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ABSTRACT 

 

OPTIMAL CALIBRATION AND TRANSIENT CONTROL OF  

HIGH DEGREE OF FREEDOM INTERNAL COMBUSTION ENGINES 

 

by 

Tae-Kyung Lee 

 

Increasing engine system complexity for achieving better engine performance and 

fuel economy induces intricate engine calibration and transient engine control problems. 

The classical experiment based procedure cannot deal with the exponential increase in 

size of the calibration problem for the high degree-of-freedom (DOF) engine.  The 

increased number of independent variables leads to complex inter-relationships, and 

characterizing them by means of traditional experimental sweeps of individual variables 

is simply not possible.  In addition, increased number of actuators creates a new 

challenge under rapid engine transients.  Various devices might have different response 

times, thus leading to significant excursions of operating parameters during dynamic 

changes of load and speed.  The higher the DOF in the system, the more probability that 

the engine may deviate from optimum during a transient.  Since transients are very 

frequent during normal driving, the sub-optimum engine behavior during these events can 



 

 

xxii 

 

cause significant performance and emission penalties.  Thus, developing transient control 

methodologies is an indispensable complement to optimal steady-state calibration if we 

aim to realize the full potential of the modern engine with variable devices and sub-

systems. 

This dissertation covers the entire procedures for achieving the optimal feed-forward 

steady-state control strategy and transient control of a high degree-of-freedom engine 

based on performance, combustion stability and emissions goals.  Contributions critical 

for achieving the overall objective are:   

(1)  Improved high-fidelity simulation tools as alternative to experiments; 

(2)  Virtual sensing methodologies using artificial neural networks (ANNs);  

(3)  Characterization of the combustion stability for the real time estimation;  

(4)  Simulation based optimization framework for determining optimal actuator set-

points in a high DOF engine considering a multi-objective cost function;  

(5)  Nonlinear model predictive control (NMPC) of engine transients. The NMPC 

development is enabled by using a proposed control oriented model (COM) and 

applying a receding horizon concept.  
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CHAPTER 1  

 

INTRODUCTION 

 

 

1.1 Background and Motivation 

 

Internal combustion (IC) engines are still a dominant power source for propulsion of 

vehicles. Since the advent of IC engines, the development of engine technology led to 

dramatic improvement of fuel efficiency, generated output power, and emission reduction.  

Due to high energy density, relatively low production costs, well equipped infrastructure, 

and continuous improvement and validation over long period, the IC engine still 

maintains its attractiveness compared to the alternative powertrains. Nevertheless, the IC 

engine needs to be continuously improved to meet both customer needs, which are 

generally better fuel economy and ultimate engine output, and government regulations. 

The government regulations have been related to the reduction of toxic emissions, such as 

carbon monoxide (CO), hydro carbon (HC) and nitrogen oxides (NOx), and particular 

matter (PM).  In addition, the government regulations started to include greenhouse gas 

(GHG) emissions, such as carbon dioxide (CO2), to resolve global warming problems. 

Internal combustion engines are one of the most significant sources of the CO2 

emission [1,2]. During the past hundred years, the mean temperature of the earth has 
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continually increased. To prevent the global warming as well as the air pollution, 

government regulations for emissions have become stricter. The regulations limit the 

amount of hydro carbon (HC) and nitrogen oxides (NOx) as well as the CO2 emission.  

To meet the emission regulations, new powertrain technologies need to be introduced, 

thus, alternative powertrain technologies have been researched intensively to reduce 

emissions as well as improve fuel economy [3]. The alternative powertrain technologies 

include fuel cell vehicles [4,5], hydrogen internal combustion (IC) engines [6], and 

hybrid propulsion systems [7-9] including plug-in hybrids [10,11]. While hydrogen and 

fuel cells have been candidates in the long term solutions, advanced IC engines will be 

near-to-mid term solutions while using hydrocarbon fuel to produce mechanical work. 

 

Figure 1-1  Various new technologies to improve engine performance 

 

To improve the engine performance, various new technologies have been introduced 

for satisfying these requirements. These new technologies include variable valve 

actuation (VVA), variable intake manifold, variable compression ratio (VCR), 
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homogeneous charge compression ignition (HCCI), direct injection spark ignition (DISI), 

and charge motion valves (CMV) to enhance combustion as illustrated in Figure 1-1. 

Although the new technologies increase hardware potential to achieve better fuel 

economy, higher torque output, lower noise and vibration, and less emission, they also 

increase the complexity of engine systems.  

The increased complexity introduces two problems, which are optimal engine 

calibration and transient control to use the full hardware potential. For a conventional 

engine, engine calibration can be realized using experiment based methodology. Engine 

transient control is generally executed by the map based feed forward (FF) control, which 

uses steady-state actuator set-point maps and correction maps of transient engine 

operation. In contrast, for high DOF engines, faster and more efficient engine calibration 

methodology is required, because the increase of the DOF of the engine system expands 

the number of experiments dramatically. To support simulation based engine calibration 

and transient control, virtual sensing methods to sense engine states and responses have 

been researched [14], yet, restricted to the simple replacement of physical sensors. 

To calibrate high DOF engines, simulation based methodologies have been used for 

variable valve timing engines [12, 13]. The previous researches usually considered fuel 

economy and toxic emissions at part load condition as well as output power at full load 

condition. In addition to the performance and fuel economy, combustion stability 

becomes other important calibration objective to improve vehicle drivability and driving 

feel, so it must be predicted in real time. However, real time prediction methodologies of 

combustion stability have rarely been proposed. In this study, simulation based engine 

optimal calibration is extended to a multi-objective calibration problem with the 
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consideration of fuel economy and combustion stability with the support of several 

virtual sensing methodologies.  

Transient control of high DOF engines is another important research area to achieve 

the full hardware potential. Transient control of engines has been improved long time by 

many researchers. To design transient control of engines, modeling of engine for the 

control purpose is the first step. Hence, control oriented models (COM) of engines were 

proposed and validated by many researchers [15-18]. Although many COMs have been 

developed for the purpose of the transient control of different types of engines, few 

engine models cover the whole engine operating ranges considering detailed combustion 

processes. Thus, a sophisticated COM, which is able to address accurate engine 

combustion processes, is necessary for the purpose of transient control design.  

To manage engine transients, various control methods have been introduced. When a 

small number of actuators are used to control engines, classical proportional-integral-

derivative (PID) control is widely used to improve the engine transient performance [19]. 

To deal with MIMO system, linear quadratic gaussian (LQG) control was introduced [20]. 

While applying state feedback control without the linearization procedure, a nonlinear 

turbo engine model was directly used to manage transience [21]. As another approach to 

handle system nonlinearity directly, lyapunov function based nonlinear control was 

applied for transience control of engines [22, 23]. Although many control methodologies 

have been used to manage engine transients, few methodologies can satisfy sufficient 

performance specification while achieving system stability at the same time. Thus, in this 

study, nonlinear model predictive control (NMPC) is proposed to resolve the difficulties 

in achieving required engine performance under fast transient operating conditions. 
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1.2 Prerequisites 

 

A realistic way to calibrate conventional engines is generally restricted to steady-

state engine operations due to the difficulties in address all possible transience. Although 

the engine calibration considering transient engine operations is one possible method to 

improve the transient response of engines, a large number of DOF make it exceptionally 

difficult due to the excessively large number of all possible combinations of engine 

transient operating trajectories. The resulting calibration maps require extremely large 

amount of memory space to store the information of all possible engine transient 

operations. In most of conventional engines, transient engine control is realized by using 

the FF control based on the optimally calibrated steady-state actuator set-point maps.  

To deal with these optimal calibration problems and transient control problems, 

adequate simulation tools and virtual sensing methodologies are developed as the 

prerequisites. The steady-state engine calibration of a high DOF engine is still difficult 

due to the system complexity. Developing systematic optimal calibration procedures is 

indispensable to find the optimum actuator set-point maps of a high DOF engine. Then, 

transient control problems improve transient responses of the target engine.  

 

1.2.1 Simulation Tools as the Substitutes of Experiments 

 

In experiment based engine calibration procedures, exploring all possible engine 

operating conditions is difficult because of the possible system instability and failure at 

extreme engine operating conditions. The experiment based engine calibration procedure 
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is widely used to find the optimal actuators set-point maps with low system complexity.  

When the number of actuators increases, the number of possible actuator operating 

combinations is so large that the required time and cost of experiments may exceed the 

limited resource for engine development. In addition, the high interactions of each 

actuator on system responses require a systematic way to achieve synergy of actuators.  

Simulation based calibration methodology provides a possibility to resolve the 

problems arising from experiment based engine calibration. Recently, the rapid expansion 

of computing power and evolving computer aided engineering (CAE) tools enables to 

predict engine responses with sufficient accuracy accompanying shorter computation 

time and lower computation cost. Moreover, predictive engine simulation models enable 

to estimate immeasurable engine responses, which can be used as possible engine 

calibration objectives.  

Therefore, high-fidelity simulation tools are introduced as one of the most powerful 

tools that are able to treat the increasing system complexity [12,13]. The high-fidelity 

simulation tools are composed by one-dimensional (1-D) gas dynamics simulation 

models and quasi-dimensional (quasi-D) combustion models. Although the accuracy of 

high-fidelity simulation is sufficiently enough to emulate a real engine, the computation 

time is too long to apply the simulation to the optimal calibration procedure. To 

overcome the long computation time, artificial neural network (ANN) models are used in 

this study as fast surrogate models with their capability of learning underlying highly 

non-linear input-to-output relationships.  
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1.2.2 Virtual Sensing Methodology of Engine States and Responses 

 

Fast and accurate measurements of engine states and responses is essential for both 

engine calibration and transient control problems, since more information of engine states 

and responses enables delicate engine calibration and accurate engine control. However, 

several engine responses are rarely measured in real engines because of the sensing 

difficulties and sensor costs. These responses include the mass air flow rate into a 

cylinder of a complex flexible intake system, the combustion stability, the specific 

emissions, and the residual gas fraction.  

In this study, two virtual sensing methodologies are investigated for estimating the 

mass air flow rate and the combustion stability respectively. The virtual sensing of the 

mass air flow rate is realized by introducing ANN models accounting for ambient 

pressure compensation. The virtual sensing of combustion stability is achieved by using 

statistical regression analysis considering combustion characteristics. The developed 

virtual sensing methodologies can be applied to other immeasurable engine states and 

responses for the purpose of solving various calibration and control problems. 

 

1.3 Research Objectives 

 

The maximum potential performance of a high-degree-of-freedom engine with 

multiple variable devices critically depends on optimal engine calibration and transient 

engine control. The optimal engine calibration is a procedure that determines the actuator 

set-points to achieve the best engine performance over the whole engine operating 
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conditions. As the DOF of an engine system increases, engine calibration procedures 

become more complex.  The size of the typical mapping problem increases exponentially 

to the unmanageable point beyond the experimental capability in the test cell.  The 

optimal calibration can be achieved only with a systematic procedure that relies on 

optimization algorithms.  Although experimental approach using a design-of-experiments 

is capable of calibrating engines, the true optimization is expected to be greatly facilitated 

with the availability of predictive models and a “virtual engine system”.  As long as the 

sensitivity of the engine simulation to independent variables corresponds to the 

sensitivity of the physical system, the search for the optimum is expected to be reliable.  

In addition, some engine states cannot be directly measured, and model-based estimation 

(or virtual sensing) becomes necessary for realizing the full benefits for the optimization 

framework for high DOF system.   

The transient control of a high DOF engine is another important issue for improving 

the engine performance under engine transient operating conditions. Since a high DOF 

engine is an extremely non-linear system, developing an adequate transient control 

method has been a challenging problem.  Because of the high non-linearity of engine 

systems, few clear methodologies for transient control have been proposed for covering 

the entire engine operating conditions.  

To use advanced modern control methodologies to a transient control of a high DOF 

engine, creating an accurate and fast control oriented model (COM) is proposed in this 

study. The COM must be capable of accurately estimating necessary engine states and 

responses. However, few studies have introduced unified engine models that 

simultaneously capture intake, combustion, and exhaust process with sufficient accuracy. 
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With the difficulties in estimating engine responses, transient control of engines has been 

commonly achieved using FF control based on the steady-state actuator set-point maps 

and compensation maps.  However, generating adequate compensation maps for transient 

operations requires excessive time and effort even in the case of a conventional low DOF 

engine, and the strategies applicable to truly high DOF systems have not been 

demonstrated. 

In this study, the optimal calibration and transient control of high DOF engines are 

investigated to achieve the ultimate performance of a high DOF engine over entire engine 

operating ranges. The proposed methodologies can be applied to other complex systems 

without loss of generality.  The expected key contributions include multi-objective 

optimal calibration technique capable of considering cycle-to-cycle variability, 

techniques for generating virtual sensor sand inverse models necessary for setting up the 

optimization frameworks, and design of the nonlinear model predictive control (NMPC) 

for managing high DOF engine’s transients.  

 

1.3.1 Optimal Calibration of a High DOF Engine 

 

To find set-point maps efficiently, systematic procedures for the optimal calibration 

of a high DOF engine are proposed by using fast and accurate engine models 

accompanying virtual sensors.  As reference inputs for engine transient control, optimally 

calibrated actuator set-point maps play important roles in improving engine performance. 

In general, the objective of engine calibration at part load operating conditions is 

minimization of fuel consumption. In addition to the fuel economy, combustion stability 
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becomes another critical issue to improve the noise, vibration, and harshness (NVH) of a 

vehicle. Although the combustion stability determines the smoothness of engine 

operations, the combustion stability cannot be directly measured in a commercial engine 

in real time. The combustion stability is measured using the gathered cylinder pressure 

data over several tens of experiments. Thus, the indirect estimation method of 

combustion stability needs to be developed to incorporate the combustion stability into 

engine calibration problems. The development of the virtual sensing methodology for 

various engine states and responses makes it possible to consider combustion stability as 

an objective of optimal engine calibration problems. 

To deal with a large number of actuators, a systematic engine calibration procedure 

is proposed by creating an optimal calibration framework. The engine systematic 

calibration determines the optimal actuator set points over the whole engine operating 

ranges. For the optimal engine calibration, the multi-objective function is composed 

using the trained ANN model of the target engine and a virtual sensing of the combustion 

stability.  

 

1.3.2 Transient Control of a High DOF Engine 

 

Adequate transient control designs are necessary to improve engine responses under 

transient operating conditions. Although the optimal calibration of a high DOF engine is 

achieved by considering multi-objectives in steady state engine operating conditions, 

engine control based on map based FF control cannot guarantee the best engine 

performances under transient operating conditions. In this study, the nonlinear model 
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predictive control (NMPC) is used as a preferred control methodology for achieving 

ultimate engine performance and rejecting undesirable engine responses such as emission 

peaks and instant combustion instability.  

 

1.4 Outline 

 

Chapter 2 introduces the high-fidelity simulation tools for a high DOF engine, which 

are composed of 1-D gas dynamic simulation and a quasi-D phenomenological 

combustion model. The high-fidelity simulation tools have modeling flexibilities to 

realize new devices that modify gas passages and predict combustion variations with 

changes of air-to-fuel ratio, residual fraction, and turbulence in the cylinder. The accurate 

estimation of combustion processes, regardless of engine operating conditions, is 

achieved by tuning parameters of quasi-D combustion models and calculating the precise 

flame front area maps.  

Next, virtual sensing methodologies are proposed in Chapter 3 and Chapter 4. Since 

the accurate estimation of the mass air flow rate is critical for the calibration and control 

of a high DOF engine, the virtual sensing methodology of the mass air flow rate is 

proposed in Chapter 3. The virtual sensing of the mass air flow rate is realized using 

trained ANN models with high-fidelity simulation results.  As another virtual sensing 

variable, combustion stability is selected, because the combustion stability cannot be 

determined in real time and it is necessary to improve engine smoothness, quietness, and 

driving feel. The measure of combustion stability is coefficient of variation in indicated 

mean effective pressure (COVIMEP), hence, processing of pressure traces from many 
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consecutive cycles is necessary for quantitative analysis. Statistical analysis of 

experimental data with the consideration of the physics of the combustion process is used 

to correlate the COVIMEP to combustion parameters. The estimation of combustion 

stability and the selection of key independent variables are realized using a statistical 

regression analysis of the experimental results. The created virtual sensors are used for 

the optimal calibration and transient control of engines. 

Chapter 5 addresses the optimal calibration of a high DOF engine considering both 

fuel economy and combustion stability objectives. First, the optimization framework is 

designed to calibrate engines efficiently over the whole engine operating ranges. Then, 

the objective function of the optimal calibration is formulated with the consideration of 

fuel economy and combustion stability. Since the fuel economy and the combustion 

stability have trade-off relations, an optimization problem with multi objectives is 

formulated by an introducing weight for each objective. The weights are determined to 

achieve the best fuel economy while maintaining combustion stability at part load 

operations. To improve the efficiency of the optimization process, inverse ANN models 

are introduced as one part of the objective function. At the same time, regular ANN 

models are also used to estimate immeasurable engine states. With this objective function 

and constraints, an optimization procedure is proposed to find global optima. The global 

optimization procedure is composed of two steps, which are to find an adequate initial 

point and to find a local optimum using SQP as a gradient based algorithm.  

Based on the achieved optimal calibration results and the developed virtual sensing 

methodologies, transient control for a high DOF engine is investigated in Chapter 6 and 

Chapter 7. First, the COM is created by consisting of a manifold dynamics model, a 
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rotating dynamics model, and an accurate combustion model. Then, NMPC is designed to 

improve transient engine responses by compensating for excursions of operating penalty 

due to a finite response time of actuators and unavoidable physical delays. While 

applying the NMPC to the transient control of a high DOF engine, a finite control period 

and prediction period are determined to achieve dead-beat control and smooth engine 

responses. Finally, the resulting engine responses by the NMPC are evaluated by 

comparing conventional FF control results. The results indicate faster engine responses 

with the NMPC without undesirable excursions of engine responses and associated spikes 

of emissions. 
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CHAPTER 2  

 

A CALIBRATION METHODOLOGY OF  

A QUASI-DIMENSIONAL COMBUSTION MODEL  

FOR THE ANALYSIS OF ADVANCED SPARK IGNITION ENGINES 

 

 

2.1 Introduction 

 

The gasoline spark ignition (SI) engine possesses a main place in the automotive 

industry, with its relative simplicity, high power density, smoothness, and relatively low 

emissions. To compete with other propulsion systems, such as common rail direct 

injection diesel engines and hybrid-electric powertrains, gasoline engines need to be more 

fuel efficient and more powerful to maintain attractiveness. At the same time, combustion 

stability at low engine speed and load, especially at the idle condition, is another 

important emerging issue to achieve better NVH performance. Combustion stability is 

often realized by applying dual spark plugs [1], increasing charge motion with adequate 

intake port design and additional turbulence generating devices [2-4]. To assess the 

feasibility of the effectiveness of new technologies, accurate prediction of engine 

responses is important in overall engine development procedure. 

To predict the engine responses along with these newly introduced technologies, 

computer simulations have been widely used as alternatives of experiment. The computer 
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simulations enable to emulate engine performances. The simulation models can be 

ranging from highly detailed three dimensional computational fluid dynamics (CFD) 

models [5,6] to simplified mean value engine models [7,8].  In general, engine calibration 

problems require a large number of simulations to cover all possible engine operating 

conditions with sufficiently high accuracy. Thus, a large number of simulations limit 

system modeling complexity because of the limitations of computation power and time. 

To satisfy the computational limitations, a one-dimensional (1-D) gas dynamic 

simulation accompanying with a quasi-dimensional (quasi-D) phenomenological 

combustion model [9-11] is selected as a preferred engine simulation tool (called a high-

fidelity simulation tool), because of its fast computation time and relatively high 

simulation accuracy. Moreover, the selected high-fidelity simulation tool is capable of 

modeling flexible hardware configurations by considering various gas passages and 

tweaking combustion model parameters.  

The high-fidelity simulation is created using a co-simulation approach. The 1-D gas 

dynamics model is created using the Ricardo WAVE [12, 13] and it is capable of 

predicting the mass air flow rate into the cylinder with respect to variable valve timings 

and lifts. The quasi-D combustion model enables to predict combustion process with a 

sufficiently accuracy and short calculation time. The quasi-D model includes combustion 

chamber geometry for calculating turbulent flame propagation and heat transfer in engine 

cylinders to improve simulation accuracy. The quasi-D model was programmed with the 

name of the spark-ignition simulation (SIS) that is written in FORTRAN language. The 

SIS has a capability of capturing various combustions at different hardware 

configurations by tuning combustion model parameters. Due to the predictiveness of the 
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combustion model, the simulation code has been used in 2- and 4-valve SI engine 

turbocharger matching studies [9], in valve event optimization studies [10], and in 

optimizing stroke-to-bore ratio for SI engine design studies [11].  

Overall the previous researches using the quasi-D combustion model have restricted 

to the investigation of combustion characteristics related to parameters of the combustion 

chamber and in-cylinder combustion processes. However, newly introduced flexible 

intake system configurations significantly impact on the in-cylinder combustion 

characteristics, thus, the changes of the combustion characteristics must be considered in 

the quasi-D combustion simulation. For example, turbulent intensity into the cylinder is 

significantly increased by an installed device upstream of the combustion chamber. Thus, 

the increased turbulent intensity changes combustion characteristics significantly, 

although all parameters related to the combustion chamber hardware remain exactly same. 

To take into account the flexible intake system configurations, the quasi-D combustion 

model must be calibrated in systematic ways to capture the effect of the changed 

upstream flow characteristics on the combustion characteristics due to the newly 

introduced devices upstream of the combustion chamber.  

In this study, a dual-independent variable valve timing (di-VVT) engine 

accompanying charge motion valves (CMVs) is selected as a preferred engine system to 

simultaneously improve engine performance, combustion quality, and fuel economy 

considering cost-effectiveness. The CMV is an air flow restriction device that generates 

turbulence into a combustion chamber for fast burning rate and is located upstream of the 

intake valves. The CMV has two operating positions, which are unblocked and blocked 

positions. At the unblocked position, the CMV valve is aligned parallel to a gas passage. 
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At blocked position, the CMV valve is aligned perpendicular to a gas passage, thus, 

increasing turbulence intensity. In this study, the quasi-D combustion model for the di-

VVT engine with the CMV is calibrated based on the proposed systematic calibration 

procedure of the quasi-D combustion model. 

 

Figure 2-1  Illustration of the procedure to build a fast and accurate non-linear engine 

model 

 

The ultimate objective of developing the systematic calibration methodology of a 

quasi-D combustion model is to create fast and accurate engine simulation models for the 

purpose of optimal engine calibration. Figure 2-1 illustrates one approach of creating a 

fast and accurate non-linear steady state engine model based on the high-fidelity 
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simulation. Since the optimal calibration and control design procedure require 

sufficiently a fast and accurate engine model, artificial neural networks (ANNs) are used 

as one of the promising methodologies for capturing engine system behavior predicted by 

a high-fidelity simulation. 

This chapter presents a systematic calibration procedure of a quasi-D combustion 

model for advanced spark ignition engines. First, the high-fidelity simulation tools 

structure are introduced for a di-VVT engine accompanying the CMV. Then, three 

parameters, which are flame front area maps, Cβ, and CM, are selected as tuning 

parameters for capturing various combustion conditions. The influence of each parameter 

on the combustion simulation results is analyzed using sensitivity analysis. Finally, the 

calibrated simulation model is validated by comparing with the experimental data. 

 

2.2 Target Engine 

 

The selected target engine is the Chrysler dual overhead camshaft (DOHC) 2.4 liter 

inline four (I4) cylinder spark ignition (SI) engine with the di-VVT device and the CMV.  

Two intake valves and two exhaust valves are used per cylinder and actuated by the dual 

overhead camshaft.  A cast iron cylinder block and an aluminum head structure with 

pent-roof combustion chamber are used for the skeleton of this engine. Separate ports are 

assigned to each valve and merged together. The intake manifold is made by composite 

material for mass reduction while maintaining structure stiffness, and four runners are 

merged to a plenum chamber at a single point. The CMV is introduced upstream of the 

intake manifold ahead the intake valves to generate high turbulence for fast combustion 
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and improved combustion quality.  The exhaust manifold has a one piece cast iron 

structure with a four-to-one runner design.  Cast aluminum pistons with pop-up heads are 

used for achieving light weight and demanded compression ratio. The target engine is 

originally designed as a conventional fixed-camshaft engine, and dual independent VVT 

devices are added recently. The di-VVT devices are actuated by two vane type hydraulic 

type actuators.  The critical parameters of the target engine are summarized in Table 2-1.  

 

Table 2-1  Critical parameters of the target engine 

 

2.3 High-fidelity Simulation Tools 

 

The high-fidelity simulation tools consist of a 1-D gas dynamics simulation model, a 

quasi-D combustion model, and an integration module. To improve the prediction 

capability of the combustion process over all possible engine operating conditions, quasi-

Displacement 2.4 liters 

Bore/Stroke 87.5/101.0 mm 

Compression Ratio 9.4:1 

Max. Intake Valve Lift 8.25 mm 

Max. Exhaust Valve Lift 6.52 mm 

Default Intake Valve Timing  

Closes/Opens/ Centerline 
51

o 
ABDC/ 1

o 
BTDC/ 115

o 
ATDC 

Default Exhaust Valve Timing  

Closes/Opens/ Centerline 
9

o 
ATDC/ 51

o 
BBDC/ 111

o 
BTDC 

Default Valve Overlap 9
o
 @ 0.5 mm lift 

Allowed Intake Cam-phasing Range ±15
o
 Crank Angle 

Allowed Exhaust Cam-phasing Range ±15
o
 Crank Angle 
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D combustion model replaces the combustion model in the 1-D gas dynamics simulation 

model. Thus, gas exchange process related engine states, such as mass flow rate, gas 

velocity, temperature and composition through intake and exhaust valves, are predicted 

by the 1-D simulation. Combustion related engine responses are predicted by the quasi-D 

combustion simulation. 

 

2.3.1 Integration of the 1-D Gas Dynamics Simulation model and the Quasi-D 

Combustion Simulation model 

 

The 1-D gas dynamic simulation (The Ricardo WAVE) and the quasi-D combustion 

simulation (SIS) are integrated by a top-level program written in C++ language. That 

program was originally developed by Wu et al. [18-20] and modified for this study.  The 

overall configuration of the integration program is illustrated in Figure 2-2. First, the 

integration program calls the 1-D simulation with an initial guess of the burning rate 

profile to calculate the gas exchange through intake and exhaust valves. Next, the 

integration program carries the 1-D simulation results to the quasi-D simulation which 

calculates the burning rate profile, engine output torque, and emissions. Then, the 

integration program transfer the burning rate profile back to the 1-D simulation for next 

interaction until the converge criteria including error tolerances of indicated mean 

effective pressure (IMEP), residual fraction, and volumetric efficiency are satisfied.   

 



 

 

23 

 

 

Figure 2-2  Integration of 1-D gas dynamics simulation and Quasi-D combustion 

simulation 

 

2.3.2 One-Dimensional Gas Dynamics Model 

 

The 1-D gas dynamics model, which is one part of the high-fidelity simulation tools, 

is created with the commercial software Ricardo WAVE including all air flow paths from 

the air box to the exhaust tail pipe to predict the accurate gas dynamics.  Figure 2-3 

shows the gas dynamics simulation model of the entire engine. The piping and manifolds 

of the intake and exhaust systems are modeled by using duct and junction components.  

First, the cylinder block is modeled. Each cylinder has two intake and exhaust valves and 

ports. Air flow paths are connected to the cylinder head to intake and exhaust runners. 

Air flow coefficients through the valves are found by using experimental data provided 

by Chrysler LLC, and these values are critical factors to estimate mass air flow rate into 

the cylinders with high-fidelity.  Then, each component of the 1-D gas dynamics model is 

modeled using exact three-dimensional CAD data, and two-dimensional drawings 

provided by Chrysler LLC to guarantee the simulation accuracy. 
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Figure 2-3 One-dimensional gas dynamics simulation model built by the Ricardo WAVE 

 

The throttle valve is emulated by a simple orifice because of the modeling 

convenience. The maximum orifice diameter is restricted to the maximum intake air path 

diameter at the throttle body position.  The maximum diameter of the orifice is 

considered as the WOT position.  For part load conditions, a throttle opening position is 

mapped to an equivalent throttle diameter.  The equivalent throttle diameters are 

determined along the different engine operating points by experiments or high-fidelity 

simulations. Then, the quasi-D combustion model is incorporated as a combustion model 

for the 1-D gas dynamics simulation to accurately predict combustion characteristics over 

whole possible engine operation conditions from the idle to the WOT conditions.  

 

2.3.3 Quasi-Dimensional Spark-Ignition Combustion Model 

 

The quasi-D SI engine combustion model (SIS) is based on mass and energy 

conservation and phenomenological models for turbulence, combustion and heat transfer 
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in a cylinder. The combustion sub-model is based on the turbulent flame entrainment 

model concept proposed by Tabaczynski et. al.[15,16], and further refined by Poulos and 

Heywood [17].  The combustion model is complemented by a single-zone turbulence 

model, which calculates crank-angle resolved global turbulence throughout the whole 

cycles. Flame propagation is assumed to move spherically from an ignition point.  The 

governing differential equations are as follows. 

The rate of mass entrainment is  

( )e
u f L

dm
r A u S

dt
  ,          (2-1) 

where me is the mass entrained, t is time, ρu is density of unburned charge, Af is the flame 

front area, u' is turbulent intensity, and SL is laminar flame speed.  Since the magnitude of 

u' is usually a much larger than the laminar flame speed, the rate of mass entrainment 

strongly depends on the flame front area and turbulence.  Therefore, the exact calculation 

of flame front area is critical to improve simulation fidelity. 

The rate of burning is estimated by the characteristic velocity and length scale.  The 

length scales of turbulence structure are divided into macroscale, L (or integral scale), 

Taylor microscale, λ, and Kolmogorov microscale, ε.  The macroscale is the measure of 

the size of a large energy containing flow structure.  The Taylor microscale is useful in 

characterizing a turbulent flow. It is defined by relating the fluctuating strain rate of 

turbulent flow field to turbulence intensity. The Kolmogorov scale ε defines the smallest 

structures of flow where small-scale kinetic energy is dissipated via molecular viscosity. 
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The rate of burning is  

( ) /b
e b

dm
m m

dt
          (2-2) 

and 

LS


  ,            (2-3) 

where mb is the mass of burned products. 

 

Figure 2-4  Turbulent energy cascade model to estimate turbulent flow 

 

The turbulent model consists of a zero-dimensional energy cascade.  Figure 2-4 

illustrates the energy cascade model. Mean flow kinetic energy, K, is supplied to the 

cylinder through the valves. Then, the mean kinetic energy, K, is converted to turbulent 

kinetic energy, k, through a turbulent dissipation process. The turbulent kinetic energy is 

converted to heat through viscous dissipation.  The mean and turbulent kinetic energy 

flows into and out of the cylinder through intake valves and exhaust valves. The 

equations for a zero-dimensional energy cascade are as follows. 



 

 

27 

 

21

2

e
i i

mdK
m v P K

dt m
  


  ,          (2-4) 

emdk
P m k

dt m
  


,                        (2-5) 

where 
im  and em  are mass flow rates into and out of the cylinder respectively. vi is the 

gas flow velocity into the cylinder.  ε is the dissipation rate of turbulent kinetic energy per 

unit mass by assuming turbulence is isotropic. P is the production rate of turbulent kinetic 

energy and calculated from the equation for turbulence production over flat plates.  K is 

the mean kinetic energy and k is the turbulent kinetic energy defined as  

21

2
K mU ,             (2-6) 

23

2
k mu  ,             (2-7) 

 
3 23 2 3k mu

L L



  ,                      (2-8) 

1/ 20.3307 ( / )( / )P C K L k m ,                   (2-9) 

where L is determined by the minimum vessel dimension and is assumed by 

2/( / 4) / 2L V B B   ,              (2-10) 

where V is the instantaneous volume of the combustion chamber, and B is the cylinder 

bore diameter. Cβ is an adjustable constant that tunes the production rate of turbulent 

kinetic energy with respect to flow patterns in the cylinder during compression and 

expansion process. When combustion starts, unburned charge is assumed to be 
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compressed with sufficiently fast rate. Then, non-linear interactions between eddies can 

be neglected and the angular momentum of each eddy can be assumed to be constant by 

rapid distortion theory. During combustion process, the conservation of mass and angular 

momentum of individual eddies leads to the following expressions, 

0

1/3

0/ ( / )u uL L   ,            (2-11) 

0

1/3

0/ ( / )M u uu u C     ,            (2-12) 

where CM is a tunable parameter to ensure agreement with experiments.  It is typically 

unity from medium to high load operation conditions. If the mass air flow with 

intentionally generated turbulence is inducted into the cylinder, this parameter is 

generally modified to a larger value than unity to capture the increased turbulence 

intensity. 

 

2.3.4 The Implementation of the CMV into the High-fidelity Simulation 

 

The CMV is a flip valve device that increases the turbulence intensity of air flow into 

the combustion chamber to improve combustion quality. Figure 2-5 illustrates the 

operation of the CMV. When the CMV is blocked, turbulence is generated through the 

restricted air passage, and pressure drops across the CMV. Although the pressure drop 

can be emulated introducing an orifice at the CMV position in the 1-D gas dynamics 

model, the increased turbulence intensity cannot be captured in the 1-D simulation model. 

Calculation of the energy cascade begins with the flow velocity through the intake valve, 

thus, cannot account for the turbulence enhancing devices mounted upstream of the 
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intake port. Thus, the parameter CM in equation (2-12) of the quasi-D combustion model 

is used as a possible tuning parameter to adjust the turbulence intensity to the real value 

from experimental results at several operating conditions. 

 

 

Figure 2-5  Generated turbulence by the CMV to increase combustion rate 

 

2.4 Systematic Calibration Procedure of a Quasi-D Combustion Model 

 

The calibration of the quasi-D combustion model is essential for improving the 

predictability of an ultimately non-linear engine combustion process. Although many 

parameters affect combustion process, we wish to choose only a small number of 

parameters for calibrating the quasi-D model to the all overall possible combustion cases. 

After intensive investigation of the combustion physics and many quasi-D simulation 

case studies, three parameters are selected as model tuning parameters. These parameters 

are: (1) flame front area maps in equation (2-1), (2) Cβ in equation (2-9), and (3) CM in 

equation (2-12). From the equation (2-1), the flame front area directly affects the mass 



 

 

30 

 

entrainment rate, thus shaping the mass fraction burn rate profile with respect to the crank 

angle. Other two parameters Cβ and CM play a significant role in manipulating zero-

dimensional energy cascade. The Cβ will be used to achieve accurate predictions of the 

overall turbulence levels, while the CM enables an incremental increase of turbulence 

levels due to the effect of the CMV mounted upstream. The main objective of the quasi-D 

combustion model calibration is an accurate mass burned fraction profile prediction 

regardless of the system complexity.  

 

2.4.1 Overall Calibration Procedure 

 

The overall calibration procedure is shown in Figure 2-6. First, flame front area maps 

are calculated from the 3-D combustion chamber geometry. By using the generated flame 

front area maps, mass burn rate profile is predicted at the reference engine operation 

conditions. Then, the mass burn rate profile is reviewed for the compatibility. If turbulent 

intensity is generated upstream of the combustion chamber, for example, turbulence is 

generated by the CMV, the increased turbulence must be considered. To consider the 

turbulent intensity increase, the CM must be tuned adequately. After determining the CM 

value, the turbulent kinetic energy generation and dissipation process in the combustion 

chamber must be accurately estimated. Thus, the Cβ is tuned to emulate the realistic zero-

dimensional energy cascade process depending on the combustion chamber shapes and 

the in-cylinder flow pattern. These procedures are iterated until the desired combustion 

simulation results are achieved. 
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Figure 2-6 Systematic calibration procedure to achieve the highly accurate quasi-D 

combustion model 

 

2.4.2 Flame Front Area Calculation 

 

Flame front area is a factor critical to determine a mass fraction burned (MFB) 

profile as combustion characteristics. The MFB profile is a function of crank angle, and 

has an S-shaped curve as illustrated in Figure 2-7.  The MFB profile consists of the 

flame-development angle (d), and the rapid-burning angle (b). The flame-

development angle (the 0-10% burn duration), is the crank angle interval between the 

spark discharge and the time when a small but significant fraction of the cylinder mass 

has burned or fuel chemical energy has been released.   
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The rapid-burning angle (the 10-90% burn duration) is the crank angle interval 

between the end of the flame-development stage and the end of the flame-propagation 

process. The overall burning angle o is the duration of the overall burning process, and 

it is the sum of d and b. The flame-development stage is primarily influenced by 

mixture state, composition, and motion in the vicinity of the spark plug. Then, the rapid-

burning process is influenced by the interaction between the flame front area and the 

combustion chamber walls.  Thus, the flame front area can be considered as an influential 

factor common to both stages.  

 

Figure 2-7  Definition of flame-development angle d, and rapid-burning angle b on 

mass fraction burned versus crank angle curve 

 

The calculation of the flame front area is critical to improve the accuracy of the 

combustion simulation.  In equation (2-1), the interaction between the spherical flame 

front and the combustion chamber walls defines the flame front area Af, which is the size 

of the reaction zone.  To guarantee the accuracy of the flame front area calculation, exact 
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3-D CAD geometries provided by Chrysler LLC are used for the calculation of the flame 

front area as shown in Figure 2-8.  

 

Figure 2-8  3-D CAD geometry of the target engine combustion chamber 

 

Figure 2-9  Pre-processed and simplified combustion chamber 3-D geometry using finite 

element pre-processor tools 

 

The complexity of combustion chamber geometry requires accurate flame front area 

calculation to improve the simulation accuracy. The combustion chamber is a pent-roof 

shape and the piston top is raised up to maintain compression ratio. The 3-D CAD 

geometry is converted to adequate 3-D mesh data for calculating the flame front area 
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maps using a finite element pre-processing tool through a re-meshing procedure as shown 

in Figure 2-9.  The flame front areas at each crank angle are calculated with the coarse 

mesh data to reduce the calculation time while maintaining the geometry accuracy.  

To consider more realistic conditions at the flame front area at the flame 

development stage, the interference between a spark plug and flame front area is 

considered by a slight adjustment of the flame front area. In general, mass burn fraction 

profiles are largely affected by the flame front area. At the very beginning of a 

combustion process, the flame kernel is formulated near the spark plug. The flame-

development angle, d, is largely affected by the flame front area and air-fuel mixture 

motion near the spark plug.  Therefore, a small change of flame front area near the spark 

plug largely affects the flame-development period. Figure 2-10 illustrates the flame front 

area propagation at the beginning of combustion with the existence of the spark plug.  

Then, the flame front area, which propagates toward the cylinder walls, cylinder 

head, and piston top, is calculated considering the intersection area between spherical 

flame front area and the combustion chamber.  At the rapid burning stage, the mass burn 

fraction profile is accurately predicted by considering exact combustion chamber 

geometry and the exact spark plug position. Figure 2-11 illustrates the flame front area 

propagation until the flame front is reached the cylinder wall. 
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Figure 2-10  Illustration of flame front area propagation at the beginning of combustion 

and the consideration of spark plug existence 

 

Figure 2-11  Illustration of flame front area propagation beyond the spark plug to the 

combustion chamber walls 

 

2.4.3 Influence of Flame Front Area Maps 

 

While calculating the flame front area maps over all possible piston positions in the 

combustion chamber, the exact 3-D geometry, the exact spark plug position, and the 

spark plug existence are used to attain the precise interaction between flame front and the 

combustion chamber wall. To show the influence of the change of the flame front area 

maps on the mass fraction burned profile, two different flame front area maps are 



 

 

36 

 

generated as shown in Figure 2-12. The flame front area maps in Figure 2-12 (a) are 

generated with an inaccurate spark plug position, and the flame front area maps in Figure 

2-12 (b) are generated using an exact spark plug position.  

During the combustion process, the flame front area increases as its radius extends 

until the flame reaches the combustion chamber walls. When the flame reaches to the 

cylinder wall, the flame front area rapidly decreases, and the flame is extinguished. The 

increase rate of the flame front area at the very beginning of the combustion process 

largely influences the flame-development angle. The peak shape and the final slope of the 

flame front area maps influence the mass fraction burned profile shape during the rapid-

burning angle.  

As shown in Figure 2-12 (a) and (b), the flame front area maps are significantly 

changed from the difference of the spark plug position. The different flame front area 

maps results in the different burning rate profiles, which characterize the combustion 

process. Figure 2-13 shows that burning rate profile and mass fraction burned profile are 

precisely predicted by using accurate flame front area maps calculation (case 2). When 

the flame front area map is calculated with inaccurate spark plug position (case 1), the 

combustion profile tends to be excessively skewed and not matched with the 

experimental data. Thus, calculating sufficiently accurate flame front area maps is the 

first step of the quasi-D combustion model calibration procedure. 
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(a) 

 

(b) 

Figure 2-12  Comparison of flame front area maps: (a) with an inaccurate spark plug 

position; (b) with the accurate spark plug position 
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(a) 

 

(b) 

Figure 2-13 Influence of different flame front area maps: (a) normalized burning rate 

profiles; (b) mass fraction burned profiles 
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2.4.4 Influence of CM 

 

Another tuning parameter is the CM in equation (2-12), which is introduced as a 

multiplier for adjusting turbulent the intensity of the inducted air flow into the cylinder. 

When additional devices are attached upstream of the intake port, thus, resulting in the 

turbulent intensity increase, the calculated mass air flow rate by 1-D gas dynamics 

simulation model cannot take into account the turbulent intensity change.  

 

Figure 2-14   Influence of the CM on the mass fraction burned profiles 

 

Figure 2-14 shows the influence of the CM on the mass fraction burned profile. 

Larger than unit value (one) of the CM implies the increased turbulent intensity of the 

inducted mixture ahead the combustion chamber. In general, the increased turbulent 

intensity results in faster combustion and can be realized by special port design or devices.  
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In this study, the increased combustion speed due to the CMV can be captured by 

adjusting the CM value. Thus, the actual combustion process can be predicted from the 

quasi-D combustion simulation by adequate tuning of the CM. 

 

2.4.5 Influence of Cβ 

 

In addition to the CM, another tuning parameter is Cβ in equation (2-9) can also 

manage the combustion speed. While the CM handles the combustion speed by the direct 

adjustment of the turbulent intensity, the Cβ enables to indirectly consider the 3-D in-

cylinder flow pattern with respect to the combustion chamber shape. The Cβ manages the 

combustion speed by manipulating the zero dimensional energy cascade process in 

equations (2-4) through (2-9).  

 

Figure 2-15  Influence of the Cβ on the mass fraction burned profiles 
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Larger Cβ implies slower mean kinetic energy conversion to the turbulent kinetic 

energy and faster turbulent kinetic energy dissipation into heat as shown in Figure 2-15. 

Thus, the combustion speed becomes slower due to the lower turbulent intensity. The 

turbulent kinetic energy production and dissipation rate are largely affected by the in-

cylinder flow pattern. Thus, the Cβ can compensate the relative simplicity of the quasi-D 

combustion model by indirect consideration of in-cylinder flow pattern. 

 

2.5 Quasi-D Combustion Model Calibration Results 

 

The combustion characteristics are significantly different depending on the generated 

turbulent intensity upstream of the combustion chamber. When the CMV is unblocked, 

turbulent intensity remains same to the conventional engine case. In contrast, the blocked 

CMV position generates additional turbulence. Thus, the resulting combustion 

characteristics are significantly different at both cases.  

First, the flame front area maps are generated to achieve an accurate combustion 

profile shape. Then, the tuning parameters, CM and Cβ, are determined at both the CMV 

blocked and unblocked cases by following the proposed systematic calibration procedure 

shown in Figure 2-6. When the CMV is blocked, the CM value is swept from a unit value 

to larger value. Then, when further calibration is required, the Cβ value is tuned to 

reproduce the real combustion profile. When the CMV is unblocked, the CM value is set 

to a unit value. Then, the Cβ is swept from a unit value to larger value until the real 

combustion profile is reproduced. The tuned quasi-D combustion model is validated at 

low to medium engine speeds within the entire engine load conditions.  
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Figure 2-16 shows the validation of the quasi-D combustion simulation results 

compared to the experimental data. The same quasi-D simulation model with the 

different values of the CM and Cβ is used to capture the totally different combustion 

characteristics. The flame-development angles at each case agree with the experiment 

data with a high accuracy. The rapid-burning angles at each case correspond with the 

experiment data with high fidelity. Thus, the proposed systematic quasi-D combustion 

model calibration procedure shows the capability of capturing the various combustion 

characteristics regardless of hardware configurations. 

  

Figure 2-16  Comparison of simulation results with experimental results of the mass 

fraction burned at the engine speed of 2000 rpm, and the engine load of  BMEP 2 bar at 

the CMV Unblocked and Blocked cases 
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2.6 Summary 

 

In this study, the high-fidelity simulation tools are presented to predict the high DOF 

engine responses and to overcome the limitations of engine development time and cost. 

The high-fidelity simulation tools consists of a 1-D gas dynamic simulation model and a 

quasi-D phenomenological combustion simulation model to predict engine responses 

satisfying both relatively fast calculation time and high accuracy. 

The most challenging problem of the high-fidelity simulation is the accurate 

prediction of combustion processes regardless of engine hardware configurations and 

operating conditions. Thus, a systematic calibration procedure of the quasi-D combustion 

simulation is proposed in this study to deal with the challenging problem. During the 

calibration procedure, three tuning parameters are selected based on the analysis of the 

phenomenological combustion model equations. These parameters are flame front area 

maps, CM, and Cβ. 

The generation of accurate flame front area maps is the key procedure for the 

improvement of simulation fidelity. The influence of the flame front area maps on the 

combustion profile is assessed by using different flame front area maps. To create the 

accurate flame front area maps, the exact 3-D combustion chamber geometry and spark 

plug position are used while processing the 3-D geometry using a finite element pre-

processing methodology. Then, the parameters CM and Cβ are sequentially adjusted 

depending on the system hardware configurations until the desired combustion profiles 

are achieved. 
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The proposed quasi-D combustion simulation calibration procedure is validated at a 

di-VVT engine with the CMVs. The combustion characteristics of the target engine 

changes significantly depending on the CMV positions. When the CMV is blocked, the 

combustion speed suddenly increases up to twice of the CMV unblocked case. After 

determining the tuning parameters values, the combustion profiles at the different CMV 

positions are predicted with a sufficient accuracy. Due to the accurate calibration of the 

quasi-D combustion model, the high-fidelity simulation tools can be used as substitute of 

experiments for many engine calibration and control problems. 
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CHAPTER 3  

 

VIRTUAL SENSING OF MASS AIR FLOW RATE OF  

DUEL-INDEPENDENT VVT ENGINES WITH CHARGE MOTION CONTROL 

USING ARTIFICIAL NEURAL NETWORKS 

 

 

3.1 Introduction 

 

The improvement of engine performance while reducing emission and enhancing 

fuel economy has been continuous challenges of the automotive industry. Many new 

technologies have been introduced to meet these demands. Although new technologies 

improve engine performance, the resultant increased system complexity requires 

significant efforts to resolve optimal calibration and transient control problems. For any 

engine calibration and transient control problem, sensing and estimating necessary engine 

states are indispensable.  However, not all engine states are measurable, and some states 

are very difficult or expensive to be measured.  

Thus, virtual sensing methodologies [1-3] have been introduced to estimate the 

engine states that are required in engine calibration and control. The virtual sensing 

methodologies have many advantages, such as no sensor delay, no sensor cost, and the 

capability of predicting difficult to measure system responses. In contrast, the virtual 

sensing methodology requires additional computational power. As long as the later is 
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negligible or additional hardware for computation is not required, virtual sensing is a 

plausible technology for mass produced engines. For virtual sensors to be beneficial, the 

virtual sensors require high accuracy, fast computation time, and low computational cost. 

Among many engine states, the precise estimation of the mass air flow rate into the 

cylinders has been an important issue for accurate control of the air-to-fuel ratio. Thus, 

the precise estimation enables to achieve less emission and better engine transient 

response. In conventional engines, the measurement of the mass air flow rate into the 

cylinders is realized using either a mass air flow (MAF) sensor or an intake manifold 

absolute pressure (MAP) sensor.  

 

Figure 3-1  Conventional orthogonal grid lookup tables with respect to the increasing 

number of degree of freedom 

 

In conventional engines using a MAP sensor, look-up tables or empirical equation 

based estimation have been used as adequate methods for the indirect prediction of the air 

mass flow rate using measured manifold absolute pressure. However, the extended 

degree-of-freedom (DOF) in advanced engines increases the number of required maps 

exponentially as illustrated in Figure 3-1, thus, increases cost and calibration difficulty.   
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As alternatives of lookup tables, artificial neural networks (ANNs) can be used as 

one of the best indirect prediction methodologies of system states and responses. The 

ANNs are capable of learning highly complex and non-linear underlying input-to-output 

relationships from the well organized and sufficient number of training sets [4-8]. The 

training data sets are generally created from experiments or simulations. Although 

experiment data obtained by appropriate measurements guarantee the accuracy of training 

data, additional system complexity increases the number of possible engine operating 

conditions exponentially beyond the limited time and cost for experiments. Thus, 

simulation based methods have been introduced as substitutes of experiments to predict 

the mass air flow rate in high DOF engines [14].  

This chapter presents a virtual sensing methodology for the mass air flow rate of a 

di-VVT engine with the CMV by using the ANNs. First, the virtual sensing problem and 

difficulties of the target engine system are presented. Then, the architecture of the virtual 

sensor of the mass air flow rate is provided. As tools of engine simulations, the high-

fidelity engine simulation tools are introduced. Then, as basic components of the virtual 

sensing methodology, the ANNs and an ANNs training procedure are investigated. The 

ANNs are trained using the training data set generated by the high-fidelity simulation. 

Finally, the developed virtual sensing methodology is validated by experimental data.  

 

3.2  Target Engine and Problem Difficulties 

 

We chose a dual independent variable valve timing (di-VVT) system among new 

technologies, because it is one of the most promising technologies in automotive industry 
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widely used to improve both fuel economy and engine performance over the entire 

engine operation ranges. The di-VVT system is a valve actuation system that controls 

intake and exhaust valve timing independently to adjust gas exchange characteristics over 

the entire engine operation ranges. The di-VVT system not only increases the amount of 

inducted air into a cylinder to maximize engine performance, but also manages residual 

gas fraction to improve fuel economy and to control emissions.  

In addition, we chose a charge motion valve (CMV) as the preferred solution for 

resolving the combustion stability related problems considering both cost-effectiveness 

and engine performance. Combustion stability is another important issue in maintaining 

drivability and quietness of vehicles. The CMV is a flip valve device that intensifies the 

turbulence of intake air into the cylinders to improve combustion quality.  The CMV has 

two operating positions: (1) an unblocked position, when the valve position is parallel to 

a gas passage, and (2) a blocked position, when the valve position is perpendicular to a 

gas passage.  

The selected target engine is a Chrysler dual overhead camshaft (DOHC) 2.4 liter 

inline four (I4) cylinder spark ignition (SI) engine with a di-VVT device and the CMV.  

Two intake valves and two exhaust valves are used per cylinder and actuated by the dual 

overhead camshaft.  The critical parameters of the target engine are summarized in Table 

3-1. 
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Table 3-1  Critical parameters of the target engine 

 

 

 

Figure 3-2  Target engine including the di-VVT devices and the CMV 

 

Displacement 2.4 liters 

Bore/Stroke 87.5/101.0 mm 

Compression Ratio 9.4:1 

Max. Intake Valve Lift 8.25 mm 

Max. Exhaust Valve Lift 6.52 mm 

Default Intake Valve Timing  

Closes/Opens/ Centerline 
51

o 
ABDC/ 1

o 
BTDC/ 115

o 
ATDC 

Default Exhaust Valve Timing  

Closes/Opens/ Centerline 
9

o 
ATDC/ 51

o 
BBDC/ 111

o 
BTDC 

Default Valve Overlap 9
o
 @ 0.5 mm lift 

Allowed Intake Cam-phasing Range ±15
o
 Crank Angle 

Allowed Exhaust Cam-phasing Range ±15
o
 Crank Angle 
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The mass air flow rate into the cylinders is affected by many variables, which 

include throttle valve positions, engine speed, valve timings, and ambient atmosphere 

conditions. When an additional device is introduced to the system, the precise air mass 

flow rate estimation requires an additional number of sensors or a more complicated 

engine model. Figure 3-2 illustrates the target engine, which has the CMV upstream of 

the intake runners. When CMVs are installed upstream of the intake runners, the pressure 

behind the CMVs differs from the manifold absolute pressure. To predict the mass air 

flow rate into the cylinder accurately, additional pressure sensors need to be installed 

behind the CMVs.  

Since design modification of the head structure for installing additional pressure 

sensor results in the high costs for engine development and production, developing 

alternative methods for estimating the mass air flow rate is necessary for this special case. 

When the gas dynamics of the intake system is accurately modeled, the mass air flow rate 

can be accurately predicted by the model. Thus, the high-fidelity engine simulation tools 

can be used to predict engine responses based on accurate modeling of the engine gas 

dynamics system and combustion system. 

 

3.3 Virtual Sensing of the Mass Air Flow Rate 

 

The overall procedure of developing the virtual sensor of the mass air flow rate is 

illustrated in Figure 3-3. The accuracy of the virtual sensor of the mass air flow rate 

depends on the modeling fidelity of the target engine. The high-fidelity simulation is the 

one of the best tools to achieve the high prediction accuracy. After creating the high-
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fidelity simulation model, the model is calibrated and validated by using experimental 

data.  

 

Figure 3-3  Illustration of the overall procedure of achieving desired ANN models: (1) 

create the high-fidelity simulation tools; (2) validate the simulation tools; (3) generate 

training data sets; (4) train the ANN models 

 

The validated simulation model can predict engine responses over the whole 

possible engine operating conditions. The data sets for training ANNs are systemically 

generated using Latin hypercube sampling (LHS) as a design of experiments (DOE) 

sampling technique [9-13]. Then, the ANN models for prediction engine responses are 

trained using systematic ANNs training procedure. The inputs for the virtual sensor of  
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the mass air flow rate are : (1) engine speed (RPM), (2) intake cam location (ICL), (3) 

exhaust cam location (ECL), (4) manifold absolute pressure (MAP),(5) charge motion 

valve position (CMV), and (6) ambient pressure difference (Pamb). 

 

3.3.1 High-Fidelity Simulation Tools 

 

The high-fidelity simulation tools consist of a one-dimensional (1-D) gas dynamics 

simulation model and a quasi-dimensional (quasi-D) in-cylinder combustion model. The 

1-D gas dynamics simulation model is created by the commercial software named the 

Ricardo WAVE and includes the complete air flow paths from the air filter box to the 

exhaust tail pipe. The quasi-D combustion model is constructed using the in-house 

software named spark-ignition simulation (SIS), which is written in the FORTRAN 

language. The SIS has been refined over time and has been used routinely at the 

University of Michigan for research purposes. 

First, the 1-D gas dynamics model estimates the mass air flow rate into the cylinders, 

the velocity of intake air, and the temperature and composition of mixture through the 

intake and exhaust valves. Then, mass fraction burned rate is calculated using the quasi-D 

combustion code with these 1-D simulation results as boundary conditions, and delivered 

to the 1-D simulation model until the high-fidelity simulation results converge within the 

desired error bound. The effect of the CMV on the mass air flow can be predicted by 

using the high-fidelity simulation tools. 
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3.3.2 Artificial Neural Networks 

 

Artificial neural networks (ANNs) are assembly of simple elements operating in 

parallel. These elements are inspired by biological nervous systems. The ANNs can be 

trained to perform a particular function by adjusting the values of the connections 

(weights) between elements based on the comparison of the output and target until the 

ANNs output satisfies a convergence criterion as illustrated in Figure 3-4 [8].  Such 

neural networks have been used in various fields, including pattern recognition, 

identification, classification, speech, vision, and control systems. Nowadays, the 

application area of ANNs has expanded to engineering, financial, and other practical 

applications.  

 

Figure 3-4  Illustration of the training process of ANNs 

 

Feed forward ANNs with biases, at least one sigmoid layer, and a linear output layer 

are capable of approximating any function with a finite number of discontinuities.  

Therefore, multi-layer feedforward networks can be regarded as universal function 

approximators. The feed forward networks created for this research are illustrated in 

Figure 3-5 [8]. Each neuron receives a sum of wieghted inputs from the previous layer 
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and then adds bias b.  Then, a specific transfer function f  is applied and  transferred to 

the next layer. Each neuron in the previous layer is connected with all neurons in the next 

layer with a connecting weight w.  The linear output layer lets the network produce 

values outside the range −1 to +1.  

 

Figure 3-5  Illustration of a multi-layer feed forward neural network consisting of two 

hidden layers with sigmoid neurons and one output layer with pure linear neurons 

 

With the given numbers of inputs and outputs, an adequate ANN structure are 

determined as follows.  First, the number of neurons in hidden layers is initially assumed 

to be an adequate number, and the network weights and biases of created ANNs are 

initialized for training. Then, training data sets from experiments or simulation results are 

prepared to train the ANNs.  During the training process, the weights and biases of the 

network are iteratively adjusted to minimize the network performance function, which is 
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generally selected as the mean square error between the network outputs and the target 

output.   

 
2

1

1
 

N

i i

i

mse t a
N 

   ,           (3-1) 

where, mse is the mean squared error, N is the total number of training samples,  ti is the 

target output value of the ith training sample, ai is the network output for the ith training 

sample. 

When the network size becomes larger than the required size, overfitting problems 

may occur.  Overfitting is a special situation in which the fitted model accuracy becomes 

worse when the number of neurons exceeds the information content of the training data. 

This effect occurs because the network has memorized the training data too much to 

generalize to new situations. Thus, a modified performance function is used to improve 

generalization by adding a term that consists of the mean of the sum of squares of the 

network weights and biases.   

mswmsemsereg )1(   ,               (3-2) 

where γ is performance ratio, and 
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where wi is the network weight of the jth neuron. 
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Figure 3-6  Systematic procedure to decide the best ANN structure 

 

To achieve faster calculation speed and better efficiency, the smallest ANN structure 

maintaining the same fitting accuracy is determined as the best ANN structure. Thus, a 

systematic procedure by iterating training processes is introduced to find the best ANN 

structure.  Figure 3-6 shows the systematic ANN structure decision procedure. In this 

study, after reviewing different structures, a two hidden layers structure with sigmoid 

neurons is selected as a preferred ANNs structure to estimate the mass air flow rate.  

Then, the data sets for training ANNs are divided into a train data set, which is used to 



 

 

59 

 

train the ANNs, and a test data set, which is used to detect overfitting. When the 

calculated error with the test data set is much larger than that with the train data set, 

overfitting is considered to occur, and this ANNs structure is neglected. If the calculated 

error of the ANN structure exceeds the error criterion, the number of neurons in the 

hidden layers is increased by one until the error criterion is satisfied. When the error 

criterion is satisfied, the resulting number of neurons is determined as the optimal number 

for the best ANN structure. 

 

3.4 Architecture of the Virtual Sensor 

 

The estimation of the mass air flow rate into the cylinders should consider the 

ambient pressure and temperature effects which change the amount of inducted air into 

the cylinders with variable valve timing. Without considering ambient pressure 

compensation, the air flow rate is either underestimated or overestimated.  The ambient 

pressure change effects constitute a significant percentage, up to 15~20 percent, of the 

total air flow rate [14]. 

The architecture for estimating the mass air flow rate is composed by the two ANN 

models for ambient pressure compensation and the temperature compensation model 

proposed by Bin Wu et al. [14] as shown in Figure 3-7. The effect of ambient temperature 

change on the mass air flow rate is easily calculated using simple thermodynamics 

equations. However, with complex interactions with the valve timings and the CMV 

positions, the change of ambient pressure highly influences the mass air flow rate into the 

cylinders. Thus, we mainly focused on the prediction of the mass air flow rate 
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considering ambient pressure compensation. The compensated mass air flow rate model 

structure is created by augmenting an ANN model for the ambient pressure compensation 

of the mass air flow rate to the ANN model for predicting the mass air flow rate at the 

reference ambient pressure and temperature. 

 

Figure 3-7  Illustration of the architecture for the virtual sensing of the mass air flow rate 

of dual independent VVT engines with the CMV 

 

Initially, an ANN model to predict the mass air flow rate into the cylinders at the 

reference ambient pressure and temperature is determined by the systematic training 

procedure in Figure 3-6 with five input variables:  RPM, ICL, ECL, MAP, and CMV. 

Then, the compensation of the mass air flow rate is calculated from the ANN model for 

pressure compensation with the six input variables: the same five inputs plus the ambient 

pressure difference (ΔPamb). The data sets for training ANNs are generated using the 

Latin hypercube sampling (LHS) method to reduce the total number of simulations.  

For the ambient pressure compensation model, two configurations of the ANN 

structures are considered as illustrated in Figure 3-8. The first configuration in Figure 3-8 

(a) is created by using two identically structured ANN models at current pressure and at 

reference ambient pressure respectively. The other configuration in Figure 3-8 (b) is 

realized using the ambient pressure difference as an input of the ANN model.   
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(a)                                                               (b) 

Figure 3-8  Two configurations for the ambient pressure compensation model: (a) 

configured with the difference of two parallel ANNs; (b) directly modeled with single 

ANNs using ambient pressure difference 

 

When taking into account a conventional calibrating procedure of the mass air flow 

rate, the mass air flow rate is initially calibrated at reference ambient atmosphere 

conditions, then, different ambient conditions are additionally considered by correcting 

the mass air flow rate difference due to the ambient pressure change. Thus, the 

configuration in Figure 3-8 (b) is selected as a preferred configuration based on the 

conventional mass air flow rate calibrating procedure.  
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3.5 ANN Model Decision 

 

3.5.1 Training Data Sets Generation by High Fidelity Simulations 

 

The ranges of input variables for the high-fidelity simulation are shown in Table 3-2. 

Since the ANNs cannot guarantee the extrapolation of the range of training data sets, the 

ranges of input variables must cover the possible whole engine operation ranges with 

adequate margins. Among these variables, the equivalent throttle diameter inputs cannot 

be directly determined, because the equivalent throttle diameter is determined from the 

given BMEP output. Thus, the equivalent throttle diameter inputs are sampled by the 

LHC method to achieve evenly distributed BMEPs in percentage.  

 

Table 3-2  Input variables and ranges of the high-fidelity simulation for the virtual 

sensing of the mass air flow rate into a cylinder 

Variable Lower Bound Upper Bound 

Engine Speed (RPM) 600 6500 

ICL (CA) ATDC 95 deg ATDC 135 deg 

ECL (CA) BTDC 91 deg BTDC 131 deg 

Equivalent Throttle Dia. (cm) 0.3 4.2 (WOT) 

Pamb (atm) 0.7 1.3 

CMV Unblocked Blocked 

 

Figure 3-9 shows the generated samples to train the ANNs for the virtual sensing of 

the mass air flow rate. The resulting mass air flow rate data for both cases are evenly 

distributed throughout the whole engine operating ranges.  For the CMV unblocked case 

in Figure 3-9 (a), the maximum flow rate increases in linear trends according to the 
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increasing engine speed. By contrast, in the CMV blocked case in Figure 3-9 (b), the 

maximum mass air flow rate is restricted from medium to high engine speed ranges. The 

restriction of the maximum mass air flow rate comes from the choking effect by the 

CMV, and results in the reduction of engine output power.  

 

 

      (a)                                                              (b) 

Figure 3-9  Generated data sets for training ANNs for virtual sensing of the mass air flow 

rate using a LHS method: (a) CMV unblocked case; (b) CMV blocked case 

 

3.5.2 Training Results of ANN models 

 

The preferred ANN structure for estimating the mass air flow rate consists of two 

hidden layers with sigmoid functions and one output layer with pure linear functions, 

considering convergence time, network size, and regression accuracy of ANNs. The 

number of neurons is determined using the proposed systematic training process. In this 

study, we follow the convention of symbolizing the network structure in the form of i-h1-

h2…-o. Where, i represents the number of inputs; hj represents the number of hidden 

neurons in hidden layer j and o represents the number of outputs.  
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The best ANN structure is the smallest structure that satisfies the required accuracy. 

The initial number of neurons in the hidden layers is assumed to be a small number.  

Then, the ANNs are trained several times with the same structure within the maximum 

training epoch, and checked an error criterion. When the ANNs do not satisfy the desired 

error criterion, the number of neurons is increased by a unit number until the ANNs meet 

the error criterion. The best ANN structures for the reference ambient pressure condition 

and for the ambient pressure compensation are determined as the structures of 5-18-18-1 

and 6-10-10-1 respectively. 

 

    (a)                                                         (b) 

Figure 3-10  Preferred best ANN structure (5-18-18-1) of the mass flow rate at reference 

ambient pressure and the fitting quality: (a) training data set; (b) test data set 
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(a)                                                       (b) 

Figure 3-11  Preferred best ANN structure (6-10-10-1) for the mass flow rate 

compensation from the ambient pressure change and the fitting quality: (a) training data 

set; (b) test data set 

 

Although the number of inputs of ANNs for the compensation of the ambient 

pressure change are one more than that of ANNs at reference ambient conditions, the 

number of neurons in the hidden layer of the ANNs for the compensation of the ambient 

pressure is smaller. The smaller number of hidden layer of the ANNs implies that the 

effect of the ambient pressure change on the mass air flow rate is less complex than the 

effects from other input variables such as ICL and ECL. 

Figure 3-10 and Figure 3-11 show the best ANN structures and fitting qualities. The 

error criterion, which is  5 percent, is depicted as solid lines. All data points from train 
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data set and test data set congregate tightly within error bounds along the 45 diagonal 

lines that represent perfect fitting.  The good fitting quality of test data demonstrates the 

rare possibility of the existence of overfitting. These ANN structures are finally 

assembled to the proposed virtual sensor structure for the mass air flow rate in Figure 3-7. 

 

3.6 Virtual Sensing Results and Validation 

 

To assess the developed virtual sensing methodology, virtual sensor outputs are 

validated by comparing with the experimental data at several engine operating points as 

shown in Figure 3-12. The virtual sensing results show that the CMV positions highly 

affect the mass air flow rate. The virtually sensed mass air flow rate also varies non-

linearly under variable cam timing. Because the effect of the intake and exhaust valve 

timing is highly interconnected, this effect of variable valve timing on the mass air flow 

rate is too complex to be predicted with simple equations. 

First, the virtual sensing results in fixed ICL, ECL, and reference ambient conditions 

are shown to capture the effect of the CMV positions on the mass air flow rate in Figure 

3-12. When the engine speed is set in the low speed range, for example, below 3000 

RPM, the mass air flow rate is almost not affected by the position of the CMV, because 

the mass flow rate is too low to be restricted by the CMV. However, increasing engine 

speed and engine load raise the difference of the mass air flow rate between the different 

CMV positions, because the CMV acts as an orifice that restricts the air flow, thus, 

causes the pressure drop across the CMV.  
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   (a)                                                                 (b) 

Figure 3-12  Virtual sensing results of mass air flow rate at the fixed ICL of ATDC 115 

deg and the fixed ECL of BTDC 111 deg: (a) CMV unblocked case; (b) CMV blocked 

case 

 

At the engine speed of 6000 RPM and the MAP of 0.9 atm, the mass air flow rate at 

the CMV blocked case is reduced by up to 23 percent.  The virtual sensing results show 

that the CMV causes the decrease of engine output power at mid to high engine speed 

ranges. Thus, the CMV operating region needs to be optimized to trade off the 

improvement of combustion quality and the degradation of engine performance. 

Next, the effect of the variable valve timing is investigated to present the trends of 

the mass air flow rate at different engine operating conditions to estimate the accurate 

amount of inducted mixture into the cylinders. The information about these trends 

enables the optimization of the variable valve timing with a specific objective, for 

example, the maximization of the mass air flow rate. The virtual sensing results in Figure 
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3-13 and Figure 3-14 show the effect of the VVT on the mass air flow rate at reference 

ambient conditions. 

At low engine speeds, the effect of the CMV positions is insignificant, and almost 

the same resulting mass air flow rate surfaces are maintained regardless of the CMV 

positions as shown in Figure 3-13. When the engine speed and engine load becomes 

higher, the trends of the mass air flow rate at different CMV positions become dissimilar 

as shown in Figure 3-14.  These results imply that, with respect to the CMV position, the 

optimal ICL and ECL positions are different and need to be optimized separately.  

 

 

   (a)                                                                  (b) 

Figure 3-13  Estimated mass air flow rate with respect to ICL and ECL at the reference 

ambient pressure and temperature with the engine speed of 2000 RPM and the MAP of 

30 kPa: (a) CMV unblocked case; (b) CMV blocked case 
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   (a)                                                                   (b) 

Figure 3-14  Estimated mass air flow rate with respect to ICL and ECL at the reference 

ambient pressure and temperature with the engine speed of 4000 RPM and the MAP of 

60 kPa: (a) CMV unblocked case; (b) CMV blocked case 

 

 

   (a)                                                                  (b) 

Figure 3-15  Estimated ambient pressure compensation of the mass air flow rate with 

respect to ICL and ECL at the engine speed of 2000 RPM, the MAP of 30 kPa, and the 

ambient pressure difference of -30 kPa: (a) CMV unblocked case; (b) CMV blocked case 
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   (a)                                                                  (b) 

Figure 3-16  Estimated ambient pressure compensation of the mass air flow rate with 

respect to ICL and ECL at the engine speed of 4000 RPM, the MAP of 30 kPa, and the 

ambient pressure difference of +10 kPa: (a) CMV unblocked case; (b) CMV blocked case 

 

Finally, the effect of the ambient pressure change is investigated to show the 

significance of ambient pressure compensations during the estimation of the mass air 

flow rate. Figure 3-15 and Figure 3-16 show the predicted compensation results at the 

different engine speeds and ambient pressures. The compensated mass air flow rate 

changes significantly with respect to the variable valve timings. At low engine speeds, 

the trends of the ambient pressure compensation are very similar at the different CMV 

positions as shown in the Figure 3-15.  In contrast, the trends of the ambient pressure 

compensation do not coincide at the both CMV positions at high engine speeds and 

engine loads as shown in the Figure 3-16. These results inform that the mass air flow rate 

should be determined accounting for the ambient pressure compensation. 
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3.7 Summary 

 

The accurate estimation of the mass air flow rate is a critical issue for the calibration 

and control of high DOF engines. The high complexity of incorporating new technologies 

into a modern engine induces difficulties in estimating engine states.  With a high cost 

and technical difficulties of implementing sensors for the direct detecting the mass air 

flow rate into the cylinders, a virtual sensing method is introduced as an alternative of a 

real sensor in a di-VVT engine with a CMV in the intake port.   

To develop a virtual sensor of the mass air flow rate, a specific virtual sensor 

structure configuration is investigated using two ANNs for the reference ambient 

conditions and the ambient pressure compensation respectively. Each sensing part is 

realized using the ANNs, which consist of one input layer, two hidden layers with 

sigmoid function, and one output layer with pure linear function to represent highly non 

linear-relations with sufficient accuracy. The ANN structures are determined by a 

systematic procedure and trained using the generated training data sets from high-fidelity 

simulation results. The training data sets are generated applying the LHS method as a 

DOE sampling to reduce the total number of simulations. The high-fidelity simulation 

can capture the states and responses of our target engine with a sufficient accuracy. The 

high-fidelity simulation tools are verified with experiment data.  

The best ANN structures for the virtual sensing at the reference ambient conditions 

and for the ambient pressure compensation are determined to be 5-18-18-1 and 6-10-10-1 

respectively. The virtual sensing results of the air mass flow rate are assessed at both the 

CMV unblocked and blocked cases.  At low engine speed and engine load conditions 
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with fixed engine speed and valve timing, virtual sensing of the mass air flow rate at the 

different CMV positions showed no significant difference in results.  In contrast, at the 

high engine speed and engine load conditions, the mass air flow rate is significantly 

influenced by the CMV positions, resulting in a reduction of the mass air flow rate of up 

to 23 percent in the CMV blocked case.  

The virtual sensing results show that valve timings have significant effects on the 

mass air flow rate over the whole engine operating ranges. The results also show that 

ambient pressure change should be compensated accounting for the variable valve timing 

and the CMV positions. Based on the virtual sensing results, the optimal VVT position 

must be determined with regards to the real ambient pressure and the CMV positions. 

The developed virtual sensing methodology in this study can be applied to the sensing of 

other engine states and responses, which are difficult to be directly measured.  
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CHAPTER 4  

 

CHARACTERIZATION OF COEFFICIENT OF VARIANCE  

IN INDICATED MEAN EFFECTIVE PRESSURE  

BY SUBSTITUTIVE MEASUREMENTS 

 

 

4.1 Introduction 

 

Combustion stability emerges as an important problem in the development of 

engines, accompanying the better fuel economy and higher engine performance.  

Combustion stability is directly related to the passenger comfort, because engine 

smoothness as well as noise, vibration, and harshness (NVH) is highly affected by the 

combustion stability. To achieve high engine output power, many technologies have been 

introduced [1-2]. The introduced technologies have been mainly focused on the 

improvement of output power and fuel economy, and the combustion stability has not 

been the first objective in developing engines. However, the combustion stability has 

become a more critical issue to satisfy the customer driving feel and to improve engine 

NVH.  

The combustion stability is directly related to the turbulence intensity in the 

combustion chamber. The combustion quality at near idle conditions depends strongly on 

burn rates. Slow burning due to low turbulence and increased residual fraction extends 
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the combustion process until late in the expansion stroke. At the late expansion stroke, 

piston is moving rapidly away from the cylinder head, and the increase of the cylinder 

volume magnifies the effects of combustion variability. Hence, faster burning reduces the 

combustion variability, and one way of achieving that is increasing turbulence.  Thus, the 

improvement of the combustion stability is achieved by technologies that enable to 

generate additional turbulence ahead the combustion chamber.  

The technologies to improve turbulence include special inlet port designs for 

generating turbulence [1], dual spark plug systems [1], and variable valve lift (VVL) 

systems [3-10].  Although special inlet port designs generate turbulence, they also 

increase pressure drop throughout the port, thus, result in the decrease of the maximum 

engine output power.  Dual spark plug systems provide alternative methods by increasing 

the size of the flame front. However, this comes with the increased wall area covered by 

the burned gases and much higher heat losses compared to the state-of-the-are 

combustion chamber design with the spark plug in the center. VVL systems effectively 

provide the flexibility in managing turbulence. However, VVL systems require expensive 

hardware and increase control complexity. In this study, a charge motion valve (CMV) 

device is introduced to achieve high turbulence by simply mounting it upstream of the 

intake port.  

Although many hardware configurations to increase turbulence have been proposed, 

quantitative prediction methods to predict combustion stability in real time were not 

proposed in previous research. In this study, a method for characterizing the combustion 

stability in real time is proposed using statistical regression analysis by substitute 

measurements. First, the combustion stability is analyzed by investigating the combustion 
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process to characterize the combustion stability. In spark ignition (SI) engines, 

combustion is initiated by the spark discharge, and the flame evolution is governed by the 

turbulent flame propagation process, which is affected by turbulent flame speed and 

burning rate specified from a turbulent model.  The cycle-by-cycle variations are 

influenced by the flame propagation phase and represented by the flame development 

angle change.  The flame development angle, d, is expressed as 
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,        (4-1) 

where lI, u', and lM are the integral scale, turbulence intensity, and microscale respectively 

[1]. From equation (4-1), the increase of the turbulence intensity reduces the flame 

development angle, thus, reducing the variation of cycle-by-cycle combustion variability.  

Then, the coefficient of variation in the indicated mean effective pressure (COVIMEP) 

is selected as a quantitative measure of the combustion stability. The COVIMEP related 

parameters are selected from the engine states or responses that can be evaluated by 

simulations. The selections are based on the investigation of the combustion related 

parameters. To find the best relations between the COVIMEP and selected parameters, 

statistical regression analysis procedures are devised. Thus, the combustion stability can 

predicted using the regression equations of measured substitutive responses.  

This chapter is organized as follows. First, the COVIMEP is introduced as a measure 

of the combustion stability. Then, several parameters that affect on the COVIMEP are 

determined accounting for the combustion related parameters. To achieve the indirect 

estimation of the combustion stability from substitute measurements, a statistical 
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regression analysis procedure is proposed. This analysis procedure includes a trend 

analysis, a general regression analysis, and assessment steps. Finally, the resulting 

regression equations for estimating the combustion stability are determined as the 

functions of the 10-90% burn duration and manifold absolute pressure (MAP).  

 

4.2 Target Engine and Problems in Measuring Combustion Stability 

 

In this study, a charge motion valve (CMV) is introduced as a device for increasing 

turbulence intensity to achieve combustion stability accounting for cost effectiveness. 

Although changing port design [1] and variable valve lift (VVL) system [3-10] enable to 

improve combustion stability, the difficulty in head design change and increasing system 

complexities become other problems to be resolved.  

  

Figure 4-1  Illustration of the CMV and the generated turbulence at the blocked CMV 

position to increase combustion rate 
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The CMV is a special device that increases turbulence intensity in a combustion 

chamber to make the combustion burning rate faster. The CMV has two different 

operating positions, which are an unblocked position, aligned parallel to a gas passage, 

and a blocked position, aligned vertical to a gas passage as illustrated in Figure 4-1. The 

blocked CMV position induces turbulence, thus, resulting in improving the combustion 

stability. 

The cycle-by-cycle variations of combustion are usually investigated by experiments, 

and the measure of cyclic variability is represented by the COVIMEP.  The COVIMEP is 

calculated from the several tens of IMEP data obtained from experimental results. Thus, a 

calculation procedure of the COVIMEP cannot be accomplished in real time. In addition, a 

tremendous number of experiments must be executed to evaluate the COVIMEP over the 

whole possible engine operating conditions to use the combustion stability as an objective 

of engine calibration. Thus, the indirect estimation method of the COVIMEP is investigated 

to realize the real time prediction of the combustion stability for optimal calibration and 

transient control of high DOF engines. 

 

4.3 Definition of COVIMEP and Parameters related to COVIMEP 

 

The COVIMEP is a parameter that represents cyclic variability calculated from 

measured pressure data during several tens cycles of experiments and is defined as the 

standard deviation in IMEP divided by the mean IMEP in Equation (4-2).  

IMEP
IMEPCOV = 100

IMEP


 ,    (4-2) 
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where 
IMEP  is the standard deviation of IMEP.  

The COVIMEP is directly related to the combustion stability. Its magnitude becomes 

higher at low engine speed and load conditions, particularly at the idle operation, under 

relatively slow mixture motion, larger residual gas fraction, and small turbulence 

intensity. At a higher engine speed and load, the combustion process becomes more 

repeatable with short combustion duration and smaller residual gas fraction.  

Table 4-1 shows the parameters that are related to the COVIMEP. The COVIMEP 

related parameters shown in Table 4-1 can be measured by experiments or estimated by 

simulations. The analysis of the relation between cycle-by-cycle combustion variability 

and these parameters enables us to indirectly predict the COVIMEP. The parameters that 

affect on the cycle-by-cycle combustion variability are categorized into pressure-related 

parameters, burn-rate-related parameters, and flame front position parameters as shown in 

Table 4-1. 

To address the COVIMEP for an engine calibration or an engine control, the related 

parameters of the COVIMEP must be easily measured or calculated instantaneously. In 

addition, to achieve higher accuracy in estimating the COVIMEP, using more parameters 

for finding regressions is beneficial because of the provided additional tuning capability. 

In contrast, more number of parameters makes the implementation of COVIMEP more 

complex, and the resulting regression functions using more number of parameters than 

necessary may cause overestimations. In other words, the number of parameters exceeds 

the number of the necessary basis for the resulting regression functions. 
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Table 4-1  COVIMEP related parameters and considered parameters of COVIMEP from 

high-fidelity simulation results for indirect sensing COVIMEP 

 

 

The following five parameters are initially selected as the candidates of the 

representative parameters for estimating the COVIMEP ; 

(1) 10-90% burn duration Δb (or, the maximum rate of pressure rise (dP/d)max ), 

which represents the pressure-related characteristics.  

(2) Engine speed, which represents engine operating conditions. 

(3) Valve overlap period, which indirectly represents in-cylinder mixture states such 

as residual gas fraction. 

(4) Manifold absolute pressure (MAP), which represents engine output torque. 

(5) Spark timing, which affects the mass burn rate.  
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Except for 10-90% burn duration, all variables can be easily measured or estimated under 

engine operations. The 10-90% burn duration can be estimated using an artificial neural 

network (ANN) based virtual sensing methodology as illustrated in Figure 4-2.  

 

Figure 4-2  Virtual sensor structure for estimating the 10-90% burn duration or the 

maximum rate of pressure rise using ANNs 

 

4.4  Trend Analysis 

 

First, the trends of the COV IMEP with respect to the selected parameters are 

investigated to recognize the sensitivity of each parameter and the tendency of the 

COVIMEP response to each parameter. Since the combustion stability has a tendency to be 

worse at low engine speed and load operating conditions, the experiments are executed 

within the engine speed of 3000 RPM and the engine brake mean effective pressure 

(BMEP) of 400 kPa. While executing the experiments, spark timing is maintained close 

to the minimum spark advance for best torque (MBT), and air-to-fuel ratio is maintained 

as stoichiometric. Valve timing and spark timing are scheduled to the optimal set-points 

for minimum fuel consumption. Two different CMV positions are investigated to assess 

the effectiveness of the CMV on the combustion stability. Then, the cylinder pressure 
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profiles are directly measured several tens number of times (in this study, 84 times) at 

every candidate engine speed and BMEP for calculating the COVIMEP.  

 

    (a)                                                                    (b) 

Figure 4-3  Scatter plots of experimental data at the CMV unblocked case: (a) between 

COVIMEP and 10-90 % burn duration; (b) between COVIMEP and (dP/d)max  

 

  (a)                                                                   (b) 

Figure 4-4  Scatter plots of experimental data at CMV blocked case: (a) between 

COVIMEP and 10-90 % burn duration; (b) between COVIMEP and (dP/d)max  
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The selected five parameters are analyzed to qualify the correlation between the 

COVIMEP and each parameter. The trend analysis results indicate that the 10-90% burn 

duration Δb and the maximum rate of pressure rise (dP/d)max show strong trends as 

shown in Figure 4-3 and Figure 4-4. Since both Δb and (dP/d)max are pressure related 

parameters, the Δb, which has smaller deviation, is selected as a COV related parameter 

to avoid redundancy. The other parameters show unclear trends or weak trends.  Since the 

combustion characteristics are highly influenced by the CMV positions, the COVIMEP 

trends are analyzed separately at different CMV positions.  

 

4.5 Regression Analysis 

 

To find the simplest regression equations while maintaining the same level of the 

regression accuracy, a systematic regression analysis procedure is proposed using 

statistical analysis methods. Since the structure complexity of the COVIMEP regression 

function is unknown, more than necessary number of parameters is initially used for 

determining regression equations. Then, the least significant parameter is removed until 

the simplest regression equations with the same accuracy are obtained. 

To find the best relations between variables, the experimental or simulation data are 

gathered about the explanatory variables of interest, and regression analysis is applied to 

estimate the response of the explanatory variables (independent variables) upon a target 

variable (dependent variable or response variable). The selection of explanatory variables 

is determined by assessing statistical significance.  

 



 

 

84 

 

4.5.1 General Regression Model and Regression Analysis Methods 

 

The first step of regression analysis is the selection of an adequate regression model. 

A regression model can be composed with several explanatory variables xi, a response 

variable y, and statistical relationships.  The statistical relationships can be simple linear 

functions, quadratic functions, or general functions.  The regression model has the 

coefficient of each regression function 0, 1, … , i, and the variance  
2
, which 

accounts for random scatter around the regression line.  These parameters are unknown 

and must be estimated from sample data.   

Except for very particular cases, experimental data can often be modeled by the 

general linear model that is also called the multiple regression models. Suppose that the 

response y is related to p explanatory variables x1, x2, …, xp as follows:  

y = 0 + 1 x1 + … + p xp +  ,             (4-3) 

where  is the random part of the model, which is assumed to be normally distributed 

with mean 0 and variance  
2
.  i.e.  ~ N(0,  

2
). The explanatory variables can be 

selected as a function of other variables. 

The estimator of y, E(y) is  

E(y) = 0 + 1 x1 + … + p xp + E() 

= 0 + 1 x1 + … + p xp.            (4-4) 

If N observations are collected in an experiment, equation (4-3) is available to each 

observation, and the form is  
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 yi = 0 + 1 xi1 + … + p xip + i ,   i = 1, …, N ,            (4-4) 

where yi is the ith value of the response and xi1, xi2, …, xip are the corresponding values of 

the p explanatory variables.  

Equation (4-4) can be expressed in matrix form as 

Y = X +  ,     (4-5) 

where y = (y1, …, yN)
T
 is the N × 1 vector of responses,  = (0, 1, … ,p)

T
 is the 

1)1( p vector of regression coefficients,  =(1, … , N )
T
 is the N × 1 vector of errors, 

and X, the )1(  pN model matrix, is given as 

X = 
















NpN

P

xx

xx









1

111

1

1

 .        (4-6) 

The regression analysis is a sequential procedure used to find the unknown 

coefficient vector .  If the least square criterion is used, the least square estimator ̂  is 

calculated by minimizing the sum of squared residuals. 

  
2

0 1 1

1

N

i i p ip

i

y x x  


     .   (4-7) 

The matrix notation of the equation (4-7) is 

   
TT

r r y - Xβ y - Xβ ,    (4-8) 

where the vector r is residual of response y.  
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When equation (4-8) is the minimum value, its partial derivative with respect to  

should be zero. 

2 ( ) 0


   


T
Tr r

X y X


.    (4-9) 

The solution to this equation is the least squares estimate which is 

1ˆ ( ) T T
X X X y .                                                   (4-10) 

After determining the regression model and finding the least square estimates, the 

significance of the least square estimates is assessed. The explanatory variables whose 

regression coefficients are not significant may be removed from the previous regression 

model. A more compact model with fewer variables is preferred as long as it can express 

the original data tightly.  

The way to assess the significance of individual explanatory variables is to 

investigate if the following null hypothesis 

H0 : j =  0                                                          (4-11) 

holds. If the null hypothesis (4-11) holds, the following t statistic is used 

 
1

2

ˆ

ˆ
j

jj

t






j

T
X X

,                                                (4-12) 

where 2̂  is the mean-square error (MSE), which is 

     2 ˆ ˆˆ / 1
T

N p     y X y X  ,                              (4-13)  
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where 1N p   is the degree of freedom of ˆy X . By the t-test, the j
th

 least square 

estimate is declared to be significantly different at level  , if 

1, / 2j N pt t    .                                                     (4-14) 

In addition to the t test, using a graphical method to judge effect significance is often 

preferred.  

 

 

  (a)                                                             (b) 

Figure 4-5  Normal probability plots of normal cumulative distribution function: (a) 

without transformed scale; (b) with transformed scale 

 

In this study, normal probability plots of residuals are used to assess the regression 

model and associated regression equations. The normal probability plots are calculated by 

the following procedures. The normality assumption of the errors can be assessed by the 

following method called a normal probability plot of residuals. Let r(1)  ≤ … ≤ r(N) denote 

the ordered residuals. If the errors were normally distributed, the plot of the cumulative 
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probabilities pi = (i−0.5)/N versus the ordered residuals r(i) 
should ideally be S-shaped, 

which is the shape of the normal cumulative distribution function as illustrated in Figure 

4-5 (a). By modifying the horizontal axis with adequate transformation, the ideal curve 

becomes a straight line on the transformed scale as shown in Figure 4-5 (b).  

Suppose that the residuals r(i) are normally distributed with the same variance.  Then, 

(r(i)) has a uniform distribution over [0,1].  The uniform distribution of (r(i)) implies 

that the expected values of (r(i)), i = 1, …, N, are spaced uniformly over [0,1].  Thus, the 

N points (pi, (r(i))) , pi = (i−0.5)/N, 
 should fall on a straight line. By applying the 

1
 

transformation to the horizontal and vertical scales, the N points 

 1

( )( ),i ip r ,    i  = 1, … , N                                       (4-15) 

must roughly appear as a straight line. If the response data deviates from a straight line 

calculated from the regression equations, the normality of the constant variance 

assumption for the errors is violated.  In this case, some variables should be introduced or 

removed to obtain better regression equations. 

 

4.5.2  Regression Models Decision 

 

Decision of adequate regression models is indispensable to find accurate regression 

equations. When considering the physics of the combustion process, a longer period of 

10-90% burn duration has a tendency to cause a higher combustion cyclic variation, and 

the combustion cyclic variation is always nonnegative. By assessing the trends of the 

response variable (COVIMEP) with respect to the explanatory variables, an adequate type 
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of function for regression models is determined as an exponential function. Figure 4-3 

and Figure 4-4 also show that the COVIMEP trends with respect to Δd correspond well to 

an exponential function.   

To introduce exponential functions as general regression models, the log 

transformation of a response variable is applied as 

0 1 1 p pln  + + +  y x x    .                                        (4-16) 

This log transformation is a special case of power transformations 

1
, 0

( )

ln , 0

y

z f y

y








 


  
 

 .                                        (4-17) 

First, the appropriateness of this transformation needs to be assessed to maintain the 

generality of the regression analysis. If the transformation does not change the error trend 

over all data, then its application to the raw data is adequate. The assessment of this 

transformation is accomplished by exploring the standard deviation of the transformed 

variable. 

The standard deviation of z can be derived from that of y as follows. Suppose a 

variable z = f (y) is a random variable defined as a smooth function of another random 

variable y, and y =  + . The standard deviation of y is proportional to some power of  

the mean  of y, i.e. y   
α
. Where  and y

2
 are the mean and variance of y 

respectively. Using a Taylor series expansion of f (y) around , 

( ) ( ) ( )( )z f y f f y      .                                  (4-18) 
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Then,  

2 2 2 2( ) ( ( )) ( ) ( ( ))z yVar z f Var y f        .                       (4-19) 

For the power transformation in equation (4-17), 1( )f      and equation (4-19) 

becomes 

1 1 1( )z y yf                    .                       (4-20) 

By setting the exponent of an equation (4-20) to be zero, z can be made constant 

regardless of the mean of y.  

When   = 0 and  = 1, the power transformation becomes a log transformation, and 

the variance of the transformed variable remains as a constant value.  Therefore, the log 

transformation can be applied without loss of generality since it does not affect the 

accuracy of the regression model. 

 

4.5.3 Regression Analysis Procedure and Results 

 

The objective of regression analysis in this study is to find the simplest regression 

equations for the COVIMEP with a sufficient accuracy. The least significant variable is 

removed while the regression equations can capture the trend of original data with the 

same level of accuracy. Since the CMV makes a huge impact on the combustion 

characteristics, regression analyses are separately executed at the unblocked and blocked 

CMV positions respectively.  
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The procedure to find the simplest regression equations is shown in Figure 4-6. The 

initially selected explanatory variables are (1) 10-90 % burn duration, Δd, (2) spark 

timing, (3) MAP, (4) engine speed, N, and (5) valve overlap period. Then, the response 

variable, the COVIMEP, is transformed using log transformation in equation (4-16) to 

formulate an adequate form of regression equations.  

 

Figure 4-6  Statistical regression analysis procedure to find the best regression equations 

for the COVIMEP  

 

First, regression equations are determined with all five nominated explanatory 

variables.  The significance of each variable is assessed using the t-test. Then, the 

regression equations are assessed using the normal probability plots of the residuals and 

the histogram of the residuals. When the residuals of the response variable data are 

tightly fitted on the straight line at the normal probability plots, and the histogram of the 
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residuals converges to the normal distribution or t-distribution, the determined regression 

equations are good enough to represent the response variable. Next, the least significant 

explanatory variable is removed to make the regression equations simpler. Then, the 

same regression analysis procedures with the remaining variables are performed again. 

When the resulting regression equations are inadequate to represent the original response 

variable with sufficient accuracy, the previous regression equations are considered as the 

best ones. 

 

Table 4-2  Regression analysis results of COVIMEP with two explanatory variables at the 

CMV unblocked case 

Predictor Coefficient  (j) t- value p-value 

Constant 1.9594 12.67 0.000 

10-90 % burn duration Δd (CA) 0.105891 22.55 0.000 

MAP (kPa) 0.005167 3.80 0.000 

 

 

    (a)                                                                  (b) 

Figure 4-7  (a) Normal probability plot of the residuals; (b) histogram of the residuals 

with two explanatory parameters: CMV unblocked case 
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Table 4-3  Regression analysis results of COVIMEP with two explanatory variables at 

CMV blocked case 

Predictor Coefficient  (j) t- value p-value 

Constant 1.0789 5.47 0.000 

10-90 % burn duration Δd (CA) 0.080034 11.28 0.000 

MAP (kPa) 0.006981 4.75 0.000 

 

 

     (a)                                                                  (b) 

Figure 4-8  (a) Normal probability plot of the residuals; (b) histogram of the residuals 

with two explanatory parameters: CMV blocked case 

 

Using this procedure, the final regression equations are determined with two 

explanatory variables, which are the 10-90% burn duration and MAP, regardless of the 

CMV positions. The resulting regression equations are expressed as  

COVIMEP = exp(1.96 + 0.106 × Δd  0.00517 × MAP )         (4-21) 

COVIMEP = exp(1.08 + 0.08 × Δd  0.00698 × MAP )                   (4-22)  

at the CMV unblocked case and CMV blocked case respectively.  

Tables 4-2 and 4-3 show the final regression analysis results with two explanatory 

variables. The p-values of the two variables are close to zero, which means that these 

variables are significant, and the tightness of the regression equations to the experimental 
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data of the COVIMEP is verified using the normal probability plots and histogram of the 

residuals as seen in Figures 4-7 and 4-8. Therefore, the resulting regression equations 

with the two explanatory variables of 10-90 % burn duration Δd and MAP are 

considered as the simplest regression equations for the COVIMEP.  

 

 

Figure 4-9  COVIMEP response surface predicted from the regression equation with two 

variables of 10-90 % burn duration and MAP at the CMV unblocked case 

 

 

Figure 4-10  COVIMEP response surface predicted from the regression equation with two 

variables of 10-90 % burn duration and MAP at the CMV blocked case  
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To investigate the trends of the COVIMEP at each CMV position, the estimated 

COVIMEP response surfaces, which are generated by the determined regression equations, 

are illustrated in Figure 4-9 and Figure 4-10. The longer burn duration and higher MAP, 

the higher COVIMEP at both CMV unblocked and blocked case. The resulting trends 

correspond well with the expectation accounting for the physics of combustion. When the 

CMV is blocked to increase combustion speed, the intensified turbulence into the 

cylinders induces the faster combustion speed, and stabilizes the combustion variability. 

The resulting regression equations enable to predict the COVIMEP in real time using 

substitute measurement of the MAP and the virtual sensing of the 10-90 % burn duration. 

 

4.6 Summary 

 

The methodology to predict the combustion stability in real time from substitute 

measurements is created by introducing statistical regression analysis procedures. Since 

the combustion stability is directly related to the engine smoothness and NVH, improving 

the combustion stability becomes very important to satisfy customer needs. To address 

the combustion stability in engine calibration procedures and transient control, a real time 

prediction of the COVIMEP is indispensable. The combustion stability is generally 

assessed in terms of combustion cyclic variability. The cycle-by-cycle variability of 

combustion can be quantified by COVIMEP, which is defined as the standard deviation in 

IMEP divided by the mean IMEP.  In general, the COVIMEP is calculated from several 

tens of cycles of measured cylinder pressure data, which is directly measured at the same 

operating conditions.  
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To develop a real time estimation methodology of the COVIMEP, a statistical 

regression analysis procedure is proposed by using substitute measurements and virtual 

sensing of combustion stability related parameters. After investigating combustion 

physics and related parameters, five explanatory variables are selected to find regression 

equations of the COVIMEP. Then, by exploring the trends of the COVIMEP with respect to 

each parameter, regression equation models are determined as exponential forms through 

the log transformation to the response variable.  

The objective of the proposed statistical regression analysis procedure is to find the 

simplest regression equations without degrading regression accuracy. To achieve the 

objectives, the least significant parameters are removed using the t-test and statistical 

assessment methods while the resulting equation accuracy is maintained. The determined 

final regression equations have two variables, Δd and MAP. Finally, the regression 

equations for the COVIMEP provide an indirect estimation method of the combustion 

cycle-by-cycle variability in real time for the optimal engine calibration and transient 

control objectives. 
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CHAPTER 5  

 

OPTIMAL CALIBRATION OF DUAL-INDEPENDENT VVT ENGINES WITH 

CHARGE MOTION CONTROL CONSIDERING FUEL ECONOMY AND 

COMBUSTION STABILITY: PART LOAD OPERATING CONDITIONS 

 

 

5.1 Introduction 

 

The improvement of engine performance and fuel economy while decreasing 

emissions are main research concerns of the automotive industry. The recent increase of 

the petroleum price pressures customers to buy cars that have better fuel economy, yet 

customers refuse to sacrifice performance in the name of fuel efficiency.  As one vehicle 

system level solution of these intractable problems, hybrid electric vehicles (HEV) was 

introduced by combining electrical motor and traditional internal combustion engine. At 

the same time, the internal combustion (IC) engine itself remains as the main stream in 

the automotive industry through continuous improvement by introducing new 

technologies. Among modern engine technologies, variable valve timing (VVT) system is 

widely used in a modern IC engine as one of the most promising technologies to improve 

overall engine performance through managing gas exchange process over the whole 

engine operating ranges without adding excessive system complexity. 
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In addition to the performance and fuel economy, engine quietness and smoothness 

have become other important problems to be improved for satisfying customer needs. 

The engine smoothness can be achieved by improving combustion stability. To improve 

the combustion stability, special inlet port designs for generating turbulence [10], dual 

spark plug systems [10], and variable valve lift (VVL) systems have been introduced [1-

8]. However, these technologies require significant cylinder head design change, or 

expensive actuators cost.  

In this study, a dual-independent VVT (di-VVT) engine with charge motion valves 

(CMVs) are selected as the target engine to achieve ultimate output power and better fuel 

economy as well as high combustion stability, after the intensive consideration of the cost 

effectiveness, product development time, and engine performance requirements. The di-

VVT system is composed of intake VVT devices and exhaust VVT devices that modify 

intake and exhaust valve timing independently. The di-VVT can adjust gas exchange 

characteristics over the whole engine operating ranges. The CMV is a flip valve device, 

which is located upstream of the intake runner before the intake valves. The CMV 

increases turbulence intensity of the intake air to enhance combustion speed. However, 

the additional system complexity by introducing new technologies increases the degree of 

freedom (DOF) of engines, thus, results in the difficulties in the experiment based engine 

calibration. 

 To resolve the difficulties in the experiment based calibration of high DOF engines, 

simulation based calibration methodologies have been used to achieve optimal engine 

calibration [14,16]. Optimal calibration of conventional engines has been achieved by 

experiment based procedures. In the experiment based calibration, the optimal actuator 
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set-points are obtained by searching the best engine operating conditions throughout all 

possible engine operating conditions. When addressing optimal calibration problems of 

high DOF engines, the number of possible engine operating conditions increases 

exponentially to the unmanageable point beyond the experimental capability in the test 

cell.   

To develop a simulation based engine calibration methodology, fast and accurate 

engine simulation tools are indispensable, because they reduce the engine calibration time 

and costs. Thus, high-fidelity simulation is presented by combining one-dimensional gas 

dynamics simulation and quasi-dimensional simulation to achieve moderately fast and 

sufficiently accurate simulation results. Although the high-fidelity simulation estimates 

engine responses accurately, it is inadequate for an optimal calibration procedure due to 

its relatively long calculation time. In addition, simulation based optimal calibration of a 

high DOF engine requires numerous calculations of objective functions to find the 

optimum at given engine operating condition. 

Thus, as an alternative of the high fidelity simulation, artificial neural networks 

(ANNs) are selected due to the fast computation time and the capability of capturing 

highly nonlinear input-to-output relationships.  The ANN models are introduced as 

surrogate engine models, and trained by training procedures using sufficient simulation 

data generated by the high-fidelity simulation tools. By using the fast surrogate engine 

models, optimal calibration of high DOF engines can be achieved without excessively 

long computation time. 

In this study, engine calibrations with multi objectives at part load conditions are 

proposed accounting for both fuel economy and combustion stability. In conventional 
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engine calibration problems, the best fuel economy at part load operating conditions is 

generally used as calibration objectives. Compared to the engine calibration problem at 

the WOT, the engine calibration at part load conditions is challenging due to the 

difficulty in predicting combustion characteristics accounting for various in-cylinder 

states. Moreover, the consideration of the combustion stability during engine calibration 

process requires sensing methodologies capable of estimating the combustion stability 

with fast computation and sufficient accuracy.  

The combustion stability is quantified using coefficient of variance in indicated mean 

effective pressure (COVIMEP). Since COVIMEP is calculated by measuring several tens 

cycle of in-cylinder combustion pressure profiles, COVIMEP cannot be measured in real 

time. To resolve the real time measurement problem, a virtual sensing of COVIMEP, which 

is developed from the statistical regression analysis, is incorporated to the objective 

function of the optimal calibration problem. By using engine ANN models and a virtual 

sensing of the combustion, a multi-objective engine optimal calibration framework is 

created to find the best actuator set-points. The optimal engine calibrations are achieved 

by optimizing the multi-objective cost function of the engine calibration problem 

accounting for the engine operating constraints. 

This chapter is organized as follows. First, an optimization frame work is introduced. 

Then, the objective function of the optimal calibration problem is formulated using 

inverse and regular ANN models, and statistical regression models. After the 

experimental design for generating high-fidelity simulation results are proposed, the 

ANN model training procedures and results are shown. Finally, optimal engine 

calibration results at part load conditions are provided and evaluated. 
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5.2 Optimization Framework 

 

The optimization framework, which was originally proposed by Bin Wu [16], is used 

to build a systematic procedure for the calibration of a di-VVT engine with the CMV 

over the whole engine operating conditions as illustrated in Figure 5-1. Over the whole 

engine operating ranges, optimal actuator set points are determined at every fixed engine 

operating condition, which is expressed by means of an engine speed and a break mean 

effective pressure (BMEP).  As the control variables at an engine operating condition, an 

intake cam lobe location (ICL), an exhaust cam lobe location (ECL), spark timing, and a 

charge motion valve (CMV) position are selected. These control variables at each engine 

operating condition determine engine responses.  

 

Figure 5-1 Optimization framework for calibrating independent control variables in high 

DOF engines 
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The optimal actuator set points are determined using an optimization algorithm based 

on nonlinear programming at every engine operating points. The optimization for finding 

the optimal actuator set-points is repeated until the whole engine operating points are 

fully covered. The complete sets of the optimal actuator set-points are used to build 

optimal actuator set-point maps for each actuator. 

The objective function of the optimal engine calibration problem in this study 

includes both a fuel economy objective and a combustion stability objective. The 

objective function must have short computation time while guaranteeing sufficient 

accuracy, because the entire engine operating points is large and the optimization 

algorithm requires a large number of evaluations of the objective function. Thus, a fast 

and accurate engine model must be used to create the objective function. 

 

 

Figure 5-2  Illustration of the procedure to build an objective function and constraints 
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Figure 5-2 illustrates the procedure to create the fast and accurate objective functions 

and applied constraints using the ANN models. The objective functions are created by the 

following steps: 

(1)  To guarantee the simulation accuracy, a high-fidelity simulation model is created 

by combining a 1-D gas dynamics simulation model and a quasi-D combustion 

model. 

(2)  The high-simulation is validated at several important engine operating points by 

using experimental data. 

(3)  The necessary simulation cases are determined using the Latin hypercube 

sampling (LHS) method to reduce the total number of experiments. The 

simulation cases must cover all possible combinations of actuator inputs and 

engine operating points. 

(4)  Simulation results are generated at selected simulation cases. 

(5)  ANN models, which are fast and accurate surrogate engine models, are trained to 

capture the highly nonlinear engine input-to-output relations.  

(6) Concurrently, other virtual sensing method may be used to estimate engine 

responses not easily measurable by experiments. 

(7)  The final objective functions are formulated by combining the ANN models and 

virtual sensors. 
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(a) 

 

(b) 

Figure 5-3  Two types of ANNs to estimate engine responses: (a) regular transfer 

function; (b) inverse transfer function 

 

The ANN models used for creating the objective function are categorized into the 

regular ANN model and the inverse ANN model as shown in Figure 5-3. The regular 

ANN model relates engine control inputs and engine measured states to engine responses. 

In contrast, the inverse ANN model uses at least one engine response as the input to the 

ANN model to create a transfer function for other engine responses. The regular ANN 

model is used as a virtual sensor to formulate the objective function, and the inverse 

ANN model is used to improve the computational efficiency during the optimization 

procedure.  
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(a)

 

(b) 

Figure 5-4  Illustrations of the procedure to find engine response at given engine speed 

and BMEP by using: (a) Regular ANNs; (b) Inverse ANNs 

 

To reduce the computation time for determining adequate actuator inputs and to 

achieve a desired BMEP, the inverse ANN model is used a shown in Figure 5-4 (b). In 

general, actuator set-points are defined at every engine operating point, which is 

determined by a given engine speed as a horizontal axis and a given break mean effective 

pressure (BMEP) as a vertical axis. When the regular ANN model is used, iteration is 

required to find adequate actuator control inputs to attain the given BMEP output as 

illustrated in Figure 5-4 (a). In contrast, the inverse ANN model enables to assign 

arbitrary actuator inputs for evaluating engine responses at a given BMEP without any 

iteration.  
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Figure 5-5  Structure of the objective function for the optimal calibration of actuators 

with the consideration of the COVIMEP 

 

The structure of the objective function including both fuel economy and combustion 

stability objectives is illustrated in Figure 5-5. While combustion stability is improved by 

activating the CMV, fuel economy tends to be deteriorated over wide ranges of the 

engine operating conditions, and vice versa. Thus, an optimization problem with multi 

objectives is introduced to find the best trade-off operations. The multi objective function 

is formulated by combining bsfc and the COVIMEP and by multiplying adequate weighting 

factors to each objective. The bsfc is evaluated using the inverse ANN model, and the 

COVIMEP is estimated by the regression equations with the 10-90% burn duration and the 

MAP inputs. The 10-90% burn duration and the MAP are estimated by an inverse ANN 

model and a regular ANN model respectively.  
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5.3 Training and Validation of the ANNs for Representing Engine Responses 

 

The ANN models to represent engine models are trained using high fidelity 

simulation results. The training data are generated to cover the whole possible engine 

operating conditions by using the LHS method to reduce the total number of simulations. 

The total number of simulations is elected to capture the complexity of the target engine 

responses with sufficient accuracy. After reviewing the engine responses, the total 

number of simulations is finally determined to two thousand, and the total number of 

simulations is enough to capture all possible engine responses within the concerning 

engine operation ranges. 

Then, the ANN models are determined by a systematic ANN model training 

procedure. The ANN model structure is determined as the combination of one input layer, 

two hidden layers with sigmoid functions, and one output layers with linear functions. 

The systematic ANN model training procedures are as follows:  

(1) Decide the ANN structure considering the convergence efficiency and 

complexity of the ANNs.  

(2)  Divide the data set generated by the high-fidelity simulation into a train data set, 

which is used to train the ANNs, and a test data set, which is used to validate the 

trained ANNs.  

(3)  Check the error criterion. When the calculated error exceeds the error criterion, 

increase the number of neurons in the hidden layers by one until the error 

criterion is satisfied. 



 

 

109 

 

By following the ANN model training procedures, the preferred best inverse ANN 

structures for the bsfc and the MAP are determined as a 6-12-12-1 and a 6-24-24-1 

structure respectively. The training results of the inverse ANNs are shown in Figure 5-6 

and Figure 5-7. The blue lines, depicted on the graphs, indicate 5 % error bounds, and 

small circles on the graph indicate the training data points. Overall data of the train and 

test sets are located within the error bound.  The preferred best inverse ANN models 

capture the input-to-output relations with the same accuracy of the high-fidelity 

simulation results.  Therefore, the determined inverse ANN models can be used as good 

fast surrogate models for estimating engine responses. 

To verify the ANN models, estimated bsfc maps by the ANN models are compared 

to the achieved bsfc maps by the high-fidelity simulation under part load conditions at 

both the CMV blocked and unblocked cases. The bsfc is calculated by 

3

3

(g/h) 2 10 60
(g/kW h)

BMEP(kPa) (dm ) (RPM)

f

d eng

m
bsfc

V N

  


 


  ,                      (5-1) 

where 
fm  is the mass fuel flow rate in g/h, Vd is the displaced or swept volume in dm

3
, 

and Neng is engine speed in RPM.  In this study, the bsfc is calculated from the mass fuel 

flow rate to avoid high nonlinearity close to the 0 kPa of the BMEP.  

Figure 5-8 shows bsfc maps achieved from both inverse ANN models and the high-

fidelity simulation results at both the CMV blocked and unblocked cases. Throughout the 

reviewed engine operating ranges, both bsfc contours coincide well both at CMV blocked 

and unblocked cases. Thus, the trained ANN models are capable of substituting the high-

fidelity simulation models without the loss of simulation accuracy. 
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Figure 5-6  Preferred best inverse ANN structure of the fuel mass flow rate, the training 

results with the train data set, and the test data set 

 

Figure 5-7  Preferred best inverse ANN structure of the MAP, the training results with 

the train data set, and the test data set 
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  (a)                                                                (b) 

Figure 5-8 Comparison of bsfc maps between high-fidelity simulation results and ANNs 

outputs: (a) CMV blocked case; (b) CMV unblocked case 

 

 

(a)                                                                (b) 

Figure 5-9  bsfc response surfaces with respect to the ICL and ECL at the fixed engine 

speed of 4000 RPM, and the BMEP of 300 kPa: (a) CMV unblocked case; (b) CMV 

blocked case 
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(a)                                                                (b) 

Figure 5-10  bsfc response surfaces with respect to the engine speed and the spark timing 

at the fixed ICL and ECL: (a) CMV unblocked case; (b) CMV blocked case 

 

Figure 5-9 and Figure 5-10 show the resulting bsfc surfaces with respect to ICL and 

ECL, and the resulting bsfc surfaces with respect to engine speeds and spark timings 

respectively. The bsfc surfaces show smooth response surfaces without any abnormally 

complex curvature that is caused by the overfitting of the trained ANN models. The 

smooth response surfaces enable to determine the global optima by using a gradient 

based optimization algorithm with a selection of an adequate initial point.  

 

5.4 Mathematical Formulation of Optimal Calibration Problems 

 

Optimal calibration problems with multi objectives are formulated by assigning 

subjective weights to each objective and summing up all objectives multiplied by their 

corresponding weight. Since the engine calibration under part load conditions is our 
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optimization problem, the fuel economy is selected as a prime objective. Then, 

combustion stability is introduced as an additional objective.  

The objective function has six inputs and one output. The six inputs are categorized 

into two groups. One group expresses engine operating points, which are engine speed 

(Neng) and engine torque (Teng, expressed as BMEP); and the other group handles actuator 

control variables, which are intake cam timing (ζIN), exhaust cam timing (ζEX), spark 

timing (σspark), and CMV position (LCMV). In addition to the objective function, actuator 

operating ranges are bounded. The CMV operating ranges are restricted below the engine 

speed of 3000 RPM and the BMEP of 400 kPa, because the COVIMEP becomes high only 

at low engine speeds and BMEP.  In addition to these constraints, the actuator operating 

rate is also restricted to prevent aggressive actuator operations. For the simplicity of the 

optimal calibration, the actuator operating rate restriction criteria are assumed as adequate 

constant values.  

The proposed optimization problem is solved by a two-step procedure. The first step 

is solving the single-objective problem in equation (5-3), whose objective is bsfc, at given 

engine operating point and the CMV position.  

        minimize  f = bsfc(δIN, δEX, ζspark | Neng, Teng, LCMV)                                    (5-3) 

subject to 

700 RPM  Neng  6000 RPM, 

ATDC 100 deg  δIN  ATDC 130 deg, 

BTDC 126 deg  δEX  BTDC 90 deg, 

ATDC -50 deg  ζspark ATDC 0 deg, 

700 RPM  Neng | LCMV,b  3000 RPM, 
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0 kPa  Teng |LCMV,b  400 kPa, 

1C





IN

engN
, 1CEX

engN





, 

2C





IN

engT
,  2CEX

engT





. 

where C1 and C2 are the constants of the limits of the actuator operating rate with respect 

to the engine speed difference and the BMEP difference respectively, LCMV,b is a blocked 

CMV position, and LCMV,ub is an unblocked CMV position. 

By solving the single-objective problem, the optimal actuator set-points of the ICL, 

ECL, and spark timing are determined at a given engine operating point and the CMV 

position. The determined optimal actuator set-points for achieving the best bsfc at a given 

CMV position (LCMV) and engine operating point are expressed as  

x
*
 = (δIN 

*
, δEX

*
, ζspark

*
)| (Neng, Teng, LCMV).              (5-4) 

The next step is solving the optimization problem with fuel economy and 

combustion stability objectives in equation (5-5) to determine the CMV position (LCMV) 

at a given engine operating point.   

minimize  f = w1×bsfc(LCMV | x
*
) + w2×COVIMEP(LCMV | x

*
)                 (5-5) 

 subject to 

700 RPM  Neng  6000 RPM, 

ATDC 100 deg  δIN  ATDC 130 deg, 

BTDC 126 deg  δEX  BTDC 90 deg, 
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ATDC -50 deg  ζspark ATDC 0 deg, 

700 RPM  Neng | LCMV,b  3000 RPM, 

0 kPa  Teng |LCMV,b  400 kPa, 

1C





IN

engN
, 1CEX

engN





, 

2C





IN

engT
,  2CEX

engT





. 

where w1 and w2 are adequate weighting factors, which are subjectively assigned to 

achieve the desired performance .  

 

5.5 Optimization Algorithm to Find Global Optima 

 

Whenever optimization problems are solved, the question of finding global optimum 

is a critical issue, but has not been clearly answered by the general optimization theory in 

a practical way.  The local optima, which are the smallest or largest values of the 

objective function in the local vicinity of these points, are found by using the gradient 

based optimization algorithm. The typical iteration formula in gradient based 

optimization algorithms is 

xk+1 = xk + ksk ,                                                     (5-6) 

where xk is the value of variable x at k+1
th 

step, k is a step length, and sk is a search 

direction.   
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An n-dimensional algorithm iterating according to equation (5-6) requires the 

descent property 0T

k k g s  for every k, while the gradient kg is not zero.  The value k is 

to ensure an acceptable decrease from fk to fk+1, that is, fk  fk+1 > 0.  Basically, k can be 

found by a line search method, and sk is found by various optimization methods.   When 

an objective function is non-linear with constraints, the sequential quadratic 

programming (SQP) is considered as the most efficient general purpose non-linear 

programming (NLP) algorithms today.  The SQP mimics the Newton’s method with 

constraints. In each iteration, the Hessian of the Lagrangian function is calculated. Then, 

the approximation is used to generate a QP sub-problem, whose solution is used to form a 

search direction for a line search procedure.   

The SQP algorithm procedure with line search is summarized as follows:   

(1)  Initialize 

(2)  Solve the quadratic programming (QP) to determine a search direction sk. 

(3)  Minimize a merit function along sk to determine a step length k. The merit 

function varies in different SQP implementations. 

(4)  Set xk+1 = xk + ksk      

(5)  Check for termination.  Go to 2 if not satisfied. 

To find the global optimum for the special case that the complexity of the response 

surface of the objective function can be approximately estimated, two step optimization 

procedures are proposed in this study. While knowing the response surface complexity, 

the global optimum can be found using gradient based optimization algorithms with an 

adequate initial point. The first step is to find an adequate initial point, and the second 
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step is to find a global optimum using the gradient based optimization algorithm. After 

analyzing the response surfaces with respect to actuator input variables, for example, the 

response surfaces shown in Figure 5-9 and Figure 5-10, an adequate initial point can be 

determined as the point, which makes the objective function be the maximum (or the 

minimum), out of adequately sampled initial point candidates. 

 

5.6 Optimal Calibration Results 

 

Optimal engine calibration results of a high DOF engine are achieved by solving 

optimization problems with multi objectives at every desired engine speed and BMEP. In 

the proposed optimization problem, subjective weighting factors for each objective 

should be determined to achieve the desired engine performance. For determining the 

weightings in equation (5-5), the COVIMEP maps at x
*
 at both the CMV unblocked as 

shown in Figure 5-11. The adequate weightings are determined by adjusting the ratio of 

weightings (w2/w1) until the CMV blocked region tightly covers the high COVIMEP 

regions shown in Figure 5-11. Thus, the determined weightings enable to remove the 

inferior COVIMEP region, thus, guaranteeing the combustion stability. 
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Figure 5-11  COVIMEP map at the optimum actuator set points under the minimum bsfc 

operation at the CMV unblocked case 

 

Figure 5-12 through Figure 5-14 show the determined optimal set-point maps of the 

each actuator with and without consideration of the combustion stability. The optimal set-

point maps determined using the objective functions with multi objectives show the 

extended CMV operating area as shown in Figure 5-12. When fuel consumption is 

considered as the only objective, the effect of the CMV on the fuel economy is not 

significant except in a very small engine operating region. Although the combustion 

speed and the combustion efficiency are higher at the CMV blocked position, the smaller 

throttle opening to maintain the target BMEP also increases the pumping loss, thus, 

results in little benefit in the fuel economy. In contrast, when the objective function 

includes the combustion stability accompanying the fuel economy, the CMV operating 

region is extended to remove the less stable combustion region.  

The optimal set-point maps of the ICL and the ECL are shown in the Figure 5-13 and 

Figure 5-14. The resulting valve timings enable to maximize the fuel economy at part 
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load operating conditions by increasing the valve overlap period until achieving high 

residual gas fraction while combustion stability is guaranteed. The high residual gas 

reduces the pumping loss by enabling more throttle valve opening to attain the same level 

of the intake air into the cylinders. Simultaneously, the high residual fraction reduces the 

combustion speed, resulting in low combustion efficiency and combustion instability. 

Thus, the optimal operating set-points of the di-VVT are determined considering the 

trade-off of between reducing pumping loss and maintaining combustion stability. 

Depending on CMV positions, optimal spark timing is significantly changed as shown in 

Figure 5-15 due to the significant combustion speed change.  

Figure 5-16 (a) compares the resulting bsfc from the optimal calibration result of the 

di-VVT engine with the fuel consumption objective and the resulting bsfc of the fixed 

valve timing engine. The resulting bsfc of the di-VVT engine improves the fuel economy 

noticeably, compared to the fixed cam timing engine, at low to medium engine speed 

ranges. When the combustion stability objective is considered accompanying the fuel 

consumption objective in the engine optimal calibration problem, the maximum bsfc 

degradation is up to 4% region as shown in Figure 5-16 (b), thus, the better fuel economy, 

while maintaining combustion stability, is achieved without the severe deterioration of 

fuel economy by introducing the CMV to the di-VVT engine. 
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    (a)                                                                 (b) 

Figure 5-12  Optimized CMV set-point maps: (a) with the fuel economy objective; (b) 

with the fuel economy and combustion stability objectives 

 

 

    (a)                                                                   (b) 

Figure 5-13  Optimized ICL set-point maps: (a) with the fuel economy objective; (b) 

with the fuel economy and combustion stability objectives  
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    (a)                                                                  (b) 

Figure 5-14  Optimized ECL set-point maps: (a) with the fuel economy objective; (b) 

with the fuel economy and combustion stability objectives 

 

 

 (a)                                                                   (b) 

Figure 5-15  Optimized spark timing set-point maps: (a) with the fuel economy objective; 

(b) with the fuel economy and combustion stability objectives 
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(a)                                                               (b) 

Figure 5-16  (a) Resulting optimized bsfc maps with optimized actuator set points and 

the CMV blocked area to improve COVIMEP; (b) bsfc deterioration due to the 

consideration of the combustion stability as an additional objective 

 

5.7 Summary 

 

The multi-objective optimal calibration of a di-VVT engine with CMVs is 

investigated to improve fuel economy and combustion stability simultaneously. The 

optimization framework is designed to calibrate the engine efficiently over the whole 

engine operating ranges. When addressing optimal calibration problems of high DOF 

engines, the size of the typical calibration problems increases exponentially to the 

unmanageable point beyond the experimental capability in the test cell. Thus, the 

simulation based calibration is used for the reduction of time and cost.  

To apply the simulation based calibration to a high-DOF engine, high-fidelity 

simulation is presented by combining a 1-D gas dynamics simulation model and a quasi-

D combustion simulation model. Then, the high-fidelity simulation results are validated 
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at several important engine operating points. Nevertheless, the relatively long 

computation time of the high-fidelity simulation is not adequate as a model for the 

optimal calibration. Thus, ANNs are selected as alternatives to the high-fidelity 

simulation tools due to the short computation time and sufficient accuracy. To achieve 

accurate engine inputs-to-output relations in the ANN models, a systematic training 

procedure is applied to train the ANN models. The data sets for training the ANN models 

are generated at the sampled cases by the LHS method to reduce the total number of 

simulations. To improve the computation efficiency, inverse ANN models are used in the 

formulation of the objective function.  

An optimization framework for the optimal calibration of a high DOF engine is 

proposed to achieve the optimal calibration for minimizing fuel consumption and 

improving combustion stability. By using the optimization framework, the optimal 

actuator set-points at every engine operating point are determined through the 

optimization algorithm devised for finding the global optimum. The devised optimization 

algorithm is composed of a two-step procedure, which is composed of a step for 

determining an adequate initial point and a sequential step for finding the optimum using 

SQP.  

In this study, the objectives of the optimal calibration include both fuel consumption 

and combustion stability objectives. The fuel economy is represented by bsfc, which is 

calculated from the engine output power and fuel consumption, and combustion stability 

is represented by COVIMEP, which is estimated using regression equations from 

experimental data. The objective function, which is formulated by combining bsfc and 
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COVIMEP multiplied by adequate subjective weights, is used as the cost function of the 

optimal calibration problem. 

Then, optimal actuator set-point maps are determined by solving the optimization 

problem with multi objectives over the entire concerning engine operation ranges. As 

results, the resulting actuator set-point maps improve fuel economy while maintaining 

combustion stability over the whole engine part load operating ranges, especially at low-

to-medium engine speed. The proposed simulation based optimal calibration enables to 

systematically calibrate high DOF engines while addressing different objectives.  
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CHAPTER 6  

 

DEVELOPMENT OF A CONTROL ORIENTED ENGINE MODEL  

USING HIGH-FIDELITY ENGINE SIMULATION  

AND ARTIFICIAL NEURAL NETWORKS 

 

 

6.1 Introduction 

 

The automotive industry has been making constant efforts to reduce fuel 

consumption and to improve the performance of engines incorporating numerous sensors 

and actuators. Engine designers are adopting new technologies at an accelerated pace to 

meet often conflicting market, regulatory, and societal demands. Among numerous new 

technologies, one of the most attractive and widely used is a variable valve actuation 

(VVA) system. The VVA enables the adjustment of gas exchange parameters for both 

part load conditions and full load conditions. However, these introduced systems always 

increase the degree-of-freedom (DOF) of an engine system and result in establishing 

complex engine calibration and control problems. 

Due to the introduced new technologies, the control problems of advanced engines 

become critical issues in achieving the whole potential engine performance improvement, 

especially in transient engine operating conditions.  Thus, many researchers have worked 

seriously to find the best control strategy to control complex modern engines. 
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Nevertheless, the optimum strategy for the transient response of the engine has not yet 

been clearly found due to the ultimate modeling difficulty caused by high non-linearity 

and complexity of the engine system and wide-ranging engine operating conditions. 

Transient control of conventional engines with low DOF has been achieved based on 

the feed forward (FF) control using steady-state calibration maps and several correction 

maps that are introduced to manage transient operation without severe performance 

degradation. As the system becomes more complex by introducing new devices, the 

transient responses of each actuator are highly interconnected. Thus, adequate control of 

actuators is necessary to achieve the target control objectives during transient engine 

operating conditions. Before devising control methodologies, creating accurate system 

models is essential to design controllers precisely.  

To predict engine transient response with sufficient fidelity within the limited 

computation power, mean value models (MVM) have been introduced as control oriented 

models (COM) composed of a manifold filling dynamics model, a rotational dynamics 

model, and an engine combustion model [3-5]. The validations of this type of the COM 

have been achieved in several previous studies [6-9]. Thus, the COM based on the 

MVMs show reasonably accurate input-to-output system behaviors accompanying low 

computation complexity.  

Although many COMs have been developed for the purpose of the transient control 

of different types of engines, few engine models cover the whole engine operating ranges 

considering detailed combustion process. Thus, engine parameters closely related to the 

combustion process have not been adequately treated during engine transient control by 

using already proposed control oriented engine models, although the combustion related 
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parameters are critical to the engine performance in modern engines. Thus, a 

sophisticated COM, which is able to address accurate engine combustion processes, is 

necessary for the purpose of transient control design. 

In this study, the high fidelity COM of a high DOF engine is created to capture both 

accurate combustion characteristics and engine dynamics under transient operating 

conditions. The high fidelity COM is created by using high-fidelity engine simulation 

results. The high-fidelity simulation tools consist of one-dimensional gas dynamics 

software and a quasi-dimensional combustion code. Since the high-fidelity simulation 

requires relatively long computation time, artificial neural networks (ANNs) are 

introduced as fast surrogate engine models. Since the ANN engine model cannot consider 

the system dynamics, a manifold dynamics model and a rotational dynamics model are 

augmented to the ANN engine static model to take into account the system dynamics.   

To verify the feasibility of high fidelity COMs, a dual-independent variable valve 

timing (di-VVT) engine accompanying the electronic throttle control (ETC) is selected as 

a target engine. The di-VVT device can adjust both the amount of inducted air in 

cylinders and the amount of residual gas in cylinders, thus, enables to improve the fuel 

economy and engine performance. The proposed COM of the target engine is validated 

by investigating the predicted engine responses at various transient engine operations.  
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6.2 Control Oriented Model of a High DOF engine 

 

In this study, the COM of a di-VVT engine with an ETC for engine transient 

operation is created by augmenting a linear manifold filling dynamics model, a linear 

actuator dynamics model to a nonlinear steady-state engine model as shown in Figure 6-1. 

The nonlinear steady-state engine model enables to predict accurate combustion 

processes, and other linear dynamics models enable to emulate system dynamics. The 

objective of developing COM is substituting a real engine while developing control 

algorithm. The COM must have low computational complexity while maintaining 

reasonable precision to be used for the control design. The COM has been widely used to 

design controllers and validate modeling fidelity [1-6].  

 

Figure 6-1  Control oriented model for engine transient operation using a non-linear 

steady-state engine model and linear dynamics models 

 

The proposed COM has four control inputs, and engine responses are predicted from 

the control inputs. The control inputs of the COM are a throttle control input (ζETC), an 

intake valve timing control input (ζIN,u), an exhaust valve timing control input (ζEX,u), and 

a spark timing control input (σspark,u). The linear actuator dynamics models determine the 
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actual actuator positions. The linear manifold dynamics model calculates the intake 

manifold pressure (Pm). The nonlinear steady-state engine model predicts the mass air 

flow rate into the cylinders (ϕcyl), engine torque (Teng), residual gas fraction (xres), and 

break specific fuel consumption (bsfc). The rotational dynamics model determines engine 

speed at a given external load. 

 

6.2.1 Manifold Filling Dynamics 

 

As a manifold filling dynamics model, a filling and emptying model of the plenum is 

used accounting for its simplicity and reasonable accuracy [3-6]. Although this model 

lacks the predictability of pressure wave in a manifold, this model shows relatively high 

accuracy for predicting the state of a manifold except extreme engine operation 

conditions such as high engine speed with the wide open throttle (WOT) condition.  The 

equations of the manifold filling dynamics are based on the equations of mass 

conservation, energy conservation, and the ideal gas law.  

1 1
i j

I J

in out

i j

m m m
 

   ,                (6-1) 

1 1

( )
i i i i j
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mc T Q c T c T m RT m
 

       ,                (6-2) 

m m m

m

m
P RT RT

V
  ,                          (6-3) 

where cp and cv are the constant pressure and volume specific heat, m is the mass within 

the manifold at any time,  Q is the heat flow into the manifold, R is the specific gas 



 

 

132 

 

constant, and Pm, Tm, and Vm are the manifold pressure, temperature, and volume 

respectively. At normal engine operating conditions, the isothermal assumption is 

appropriate because the intake manifold temperature is maintained almost constant at a 

steady-state engine operating condition. Thus, given the isothermal assumption, the 

manifold filing dynamics equations reduce into the following one first order ordinary 

differential equation. 

( )m m cylP k    ,  m
m

m

R T
k

V


 .                 (6-4) 

The value of km is calculated with the nominal manifold temperature and the 

manifold volume of the target engine. 

 

6.2.2 Mass Air Flow Rate through the Throttle Body 

 

The mass air flow through the throttle body is modeled by a quasi-steady model of 

the flow through an orifice. This model assumes that the flow is one-dimensional, steady, 

and compressible; and the working fluid is ideal gas.  The following equation is derived 

using the thermodynamic relations for isentropic expansion. 
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

 
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 
 ,                        (6-5) 

where is    defined by 
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where Ae is the effective flow area, and the subscripts in and out indicate the inlet flow 

and outlet flow respectively. For many working fluids with  1.4, the approximated 

relationship is proposed as follows.  
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 ,      (6-7) 

where g2( ) is a third order polynomial in the throttle angle.  

 

6.2.3 Mass Air Flow Rate into the Cylinders 

 

To predict the mass air flow rate into the cylinders (cyl), empirical relationships, 

which assume quasi-steady operating conditions, are incorporated to represent the mass 

air flow rate into the cylinders. Over the wide engine operating conditions, the mass air 

flow rate into the cylinders is affected by pulsating pressure waves, the intake manifold 

volume, the geometry of intake runners, and the valve timing. When the VVT system is 

used to an engine, the analytical prediction of the mass air flow into the cylinders with 

sufficient accuracy is highly challenging.  
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(a)                                                    (b) 

Figure 6-2  Preferred best ANN structure (5-18-18-1) of the mass flow rate at reference 

ambient pressure and the fitting quality: (a) training data set; (b) test data set 

 

The mass air flow rate into the cylinders of the VVT engines is predicted by an ANN 

model to capture the complex nonlinear response caused by actuator interactions. The 

ANN model is trained using high-fidelity simulation results. The mass air flow rate into 

the cylinders for a conventional fixed cam timing engine is expressed as a function of the 

intake manifold pressure (Pm) and the engine speed (Neng). In a di-VVT engine, valve 

timings (ζIN, EX) are introduced as additional control inputs. The different valve timing 

changes the amount of the residual gas fraction, thus, affect the mass air flow rate. Thus, 

the mass air flow rate in steady state operation is expressed as follows. 

( , , , )cyl eng m IN EXF N P   .           (6-8) 
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Figure 6-2 shows the determined ANN mode structure for estimating the mass air flow 

rate in steady state operation.  

 

6.2.4 Nonlinear Steady State Engine Combustion Model 

 

Combustion process related engine responses are modeled by using ANN models. 

These responses include engine torque (Teng), residual gas fraction(xres) and bsfc. A torque 

generation model is created using the trained ANNs with high-fidelity simulation results. 

The high-fidelity simulation assumes uniformly mixed fuel, air, and the residual gas, and 

a quasi-steady engine operation. The engine torque is generated by complex in-cylinder 

combustion process. The combustion process is highly interconnected with the 

combustion chamber geometry, the valve features, the thermodynamic properties of the 

unburned and burned gas, and the gas exchange processes. Thus, the high-fidelity 

simulation is used for the generation of training data to capture the complex combustion 

process.  

The variables of the torque generation model in this study are selected as engine 

speed (Neng), intake manifold pressure (Pm), intake valve timing (ζIN), exhaust valve 

timing (EX),  and spark timing (σspark). The individual cylinder torque generation is 

averaged over one engine event. At a normal engine operation, air-fuel ratio is 

maintained at stoichiometry to ensure the operation of a catalytic converter with the 

highest efficiency. The engine torque model is expressed as  

( , , , ,σ )eng eng m IN EX sparkT F N P   .        (6-9) 
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Using the same modeling methodology for the engine torque, residual gas 

fraction(xres) and bsfc are modeled using trained ANNs as presented in equations (6-10) 

and (6-11). 
 

( , , , ,σ )res eng m IN EX sparkx F N P        (6-10) 

( , , , ,σ )eng m IN EX sparkbsfc F N P        (6-11) 

 

6.2.5 Actuator Dynamics 

 

The dynamics of the di-VVT actuators are modeled as a first order system with a 

time constant for simplicity. Since VVT actuators are generally operated using hydraulic 

devices, the basic actuator operation is characterized as an integration action. Although 

the time constant of actuators depends on engine speed and load, the change of the time 

constant is considered as insignificant with respect to the engine operating conditions for 

the simplicity of simulation. 

ζ 1

ζ 1

actual

commanded act s



,            (6-12) 

where ζactual is actual actuator response, ζcommanded is actuator command. ηact is a time 

constant of actuator dynamics. The time constant ηact changes at different engine 

operating conditions. Nevertheless, the time constant is assumed constant for simplicity 

of analysis. 

 



 

 

137 

 

6.2.6 Rotational Dynamics 

 

For the purpose of transient engine control, the rotational dynamics model of an 

engine is simply determined by considering effective inertia, external load, and engine 

output torque. The effective inertia includes engine rotating inertia and effective vehicle 

inertia. The external loads include engine friction, vehicle drag, and vehicle friction. The 

engine output torque is calculated at the current engine operation condition. 

eff

( )60

2 I

eng eng extdN T T

dt 


 ,                    (6-13) 

where Neng is the engine speed in rpm, Teng is the engine output torque, Text is the external 

loads on the crankshaft, and Ieff is the effective inertia including the engine and vehicle. 

 

6.3 Nonlinear Steady State Engine Model  

 

The combustion model under steady-state operation is created using high-fidelity 

simulations and artificial neural network models to achieve fast computation time and 

accurate prediction of combustion characteristics.  

 

6.3.1 High-Fidelity Simulation Tools 

 

High-fidelity simulation tools consist of the 1-D gas dynamics model and the quasi-

D combustion model. The 1-D gas dynamics model which is one part of the high-fidelity 

simulation tools is created with the commercial software Ricardo WAVE including all air 
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flow paths from the air box to the exhaust tail pipe.  Figure 6-3 shows the gas dynamics 

simulation model of the target engine.  The piping and manifolds of the intake and 

exhaust systems are modeled by using duct and junction components.  

 

Figure 6-3  One-dimensional gas dynamics simulation model built with the Ricardo 

WAVE [13,14] 

 

Accompanying the 1-D gas dynamics model, the quasi-D combustion model is used 

to predict combustion process over the whole possible engine operating conditions with 

high accuracy. The quasi-D combustion model is based on mass and energy conservation 

and phenomenological models for turbulence, combustion and heat transfer in a cylinder. 

The combustion sub-model is the turbulent flame entrainment [15-21].  The combustion 

model is complemented by a single-zone turbulence model, which calculates crank-angle 

resolved global turbulence throughout the whole cycle. Flame propagation is assumed to 

move spherically from an ignition point.  The governing differential equations are as 

follows. 

The rate of mass entrainment is  
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( )e
u f L

dm
A u S

dt
   ,                     (6-14) 

where me is the mass entrained, t is time, ρu is density of unburned charge, Af is the flame 

front area, u' is turbulent intensity, and SL is laminar flame speed.  Since the magnitude of 

u' is usually much larger than the laminar flame speed, the rate of mass entrainment 

strongly depends on the flame front area and turbulence.  Therefore, the exact calculation 

of the flame front area is critical to improve simulation fidelity. 

 

Figure 6-4  Turbulent energy cascade model to estimate turbulent flow 

 

The rate of burning is estimated by the characteristic velocity and length scale.  The 

length scales of turbulence structure are divided into macroscale L (or integral scale), 

Taylor microscale λ, and Kolmogorov microscale ε.  The macroscale is the measure of 

the size of a large energy containing flow structure.  The Taylor microscale is useful in 

characterizing a turbulent flow. It is defined by relating the fluctuating strain rate of 

turbulent flow field to turbulence intensity. The Kolmogorov scale ε defines the smallest 

structures of flow where small-scale kinetic energy is dissipated via molecular viscosity. 
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The rate of burning is  

( ) /b
e b

dm
m m

dt
  ,                        (6-15) 

and 

LS


  ,                    (6-16) 

where mb is the mass of burned products, and λ is the Taylor microscale. 

The turbulent model consists of a zero-dimensional energy cascade. Figure 6-4 

illustrates the energy cascade model. Mean flow kinetic energy K is supplied to the 

cylinder through the valves. Then, the mean kinetic energy K is converted to turbulent 

kinetic energy k through a turbulent dissipation process. The turbulent kinetic energy is 

converted to heat through viscous dissipation.  The mean and turbulent kinetic energy 

flows into and out of the cylinder through intake valves and exhaust valves. The 

equations for a zero-dimensional energy cascade are as follows. 

21

2

e
i i

mdK
m v P K

dt m
  


  ,                     (6-17) 

emdk
P m k

dt m
  


,               (6-18) 

where im  and em  are mass flow rates into and out of the cylinder respectively. vi is the 

gas flow velocity into the cylinder.  ε is the dissipation rate of turbulent kinetic energy per 

unit mass by assuming turbulence is isotropic. P is the production rate of turbulent kinetic 

energy and calculated from the equation for turbulence production over flat plates.  K is 

the mean kinetic energy and k is the turbulent kinetic energy. 
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6.3.2 Nonlinear Steady State Engine Model Using Artificial Neural Network 

Model 

 

The ANN models are used to predict nonlinear steady state engine responses. Since 

the total number of engine operating points is large, the engine model for calculating the 

objective function should have fast calculation speed accompanying high accuracy to 

reduce time and cost during the engine calibration process. Figure 6-5 illustrates the 

procedure to create a non-linear steady state engine model. 

 

Figure 6-5  Illustration of the procedure to build a non-linear steady state engine model 

by training ANNs 
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A fast non-linear steady state engine model is created by the following steps: 

 

(1) High-fidelity simulation tools are created by combining a 1-D gas dynamics 

simulation model and a quasi-D combustion model, to guarantee the simulation 

accuracy. 

(2) The high-simulation tools are validated at several important engine operating 

points by using experiment data. 

(3)  The experimental design is determined using the Latin Hypercube Sampling 

(LHS) method to reduce the total number of experiments. The experiments 

should represent all possible combinations of actuator inputs and engine 

operating points. 

(4)  Simulation results are generated by the experimental design. 

(5)  ANN models, which estimate engine responses and states, are trained to 

substitute the high-fidelity simulation tools, which require long computation time, 

by using the high-fidelity simulation results.  

(6)  The engine responses and states are estimated using the ANN models. 

 

6.4 Simulation Results of the COM of the di-VVT Engine 

 

The created COM of a high DOF engine for transient operation is investigated at 

several engine operating conditions. To assess the transient response of the COM, two 

types of engine transient response tests are selected. These transient tests are: (1) the test 
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of engine transient responses with step throttle inputs at fixed engine speeds, and (2) the 

test of engine transient responses with step valve timing inputs at fixed engine speeds.  

Figure 6-6 shows the simulation results of engine transient responses with step 

throttle inputs. When a step throttle input is assigned to an engine, the mass air flow rate 

through the throttle body increases instantaneously. Then, intake manifold pressure starts 

to gradually increase until the mass flow rate into the cylinders becomes equal to the 

mass flow rate through the throttle body.  

 

    (a)                                                                  (b) 

Figure 6-6  Transient responses of the COM by step throttle inputs: (a) fixed engine 

speed of 2000 rpm, fixed ICL of ATDC 115 deg, fixed ECL of BTDC 111 deg, and fixed 

spark timing of BTDC 30 deg; (b) fixed engine speed of 4000 rpm, fixed ICL of ATDC 

115 deg, fixed ECL of BTDC 111 deg, and fixed spark timing of BTDC 30 deg 
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In equation (6-4), ( )m m cylP k    ,  the mass flow rate into the cylinder ϕcyl  in 

equation (6-8) can be expressed as 

 

2

v a d eng

cyl

V N 
         (6-19) 

by a quasi-steady approximation and a constant temperature assumption. Where εv is 

volumetric efficiency, ρa is the air density, and Vd is the displaced cylinder volume per 

cycle.   

From the ideal gas law 
,m m a m mP V m RT ,  equation (6-4) can be written as  

2

m v d
m m

m

dP V N
P k

dt V



  ,           (6-20) 

where Vm is the volume of the intake manifold and ma,m is the air mass in the intake 

manifold. Although both εv and ϕcyl weakly depend on Pm, equation (6-20) would be a 

first-order equation for Pm with time constant ηMAP = 2Vm/ εvVdNeng. Thus, equation (6-20) 

becomes  

1m m
m

MAP m

dP RT
P

dt V



   ,        (6-21) 

Therefore, the intake manifold pressure response is similar to the response of the 

first order system by throttle inputs. As engine speed increases, the time constant ηMAP 

becomes smaller because the engine speed Neng is shown in the denominator in the time 

constant equation. In Figure 6-6 (a) and (b), the time constant of the intake manifold 
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pressure response becomes small at higher engine speed of 4000 rpm, thus, tracking the 

desired Pm more rapidly.      

Next, transient engine responses with step valve position inputs are investigated. 

Figure 6-7 and Figure 6-8 show the simulation results of the COM with step valve 

position inputs at a fixed engine speed, a fixed throttle angle, and fixed spark timing. 

Because the mass air flow rate into cylinders, ϕcyl, is a function of valve timings as 

expressed in equation (6-8), the ϕcyl is changed with respect to the change of valve 

timings. Thus, the change of valve timings induces the change of intake manifold 

pressure, BMEP, and bsfc at steady state.  

 

Figure 6-7  Transient responses of the COM by step ICL inputs at the engine speed of 

2000 rpm, the throttle angle of 20 deg, the ECL at most advanced position, and the spark 

timing of BTDC 30 deg 
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Figure 6-8  Transient responses of the COM by step ECL inputs at the engine speed of 

2000 rpm, the throttle angle of 20 deg, the ICL at most advanced position, and the spark 

timing of BTDC 30 deg 

 

The mass air flow rate into the cylinders is not the same as the amount of the mass 

flow rate into the cylinder during transience. The intake manifold pressure is changed 

until the mass air flow rate into the cylinders becomes equal to the mass air flow rate 

through the throttle valve. The difference of the mass air flow rate with respect to the 

target mass air flow rate causes BMEP peaks and bsfc peaks during transience.  

 

6.5 Summary 

 

As engine system introduces many new technologies to improve engine performance, 

engine system control for achieving the best hardware performance requires intensive 

work for control design, especially on the fast transient engine operating conditions. 

Transient control of conventional low DOF engine has been realized using the FF control 
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referring to steady-state calibration maps and correction maps. However, the increased 

system complexity of a high DOF engine demands advanced control design to achieve 

the target control objectives. While applying any advanced control methodology, creating 

accurate engine models is the first step for control design. However, the ultimate non-

linearity of the engine system causes a high difficulty in creating a sufficiently reliable 

COM.  

In this study, the high fidelity COM is developed as a solution for resolving the 

difficulty in predicting precise engine responses by combining engine sub-models. The 

COM includes a manifold filling dynamics model, an actuator dynamics model, a 

rotational dynamics model, and a steady state non-linear engine combustion model. 

Among those sub-models, a nonlinear engine combustion model is the essential part for 

capturing the complex combustion process. While creating a nonlinear engine 

combustion model, simulation based approaches is more appropriate for the high DOF 

engine system with the flexibility of predicting complex engine system responses.  

The engine combustion models are created by using a high-fidelity engine simulation 

tools and ANNs. Then, the engine steady state combustion models are augmented to take 

into account for the system dynamics. The developed high fidelity COM can capture not 

only the engine input-to-output relations over the whole possible engine operating points 

but also the system dynamics. The created COM is assessed by the transient responses of 

the engine at several different engine operating conditions. In addition, the developed 

high fidelity COM provides a good prediction of engine responses with arbitrary engine 

control inputs over the whole possible engine operation points. 
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CHAPTER 7  

 

NONLINEAR MODEL PREDICTIVE CONTROL OF  

DUAL-INDEPENDENT VARIABLE VALVE TIMING ENGINES WITH 

ELECTRONIC THROTTLE CONTROL 

 

 

7.1 Introduction 

 

Many new technologies have been introduced and applied to modern internal 

combustion engines to improve fuel economy and performance. Simultaneously, the 

control problems of a high degree-of-freedom (DOF) engine become critical issues for 

achieving the whole potential engine hardware performance, especially under the 

transient engine operating conditions.  Many studies have been investigated to find the 

best control strategy to control complex modern engines. Nevertheless, clear and explicit 

transient control strategies of engines have been still intensively researched due to the 

non-linearity and wide-ranging operating conditions of engines. Because of the difficulty 

in developing transient control strategies, feed forward (FF) control has been used as a 

main control methodology for both steady-state and transient operating condition. FF 

control is generally achieved by using steady-state calibration maps and several 

correction maps.  
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For the convenience of the control design in a high DOF engine system, torque-

based control was firstly proposed by the Robert Bosch Co. [1], and subsequently 

reviewed in several papers [2-4]. In the torque-based control, driver demands are 

interpreted as torque demands, and a desired engine operating point is determined based 

on engine speed and interpreted torque demand.  In general, actuator set-point maps are 

calibrated based on engine speed and torque in steady state operating conditions, and are 

used for the reference of engine control.  However, since the engine operating conditions 

are highly transient under various driving conditions, an adequate control of actuators is 

necessary to achieve the target control objectives during transient engine operating 

conditions.  

During fast transient engine operating conditions, unfavorable engine responses are 

caused by the slow actuator response time.  As a simple solution, limiting the actuator 

rate was proposed by Stefanopoulou et al. [5].  A more comprehensive way to control 

VVT devices to resolve the unfavorable engine operating conditions was proposed using 

model based controllers [6]. However, these proposed control methods did not provide 

the optimal control under transient operation.  

One method to improve engine performance under transient condition is to account 

for transient engine operation while calibrating engines [7,8]. However, for high DOF 

engines, addressing all possible combinations of engine transient operating patterns is 

exceptionally difficult in a transient engine calibration process. Moreover, the resulting 

calibration maps require large amount of memory to store the information for all possible 

engine transient operation cases.  



 

 

152 

 

To reduce the difficulty of the off-line transient engine calibration, stochastic 

approach was recently introduced to find optimal transient engine operating conditions. 

The optimal engine operating conditions are adaptively determined considering driving 

style after gathering the sufficient information of the driving style in real time [9-11]. 

However, this transient calibration based on stochastic processes cannot find the optimal 

engine transient operating conditions instantly whenever driving cycles are changed. 

Moreover, while searching feasible engine operating domains to gather sufficient 

information for probability matrices, engine operations can become unstable when 

engines run close to the marginally stable operating conditions. 

Various control methods have been applied to the transient control of high DOF 

engines. When a small number of actuators are used to control engines, classical 

proportional-integral-derivative (PID) control is widely used to improve the engine 

transient performance [12]. However, the classical PID methods do not guarantee 

satisfactory performance in multi-inputs-multi-outputs (MIMO) system. To deal with 

MIMO system, linear quadratic gaussian (LQG) control was introduced [13]. However, 

the nonlinear engine system must be linearized at every concerned equilibrium point. 

While applying state feedback control without the linearization procedure, a nonlinear 

turbo engine model was directly used to manage transience [14]. However, the optimal 

gain to achieve desired performance must be tuned iteratively because of the strong 

nonlinearity in the engine model. As another approach to handle system nonlinearity 

directly, lyapunov function based nonlinear control was applied for transience control of 

engines [15,16]. However, system performance specifications cannot be determined 
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without the subjective decision of control gains. The subjective decision procedure 

requires intensive calibration processes to design adequate controllers. 

To overcome the difficulties of the transient control of modern engines, model 

predictive control (MPC) [17-19] has been introduced as one of the most promising 

control methodologies. The basic idea of the MPC is solving an optimal control problem 

with a finite horizon at every time step in real time. Since the MPC requires high 

computation power, the MPC is initially applied to a chemical process control whose 

dynamics is relatively slow [17]. Nowadays, the tremendous expansion of computing 

power provides the possibility of using the MPC for the fast dynamic systems such as 

internal combustion engines. The MPC was recently applied to the control of diesel 

engines [20,21], the torque tracking and air-to-fuel ratio (AFR) regulation problems [22], 

the control of homogeneous charge compression ignition (HCCI) engines, and the control 

of variable cam timing (VCT) engines [23]. However, most of the previous studies used 

simplified combustion model while the control of engine transient operation with the 

MPC. Hence, previous research rarely considered in-cylinder states, such as residual gas 

fraction and emission, for the control of high DOF engines. By considering the detailed 

engine combustion process and the in-cylinder engine states, more sophisticated engine 

transient control can be realized to achieve the control objectives. Moreover, the previous 

MPC researches did not explicitly determine the control horizon and the prediction 

horizon to achieve the desired transient responses and to guarantee the system stability.  

In this study, the nonlinear model predictive control (NMPC) methodology is 

selected as a key control methodology to manage engine transient responses (1) to 

achieve fast torque responses, (2) to rejecting unfavorable emissions, and (3) to track the 
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optimal actuator responses tightly. While designing the NMPC, the control horizon and 

the prediction horizon are determined as short as possible by introducing the dead-beat 

control concept. The short control horizon and prediction horizon enable to reduce the 

computation time. Using the determined control and prediction horizon, the transient 

responses of the engine by the NMPC are assessed under fast transient engine operating 

conditions.  

While designing the NMPC controller, an accurate engine predictive model is 

required to improve control accuracy. The engine model for the NMPC must be capable 

of predicting engine transient responses with sufficient fidelity with the limits of 

computation power. Thus, a mean value model (MVM) is introduced as a control 

oriented model (COM). The MVM is composed of a manifold filling dynamics model, a 

rotational dynamics model, and an engine combustion model [24-26]. The validity of the 

MVM has been provided in several previous studies [27,28]. The MVM enables to 

capture the input-output behavior of the system with reasonable accuracy and low 

computation complexity. The COM of a high DOF engine is created to capture both 

accurate combustion characteristics and engine dynamics under transient operating 

conditions. Then, the created COM is used as a predictive model of a high DOF engine 

for the NMPC algorithm under fast transient engine operating conditions 

This chapter is organized as follows. First, the transient control problem of a high 

DOF engine is introduced. Then, the COM as a predictive engine model is created. The 

NMPC is formulated to find the optimal control inputs of all actuators simultaneously. 

The control horizon and prediction horizon are determined to achieve dead-beat control 
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of engine responses and smooth operations. Finally, resulting transient responses of the 

target engines using the NMPC are analyzed at different operating conditions. 

 

7.2 Transient Control Problem 

 

The acceleration pedal is the unique driver control input to achieve a desired engine 

torque. In the modern high DOF engine control, current vehicle speed and an assigned 

acceleration pedal position are interpreted as an engine torque demand for the 

convenience of the control design of a high DOF engine system [1]. Using the desired 

engine torque at a current engine speed, actuator control commands are determined using 

the pre-calibrated actuator set-point maps.  For the control purpose, actuators are 

categorized as a fast actuator and a slow actuator depending on actuator response 

characteristics. When the actuator responses are not fast enough, the actual actuator 

response delay must be accounted for under transient conditions. 

Figure 7-1 illustrates transient control problems originating from the actuator 

response delays under transient operating conditions. When the actuator response is fast 

enough to follow the desired reference actuator set-points, the desired engine 

performance is achieved under fast transient operation. In contrast, delayed actuator 

responses deteriorate the system performance. The deterioration is caused by the 

discrepancy of the actuator responses from the reference actuator set-points. Thus, when 

transient control problems are addressed, real time compensation of the discrepancy 

between the actual actuator responses and the reference actuator set-points must be 

achieved to improve the system transient performance. 
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Figure 7-1  Transient control problems arise from finite actuator response time under 

engine transient operating conditions 

 

Unfortunately, few clear methods for treating engine transience have been introduced 

because of the difficulties in creating accurate and fast engine models. According to the 

difficulties, the FF control algorithms have been widely used in the automotive industry. 

When the FF based control is used in the transient control of engines, intensive 

calibration considering the wide ranges of engine transient operating conditions is 

indispensable to achieve the desired transient performance and to guarantee smooth 

engine operation. In addition, increasing DOF of the engine system significantly extends 

the total efforts of the calibration process. To resolve the difficulties under transience, the 

NMPC is selected as one of the most promising control methodologies for the transient 

control of a high DOF engine. 
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7.3 Control Oriented Model (COM) of a High DOF Engine 

 

The target engine for the transient control design is a dual independent variable valve 

timing (di-VVT) engine with an electronic throttle control (ETC). In this study, the COM 

of a di-VVT engine with an ETC for engine transient operation is created using the MVM 

by considering a linear manifold filling dynamics model, a linear actuator dynamics 

model, and a nonlinear steady-state engine model as shown in Figure 7-2. The MVM has 

been widely used to design controllers and validate modeling fidelity [5,13,24-26].  

 

Figure 7-2  Control oriented model for engine transient operation using a non-linear 

steady-state engine model and linear dynamics models 

 

The control inputs of the COM are an ETC control input (ζETC), an intake valve 

timing control input (ζIN,u), an exhaust valve timing control input (ζEX,u), and a spark 

timing control input (σspark,u). Linear actuator dynamics models predict the actual actuator 

positions. A linear manifold dynamics model calculates the intake manifold pressure (Pm) 

using the mass flow rate through the throttle body (ϕthrt) and the mass flow rate into the 

cylinders (ϕcyl). Using actuators control inputs and Pm, the non-linear steady-state engine 
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model predicts ϕcyl, engine torque (Teng), residual gas fraction (xres), and break specific 

fuel consumption (bsfc).  

 

7.4 Nonlinear Model Predictive Control (NMPC) 

 

Model Predictive Control (MPC), also referred as moving horizon control or 

receding horizon control, is one of the most general methods that are capable of 

considering transient control problems in a time domain. The main advantages of MPC 

are : (1) the formulation of control problems intuitively and flexibly; (2) the use of the 

advantage of optimal and feedback (FB) control for a general nonlinear system; (3) the 

achievement of the advantage of FF control; (4) the use of a non-linear model for 

prediction; (5) the consideration of feedback by re-initialization for each optimization run; 

(6) the capability of handling states constraints. However, the MPC requires high 

computation efforts to solve an optimization problem at every sampling time, and full 

state measurements. Nevertheless, since the MPC is the only control methodology that 

combines the advantage of optimal and feedback control for general nonlinear systems 

with constraints, the MPC is still attractive in dealing with control of highly nonlinear 

systems. Research on improving computation efficiency is not considered in this study. 

The MPC is categorized into a linear MPC and a nonlinear MPC (NMPC). The linear 

MPC uses a linear plant model to predict the system dynamics, although the dynamics of 

the closed-loop system is nonlinear. The linear MPC has been successfully used in the 

chemical industry in quite a mature manner. However, since many systems, including 

engine systems, are inherently nonlinear, linear MPC often barely capture the plant 
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dynamics with sufficient accuracy. Thus, the consideration of system nonlinearity is 

required to describe system dynamics.  

 

7.4.1 Basic Principle of Nonlinear Model Predictive Control 

 

The basic ideas of the NMPC are:  

(1) Explicit use of a nonlinear plant model to predict the plant nonlinear response 

at future time instants (horizon). 

(2) Calculation of the control sequence to minimize an appropriate objective 

function. 

(3) Use of the receding strategy to incorporate feedback control characteristics. 

In other words, the prediction horizon is displaced toward the future. 

The methodology of the MPC family is characterized as solving a finite horizon 

open-loop optimal control problem in real time subject to system dynamics and 

constraints involving states and controls. Figure 7-3 illustrates the basic principle of the 

MPC. The future outputs for a determined horizon TP, called the prediction horizon, are 

predicted at each time instant ti using the plant model. The control inputs for a 

determined horizon TC (in general, TC ≤ TP), called the control horizon, are determined by 

optimizing an established open-loop performance objective function. If the objective 

function is linear and quadratic without constraints, an explicit solution can be obtained. 

Otherwise, an iterative optimization methodology must be used. Measurements of system 

states are achieved at every sampling time δ.  
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Figure 7-3  Principle of Model Predictive Control 

 

When the plant model is perfect and no disturbance exists, the established control 

inputs at time ti can be applied for all time t ≥ ti. However, in general, because of 

inaccurate plant models and external disturbances, the real system behaves differently 

from the predicted response. Thus, some feedback mechanisms are necessary to 

compensate modeling inaccuracies and disturbances. To incorporate feedback 

characteristics, the first control input of the established open-loop control inputs 

sequences at time ti is applied to the plant until the next measurements become available 

at the next sampling time ti + δ. When the next measurements become available, the 

prediction horizon and control horizon are shifted to the new time instant at ti+δ. Then, 

new control inputs for the control horizon are determined by optimizing an established 

open-loop performance objective function. 
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7.4.2 Mathematical Formulation of NMPC 

 

The stabilization problem of a nonlinear system is given in the following differential 

equations 

( ) ( ( ), ( )) t f t tx x u ,  0(0) x x          (7-1) 

subject to the input and state constraints of the form 

( ) , 0  t U tu ,  ( ) , 0  t X tx ,        (7-2) 

where ( ) ntx R is the vector of system states and ( ) mtu R is the vector of system 

control inputs. For simplicity, the equilibrium point of the system in equation (7-1) is at 

the origin (f (0,0) = 0). In addition, all states x of the system in equation (7-1) can be 

measured or estimated. Usually, the finite horizon open-loop optimal control problem is 

mathematically formulated as follows. 

ˆ ( )
ˆ ˆ ˆmin ( ( )) ( ( ), ( ))  




  

i P

i

t T

i P

t

E t T F d
u

x x u                    (7-3) 

                           subject to 

ˆ ˆ ˆ ˆ( ) ( ( ), ( )), ( ) = ( )  
i if t tx x u x x ,              (7-4a) 

 C
ˆ( ) U, , T    i it tu ,               (7-4b) 

 C C P
ˆ ˆ( ) ( T ), T , T       i it tu u ,               (7-4c) 

 P
ˆ( ) X, , Ti it t    x ,           (7-4d) 

P
ˆ( T )it  x ,             (7-4e) 
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where x̂  and û  denote predicted engine states and future control inputs respectively, ti 

denotes the sampling instants, TP and TC are the prediction and the control horizon with 

TC ≤ TP, and U and X are given by the form 

U { R | }m

min max   u u u u ,                (7-5a) 

X { R | }n

min max   x x x x .    (7-5b) 

The function F is the stage cost that specifies the desired control performance with 

the consideration of the desired system performance. The simplest and most often used 

form is the standard quadratic form as follows. 

T Tˆ ˆ ˆ ˆ ˆ ˆ( , ) ( )  ( ) ( ) ( )S S S SF Q R     x u x x x x u u u u ,                    (7-6) 

where xs and us denote given set-points, and Q and R denote positive definite, symmetric 

weighting matrices. The weighting matrices Q and R are determined by the required 

system performance. Ω, so called the terminal region, is used as the terminal equality 

constraint to guarantee NMPC stability. 

The most intuitive way to guarantee the stability of the NMPC is to use an infinite 

horizon cost (TP ∞). When the system is linear and has no constraints, the optimal 

control problem becomes the same as the LQ problem. Since the system is nonlinear and 

computation time needs to be short, the NMPC uses a finite horizon length. Because the 

finite horizon NMPC does not guarantee the stability of the closed loop system, the 

terminal region constraint in equation (7-4e) is considered. In addition, the terminal 

penalty term ˆ( ( ))i PE t Tx  is included in the cost function in equation (7-3). This 

approach, which includes the terminal penalty term, is called the quasi-infinite horizon 
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NMPC approach. In the quasi-infinite horizon NMPC approach, the terminal penalty 

term E and the terminal region Ω are chosen as 

( ) TE Px x x ,    { R | }n T P    x x x          (7-7) 

with the state feedback u = Kx using a quadratic stage cost T T( , )  F Q R x u x x u uwith 

Q ≥ 0 and R > 0. The basic idea of the quasi-infinite horizon NMPC is to approximate the 

infinite horizon optimal control problem by introducing the terminal cost E(x) to the 

finite horizon optimal control problem. The quasi-infinite horizon NMPC procedure is 

summarized as follows. 

Step 1 : Solve the linear control problem based on the Jacobian linearization (A,B) of 

equation (6-1) to obtain a locally stabilizing state feedback u = Kx. 

Step 2 : Choose a constant κ[0, ∞] satisfying κ <  ̶ λmax(AK) and solve the Lyapunov 

equation 

(AK + κI)
T
P+P(AK + κI) =  ̶ (Q+K

T
RK)         (7-8) 

to get a positive definite and symmetric matrix P. where AK = A + BK. 

Step 3 : Find the largest possible α1 defining a region 

1 1{ R | }n T P    x x x ,                  (7-9) 

such that Kx  U, for all x Ω1  X. 

Step 4 : Find the largest possible α  (0, α1] specifying a region 

{ R | }n T P    x x x ,                (7-10) 

such that the optimal value of the following optimization problem is non-positive: 
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max { ( ) κ }T T TP P P   
x

x x x x | x x ,                     (7-11) 

where φ(x) = f(x, Kx) – AKx. This procedure determines E and Ω that stabilize the 

linearized closed loop system at the origin.  

When the above procedure is considered for a high DOF engine with wide operating 

ranges, the determination of E and Ω at every possible engine operating point is 

extremely laborious. The number of cases for the Jacobian linearization (A,B) at every 

possible engine operating point increases exponentially with respect to the increase of 

system DOF. Thus, a different approach is used for the stability of the closed loop system 

in this study.  

Suppose that an infinite horizon NMPC procedure can be achieved, then, the cost 

function is expressed as 

ˆ ˆ ˆ ˆ ˆ ˆ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))

i p

i i i p

t T

t t t T

J F d F d F d        

 



    x u x u x u .        (7-12) 

By comparing equations (7-3) and (7-12), the second integral term  

ˆ ˆ( ( ), ( ))

i pt T

F d  




 x u  can be considered as ˆ( ( ))i PE t Tx . If the second integral term 

is small enough to be negligible, the cost function can be expressed as 

ˆ ˆ ˆ ˆ( ( ), ( )) ( ( ), ( ))

i p

i i

t T

t t

J F d F d     



  x u x u ,        (7-13) 

Thus, the prediction horizon Tp needs to be adequately determined to validate equation 

(7-13).  
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The transient response of a high DOF engine is governed by the slowest system 

dynamics, which is the manifold dynamics for the di-VVT engine. Thus, estimated the 

time constant of manifold dynamics can determine the prediction horizon that enables to 

force  ˆ( ( ))i PE t Tx  to be negligible. 

In this study, the resulting mathematical formulation of the NMPC is reduced as 

follows. 

ˆ ( )
ˆ ˆmin ( ( ), ( ))

i P

i

t T

t

F d  



 u
x u                              (7-14) 

                            subject to 

ˆ ˆ ˆ ˆ( ) ( ( ), ( )), ( ) = ( )  
i if t tx x u x x ,              (7-15a) 

 C
ˆ( ) U, , T    i it tu ,               (7-15b) 

 C C P
ˆ ˆ( ) ( T ), T , T       i it tu u ,               (7-15c) 

 P
ˆ( ) X, , T    i it tx ,           (7-15d) 

 

7.4.3 Determination of Control Horizon and Prediction Horizon 

 

The short control horizon and prediction horizon are necessary to reduce the 

computation time. The short control horizon decreases the number of control parameters 

that are used as the variables of the online optimization process. In addition, the short 

prediction horizon also helps to reduce the computation time during the online 

optimization. 
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The engine control signal is assumed to be generated at every engine cycle. The 

control problem can be treated as a discrete control system with a sampling period of 

2
seg

e cyl

n

n





 ,                             (7-16) 

where n indicates a two-stroke (n=1) or a four-stroke engine (n=2), ncyl is the number of 

cylinders of the engine, and ηseg is the sampling time in seconds, usually referred to as the 

segment time.  

The cycle time, which is the time for one complete cycle, is defined by the 

expression 

cycl cyl segn   .                 (7-17) 

Because control inputs are determined at every cycle time, the sampling time δ of the 

NMPC is chosen as the cycle time ηcycl.  

The manifold dynamics of a di-VVT engine is modeled as a first-order system, and 

the time constant of the manifold dynamics ηMAP  is estimated as  

ηMAP = 2Vm/ εvVdNeng ,              (7-18) 

where εv is volumetric efficiency, Neng is the engine angular speed [rad/sec], Vm is the 

manifold volume, and Vd is the displaced cylinder volume per cycle.   

Since the engine control signal is generated at every cycle time, the control system 

can be considered as a discrete control system. Figure 7-4 illustrates the system responses 

depending on the different discrete control methodologies. When the FF control inputs 

are accurate enough to achieve the desired set point, the system response converges 



 

 

167 

 

gradually to the desired set point as shown in Figure 7-4 (a). The setting time ts with 5% 

criterion is generally expressed as  

ts = 3·ηsys =  3·ηcycl .             (7-19) 

 

(a) 

 

(b) 

 

(c) 

Figure 7-4  Comparison of the first order system responses: (a) feed forward control; (b) 

dead-beat control at an ideal case; (c) dead-beat control with presence of errors, such as 

modeling discrepancy and noise factors 
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When FB control is used for a first order discrete system, the system response 

converges to the set point within one time step as shown in Figure 7-4 (b). Thus, a dead-

beat like optimal control is achieved. However, when the control inputs to the system for 

the optimal control have slight errors caused by modeling discrepancy or various noises, 

the system cannot achieve the desired responses within two steps as shown in Figure 7-4 

(c). The system responses shown in Figure 7-4 (c) are more plausible in general system 

controls, because the modeling error, input noise, and processing noise always exist. In 

this study, the shortest control horizon length is initially determined as two times of cycle 

time (2·ηcycl), which is the shortest control sequence for the dead-beat like optimal control. 

Accompanying the control horizon, the prediction horizon should be determined as 

short as possible to reduce the computation effort. A long prediction horizon improves 

the closed loop system stability. However, the prediction horizon length should be 

shortened while guaranteeing the system stability and maintaining sufficiently smooth 

system responses. When the order of the time constant of the manifold dynamics ηMAP and 

the cycle time ηcycl is assumed same, the finite setting time is initially determined as 3·ηcycl 

for the first order stable system shown in equation (7-19).  

 

7.5 Control Design using a FF Controller and a NMPC Controller 

 

The objectives of the control design of the target engine are: (1) to achieve fast 

torque responses, (2) to rejecting unfavorable emissions, and (3) to track the optimal 

actuator responses tightly. To achieve these control objectives, the slowest system 

dynamics must be adequately managed. In a conventional spark ignition engine, manifold 
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dynamics is the slowest system dynamics. Manifold dynamics is mainly affected by the 

mass flow rate through the throttle valve and into the cylinders.  

The desired mass flow rate is achieved using the NMPC accompanying the FF 

control. At steady state operation, the engine is controlled by the FF control using the 

steady state optimal calibration maps. Under transient operation, the NMPC is used to 

compensate the performance degradation from engine transient responses besides the 

feed forward control. The NMPC can simultaneously manage all control variables to 

achieve the desired performance. 

 

7.5.1 Overview of the Control Structure 

 

Figure 7-5 illustrates a schematic diagram of the engine control strategies during 

engine operations. In view of the computational load, applying the NMPC for 

determining control inputs at every cycle is not the best control strategy. Thus, engine 

control strategies are divided into two cases. When the engine transience is negligible, 

only the FF controller is used to generate control inputs. In contrast, when the engine 

transient response becomes significant, the NMPC starts to be used to generate control 

inputs. In the NMPC algorithms, the weighting matrices Q and R in equation (7-6) are 

differently determined depending on the desired performance in an acceleration case and 

a deceleration case.  
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Figure 7-5  Controller schematic diagram for the control of high DOF engines under 

transient operating conditions using a feed forward controller and a NMPC controller 

 

7.5.2 NMPC Controller Design for the di-VVT Engine with the ETC 

 

Figure 7-6 illustrates a schematic diagram of an NMPC structure. Driver’s demand is 

interpreted as a desired engine torque. The reference control inputs of each actuator are 

determined by the optimally calibrated actuator set-point maps at desired engine torque 

and current engine speed. These reference control inputs are generally used as FF control 

inputs.  
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Figure 7-6  Schematic diagram of a NMPC structure 

 

The NMPC controller is modeled using MATLAB
®

 Simulink
®
. The simulink model 

calls a sub-routine, which is coded using an S-function, to solve a finite horizon open-

loop optimal control problem for finding compensation control signals. The sub-routine 

includes the nonlinear transient engine model, which enables to predict the target system 

transient responses. The determined compensation control signals accompanying the FF 

control signals enable to improve engine transient responses. The controller inputs of the 

NMPC are categorized into:  

(1) Reference actuator set-points, which are the reference intake valve timing ( S

IN ), 

reference exhaust valve timing ( S

EX ), reference spark timing ( S

spark ), and 

reference ETC position ( S

ETC ). 

(2) Reference engine responses, which are the reference residual gas fraction ( S

resx ), 

and reference engine torque ( S

engT ).  

(3) Current engine responses, which are the current residual gas fraction (xres), 

current intake valve timing (ζIN), current exhaust valve timing (ζEX), current 

engine torque (Teng), and current intake manifold pressure (Pm). Current engine 
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responses are directly measured using sensors, or estimated using virtual sensing 

methodology.  

Under transient engine operations, the NMPC controller determines control inputs 

for improving engine transient responses. The control objectives are achieved by tight 

tracking of the desired engine torque S

engT  and residual gas fraction S

resx  respectively. The 

reference actuator set-points are determined by the steady-state engine calibration results. 

Current engine states and responses, which are xres, ζIN, ζEX, Teng, and Pm, are updated as 

the inputs to the NMPC controller. The updated current engine states and responses are 

used to reinitialize the optimization problem of the NMPC at every current time ti.  

The inputs and responses used in the optimization problem of the NMPC are 

expressed by using set-point centered normalized coordinates as follows.
 

 
T

1 2,x xx , and , , ,
T
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The super script denotes the set-point of variables. By choosing an adequate 

prediction horizon and using equation (7-20), equation (7-14) can be expressed as 

T T( ( ), ( )) ( )  ( ) ( ) ( )      F Q Rx u x x u u ,               (7-21) 
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where Q and R are positive definite symmetric matrices. Furthermore, control inputs 

limitations from actuator saturation are considered as constraints of the optimization 

problem. The constraints are expressed as u  [ulb, uub], where ulb = [460, 245, −50, 0], 

and uub = [490, 275, 0, 80]. The control input vector u is assumed to be assigned to the 

engine at every cycle. The engine state and response vector x is predicted using the 

transient engine model from current time ti to the prediction time ti+Tp.  

 

7.6 Simulation Results 

 

7.6.1 Influence of the Length of the Control Horizon 

 

To verify the effect of the length of the control horizon, two different control horizon 

length cases are investigated under the same torque demand sequence and the same 

engine speed condition. Figure 7-7 shows the simulation results comparison between the 

FF control and the NMPC at different control horizon lengths.  Compared to the FF 

control, the NMPC controller improves the transient torque response regardless of the 

control horizon length as shown in Figure 7-7. When the control horizon is Tc = 1·ηcycl, 

torque response is only slightly improved compared to the FF control results. In contrast, 

when the control horizon is Tc = 2·ηcycl, desired torque response is achieved within two 

cycle time as proposed in Figure 7-4 (c).  
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Figure 7-7  Comparison of simulation results by using the FF controller and the NMPC 

controller at the engine speed of 3000 rpm: (1) Tc = 2·ηcycl,  Tp = 3·ηcycl; (2) Tc = 1·ηcycl,  Tp 

= 3·ηcycl 

 

7.6.2 Influence of the Length of the Prediction Horizon 

 

The length of the prediction horizon is related to the closed loop system stability. 

Although a longer prediction horizon improves the system stability, a longer prediction 

horizon also requires longer computation time. To reduce the computation time, the 

prediction horizon is determined as short as possible while the closed loop system 

stability is guaranteed and system responses are smooth enough.  

The influence of the length of the prediction horizon is investigated by changing the 

prediction horizon. Figure 7-8 shows the simulation results of the NMPC with respect to 

the different prediction horizon. When the prediction horizon is Tp = 2·ηcycl, small 

fluctuation is shown during transience, although the amount is negligible. To achieve 
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smooth responses and short computation time, the prediction horizon of the NMPC for 

controlling the target engine is determined as Tp = 3·ηcycl. 

 

Figure 7-8  Comparison of simulation results by using the FF controller and the NMPC 

controller at engine the speed of 3000 rpm: (1) Tc = 2·ηcycl,  Tp = 2·ηcycl; (2) Tc = 2·ηcycl,  Tp 

= 3·ηcycl; (3) Tc = 2·ηcycl,  Tp = 4·ηcycl  

 

7.6.3 Simulation Results under Fast Transience 

 

Transient responses control by the NMPC is investigated under fast transient torque 

demand at constant engine speed using the control horizon Tc = 2·ηcycl and the prediction 

horizon Tp = 3·ηcycl. Without adequate transient control, slow torque responses, especially 

at low engine speed, are not compensated, and NOx emission peaks may appear under the 

fast transience. The NOx emission peaks are caused by the less residual gas fraction than 

the amount of the optimal residual gas fraction.  

The NMPC determines the optimal control inputs of all actuators simultaneously to 

achieve the desired actuator responses and the desired system dynamics as shown in 
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Figure 7-9 (a) and Figure 7-10 (a). The actuator positions are controlled within the 

operating limits. Regardless of the engine speed, the engine torque is precisely controlled 

to the target torque within two cycle time as shown in Figure 7-9 (b) and Figure 7-10 (b). 

The resulting system responses track the target responses within one cycle time. The 

residual gas fraction tracks the target value without any severe excursion, and peaks of 

the emission index of NOx are reduced significantly by the NMPC. 

 

  (a)                                                                   (b) 

Figure 7-9  Comparison of simulation results between FF control and NMPC control at 

the constant engine speed of 1500 rpm with Tc = 2·ηcycl, and Tp = 3·ηcycl: (a) control inputs 

and actuator responses; (b) system responses 
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  (a)                                                                    (b) 

Figure 7-10  Comparison of simulation results between FF control and NMPC control at 

the constant engine speed of 3000 rpm with Tc = 2·ηcycl, and Tp = 3·ηcycl: (a) control inputs 

and actuator responses; (b) system responses 

 

Next, the transient control using the NMPC is investigated under fast transience 

accounting for vehicle dynamics with the control horizon of Tc = 2·ηcycl and the prediction 

horizon of Tp = 3·ηcycl. The FF control inputs are determined based on the desired torque 

demand and current engine speed. While determining the optimal control inputs by using 

the NMPC, the engine speed is assumed to be constant because the engine speed change 

is much slower than other system dynamics. The resulting engine responses with the 

consideration of vehicle dynamics follow the desired responses within two engine cycles 

as shown in Figure 7-11. Thus, the quasi-steady engine speed assumption with the 

consideration of vehicle dynamics is valid for the NMPC.  
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(a)                                                                    (b) 

Figure 7-11  Comparison of simulation results between FF control and NMPC control 

considering vehicle dynamics around 3300 rpm with Tc = 2·ηcycl, and Tp = 3·ηcycl: (a) 

control inputs and actuator responses; (b) system responses 

 

7.7 Summary 

 

As a powerful transient control tool for a highly non-linear system, the NMPC is 

introduced into the engine transient control problem. Before designing the NMPC based 

controller, the COM is created by combining a non-linear steady state engine combustion 

model, and linear system dynamics models. The target engine of this study incorporates 

di-VVT actuators and an ETC. Because the target engine is too complex to simulate 

using high-fidelity simulation tools, the non-linear engine model is created using the 

trained ANN model due to its short calculation time and the capability of capturing 
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highly nonlinear input-to-output relations. Then, the linear system dynamics models are 

augmented to consider the system dynamics. The system dynamics models include a 

manifold dynamics model, actuator dynamics models, and a rotational dynamics model. 

The created COM is assessed by the transient responses of the engine at several different 

engine operating conditions.  

The NMPC shows the advantages of the FF control and the FB control, even though 

the NMPC requires high computational load. The characteristics of the FF control in the 

NMPC allow faster transient response of the system than any other type of FB control. 

This faster response is achieved through the finite horizon optimization procedure using 

predicted responses of the system. The finite horizon optimization problem is formulated 

by considering the desired control objectives. Subsequently, the cost function is created 

by introducing adequate positive definite weighting matrices, which are exclusively 

selected depending on the accelerating condition and decelerating condition.  

The control horizon and prediction horizon are determined to achieve the dead-beat 

like optimal control as well as stable and smooth engine responses. The determined 

control horizon is Tc = 2·ηcycl and the prediction horizon Tp = 3·ηcycl. Simulation results for 

both the constant engine speed case and the considering vehicle dynamics case show that 

the NMPC controller significantly improves engine responses under fast transient 

operations. The NMPC optimally simultaneously adjusts the actuator control inputs to 

achieve the control objectives. The developed NMPC procedure can be universally 

applied to various different control problems. 
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CHAPTER 8  

 

CONCLUSIONS AND FUTURE WORK 

 

 

8.1 Dissertation Summary 

 

This dissertation proposed the entire procedure to achieve the optimal calibration and 

the best transient control of a high DOF engine. The first step of the procedures is 

creating accurate engine simulation tools (called as high-fidelity simulation tools) to 

capture engine responses with sufficient accuracy. The high fidelity simulation consists 

of a one-dimensional (1-D) gas dynamics simulation model and a quasi-dimensional 

(quasi-D) combustion model. The accuracy of simulation is improved by tuning the key 

parameters and calculating the flame front area map accurately. The developed high-

fidelity simulation can capture engine responses with a high accuracy. 

Then, as prerequisites of the optimal calibration and transient control problems, 

virtual sensing methodologies are developed by using (1) artificial neural networks 

(ANNs), and (2) statistical regression analysis. First, a virtual sensing methodology of the 

mass air flow rate is proposed for a dual independent variable valve timing (di-VVT) 

engine with charge motion valves (CMVs). The CMV is a special inlet air flow control 

device to improve combustion stability. To realize the virtual sensing methodology, 



 

 

184 

 

artificial neural network (ANN) is proposed as a preferred solution because of its 

capability of capturing highly nonlinear input-to-output relations. A specific virtual 

sensor structure is presented to account for ambient pressure compensation. To generate 

data sets for training ANNs, high fidelity simulations are used as substitutes of 

experiments. Then, the optimal ANN structures are determined by using the systematic 

training procedure. The virtual sensing results at different engine operating conditions 

show significant effects of the CMVs on the mass air flow rate, and also provide trends of 

the mass air flow rate depending on various actuators set-points. 

As another important virtual sensing topic, an indirect prediction methodology of 

combustion stability based on the statistical analysis of substitutive measurements is 

proposed. First, from the analysis of combustion related parameter, adequate combustion 

stability related parameters are determined. Then, trends of the COVIMEP are investigated 

by assessing experimental data. To find adequate relations between the COVIMEP and 

other measurable parameters, statistical regression analysis procedures are used. A 

regression model is determined from the trend analysis. Finally, the COVIMEP is 

characterized by a function of 10-90% burn duration and manifold absolute pressure 

(MAP) around the minimum spark advance for best torque (MBT). The resulting 

regression equations enable to estimate the combustion stability in real time for the 

optimal calibration and transient control of engines. 

Next, simulation based multi-objective optimal calibration of high DOF engines is 

investigated using the developed virtual sensing methodologies. As an internal 

combustion engine system adopts more new technologies, engine optimal calibration 

problems become a critical issue to achieve the whole engine hardware potential. As one 



 

 

185 

 

objective of the engine calibration at part load operating condition, fuel economy has 

been widely used. In addition to the fuel economy objective, combustion stability should 

be considered as additional objective in order to guarantee vehicle drivability and driving 

feel. Because of the difficulty in direct measuring combustion stability, the combustion 

stability has been rarely considered in the most engine calibration problems. In this 

dissertation, combustion stability objective as well as fuel economy objective is 

considered while calibrating high DOF engines at part load conditions. The engine 

calibration is achieved using simulation based procedure. First, high-fidelity engine 

simulation tools are created to capture engine responses over the whole engine operating 

points. The calculated engine response results are used to train artificial neural network 

(ANN) models, which are used as fast surrogate engine models. Then, an optimization 

framework is devised for efficient high-degree-of-freedom engine calibrations. Objective 

functions, which consider both fuel economy and combustion stability at part load 

conditions, are created by combining several ANN models. The optimal engine operating 

set-points are determined by solving multi-objective constrained optimization problem 

over the concerned engine part load operating conditions. As results of the optimal engine 

calibration, the fuel economy is improved over the engine part load operating points, 

especially in low-to-medium engine speed, accompanying the improvement of 

combustion stability. 

In addition to the steady-state optimal engine calibration, to achieve the best 

hardware performance under fast transient engine operations, a nonlinear transient 

control methodology is proposed by using nonlinear model predictive control (NMPC). 

For the precise control of high DOF engines under transience, an accurate control 
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oriented model (COM) of high DOF engines is essential. Thus, a high fidelity COM is 

developed to capture the ultimate non-linearity caused by the complex combustion 

process. The steady-state engine combustion models are created by using high-fidelity 

engine simulation and artificial neural networks (ANNs). Then, the steady-state 

combustion models are augmented to account for system dynamics. The developed high 

fidelity COM can capture not only the engine input-to-output relations over the whole 

possible engine operating points but also the system dynamics. In addition, the developed 

high fidelity COM provides a good prediction of engine responses with arbitrary engine 

control inputs over the whole possible engine operation points.  

Then, nonlinear model predictive control (NMPC) is designed to deal with the 

dynamic response of a high-DOF engine.  It combines the advantages of both feed 

forward control and feedback control considering constraints. While designing the 

NMPC, the length of control horizon and prediction horizon are determined to achieve 

the dead-beat control and to eliminate or diminish transient excursions. The NMPC 

significantly improves engine responses under high transient operations by adjusting each 

actuator control inputs simultaneously to achieve the control objectives.  

 

8.2 Summary of Contributions 

 

The contributions of this dissertation are 

(1) High-fidelity models, which are composed by a 1-D gas dynamics model and a 

quasi-D combustion model, are extended to consider the additional DOF of an 

engine system, especially in the consideration of the charge motion valve 
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(CMV). Moreover, the simulation accuracy of quasi-D combustion model is 

largely improved by increasing the accuracy of the flame front area calculation 

through formulating the combustion chamber geometry with a finite element 

method (FEM) modeling technique. 

 

(2) Virtual sensing methodology for the estimation of the mass air flow rate is 

extended to account for the flexible intake system. The designed virtual sensor 

for the mass air flow rate enables to predict sufficiently accurate air mass flow 

rate into the cylinder without the direct measurement of intake port pressure 

behind the CMV. The estimated air mass flow can be used for the feedback 

control of air-to-fuel ratio under engine transient operation. 

 

(3) Methodology to indirectly predict the combustion stability in real time is 

developed by using statistical regression analysis of substitutive measurements. 

Adequate parameters are selected to capture the characteristics of combustion 

stability. Then, the best regression equations of the combustion stability with 

10-90% burn duration and manifold absolute pressure (MAP) are determined by 

the proposed statistical regression analysis procedure.  

 

(4) Engine optimal calibration methodology with multi objectives is proposed with 

the fuel economy objective and the combustion stability objective at part load 

conditions. The proposed simulation based optimal calibration framework 

improves the efficiency of the engine calibration procedure by introducing the 
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inverse ANN models. Adaptation of weights associated with respective 

objectives allows characterization of the trade-off between fuel economy and 

combustion stability at near idle conditions. 

 

(5) Control oriented model (COM) of high DOF engines is developed to accurately 

predict engine dynamic responses. To create the COM, the steady-state engine 

combustion model is created using the trained ANNs, and linear system 

dynamics models are added to the combustion model.  Since the created COM 

can capture the combustion process with sufficient accuracy, the parameters 

directly related to the combustion process can be treated as the performance 

variables for transient control design. 

 

(6) Non-linear Model Predictive Control based transient control methodology of 

high DOF engine is proposed to achieve dead-beat like optimal control within 

one cycle time. The proposed methodology combines a FF controller and a 

NMPC controller. The FF controller determines control inputs based on the 

steady state calibration maps, and the NMPC controller eliminate excursions 

from the steady-state optimum under transient conditions by adjusting 

trajectories of actuator commands. This control methodology can be extended to 

the control problems of any high DOF engine. 

 

 

 



 

 

189 

 

8.3 Future Work 

 

In this dissertation, the entire procedure for calibrating a high DOF engine and 

transient control of a high DOF engine are developed. In reality, the implementation of 

the NMPC controller to mass produced engines is limited because of the demanding high 

computation power. To resolve the computation power limitation, two different 

approaches must be considered in the future, which are (1) creating fast enough transient 

engine model that can be used in real time optimization, and (2) developing fast enough 

optimization algorithm that can find desired optimum within given short computation 

time.  

 


