 2.00E+10

0.1 8330 7.26E+04 1.05E+04 4.73E+10 6.93E+09

0.5 940.92 7.82E+03 4.05E+03 5.02E+09 2.67E+09

Poisson Distribution

0.05 15452 449.75 2.05E+03 3.77E+10 2.93E+09

0.1 9674 501.74 1.69E+03 1.05E+10 2.49E+09

0.5 915.28 494.04 382.51 7.57E+08 1.03E+09



CHAPTER 3

Moment-Based Methods to Estimate Flow Distributions on
a Single Router

In the previous Chapter, estimation of flow characteristics based on nonparametric

methods were discussed. However, for large for data sets in terms of number of

flows (M), convergence of the proposed algorithms is rather slow [36]. Therefore,

we introduce next a faster alternative that concentrates on estimating the first two

moments of flow characteristics.

3.1 Framework

As in previous developments, we are interested in estimating characteristics of

flow lengths and flow sizes (in bytes). We still call ’sampled flows’ the ones that

result after sampling packets from the link and organize them into flows according

to their key. The true flows traversing the network will be called the ’original’ ones.

As before, some original flows are not going to be represented in the collection of

sampled ones.

Since we are interested in estimating moments, no specific assumptions about the

distributions of flow lengths and sizes are made, beyond that of their existence in

the population of original flows. We denote by µN and σ2
N , the mean and variance

of the flow lengths, and by µB and σ2
B the mean and variance of the flow sizes.

The hierarchical mechanism introduced in Chapter 2, is still employed. Specifically,

M original flows are generated from a uniform distribution. Subsequently, from an

61
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unknown distribution of flow lengths, the length of each flow Nm, m = 1, 2, · · · ,M is

generated. Similarly, the byte sizes of each packet Z`
m are generated from some other

distribution whose mean and variance are denoted by µZ and σ2
Z , respectively. Hence,

we can obtain the size of each original flow m, from the expression Bm =
∑Nm

`=1 Z`
m.

To recap, we have that Nm are independent and identically distributed samples

from a distribution φ, while packet sizes are independent and identically distributed

according to some distribution H. As noted before, existence of the first two moments

of φ and H is assumed.

Now, let µB denote the mean of the flow size distribution and σ2
B its variance. We

can related these moments to those of flow lengths and packet sizes as follows:

(3.1) µB = E(Bm) = E(
Nm∑

`=1

Z`
m) = µZµN ,

(3.2) σ2
B = Var(

Nm∑

`=1

Z`
m) = µNσ2

Z + µ2
Zσ2

N ,

Further, the covariance between flows lengths and flow sizes is given by

(3.3)

COV(Nm, Bm) = COV(Nm,
∑Nm

`=1 Z`
m)

= E(Nm

∑Nm

`=1 Z`
m)− E(Nm)E(

∑Nm

`=1 Z`
m)

= µZ(E(N2
m))− µN(µNµZ)

= µZ(σ2
N + µ2

N)− µN(µNµZ)

= µZσ2
N .

The last equalities of the Equations (3.1) and (3.2) follow according to the discussion

in Examples 3.10 and 3.17 in the book [40], by first conditioning on Nm and then

taking expectation.

The sampled flows are obtained by sampling according to a Bernoulli scheme of

packets from the original flows. Hence, every packet is sampled with probability p.

Let {nm}M
m=1 denote the number of packets of the mth sampled flow and {bm}M

m=1

its corresponding flow size. Obviously, nm = 0 corresponds to original flows not
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observed. By using an indicator variable Im` to denote whether the `-th packet of

the m-the original flow is sampled or not, we can write bm as bm =
∑Nm

`=1 Im`. This

gives M random samples from a second population.

n
M

n
1

Population of Sampled Flows

N
M

N
1

Population of Original Flows

M Samples of Sampled Flows M Samples of Original Flows

Figure 3.1: Two Populations in the Hierarchical Mechanism

We elaborate on this population next. The second population under consideration

is a collection of sampled flows, whose elements are all the sampled flows containing

packets selected according to Bernoulli sampling procedure with sampling rate p from

packets from the population of original flows. This population is characterized by

sample flow lengths {N} and sample flow sizes {B}. A sample set of M elements from

this population are selected according to the hierarchical mechanism described above.

We now explain the claimed randomness of these M samples. From the hierarchical

mechanism, we know that elements in this population space have sample lengths

distributed according to a distribution {πj}N
j=0, the probability of a sampled flow

having sample length j regardless of the original flow length. Given sample size M ,
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these sampled flows are selected according to this population distribution realized by

the hierarchical mechanism, and thereby the M sampled flows are random samples

of this second population.

To illustrate these concepts, we use the following toy example. Suppose the popu-

lation of original flows contains flows of length N = 1, N = 2, and corresponding flow

lengths distribution φ1 = 0.5, φ2 = 0.5. We can see that µN = 1.5, σ2
N = 0.25. Sup-

pose a Bernoulli sampling procedure of rate p = 0.1 is applied at the packet level. The

corresponding sampled flow level population then has three possible sample lengths

{0, 1, 2}. We then know that flows in the population of sampled flows are distributed

following π0 = 0.5×0.9+0.5×0.92 = 0.855, π1 = 0.5×0.1+0.5×2×0.9×0.1 = 0.14

and π2 = 0.5 × 0.12 = 0.005 resulting from the hierarchical mechanism. Sampled

flows are generated from this distribution, having 2 packets with probability 0.05,

1 packet with probability 0.14, and ∅ with probability 0.855. Given a sample size

M = 10, suppose that we observe 2 sample flows with sample length 1, while the

remaining 8 are missing. We can say that this set of samples with size 10 is a good

representative of the population of sampled flows, referred as random samples above.

Remark: It should be noted that the sampling procedure of selecting M sampled

flows employed does not correspond to an unequal probability sampling mechanism

without replacement as discussed in Cochran [7]. Although different sample lengths

have different sampling rates, these rates are determined by the population distri-

bution. Unequal probability sampling without replacement for a finite population is

defined as a sampling procedure, where each element in the population has differ-

ent selection rate. On the other hand, in this case, all the elements face an equal

sampling probability; however, the resulting larger sampling rate on some of the

sampled flows stems from the larger number of elements in the population. We use

the following example to illustrate the differences between the two. Suppose a finite

population has elements 1,1,1,2,3. If we are to perform a sampling procedure with
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replacement give a certain sample size predefined, we can generate random samples

from this population from a distribution who has value 2 with probability 0.2, value

3 with probability 0.2, and value 1 with probability 0.6. The resulting random sam-

ple should represent the population because every single elements have the same

probability of sampling. However, if we define sampling rate for the item of value

x = 1, 2, 3 proportional to x, then the previous equal sampling rate balance will not

hold. This latter sampling procedure is then unequal probability sampling.

Given the above sampling mechanism, the observed data correspond to the packets

and their sizes in bytes of the sampled flows. Hence, we can construct the flow lengths

and size of the sampled flows given by the collections {nm : nm > 0}M
m=1 and sample

sizes {bm : nm > 0}M
m=1, respectively.

The goal of this study is to estimate the first and second moments of the original

flow level quantities, namely (µN , σ2
N , µB, σ2

B).

Notice that we can easily estimate the first two moments of the packet size

(µZ , σ2
Z), using the observed quantities, i.e.

(3.4) µ̂Z =
∑
m

∑

`

Z`
mIm`/

∑
m

∑

`

Im` =
∑
m

bm/
∑
m

nm,

and

(3.5) σ̂2
Z =

∑

`

∑
m

(Z`
mIm` −

∑

`

∑
m

Z`
mIm`/

∑

`

∑
m

Im`)
2/(

∑

`

∑
m

Im` − 1).

Next, we derive relationships connecting moments of the sampled flows to those of

the original flows. Subsequently, we discuss two methods to estimate the quantities

of interest utilizing the system of equations (3.6 – 3.10).

(3.6)

µn = E(nm) = E(
∑Nm

`=1 Im`)

= ENmE(
∑Nm

`=1 Im`|Nm)

= ENm(NmE(Im`)) = pµN .
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(3.7)

σ2
n = Var(nm) = Var(

∑Nm

`=1 Im`)

= E(Nm)Var(Im`) + Var(Nm)(E(Im`))
2

= p(1− p)µN + p2σ2
N .

(3.8)

µb = E(bm) = E(
∑Nm

`=1 Z`
mIm`)

= µNE(Z`
mIm`)

= µNµZp = µnµZ .

(3.9)

σ2
b = Var(bm) = Var(

∑Nm

`=1 Z`
mIm`)

= E(Nm)Var(Z`
mIm`) + Var(Nm)(E(Z`

mIm`))
2

= σ2
Zµn + µ2

Zσ2
n.

(3.10)

cov(b, n) = cov(bm, nm) = COV(nm,
∑nm

`=1 z`
m)

= E(nm

∑nm

`=1 z`
m)− E(nm)E(

∑nm

`=1 z`
m)

= µZ(E(n2
m))− µn(µnµZ)

= µZ(σ2
n + µ2

n)− µn(µnµZ)

= µZσ2
n.

The independence between sampling procedure and packet size distribution is

assumed. Equations (3.6) and (3.7) use the fact that each packet is selected in-

dependently with probability p, and thus Im` follows a Bernoulli distribution with

parameter p. In Equation (3.10), z`
m is the size (in bytes) of the `th observed packets

on flow m. Equation (3.8) and (3.9) use the results of Equation (3.6).

3.2 Method-of-Moment Like Method (MM)

We borrow the idea of Method of Moments, where the desired population moments

can be estimated by matching the empirical sample estimates to the theoretical
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population ones[39]. Notice that the moments of the sampled flows can be estimated

from the observed data. By matching the moments of the sampled flows to those of

the original flows, we obtain estimates of the latter. The first two equations (3.6)

and (3.7) give such estimates of the mean and variance of original flow lengths

(3.11) µ̂
(MM)
N = µ̂n/p

(3.12) σ̂
2(MM)
N =

σ̂2
n − (1− p)µ̂n

p2
.

Combining the above two sets of estimates (3.11-3.12) and (3.4-3.5), we further

provide the estimate of moments of flow sizes based on Equations (3.1-3.2).

µ̂
(MM)
B = µ̂Z µ̂

(MM)
N ,

and

σ̂
2(MM)
B = µ̂

(MM)
N σ̂

2(MM)
Z + µ̂

2(MM)
Z σ̂

2(MM)
N

where the independence of flow lengths and packet bytes is assumed.

3.3 Moment Least Square Method (MLS)

The above method-of-moment-like estimates uses only two of the equations. In

this study we propose a Moment Least Squares Method to utilize all the information

contained in the system of equations. The idea of the proposed MLS is to estimate

(µN , σ2
N , µZ , σ2

Z), which is equivalent to estimate (µN , σ2
N , µB, σ2

B) from the above

discussion, by minimizing a given target function, an approach that uses all the five

equations in the system. We define the target function as the sum of squares of the

differences of the empirical estimates and the theoretical results, as the following

equations.

(3.13)

L(µN , σ2
N , µZ , σ2

Z) = [µ̂n − pµN ]2 + [σ̂2
n − p(1− p)µN + p2σ2

N ]2

+[µ̂b − µ̂nµZ ]2 + [σ̂2
b − σ2

Z µ̂n + µ2
Z σ̂2

n]2

+[ ˆcov(b, n)− µZ σ̂2
n]2
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This optimization can be achieved by the Newton-Raphson algorithm [48]. Fur-

ther exploration reveals that the target function can be broken down into two sub-

systems. The first system consists of the first two components of the target function

L1(µN , σ2
N) = [µ̂n − pµN ]2 + [σ̂2

n − p(1− p)µN + p2σ2
N ]2; and it can be used alone to

estimate the moments of flow lengths. The second subsystem consists of the remain-

ing components L2(µZ , σ2
Z) = [µ̂b− µ̂nµZ ]2 +[σ̂2

b −σ2
Z µ̂n +µ2

Z σ̂2
n]2 +[ ˆcov(b, n)−µZ σ̂2

n]2

to estimate the bytes moments.

3.4 Bias Correction

In both MM and MLS, we establish the estimates of original flow level moments

from the empirical estimate of sampled flow level moments. In this section, we focus

on the empirical estimate of sampled flow level moments {µn, σ2
n}. The population

under consideration now is sampled flows with lengths distributed according to a

distribution {πj}N
j=0.

Because of randomness of the M samples from population of sampled flows, sample

average would be a good estimator for the population mean[7], i.e., µ̂n =
∑

m nm/M

and σ̂2
n =

∑N
m=1(nm− µ̂n)2/(M−1). Initially, one would easily initiate an estimation

of average sample flow length µn by the observed sample lengths µ̂
(1)
n =

∑
m nm/r,

which is essentially an unbiased estimator of E(n|n > 0) = pEN( N
1−(1−p)N ); similarly,

the sample variance of all positive sample lengths flows to estimate σ2
n, σ̂

2(1)
n =

∑
m:nm>0(nm − µ̂

(1)
n )2/r.

However, given the sampling procedure of selecting packets uniformly and the

heavy-tail nature of flow lengths/bytes distribution, a lot of short flows may well

be unobserved with nm = 0, especially for the presence of small sampling rate p.

Therefore, µ̂
(1)
n would overestimate the average sample lengths by ignoring the 0

sample lengths flows.

We correct this biasedness by estimating the total number of active flows under
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study M . We propose an estimate M̂ = r
1−cµ̂N 0

. The intuition behind this procedure

is that the expected number of observed flows is the total number of flows multiplied

by the probability of a flow being observed. The denominator is an estimator of this

probability, where µ̂N is initialized by the estimated average flow lengths applying

µ̂
(1)
n in either MM or MLS. Give the estimated number of active flows M̂ , µ̂

(2)
n and

σ̂
2(2)
n are updated by

µ̂(2)
n =

∑
m

nm/M̂

and

σ̂2(2)
n = (

∑
m:nm>0

(nm − µ̂(2)
n )2 + (M̂ − r)(0− µ̂(2)

n )2)/M̂

to accommodate the unobserved flows. Subsequently, MM or MLS will be applied

again with µ
(2)
n , σ

2(2)
n to get a new set of estimation of (µN , σ2

N , µB, σ2
B). We will

provide the performance assessment of these two sets of estimations in experiment

demonstration (Section 3.7).

3.5 Subsampling

There are some variations in the estimation, especially for the parameter σN , and

σB. This variability is enlarged by the coefficient of p2 in the denominator of the

systems of equations containing these parameters. Subsampling can be applied to

reduce variation of the estimation, as long as the number of distinct sample lengths

is large enough. The procedure is a two stage one. Firstly, we repeat the procedure

of sample packets with new sampling rate pp several times, and perform the above

analysis on each subsample set. Then next averaging the estimations of subsamples

gives the overall estimate for the original data. This whole procedure is essentially

the same as bernoulli sampling of sampling rate pn = p ∗ pp, but with reduced

variability on the estimation.
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3.6 Estimation with Constraint

In some cases, for example flows with Gamma, Poisson length distribution, there

is additional information on the relationship between σ2
N = γµN , where γ is an coef-

ficient needs estimated. With this additional information, MLS method is designed

to utilize the most of the systems. This leads the first component of the target

function L1 being optimized more efficiently with the constraint. The initial point

for the optimization might be selected from MM estimator, i.e, µ̂N = µ̂n/p and

γ̂ = σ2
n−(1−p)µ̂n

pµn
.

3.7 Experiment Demonstration

In this section, we provide empirical evidence of the performance of the derived

moment-based estimators for a variety of simulated and real network traffic traces.

Additionally, a simulated dynamic system is studied to demonstrate the performance

of anomaly detection applying our methods.

The first set of experiments uses simulated flow length data from the following

distributions: (i) Gamma , (ii) Poisson and (iii) Log-Normal. The parameters for

these three distributions were set so as to match their mean value of 50, 500 and

5000. Packet sizes are simulated from a Uniform distribution with range (1200, 1500)

to mimic the real network traces. Bernoulli Sampling is applied to each dataset

100 times with expected sampling rate 0.01 on the packets. Method-of-Moment-

Like(MM) estimators as well as ones with bias correction are calculated. This set of

experiments is designed to assess bias correction method by comparing the average

estimators and the corresponding empirical MSE. Table 3.1 shows the numerical

results. Columns from left to right correspond to the bias of estimated average flow

lengths, the bias of estimated variance flow lengths, and empirical MSEs associated

with these two quantities, followed by the same quantities for the flow bytes. We first

look at the average estimates of flow length in the third column of the table. The
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method of estimating M reduces the bias and outperform the original MM method

in all the three scenarios, especially in the presence of short flows. This also holds for

the estimated variance of flow lengths and the statistics of flow bytes. It can also be

seen that the MSEs of the estimated average flow lengths/sizes also are smaller when

M is estimated. It worth noting that as the real average flow length increases the

bias itself decreases, and this is because more flows can be observed and the number

of missing flows are essentially reduced.

Table 3.1: Semiparametric Estimation on Multismpl Simulated Data, where packet size is from
Unif(1200,1500).

Bias(N̄m)B(V(Nm))MSE(N̄m)MSE(V(Nm))Bias(B̄m)Bias(V (Bm))MSE(B̄m)MSE(V(Bm))
Gamma(50) MM 80.38 -380.9 6.47E+05 2.45E+07 109929 -553710000 1.21E+12 8.08E+19

Bias Correction 44.919 -500 2.02E+05 2.50E+07 62169 -832812000 3.87E+11 8.08E+19
Gamma(500) MM 16.26 12080 3.84E+04 2.48E+11 34790 28084000000 1.43E+11 7.65E+23

Bias Correction 13.42 -4721 3.04E+04 2.48E+11 30960 -2667000000 1.19E+11 7.65E+23
Gamma(5000) MM 10.1 12400 2.51E+07 5.01E+06 70400 4.521E+11 4.57E+13 9.35E+12

Bias Correction 10.1 12200 2.51E+07 5.01E+06 70400 4.516E+11 4.57E+13 9.35E+12
LogN(50) MM 80.31 -327.84 6.46E+05 2.43E+07 59928 1601430000 3.60E+11 4.67E+19

Bias Correction 44.676 -500 2.00E+05 2.50E+07 32381 361730000 1.05E+11 4.68E+19
LogN(500) MM 13.47 12187 2.84E+04 2.48E+11 5360 7459000000 1.25E+10 4.77E+23

Bias Correction 10.57 -3905 2.19E+04 2.48E+11 3190 -4001000000 1.09E+10 4.77E+23
LogN(5000) MM 9 11100 5.59E+05 2.50E+15 -85300 -6.066E+11 1.35E+12 5.26E+27

Bias Correction 9 11100 5.59E+05 2.50E+15 -85300 -6.066E+11 1.35E+12 5.26E+27
Pois(50) MM 76.93 -29.72 5.93E+05 2.43E+05 104067 69601000 1.08E+12 7.75E+17

Bias Correction 37.827 -50 1.43E+05 2.50E+05 51237 -30140000 2.63E+11 7.75E+17
Pois(500) MM 3.04 9122.7 5.51E+03 1.62E+07 3520 18635340000 9.57E+09 7.32E+19

Bias Correction -0.22 529.3 4.82E+03 2.28E+07 -890 2896140000 8.83E+09 7.32E+19
Pois(5000) MM 0.5 4194.9 4.28E+04 2.44E+09 -1500 1.95346E+11 7.84E+10 8.11E+21

Bias Correction 0.5 4194.9 4.28E+04 2.44E+09 -1500 1.95346E+11 7.84E+10 8.11E+21

We also evaluate the proposed methods on a real traffic trace from Abilene back-

bone network. The results are given in table 3.2. We compare all the proposed

methods in terms of the estimated average and variance of flow lengths, and the

empirical MSE. Among these methods, the method of subsampling MLS that in-

corporates a constraint outperforms all the others in all the quantities considered.

The gains in efficiency are almost 100%. This is not surprising, because this method

utilizes extra information. Furthermore, the bias correction method exhibits the best

performance.

Next, a NS simulated experiment is designed to assess the performance of the

methods in an anomaly detection scenario. In this experiment, there are 3 phases

for traffic on one single link. At each phase of the experiment, flows are sent across
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Table 3.2: Semiparametric Estimation on Abilene Data.
Mean Packets Var Packets MSE(Mean Packets) MSE(Var Packets)

True 28.974 4.46E+05
Method of Moment 511.47 7.60E+06 2.62E+05 7.60E+06
Subsampling MM 601.8 9.03E+06 3.62E+05 9.03E+06
Subsampling MLS 601.8 9.03E+06 3.62E+05 9.03E+06

Subsampling MLS Restriction 385.97 5.79E+06 1.49E+05 5.79E+06

Bias correction M̂ 510.14 7.58E+06 2.60E+05 7.58E+06

the links but their number changes. We keep the packet size distribution, but increase

the number of flows from 75, to 100, to 150. Meanwhile, in the last phase, there is

a sudden change of the average flow length from 47.03 to 104.33. Estimations of all

the related moments are listed in Table 3.3. It can be seen that the change on the

average flow length in the last phase is captured by all methods. However, the bias

correction based on estimated M̂ outperforms the others, and additionally, capture

the change of number of active flows.

Table 3.3: Semiparametric Estimation on NS-Simulated 3-phase UDP Data.
Phase 1 Phase 2 Phase 3

True MM Bias Corr True MM Bias Corr True MM Bias Corr
Avg packet sizes 797.85 798.11 798.11 799.41 799.54 799.54 797.94 798.66 798.66
Var packet sizes 77.746 63.321 63.321 95.518 149.32 149.32 79.349 71.761 71.761
Avg flow lengths 36.173 127.59 90.244 47.03 133.33 97.959 104.33 170.71 139.67
Var flow lengths 244.33 0.00E+00 0.00E+00 186.25 0 0 5474.5 0 0
Avg flow sizes 28861 1.02E+05 7.20E+04 37596 1.07E+05 78322 83250 1.36E+05 1.12E+05
Var flow sizes 1.56E+08 1.03E+06 5.16E+05 1.19E+08 2.65E+06 1.43E+06 3.42E+09 2.09E+06 1.40E+06

Number of flows 75 41 100 49 150 121

To sum up, we understand through these numerical result that the proposed

Bias Corrected MLS performs better on estimate the moments given the fact of

heavy-tailed distribution. And all the estimations perform better as the sampling

rate increases. These algorithms all run fairly fast and can be implemented online,

especially compared with the non-parametric estimation. On the other hand, Non-

parametric estimates are more accurate and detailed to help understand the traffic

structure.



CHAPTER 4

Estimation of traffic characteristics across the network

4.1 Introduction and Literature Review

The work so far has focused on estimating the flow length and byte size distri-

butions on a single link. One can use the proposed methods on a number of links,

as in Duffield [12] to obtain a network-wide estimate of traffic characteristics. How-

ever, such an approach ignores the fact that routers are linked together and hence

a certain number of packets go through a number of routers, resulting in correlated

measurements. Further, on a large network comprised of hundreds of routers and

thousands of links between them, such a naive approach would not scale well. So, it

would be interesting to consider the problem of selecting routers and links to sample

traffic from. This would require developing models of how traffic aggregates, such as

total number of packets and bytes, are related between neighboring links.

In the literature, Duffield et al[12] study the combination of sampled traffic mea-

surement at multiple observation points to achieve an unbiased estimation of the

total traffic. This study is related to our study in the sense of analyzing the entire

network, but differs by not allowing for optimizing the sampling design. Moreover,

this study was based on the assumption that flow selection is feasible without a one-

to-one mapping hash technique, and this is not practical to the best of our knowledge.

Meanwhile, [45] addresses the network-wide hash-based flow monitoring problem.

We are going to utilize same ideas from experimental design, briefly discussed

73
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below. In the design of experiment, the factor setting is selected according to some

criterion after the model is identified. Two commonly used criterion are the A and

D ones.

The D-optimality criterion is defined to minimize the volume of the confidence

ellipsoid of the estimated coefficients, i.e,

mind|(XT
d Xd)

−1|,

which is also equivalent to

maxd|XT
d Xd|,

where Xd is the corresponding model design.

The A-optimality criterion is to minimize the trace of the inverse of the infor-

mation matrix (XT
d Xd)

−1. This results in minimizing the average variance of the

coefficients estimates based on a pre-specified model.

4.2 Simple problem

Before we address the sampling design problem for a whole network, we first

introduce three simple network operations, which are the basic building blocks for

any complex network.

1) The Two Links Operation: Consider a network comprised of successive

three routers, R1, R2 and R3 connected by two links a and b, as shown in Figure

4.1(a). Packets go from router R1 through R2 to R3, where a certain number of

packets are ‘lost‘ on router R2 with probability p.

2) The Merging of Flows Operation: Consider a network comprised of four

routers connected by three links as shown in Figure 4.1(c). Packets go from router

R1 and R2 through R3 to R4, where a certain number of packets are ‘lost‘ on router

R3 with probability p.

3) The Splitting of Flows Operation: This corresponds to the opposite direc-

tion of merging, as shown in Figure 4.1(b), where a certain number of packets are
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‘lost‘ on router R2 with probability p.

The reason of these losses is that some flows follow a different path on the tran-

sition router (R2 in case 1 and 3 and R3 case 2) to some other destination which

is not monitored; or some of the flows terminate at the transition router. Hence,

from the perspective of the source the packets of these flows are considered ‘lost‘.

Correspondingly, we use q ≡ 1− p to denote the independent traversing rate for all

the packets. We first assume that q is known, and then briefly discuss the case where

q is estimated from sampled measurements.

In the rest of section, we will discuss how to allocate samples in these three

simple operations, which will be further generalized to the whole network in section

4.4. Furthermore, the following discussion will describe the above simple operations

in two systems, a closed system, i.e, the topology we observe corresponds to the

entire network; and a partial open system, where the topology we observe is part

of a bigger network. The main difference is whether additional flows from unobserved

sources can be present.

4.2.1 Closed System

In this system, there is no presence of flows from unknown sources joining the

system. The following discussion will focus on the above described three simple

network operations.

Case 1: Two Link Network

In this case, there are three routers connected by two links, and delivering traffic

in one direction from R1 to R3. A Simple Random Sampling (SRS) [7] is applied

on all the packets in the system in a certain observation period controlling the total

sample size of K. Our objective is to allocate samples Ka and Kb on link a and b,

respectively, to estimate the total load on each connections, subject to the constraint

K = Ka + Kb.
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R1 R2 R3a b

(a) Two-Links

R1 R2

R3

R4

a

b

c

(b) Splitting

R1

R2

R3 R4

a

b

c

(c) Merging

Figure 4.1: Three Simple Operations
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R1 R2 R3a b

We start by defining the quantities of interest. Let

Xa =
N∑

i=1

xi

, Xb =
∑N

i=1 xiI(i ∈ b)betheloadoftotalbytesonthelinkaandb, respectively, duringacertainmeasurementperiod, whicharethequantitiesofinterest.Nisthetotalnumberofdistinctpacketspresentinthesystemandisgivenforthisstudy, andxi

is the size (in byte) of the ith packet entering the system. We assume that packet

sizes xi are i.i.d. from a distribution with mean µ and variance σ2. Additionally, we

assume µ and σ are the same across different flows. We use I(.) to denote an indica-

tor function taking values in {0, 1} depending on whether the condition is satisfied

or not, e.g., I(i ∈ b) = 1 when the ith packet goes through link b, and 0 otherwise.

Given the SRS mechanism, let Z = (Za, Zb)
′ be the vector of estimators of X =

(Xa, Xb)
′:

Za =

∑
i∈Sa

xi

Ka

N,

Zb =

∑
i∈Sb

xi

Kb

Nb,

where Sj denotes the set of sampled packets from link j, j ∈ {a, b}. Notice that µ

and σ can be estimated unbiasedly from sampled packets as follows

(4.1) µ̂ =
∑

xiI[i ∈ (Sa

⋃
Sb)]/K

(4.2) σ̂ =
∑

(xiI[i ∈ (Sa

⋃
Sb)]− µ̂)2/(K − 1).
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For now, we do not allow samples on link b to be used to estimate link a, even though

in the case of a closed system such aggregation proves useful as discussed later in

this section.

This allocation problem is aiming to control both the precision and accuracy

of estimation of the total traffic bytes load on each of the observed links. It has

already been established by the classical theory on simple random sampling that our

estimators Z are unbiased regardless of the selection of Ka, Kb. On the other hand,

we also want the estimators Z to be precise. For example, in the two-link case we

can derive the covariance matrix of Z as follows.

COV(Za, Zb) = COV[
∑N

i=1 xiI(i ∈ Sa),
∑N

j=1 xjI(j ∈ Sb)]
NNb

KaKb

=
∑N

i=1 COV[xiI(i ∈ Sa), xiI(i ∈ Sb)]
NNb

KaKb

= N [Pr(i ∈ Sa

⋃
Sb)Ex2

i − Pr(i ∈ Sa)Pr(i ∈ Sb)(Exi)
2] NNb

KaKb

= Nqσ2,

where the second equality comes from the assumption of independent packet bytes

distribution. The last equation comes from the fact that

(4.3)

Pr(i ∈ Sa

⋃
Sb) = Pr(i ∈ Sb|Sa)Pr(i ∈ Sa) = (q

Kb

Nb

)
Ka

N
=

KaKb

NbN
q = Pr(i ∈ Sa)Pr(i ∈ Sb),

where Nb is the total number of packets on link b;

(4.4) σ2 = Ex2
i − (Exi)

2.

Meanwhile, from SRS theory we get

Var(Za) =
N(N −Ka)

Ka

σ2,

Var(Zb) =
Nb(Nb −Kb)

Kb

σ2.
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Given all packets pass router R2 independently with traversing rate q, Nb follows a

binomial distribution with parameters the total number of packets N and traversing

rate q, and thus can be unbiasedly estimated by N̂b = Nq.

As a result, we can approximate the covariance matrix of Z as

COV(Z) =




N(N−Ka)
Ka

σ2 Nqσ2

Nqσ2 Nq(Nq−Kb)
Kb

σ2




The goal of precision can be achieved by minimizing COV(Z) as a function of Ka

and Kb.

To perform this minimization we borrow two optimization criteria from experi-

mental design, A-Optimality and D-Optimality as introduced in section 4.1. The

modified definition in our case is then as follows:

A-Optimality is to optimize a matrix based on the trace, i.e., sum of the diagonal

elements of the matrix.

In our problem, it is to minimize the sum of the variances of the estimates on each

link. It ends up suggesting to allocate Ka and Kb in the ratio of 1 : q, i.e,

Ka =
1

1 + q
K, and Kb =

q

1 + q
K

D-Optimality aims at minimizing the determinant of the matrix. In our problem,

this includes the covariance of the measurements on neighboring links, as well as the

variances of each measurements. It suggests to allocate

Ka =
K − q −

√
((K − q)2 − (1− q)(K2 − qK))

1− q
,

and Kb = K −Ka.

Both of these two optimal allocations show that the total number of distinct packets

N is essentially not necessary, although we assume a prior knowledge on it. More

details of the derivation are provided in the Appendix.
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The above derived allocations ignore the potential role of samples of link b on

the estimation of link a. If we are given that there are no other sources of flows

except that of router R1 (as in this closed system), then we may also use the samples

collected on link b in addition to the samples of link a to estimate the total bytes

on link a. This procedure of sample aggregation includes more samples for analysis,

and thus gives more precise results. In the considered closed two-link system, we

now have a different estimator of the total loads on link a, combining all the sampled

packets on both links a and b, and is given by:

Z̃a =
Za

N
Ka + Zb

Nb
Kb

Ka + Kb

N =

∑
i∈Sa

xi +
∑

i∈Sb
xi

Ka + Kb

N.

Updating the estimate of Za, we further have

VARZ̃a =
σ2N2

K2
[Ka(N −Ka)/N + Kb(Nb −Kb)/Nb + 2KaKb/N ],

and COV(Z̃a, Zb) =
Nσ2

K
[Kaq + Nb −Kb].

The resulting covariance matrix is thus updated by

COV(Z) =




VarZ̃a COV(Z̃a, Zb)

COV(Z̃a, Zb) VarZb




Detailed derivations of the above equations are given in the Appendix. Next one

can move on to optimize updated COV(Z) by either A- or D-Optimal criterion as

discussed in the no sampling aggregation situation.

Case 2: The Splitting Operation

We now consider a closed system, whose flows split on router R2 (Figure 4.2); i.e.,

traffic goes in one direction from routers R1, R2 to R3 or R4, without any unknown

traffic joining the system from the outside world. Therefore, we may use samples
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collected on links b and c in addition to the samples of link a to estimate the total

bytes on link a. This gives

Z̃a =
Za

N
Ka + Zb

Nb
Kb + Zc

Nc
Kc

Ka + Kb + Kc

N,

where Nb is estimated by N̂b = Nqb and similarly N̂c = Nqc; and qb, qc are the

traversing rate from router R2 to router R3 and R4 respectively. Again, we allow

possible loss or earlier drop at router 2, and hence 0 < qb + qc ≤ 1.

R1 R2

R3

R4

a

b

c

Figure 4.2: The Splitting Operation

The covariance matrix of Z is then derived in the same way as in the two-link

operation and given by

COV(Z) =




VarZ̃a COV(Z̃a, Zb) COV(Z̃a, Zc)

COV(Z̃a, Zb) VarZb COV(Zb, Zc)

COV(Z̃a, Zc) COV(Zb, Zc) VarZc




,

where
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(4.5)

Var(Zj) =
Nj(Nj−Kj)

Kj
σ2, j = {b, c},

ˆVARZ̃a = N
K2 [Ka(N −Ka)σ

2 + Kb(Nqb −Kb)/qbσ
2 + Kc(Nqc −Kc)/qcσ

2

+2KaKbσ
2 + 2KaKcσ

2 − 2KaKcµ
2],

ˆCOV(Z̃a, Zb) = N
K

[Kaqbσ
2 + (Nqb −Kb)σ

2 −Kcqbµ
2],

ˆCOV(Z̃a, Zc) = N
K

[Kaqcσ
2 + (Nqc −Kc)σ

2 −Kbqbµ
2],

COV(Zb, Zc) = −Nqbqcµ
2.

We then apply the A-Optimality or D-optimality Criteria on the derived matrix to

obtain the optimal allocations. A closed form expression of the optimal allocation

for Ka,Kb and Kc is not possible to derive. Therefore, numerical results of these two

criteria will be given in section 4.3 along with some comments.

Case 3: The Merging Operation

The merging of flows in a closed system is very similar to that of splitting, and

differs only by the zero covariance between two adjacent links a and b instead of

negative values −Nqaqb in splitting. This is because of the independence between

the two sources of incoming traffic from R1 and R2 (Figure 4.3); while in the split-

ting operation, the adjacent links share the same traffic source from R2 (Figure 4.2).

Sampling aggregation is still feasible in this Merging Operation by aggregating sam-

ples from link a and b on c to estimate total loads on link c. Consequently, covariance

matrix for Z is given next.

COV(Z) =




VarZa 0 COV(Za, Z̃c)

0 VarZb COV(Zb, Z̃c)

COV(Za, Z̃c) COV(Zb, Z̃c) VarZ̃c




,

where
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R1

R2

R3 R4

a

b

c

Figure 4.3: The Merging Operation

(4.6)

Var(Zj) =
Nj(Nj−Kj)

Kj
σ2, j = {a, b},

ˆVARZ̃c = N
K2 [Kc(N −Kc)σ

2 + Kb(Nqb −Kb)/qbσ
2 + Ka(Nqa −Ka)/qaσ

2

+2KcKbσ
2 + 2KaKcσ

2],

ˆCOV(Z̃c, Zb) = N
K

[Kcqbσ
2 + (Nqb −Kb)σ

2],

ˆCOV(Z̃c, Za) = N
K

[Kcqaσ
2 + (Nqa −Ka)σ

2].

Similarly, closed form expressions for the optimal allocation are not possible to

service and numerical results will be given in Section 4.3.

4.2.2 Partially Open System

In a partially open system, there is a presence of flows from an unknown source.

We further assume that there is prior knowledge on the new traffic volume relative

to the traffic from the observed sources. The following analysis is parallel to that in

the closed system, and focuses on the three basic network operations.

Case 1: The Two-Link Network

We have traffic flows from router R1 through R2 to R3. However, there are

packets from outside unknown sources, named R4, coming into the system through
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4
(N

2
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R
1

R
2

R
3a b

R2 and R3. It is assumed that N2 packets are injected from source R4 to the system.

Packets from both sources are sampled according to Simple Random Sampling with

total sample size K. However, the sampling procedure only takes place on links a

and b. Again, a certain number of packets are ’lost’ on router R2 with probability p,

i.e., traversing rate q = 1− p. The reason of this loss is again that some flows follow

a different path from router R2 to some other destination which is not monitored.

Our objective is again to allocate samples Ka and Kb on links a and b to estimate

the total load of each connections, subject to the cost constraint of K = Ka + Kb.

One should also notice that there should be no samples allocated on the unobserved

link connecting R4 to R2.

Let Xa =
∑N

i=1 xiI(i ∈ a), Xb =
∑N

i=1 xiI(i ∈ b) be the load of total bytes

on the links a and b, respectively, in a certain measured period. Notice that now

N = N1 + N2 is the total number of packets during this period including the ones

from router R1 N1, which is given, and the ones from unknown sources N2. Again, let

Z = (Za, Zb)
′ be the vector of estimators of X = (Xa, Xb)

′ according to the classical

theory on simple random sampling, where Za =
∑

i∈Sa
xi

Ka
N1, and Zb =

∑
i∈Sb

xi

Kb
Nb.
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The covariance matrix of Z is then given by

(4.7) COV(Z) =




N1(N1−Ka)
Ka

N1q

N1q
Nb(Nb−Kb)

Kb


σ2,

among which Nb can be estimated by (N1 + N1ρ)q. This ρ is to capture the ratio of

N2 over N1, and is either given or can be estimated by the ratio of two partitions of

Kb, ρ̂ = Kb2/Kb1, where Kb1 is the number of samples on link b and originated from

R1 and Kb2 is the number of samples on link b and originated from R4

Given the above covariance matrix, this allocation problem can be modeled as

an optimization problem assuming q is given. Under the A-Optimality criterion for

COV(Z), we get the target function in the form of

N1(N1 −Ka)

Ka

+
N1(1 + ρ̂)q[N1q(1 + ρ̂)−Kb]

Kb

.

The minimizer is then calculated as

Ka =
1

1 + q(1 + ρ̂)
K, Kb =

q(1 + ρ̂)

1 + q(1 + ρ̂)
K.

Under the criteria D-Optimality, the target function is given by

N2
1 (1 + ρ̂)q(N1 −Ka)[N1(1 + ρ̂)q −Kb]

KaKb

−N2
1 q2,

Then essentially we need to minimize

(N1 −Ka)[N1(1 + ρ̂)q −Kb]

KaKb

.

The optimal solution is given by

K̂a =
(K − q(1 + ρ̂)) +

√
(K − q(1 + ρ̂))2 − (1− q(1 + ρ̂))× (K2 −Kq(1 + ρ̂))

1− q(1 + ρ̂)
,

and K̂b = K − K̂a.

From this we can see that the closed system without sample aggregation is essentially

one special case of this partial system with ρ = 0.



86

Now let us consider the case where traversing rate q is unknown and needs to

be estimated. It is further assumed a constant traversing rate q for all sources.

We propose a two-stage-sampling procedure to handle this allocation problem. At

the first stage, K1 samples are allocated to link a, among which K1b samples will be

observed on link b. Then, we use these observations to estimate the traversing rate on

router R2 by q̂ = K1b

K1
. At the second stage, Ka and Kb samples are allocated to links

a and b respectively, together with the observation at the first stage, to estimate

the total number of bytes. The whole procedure is under the cost restriction of

K1 +Ka +Kb = K. In this context, the marginal covariance matrix of Z is estimated

as the expectation of the conditional covariance matrix given q; i.e.,

COV(Z) =




N1(N1−Ka)
Ka

σ2 (N1 − 1)q̂σ2

(N1 − 1)q̂σ2 N1(1+ρ̂)q̂(N1(1+ρ̂)q̂−Kb)
Kb

σ2 +
N2

1 (1+ρ̂)2q̂(1−q̂)

K1
µ2


 .

Detailed derivation is in the Appendix.

The A-Optimality and D-Optimality criteria can then be used to obtain the op-

timal allocations.

Case 2: The Splitting Operation in a Partially Open Network

Now we consider the splitting operation in a partially open network, where packets

from router R1 go through R2 to R3 and R4. Further, there are packets from outside

unknown sources, named R5, that go through R2 to R3 and R4. Packets from both

sources are sampled by Simple Random Sampling with sample size K on links a, b

and c only.

Our objective is to allocate samples Ka, Kb and Kc on link a, b and c, respectively,

to estimate the total load of each connections on this partially open network, subject

to the cost constraint of K = Ka + Kb + Kc. Again, there should be no samples

allocated on the unobserved link.

As before, let Xa =
∑N

i=1 xiI(i ∈ a), Xb =
∑N

i=1 xiI(i ∈ b), Xc =
∑N

i=1 xiI(i ∈ c)
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Figure 4.4: Splitting Operation in an Open System

be the load of total bytes on the link a, b and c, respectively, in a certain measured

period with N being the total number of packets coming from both sources, N1 from

R1, which is given, and N2 from unobserved source during this period. Let Z =

(Za, Zb, Zc)
′, where Zj =

∑
i∈Sj

xi

Kj
Nj, j ∈ {a, b, c}. We assume that the proportions

of the packets going through R2 to link b and c, qb and qc are given. Otherwise, they

can be estimated by another stage of sampling as in the two-link case. Note that

qb + qc ≤ 1, thus allowing for loss on router R2.

The COV(Z) is symmetric with upper diagonal elements given next.




N1(N1−Ka)
Ka

σ2 N1qbσ
2 N1qcσ

2

Nb(Nb−Kb)
Kb

σ2 −N1(1 + ρ)qbqcµ
2

Nc(Nc−Kc)
Kc

σ2




,

among which Nb and Nc are the total number of packets on link b and c respectively

and can be estimated by (N1 + N1ρ)qb and (N1 + N1ρ)qc. And ρ is to capture the

ratio of the total loads N2 from unknown source R5 over observed traffic N1.

The corresponding optimization problem again uses A-Optimality and D-Optimality

criterion on the covariance matrix of Z as before. The optimal sample allocations
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under A-Optimality are given by Ka : Kb : Kc = 1 : (1 + ρ)qb : (1 + ρ)qc.

For the D-Optimality criterion, the target function is the determinant of the

derived covariance matrix. Numerical results show that the optimal allocation is

approximately uniform; distribute even number of samples on all the links. This can

be explained by the flat shape of the target functions shown for a particular setting

in Figure 4.5.

Figure 4.5: Convexity of D-Optimality in a two-link Open System with horizontal dimension as al-
location on one link increasing from 0 to K, and vertical dimension as the target function
value. The approximately flat bottom shows that optimal allocation is approximately
the same as uniform allocation, which corresponds to the horizontal center

Case 3: The Merging Operation in a Partially Open Network

The only difference between merging and splitting in an open system is that the

correlation of the two adjacent splitting branches a and b (Figure 4.3) is 0 in merging,

which is not true for b and c in splitting (Figure 4.4). In an open network, this does

not impact the A-Optimal allocation but only the D-Optimal allocation, because

the A-Optimality criterion only considers the variance terms. The impact on the

D-Optimal allocation is even quite small because of the small covariance between Zb

and Zc compared with other terms in the covariance matrix in the splitting case, and

it gives approximately the same optima as in the splitting case. Thereby, in practice

we can treat merging and splitting identically in a partial open system especially for

large networks.
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The above analysis on a partially open system assumes that there is prior knowl-

edge on the new traffic volume, relative to the traffic from the observed sources. If

this is not the case, a two stage sampling can always be performed to set aside certain

number of samples in order to estimate this quantity, continued by a similar analysis

as we performed here.

4.3 Experimental Results

We next evaluate the optimal allocation obtained for all these basic network op-

erations under both A-Optimality and D-Optimality criterion using simulated data.

Packet sizes xi, i = 1, ..., 50000 are simulated following a Normal distribution with

mean 800, and standard deviation 10. The total sample size is controlled to be 500

which is equivalent to a 1% sampling rate.

For comparison purposes, we define an Efficiency metric as the ratio of the target

function values under the optimal allocation over the naive allocation, where naive

allocation is taken to be the uniform allocation. For example, in the two-link network

given q, the naive allocation is defined as Ka = Kb = K/2; while in the two-link one

without knowledge of q, it is taken to be K1 = Ka = Kb = K/3.

In the two-link network case, we generate traffic comprised of 50000 packets from

R1, and the traversing rate q is set to 0.8. The resulting allocation in both closed

and open systems (with ρ = 1) are listed in Table 4.1. There are some differences

in the allocation when the ratio of unknown traffic to the given traffic ρ varies, but

the impact is rather small and negligible in this example. One may also observe that

the D-Optimal allocation is approximately equivalent to the naive allocation in the

partially open system.

Table 4.1: Allocation for 2link case.
CLOSE OPEN

A-Optim D-Optim A-Optim D-Optim
Ka 495 1 192 253
Kb 5 499 308 247
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For the splitting case, traffic of 50000 packets is generated at R1, and the traversing

rates to R3 and R4 are set to 0.8 and 0.2, respectively. As indicated in table 4.2,

both criteria place the majority of the samples on link b in the closed system, which

supports the intuition of sampling more on the busy link. However, in the open

system, the naive allocation is optimal under the D-Optimality criterion. The A-

Optimality criterion in the open system supports allocating more samples on b but

not as many as in the closed system. Table 4.3 contains the allocation results for the

merging operation. It exhibits a similar pattern as in the split case, as we expected.

Table 4.2: Allocation for Split Operation.
CLOSE OPEN

A-Optim D-Optim A-Optim D-Optim
Ka 1 1 167 166
Kb 352 490 266 167
Kc 147 4 67 167

Table 4.3: Allocation for Merge Operation.
CLOSE OPEN

A-Optim D-Optim A-Optim D-Optim
Ka 1 1 167 166
Kb 399 474 266 167
Kc 100 25 67 167

4.4 Extension to Larger Networks

Previously we have discussed the allocation design of samples in all the basic

operations of a network. In this section, we will generalize this result to a more

realistic scenario; i.e., to larger networks whose operations can be decomposed to

the basic ones. In this section, discussion will be again focused on closed and open

systems. We further assume that the traversing rate is given, otherwise, one can

always apply a two-stage analysis as discussed in Section 4.2.2. We also assume the

packet bytes distribution is constant across all the flows, and for simplicity purposes

that flow traffic is always in one given direction.

We adopt the following terminologies to describe the network topology. We will
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use root link to describe the link whose connected end traffic router splits following

the traffic direction, and branch links to describe the succeeding split links; further

this succeeding relation will be called father-son relationship, and the two parallel

neighboring links connected by the same root router will be called brother links.

Finally, end links connect the terminal destination router on one side. The traffic

matrix is defined as a n × n matrix with entries (i, j) = 0 meaning no traffic goes

from node i to j, and 1 indicating the existence of traffic from node i to j, where

n is the total number of routers in the system. We assume the number of packets

sourcing from the observed routers are given but may not be the case for the ones

from unobserved sources. In this study we assume one-direction traffic only, which

simplifies the problem and guarantees the one-to-one mapping between the traffic

matrix and traffic in the given topology network.

4.4.1 Closed System

In a closed system, we assume again there is no outside traffic present, and there-

fore samples from branch links can be used as part of the information for the root

links. We generalize the result from the simple network operations, and obtain co-

variance measurements for any network of given topology and traffic direction.

For a given closed network with n links, unbiased estimator of load on each link

X = (X1, ..., Xn)′ from SRS Z = (Z1, ..., Zn)′ takes value

Zj =

∑
i∈Sj

xi

Kj

Nj

for the end links. Considering sample aggregation, for the father link 0 with m

succeeding son links, where m ≥ 1,

Z̃0 =

∑
i∈S0

xi +
∑m

j=1

∑
i∈Sj

xi

K0 +
∑m

j=1 Kj

N.

N is the total number of packets under study and is given, and Sj is the sample

collection on link j. Covariance matrix of estimator Z is a n× n matrix, where the
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diagonal entries are variances and takes values generalized from the simple operations

as follows.

(i) Any given end branch link j has a variance in the form of classical simple random

sampling theory, i.e,

vj =
Nj(Nj −Kj)

Kj

σ2.

(ii) The variance of any non-ending branch link 0 with m splitting son links, namely

i = 1, ..., m, can be approximated by

m∑
i=0

K2
i

(
∑m

j=0 Kj)2q2
i

vi, m ≥ 1.

The off-diagonal entries in the covariance matrix of Z is given next.

(i) Any two brother links i, j, sharing the same root router 0 in a splitting case, have

covariance in the form of

Cij = −N0qiqjµ
2.

(ii) And for any father-link 0 with m son-links has the covariances

C0j =
m∑

i=0

Ki

(
∑m

`=0 K`)qi

Cij, j = 1, ..., m, m ≥ 1.

We consider only correlation of the directly connected father-son or brother links,

i.e, one-degree correlation. Numerical result supports the negligibility of high-degree

correlations. This is because the correlation between two links decay fast as the

number of intermediate routers increases, and this holds especially for large networks.

In the following example (see Figure 4.6), we consider a tree topology network

comprised of 5 links. The source generates N = 50000 packets and the traversing

rates are q2 = 0.8 from link 0 to 2 and q3 = 0.8 from link 2 to 3, and correspondingly

q1 = 0.2 from link 0 to 1 and q4 = 0.2 from link 2 to 4. Suppose that K = 500

packets used to be allocated. Our analysis gives an A-Optimal Allocation: K0 =

10, K1 = 190, K2 = 90, K3 = 170, K4 = 40, while for D-Optimal Allocation we get:
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Figure 4.6: Tree Topology-Close System

K0 = 430, K1 = 40, K2 = 10, K3 = 10, K4 = 10. The different allocations of these

two criterion are due to the fact that D-Optimal counts on the correlation of the

estimations on the links in addition to the variances of each estimation.

4.4.2 Open Systems

In an open system, there is a presence of outside flows joining the system. This

results in a different covariance matrix because samples from branch links can not

be aggregated to be used for the root links as in the closed system. We again assume

the total number of packets sourcing from observed routers is given, while the ones

from outside sources may or may not be given.

Unbiased estimator of total load on each link Z takes values

Zj =

∑
i∈Sj

xi

Kj

Nj.

The covariance matrix of Z for any open network of given topology has diagonal

entries

vj =
Nj(Nj −Kj)

Kj

σ2,

and off-diagonal entries

Cij = Niqjσ
2
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Table 4.4: A-Optimal Allocation Effeciency
ρa

ρb 5 0.2
5 0.4367 0.5176

0.2 0.6788 0.7812

for the father-son links and

−N0qiqjµ
2

for the brother links, where N0 reflects the number of packets on the connected root

router, and Nj’s are estimated by traffic volume on the observed source link and

the ratio of the total loads from the unknown source over observed traffic as well as

traversing rates on each router.

In this system, we have that A-Optimality allocates samples as follows: Ki : Kj =

Ni : Nj. This is easily interpreted as the heavier traffic needs more samples. Mean-

while, D-Optimality follows the naive uniform allocation due to the lower correlation

and a few number of zero appearing in the covariance matrix.

In the following example, we show how our A-Optimal allocation gains efficiency

over the naive uniform allocation. This system has N = 50000 packets entering the

system from the top of the tree passing through the end. Let the traversing rate

from link 0 to 2 be q2 = 0.8 and 2 to 3 with passing rate q3 = 0.8. Correspondingly

q1 = 0.2, q4 = 0.2, although we allow for loss on the connecting routers in general.

The unknown coming inflows have traffic volume given by a ratio ρa = N2/N , and

ρb = N3/N . Remember that we have defined the efficiency as the ratio of the

trace of covariance matrix under A-Optimal allocation and the trace of covariance

matrix under uniform allocation (naive baseline). Obviously the smaller the value

of efficiency the better our allocation performs. Table 4.4 gives the efficiency of

A-Optimal allocations under various setting of parameters ρa and ρb.

From this exercise, we see that when ρa = ρb = 5, we gain 100% in efficiency

using the A-Optimal allocation compared with a naive uniform allocation; and when



95

0

1 2

3 4

N
2

N
3

Figure 4.7: Tree Topology-Open System

ρa = ρb = 0.2, A-Optimal allocation is about one and half times efficient. In addition,

we see that the ratio of parameters q3 and q4 does not change the efficiency or the

remaining allocation, but only the allocation on the ending links of 3 and 4. Further,

as ρa increases, A-Optimality allocates less samples on link 0; and similarly, more

samples should be allocated on link 3 and 4 when ρb increases.

We also examine this method on Netflow data collected on the GEANT backbone

network [50, 59]. GEANT is a European research network across 30 countries and 26

national networks, and it contains 23 nodes and 38 links. The traffic matrix we used

covers a 15-minute period starting from 13:00 January 2, 2005 and traffic from the

TOTEM project. This origin-destination traffic matrix skips the information of all

the transition routers. In order to recover all of the traffic paths, we apply Floyd’s

shortest path algorithm [33], and assume that they correspond to the real paths.

Traffic is then aggregated on each router for all the passing traffic. Additionally,

the original data is built upon bi-directional flows, and thus needs to be adjusted to

one-direction to test for our allocation method. This adjustment is done by allowing

only lower indexed routers to transmit to a higher indexed router, i.e, keep traffic

from router i to j if and only if (1) there is traffic in between and (2) i < j. Another
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assumption we make is that bytes per packet follow the same distribution across the

entire network, and more strictly, the ratio of flow size and flow length is a constant.

This assumption is built to overcome the problem that packet level information in

the original data is not available.

After all these adjustments, we have a 23-node connected one-direction open sys-

tem. The allocation obtained from A-optimality results in a 0.131387 efficiency

parameter, i.e, more than 6 times more efficient than uniform allocation.

4.5 Sensitivity Analysis

In this section we examine in more detail the efficiency issue. We defined the

efficiency as the ratio of the target function values given an optimal allocation over

the naive allocation, where naive allocation is taken to be the uniform one. From

this definition, the smaller value of the efficiency parameter, the more we gain from

the optimal allocation. We would also want to study how sensitive this efficiency

is by tuning other parameters, i.e, sample size K; traffic size measured by the total

number of packets N ; and topology which will be discussed in two scenarios, the

total number of links n, and traffic distribution controlled by ρ and q. The specific

form of Efficiency on a closed system depends on the topology because of sample

aggregation. The remaining efficiency sensitivity analysis will focus on the open

system.

For the A-Optimal allocation, the target function is the summation of variances

of estimated total bytes on each link. Hence, the efficiency is given by

EffA =

∑ Ni(Ni−KA
i )

KA
i∑ Ni(Ni−K/n)

K/n

,

where Ni is decided by the topology and traffic volume from both internal and

external sources. For D-optimal allocation, efficiency takes the general form of

EffD =
det(covariance matrix applying D-Optimal allocation)

det(covariance matrix applying Uniform allocation)
,
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and the detailed input varies upon the topology as previously discussed. We have

further seen that D-optimal allocation is approximately the same as uniform allo-

cation in the open system, which then yields an efficiency of approximately 1. The

remaining discussion will focus on A-Optimal allocation for open systems.

We first study the sensitivity of efficiency with respect to sample size. This is

necessary when there is a budget change; for example, one has to reduce the number

of samples overall when facing a budget shrinkage. This action will cause an increase

in the efficiency parameter, which is in fact a sign of decrease in the efficiency of

A-Optimal allocation.

For A-Optimal allocation in an open system, we have KA
i : KA

j = Ni : Nj where

i, j denotes index for links in the system, and therefore we have the expression that

Ki = AiK, where Ai = Ni/
∑

i Ni. Then,

log(EffA) = log(
∑ Ni(Ni − AiK)

AiK
)− log(

∑ Ni(Ni −K/n)

K/n
)

d(log(EffA))

dK
=

−
∑

N2
i

Ai

1
K2∑ Ni(Ni−AiK)

AiK

− −n
∑

N2
i

1
K2∑ Ni(Ni−K/n)

K/n

We can see that this first order derivative is always negative, and also because of the 1-

1 mapping of log transform, EffA monotonically decreases as K increases. In Figure

4.8(a), efficiency changes under three different traversing rates are illustrated, while

the total traffic is fixed. It shows better efficiency for A-Optimal allocation over the

uniform one with small traversing rate in this particular example, while more detailed

analysis on the efficiency sensitivity as the traversing rate changes will be studied

later in this section. Figure 4.8(b) is a close look for the 25 % percent traversing

rate scenario, showing a clear decreasing trend following the above theoretical result.

The horizontal star line in the first plot is an extreme case with q = 1 in an open

system. Not surprisingly, it is 1 because of the equivalence of A-Optimal allocation

to Uniform allocation with q = 1 in an open system.

From the above sensitivity analysis of efficiency on K, we come to a similar
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Figure 4.8: Sensitivity of Efficiency as Sample Size Changes
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case 2 or 3

case 1

Figure 4.9: Three scenarios when introducing a new link

conclusion on N . An increase in N while holding other parameters constant is

equivalent to a decrease in K while holding other parameters constant, and vice

versa.

The following discussion will show a positive impact of the total number of links

n on efficiency, which means the more complex the system, the more the gains in

efficiency. For simplicity, we only demonstrate the topology change from n to n + 1,

i.e. introducing a new link. There are generally three scenarios when introducing a

new link (Figure 4.9): (i) one additional link at the end node; (ii) one additional link

on a father node; and (iii) one additional link on a father/end node.

(i) In this case, the new link brought in is located at an end node with some of

the traffic going to the new added destination router. The impact of this change is

that the total traffic in the observed period becomes
∑n+1

i=1 Ni =
∑n

i=1 Ni + Nn+1.

We will keep Ki’s fixed by increasing K proportionally to the increase in the total



100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of New Traffic to the Old

Sensitivity of Efficiency on Topology

Figure 4.10: First scenario of introducing a new link: at an end node. The upper horizonal straight
line demonstrates Effn

A as a reference, and the lower curve is Effn+1
A .

traffic, i.e,

K ′ =

∑n+1
i=1 Ni∑n
i=1 Ni

K.

Now KA
n+1 : KA

i = Nn+1 : Ni. The updated efficiency of the A-Optimal allocation is

then given by

Effn+1
A =

∑n
i=1

Ni(Ni−KA
i )

KA
i

+
Nn+1(Nn+1−KA

n+1)

KA
n+1∑n

i=1
Ni(Ni−K/n+1)

K/n+1
+ Nn+1(Nn+1−K/n+1)

K/n+1

,

which is less than Effn
A as shown in Figure 4.10, where the upper horizonal straight

line demonstrates Effn
A as a reference, and the lower curve is Effn+1

A . One extreme

case is Nn+1 = 0 or close to 0; then, this can be easily interpreted because of the

dilution of traffic in uniform allocation, while A-Optimal allocation stays the same

as that of the n links case. From this plot, we can also tell that as the proportion of

Nn+1 to
∑n

i=1 Ni increases, the efficiency parameter decreases, showing an increasing

efficiencies under A-Optimality.
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Figure 4.11: Second scenario of introducing a new link: at a father node.

(ii) In the case where the new link is located at a father node, all the other links

stay the same except for its brothers. The total traffic volume is unaffected, but

the traffic on the brother links is reduced by the amount added to the new link

i.e, Nn+1. Correspondingly, we keep the total sample size unchanged. All the Ki’s

will remain unaffected but K ′
j < Kj for j ∈ {S: index for the affected brother links}.

The updated efficiency of A-Optimal allocation is then given by

Effn+1
A =

∑
i/∈S∪{n+1}

Ni(Ni−KA
i )

KA
i

+
∑

j∈S

N ′
j(N

′
j−K′

j
A)

K′
j
A +

Nn+1(Nn+1−KA
n+1)

KA
n+1∑

i/∈S∪{n+1}
Ni(Ni−K/n+1)

K/n+1
+

∑
j∈S∪{n+1}

N ′
j(N

′
j−K/n+1)

K/n+1

,

and this is smaller than Effn
A with sufficiently large n. Further, more split (increasing

n all on one father node) gives better efficiency from an A-Optimal allocation, as

indicated in Figure 4.11.

(iii) The last scenario of increasing n is by adding a new source of traffic, which

may occur anywhere in the system. If it introduces traffic directly to an end node,

then essentially it is equivalent to case (i). We now discuss the situation when it
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brings new traffic Nn+1 to a father of an end node, which can be easily generalized

to any other nodes. The impact of this new traffic is in the succeeding links, denoted

by S, and all the others stay the same. For all i ∈ S,

N ′
i = Ni +

Ni∑
i∈S Ni

Nn+1.

We will increase the sample size K proportionally to the increase on the total traffic

volume, in order to keep K ′
i = Ki unaffected for i /∈ S. And then for i ∈ S,

K ′
i = Ki + Ni∑

i∈S Ni
Kn+1. The updated efficiency of A-Optimal allocation is then

given by

Effn+1
A =

∑
i/∈S∪{n+1}

Ni(Ni−KA
i )

KA
i

+
∑

j∈S

N ′
j(N

′
j−K′

j
A)

K′
j
A +

Nn+1(Nn+1−KA
n+1)

KA
n+1∑

i/∈S∪{n+1}
Ni(Ni−K/n+1)

K/n+1
+

∑
j∈S∪{n+1}

N ′
j(N

′
j−K/n+1)

K/n+1

,

and this is smaller than Effn
A as indicated in Figure 4.12. Again, the upper horizontal

line is the reference of efficiency when n links and the lower curve is for efficiency

when n + 1 links. From this plot, we can also see that as the proportion of Nn+1 to

∑n
i=1 Ni increases, the efficiency parameter increases a little because of the slower

increase of uniform allocation on total variance magnitude compared with the A-

Optimal one as traffic increases; it is followed by a continuous decrease, because of

the increasing speed of the growing variance under a uniform allocation as a function

of traffic volume.

We examine next the sensitivity analysis of efficiency with respect to traversing

rates and the unknown source traffic volume ratios. Since they all depend on the

specific topology of a system, we will explore it by showing an experimental study,

whose topology is shown in Figure 4.13. This system has N = 50000 packets entering

the system from the top of the tree passing through the end, among which we select

K = 500. We let traversing rate from node 0 to 2 q2, 2 to 3 q3 and the unknown

source traffic volume ratios ρa and ρb to vary. The resulting efficiency under various

parameters settings is shown in the following table 4.5.
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Figure 4.12: Third scenario of introducing a new link: adding a new source of traffic: the upper
horizontal line is the reference of efficiency when n links and the lower curve is for
efficiency when n + 1 links.

Table 4.5: A-Optimal Allocation Efficiency Sensitivity Study on Topology
ρa ρb q2 q3 q2 q3 q2 q3 q2 q3

0.8 0.8 0.8 0.2 0.2 0.8 0.2 0.2
5 5 0.4367 0.4367 0.6649 0.6649

0.2 5 0.5176 0.5176 0.7820 0.7820
5 0.2 0.6788 0.6788 0.5301 0.5301

0.2 0.2 0.7812 0.7812 0.6080 0.6080

From this example, we see that as ρa increases, A-Optimality allocates less samples

on link 0 and achieves more efficiency; and similarly, more samples should be selected

on link 3 and 4 when ρb increases, however the efficiency does not show a clear trend

with ρb nor q2. In addition, we see that the parameters q3 does not change the

efficiency or the rest allocation but only the allocation on the connected two end

links.
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Figure 4.13: Example of Efficiency sensitivity on the network topology.



CHAPTER 5

Future Work

5.1 h-Run Sampling

As the sampling capabilities of routers improve, it may be useful to consider al-

ternative sampling schemes. In the literature, several approaches that target longer

flows have been proposed. Estan and Varghese [21] proposed a sample and hold

approach, as well as multistage filters, which takes a constant number of memory

references per packet and uses a small amount of memory. A cache lookup is per-

formed for the key of each incoming packet, updated for the existing key but with

a certain probability for the new key. A similar idea appeared in [29] RATE, where

sampling two-runs automatically biases the samples towards the larger flows. A re-

cent progress on this sampling scheme design issue under hard resource constraint

is achieved by Cohen et al paper [8] and [9], where a number of new sampling de-

signs extend the Netflow and sample and hold approach by allowing sampling rate

changes. Sampling may also be applied to completed flow records. Duffield, Lund

and Thorup [14, 15, 18] proposed a threshold sampling in this scenario where longer

flows are more heavily sampled, since they exceed a predetermined threshold. In [15]

and Baek-Young Choi et al 2004 paper [3] extend this idea to the situation where

sampling rate needs to be controlled.

All the above studies in the literature focus on detecting long flows, yet nothing

has been done to capture short flows. However, the recovery on the short flows is
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crucial for estimating the entire flow length/size distribution and for estimating the

total number of flows. In this section, we briefly discuss one possibility that is to

combine Bernoulli and systematic sampling.

It works as follows: packets are sampled using Bernoulli sampling with probability

p∗ independent of any other characteristics. A flow information look-up is performed

on each selected packet. If it is selected, we then also select the next succeeding h−1

packets, thus forming an h-block of packets. The block parameter h is selected so

that on average the desired sampling rate p is achieved. This means that there is

a tradeoff between p∗ and h, briefly illustrated below. This scheme is designed to

relieve the length bias issues associated with heavy tailed flow length distributions,

if the packets from all the flows are ’properly’ mixed.

Some Preliminary Results

We start from a general scenario, where all the packets are mixed well, ignoring

which flow they are from. We use Ik(i) = 1 to indicate that the ith packet is the kth

one in an h-block selected, where k ∈ [1, h] and i takes value from 1,...,N , and N

is the total number of packets. Q will be used as an indicator in the following way,

Q(i) = 1 if the ith packet is in the sample and 0 if not. The probability that the ith

packet is selected is then given by

(5.1)

p = P [Q(i) = 1] = P [I1(i) = 1] + P [I2(i) = 1] + ... + P [Ih(i) = 1]

− ∑
k 6=` P [Ik(i) = I`(i) = 1] +

∑
k1 6=k2 6=k3

P [Ik1(i) = Ik2(i) = Ik3(i) = 1]

... +(−1)h−1P [I1(i) = I2(i) = ... = Ih(i) = 1]

= hp∗ − h(h−1)
2

p∗2 + h(h−1)(h−2)
3!

p∗3 + ... + (−1)h−1p∗h

=
∑h

k=1(−1)Ck
hp∗k

The reason for the overlapping in this equation comes from the fact that the

selection procedure is stage by stage. When a packet is selected on the second stage,



107

Table 5.1: h-run sampling rate vs first stage selecting rate
h 2 3 5 10 20

p = αp∗ 1.99 2.97 4.9 9.56 18.21

it has a slight chance of already being selected in the first stage, and this will also

impact the succeeding h− 1 packets as well. Table 5.1 shows how the sampling rate

p is related to the fist stage selecting rate p∗. We see the coefficient α is close to, but

always less than h.

Our h-run sampling does not outperform Bernoulli sampling for capturing shorter

flows in this well mixed situation. This is because packets are sampled unbiasedly

from different flows as in Bernoulli sampling. Packets from shorter flows do not draw

additional attention as we suppose to. The next few modification would make it

particularly suited for the case where packets cluster according to their type. The

updated version of this sampling design is that after the first stage selection, if the

selected packet is from a short flow we then select the next succeeding h− 1 packets,

thus forming an h-block of packets; otherwise, skip this second step for the long flows.

This updated design turns more attention to the short flows. The ideal scenario for

this sampling design is when we know there are two types of flows, for example, short

UDP flows and long TCP flows; in addition, flow of the same type tends to be highly

clustered. In such a situation, more packets from smaller flows would be captured,

thus improving the estimate of the number of active flows M , plus the estimate of

the left tail of the distribution.

Suppose all of the h− 1 second stage samples are from the short flows, indicating

no ending packets from any short-flow clusters is selected at the first stage. In this

case, the probability of a packet from any long flows being sampled is obviously p∗,

and h∗p∗ for that from short flows. The corresponding probability for a short flow

containing Ns packets being observed is 1 − (1 − h∗p∗)NS ; and 1 − (1 − p∗)NL for a

long flow containing NL packets. Now this procedure balances the sampling rates
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for long and short flows, and thus reduce the bias towards longer flows.

Now let us generalize it by breaking the assumption that the entire h − 1 sec-

ond stage samples are from the short flows. In this case, the probability of any

packet from long flows selected at the second stage increases to pL2 =
∑h−1

k=1 p∗(1 −

p∗)k−1 kML∑ML
i=1 NLi

, where ML is the total number of long flows, and NLi is ith long

flow’s length. When h = 2, this reduces to p∗ ML∑ML
i=1 NLi

, which comes from the pos-

sibility that every first packet in the long flow clusters is selected at the second

stage, and is essentially the possibility that the last packet in the short flow ar-

rays is sampled in the first stage. Correspondingly, the probability of a packet

from short flows selected at the second stage is reduced by pS2 =
∑h−1

k=1 p∗(1 −

p∗)k−1 kML∑MS
i=1 NSi−No. of packets from short flows selected at 1st stage

, which can be ap-

proximated by its expectation p∗(1− p∗)h−1
∑MS

i=1 NSi. Now packet sampling rate for

long flows is pL = p∗ + pL2, and pS = h∗p∗ − pS2 for short flows. The corresponding

probability for a short flow containing Ns packets being observed is 1− (1− pS)NS ;

and 1− (1− pL)NL for a long flow containing NL packets. Since pS > pL, this design

still successfully balances the sampling rate and reduce the biasness towards long

flows. It is also worth noting that pS → h∗p∗ as h → ∞, converging to the best

scenario we discussed above.

Future work will focus on the numerical study of this analysis, as well as finding

the tradeoff between mixture structure and the unbiasness gained from this sampling

design.
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APPENDIX A

Appendix

Another look at the problem in Chapter 2:

Let Fi =
∑ IM

m=1(Nm = i) be the number of flows of length i. From our hier-

archical mechanism {Fi}N
i=1 is a random vector. However, one may want to treat

it as parameters. Then the generated M flows with lengths {Fi}N
i=1 are the entire

population, and parameters M and {Fi}N
i=1 are the ones to be estimated. Notice that

the total number of active flows is still given by M =
∑N

i=1 Fi. Further, we still have

T =
∑N

i=1 iFi and t =
∑N

j=1 jgj as before, with t following a Binomial distribution

with parameters T and p.

However, in this setting, each flow does not have the same probability of being of

length i and having j of its packets sampled, which was the case under the hierarchical

mechanism (recall that πij = φiπj|i). Instead, each flow of length i has a different

probability of having j of its packets sampled, i.e., sample length j given flow length

i follows a Binomial distribution with parameter (i, p).

In this case, the joint mass function of G = {G0, ..., GN}′ is not multinomial given

parameter M =
∑

Fi, but rather a convolution of N different multinomial vectors,

i.e.,

(A.1) G =
N∑

i=1

ξi, such that
N∑

i=1

Fij = Gj, for all j = 0, 1, ..., N,

where ξi = (Fi0, ..., FiN)′ follows a multinomial distribution with parameters (Fi,
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{πj|i}N
j=0), i.e.,

Prob(ξi = (fi0, ..., fiN)′) =




Fi

fi0...fiN




N∏
j=0

π
fij

j|i

For example, there are M = 3 flows under study with true flow lengths F1 =

2, F2 = 1. Now i = 1, 2, j = 0, 1, 2. After Bernoulli sampling, observations are

{G1 = 1, G2 = 1}. Further G0 =
∑

Fi −G1 −G2 =
∑

Fi − 2. Then the joint mass

P{G0, ..., GN} =
∑

(f10+f20=
∑

Fi−2)(P(ξ1 = (f10, 0, 0)′)P(ξ2 = (f20, 1, 1)′))

+
∑

(f10+f20=
∑

Fi−2)(P(ξ1 = (f10, 1, 0)′)P(ξ2 = (f20, 0, 1)′)).

Further, the likelihood for the complete set of data in this situation is given by a

product of multinomials below:

(A.2)

Prob(F10 = f10, ..., Fij = fij, ..., FNN = fNN)

=




F1

f10...f1N


 ∏N

j=0 π
f1j

j|1 ...




FN

fN0...fNN


 ∏N

j=0 π
fNj

j|N

=
∏N

i=1




Fi

fi0...fiN


 ∏N

j=0 π
fij

j|i .

Now let us connect this to our previous result derived directly from hierarchical

mechanism by free out parameters {Fi}N
i=1 and let it be a random vector. When

{Fi}N
i=1 becomes a random vector, M =

∑
Fi is also a random variable. Then this

procedure is essentially the same as our hierarchical mechanism. The two probability

function we derived in the latter situation becomes conditional probability given

({Fi}N
i=1,M), i.e.,

(A.3) G|({Fi}N
i=1,M) =

N∑
i=1

ξi, such that
∑

i

Fij = Gj for all j = 0, 1, ...N,

(A.4)

Prob(F10 = f10, ..., Fij = fij, ..., FNN = fNN |({Fi}N
i=1,M))

=
∏N

i=1




Fi

fi0...fiN


 ∏N

j=0 π
fij

j|i .



112

We show next that this approach in fact reaches the same conclusion with the one

we discussed earlier.

Likelihood from the complete data:

(A.5)

Prob(F01, ..., FNN |M)

=
∑

(Fi:
∑

Fi=M) Prob(F01, ..., FNN |({Fi}N
i=1,M))Prob({Fi}N

i=1|M)

= Prob(F01, ..., FNN |({Fi}N
i=1,M))Prob({Fi}N

i=1|M)

= [
∏N

i=1




Fi

fi0...fiN


 ∏N

j=0 π
fij

j|i ]




M

F1, ..., FN


 ∏N

k=1 φFk
k

=




M

f01, ..., FNN


 ∏N

i=1

∏N
j=0 π

fij

j|i
∏N

k=1 φFk
k

=




M

f01, ..., FNN


 ∏N

i=1

∏N
j=0(φiπj|i)fij

which ends up the same as the result from direct derivation (2.10). The second

equality comes from the inherent constraints
∑N

j=0 Fij = Fi and
∑N

i=1

∑N
j=0 Fij = M .

And the third equality is from the fact that Fi1, ..., FiN |Fi ∼Multinomial distribution;

and so is {Fi}N
i=1|M .
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Similarly, likelihood from the observed data:

(A.6)

Prob(G0 = g0, ..., Gj = gj, ..., GN = gN |M)

=
∑

(Fi:
∑

Fi=M) Prob(G0 = g0, ..., Gj = gj, ..., GN = gN |({Fi}N
i=1,M))Prob({Fi}N

i=1|M)

=
∑

(Fi:
∑

Fi=M) Prob(G0 = g0, ..., Gj = gj, ..., GN = gN |({Fi}N
i=1,M))Prob({Fi}N

i=1|M)

=
∑

(Fi:
∑

Fi=M)[
∑

(
∑

i fij=Gj)

∏N
i=1




Fi

fi0...fiN


 ∏N

j=0 π
fij

j|i ]




M

F1, ..., FN


 ∏N

k=1 φFk
k

=
∑

{(fij :
∑

i fij=Gj ,
∑

j fij=Fi)and(Fi:
∑

Fi=M)}

[
∏N

i=1




Fi

fi0...fiN


 ∏N

j=0 π
fij

j|i




M

F1, ..., FN


 ∏N

k=1 φFk
k ]

=
∑∏N

i=1

∏N
j=0 π

fij

j|i
∏N

k=1 φFk
k




M

f01, ..., fNN




=
∑




M

f01, ..., fNN


 ∏N

i=1

∏N
j=0(πj|iφi)

fij

=




M

G0, ..., GN


 ∑∏N

j=0




Gj

f0j, ..., fNj


 ∏N

i=1

∏N
j=0(πj|iφi)

fij

=




M

G0, ..., GN


 ∑∏N

j=0[




Gj

f0j, ..., fNj


 ∏N

i=1(πj|iφi)
fij ]

=




M

G0, ..., GN


 ∑∏N

j=0[




Gj

f0j, ..., fNj


 ∏N

i=1(
πj|iφi∑N

i=1 πj|iφi
)fij ]

×[
∏N

j=0

∏N
i=1(

∑N
i=1 πj|iφi)

fij ]

=




M

G0, ..., GN


 [

∏N
j=0

∏N
i=1(

∑N
i=1 πj|iφi)

fij ]

=




M

G0, ..., GN


 [

∏N
j=0(

∑N
i=1 πj|iφi)

Gj ]

where the last three equalities come from the fact

πj|iφi∑N
i=1 πj|iφi

= πi|j
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and

∑

{(fij :
∑

i fij=Gj ,
∑

j fij=Fi)and(Fi:
∑

Fi=M)}

N∏
j=0

[




Gj

f0j, ..., fNj




N∏
i=1

(
πj|iφi∑N
i=1 πj|iφi

)fij ] = 1.

This also gives the same result as from direct derivation (2.7).
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Section 4.2 formulates the sample allocation into optimization problems. For the

two-link open system, the target function to minimize under A-Optimal Criterion is

N1(N1 −Ka)

Ka

+
N1(1 + ρ)q(N1q(1 + ρ)−Kb)

Kb

.

This is equivalent to minimize

N1/Ka + N1q
2(1 + ρ)2/Kb,

and more generally equivalent to minimize

Na/Ka + Nb/Kb,

subject to the constraint Ka + Kb = K. By method of Lagrange multipliers, this

optimization with constraint can be solved by minimize L = (Na/Ka + Nb/Kb) −

λ(K − Ka − Kb). Take derivative of L with respect to Ka, Kb and λ and set to 0.

We then solve a system of equations comprised of these three equations, and achieve

Ka =
Na

Na + Nb

K =
1

1 + (1 + ρ)q
K, and Kb =

Nb

Na + Nb

K =
(1 + ρ)q

1 + (1 + ρ)q
K.

We can further generalize this result to any open system with m links has A-Optimal

allocation

K1 : K2 : ... : Km = N1 : N2 : ... : Nm,

and the distribution of Ni’s are controlled by the network topology.

Now let us consider the same two-link open network, then D-Optimal criterion

set the target function as

N2
1 (1 + ρ)q(N1 −Ka)[N1q(1 + ρ)−Kb]

KaKb

−N2
1 q,

which is equivalent to minimizing

(N1 −Ka)[N1q(1 + ρ)−Kb]

KaKb

,

subject to Ka + Kb = K. Applying method of Lagrange multipliers, we get

Ka =
K − q −

√
((K − q)2 − (1− q)(K2 − qK))

1− q
.

and Kb = K −Ka.
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In a close system of two links, Z̃a =
Za
N

Ka+
Zb
Nb

Kb

Ka+Kb
N. The followings are detailed deriva-

tion of the corresponding covariance matrix.

(A.7)

VARZ̃a = 1
K2 [K

2
aVARZa + K2

b /q
2VARZb + 2KaKb/qCOV(Za, Zb)]

= 1
K2 [K

2
a(N −Ka)N/Kaσ

2 + K2
b /q

2(Nq −Kb)Nq/Kbσ
2 + 2KaKb/q(N − 1)qσ2

= σ2N2

K2 [Ka(N −Ka)/N + Kb(Nb −Kb)/Nb + 2KaKb/N ].

(A.8)

COV(Z̃a, Zb) = Ka

K
COV(Za, Zb) + Kb

Kq
VAR(Zb)

= Ka

K
Nqσ2 + Kb

Kq
Nq(Nq−Kb)

Kb
σ2

= Nσ2

K
[Kaq + Nb −Kb].
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Section 4.2.2 also introduced a two-stage sampling procedure for the case of passing

rate q unknown. In the first stage, q is estimated by K1b

K1
, the ratio of the sampled

packets seen on the second link to the sample size on the first link. Since K1b follows

Binomial(K1, q), then VAR(K1b) = K1q(1 − q), and therefore we have ˆVAR(q̂) =

q̂(1−q̂)
K1

.

VAR(Za) = N1(N1−Ka)
Ka

σ2 stays the same, while VAR(Zb) changes and can be

derived as following.

VAR(Zb) = EqVAR(Zb|q) + VARqE(Zb|q),

where VARqE(Zb|q) = VARq(µN(1+ ρ)q) = µ2 N2(1+r)2q̂(1−q̂)
K1

because of the indepen-

dence between flow length distribution and packet size distribution;

EqVAR(Zb|q) =
N(1 + ρ)q̂[N(1 + ρ)q̂ −Kb]

Kb

σ2.

Finally, we achieve

COV(Z) =




N1(N1−Ka)
Ka

σ2 (N1 − 1)q̂σ2

(N1 − 1)q̂σ2 N1(1+ρ̂)q̂(N1(1+ρ̂)q̂−Kb)
Kb

σ2 +
N2

1 (1+ρ̂)2q̂(1−q̂)

K1
µ2


 .
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