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3.19 Simulated standard deviation, σ̃ê, for the system defined in (3.44) . . . . . . . . . . 60

3.20 S-root locus for the system defined in (3.44) . . . . . . . . . . . . . . . . . . . . . . 61

3.21 Ke(K) as K tends to infinity for the system defined in (3.44) with α = 0.53 . . . . 62

3.22 S-root locus for the system defined in (3.44) with α = 0.53 . . . . . . . . . . . . . . 62

3.23 S-root locus for the system defined in (3.44) with C(s) as in (3.49) . . . . . . . . . 64

3.24 I0 as a function of K for Example 3.16 . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.25 S-root locus for Example 3.16 with α = 0.8 . . . . . . . . . . . . . . . . . . . . . . 66

3.26 Tracking quality when K = 20 for Example 3.16 with α = 0.8 . . . . . . . . . . . . 67

3.27 S-root locus for Example 3.16 with α = 1.5 . . . . . . . . . . . . . . . . . . . . . . 68

3.28 Tracking quality for Example 3.16 with α = 1.5 . . . . . . . . . . . . . . . . . . . . 68

3.29 Difference in calibration between unsaturated and S-root locus . . . . . . . . . . . 69

viii



3.30 S-Root Locus for hard disk drive example . . . . . . . . . . . . . . . . . . . . . . . 70

3.31 Tracking performance, hard disk drive example . . . . . . . . . . . . . . . . . . . . 71

4.1 Basic linear feedback system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Feedback system with nonlinear instrumentation . . . . . . . . . . . . . . . . . . . 74

4.3 Quasilinear feedback system for boosting . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Boosted quasilinear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Equivalent boosted quasilinear system . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 a-Boosted quasilinear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 s-Boosted quasilinear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 LPNI system with boosted controller for stability verification . . . . . . . . . . . . 84

4.9 eSL as function of σy/∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Magnetically suspended ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 LPNI system for ILQR/ILQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 LPNI system configuration for ILQR/ILQG problem formulation . . . . . . . . . . 93

5.3 ILQR solution for a double integrator as a function of actuator penalty η . . . . . 101

5.4 ILQG solution for a double integrator as a function of actuator penalty ηa . . . . . 108

5.5 ILQG solution for a double integrator as a function of sensor penalty ηs . . . . . . 109

5.6 Ship-roll example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Block diagram for ship-roll example . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 Time trace of z1 for ship-roll example . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Typical rate-saturated actuator consisting of LTI system A(s) and saturation non-
linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

ix



LIST OF APPENDICES

Appendix

A. Proofs for Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B. Proofs for Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C. Proofs for Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



CHAPTER I

INTRODUCTION

1.1 Motivation

The linear SISO feedback system of Figure 1.1 is, perhaps, the most widely studied

configuration in control theory. Here, P (s) is an LTI model of some plant that is to

be controlled, while C(s) is a controller that leads to the desired closed loop behavior.

The signals uℓ and yℓ are the control and output, respectively. The signal d is an

exogenous disturbance to be rejected, while r is a reference to be tracked. In reality,

the controller is implemented in the configuration shown in Figure 1.2, where f(·) and

g(·) are static nonlinearities corresponding to the actuator and sensor, respectively,

and u, y are the altered control and output. The signals v and ym denote the actuator

and sensor (i.e., measured) outputs, respectively. Here, the plant model remains

linear, based on the assumption that the controller maintains the system state in

the vicinity of some operating point. Achieving this objective, however, may require

C(s) P (s)

d

r
−

+uℓ yℓ

Figure 1.1: Basic linear SISO feedback system

1



2

C(s) P (s)f(·)

g(·)

d

r
−

+u y

ym

v

Figure 1.2: General linear plant/nonlinear instrumentation (LPNI) system

the application of large control signals or the precise measurement of small output

signals. This, in turn, may be limited by nonlinearities in actuation and sensing,

such as saturation, deadzone, quantization, etc. Hence, the configuration of Figure

1.2, referred to as a Linear Plant/Nonlinear Instrumentation (LPNI) system, is of

significant interest.

The development of results for LPNI systems has been limited due to the ana-

lytical difficulties posed by the nonlinearities. Most work tends to focus on issues of

stability for specific classes of f(·) and g(·), while issues pertaining to performance

have largely remained unexplored. There is, however, one formulation of the LPNI

system that has led to analytical tractability - when the exogenous inputs r and/or

d are random. In this case, the method of stochastic linearization [1] can be applied,

whereby the nonlinearities are replaced by equivalent gains Na and Ns as shown in

Figure 1.3. This is referred to as a closed-loop quasilinear system, where the signals

û, v̂, ŷ and ŷm are intended to approximate u, v, y, and ym, respectively. The gains

Na and Ns are expectations defined as

Na = E

[

d

dû
f (û)

]

(1.1)

and

Ns = E

[

d

dŷ
g (ŷ)

]

, (1.2)

where E[ · ] is the expectation operator, and where the expectation is taken with



3

C(s) P (s)Na

Ns

d

r
−

+û ŷ

ŷm

v̂

Figure 1.3: Quasilinear system

respect to the probability density functions of û and ŷ, respectively. This technique

is analogous to the well-known method of describing functions for systems with

sinusoidal inputs. In this manner, stochastic linearization offers a means to study

disturbance rejection and tracking in LPNI systems. For tracking, the reference

signal to be tracked is not a traditional step, but instead a random reference of

specified bandwidth, which turns out to be useful in many real-world applications,

for example, hard disk servos [2] and aerospace guidance [3].

In both disturbance rejection and tracking, stochastic linearization has been ef-

fectively used to approximate the behavior of the original LPNI system in terms of

the steady-state variances σ2
u, σ2

û and σ2
y, σ2

ŷ . Thus, the following control problems

can be addressed:

Problem 1: Analysis: Given P (s), C(s), f(·) and g(·) in Figure 1.2, characterize

the performance of the LPNI system.

Problem 2: Performance Recovery: Let P (s) and C(s) achieve a satisfactory per-

formance in the linear system of Figure 1.1. Given f(·) and g(·), redesign

C(s) so that the LPNI system of Figure 1.2 recovers this performance.

Problem 3: Instrumentation Selection: Let P (s) and C(s) achieve a satisfactory

performance in the linear system of Figure 1.1. Select f(·) and g(·)

so that the performance of the LPNI system of Figure 1.2 is within a
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specified tolerance of that of the original linear design.

Problem 4: Narrow-sense Design: Given P (s), f(·) and g(·) in Figure 1.2, de-

sign the controller C(s) so that the LPNI system achieves the desired

objective.

Problem 5: Wide-sense Design: Given P (s) in Figure 1.2, design the controller

C(s) and select the instrumentation f(·) and g(·), so that the LPNI

system achieves the desired objective.

Some of these problems have been partially addressed in existing control theory.

For instance, for deterministic reference tracking, the method of anti-windup is a

well-known performance recovery technique [4]. Similarly, for disturbance rejection,

the SLQR/SLQG method solves the narrow-sense design problem [5]. A detailed

survey of existing literature is provided in Section 1.3, below.

This dissertation is motivated by gaps in theory for addressing Problems 2, 3 and

5. Specifically,

i) the performance recovery problem for disturbance rejection;

ii) the narrow-sense design problem for reference tracking; and

iii) the wide-sense design problem for disturbance rejection,

have not been treated in the existing literature. This dissertation develops control

methods for all three issues. It turns out that the results closely resemble well-

known linear control theory. For example, Problem 4 is solved by a generalization

of the well-known root locus technique, and the solution of Problem 5 is similar to

the LQR/LQG synthesis technique. As such, it is anticipated that the results of

this dissertation will be appealing to practicing control engineers. A more detailed

formulation of the objectives of this dissertation is given below.
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1.2 Objectives

This work develops the following three control design methods that address the

above motivating problems.

1.2.1 Tracking random references: S-Root Locus

Consider the LPNI system subject to the random exogenous input r. This cor-

responds to a standard tracking control problem, where the reference is not a tradi-

tional step, but is a random signal. As mentioned, such references are common in a

variety of physical systems. For the purposes of this work, r is generated by passing

standard white noise w through a coloring filter of bandwidth Ωr, as shown in Figure

1.4. We ask the following design question: How can the controller C(s) be designed

so that the reference is tracked well?

This question, which is in the category of narrow-sense design, i.e., Problem 4

above, is answered by generalizing the well-known Root Locus design technique. The

Root Locus method is used for tracking controller design in the case of deterministic

(e.g., step) references in linear systems. It uses admissible domains for closed loop

poles in the complex plane, which guide adjustment of the controller structure and

gain, leading to the desired system behavior. The S-Root Locus technique, devel-

oped herein, creates an equivalent methodology for the LPNI system with random

reference. It focuses specifically on the case when f(·) is a saturation nonlinearity

0

C(s) f(·) P (s)w
y

-

+
u

FΩr
(s)

g(·)

r

ym

Figure 1.4: LPNI system subject to random reference (S-root locus problem)
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0
C(s) f(·) P (s)

w

y

-

+u

FΩd
(s)

d

g(·)
ym

Figure 1.5: LPNI system subject to disturbance (boosting problem)

(S stands for saturation) and g(·) is linear, but can be generalized to other cases as

well. The objectives are

i) Establish admissible domains in the s-plane that lead to a desired quality of

random tracking in linear systems,

ii) Develop the notion of S-poles. These are poles of the quasilinear system, which

predict the tracking quality of the LPNI system,

iii) Develop the S-Root Locus, which characterizes the behavior of the S-poles as a

function of the controller gain.

To meet the control objective, C(s) is chosen so that the S-root locus enters the

admissible domain for random tracking, and the controller gain is selected so that

the dominant S-poles lie in this domain. As such, the S-Root Locus provides a

design tool for LPNI systems that is the analog of classical root locus.

1.2.2 Recovery of linear performance: Boosting

Consider the LPNI system shown in Figure 1.5, where d is a random disturbance

of some bandwidth Ωd generated by passing white noise through the filter FΩd
(s).

This corresponds to a standard disturbance rejection problem, where the objective is

to achieve a specification in terms of the output variance σ2
y . Control engineers faced
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with this problem often obtain C(s) by completing a design for the system of Figure

1.1 (in terms of σyℓ
), using linear techniques such as LQG. The assumption is that,

when implemented in the LPNI configuration of Figure 1.2, the performance does

not degrade ‘too much’. However, in many cases, degradation may be appreciable,

such that

σ2
y > σ2

yℓ
. (1.3)

The boosting technique, developed herein, studies how, and under what conditions,

C(s) can be modified so that the above degradation is eliminated. Hence, it addresses

the performance recovery problem, i.e., Problem 2 above. The specific objective is

to derive conditions under which C(s) can be augmented by a scalar ‘boosting’ gain,

such that the quasilinear system recovers the intended linear performance, i.e.,

σ2
ŷ = σ2

yℓ
.

The boosting methodology allows the use of any linear design technique for LPNI

systems with arbitrary f(·) and g(·).

1.2.3 Simultaneous design of controller and instrumentation: ILQR/
ILQG

Consider the LPNI system shown in Figure 1.6, where d is, again, a random

disturbance of given bandwidth, and the control objective is disturbance rejection.

0
C(s) fα(·) P (s)

w

y

-

+u

FΩd
(s)

gβ(·)

d

ym

Figure 1.6: LPNI system subject to disturbance (ILQR/ILQG problem)
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Here, the actuator and sensor nonlinearities are not a priori specified, but can be

selected by the designer. Thus, they are denoted as fα(·) and gβ(·), where α and

β are selectable parameters that define the instrumentation. For example, α may

denote the authority of a saturation, while β may denote the width of a deadzone.

As described in the Instrumentation Selection problem, i.e., Problem 3 above, the

selection of α and β is often influenced by a desire to ‘minimally degrade’ an existing

linear design. As such, sensors and actuators might be chosen with performance that

exceeds what is actually required to achieve the desired specification. Conversely,

if the ‘better’ instrumentation is unavailable, then the designer may compensate by

designing the controller in an unnecessarily aggressive manner. Both situations are

inefficient. How, then, can one achieve the best balance between the controller and

the instrumentation?

The method of Instrumented LQR/LQG (ILQR/ILQG) aims to resolve this ques-

tion by providing a means of synthesizing both controller and instrumentation to

minimize an augmented version of the conventional LQR/LQG performance index

given by

J = σ2
ŷ + ρσ2

û + W(α, β), (1.4)

where ρ > 0 and W models the ‘cost’ of the instrumentation as a function of α and

β. In this manner, ILQR/ILQG is a method for simultaneous design of controller

and instrumentation.

The main objectives are as follows:

i) Solve the ILQR problem: When all states are available, find a state-feedback

u = Kx, and instrumentation parameters α and β that minimize (1.4),

ii) Solve the ILQG problem: When some states are unavailable, find C(s), α and
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β that minimize (1.4).

The solution of these problems provides a novel method that explicitly addresses the

design of both controller and nonlinear sensors and actuators. By using the familiar

LQR/LQG framework, it does so in a way that is consistent with well-established

linear techniques.

1.3 Relevant Work

The following section provides a brief overview of relevant literature.

1.3.1 Stochastic linearization

The theory of stochastic linearization was first introduced in [6, 7], and is com-

prehensively described in the monographs [8] and [1]. In [8] it is referred to as

the method of ‘random input describing functions’, while in [1] it is referred to as

‘statistical linearization.’ As suggested in [1], it has most frequently been used to

study mechanical systems subject to random vibrations. Typically, the exogenous

signal has been assumed Gaussian, although many recent works, such as [9,10], have

examined other types of random excitation.

There have been various attempts to characterize the accuracy of stochastic lin-

earization, which are extensively cataloged in [11, 12]. Most of these address the

open loop environment, and are heavily based on numerical verification, though a

limited number of analytical results have been established. More important for this

dissertation is the accuracy in the closed loop environment, where no analytical

characterization is available. Numerical studies, as found in [1,8], as well as [13,14],

indicate that, in these situations, accuracy is high, generally within 10% in terms

of the variances σ2
u, σ

2
û, σ2

y , σ
2
ŷ etc. More details on stochastic linearization and its

accuracy are given in Chapter II.
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1.3.2 Analysis of LPNI systems

Stability

Analysis of LPNI systems has generally centered on the issue of stability. Among

the earliest work in this area is the theory of absolute stability, which ensures the

asymptotic stability of the origin of the closed-loop LPNI system for nonlinearities

in a given sector [15–17]. Later works have focused on stability for particular classes

of nonlinearities, most commonly actuator saturation. In this case, it is established

in [18, 19] that global stabilization cannot be achieved using linear feedback. This

led to results on semi-global stabilization, such as [20, 21], which ensure a that a

given domain of attraction is achieved. The work [22] gives a characterization of the

this domain. These results are based primarily on the construction of appropriate

Lyapunov functions. A comprehensive bibliography on control and stability in sys-

tems with saturating actuators is found in the volumes [23,24], as well as the survey

paper [25]. In addition to saturation, stability of LPNI systems has been examined

for actuator deadzone [26,27], backlash [28], and hysteresis [29]. More generally, for

arbitrary actuator nonlinearities, suggested stabilization techniques are found in [30]

and [31], which propose schemes based on inversion of the nonlinearity.

Stability analysis is also found in the case of nonlinear sensors. A discontinuous

stabilizing control scheme was proposed in [32], and semi-global stabilization is ex-

amined in [33]. For sensor sector nonlinearities, [34] proposes an output feedback

method for stabilization based on H∞ controller design. The most common sensor

nonlinearity found in the literature is quantization. Here, stability results are moti-

vated by computer-based control, as well as applications related to communication

over finite capacity links [35–37]. The system considered is typically formulated in

discrete time, and stability assessed via construction of Lyapunov functions (see, for
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instance, [38,39]). In this context, the problem of input to state stability is discussed

in [40]. Only a few results are available for the case of a continuous time plant, no-

tably [41] and [42], which propose a stabilizing H∞ feedback scheme. These methods

rely on an ability to ‘tune’ the quantization interval on-line.

Related to the above is the vast body of work on modern nonlinear control theory

[43,44], which study systems of the form

ẋ = f(x) + g(x)u. (1.5)

Here, the dynamics of the actuator are modeled by g(x), and techniques such as

feedback linearization [45–47], are used for control. However, the LPNI systems of

this dissertation cannot be easily studied in this form, since in (1.5), the control signal

u enters in an affine manner. This allows for application of arbitrarily large control

inputs, thus excluding static instrumentation nonlinearities such as saturation.

Performance

Although stability analysis has received significant treatment in the literature,

analysis of the performance of LPNI systems is less common. In general, the perfor-

mance of LPNI systems is ascertained via analysis of the system dynamics excited by

the exogenous inputs. For the problem of rejecting random disturbances, this is done

by means of the Fokker-Planck equation [48], which gives the stationary probability

distributions of relevant signals. Analytical solution of this equation is generally im-

possible, except in certain low-order systems [49]. In higher order cases, stochastic

linearization can be used, such as in [14], which characterizes the output variance of

LPNI systems with saturating actuators.

For tracking, there is extensive literature on the phenomenon of controller windup,

which describes the performance of integral control systems in the presence of sat-
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urating actuators [4]. Related to this is the issue of tracking domains [50], which

characterize the magnitude of the references that can be tracked in systems with sat-

urating actuators. In a similar context, the notion of system type has been extended

to LPNI systems in [51]. In the case of random references, [52] studies the tracking

performance of a PD controller. In [53] and [54], stochastic linearization is used to

develop tracking quality indicators that characterize the quality of random reference

tracking, again, for systems with saturating actuators.

1.3.3 Instrumentation selection

There has been some effort at characterizing the performance of instrumentation

in terms of its mechanical and electrical properties [55–58]. In particular, the mono-

graph [59] describes, in considerable detail, the behavior of sensors and actuators

in many real-world engineering problems. However, the approach is to focus on the

linear dynamics of the instrumentation, with only a qualitative discussion of non-

linearities. More importantly, no systematic way of selecting the instrumentation

is discussed. In [60], the selection of mechanical actuators is studied, though it is

again based on purely physical considerations, such as force and displacement. There

is no quantification of the performance degradation resulting from nonlinearities in

instrumentation.

One work that does explicitly address the instrumentation selection problem posed

in Section 1.1 is [61], where stochastic linearization is used to select the authority

of a saturating actuator that ensures a certain level of performance degradation (in

terms of disturbance rejection) from some original linear design.

Some research has been conducted on selecting the spatial positioning of instru-

mentation in mechanical structures, in particular [62–64]. In these publications, an

iteration is used to optimize the position of sensors and actuators in a physical space.
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In [62] an LQG framework is utilized, while convex optimization and LMIs are used

in [64]. However, there is no specific treatment of instrumentation nonlinearities.

1.3.4 Performance recovery

Perhaps the best-known performance recovery technique for LPNI systems is the

method of anti-windup, used in the problem of tracking deterministic references.

This method is primarily used to mitigate the effects of actuator saturation on in-

tegral control schemes, and is described in detail in [4, 65, 66]. In the case of sensor

saturation, anti-windup techniques have been proposed in [67,68].

Performance recovery has also been examined in the context of sampled-data im-

plementation of continuous linear controllers. These works, described in the mono-

graphs [69,70], examine how the discrete implementation of linear controllers should

be modified so that the intended performance is achieved. Similar approaches have

been studied in the context of nonlinear plants [71]. Note that these publications

focus on instrumentation sampling, and do not explicitly treat actuator and sensor

nonlinearities.

1.3.5 Narrow-sense (controller only) design

The narrow-sense design problem has received some treatment in the existing

literature, particularly in the context of saturating actuators. In particular, the

disturbance rejection problem for LPNI systems with saturating actuators is treated

in [72] for L2 disturbances using fixed-order compensators constructed from solution

of a modified Ricatti equation. A similar technique is used in [73] in the discrete time

setting. For arbitrary bounded disturbances, [74] provides a method that minimizes

the L1 norm of an error through solution of a nonlinear program. Gain scheduling

techniques are proposed in [75] and [76], using families of LQ and H∞ compensators,
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respectively. Related to these are linear parameter varying control approaches, such

as [77]. In [78], an LMI approach is used for design, however the strategy is to ensure

that the instrumentation operates in a linear regime. Model predictive control is also

commonly used for design in the presence of constrained actuators (see, for instance,

[79, 80]), since the constraints are easily incorporated into the on-line optimization.

Here, the main issue is ensuring closed-loop stability with the resulting controllers

[81].

A few works have used stochastic linearization for design, particularly in the con-

text of linear quadratic optimization. In [82], the authors consider the problem of a

nonlinear plant with linear actuator, which is the converse of the problem formulation

studied here. In [13], a performance index is used that penalizes the output of the

saturation, which is ineffective since this signal is inherently limited in magnitude.

Most directly related to the results presented in this work are [5, 83], which provide

a method to synthesize a controller that solves the classical LQR/LQG problem for

the quasilinear system in the case of saturating actuators and sensors.

Work addressing performance issues for LPNI systems with nonlinear sensors is

less prevalent, since, in many cases, there is a duality with the techniques used for

nonlinear actuators. Most common are results for the case of quantization. In [84],

the author proposes a scheme that minimizes the worst possible quantization error.

Other approaches, such as [85–87], have been motivated by Kalman filtering, using

the assumption that quantization effects can be modeled as a Gaussian random

disturbance. In the area of hybrid systems, control techniques have been proposed

that partition the state space of the plant according to the number of quantization

intervals, and then apply switching control (for instance, [88–90]). For general sensor

nonlinearities, [31] again provides schemes that use adaptive controllers. In [91,92], a
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method is proposed that uses filtering to recover a signal corrupted by a non-invertible

sensor nonlinearity, though it is only deployed in an open-loop environment. The

same is true in [93,94], which use artificial neural networks to manipulate the linear

operating region of the sensor.

1.3.6 Wide-sense (controller and instrumentation) design

Very little research has been done on the wide-sense design problem. The closest

related work is [95,96], which has examined the design of linear controllers along with

the aforementioned optimal spatial positioning of instrumentation (see subsection

1.3.4 above). In this framework, [97] has recently examined the problem of designing

both control and instrumentation, by using an LMI approach and constraining the

instrumentation cost. Here, the ‘cost’ of instrumentation is defined as the inverse of

the signal-to-noise ratio of each sensor or actuator, which enters as a parameter of

the linear system. The results developed in this dissertation are different, since here

actuators and sensors are treated explicitly as nonlinear functions in the feedback

loop.

1.4 Dissertation Synopsis

1.4.1 Chapter guide

The outline of this dissertation is as follows. Chapter II presents an overview of

the method of stochastic linearization and discusses its accuracy for the closed loop

LPNI system. Chapter III begins by characterizing random reference tracking and

proceeds to develop the S-root locus methodology. The boosting methodology is

presented in Chapter IV. Chapter V formulates the ILQR and ILQG problems and

presents solutions for each. Conclusions are formulated in Chapter VI, which also

suggests a few possible extensions to the dissertation. All proofs are provided in the
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Appendices.

1.4.2 Research approach

The research approach pursued in this dissertation consists of stochastically lin-

earizing LPNI systems and developing a rigorous control theory for the resulting

quasilinear systems. Many standard mathematical analysis techniques, such as the

method of Lagrange multipliers, are used to obtain the results.

Since the objective is to develop design methodologies that are useful for practicing

engineers, it is important to verify the theory on practical examples. For this purpose,

a number of simulation studies are presented using the MATLAB and SIMULINK

computational environments. In one case, experimental verification is carried out on

a magnetic levitation device.

1.4.3 Original contributions

The original contributions in this dissertation are summarized below:

• Development of admissible domains in the complex plane for closed-loop poles,

so that a linear system exhibits a high quality of random tracking (Chapter III).

• Development of the S-Root Locus, an extension of classical root locus, for track-

ing controller design in the presence of saturating actuators (Chapter III).

• Development of boosting, a method for recovering the disturbance rejection

performance of a linear design, in the presence of nonlinear instrumentation

(Chapter IV).

• Development of Instrumented LQR/LQG, a method for simultaneously synthe-

sizing controller and instrumentation for the objective of disturbance rejection

(Chapter V).



CHAPTER II

STOCHASTIC LINEARIZATION

2.1 Introduction

As it is well known, the output variance of a linear time-invariant system subject to

Gaussian random excitation can be obtained via solution of a Lyapunov equation [98].

This is a well-established, analytically tractable computation. In the case of nonlinear

systems, calculation of the output variance requires solution of the Fokker-Planck

equation [48] to obtain the steady state probability density function of the signal of

interest. It is a partial differential equation for which analytical solution is generally

impossible [1]. Therefore, an alternative approach is required. In this dissertation,

since the exogenous inputs are random, the method of stochastic linearization (SL)

provides such an approach, thus facilitating study of LPNI systems which would

otherwise be intractable.

As mentioned in Section 1.3.1, the SL method is described in detail in the mono-

graphs [8] and [1]. The remainder of this chapter reviews SL theory, and its applica-

tion to LPNI systems.

17
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C(s) f(·) = satα(·) P (s)r
u v y

(a) LPNI System

C(s) P (s)r
u v y

NJ = d
du

f(u)
∣

∣

u∗

(b) Jacobian Linearization

C(s) P (s)r
u v y

N = E[ d
du

f(u)]

(c) Stochastic Linearization

Figure 2.1: Jacobian vs. stochastic linearization

2.2 The Idea: A Global Linearization

Traditionally, linearization is viewed as a local result, i.e., an approximate be-

havior of a nonlinear system in the vicinity of some operating point. The standard

Jacobian linearization certainly has this property. Consider the basic LPNI system

shown in Figure 2.1(a), where r is some exogenous random excitation. In Jacobian

linearization, the nonlinearity is replaced by a linear gain NJ that is the derivative

of f(·) evaluated at some operating point u∗, i.e.,

NJ =
d

du
f(u)

∣

∣

∣

∣

u∗

,

resulting in Figure 2.1(b). Clearly, this linearization is accurate only if the exogenous

signal r is sufficiently small. If, however, r is large, then the Jacobian linearization

does not approximate the original LPNI system well. In this case, a so-called ‘global’

linearization must be sought.

Global linearization attempts to capture not only local properties, but behavior

over a wide range of operating conditions. To accomplish this, the equivalent linear

gain becomes a function not only of the nonlinearity, but the entire closed loop
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system, including dynamic elements as well as exogenous inputs. A well-known

example of this is the method of describing functions, or harmonic balance, which

addresses the issue of oscillations in nonlinear systems subject to periodic excitation

[44].

When the inputs are random, global linearization can be carried out with respect

to the probability density function of the excitation. In control systems, random

inputs are frequently considered in disturbance rejection problems. In tracking, al-

though inputs are typically deterministic, many applications exist where the input

can be viewed as a band limited random signal. In this spirit, this dissertation is

based on the global linearization technique known as stochastic linearization. It con-

verts the LPNI system of Figure 2.1(a) into the quasilinear system shown in Figure

2.1(c), where

N = E

[

d

du
f(u)

]

, (2.1)

and the expectation is taken with respect to the probability density of u (recall

that E[ · ] denotes the expectation operator). Thus, the right hand side of (2.1)

is dependent on both f(·) and the distribution of u, which is, in turn, dependent

on r and all other elements in the closed-loop system. Accordingly, the prefix quasi

refers to the fact that the linearized gain N is a nonlinear function of all system

parameters, including exogenous signals. The subsequent sections demonstrate how

SL is carried out in LPNI systems.

f(·)

N

u

v

v̂

Figure 2.2: Stochastic linearization in the open-loop environment
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Figure 2.3: Common instrumentation nonlinearities

2.3 Open-loop Stochastic Linearization

Before examining stochastic linearization for the closed-loop LPNI system, it is

useful to study the open loop case. Consider Figure 2.2, where f(u) is a static nonlin-

earity with output v, and u is a zero-mean Gaussian process. According to stochastic

linearization, the equivalent gain N is to be chosen to minimize the mean-square er-

ror, E
{

(v − v̂)2}. The solution of this minimization problem can be obtained via

a variational calculus argument [1], and the resulting linearized gain is given by the

aforementioned expectation, i.e.,

N = E

[

d

du
f(u)

]

, (2.2)

where it is assumed that the derivative exists except at a countable number of points.

Below, (2.2) is evaluated for a few common instrumentation nonlinearities.

Saturation nonlinearity

Let f(u) be the saturation function illustrated in Figure 2.3(a), described by

f(u) = satα(u) =



























α, u > +α

u, −α ≤ u ≤ α

−α, u < −α.

(2.3)
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Figure 2.4: N as a function of σu for open-loop stochastic linearization

In this case, (2.2) becomes

N =

∞
∫

−∞

d

dx
satα (x)

1√
2πσu

exp

(

− x2

2σ2
u

)

dx

=

α
∫

−α

1√
2πσu

exp

(

− x2

2σ2
u

)

dx

= erf

(

α√
2σu

)

, (2.4)

where

erf (z) =
2

π

∫ z

0

e−t2dt. (2.5)

Thus, N is a function of the standard deviation σu of u, which is illustrated in Figure

2.4(a) for α = 1. Note that, for this nonlinearity, N has an intuitive interpretation -

it is the fraction of time that the signal u resides in the linear region of the saturation.

Thus, as expected, N decreases monotonically as a function of σu.

Deadzone nonlinearity

Let f(u) be the deadzone nonlinearity illustrated in Figure 2.3(b), described by

f(u) = dz∆(u) =



























u − ∆
2
, u > +∆

2

0, −∆
2
≤ u ≤ ∆

2

u + ∆
2
, u < −∆

2
.

(2.6)
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Then,

N =

∞
∫

−∞

d

dx
dz∆ (x)

1√
2πσu

exp

(

− x2

2σ2
u

)

dx

= 1 −
∆/2
∫

−∆/2

1√
2πσu

exp

(

− x2

2σ2
u

)

dx

= 1 − erf

(

∆/2√
2σu

)

, (2.7)

which is illustrated in Figure 2.4(b) for ∆ = 1. As expected, due to the deadzone,

N increases as a function of σu.

Saturation-deadzone nonlinearity

Let f(u) be the combination saturation-deadzone nonlinearity illustrated in Figure

2.3(c), described by

f(u) = satdz(α,∆)(u) =























































α, u > +α + ∆
2

u − ∆
2
, +α + ∆

2
≥ u > +∆

2

0, −∆
2
≤ u ≤ ∆

2

u + ∆
2
, −α − ∆

2
≤ u < −∆

2

α, u < −α − ∆
2
.

(2.8)

Then,

N =

∞
∫

−∞

d

dx
satdz(α,∆) (x)

1√
2πσu

exp

(

− x2

2σ2
u

)

dx

=

α+∆

2
∫

−α−∆

2

1√
2πσu

exp

(

− x2

2σ2
u

)

dx −
∆/2
∫

−∆/2

1√
2πσu

exp

(

− x2

2σ2
u

)

dx

= erf

(

α + ∆
2√

2σu

)

− erf

(

∆/2√
2σu

)

, (2.9)

which is illustrated in Figure 2.4(c) for α = 1, ∆ = 1. Due to the presence of both

saturation and deadzone, the equivalent gain N is no longer monotonic in σu.
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2.4 Closed-loop Stochastic Linearization

2.4.1 Basic assumptions

Figure 2.5 illustrates the general closed-loop LPNI configuration studied in this

dissertation, and to which stochastic linearization is applied. It is interpreted as

follows:

• P (s) denotes an LTI model of the plant. Unless explicitly stated otherwise, this

plant has all poles in the closed left half plane.

• C(s) denotes an LTI controller. Unless explicitly stated otherwise, this con-

troller has all poles in the closed left half plane.

• Unless explicitly stated otherwise, all roots of the characteristic function 1 +

γP (s)C(s) are in the open left half plane for γ ∈ (0, 1].

• f(·) and g(·) denote static nonlinearities corresponding to actuator and sen-

sor, respectively. For much of this dissertation, f(·) and g(·) are saturation

nonlinearities of the form (2.3).

• FΩd
(s) and FΩr

(s) denote LTI coloring filters of 3dB bandwidth Ωd and Ωr,

which generate Gaussian random processes d and r, respectively.

• wr, wd are independent, standard white noise excitations.

FΩr
(s)

FΩd
(s)

C(s) P (s)f(·)

g(·)

wd

wr

+

−

e u v y

ym

Figure 2.5: LPNI system subject to random excitations
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0
C(s) f(·) P (s)

w

y

-

+
u

FΩ(s)

0
C(s) N P (s)

w

ŷ

-

+û

FΩ(s)

v

v̂

Figure 2.6: Closed-loop SL for LPNI system with nonlinear actuator only

• y, ym, u, v, and e denote the plant output, sensor output, control signal, actuator

output, and error signal, respectively.

2.4.2 Nonlinear actuator only

It is useful to begin by considering the LPNI system with nonlinear actuator and

linear sensor, shown in Figure 2.6. Due to the closed loop nature, the distribution

of u is difficult to obtain (it requires solution of the aforementioned Fokker-Planck

equation), and hence, the expectation (2.2) cannot be evaluated. Thus, we make an

approximation, and define the equivalent gain in terms of the quasilinear signal û,

i.e.,

N = E

[

d

dû
f(û)

]

. (2.10)

The quasilinearization (2.10) is sub-optimal in the mean-square sense E
{

(v − v̂)2}

for two reasons: (i) the distribution of u is non-Gaussian and (ii) consequently,

the signals u and û are different. The first problem is mitigated by the fact that in

most physical systems, the transfer function P (s) provides low-pass filtering, i.e., the

so-called filter hypothesis, which renders the signals u and y to be ‘approximately’
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Gaussian. This is elaborated upon in Section 2.5 below. Thus, we argue that u and

û are ‘close’ in terms of their distributions, and the stochastically linearized system

accurately predicts the behavior of the original LPNI system in terms of the variances

of the signals û, u, ŷ, y, etc.

In contrast to (2.2), the right hand side of (2.10) cannot be evaluated directly,

since the distribution of û is itself a function of N . For example, in the system of

Figure 2.6,

N =

∞
∫

−∞

[

d

dx
f (x)

]

1

σû

√
2π

exp

(

− x

2σ2
û

)

dx, (2.11)

where

σû =

∥

∥

∥

∥

FΩ(s)P (s)C(s)

1 + P (s) NC (s)

∥

∥

∥

∥

2

, (2.12)

and ‖ · ‖2 denotes the 2-norm of a transfer function, understood as

‖H(s)‖2 =

√

1

2π

∫ ∞

−∞
|H (jω)|2 dω. (2.13)

Clearly, (2.11) can be rewritten as

N = F
(∥

∥

∥

∥

FΩ(s)P (s)C(s)

1 + P (s) NC (s)

∥

∥

∥

∥

2

)

, (2.14)

where

F (σ) =

∞
∫

−∞

[

d

dx
f (x)

]

1

σ
√

2π
exp

(

− x

2σ

)

dx. (2.15)

Thus, N is a root of the equation

x −F
(∥

∥

∥

∥

FΩ(s)P (s)C(s)

1 + xP (s) C (s)

∥

∥

∥

∥

2

)

= 0, (2.16)

in the unknown x. Typically, this equation admits a unique solution, and thus,

(2.10) defines N as an implicit function of P (s), C(s) and FΩ(s). The case where

the solution is not unique is discussed in Chapter III (Section 3.5).



26

20 30 40 50 60 70 80
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

u(t)

(a) Time trace of u(t)

−2 −1 0 1 2
0

500

1000

1500

2000

2500

3000

3500

u(t)

(b) Histogram of u(t)

Figure 2.7: Time trace and histogram for Example 2.1

Closed-loop SL has particularly convenient properties when f(·) is the saturation

nonlinearity (2.3). For this nonlinearity, N ∈ [0, 1]. Equation (2.16) becomes

x − erf





α
√

2
∥

∥

∥

FΩ(s)P (s)C(s)
1+xP (s)C(s)

∥

∥

∥

2



 = 0, (2.17)

which, under the assumptions of Section 2.4.1, admits at least one solution in the

interval x ∈ [0, 1]. This solution can be found to any accuracy using a standard

bisection algorithm [99] (with initial conditions x− = 0, x+ = 1).

Example 2.1. Consider the system of Figure 2.6 where P (s) = 1/(s+1), FΩ(s) = 1,

C(s) = 1, and f(·) = sat0.5(·) from (2.3). For this system, (2.17) becomes

x − erf

(

0.5√
2
∥

∥

s+1
s+1+x

∥

∥

2

)

= 0, (2.18)

which has a unique solution x = 0.6339. Thus, the equivalent gain N that satisfies

(2.10) is N = 0.6339, leading to σû = 0.5532. Simulation of the LPNI system reveals

that σu = 0.5553, which demonstrates the accuracy of stochastic linearization. Figure

2.7(a) illustrates a time trace of u(t) in the LPNI system, noting that the saturation

limits ±0.5 are exceeded (i.e., the nonlinearity is activated) frequently. Despite

this, as predicted, the histogram of u(t), shown in Figure 2.7(b), is approximately

Gaussian (a further discussion of this will follow in Section 2.5).
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2.4.3 Nonlinear actuator and sensor

To illustrate SL in the case of both actuator and sensor nonlinearities, consider

the SISO LPNI system of Figure 2.8. According to SL, the quasilinear gains are

defined by

Na = E

[

d

dû
f(û)

]

, (2.19)

Ns = E

[

d

dŷ
f(ŷ)

]

. (2.20)

Following the procedure of the previous section, we write

Na = F
(∥

∥

∥

∥

FΩ(s)P (s)NsC(s)

1 + P (s) NsC (s) Na

∥

∥

∥

∥

2

)

, (2.21)

Ns = G
(∥

∥

∥

∥

FΩ(s)P (s)

1 + P (s) NsC (s) Na

∥

∥

∥

∥

2

)

, (2.22)

0
C(s) f(·) P (s)

w

y

-

+
u

FΩ(s)

g(·)

0
C(s) Na P (s)

w

ŷ

-

+
û

FΩ(s)

Ns

Figure 2.8: Closed-loop SL for LPNI system with nonlinear actuator and sensor
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where

F (σ) =

∞
∫

−∞

[

d

dx
f (x)

]

1

σ
√

2π
exp

(

− x

2σ

)

dx, (2.23)

G (σ) =

∞
∫

−∞

[

d

dx
g (x)

]

1

σ
√

2π
exp

(

− x

2σ

)

dx. (2.24)

Accordingly, the task of finding the quasilinear gains Na and Ns can be formulated as

a 2-variable root-finding problem using the equations (2.21) and (2.22). Alternatively,

since the system is SISO, an elimination procedure can be used to formulate an

equivalent single-variable problem. Specifically, multiplying (2.21) and (2.22) results

in

N̂ = F





∥

∥

∥

∥

∥

∥

G
(∥

∥

∥

FΩ(s)P (s)

1+N̂P (s)C(s)

∥

∥

∥

2

)

FΩ(s)P (s)C(s)

1 + N̂P (s) C (s)

∥

∥

∥

∥

∥

∥

2



G
(∥

∥

∥

∥

∥

FΩ(s)P (s)

1 + N̂P (s) C (s)

∥

∥

∥

∥

∥

2

)

,

(2.25)

where N̂ = NaNs. Clearly, N̂ is a root of the equation

x −F





∥

∥

∥

∥

∥

∥

G
(∥

∥

∥

FΩ(s)P (s)
1+xP (s)C(s)

∥

∥

∥

2

)

FΩ(s)P (s)C(s)

1 + xP (s) C (s)

∥

∥

∥

∥

∥

∥

2



G
(∥

∥

∥

∥

FΩ(s)P (s)

1 + xP (s) C (s)

∥

∥

∥

∥

2

)

= 0,

(2.26)

in the unknown x. With N̂ known, Ns is determined from (2.22). In turn, with N̂

and Ns known, (2.21) determines Na.

As described in the previous subsection, when f(·) and g(·) are saturation non-

linearities, Na ∈ [0, 1] and Ns ∈ [0, 1], and thus, N̂ ∈ [0, 1]. Moreover, under the

assumptions of Section 2.4.1 the root-finding problem (2.26) has at least one so-

lution in the interval x ∈ [0, 1]. Thus, the equivalent gains can be found using a

single-variable bisection on the left hand side of (2.26).

Example 2.2. Consider the LPNI system of Figure 2.8, with P (s) = 1/(s + 1),

FΩ(s) = 1, C(s) = 1, f(u) = sat0.5(u), and g(y) = sat0.5(y).
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For this system, (2.26) becomes

x − erf























0.5

√
2

∥

∥

∥

∥

∥

∥

∥

erf

(

0.5
√

2‖ s+1
s+1+x‖2

)

s+1+x

∥

∥

∥

∥

∥

∥

∥

2























erf

(

0.5√
2
∥

∥

s+1
s+1+x

∥

∥

2

)

= 0. (2.27)

Using a bisection algorithm, it is possible to ascertain that x = 0.5195 is a solution of

(2.27), and thus, the quasilinear gains satisfy NaNs = 0.5195. It follows immediately

that Ns = 0.6166 and Na = 0.8428.

2.4.4 Stochastic linearization in state-space representations

SL is readily applied when the system is formulated in state-space. For example,

consider the SISO LPNI system of Figure 2.6 where the plant and actuator are given

by

ẋ = Ax + B1w + B2satα(u)

y = Cx, (2.28)

and the controller is the output-feedback

u = Ky.

Applying SL results in the quasilinear system

˙̂x = (A + B2NKC)x̂ + B1w

û = Kŷ

ŷ = Cx̂, (2.29)

where, as before,

N = erf

(

α√
2σû

)

. (2.30)
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It is well-known that, if (A + B2NKC) is Hurwitz,

σ2
û = tr

{

KCRCT KT
}

, (2.31)

where R is the unique positive semi-definite solution of the Lyapunov equation

(A + B2NKC)R + R(A + B2NKC)T + B1B
T
1 = 0. (2.32)

Thus, the quasilinear gain N is a root of the equation

x − erf

(

α√
2
√

tr {KCR(x)CT KT}

)

= 0, (2.33)

in the unknown x, where R(x) satisfies

(A + xB2KC)R(x) + R(x)(A + xB2KC)T + B1B
T
1 = 0. (2.34)

Under the assumptions of Section 2.4.1, R(x) is defined for every x ∈ (0, 1], and

can be obtained using well-known computational techniques. Indeed, in practice,

this method is used the evaluate the 2-norms of the previous subsections. As before,

bisection can be used to solve (2.33).

2.5 Accuracy of Stochastic Linearization

As mentioned in the Introduction, only a few studies have been completed on the

accuracy of stochastic linearization in the closed loop environment. It was determined

that, for many common systems, accuracy is very high [1, 8]. In this subsection,

additional results are presented that reaffirm these findings.

2.5.1 Filter hypothesis

As described in Section 2.4.2, closed loop SL is justified by the filter hypothesis,

i.e., that the lowpass filtering of P (s) renders the signals u and y to be approximately



31

0

C(s) f(·) P (s)w y

-

+u
FΩ(s)

v

0

C(s) N P (s)w
ŷ
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Figure 2.9: Closed-loop LPNI system to demonstrates the filter hypothesis

Gaussian. Consider the LPNI system illustrated in Figure 2.9, where

P (s) =
1

s + 1
, FΩ(s) = 1, C(s) = 1, f(u) = sat10(u).

For this system, stochastic linearization yields N = 0.076, which indicates that the

actuator saturates almost always. The LPNI system is simulated for a sufficiently

long duration and histograms are obtained of the signals v and y. These are illus-

trated in Figure 2.10, which also shows the probability density functions of v̂ and

ŷ as obtained by stochastic linearization (recall that these are Gaussian). Clearly,

the signal v is highly non-Gaussian, however, due to the filtering of P (s), y becomes

approximately Gaussian, coinciding well with the probability density function of ŷ.

This phenomenon is referred to as Gaussianization, and has been observed in

numerous settings (see [100–102] and the references therein). Among the analytical

characterizations are the following:

• In [100], the authors examine the output response of a first-order linear system

excited by a random telegraph process (i.e., a binary process that takes the

values ±1, where the times between sign changes are independent and exponen-

tially distributed). Gaussianization follows from showing that the moments of
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Figure 2.10: Histograms of v and y in comparison with the probability density functions of v̂ and ŷ

the output tend to those of a Gaussian process.

• In [101], the authors explicitly solve the Fokker-Plank equation for a first-order

linear system excited by a few specific classes of non-Gaussian excitation. Gaus-

sianization is demonstrated by showing that the third and fourth central mo-

ments of the output tend to zero as the system bandwidth decreases.

• In [102], the author examines the output response of a linear system excited by

a general stationary and/or delta correlated non-Gaussian random process. It

is shown that, as the bandwidth of the linear system decreases, the high order

cumulants [103] of the output tend to zero, which indicates that the output

process becomes Gaussian.

Clearly, these examples of Gaussianization contribute to substantiating the filter

hypothesis, which, as described above, supports the accuracy of stochastic lineariza-

tion. This also suggests that SL may be inaccurate in those cases in which the plant
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does not provide adequate low-pass filtering. However, since many controlled plants

tend to be low-pass filtering, the SL method is justified as an accurate analysis tool

for LPNI feedback control systems.

2.5.2 Numerical verification

To further illustrate the efficacy of stochastic linearization, the following Monte

Carlo experiment is performed: Consider 3000 first and 2000 second order plants of

the form:

P1(s) =
1

Ts + 1
(2.35)

P2(s) =
ω2

n

s2 + 2ζωn + ω2
n

. (2.36)

The controller is C(s) = K, and the system parameters are randomly and equiprob-

ably selected from the following

T ∈ [0.01, 10], ωn ∈ [0.01, 10], ζ ∈ [0.05, 1], K ∈ [1, 20], α ∈ (0.1, 1]. (2.37)

Stochastic linearization is performed for each system, and the original nonlinear

system is simulated to identify the approximation error, defined as:

esl =
|σy − σŷ|

σŷ

. (2.38)

The histogram of esl is shown in Figure 2.11. Clearly, accuracy is very good - 71.4%

of the systems yield esl < 0.05 and only 9.2% of systems yield esl > 0.1. Further

analysis reveals that these latter cases occur when the signals u and y are highly

non-Gaussian, and occur when either T << 1 or ζ << 1 (i.e., when the plant is

insufficiently low-pass).

2.6 Summary

The analysis of LPNI systems is complicated by the nonlinearities f(·) and g(·).

The method of Jacobian linearization can be used to provide an approximation,
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Figure 2.11: Histogram of esl for Monte Carlo accuracy experiment

however, it is only valid in some local operating region. In contrast, when the inputs

are random, the method of stochastic linearization can be used to provide a global

approximation of the LPNI system by replacing the nonlinearities with equivalent

gains. These gains are defined as the expectations of the derivatives of f(·) and g(·),

respectively, and hence, are functions of the system parameters and the exogenous

input under consideration. The resulting system, referred to as quasilinear, can thus

be used for analysis and design for the LPNI system. Under the filter hypothesis,

i.e., the low-pass characteristic of the plant, stochastic linearization has been shown

to be very high. This is corroborated by a Monte Carlo simulation involving a large

number of randomly constructed closed-loop LPNI systems. Further examples on

the accuracy of stochastic linearization will be presented in the subsequent chapters,

which use SL to achieve the objectives formulated in Section 1.2.



CHAPTER III

TRACKING RANDOM REFERENCES: THE S-ROOT
LOCUS

3.1 Introduction

Recall the following problem from the Introduction: How should a controller be

designed so that the LPNI system, with a random reference signal, exhibits a high

quality of tracking? In the case of deterministic (e.g., step) references, the root

locus method is one of the best known tools for tracking controller design. However,

for the problem posed above, it is insufficient for two reasons. First, it does not

address tracking random references. This is important in certain applications, such as

aerospace guidance [3], automotive navigation [104], and hard disk servo control [2].

Second, it fails to incorporate the effects of instrumentation, and in particular, the

pervasive saturation nonlinearity. The present chapter in intended to overcome these

limitations by extending, in a sense explained below, the root locus approach to LPNI

systems with saturating actuators.

Consider the SISO tracking system of Figure 3.1. Here, P (s) is the plant, KC(s)

is the controller, K > 0, and FΩ(s) is a coloring filter with 3dB bandwidth Ω, which

generates the reference r from standard white noise wr; the signals y and u are,

35



36

FΩ(s) C(s) P (s)satα(u)wr

−

y
K

uer

Figure 3.1: Closed loop system with saturating actuator

FΩ(s) C(s) P (s)N(K)wr

−

ŷ
K

û

Figure 3.2: Equivalent quasilinear system

respectively, the system output and the input to the saturation element defined as

satα(u) =



























α, u > +α

u, −α ≤ u ≤ α

−α, u < −α.

(3.1)

As described in Chapter II, stochastic linearization is used to study the system,

whereby the saturation element is replaced by a gain, N(K), defined as

N(K) = erf





α
√

2
∥

∥

∥

FΩ(s)KC(s)
1+N(K)KC(s)P (s)

∥

∥

∥

2



 . (3.2)

Note that, in this case, the stochastically linearized gain is expressed as a function

of the free parameter K. The value of N(K) can be calculated from (3.2) using the

standard bisection algorithm.

The locus traced by the closed loop poles of the quasilinear system of Figure 3.2

(referred to as S-poles) is called the saturated root locus, or S-root locus. It is the

object of study in this chapter.

Denote the equivalent gain of the quasilinear system as

Ke (K)
∆
= KN (K) . (3.3)
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Clearly, from (3.2), Ke(K) can be obtained from the equation

Ke (K) = Kerf





α
√

2K
∥

∥

∥

FΩ(s)C(s)
1+Ke(K)P (s)C(s)

∥

∥

∥

2



 . (3.4)

If Ke(K) → ∞ as K → ∞, the S-root locus may be the same as that of the feedback

loop of Figure 3.1 in the absence of saturation (referred to as the unsaturated system).

If, however, Ke(K) < ∞ as K → ∞, the S-root locus terminates at points prior to

the open loop zeros. It turns out that the latter may be the case, and in this chapter

we show how these points, referred to as S-termination points can be calculated.

In addition, we investigate the relationship between the S-root locus and ampli-

tude truncation of the reference signals. Clearly, this phenomenon does not arise

in the unsaturated case. However, when the actuator is saturated, the trackable

domain may be finite [54] and, as a result, sufficiently large reference signals might

be truncated. To indicate when this phenomenon takes place, we equip the S-root

locus with the so-called amplitude S-truncation points, and provide methods for their

calculation. As it turns out, both the S-termination and S-truncation points depend

on all transfer functions in Figure 3.1, as well as on the level of saturation α.

Although there are a large number of publications on saturating actuators (as

mentioned in the Introduction, for instance, the recent monographs [23,105,106]), the

root locus approach has not been investigated. Some intuitive recommendations for

dealing with root locus under actuator saturation can be found in standard textbooks,

for instance, in [107].

The outline of this chapter is as follows: Section 3.2 motivates the problem of

tracking random references and establishes admissible domains in the s-plane where

poles (and S-poles) should be placed to ensure a high quality of tracking. Section 3.3

introduces formal definitions of S-root locus, and classifies the scenarios considered.
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Section 3.4 and 3.5 present methods of S-root locus construction when Ke(K) is

unique and non-unique, respectively, and an S-root locus design methodology is given.

Section 3.6 discusses the issue of amplitude truncation, and Section 3.7 presents a

method for calibrating the S-root locus. An application to a hard disk drive control

problem is described in Section 3.8 and, finally, in Section 3.9, a summary is provided.

All proofs are presented in Appendix A.

3.2 Tracking Random References

As with the classical root locus, it is first useful to identify admissible domains in

the complex plane where closed loop poles should be placed to achieve a high quality

of random tracking. Consider the prototype second order system described by

T (s) =
ω2

n

s2 + 2ζωns + ω2
n

, (3.5)

where ωn and ζ are the natural frequency and damping ratio, respectively. Classical

control theory defines admissible pole locations of (3.5) for tracking step references

[108,109]. In some cases, however, random signals, rather than steps, must be tracked

[2, 3, 104]. In these cases, using the step-based admissible pole domains may lead

to overdesign. Therefore, for the purspose of design, it is necessary to quantify the

admissible pole domains for random reference tracking with specified quality. To this

end, using the so-called tracking quality indicators introduced in [53], this section

characterizes where the closed loop poles should be located in the s-plane so that

the tracking quality indicators are sufficiently small and, therefore, random reference

tracking is of a high quality. It turns out that the resulting admissible domains are

less restrictive than those for tracking steps, and, therefore, warrant consideration in

control system design.

The development of the admissible domains is organized as follows: Section 3.2.1
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Figure 3.3: Tracking control system with a random reference

reviews the tracking quality indicators, Section 3.2.2 uses their level curves to con-

struct admissible pole domains for the prototype second order system, and Section

3.2.3 extends the results to higher order systems. An application to a hard disk drive

control problem is described in Section 3.2.4.

3.2.1 Random references and tracking quality indicators

System and references considered: Consider the closed loop SISO linear system

shown in Figure 3.3, where

C(s)P (s) =
ω2

n

s (s + 2ζωn)
, (3.6)

and thus the closed loop transfer function from reference r to output y is (3.5).

For the purposes of this work, we assume that FΩ(s) is a 3rd order Butterworth

filter with 3db bandwidth Ω, i.e.,

FΩ(s) =

√

3

Ω

(

Ω3

s3 + 2Ωs2 + 2Ω2s + Ω3

)

, (3.7)

where the gain
√

3/Ω is introduced to ensure that σ2
r = 1, where σ2

r denotes the

variance of r.

Remark 3.1. The approach developed here is applicable to any rational FΩ(s). More-

over, if one uses higher order Butterworth filters, the results remain practically un-

changed. Thus, for simplicity, we use FΩ(s) defined by (3.33).

Random Sensitivity Function: The analysis that follows is based on the Random
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Sensitivity Function introduced in [53], which is defined as

RS (Ω, ωn, ζ) =

√

1

2π

∫ ∞

−∞
|FΩ(jω)S(jω)|2 dω, (3.8)

where S(s) is the standard sensitivity function for the linear system in Figure 3.3,

i.e.,

S (s) =
s2 + 2ζωns

s2 + 2ζωns + ω2
n

. (3.9)

Note that RS(Ω, ωn, ζ) is simply the standard deviation, σe, of the error signal e.

It is easy to see that RS depends not on Ω and ωn separately, but on their ratio,

i.e.,

RS (Ω, ωn, ζ) = RS

(

Ω

ωn

, ζ

)

. (3.10)

Indeed, using the substitution

ω = Ωω̂, (3.11)

expression (3.8) can be rewritten as

RS (Ω/ωn) =

√

∫ ∞

−∞

3

2π

∣

∣

∣

∣

Ψ (jω̂)

jω̂3 + 2jω̂2 + 2jω̂ + 1

∣

∣

∣

∣

2

dω̂, (3.12)

where

Ψ (jω̂) =
ρ2jω̂2 + 2ζρjω̂

ρ2jω̂2 + 2ζρjω̂ + 1
(3.13)

and

ρ =
Ω

ωn

. (3.14)

The quantity Ω/ωn is referred to as the dimensionless bandwidth. Below, we

denote the Random Sensitivity function either as RS(Ω) or as RS(Ω/ωn), depending

on the issue at hand.

Tracking quality indicators - definitions: It is shown in [53] that the quality of

random reference tracking is good if each of the following tracking quality indicators,
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defined by RS(Ω), is sufficiently small:

I1 = lim
Ω→0

RS (Ω) , (3.15)

I2 =
Ω

RΩBW

, (3.16)

I3 = RMr − 1, (3.17)

where

RΩBW = min

{

Ω : RS (Ω) =
1√
2

}

, (3.18)

RMr = max
Ω

RS (Ω). (3.19)

The indicator I1 describes the static unresponsiveness of the system. The indicator

I2 describes dynamics of the response; in particular, if it is large, it signifies the

presence of lagging or oscillatory behavior. The indicator I3 serves to discriminate

between these two behaviors, and, in particular, characterizes the oscillatory features

of the system output. Since the system under consideration is of Type 1, indicator

I1 = 0, which ensures that no degradation occurs due to static unresponsiveness.

Therefore, we concentrate below on I2 and I3 only.

Tracking quality indicators - computation: Consider minimal state space real-

izations of S(s) and FΩ(s), given by

S =







AS BS

CS DS







and

FΩ =







AF (Ω) BF (Ω)

CF 0






,
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where the representation of FΩ(s) is in observable canonical form, so that CF is

independent of Ω. Clearly,

SFΩ =







A∗ B∗

C∗ D∗






,

where

A∗ =







AF 0

BSCF AS






, B∗ =







BF

0






,

C∗ =

[

DSCF CS

]

, D∗ = 0.

Then, the Random Sensitivity Function can be computed as

‖FΩS‖2
2 = tr

(

C∗WC∗T ) , (3.20)

where W is the solution of the Lyapunov equation

A∗W + WA∗T + B∗B∗T = 0. (3.21)

Solving (3.21) analytically can be accomplished using standard symbolic manip-

ulation software. This provides a means to analytically evaluate the indicators for

various closed loop pole locations.

3.2.2 Admissible domains for random reference tracking by prototype
second order system

As it follows from the above, the admissible pole domain for tracking random

references is the intersection of two sets in the s-plane defined by the inequalities

I2 ≤ γ, (3.22)

I3 ≤ η, (3.23)

where γ and η are sufficiently small positive constants. Clearly, the boundaries of

these sets are level curves of I2 and I3. Below, these level curves are constructed.
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Admissible domains from the point of view of I2:

Assume that the closed loop transfer function (3.5) has poles s1, s2 = σ ± jω,

σ < 0. We are interested in studying the behavior of I2 as σ and ω vary.

In order to make the level curves of I2 independent of Ω, using the normalization

introduced in Section 3.2.1, we view I2 as a function of ‘dimensionless’ pole locations

(σ/Ω) ± j(ω/Ω). Figure 3.4 depicts these level curves, calculated using the method

described in Section 3.2.1.

Thus, all poles located to the left of the curve I2 = γ result in acceptable tracking

quality. It has been shown in [4] that γ ≤ 0.4 generally leads to good behavior.

Clearly, the smaller γ, the better the quality of tracking. Nevertheless, some amount

of quality degradation always occurs and, as mentioned in subsection 3.2.1, can be

due to either dynamic lagging or excessive oscillations. To prevent the latter, it is

necessary to amend the admissible domain with a specification on I3.
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Figure 3.6: Tracking quality for various values of I3, with σe = 0.1.

Admissible domains from the point of view of I3:

Figure 3.5 presents the level curves of I3 in the above normalized coordinates.

Since these level curves are almost radial straight lines, it follows that, as the damping

ratio ζ of the closed loop poles decreases, the value of I3 increases. Such an increase

implies the appearance of oscillations in the output response (see, for instance, Figure

3.6, which shows the tracking quality for various I3 with the same error standard

deviation σe = 0.1). Therefore, it is of importance to determine the values of η

in (3.23), which lead to acceptable oscillatory properties of tracking. This can be

accomplished by ensuring that the sensitivity function S(s) does not amplify spectral
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components beyond the input bandwidth Ω. For that purpose, a design rule can be

inferred from the magnitude characteristic of S(s) for the prototype second order

system. We restrict S(s) to a peak of no more than 5dB, which corresponds to a

value of ζ = 0.3. This, in turn, corresponds to a value of I3 = 0.3.

Complete admissible domain:

The complete admissible domain now becomes the intersection of the regions

defined by

I2 ≤ γ, I3 ≤ η, (3.24)

where γ ≤ 0.4 and η ≤ 0.3. For the reference signal with Ω = 1 and for γ = 0.1 and

η = 0.3, the complete admissible domain is illustrated in Figure 3.8. Of immediate

note are the similarities between Figure 3.8 and the classical desired region for the

tracking of step references [108, 109]. Indeed, the requirement on I2 is analogous to

the classical requirement on rise time, while that on I3 can be correlated with percent

overshoot. Nevertheless, quantitatively the two domains are different.

Remark 3.2. The above admissible domain has been obtained under the assumption

that σr = 1, where σr is the standard deviation of the reference signal (see subsection

3.2.1). In general, however, σr may take arbitrary values. Clearly, due to linearity,

the quality of tracking does not change relative to the magnitude of σr. Hence, the

admissible domains constructed above remain valid for any σr.

Remark 3.3. Figure 3.7 illustrates the relationship between I2 and σe when σr = 1

and ζ = 1. Clearly, for I2 < 0.25 this relationship is approximately linear. Repeating

this numerical analysis for various ζ, it is possible to ascertain that, for σe < 0.25, if

I2 = γ, then the following takes place:

σe ≤ γσr. (3.25)
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Hence, I2 ≤ γ implies that the standard deviation of the tracking error is at most

γσr.

3.2.3 Higher order systems

In classical controller design, it is often sufficient to consider a small number of

dominant poles (and zeros) as a low order approximation to the full system dynamics.
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Moreover, in many of these cases, it is sufficient to consider a single pair of dominant

poles, yielding an approximation that is the prototype second order system. Gen-

erally, a valid low order approximation is constructed by attempting to satisfy the

following condition as closely as possible [108]:

|SH (jω)|2

|SL (jω)|2
∼= 1,∀ω > 0. (3.26)

Here, SH(s) denotes the actual high order sensitivity function, while SL(s) is the low

order approximation.

Under the assumption that (3.26) holds, it follows directly from (3.8) that

RSH (Ω)

RSL (Ω)
∼= 1,∀Ω, (3.27)

where RSH(Ω) and RSL(Ω) are the high and low order random sensitivity functions

obtained from SH(s) and SL(s), respectively. Consequently, the indicators I2 and I3

are roughly equal for the high and low order models, and we conclude that the high

order system exhibits a quality of random tracking that is similar to that of its low

order approximation.

3.2.4 Example: Hard disk drive

One of the notable applications for random tracking is hard disk servo control [2].

Here, the control objective is to maintain the disk head above a circular track. Due

to various sources of irregularity, these tracks tend to deviate from a perfect circle,

and the deviations may be modelled as bandlimited Gaussian processes. The result-

ing problem is one of tracking a random reference, and we may use the admissible

domains derived above to design an appropriate controller.
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Figure 3.9: Admissible domain for the hard disk drive and pole-zero map of the closed loop system

The following performance specification was introduced in [53]:

σe ≤ 0.06σr,∀Ω ≤ 692rad/s. (3.28)

Thus, γ = 0.06, and from (3.25), we determine that to meet the specification we

require I2 ≤ 0.06. Imposing the additional requirement that I3 ≤ 0.3, we obtain

the admissible domain shown in Figure 3.9. Note that we have simply taken the

normalized admissible domain from Figure 3.4 and scaled the coordinates by Ω = 692.

Based on this domain, we design a controller such that a pair of dominant poles is

placed at:

s1, s2 = (−2.83 ± j9.06) × 103,

which lie approximately at the intersection of the I2 = 0.06 and I3 = 0.3 level curves.

In [53], a model was given for a disk servo as:

PD (s) =
4.382 × 1010s + 4.382 × 1015

s2 (s2 + 1.596 × 103s + 9.763 × 107)
. (3.29)

By employing a standard root-locus based control design, using the above admissible

domain, the following controller is obtained:
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C (s) =
K (s + 1058) (s2 + 1596s + 9.763 × 107)

(s2 + 3.719 × 104s + 5.804 × 108)2 , (3.30)

where

K = 5.7214 × 105. (3.31)

Applying this controller to PD(s), results in the closed loop pole-zero configuration

shown in Figure 3.9. Note that this controller leads to a number of approximate

stable pole-zero cancellations and, consequently, yields a pair of dominant poles at

the desired locations. The resulting tracking error is σe = 0.0425σr, which satisfies

the design specifications given in (3.28). Figure 3.10 illustrates the quality of tracking

in the time domain, where the output completely overlays the reference signal.

It is interesting to compare C(s) to the controller presented in [53]. In particular,

in [53], a 5th order controller was designed using an H∞ method, achieving an error

variance of σe = 0.056σr. Clearly, we are able to exceed this performance with

a 4th order controller using simple pole placement in an appropriately calculated

admissible domain.

3.2.5 Using the admissible domains in LPNI systems

This section quantifies the admissible pole domains for tracking band-limited sig-

nals in linear systems. In particular, it is shown that level curves of the tracking

quality indicators can be viewed as boundaries of admissible domains in the same
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manner as rise time and overshoot are utilized for tracking steps. Based on the tech-

nique developed, it is possible to design controllers using classical techniques with

demonstrably good performance. Most importantly, these domains will facilitate

the design of similar controllers for the quasilinear system, thus achieving the main

objective of this Chapter: random tracking in LPNI systems.

3.3 S-Root Locus: Definitions and Cases Considered

3.3.1 Definitions

Definition 3.4 (Saturated Closed Loop Poles). The saturated closed loop poles (S-

poles) of the nonlinear system of Figure 3.1 are the poles of the quasilinear system

of Figure 3.2, i.e., the poles of the transfer function from r to ŷ:

T (s) =
Ke(K)C(s)P (s)

1 + Ke(K)C (s) P (s)
. (3.32)

Typical of the method of stochastic linearization, the standard deviation of the

tracking error, σê, in the quasilinear system is close (generally within 10%) to the

standard deviation, σe, of the original system with a saturating actuator [14]. For

example, if

P (s) = 1
s(s+1)

, C (s) = 1, Ω = 1rad/s, α = 0.05,

K = 5, FΩ(s) =
√

3
Ω

(

Ω3

s3+2Ωs2+2Ω2s+Ω3

)

,

(3.33)

it follows from (3.4) that Ke(K) = 0.0399 and σê = 0.999, while simulation of the

corresponding nonlinear system yields σe = 0.986 (i.e., an error of 2%). Additional

examples can be found in [54]. Since σê is defined by the poles of T (s), we conclude

that these saturated closed loop poles characterize the tracking performance of the

original system.

Definition 3.5 (S-Root Locus). The S-root locus is the path traced by the saturated

closed loop poles when K ∈ [0,∞).
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Since Ke(K) enters (3.32) as a usual gain, and

0 ≤ Ke(K) ≤ K,

the S-root locus is a proper or improper subset of the unsaturated root locus.

3.3.2 Cases of S-root loci considered

Define the auxilliary transfer function, Tγ(s), as

Tγ(s) =
FΩ (s) C (s)

1 + γP (s) C (s)
. (3.34)

It turns out that the properties of the S-root locus depend on the properties of Tγ(s)

and the solutions of (3.4). Specifically, we consider two cases: (i) when (3.34) is

stable for all γ > 0, and (ii) when (3.34) is stable only on a finite interval γ ∈ [0, Γ),

Γ < ∞, and

lim
γ→Γ

‖Tγ (s)‖2 = ∞. (3.35)

Additionally, we consider cases where (3.4) has either a unique or multiple solutions.

Accordingly, this work addresses four cases of S-root loci. These cases are indicated

in Table 3.1, which also specifies the sections where they are addressed.

Table 3.1: Cases of S-root locus considered
Tγ(s) stable ∀γ > 0 Tγ(s) stable only for γ ∈ [0,Γ), Γ < ∞

Ke(K) unique Case 1, Section 3.4 Case 2, Section 3.4
Ke(K) non-unique Case 3, Section 3.5 Case 4, Section 3.5

3.4 S-Root Locus when Ke(K) is Unique

As in the unsaturated case, we are interested in the points of origin and termi-

nation of the S-root locus. The points of origin clearly remain the same as in the

unsaturated case. The points of termination, however, may not be the same because,
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as it turns out, Ke(K) may not tend to infinity as K increases. To discriminate be-

tween these two cases, we need the following equation

β −

∥

∥

∥

∥

∥

∥

∥

∥

FΩ (s) C (s)

1 +

(

α
√

2/π

β

)

P (s) C (s)

∥

∥

∥

∥

∥

∥

∥

∥

2

= 0, (3.36)

in the unknown β. Note that, while (3.36) is always satisfied by β = 0, it may admit

nonzero solutions as well. However, the uniqueness of Ke(K) implies the uniqueness

of solution of (3.36). Indeed, we have the following.

Lemma 3.6. If Ke(K) is unique for all K, then

i) Ke(K) is continuous and strictly monotonically increasing.

ii) Equation (3.36) admits at most one positive solution β = β∗ > 0.

Theorem 3.7. Assume that Tγ(s) is stable for all γ > 0 and (3.4) admits a unique

solution for all K > 0, i.e., Case 1. Then,

(i) lim
K→∞

Ke (K) =
α
√

2/π

β∗ < ∞ (3.37)

if and only if (3.36) admits a unique solution β = β∗ > 0;

(ii) lim
K→∞

Ke (K) = ∞ (3.38)

if and only if β = 0 is the only real solution of (3.36).

Theorem 3.8. Assume that Tγ(s) is stable only for γ ∈ [0, Γ), Γ < ∞, (3.35) holds,

and (3.4) admits a unique solution for all K > 0, i.e., Case 2. Then,

lim
K→∞

Ke (K) =
α
√

2/π

β∗ < Γ, (3.39)

where β = β∗ > 0 is the unique positive solution of (3.36).
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Note that (3.39) implies that, under the conditions of Theorem 3.8, the S-root

locus can never enter the right half plane.

As it follows from Theorems 3.7 and 3.8, in the limit of K → ∞, the quasilinear

system of Figure 3.2 has a closed loop transfer function given by

Tterminal (s) =
κC(s)P (s)

1 + κC (s) P (s)
, (3.40)

where

κ = lim
K→∞

Ke (K) . (3.41)

Definition 3.9 (S-Termination Points). The S-termination points of the S-root locus

are the poles of Tterminal(s).

Thus, as K → ∞, the S-poles travel monotically along the S-root locus from

the open loop poles to the S-termination points. If κ = ∞, then the S-termination

points coincide with the open loop zeros; otherwise, the S-root locus terminates

prematurely.

Example 3.10. Consider the system of Figure 3.2 with

P (s) =
s + 15

s (s + 2.5)
, α = 0.1, (3.42)

and C(s), Ω, and FΩ(s) as defined in (3.33). It is straightforward to verify that,

for this system, Tγ(s) is stable for all γ > 0 and (3.4) admits a unique solution for

K > 0, i.e., the conditions of Theorem 3.7 are satisfied. Since (3.36) admits a positive

solution β = 0.709, (3.37) and (3.41) result in κ = 0.1125. Figure 3.11 shows Ke(K)

as a function of K. When K is small, we see that Ke(K) ≈ K, since the actuator

does not saturate. Clearly, as K increases, Ke(K) indeed tends to the limit κ.

Figure 3.12 shows both the unsaturated and S-root locus for Example 3.10. Here,

and in all subsequent figures, the S-termination points are indicated by small squares.
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The shaded area of Figure 3.12 represents the admissible domain for a high quality

of tracking derived in [110]. Clearly, the S-root locus never enters the admissible

domain, and the achievable tracking quality is limited by the S-termination points.

Figure 3.13 shows the output of the nonlinear and quasilinear systems when K = 150

(i.e., when the saturated closed loop poles are located close to the S-termination

points). Clearly, the tracking quality of the stochastically linearized system is poor

due to dynamic lag. As predicted, the same is true for the original nonlinear system.

To improve the tracking performance, we increase α to 0.2. As illustrated in Figure

3.14, this causes the S-root locus to enter the admissible domain, and hence, choosing

K large enough results in a high quality of tracking. This is verified in Figure 3.15,

where we see that the quality of tracking is good for both the stochastically linearized

and original nonlinear systems.

Example 3.11. Consider the system of Figure 3.2 with

P (s) =
1

s (s + 1) (s + 2)
, α = 1, (3.43)
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Figure 3.13: Tracking quality with S-poles located near the S-termination points (K = 150) for
Example 3.10 with α = 0.1

and C(s), Ω, and FΩ(s) as defined in (3.33). It is easily verified that Tγ(s) is stable

only for γ ∈ [0, 5.96) and (3.4) has a unique solution for K > 0, i.e., the conditions

of Theorem 3.8 are satisfied. Noting that β = 1.1 is the solution to (3.36), it follows

from (3.39) and (3.41) that κ = 0.722. The resulting S-root locus, illustrated in

Figure 3.16, never enters the right half plane.
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3.5 S-Root Locus when Ke(K) is Non-Unique

In some cases, (3.4) admits multiple solutions. To illustrate the complexities that

arise in this situation, consider the following motivating example.

3.5.1 Example

Consider the system of Figure 3.1 defined by

P (s) =
s2 + 10s + 27.25

s2 (s + 5)
, α = 0.4, Ω = 1.1rad/s,K = 5, (3.44)

with C(s) and FΩ(s) as in (3.33). Figure 3.17 illustrates the left and right hand sides

of (3.4) for this system, where it is clear that three solutions exist:

K(1)
e = 0.1283, K(2)

e = 1.0153, K(3)
e = 4.35. (3.45)

We are interested in the behavior of these solutions not only for K = 5, but for

all K > 0. Accordingly, Figure 3.18 shows Ke(K) as a function of K for the above

example, from which a number of important observations can be made:
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Figure 3.17: Left and right hand sides of (3.4) for the system defined in (3.44)

• For K < 2.55, the solution of (3.4) is unique; multiple solutions exist for all

K ≥ 2.55.

• As K → ∞, three possible limiting values of Ke(K) occur:

κ1 = 0.1285, κ2 = 1.0154, κ3 = ∞. (3.46)

Thus, the S-root locus has three different S-termination points.

• At K = 2.55, the S-root locus has an S-origination point, corresponding to the

appearance of two additional solutions.

• The range of Ke(K) excludes the open interval between κ1 and κ2, that is,

(0.1285, 1.0154).

The branches of Figure 3.18 imply the following phenomenology of S-poles be-

havior for the system of Figure 3.1. For K < 2.55, there exists a unique set of three

S-poles, and the closed loop behaves accordingly. For K > 2.55, there are three sets

of S-poles, and due to the stochastic nature, the system behavior can be character-

ized as jumping from one of these sets to another. It could be argued that the set of
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Figure 3.18: Ke(K) as a function of K for the system defined in (3.44)

S-poles defined by the negative slope branch of Figure 3.18 does not correspond to

a sustainable steady state, and therefore, the jumping phenomenon occurs between

the poles defined by the positive slope branches of Figure 3.18.

To substantiate this phenomenology, consider the system of Figure 1 defined by

(3.44). As mentioned before, this system leads to three values of Ke(K) (defined

in (3.45)) and, therefore, to three corresponding values of the steady state standard

deviation of error:

σ
(1)
ê = 2.49, σ

(2)
ê = 0.31, σ

(3)
ê = 0.053. (3.47)

Since the value of σ
(2)
ê corresponds to Ke(K) on the negative slope branch of Figure

3.18, it is expected that the closed loop system exhibits jumping between σ
(1)
ê and

σ
(3)
ê . To illustrate this behavior we simulate the system at hand for 10, 000 seconds

and examine the standard deviation over a 100 second moving window. The results

are shown in Figure 3.19. As one can see, the ‘simulated standard deviation’, σ̃ê,

jumps roughly between the values of 0.05 and 2.5. This corroborates the described

phenomenology.
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Figure 3.19: Simulated standard deviation, σ̃ê, for the system defined in (3.44)

These features give rise to the S-root locus illustrated in Figure 3.20, where the ar-

rows indicate the movement of the S-poles as K increases. The S-termination points

are denoted, as before, by the squares, while the S-origination points are indicated

by strikes orthogonal to the root locus. The parts of the S-root locus corresponding

to the jumping phenomenon are indicated by broken lines. The insets of Figure 3.20

are intended to clarify the S-root locus in the vicinity of the S-termination points.

Note that the S-root locus does not contain the parts of the unsaturated root locus

corresponding to Ke(K) ∈ (0.1283, 1.0153). Thus, the S-root locus for this system

differs from the unsaturated case in the following:

• It contains areas of uncertain behavior due to the jumping phenomenon.

• It is only a proper subset of the unsaturated root locus, missing an intermediate

portion.
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Figure 3.20: S-root locus for the system defined in (3.44)

3.5.2 General analysis of systems with non-unique Ke(K)

It is, of course, desirable to formulate general results pertaining to the multiple so-

lutions case. Although the complexities outlined above lead to analytical difficulties,

some useful deductions can be made.

Theorem 3.12. Assume that (3.4) has multiple solutions, and the only solution of

(3.36) is β = 0. Then:

i) The S-root locus coincides with the unsaturated root locus, parameterized by

Ke(K) rather than K.

ii) There exists an S-origination point, implying that there is a range of K for which

the jumping phenomenon takes place.

As an illustration of Theorem 3.12, consider the system of (3.44), with α = 0.53.

In this case, (3.36) admits a unique solution β = 0, but Ke(K) is non-unique for

some K (see Figure 3.21). The resulting S-root locus is shown in Figure 3.22.

Theorem 3.13. Assume that (3.4) has multiple solutions, and, along with β0 = 0,
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Figure 3.22: S-root locus for the system defined in (3.44) with α = 0.53
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(3.36) admits solutions β = βi > 0, i = 1, 2, ..., n. Then:

i) Each βi corresponds to an S-termination point defined by

κi =
α
√

2/π

βi

, (3.48)

and (3.40).

ii) If n is even, then the solution β0 = 0 also gives a termination point, defined by

κ0 = ∞.

iii) Assume that (3.36) admits at least one simple positive solution. Then the S-root

locus is a proper subset of the unsaturated root locus.

The motivating example (3.44) can be viewed as an illustration of Theorem 3.13.

3.5.3 Approach to controller design for non-unique Ke(K)

As discussed above, a closed loop system with a controller C(s), which leads to

multiple solutions of (3.4), exhibits quite a complex behavior. Indeed, the random

‘jumping’ from one set of closed loop S-poles to another, results in different tracking

errors on different time intervals. Although it is possible to evaluate the residence

time [111] in each set of closed loop S-poles and then estimate the ‘average’ value

of the tracking error, this value, even when small, would not necessarily guarantee

good system performance for all time intervals.

Therefore, we propose a design methodology intended to avoid multiple solutions

of (3.4). To accomplish this, we propose to select, if possible, a controller C(s),

which results in a unique Ke(K) for all K > 0, and then select K so that the closed

loop S-poles are at the desired locations. A question arises as to when such a C(s)

does exist. The answer is as follows:
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Theorem 3.14. If P (s) is stable and minimum phase, and FΩ(s)/P (s) is strictly

proper, there exists C(s) such that the solution of (3.4) is unique for all K > 0.

For the example system (3.44), selecting

C (s) =
s + 0.7

s2 + 10s + 27.25
, (3.49)

results in a unique Ke(K) (with κ = ∞, as per Theorem 3.7). The resulting S-root

locus is illustrated in Figure 3.23.

In the remainder of the chapter, we will assume that Ke(K) is unique for all K.

3.6 S-Root Locus and Amplitude Truncation

In the previous sections we have used the S-root locus to characterize the dynam-

ics of systems with saturating actuators. However, the performance may be poor not

only due to the location of S-poles, but also due to output truncation by the satu-

ration. Accordingly, in this section we introduce and compute S-truncation points,

which characterize the region of the S-root locus where truncation does not occur.

To accomplish this we use the notion of trackable domain introduced in [54].
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The trackable domain, TD, is defined by the magnitude of the largest step input

that can be tracked in the presence of saturation. For the system of Figure 3.1, it is

defined as [54]:

TD =

∣

∣

∣

∣

1

KC (0)
+ P (0)

∣

∣

∣

∣

α, (3.50)

where C(0) and P (0) are the DC gains of the controller and plant respectively.

Clearly, the trackable domain is infinite when P (s) has at least one pole at the

origin; otherwise, it is finite, assuming that C(0) 6= 0. Although (3.50) is based on

step signals, it has been shown in [54] that TD can also be used to characterize the

tracking quality of random signals. In particular, in [54], a tracking quality indicator

was introduced to account for the finite trackable domain vis-à-vis the size of the

signal to be tracked. This indicator was defined as

I0 =
σr

TD
, (3.51)

where σr is the standard deviation of the reference signal. Specifically, when I0 < 0.4,

tracking practically without output truncation is possible, whereas for I0 > 0.4 it is

not. To formalize this threshold, and keeping in mind that TD is monotonically de-

creasing in K (and therefore, I0 is monotically increasing), we introduce the following

definition.

Definition 3.15 (S-truncation point). The S-truncation points are defined as the

poles of

Ttr (s) =
KtrC(s)P (s)

1 + KtrC (s) P (s)
, (3.52)

where

Ktr = Ke (KI0) (3.53)

and

KI0 = min {K > 0 : I0 > 0.4} . (3.54)
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Figure 3.24: I0 as a function of K for Example 3.16

Note that when P (s) has a pole at the origin, I0 = 0, and the S-root locus has

no S-truncation points. To illustrate the utility of S-truncation points, consider the

following example.

Example 3.16. Consider the system of Figure 3.1 defined by

P (s) =
s + 20

(s + 15) (s + 0.5)
, C (s) = 1, α = 0.8, Ω = 1,

30 25 20 15 10 5 0
30

20

10

0

10

20

30

j

σ

Figure 3.25: S-root locus for Example 3.16 with α = 0.8
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Figure 3.26: Tracking quality when K = 20 for Example 3.16 with α = 0.8

and FΩ(s) as in (3.33). As obtained from Theorem 3.7, the limiting gain of this system

is κ = 20.015 (the S-termination points are obtained through (3.40)). Figure 3.24

shows I0 for this system as a function of K, from which we determine that KI0 = 2.2.

The truncation gain can then be evaluated as Ktr = Ke(2.2) = 2.15. The resulting S-

root locus is given in Figure 3.25, where the S-termination and S-truncation points are

denoted by the usual and solid squares, respectively. Although the S-root locus enters

the shaded region for high quality dynamic tracking, the position of the truncation

points limit the achievable performance. Figure 3.26 illustrates the output response

of the system when the control gain is K = 20 > KI0 . The saturated closed loop poles

are located at −16± j9.5 (i.e., in the admissible domain), but beyond the truncation

points. This leads to good dynamic tracking, but with a clipped response. Clearly,

this can be remedied by increasing α, as illustrated in Figure 3.27, which shows the

S-root locus when α = 1.5. Figure 3.28 shows the corresponding plot for the same

location of S-poles as before. Clearly the clipping practically does not occur (the

output overlays the reference).

In conclusion, note that if S-truncation points exist, then they occur prior to the

S-termination points (since the latter correspond to K = ∞).
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Figure 3.27: S-root locus for Example 3.16 with α = 1.5
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Figure 3.28: Tracking quality for Example 3.16 with α = 1.5

3.7 Calibration of the S-Root Locus

Let s∗ be an arbitrary point on the S-root locus, i.e.,

1 + Ke (K) C (s∗) P (s∗) = 0, (3.55)

where

0 ≤ Ke (K) < κ. (3.56)

To calibrate the S-Root Locus implies to find the particular K such that (3.55) is

satisfied (i.e., the S-poles are located at s∗). This is accomplished by the following

Corollary of Theorem 3.12.
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Corollary 3.17. For arbitrary s∗ on the S-Root Locus, there exists a unique K∗ > 0

such that K = K∗ satisfies (3.55). Moreover, K∗ is the unique solution of

Ke = K∗erf





α
√

2K∗
∥

∥

∥

FΩ(s)C(s)
1+KeP (s)C(s)

∥

∥

∥

2



 , (3.57)

where

Ke =
1

|C (s∗) P (s∗)| . (3.58)

Note that (3.57) can be solved by a standard bisection algorithm. Figure 3.29

illustrates the differences in calibration gains between an unsaturated and S-root

locus (using the system of Example 3.10).

3.8 Application: Hard Disk Drive

We consider the hard disk drive servo problem of Section 3.2.4, where the control

objective is to maintain the disk head above a circular track that exhibits random

irregularities which can be modelled as a bandlimited noise. The model for the plant
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Figure 3.30: S-Root Locus for hard disk drive example

was given as

PD (s) =
4.382 × 1010s + 4.382 × 1015

s2 (s2 + 1.596 × 103s + 9.763 × 107)
, (3.59)

while the controller was selected as

C (s) =
K (s + 1058) (s2 + 1596s + 9.763 × 107)

(s2 + 3.719 × 104s + 5.804 × 108)2 . (3.60)

From [2], we impose the additional assumption that the input to the plant is con-

strained by a saturation with α = 0.006. The bandwidth of the reference is 692rad/s,

and FΩ(s) is as defined in (3.33). For this system, the conditions of Theorem 3.8

hold, and it results in

κ = 1.0509 × 106.

The corresponding S-root locus is shown in Figure 3.30, where the admissible domain

is indicated by the shaded region. Note that since PD(s) contains poles at the

origin, the S-root locus does not have S-truncation points. To meet the performance

specification, we select K so that

Ke (K) = 5.7214 × 105, (3.61)
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Figure 3.31: Tracking performance, hard disk drive example

which results in a pair of dominant S-poles located at (−2.83 ± j9.06) × 103, i.e., in

the admissible domain. Using Corollary 3.17 with (3.61) yields:

K = 6.208 × 105.

Figure 3.31 illustrates the tracking quality for both the stochastically linearized and

original nonlinear systems. As predicted, the nonlinear system exhibits a tracking

quality similar to that of the stochastically linearized system, and achieves a standard

deviation σe = 0.047σr. It is noteworthy that this performance matches that obtained

in [54], where a nonlinear antiwindup controller was utilized.

3.9 Summary

This chapter has presented a new methodology - the S-root locus - to design

controllers for tracking random reference signals in the presence of saturation. The

technical approach utilizes stochastic linearization, whereby the saturation nonlin-

earity is replaced by a static gain that depends on the variance of the signal at its

input. The poles of the resulting quasilinear system are the so-called S-poles and can
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be used to predict the quality of tracking. Specifically, good tracking requires that

the S-poles be located in desirable regions of the complex plane. The path traced by

the S-poles as the controller gain changes is the so-called S-root locus and is always

a subset of the unsaturated root locus, i.e., the root locus obtained by removing the

saturation. Hence, the S-root locus methodology introduced in this paper is simi-

lar to the classical root locus methodology in that both require certain poles to be

located in desirable regions of the complex plane.

There are, however, significant differences between the S-root locus and the clas-

sical root-locus methodologies. Specifically:

a) S-termination: As the control gain tends to infinity, the equivalent gain may tend

to a finite value (see Theorem 1). This phenomenon is referred to as S-termination,

and results in the S-root locus terminating at points prior to the open loop zeros.

b) S-truncation: The phenomenon of S-truncation refers to quality degradation due

to output truncation. This occurs when the magnitude of the signal to be tracked

lies outside of the feasible domain specified by the level of saturation.

c) S-origination: For small control gain, stochastic linearization is guaranteed to

yield a unique gain as a surrogate of the saturation. As the control gain in-

creases, however, stochastic linearization may yield multiple gains, leading to the

phenomenon of S-origination.

d) Jumping: When stochastic linearization yields multiple gains, they correspond to

several combinations of S-pole locations. In that case, the system behavior jumps

(transitions) between the options defined by the various combinations of S-pole

locations.

The formulation of the S-root locus design methodology and the analytic de-
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scription of the above phenomena constitute the main original contributions of this

chapter.



CHAPTER IV

RECOVERING LINEAR PERFORMANCE: BOOSTING

4.1 Introduction

Consider the linear feedback system shown in Figure 4.1, where C(s) is the con-

troller and P (s) is the plant. The signals uℓ, yℓ and w denote the controller output,

plant output, and standard white input disturbance, respectively. Assume that the

controller is designed to achieve a certain level of disturbance rejection, specified in

terms of the output variance σ2
yℓ

. As discussed in Chapter I, in reality, the controller

is implemented in the LPNI configuration shown in Figure 4.2, where f(·) and g(·)

0
C(s) P (s)

w

yℓ

-

+

+

+uℓ

Figure 4.1: Basic linear feedback system

0
C(s) f(·) P (s)

w

y
-

+

+

+

g(·)

u

Figure 4.2: Feedback system with nonlinear instrumentation
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Figure 4.3: Quasilinear feedback system for boosting

represent static nonlinearities in the actuator and sensor, respectively.

The performance of the LPNI system typically degrades in comparison with that

of the original linear system in the sense that

σ2
y > σ2

yℓ
. (4.1)

This chapter presents a technique, referred to as boosting, that describes how, under

certain conditions, the gain of C(s) can be increased to eliminate this degradation.

Thus, the main contribution is a method to recover the performance of a linear design

in the presence of nonlinear instrumentation.

As described in Chapter II, quantifying (4.1) is difficult since analytical evaluation

of σ2
y requires solution of the Fokker-Planck equation, which is possible in only a few

special cases [49]. Thus, stochastic linearization is used to study the LPNI system.

Recall from Chapter II that in SL, the LPNI system is replaced by the quasilinear

system shown in Figure 4.3, where the quasilinear gains are defined as

Na := E

[

d

dû
f (û)

]

, (4.2)

and

Ns := E

[

d

dŷ
g (ŷ)

]

. (4.3)

The boosting method amounts to a modification of the controller C(s) so that the

quasilinear system completely recovers the performance of the original linear system,
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i.e.,

σŷ = σyℓ
. (4.4)

This is achieved by introducing scalar gains Ka and Ks, as shown in Figure 4.4. The

idea is to compensate for the effects of f(u) and g(y) by selecting Ka and Ks to offset

Na and Ns respectively, so that

KaNa = KsNs = 1, (4.5)

where we assume that Na and Ns are nonzero. Note that, in the quasilinear system,

Na and Ns are functions of Ka and Ks, which makes the boosting problem nontrivial.

Since Ks, Ka and C(s) commute, boosting can be implemented by placing a single

gain at the output of C(s) as shown in Figure 4.5, where

Kboost := KaKs. (4.6)

In addition, we establish a separation principle, which enables Ka and Ks to be

evaluated from two simpler sub-problems:

0
C(s) Na P (s)

w

ŷ
-

+

+

+

Ns

û
Kboost

Figure 4.5: Equivalent boosted quasilinear system
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Figure 4.6: a-Boosted quasilinear system

(1) a-boosting, i.e., boosting to account for only a nonlinear actuator (i.e., under the

assumption that g(y) = y), and

(2) s-boosting, i.e., boosting to account for only a nonlinear sensor (i.e., under the

assumption that f(u) = u).

The chapter is organized as follows: Section 4.2 provides a detailed problem for-

mulation. Sections 4.3 and 4.4 present solutions for the a- and s-boosting problems

respectively. These results are combined in Section 4.5, which explains the case

when f(u) and g(y) are simultaneously present. In Section 4.7, the accuracy of the

results is validated both statistically and experimentally. A summary is formulated

in Section 4.9, and proofs are provided in Appendix B.

4.2 Problem Formulation

As it was stated above, recovering the performance of the linear feedback loop of

Figure 4.1 in the presence of the nonlinearities of Figure 5.1 can be accomplished

by boosting. This method is separable into two parts: boosting to compensate for

actuator nonlinearity, and boosting to compensator for sensor nonlinearity. Hence,

the following two problems are formally posed.

4.2.1 a-Boosting

Consider the LPNI system with g(y) = y. Hence, the only nonlinearity is the

actuator f(u) and Figure 4.4 reduces to Figure 4.6. Here, since w is standard white
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Figure 4.7: s-Boosted quasilinear system

noise, (4.2) becomes

Na =

∞
∫

−∞

f ′ (x)
1

σû

√
2π

exp

(

− x

2σ2
û

)

dx. (4.7)

Define the real analytic function

F(σ) :=

∞
∫

−∞

f ′ (x)
1

σ
√

2π
exp

(

− x

2σ2

)

dx. (4.8)

Since

σû =

∥

∥

∥

∥

P (s) C(s)Ka

1 + P (s) NaKaC (s)

∥

∥

∥

∥

2

, (4.9)

where

‖H‖2 =

√

1

2π

∫ ∞

−∞
|H (jω)|2 dω, (4.10)

(4.7) can be rewritten as

Na = F
(∥

∥

∥

∥

P (s) C(s)Ka

1 + P (s) NaKaC (s)

∥

∥

∥

∥

2

)

. (4.11)

The problem of a-boosting is to find Ka, if possible, such that

KaNa = 1, (4.12)

where Na itself depends on Ka through (4.11).

4.2.2 s-Boosting

Consider the LPNI system with f(u) = u. Hence, Figure 4.4 reduces to Figure

4.7, where

Ns =

∞
∫

−∞

g′ (x)
1

σŷ

√
2π

exp

(

− x

2σ2
ŷ

)

dx. (4.13)
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Define the function

G(σ) :=

∞
∫

−∞

g′ (x)
1

σ
√

2π
exp

(

− x

2σ2

)

dx. (4.14)

Since

σŷ =

∥

∥

∥

∥

P (s)

1 + P (s) NsKsC (s)

∥

∥

∥

∥

2

, (4.15)

(4.13) can be rewritten as

Ns = G
(∥

∥

∥

∥

P (s)

1 + P (s) NsKsC (s)

∥

∥

∥

∥

2

)

. (4.16)

The problem of s-boosting is to find Ks, if possible, such that

KsNs = 1, (4.17)

where, again, Ns is a function of Ks through (4.16).

Remark 4.1. The structure of the LPNI system of Figure 5.1 implies that the prob-

lems of a- and s-boosting are not dual. Indeed, observe that for a-boosting, the gain

Ka appears in the forward path between w and the input of the actuator nonlinear-

ity, û. For s-boosting, Ks does not appear in the path from w to the input of the

sensor ŷ. Consequently, the numerator of the transfer function in (4.11) contains a

boosting gain, whereas that in (4.16) does not. Thus, the two problems are different,

and must be addressed separately.

4.3 a-Boosting

As implied by (4.11) and (4.12), the problem of a-boosting is equivalent to finding

Ka that satisfies

KaF
(∥

∥

∥

∥

P (s) C(s)Ka

1 + P (s) NaKaC (s)

∥

∥

∥

∥

2

)

= 1. (4.18)
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Theorem 4.2. a-Boosting is possible if and only if

xF
(

x

∥

∥

∥

∥

P (s) C(s)

1 + P (s) C (s)

∥

∥

∥

∥

2

)

= 1 (4.19)

has a positive solution in x. Any positive solution of (4.19) yields a boosting gain

Ka = x. (4.20)

The existence and uniqueness of Ka depend on the specific form of F(·). This is

analyzed below for the common saturation nonlinearity. Other nonlinearities can be

treated analogously.

4.3.1 Actuator saturation

Consider the a-boosted system of Figure 4.6 and let f(·) be the static saturation

of authority α, i.e.,

f(u) = satα(u) =



























α, u > +α

u, −α ≤ u ≤ α

−α, u < −α.

(4.21)

In this case, it was shown in Chapter II that

F(σ) = erf

(

α√
2σ

)

. (4.22)

Hence,

Na = erf





α
√

2
∥

∥

∥

P (s)C(s)Ka

1+P (s)NaKaC(s)

∥

∥

∥



 . (4.23)

It follows from Theorem 4.2 and (4.22) that a-boosting for the saturation nonlinearity

(3.1) is possible if and only if the equation

xerf
( c

x

)

= 1 (4.24)
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has a positive solution in x, where

c =
α

√
2
∥

∥

∥

P (s)C(s)
1+P (s)C(s)

∥

∥

∥

2

. (4.25)

Theorem 4.3. Equation (4.24) admits a unique positive solution if and only if

α >

√

π

2

∥

∥

∥

∥

P (s) C (s)

1 + P (s) C (s)

∥

∥

∥

∥

2

. (4.26)

Note that since

σuℓ
=

∥

∥

∥

∥

P (s) C (s)

1 + P (s) C (s)

∥

∥

∥

∥

2

(4.27)

and
√

π

2
≈ 1.25, (4.28)

the following can be stated:

Rule-of-thumb 1. a-Boosting for a saturating actuator is possible if

α > 1.25σuℓ
. (4.29)

Remark 4.4. As it has been shown in [61],

α > 2σuℓ
, (4.30)

without boosting, leads to no more than 10% performance degradation of the lin-

ear design. In comparison, the above rule-of-thumb achieves complete performance

recovery, with actuators that have less authority than recommended in [61].

4.3.2 Performance recovery by redesigning C(s)

If (4.19) does not have a solution, i.e., a-boosting is impossible, a question arises:

Can C(s) be redesigned in some other way to achieve σŷ = σyℓ
? The answer depends

on the ability to find a controller that simultaneously achieves the performance spec-

ification and yields a solution to (4.19). Such a controller is said to be boostable.
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In the case of actuator saturation, the boosting condition (4.26) implies that

finding a boostable controller is a linear minimum-effort control problem, i.e., the

problem of finding a controller that minimizes σuℓ
for a specified performance level

σyℓ
. One method for accomplishing this is given in [112], where a controller Copt(s) is

synthesized that yields the desired output σy with minimum control effort. If (4.26)

is not satisfied by this Copt(s), then no linear boostable controller exists.

4.4 s-Boosting

As implied by (4.16) and (4.17), the problem of s-boosting is equivalent to finding

Ks that satisfies

KsG
(∥

∥

∥

∥

P (s)

1 + P (s) NsKsC (s)

∥

∥

∥

∥

2

)

= 1. (4.31)

Since, unlike a-boosting, Ks enters the argument of G only as a factor of Ns, and

for s-boosting NsKs = 1, the solution of (4.31) is always possible and is given by

Ks =
1

G
(∥

∥

∥

P (s)
1+P (s)C(s)

∥

∥

∥

2

) . (4.32)

This result warrants further investigation since it suggests that linear performance

may be recovered in the presence of any sensor nonlinearity. It turns out that,

although an s-boosting gain can always be found, in some cases the accuracy of

stochastic linearization may be poor. Thus, certain conditions should be satisfied

before using s-boosting. These are developed in Section 4.7.

Below, explicit expressions are given for the function G in (4.32) for various types

of sensor nonlinearities.
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4.4.1 Sensor saturation

In the case where g(y) is a symmetric saturation of range α, the right hand side

of (4.16) becomes

G(σ) = erf

(

α√
2σ

)

. (4.33)

4.4.2 Sensor deadzone

Let g(y) be a symmetric deadzone of the form

g(y) =



























y − ∆
2
, y > +∆

2

0, −∆
2
≤ y ≤ ∆

2

y + ∆
2
, y < −∆

2
.

(4.34)

In this case, the right hand side of (4.16) becomes

G(σ) = 1 − erf

(

∆/2√
2σ

)

. (4.35)

4.4.3 Sensor quantization

Let g(y) be a mid-tread quantizer of the form

g (y) = ∆
2

m
∑

k=1

[sgn (2y + ∆ (2k − 1)) ×

sgn (2y − ∆ (2k − 1))] .

(4.36)

Then,

G(σ) = Qm

(

∆√
2σ

)

, (4.37)

where

Qm (z) :=
2z√
π

[

m
∑

k=1

e−
1

4
(2k−1)2(z)2

]

. (4.38)
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Figure 4.8: LPNI system with boosted controller for stability verification

4.5 Simultaneous a- and s-Boosting

The following separation principle ensures that the results of Sections 4.3 and

4.4 remain applicable when actuator and sensor nonlinearities are simultaneously

present.

Theorem 4.5. Simultaneous a- and s-boosting is possible if and only if each is

possible independently. Moreover, the boosting gains Ka and Ks are the same as the

individual a- and s-boosting gains, respectively.

4.6 Stability Verification in the Problem of Boosting

It is important to verify the stability of the original LPNI system with the boosted

controller. This amounts to performing stability analysis for the nonlinear system

shown in Figure 4.8.

The stability properties of the LPNI system can be ascertained using the theory of

absolute stability. Here, the global asymptotic stability of the origin can be verified

by using tools such as the circle or Popov criterion [15, 44], which require that the

nonlinearities be contained in a certain sector. Although these are strong results, the

conditions are only sufficient and not necessary.

In general, for the LPNI system of Figure 4.8, the local stability of any equilib-

rium can be ascertained via Lyapunov’s indirect method [44]. For example, in the

case where f(·) and g(·) are saturation functions of the form (4.21), the origin is
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asymptotically stable if the numerator of the equation

1 + KaKsC(s)P (s) = 0

has all roots in the open left half plane. In this case, the region of attraction can be

estimated by using well-known Lyapunov function-based techniques [23,105].

In addition to these, as reviewed in Section 1.3.2, many other methods are avail-

able for stability analysis in LPNI systems.

4.7 Accuracy of Stochastic Linearization in the Problem of
Boosting

It is assumed that the boosted quasilinear system accurately predicts the behavior

of the corresponding nonlinear system. In this section, validation of the accuracy of

stochastic linearization when boosting is performed. Design guidelines are formulated

to avoid cases when accuracy is poor.

4.7.1 Accuracy in the problem of a-boosting

To validate the accuracy of stochastic linearization in the context of boosting, the

following statistical study, similar to that considered in Section 2.5.2, is performed:

We consider 2500 first-order and 2500 second-order plants of the form:

P1(s) =
1

Ts + 1
, (4.39)

P2(s) =
ω2

n

s2 + 2ζωn + ω2
n

. (4.40)

The controller is C(s) = K and the actuator is a saturation of the form (3.1). The

system parameters are randomly and equiprobably selected from the following sets:

T ∈ [0.01, 10],

ωn ∈ [0.01, 10], ζ ∈ [0.05, 1],
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K ∈ [1, 20]

α ∈ (αmin, 2αmin],

where αmin is the right hand side of (4.26). Boosting is performed for each system,

and the LPNI system is simulated to identify the error of stochastic linearization,

defined as

eSL =
|σy − σŷ|

σŷ

. (4.41)

Accuracy is very good: 73.6% of the systems yield eSL < 0.05 and only 8.7% of

systems yield eSL > 0.1. Further analysis reveals that these latter cases occur when

the signals u and y are highly non-Gaussian. This is consistent with the assumption of

stochastic linearization, namely that those signals should be approximately Gaussian.

Remark 4.6. In general, stochastic linearization is accurate when the closed loop

linear system provides a sufficient amount of low-pass filtering [1]. A similar situation

holds for the method of describing functions.

4.7.2 Accuracy of s-boosting

A similar statistical study is performed to validate the accuracy of stochastic

linearization in the context of s-boosting. Here, the sensor is assumed to be a mid-

tread quantizer of the form (5.71), and C(s) = K. We consider 1000 first- and 1000

second-order plants of the form (4.39) and (4.40), with system parameters chosen

equiprobably from the sets:

T ∈ [0.01, 10],

ωn ∈ [0.01, 10], ζ ∈ [0.05, 1],

K ∈ [1, 20],

m ∈ [1, 10], ∆ ∈ (0, 4σy],
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Figure 4.9: eSL as function of σy/∆

where σy is the nominal linear performance to be recovered. As illustrated in Fig-

ure 4.9, simulation reveals that accuracy degrades significantly as the ratio σy/∆

decreases. This is expected, since when σy/∆ is small, most of the output signal lies

in the quantizer deadzone. Hence, the nonlinear system operates in an effectively

open loop regime. Our experience indicates that to avoid this situation, the following

should be observed:

σy

∆
> 0.33. (4.42)

This leads to:

Rule-of-thumb 2. s-Boosting for a quantized sensor is possible if

∆ < 3σy. (4.43)

Remark 4.7. Recall that ∆ is the total deadzone width, and hence (4.43) stipulates

that the deadzone ‘amplitude’, i.e., ∆/2, should be no greater than 1.5 standard

deviations. This rule-of-thumb may seem generous, since intuition would suggest
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that ∆/2 should be, at most, one standard deviation. The extra deadzone width

allowance comes from boosting, which increases the loop gain.

When (4.42) is satisfied, the accuracy of s-boosting is similar to that of a-boosting.

Again, accuracy is generally very good, and fails in those scenarios where the plant

has insufficient filtering characteristics.

Remark 4.8. Similar results hold when g(y) is the symmetric deadzone (4.34). In

general, Rule-of-thumb 2 should be observed for any sensor nonlinearities that exhibit

small gain near the origin.

4.8 Experimental Validation of Boosting: MagLev

To illustrate the efficacy of boosting on a physical system, consider the problem

of controlling the vertical displacement of a magnetically suspended ball (Maglev),

illustrated in Figure 4.10. The input of the system is the current i(t), while the

output is the vertical displacement of the ball y(t).

To coincide with a commercial Maglev experimental apparatus (Feedback Inc.

Magnetic Levitation System), the following linearized model and the disturbance

intensity, provided by the manufacturer, are used:

P (s) =
Y (s)

I(s)
=

−37.20

s2 − 2180
, (4.44)

σ2
w = 1.2 × 10−5. (4.45)

Consider the PID controller

C(s) = 200 + 5s +
200

s
, (4.46)

which stabilizes the linear system. The resulting output standard deviation is

σyℓ
= 0.029cm. (4.47)
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i(t)

m
y(t)

Figure 4.10: Magnetically suspended ball

The experimental apparatus is configured so that the current to the plant is con-

strained by a saturation with authority α = ±0.3A. The measured output is quan-

tized by ∆ = 0.005cm. Simulation of the system with this nonlinear instrumentation

results in

σy = 0.049cm, (4.48)

a degradation of 83%.

It is easily verified that σuℓ
= 0.1069, and hence (4.26) is satisfied. Thus, the

conditions of Theorem 4.5 are met and boosting can be used to recover the original

linear performance. Solving (4.24) and (4.32) results in

Kboost = 2.8. (4.49)

Using this boosting gain in a MATLAB simulation yields the desired result:

σy = 0.0271cm. (4.50)

This result is verified experimentally. The boosted controller C̄(s) = KboostC(s)

is applied to the MagLev through standard AD/DA hardware, and a pseudo-white

noise excitation is applied at the input of the plant. The resulting experimentally

measured output standard deviation is

σỹ = 0.0252cm, (4.51)
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where ỹ denotes the output signal. Thus, a successful recovery of the designed

performance is demonstrated.

4.9 Summary

A typical approach to disturbance rejection in LPNI systems involves designing

in a purely linear setting, using techniques such as conventional LQR/LQG. In this

situation, the designer may find that the anticipated performance degrades when

their controller is applied in the actual LPNI configuration. The main contribution

of this chapter is the method of boosting, whereby a scalar gain is applied to the

existing controller, such that linear performance is recovered in a quasilinear system

that faithfully represents the original LPNI system. The conditions for boosting are

easily checked, and the technique is demonstrated to be effective for a large number

of systems. It allows designers to use familiar tools in a linear setting, and then

recover the intended performance in the presence of nonlinear instrumentation.



CHAPTER V

SIMULTANEOUS DESIGN OF CONTROLLER AND
INSTRUMENTATION: ILQR/ILQG

5.1 Introduction

Consider the LPNI system shown in Figure 5.1, where the actuator and sen-

sor nonlinearities fα(·) and gβ(·) are parameterized by α and β, respectively. The

control objective is disturbance rejection, specified in terms of the variance, σ2
z , of

the performance output, z. As demonstrated in the previous chapter, the conven-

tional LQR/LQG method, in combination with boosting, can be used to achieve

this objective (i.e., execute a purely linear design, then recover performance in the

LPNI system via boosting). As an alternative to boosting, a modified LQR/LQG

technique, referred to as SLQR/SLQG (where S stands for saturation), has been

developed in [5, 83]. Using this technique, and given the nonlinearities fα(·) and

gβ(·), the designer can synthesize C(s) directly, so that σ2
z satisfies the specification.

But when the instrumentation is not a priori specified, how can one synthesize the

controller and the instrumentation, simultaneously, so that the desired performance

is achieved? This is the question addressed in this chapter.

Specifically, we develop the ILQR/ILQG methodology (where I stands for instru-

mented), which finds the controller C(s) and the instrumentation fα(·) and gβ(·)

that minimize an augmented version of the traditional quadratic performance index

91
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C(s) fα(·) P (s)

w z

gβ(·)

u

ym

y

Figure 5.1: LPNI system for ILQR/ILQG

given by

J = σ2
z + W(α, β). (5.1)

Here, W(α, β) describes the ‘cost’ of the instrumentation as a function of the pa-

rameters of the nonlinearities. Thus, ILQR/ILQG results in simultaneous controller

and instrumentation design.

As in the previous chapters, the technical approach is based on the method of

stochastic linearization, which leads to an analytically tractable problem.

The remainder of this chapter is organized as follows. Section 5.2 provides the

problem formulation. Sections 5.3 and 5.4 present solutions for the ILQR and ILQG

problems, respectively. Generalizations of these problems are discussed in Section

5.5 and a detailed example is presented in Section 5.6. A summary is provided in

Section 5.7. All proofs are given in Appendix C.

5.2 Problem Formulation

To make the problem formulation concrete, we assume that the actuator and

sensor nonlinearities are saturation functions of the form (3.1) with parameters α and

β, respectively. In Section 5.5, a generalization to other nonlinearities is presented.

With this in mind, consider the LPNI system shown in Figure 5.2, where P (s) is the

plant, C(s) is the controller, F1(s), F2(s) are coloring filters, and H1(s), H2(s) are
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C(s) satα(·) P (s)

w1 z1

satβ(·)

u y

H1(s)

z2

H2(s) F1(s)

w2F2(s)
ym

Figure 5.2: LPNI system configuration for ILQR/ILQG problem formulation

weighting filters. The signals u, y, ym ∈ R are, respectively, the control, plant output,

and measured output, while w1, w2 ∈ R are independent white noise processes. The

controlled (performance) outputs are z1, z2 ∈ R.

Remark 5.1. The assumption that signals are scalar is made to simplify the technical

presentation. This is not restrictive, and generalization to multivariable systems is

discussed in Section 5.5.

Assume that the system has a state-space representation

ẋG = AxG + B1w + B2satα (u)

z = C1xG + D12u

y = C2xG

ym = satβ(y) + D21w,

(5.2)

where xG is the state vector of the LPNI system, w = [w1 w2]
T and z = [z1 z2]

T .

Assume, also, that the instrumentation cost W(α, β) is given by

W(α, β) = ηaα
2 + ηsβ

2, (5.3)

where ηa, ηs > 0.

Based on this formalization, three problems can be posed:

E1. Exact analysis problem: Given α and β, determine σ2
z .
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E2. Exact controller design problem: Given α and β, design a controller that mini-

mizes

J = σ2
z .

E3. Exact simultaneous instrumentation and controller design problem: Design a

controller and select α and β in order to minimize

J = σ2
z + ηaα

2 + ηsβ
2.

As discussed in Section 5.1, solution of these problems is all but impossible since

σ2
z cannot be analytically evaluated. However, using SL, (5.2) can be approximated

by the quasilinear system

˙̂xG = Ax̂G + B1w + B2Naû

ẑ = C1x̂G + D12û

ŷm = NsC2x̂G + D21w,

Na = erf
(

α√
2σû

)

Ns = erf
(

β√
2σŷ

)

.

(5.4)

Accordingly, one can consider the following quasilinear problems:

Q1. Quasilinear analysis problem: Given α and β, determine σ2
ẑ .

Q2. Quasilinear controller design problem: Given α and β, design a controller that

minimizes

J = σ2
ẑ .

Q3. Quasilinear simultaneous instrumentation and controller design problem: Design

a controller, and select α and β in order to minimize

J = σ2
ẑ + ηaα

2 + ηsβ
2.
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The problems Q1 and Q2 have been addressed in [14] and [5], respectively. The

problem Q3 is the subject of this paper. It is referred to as:

• ILQR, when the only nonlinearity is in the actuator and the controller is a linear

state feedback of the form

û = Kx̂G; (5.5)

• ILQG, when both actuator and sensor are nonlinear, and the controller is an

output feedback of the form

˙̂xC = Mx̂C − Lŷm

û = Kx̂C .

(5.6)

Since the controllers (5.5) and (5.6), along with instrumentation fα(·) and gβ(·),

are intended to be used in the LPNI system of Figure 5.2, the following problem

must also be considered:

V1. Verification problem: With the ILQR/ILQG controller

u = KxG (5.7)

or

ẋC = MxC − Lym

u = KxC ,

(5.8)

and instrumentation fα(·) and gβ(·), determinine the stability and domain of

attraction of the resulting closed-loop LPNI system.

The ILQR and ILQG problems, along with their associated verification problems,

are considered in Sections 5.3 and 5.4, respectively.
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5.3 ILQR Theory

5.3.1 ILQR synthesis

Consider the open-loop LPNI system

ẋG = AxG + B1w + B2satα (u)

z = C1xG + D12u,

(5.9)

with linear state feedback

u = KxG, (5.10)

and assume the following:

Assumption 1. (a) (A,B2) is stabilizable; (b) (C1, A) is detectable; (c) D12 =

[0
√

ρ]T , ρ > 0; (d) DT
12C1 = 0; (e) A has no eigenvalues in the open right-half plane.

Remark 5.2. Assumptions (a)-(d) are standard in conventional LQR theory. As-

sumption (e) is used to ensure stability of the closed-loop LPNI system.

From (5.9) and (5.10), the closed-loop system is described by

ẋG = AxG + B2satα (KxG) + B1w

z = (C1xG + D12K) xG.

(5.11)

Applying stochasic linearization to (5.11) results in

˙̂xG = (A + B2NK) x̂G + B1w

ẑ = (C1xG + D12K) x̂G

û = Kx̂G

N = erf
(

α√
2σû

)

.

(5.12)

The ILQR Problem is stated as follows: Find the value of the gain K and param-

eter α of the actuator, which ensure

min
K,α

{

σ2
ẑ + ηα2

}

, η > 0, (5.13)
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where the minimization is over all pairs (K,α) such that A + B2NK is Hurwitz.

This is a constrained optimization problem, since (5.13) can be rewritten [14] as

min
K,α

{

tr
{

C1RCT
1

}

+ ρKRKT + ηα2
}

, (5.14)

where R satisfies

(A + B2NK) R + R (A + B2NK)T + B1B
T
1 = 0, (5.15)

with N defined by

KRKT − α2

2

[

erf−1 (N)
]−2

= 0. (5.16)

In this paper, the Lagrange multiplier method is used to find the minimum.

Theorem 5.3. Under Assumption 1, the ILQR problem is solved by

K = − N

λ + ρ
BT

2 Q, (5.17)

α = erf−1(N)
√

2
√

KRKT , (5.18)

where (Q,R,N, λ) is the unique solution of

AT Q + QA − N2

ρ + λ
QB2B

T
2 Q + CT

1 C1 = 0, (5.19)

(

A − N2

ρ+λ
B2B

T
2 Q
)

R + R
(

A − N2

ρ+λ
B2B

T
2 Q
)T

+B1B
T
1 = 0,

(5.20)

λ − ρ
N
√

π

2erf−1(N)
exp

(

erf−1 (N)2)− 1
= 0, (5.21)

η − λ

2
(

erf−1(N)
)2 = 0, (5.22)

while the optimal ILQR cost is

min
K,α

{

σ2
ẑ + ηα2

}

= tr
{

C1RCT
1

}

+ ρ
N2

(ρ + λ)2BT
2 QRQB2

+ 2ηKRKT erf−1 (N)2 . (5.23)
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Proof. See Appendix.

To find the solution to (5.19)-(5.22), a standard bisection algorithm [99] can be

used. Specifically, using (5.21) to substitute for λ in (5.22) yields

h (N) − ρ

η
= 0, (5.24)

where

h (N) = N
√

πerf−1(N) exp
(

erf−1 (N)2)− 2erf−1(N)2. (5.25)

It is shown in the proof of Theorem 5.3 that h(N) is continuous and monotonically

increasing for N ∈ [0, 1). This leads to the following ILQR solution methodology:

For a given ǫ > 0,

(a) Find an ǫ-precise solution N of (5.24) using bisection (with initial conditions

N− = 0, N+ = 1);

(b) Find λ from (5.21) or (5.22);

(c) Find Q from (5.19);

(d) Find R from (5.20);

(e) Compute K and α from (5.17) and (5.18).

Remark 5.4. Note that ILQR is a proper generalization of conventional LQR. Indeed,

observe from (5.24) that as η approaches 0, N tends to 1 and, from (5.22), λ tends

to 0. Hence, α tends to ∞ (i.e., the actuator becomes linear) and (5.17), (5.19) and

(5.20) reduce to the standard LQR equations.

Remark 5.5. ILQR can also be viewed as a generalization of SLQR theory [5]. Indeed,

if α is fixed, (5.22) becomes superfluous and (5.18) becomes a constraint, so that the

minimization (5.14) amounts to solution of the SLQR problem.
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5.3.2 ILQR performance limitations

Assume that ρ and η are design parameters, and denote the first term in right

hand side of (5.23) as γ2(ρ, η), i.e.,

γ2(ρ, η) := tr
{

C1R(ρ, η)CT
1

}

, (5.26)

where, from (5.20), R(ρ, η) ≥ 0. Note that γ2(ρ, η) is the variance of the output ẑ1 of

the quasilinear system. The following theorem establishes performance limitations

on γ2(ρ, η).

Theorem 5.6. Under Assumption 1,

(i) γ2(ρ, η) is an increasing function of ρ and

lim
ρ→0+

γ2 (ρ, η) = tr
{

C1R̄ηC
T
1

}

, (5.27)

where (R̄η ≥ 0, Q̄η ≥ 0) is the unique solution of

(

A − 2

πη
B2B

T
2 Q̄η

)

R̄η + R̄η

(

A − 2

πη
B2B

T
2 Q̄η

)T

+ B1B
T
1 = 0, (5.28)

AT Q̄η + Q̄ηA − 2

πη
Q̄ηB2B

T
2 Q̄η + CT

1 C1 = 0; (5.29)

(ii) γ2(ρ, η) is an increasing function of η and

lim
η→0+

γ2 (ρ, η) = γ2
ρ0, (5.30)

where γ2
ρ0 denotes the optimal output variance achievable by conventional LQR,

i.e., with linear instrumentation;

(iii) if A is Hurwitz,

lim
ρ→∞

γ2 (ρ, η) = lim
η→∞

γ2 (ρ, η) = γ2
OL, (5.31)

where γ2
OL denotes the open-loop output variance of z1.
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Proof. See Appendix.

Thus, for any η, the output variance cannot be made smaller than tr
{

C1R̄ηC
T
1

}

;

for a given ρ, the output variance cannot be made smaller than γ2
ρ0; as η and ρ tend

to ∞, the optimal strategy is to operate the system open-loop.

5.3.3 ILQR stability verification

The problem of ILQR stability verification consists of investigating the stability

properties of the closed-loop LPNI system (5.11), with ILQR controller (5.17) and

instrumentation (5.18). To address this problem, consider the following undisturbed

version of (5.11):

ẋG = AxG + B2satα (KxG)

z = C1xG + D12u.

(5.32)

Assume that the pair (K,α) is obtained from (5.17) and (5.18), and (Q,R,N, λ) is

the corresponding solution of (5.19)-(5.22).

Theorem 5.7. For the closed-loop system (5.32) with (5.17), (5.18):

(i) xG = 0 is the unique equilibrium;

(ii) this equilibrium is exponentially stable;

(iii) a subset of its domain of attraction is given by

X =

{

xG ∈ Rnx : xT
G

(

QB2B
T
2 Q
)

xG ≤ 4(ρ + λ)2α2

N4

}

. (5.33)

Proof. See Appendix.

Remark 5.8. The additive disturbance w may force the system to exit the domain

of attraction. One may use tools from absolute stability theory [15], such as the

Popov stability criterion [44], to verify that destabilization by such a disturbance is

impossible.
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Figure 5.3: ILQR solution for a double integrator as a function of actuator penalty η

5.3.4 Illustrative example

The following example illustrates the behavior of the ILQR solution as the instru-

mentation penalty η is increased. Consider the standard double-integrator plant in

the form (5.9), with system matrices

A =







0 0

1 0






, B1 = B2 =







1

0







C1 =







0 1

0 0






, D12 =







0

√
ρ






,

(5.34)

and assume that ρ = 1.

Figure 5.3 shows the behavior of the ILQR solution for a range of η. Clearly, as η

approaches 0+, α and |K| increase, the equivalent gain N tends to 1, and the ILQR

solution coincides with the conventional LQR solution. As η increases, the output

variances σ2
ẑ1

and σ2
û increase, as does the optimal ILQR cost J . This is consistent

with Theorem 5.6, noting that the double-integrator plant (5.34) does not have a

finite open-loop steady state variance.
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5.4 ILQG Theory

5.4.1 ILQG synthesis

Consider the open-loop LPNI system of Figure 5.2 represented as

ẋG = AxG + B1w + B2satα (u)

z = C1xG + D12u

y = C2xG

ym = satβ(y) + D21w,

(5.35)

with output feedback controller

ẋC = MxC − Lym

u = KxC ,

(5.36)

and assume the following:

Assumption 2. (a) (A,B2) is stabilizable and (C2, A) is detectable; (b) (A,B1) is

stabilizable and (C1, A) is detectable; (c) D12 = [0
√

ρ]T , ρ > 0 and D21 = [0
√

µ],

µ > 0; (d) DT
12C1 = 0 and B1D

T
21 = 0; (e) A has no eigenvalues in the open right-half

plane.

Remark 5.9. Assumptions (a)-(d) are standard in conventional LQG theory, while

(e) is used to ensure stability of the closed-loop system.

From (5.35) and (5.36), the closed-loop LPNI system is

ẋG = AxG + B1w + B2satα (KxC)

ẋC = MxC − L (satβ(C2xG) + D21w)

z = C1xG + D12KxC .

(5.37)
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Applying stochastic linearization to (5.37) results in

˙̂xG = Ax̂G + B1w + B2NaKx̂C

˙̂xC = Mx̂C − LNsC2x̂G − LD21w

ẑ = C1x̂G + D12Kx̂C

û = Kx̂C

ŷ = C2x̂G

ŷm = NsC2x̂G + D21w

Na = erf
(

α√
2σû

)

Ns = erf
(

β√
2σŷ

)

,

(5.38)

which can be rewritten as

˙̂x =
(

Ã + B̃2ÑC̃2

)

x̂ + B̃1w

ẑ = C̃1x̂,

û = K̃x̂,

(5.39)

where

Ã =







A 0

0 M






, Ñ =







Na 0

0 Ns






,

B̃1 =







B1

−LD21






, C̃1 =

[

C1 D12K

]

,

B̃2 =







B2 0

0 −L






, C̃2 =







0 K

C2 0






,

(5.40)

and x̂ = [x̂T
G x̂T

C ]T .

The ILQG Problem is stated as follows: Find the values of K,L,M, α and β,

which ensure

min
K,L,M,α,β

{

σ2
ẑ + ηaα

2 + ηsβ
2
}

, ηa > 0, ηs > 0, (5.41)

where the minimization is over all (K,L,M, α, β) such that (Ã+B̃2ÑC̃2) is Hurwitz.
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Similar to the ILQR case, this problem can be rewritten as

min
K,L,M,α,β

{

tr
(

C̃1P̃ C̃T
1

)

+ ηaα
2 + ηsβ

2
}

, (5.42)

where P̃ satisfies

(

Ã + B̃2ÑC̃2

)

P̃ + P̃
(

Ã + B̃2ÑC̃2

)T

+ B̃1B̃
T
1 = 0 (5.43)

with Ñ defined by

diag
{

C̃2P̃ C̃T
2

}

− 1

2
Θ
[

erf−1
(

Ñ
)]−2

= 0, (5.44)

Θ =







α2 0

0 β2






. (5.45)

The Lagrange multiplier method is again used obtain a solution of this constrained

optimization problem.

Theorem 5.10. Under Assumption 2, the ILQG problem (5.41) is solved by

K = − Na

λ1 + ρ
BT

2 Q, (5.46)

L = −PCT
2

Ns

µ
, (5.47)

M = A + B2NaK + LNsC2, (5.48)

α = erf−1(Na)
√

2
√

KRKT , (5.49)

β = erf−1(Ns)
√

2
√

C2(P + R)CT
2 , (5.50)

where (P,Q,R, S,Na, Ns, λ1, λ2) is a solution of

AP + PAT −
(

N2
s

µ

)

PCT
2 C2P + B1B

T
1 = 0, (5.51)

AT Q + QA −
(

N2
a

ρ + λ1

)

QB2B
T
2 Q + CT

1 C1 + λ2C
T
2 C2 = 0, (5.52)
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(A + B2NaK) R + R (A + B2NaK)T + µLLT = 0, (5.53)

(A + LNsC2)
T S + S (A + LNsC2) + ρKT K = 0, (5.54)

λ1 −
ρ

Na
√

π

2erf−1(Na)
exp

(

erf−1 (Na)
2)− 1

= 0, (5.55)

(

C2PSPCT
2

)

NT
s µ −

√
πλ2β

2

4
erf−1(Ns)

−3 ×

exp
(

erf−1(Ns)
2
)

= 0, (5.56)

ηa −
λ1

2
(

erf−1(Na)
)2 = 0, (5.57)

ηs −
λ2

2
(

erf−1(Ns)
)2 = 0, (5.58)

which minimizes the ILQG cost

JILQG = tr
{

C1(P + R)CT
1

}

+

ρ N2

(ρ+λ)2
BT

2 QRQB2 + 2ηaKRKT erf−1 (Na)
2 +

2ηsC2(P + R)CT
2 erf−1 (Ns)

2 .

(5.59)

Proof. See Appendix.

The following technique can be used to obtain the ILQG solution:

For a given ǫ > 0,

(a) With h(·) defined in (5.25), find an ǫ-precise solution Na of the equation

h (Na) −
ρ

ηa

= 0, (5.60)

using bisection (with initial conditions N−
a = 0, N+

a = 1);

(b) Find λ1 from (5.55) or (5.57);

(c) For any Ns, the left hand side of (5.56) can now be determined by finding λ2,

P , Q, R, and S, by solving, in sequence, (5.58), (5.51), (5.52), (5.53) and (5.54).

Hence, the left hand side of (5.56) can be expressed as function of Ns;
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(d) Find all Ns ∈ [0, 1] that satisfy (5.56) by using a root-finding technique such as

numerical continuation [113], or generalized bisection [114];

(e) For each Ns found in the previous step, compute K,L,M, α, β from (5.46)-(5.50);

(f) Find the quintuple (K,L,M, α, β) that minimizes JILQG from (5.59).

Remark 5.11. The optimal ILQG solution may correspond to operating open-loop,

i.e., α, β = 0 and K(sI − A)−1L ≡ 0.

Remark 5.12. In contrast to conventional LQG, due to the interdependence of (5.51)-

(5.58) on both Na and Ns, the seperation principle does not hold for ILQG.

5.4.2 ILQG controller structure

The ILQG controller (5.36) can be rewritten in the standard observer-based form

as

ẋC = AxC + B2Nau − L (ym − NsC2xC)

u = KxC ,

(5.61)

which suggests the following nonlinear implementation:

ẋC = AxC + B2satα(u) − L (ym − satβ(C2xC))

u = KxC .

(5.62)

With (5.62), in the absence of the disturbance w, the estimation error e = xG − xC

satisfies

ė = Ae + L (satβ (C2xG) − satβ(C2xC)) , (5.63)

so that when C2xC and C2xG are sufficiently small,

ė = (A + LC2) e, (5.64)
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and true estimation occurs. Note that (5.61) and (5.62) yield the same quasilinear

closed-loop performance. The nonlinear ILQG controller (5.62) is used for stability

verification in the next section.

5.4.3 ILQG stability verification

We now verify the stability of the LPNI system (5.35) controlled by the nonlin-

ear ILQG controller (5.62) with ILQG instrumentation (5.49)-(5.50). Consider the

undisturbed version of (5.35) and (5.62), i.e.,

ẋG = AxG + B2satα (KxC)

ẋC = AxC + B2satα(KxC) − L (ym − satβ(C2xC))

ym = satβ(C2xG)

z = C1xG + D12u.

(5.65)

Assume that (K,L,M, α, β) is the ILQG solution (5.46)-(5.50), and

(P,Q,R, S,Na, Ns, λ1, λ2)

is the corresponding solution of (5.51)-(5.58). We have the following:

Theorem 5.13. For the closed-loop system (5.65) with (5.46)-(5.50):

(i) [xG, xC ] = 0 is the unique equilibrium;

(ii) this equilibrium is exponentially stable;

(iii) if xG(0) = xC(0), a subset of its domain of attraction is given by the set Y ×Y,

where

Y =

{

xG ∈ Rnx : xT
G

(

QB2B
T
2 Q
)

xG ≤ 4(ρ + λ1)
2α2

N4
a

}

∩

{

xG ∈ Rnx : xT
GCT

2 C2xG ≤ β2
}

. (5.66)

Proof. See Appendix.
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5.4.4 Illustrative example

Reconsider the double integrator example of Section 5.3.4, represented in the form

(5.35), with A,B2, C1, D12 as defined in (5.34) and

B1 =







0 0

1 0






, D21 =

[

0
√

µ

]

, C2 = C1. (5.67)

Assume that ρ = µ = 1 × 10−4 and consider the following two cases:

Case 1: Fix ηs = 2 × 10−3 and examine σ2
ẑ1

, α, β as a function of ηa.

Case 2: Fix ηa = 2 × 10−3 and examine σ2
ẑ1

, α, β as a function of ηs.

Figure 5.4 illustrates the ILQG solution for Case 1, where the ηa axis is displayed on

a logarithmic scale. Clearly, as ηa increases, α decreases and σ2
ẑ1

increases. Note that

β also decreases, showing that the synthesis of actuator and sensor are not decoupled.

Figure 5.5 shows the behavior for Case 2. As expected, when ηs increases, β de-

creases and σ2
ẑ1

increases. In addition, observe that α increases, again demonstrating

the lack of seperation in ILQG.

5.5 Generalizations

5.5.1 Arbitrary nonlinearities

The ILQR and ILQG methodologies of Sections 5.3 and 5.4 are easily extended to

nonlinearities other than saturation. For such nonlinearities, the Lagrange multiplier
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Figure 5.4: ILQG solution for a double integrator as a function of actuator penalty ηa



109

10
−8

10
−6

10
−4

0

5

10

15

σ2
z1

ηs

10
−8

10
−6

10
−4

0

5

10

15

20

25

α

ηs

10
−8

10
−6

10
−4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

β

ηs

Figure 5.5: ILQG solution for a double integrator as a function of sensor penalty ηs

technique is applied as before, but using different expressions for the quasilinear gains.

If fα(u) and gβ(y) are the actuator and sensor nonlinearities, the general expressions

for the quasilinear gains are

Na = F (σû) =

∞
∫

−∞

f ′
α(x)

1

σû

√
2π

exp

(

− x

2σ2
û

)

dx, (5.68)

Ns = G (σv̂) =

∞
∫

−∞

g′
β(x)

1

σŷ

√
2π

exp

(

− x

2σ2
ŷ

)

dx. (5.69)

For example, if gβ(y) is the symmetric deadzone defined in (4.34),

G(σŷ) = 1 − erf

(

β/2√
2σŷ

)

. (5.70)

Similarly, if gβ(y) is the mid-tread quantizer

gβ (y) = β
2

m
∑

k=1

[sgn (2y + β (2k − 1)) ×

sgn (2y − β (2k − 1))] ,

(5.71)

then

G(σŷ) = Qm

(

β√
2σŷ

)

, (5.72)

where

Qm (z) :=
2z√
π

[

m
∑

k=1

e−
1

4
(2k−1)2(z)2

]

. (5.73)

For the ILQR problem (5.14), the constraint (5.16) now becomes

KRKT −
[

F−1 (N)
]−2

= 0. (5.74)
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Similarly, for ILQG, (5.44) becomes

diag
{

C̃2P̃ C̃T
2

}

− diag
(

[

F−1 (Na)
]−2

,
[

G−1 (Ns)
]−2
)

= 0, (5.75)

where F and G are assumed to be invertible. Existence and uniqueness of the

ILQR/ILQG solution will, of course, depend on the specific form of these functions.

5.5.2 Multivariable systems

The methods presented in Sections 5.3 and 5.4 can be extended to the multi-

variable case. Specifically, consider the MIMO version of (5.37), where u ∈ Rp and

y, ym ∈ Rq, p, q > 1, where α, β are understood as

α ≡ [α1 ... αp]
T , β ≡ [β1 ... βq]

T , (5.76)

and

satα(u) ≡ [satα1
(u1) ... satαp

(up)]
T , (5.77)

satβ(y) ≡ [satβ1
(y1) ... satβp

(yq)]
T . (5.78)

As before, the quasilinearization of this system is given by (5.38)-(5.40) with the

equivalent gains of (5.77) and (5.78) specified by

Na = diag
(

Na1
, Na2

, ..., Nap

)

, (5.79)

and

Ns = diag
(

Ns1
, Ns2

, ..., Naq

)

, (5.80)

respectively, where

Nak
= erf

(

αk√
2σûk

)

, Nsl
= erf

(

βl√
2σŷl

)

, (5.81)

for k = 1, ..., p and l = 1, ..., q.
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Figure 5.6: Ship-roll example

The ILQG problem (5.41) now becomes

min
K,L,M,α,β

{

σ2
ẑ + αT Waα + βT Wsβ

}

, (5.82)

where Wa,Ws are diagonal and positive definite. Clearly, this can be rewritten as

min
K,L,M,α,β

{

tr
(

C̃1P̃ C̃T
1

)

+ αT Waα + βT Wsβ
}

, (5.83)

subject to the constraints (5.43) and (5.44), with Θ in (5.44) becoming

Θ =







diag(ααT ) 0

0 diag(ββT )






. (5.84)

The optimization is carried out in a manner analagous to the proof of Theorem 5.10,

and the necessary conditions for minimality are obtained in terms of the Lagrange

multiplier Λ = [λ1, ..., λ(p+q)].

5.6 Example: Ship Roll Damping

This section considers the ship-roll damping problem originally described in [115]

and studied in [5] in the context of SLQR/SLQG. The merits of ILQR and ILQG

will be demonstrated in comparison with these other techniques.

5.6.1 Model and problem

Ship roll oscillations caused by sea waves lead to passenger discomfort. To mini-

mize this discomfort, the roll angle of the ship should be maintained at less than 3



112

C(s) satα(·) P (s)

w1

z1

satβ(·)

z2

F1(s)

S(s)w2

A(s)
u u1

y

d

ym

Figure 5.7: Block diagram for ship-roll example

degrees. One approach to reducing ship-oscillations involves the use of two actively

controlled stabilizing wings attached to the stern, as illustrated in Figure 5.6. Clearly,

the angular travel of these wings is constrained, leading to actuator saturation.

This system is represented by the block diagram of Figure 5.7, which is inter-

pereted as follows:

i) P (s): The ship transfer function from torque (in Nm) to roll angle z1 (in radians);

ii) F1(s): The coloring filter that generates the random wave torque signal d from

standard white noise w1;

iii) A(s): The transfer function from the voltage u (in V) to the actuator that drives

the wings to the dipping angle u1 (in rad);

iv) satα(u1): Actuator saturation nonlinearity;

v) S(s): The transfer function of the sensor (gyroscope) with output y (in V);

vi) satβ(y): Sensor saturation nonlinearity;

vii) C(s): The controller that generates u.

As demonstrated in [5], using data from [115, 116], the above system can be

represented in state-space form as:
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ẋG =





















−1.125 −1.563 0.985 0
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0 0 −0.286 −0.311

0 0 1 0





















xG +





















0

0

1

0





















w1 +





















1

0

0

0





















satα (u) (5.85)

z1 =

[

0 0.109 0 0

]

xG (5.86)

y =

[

0 1.248 0 0

]

xG (5.87)

ym = satβ(y) +
√

µw2 (5.88)

Note that the system is normalized so that α = 1 corresponds to an angular travel

of 18 degrees, which is the saturation authority given in [115].

In [5], this problem was studied in the context of SLQR and SLQG. In particular,

when the instrumentation is fixed at α = 1 and ym = y (i.e., the sensor is linear),

SLQR and SLQG are used to synthesize a controller that achieves the performance

specification σz1
< 3 degrees, where σz1

is the standard deviation of the roll angle.

The subsequent sections demonstrate the ILQR and ILQG approach to this problem.

5.6.2 ILQR solution

Based on the previous subsection, the following design objectives are specified:

(1) σẑ1
< 3 rad

(2) α ≤ 1.
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Using the ILQR solution method with the tuned penalties η = 3.5 × 10−3 and

ρ = 1 × 10−6, we obtain

K =

[

−5.641 −7.565 −3.672 0.2058

]

, (5.89)

α = 0.78 ⇒ 14 deg, (5.90)

resulting in

σẑ1
= 2.72. (5.91)

Numerical simultation of the nonlinear system with this controller and actuator

reveals that

σz1
= 2.79, (5.92)

which verifies the accuracy of the quasilinearization. Clearly, the design objectives are

met. Note that by simultaneously synthesizing the controller and instrumentation,

we find a solution that uses a saturation authority of less than 18 degrees.

5.6.3 ILQG solution

Using the tuned parameters ηa = 2.55 × 10−3, ηs = 1 × 10−10, ρ = 1 × 10−5 and

µ = 1 × 10−5, the ILQG solution method results in

K =

[

−2.029 −2.798 −1.264 0.0709

]

, (5.93)

L =

[

−80.77 −16.09 −281.41 −100.38

]T

, (5.94)

α = 0.91, β = 0.35, (5.95)

leading to

σẑ1
= 2.56, (5.96)

Simulation of the nonlinear system yields

σz1
= 2.77, (5.97)
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Figure 5.8: Time trace of z1 for ship-roll example

which meets the performance specification. As anticipated, the performance of the

actual nonlinear system (5.97) is within 8% of its quasilinear approximation (5.96).

Figure 5.8 shows a time trace of z1 for both the open- and closed-loop systems.

Note that in open loop σz1
= 5.5, so that control results in a 50% performance

improvement.

5.7 Summary

The instrumentation, i.e., sensors and actuators, in feedback control systems of-

ten contain nonlinearities, such as saturation, deadzone, quantization, etc. Standard

synthesis techniques, however, do not take these nonlinearities into account. The

main contribution of this chapter is the modification of the LQR/LQG methodol-

ogy into the so-called Instrumented LQR/LQG (referred to as ILQR/ILQG), which

allows for the synthesis of not only a controller but also the instrumentation in an

optimal manner. This is accomplished by

(i) modifying the standard LQR/LQG performance index to include a parameter-

ized instrumentation cost;

(ii) quasi-linearizing the linear plant/nonlinear instrumentation (LPNI) system us-
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ing the method of stochastic linearization;

(iii) based on the Lagrange multiplier technique, deriving necessary conditions of

optimality, which turn out to be closely related to the usual LQR/LQG neces-

sary conditions but containing additional transcendental equations to account

for the Lagrange multipliers related to the instrumentation cost;

(iv) providing a bisection-based algorithm for solving these equations with any de-

sired accuracy;

(v) proving that the controller and the instrumentation, thus derived, ensure the

asymptotic stability of the nonlinear closed loop system and providing an esti-

mate of the resulting domain of attraction.

An application of ILQR/ILQG to a problem of ship roll disturbance rejection is also

reported.



CHAPTER VI

CONCLUSIONS & FUTURE WORK

6.1 Conclusions

This dissertation has addressed the problem of control design for Linear Plant/

Nonlinear Instrumentation systems. Traditionally, design methods for this class of

systems have been difficult to obtain, due to analytical difficulties posed by the non-

linearities. It has been shown herein that, by using the stochastic linearization ap-

proximation technique, such difficulties are overcome, leading to three design method-

ologies: the S-root locus, Boosting, and Instrumented LQR/LQG. These three re-

sults, along with a few others from the existing literature, form a new paradigm in

control theory, referred to as quasilinear control theory.

Quasilinear control theory has the potential to be broadly applicable because

saturation, quantization and other instrumentation nonlinearities are a ubiquitous

limitation in control systems. Moreover, as suggested by the examples presented in

this dissertation, these results have the ability to yield control strategies that are

effective in real-world applications. Being based on widely known linear techniques

such as Root Locus and LQR/LQG, quasilinear theory is a promising alternative

for practicing control engineers. Indeed, each of the quasilinear methods of this

dissertation can be carried out with a computational effort that is commensurate

117
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with its conventional counterpart. Clearly, however, only extensive use of these new

methodologies will confirm their potential.

6.2 Future Work

A number of extensions of this dissertation are possible as future research prob-

lems. A few possibilities are outlined below:

6.2.1 Analytical characterization of Gaussianization

It was shown in Chapter II that stochastic linearization is justified by a phe-

nomenon called Gaussianization, i.e., the property that the statistical characteristics

of the output of a low-pass filtering plant are closer to Gaussian than those at the

input. As described, this phenomenon has been verified for certain classes of systems.

A complete theory of Gaussianization in LPNI systems would analytically validate

the accuracy of stochastic linearization. The method of cumulants, in particular,

appears to be a promising tool for establishing such a theory [102].

6.2.2 Linear Matrix Inequality method

Many optimization problems in control theory can be formulated in terms of linear

matrix inequalities. Numerical techniques for solving these LMIs have led to new

methods for controller design [117]. Using stochastic linearization, it is possible to

investigate how LMI-based methods can be used for LPNI systems.

6.2.3 Rate nonlinearities

This dissertation has focused on static magnitude nonlinearities - saturation, dead-

zone, quantization, etc. Of course, many types of instrumentation also exhibit rate

nonlinearities. These can often be modeled as a linear system in combination with

a magnitude nonlinearity. For example, a typical rate-saturated actuator is shown
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A(s)satα(·)
-

u v

Figure 6.1: Typical rate-saturated actuator consisting of LTI system A(s) and saturation nonlin-
earity

in Figure 6.1. The theory developed in this dissertation can be extended for such

systems.

6.2.4 Experimental verification

Most of the verification in this dissertation is in the form of simulation studies. It

would, of course, be interesting to perform a comprehensive experimental validation

of these results in an industrial setting.
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APPENDIX A

Proofs for Chapter III

Proof of Lemma 3.6. Part (i): To prove continuity, note that (3.4) can be rewritten

as

F (K,Ke(K)) = 0, (A.1)

where

F (x, y) = y − xerf





α
√

2x
∥

∥

∥

FΩ(s)C(s)
1+yP (s)C(s)

∥

∥

∥

2



 (A.2)

is an analytic function. Hence, Ke(K) is a root of an analytic equation that depends

on a parameter K. As it is well known, the roots of such an equation are continuous

with respect to the parameter, and the result follows.

The proof of strict monotonicity is by contradiction. Indeed, let us assume that

there exists K1, K2 such that K2 > K1 and Ke(K1) = Ke(K2) = K∗
e . This implies

that

K2erf

(

α√
2K2σ∗

)

= K1erf

(

α√
2K1σ∗

)

, (A.3)

where

σ∗ =

∥

∥

∥

∥

FΩ (s) C (s)

1 + K∗
e C (s) P (s)

∥

∥

∥

∥

2

. (A.4)

However, it is straightforward to verify that the function

f (x) = xerf
( c

x

)

(A.5)



122

is strictly monotonic for all c > 0. Hence (A.3) implies K1 = K2, which contradicts

the assumption that K2 > K1. Therefore, Ke(K) must be a strictly monotonic

function.

Part (ii):

Note that (3.4) can be expressed equivalently as

Ke (K) = Kerf

(

α√
2Kφ (K)

)

, (A.6)

where

φ (K) =

∥

∥

∥

∥

FΩ (s) C (s)

1 + Ke (K) P (s) C (s)

∥

∥

∥

∥

2

. (A.7)

By expanding erf(·) in (A.6), in Taylor series, one obtains

Ke (K) =

√
2K√
π

(

α

Kφ(K)
− 1

3

(

α

Kφ(K)

)3

...

)

. (A.8)

It follows from continuity and strict monotonicity that the limit of Ke(K) as

K → ∞ either exists or is infinity. The remainder of the proof is by contradiction.

Namely, assume that β1 and β2 are any two distinct positive solutions of (3.36), while

Ke(K) is unique for all K. Taking the limit of (A.7) and (A.8) results in

lim
K→∞

Ke (K) = lim
K→∞

(

α
√

2/π

φ (K)
−
√

2/π

3

(

α3

K2φ3 (K)

)

. . .

)

(A.9)

and

lim
K→∞

φ (K) =

∥

∥

∥

∥

∥

∥

∥

FΩ (s) C (s)

1 +
(

lim
K→∞

Ke (K)
)

P (s) C (s)

∥

∥

∥

∥

∥

∥

∥

2

. (A.10)

These constitute equations for the limits of Ke(K) and φ(K) when K tends to

infinity. Two possible solutions of (A.9) and (A.10) exist, given by:

lim
K→∞

Ke (K) =
α
√

2/π

βi

.

lim
K→∞

φ (K) = βi, i = 1, 2.
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Clearly, this contradicts the assumption of uniqueness of solution of Ke(K) and

hence, (3.36) cannot admit multiple positive solutions.

Proof of Theorem 3.7. Proof of Part (i):

Necessity: Assume (3.37). Take the limit of (A.7) as K → ∞, using the assump-

tion that Tγ(s) is stable for all γ > 0, to obtain

lim
K→∞

φ (K) =

∥

∥

∥

∥

∥

∥

∥

∥

FΩ (s) C (s)

1 +

(

α
√

2/π

β

)

P (s) C (s)

∥

∥

∥

∥

∥

∥

∥

∥

2

∆
= φ, (A.11)

where φ > 0. By taking the limit of (A.8) it follows from (A.11) that

lim
K→∞

Ke (K) =
α
√

2/π

φ
. (A.12)

Hence, from (3.37) we obtain

φ = β. (A.13)

Substituting (A.13) into (A.11) yields (3.36). The uniqueness of solution of (3.36) is

guaranteed by Lemma 3.6.

Sufficiency: Assume (3.36) admits a unique solution β > 0. Recall that (A.9) and

(A.10) are equations for the limits of Ke(K) and φ(K) when K tends to infinity, and

are satisfied by

lim
K→∞

Ke (K) =
α
√

2/π

β
, (A.14)

lim
K→∞

φ (K) = β. (A.15)

The right hand sides of (A.14) and (A.15) are the unique solutions of (A.9) and

(A.10). Indeed, suppose that

lim
K→∞

Ke (K) =
α
√

2/π

βl

,

lim
K→∞

φ (K) = φl.



124

also satisfy (A.9) and (A.10). It follows from necessity that βl must be a solution

of (3.36), and thus by Lemma 3.6, βl = β. Then, (A.11) implies φl = β. Hence,

(A.14) and (A.15) are the only solutions of (A.9) and (A.10). The proof concludes

by noting that (A.14) yields (3.37).

Proof of Part (ii):

Sufficiency: Recall that the limit of Ke(K) either exists or is infinite. Hence, by

part (i), if β = 0 is the only real solution of (3.36), then the limit of Ke(K) must be

infinity.

Necessity: Assume (3.38). Then it follows from part (i) that (3.36) cannot admit

a unique positive solution. By Lemma 3.6, (3.36) cannot admit multiple positive

solutions, and hence it follows that β = 0 must be the only real solution of (3.36).

To prove Theorem 3.8 we need the following lemma.

Lemma 1.1. Let Tγ(s) be stable only for γ ∈ [0, Γ), Γ < ∞, such that (3.35) holds,

and (3.4) admit a unique solution for all K > 0, i.e., Case 2. Then

Ke (K) < Γ ∀K > 0. (A.16)

Proof. The proof is by contradiction. Namely, assume that there exists K∗ > 0 such

that Γ = Ke(K
∗). Then it follows from (3.4) that

Ke (K∗) = K∗erf





α
√

2K∗
∥

∥

∥

FΩ(s)C(s)
1+Ke(K∗)P (s)C(s)

∥

∥

∥

2



 . (A.17)

This, however, is a contradiction because the left hand side of (A.17) is equal to the

positive number Γ, while the right hand side is 0. This contradiction completes the

proof.

Proof of Theorem 3.8. By Lemma 1.1, the limit of Ke(K) as K tends to infinity must
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exist and satisfy

lim
K→∞

Ke (K) ≤ Γ.

The remainder of the proof follows is analagous to that of Theorem 3.7.

Proof of Theorem 3.12. Part (i): We will prove that for any Kd
e > 0, there exists Kd

such that Ke(K
d) = Kd

e . Consider F (Kd, Kd
e ), where F (·, ·) was defined in (A.2).

Clearly,

F
(

0, Kd
e

)

= Kd
e > 0. (A.18)

Moreover, Taylor series expansion of erf(·) in (A.2) yields,

lim
Kd→∞

F
(

Kd, Kd
e

)

= Kd
e − α

√

2/π
∥

∥

∥

FΩ(s)C(s)
1+Kd

e P (s)C(s)

∥

∥

∥

2

. (A.19)

Note that every positive solution β of (3.36) is related to a finite root Kd
e of the right

hand side of (A.19) through

Kd
e =

α
√

2/π

β
,

and vice versa. It follows from (A.19) that

lim
Kd→∞

F
(

Kd, 0
)

= − α
√

2/π

‖FΩ (s) C (s)‖2

< 0. (A.20)

Since (3.36) admits no solution β > 0, the right hand side of (A.19) has no finite

roots. Moreover, the right hand side of (A.19) is a continuous function of Kd
e . Hence,

(A.20) implies that

lim
Kd→∞

F
(

Kd, Kd
e

)

< 0. (A.21)

Recall that F (Kd, Kd
e ) is continuous and monotonically decreasing in Kd. It thus

follows from (A.18) and (A.21) that for any Kd
e > 0, F (Kd, Kd

e ) changes sign exactly

once as Kd goes from 0 to ∞. Hence, there exists a unique Kd such that F (Kd, Kd
e ) =

0. Thus, Ke(K
d) = Kd

e , and the result follows immediately.
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Part (ii): Note that for K = 0, (3.4) admits a unique solution Ke(0) = 0.

Hence, by continuity, (3.4) defines a unique Ke(K) when K is small enough. The

S-origination point occurs when (3.4) starts admitting multiple solutions.

Proof of Theorem 3.13. Part (i): By the continuity of roots of (A.2), all solutions

Ke(K) of (3.4) must be continuous in K. The remainder of the proof is analagous

to that of sufficiency in Theorem 3.7. Namely, it follows that for each βi,

lim
K→∞

Ke (K) =
α
√

2/π

βi

(A.22)

and

lim
K→∞

φ (K) = βi (A.23)

are valid solutions for the limiting values of Ke(K) and φ(K) (i.e., (A.9) and (A.10)).

Clearly, (A.22) yields (3.48).

Part (ii): It follows from (3.4) (and has been studied in [14]) that for any K,

stochastic linearization must yield an odd number of solutions. Hence, if (3.36)

yields an even number of (finite) solutions for the limit of Ke(K), an additional

solution must exist, corresponding to the solution β0 = 0.

Part (iii): Let κ1 denote the limiting gain (given by Part (i)) corresponding to

the largest simple root of (3.36), and define Kt
e such that

κ1 < Kt
e < κ2,

where κ2 denotes the next largest (if any) limiting gain. Clearly, from (A.18),

F
(

0, Kt
e

)

> 0, (A.24)

and since Kd
e = κ1 is the smallest simple root of the right hand side of (A.19), it

follows from continuity and (A.20) that

lim
Kd→∞

F
(

Kd, Kt
e

)

> 0. (A.25)
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Recalling that F (Kd, Kt
e) is continuous and monotonically decreasing in Kd, it follows

from (A.24) and (A.25) that

F
(

Kd, Kt
e

)

6= 0 ∀Kd > 0. (A.26)

Thus, Ke(K
d) = Kt cannot be satisfied for any Kd > 0, and hence Ke(K) cannot

lie in the interval (κ1, κ2). The result follows directly.

Proof of Theorem 3.14. The proof is by construction. Namely, let C(s) be given by

the inverse of the plant, such that

C (s) =
1

P (s)
.

Then (3.4) reduces to

Ke = Kerf

(

α√
2K ‖FΩ (s) /P (s)‖2

(1 + Ke)

)

. (A.27)

For any fixed K > 0, the right hand side of (A.27) is a strictly concave function of

Ke, starting from a positive value

Kerf

(

α√
2 ‖FΩ (s) /P (s)‖2

)

> 0

at Ke = 0 and bounded by K for all Ke > 0. Moreover, the left hand side of (A.27)

is Ke. Hence, there exists a unique Ke > 0 that satisfies (A.27).
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APPENDIX B

Proofs for Chapter IV

Proof of Theorem 4.2. Sufficiency: From (4.19) and (4.20),

KaF
(

Ka

∥

∥

∥

∥

P (s) C(s)

1 + P (s) C (s)

∥

∥

∥

∥

2

)

= 1. (B.1)

It follows from (B.1) that (4.12) is a solution of (4.18). Thus, a-boosting is possible

with the boosting gain Ka.

Necessity: a-Boosting is possible with the boosting gain Ka. Thus, (4.12) and

(4.18) hold. Clearly, substituting the former into the latter yields (4.19) and (4.20).

Proof of Theorem 4.3. It is straightforward to show that the function

h (x) = xerf
( c

x

)

(B.2)

is continuous and monotonically increasing ∀c > 0, with the property that

h(0) = 0 (B.3)

and

lim
x→∞

h(x) =
2√
π

c. (B.4)

Hence, (4.24) admits a positive solution if and only if

2√
π

c > 1, (B.5)
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which is equivalent to (4.26). Moreover, any positive solution of (4.24) must be

unique because h(x) defined in (B.2) is monotonically increasing.

Proof of Theorem 4.5. Observe from Figure 4.3 that

KaNa = KaF
(∥

∥

∥

∥

P (s) C(s)NsKsKa

1 + P (s) NsKsNaKaC (s)

∥

∥

∥

∥

2

)

(B.6)

and

KsNs = KsG
(∥

∥

∥

∥

P (s)

1 + P (s) NsKsNaKaC (s)

∥

∥

∥

∥

2

)

. (B.7)

Subtituting

KaNa = KsNs = 1 (B.8)

into (B.6) and (B.7) yields (4.18) and (4.31), which establishes the separation prin-

ciple.
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APPENDIX C

Proofs for Chapter V

Proof of Theorem 5.3. We use the Lagrange multiplier method to find the necessary

conditions for optimality. First, the regularity of the constraints is verified. Let

(K,N,R, α) satisfy (5.15) and (5.16), and for an arbitrary symmetric matrix Q and

real number λ, define

Φ (K,N,R, α) = tr
([

(A + B2NK) R + R (A + B2NK)T +B1B
T
1

]

Q
)

+ λ

(

KRKT − α2

2
(

erf−1 (N)
)2

)

. (C.1)

Differentiating Φ with respect to K,N,R, α and equating to zero, we obtain:

NBT
2 QR + λKR = 0, (C.2)

KRQB2 + λ

√
π

4
α2 exp

(

erf−1 (N)2)

erf−1 (N)3 = 0, (C.3)

(A + B2NK)T Q + Q (A + B2NK) + λKT K = 0, (C.4)

−2λα

2erf−1 (N)2 = 0. (C.5)

Since N ∈ (0, 1) and α > 0, it follows from (C.5) that λ = 0, which, through (C.4)

implies that Q = 0. Consequently, (C.2) and (C.3) are satisfied and the constraints

are regular.
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Next, form the Lagrangian:

Ψ(K,N,R,Q, λ, α) = tr
(

C1RCT
1

)

+ ρKRKT + ηα2

+ tr
([

(A + B2NK) R + R (A + B2NK)T + B1B
T
1

]

Q
)

+ λ

(

KRKT − α2

2
(

erf−1 (N)
)2

)

. (C.6)

Differentiating Ψ with respect to K,N,R,Q, λ, α results in

(

(ρ + λ) K + NBT
2 Q
)

R = 0, (C.7)

KRQB2 + λα2

√
π

4

exp
(

erf−1 (N)2)

(

erf−1 (N)
)3 = 0, (C.8)

(A + B2NK)T Q + Q (A + B2NK) + CT
1 C1

+ (ρ + λ) KT K = 0, (C.9)

(A + B2NK) R + R (A + B2NK)T + B1B
T
1 = 0, (C.10)

KRKT − α2

2erf−1 (N)2 = 0, (C.11)

2ηα − 2λα

2erf−1 (N)2 = 0. (C.12)

The equations (5.17) and (5.18) for the parameters K and α follow immediately from

(C.7) and (C.11), respectively. Substituting (5.17) into (C.9)-(C.10) yields (5.19)-

(5.20). Multiplying (C.7) from the right by KT and using (C.8) and (C.11) yields

(5.21). Finally, (5.22) follows immediately from (C.12).

We now argue that the ILQR problem (5.13) has a solution, i.e., the minimum

exists and is attained. For that purpose, note that (5.13) can be reformulated as

min
α

{

ηα2 + min
K

σ2
ẑ

}

. (C.13)
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It is known from [5] that, under Assumption 1, for every α > 0, the gain K that

solves the minimization problem

min
K

σ2
ẑ (C.14)

exists. Moreover, the achieved minimum is continuous with respect to α. Thus, the

function

q(α) = ηα2 + min
K

σ2
ẑ (C.15)

is continuous for α ≥ 0 and tends to ∞ as α → ∞. Hence, q(α) achieves a minimum

at some a∗ ≥ 0. Let K∗ be the minimizer of (C.14) when α = α∗. Then the pair

(K∗, α∗) solves (5.13).

Finally, we prove that (5.19)-(5.22) admits a unique solution. Since (A,B2) is

stabilizable and (C1, A) is detectable, for any N ∈ (0, 1), λ > 0, the Ricatti equation

(5.19) has a unique positive semidefinite solution Q such that (A+B2NK) is Hurwitz,

where K satisfies (5.17). With this Q, since (A + B2NK) is Hurwitz, the Lyapunov

equation (5.20) has a unique positive semidefinite solution for R. Hence, to show

that (5.19)-(5.22) admits a unique solution, it is sufficient to show that (5.21), (5.22)

yields a unique solution for (N, λ).

Recall that (5.21) can be substituted into (5.22) to yield (5.24). Furthermore,

note that (5.25) can be rewritten as

h(N) = h1(N)h2(N), (C.16)

where

h1(N) = erf−1(N), (C.17)

h2(N) =
(

N
√

πexp
(

erf−1 (N)2)− 2erf−1(N)
)

. (C.18)

Taking the derivatives of these functions with respect to N , one can show

h′
1(N), h′′

1(N), h′
2(N), h′′

2(N) > 0.
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Moreover, h1(0) = h2(0) = 0 and thus,

h′(N) > 0, h′′(N) > 0. (C.19)

Clearly, h(0) = 0 and, furthermore, note that h(N) has a vertical asymptote at

N = 1. Thus, since ρ, η > 0, the left hand side of (5.24) changes sign exactly once

in the interval N ∈ (0, 1). Hence, (5.24) yields a unique solution N . Using this N ,

the value of λ is uniquely determined by either (5.21) or (5.22).

Since the optimization has an achievable solution, and the necessary conditions

are uniquely satisfied, (5.17) and (5.18) constitute the globally minimizing solution.

The cost (5.23) follows directly.

Proof of Theorem 5.6. We begin by showing that the partial derivatives of γ2(ρ, η)

are nonnegative. Define τ(ρ, η) as

τ(ρ, η) =
ρ + λ(ρ, η)

N2(ρ, η)
. (C.20)

It is clear from (5.20) that γ2(ρ, η) depends on (ρ, η) through τ(ρ, η). Thus,

∂

∂ρ
γ2 (ρ, η) =

∂

∂ρ
tr
{

C1R (τ (ρ, η)) CT
1

}

=
d

dτ
tr
{

C1R (τ) CT
1

} ∂

∂ρ
τ (ρ, η) (C.21)

and, similarly,

∂

∂η
γ2 (ρ, η) =

d

dτ
tr
{

C1R (τ) CT
1

} ∂

∂η
τ (ρ, η) . (C.22)

We begin by obtaining tr
{

C1R
′(τ)CT

1

}

. Substituting (C.20) into (5.19) and (5.20)

yields

[

A − 1

τ
B2B

T
2 Q (τ)

]T

Q (τ) + Q (τ)

[

A − 1

τ
B2B

T
2 Q (τ)

]

+
1

τ
Q (τ) B2B

T
2 Q (τ) + CT

1 C1 = 0, (C.23)
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[

A − 1

τ
B2B

T
2 Q (τ)

]

R (τ) + R (τ)

[

A − 1

τ
B2B

T
2 Q (τ)

]T

+ B1B
T
1 = 0. (C.24)

Differentiating these equations with respect to τ results in

[

A − 1

τ
B2B

T
2 Q (τ)

]T

Q′ (τ) + Q′ (τ)

[

A − 1

τ
B2B

T
2 Q (τ)

]

+
1

τ 2
Q (τ) B2B

T
2 Q (τ) = 0, (C.25)

[

A − 1

τ
B2B

T
2 Q (τ)

]

R′ (τ) + R′ (τ)

[

A − 1

τ
B2B

T
2 Q (τ)

]T

+
1

τ
B2B

T
2

[

1

τ
Q (τ) − Q′ (τ)

]

R (τ)

+
1

τ
R (τ)

[

1

τ
Q (τ) − Q′ (τ)

]

B2B
T
2 = 0. (C.26)

To simplify the notation, we omit below the arguments of Q and R. Premultiplying

(C.24) by Q and subtracting from (C.23) results in

1

τ
BT

2 QRQB2 + tr
{

C1RCT
1

}

− tr
{

BT
1 QB1

}

= 0. (C.27)

Taking the derivative of this equation with respect to τ gives

− 1

τ 2
BT

2 QRQB2 +
1

τ
BT

2 [Q′RQ + QR′Q + QRQ′] B2

+ tr
{

C1R
′CT

1

}

− tr
{

BT
1 Q′B1

}

= 0. (C.28)

Premultiply (C.26) by Q, postmultiply (C.23) by R′, and subtract the latter from

the former. Taking the trace of the result yields

tr
{

C1R
′CT

1

}

− 2

τ 2
BT

2 QRQB2

+
1

τ
BT

2 [Q′RQ + QR′Q + QRQ′] B2 = 0. (C.29)
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From (C.27), (C.28) and (C.29) we obtain

tr
{

C1R
′CT

1

}

= −τtr
{

C1Q
′′CT

1

}

. (C.30)

Differentiating (C.25) with respect to τ results in

[

A − 1

τ
B2B

T
2 Q

]T

Q′′ + Q′′
[

A − 1

τ
B2B

T
2 Q

]

− 2

τ

[

1

τ
Q − Q′

]

B2B
T
2

[

1

τ
Q − Q′

]

= 0. (C.31)

Since the matrix (A − 1
τ
B2B

T
2 Q) is Hurwitz, and the pair (A,B2) is stabilizable,

(C.29) implies that Q′′(τ) ≤ 0 and thus, from (C.30)

tr
{

C1R
′(τ)CT

1

}

≥ 0. (C.32)

Now, using (5.21), (5.22) we can differentiate τ with respect to η and ρ to obtain

∂

∂η
τ (ρ, η) =

2erf−1(N)2

N2
> 0, (C.33)

∂

∂ρ
τ (ρ, η) =

1

N2
> 0. (C.34)

From (C.32)-(C.34), the partial derivatives in (C.21), (C.22) are nonnegative. Now,

we prove each of the three statements of the theorem.

(i) Note that γ2(ρ, η) is bounded from below, and hence, its limit as ρ tends to

0+ exists. Similarly, τ(ρ, η) > 0, and thus, from (C.34), its limit as ρ tends to

0+ also exists. Using (5.21) and (5.22) and a few algebraic manipulations, it is

possible to show that

lim
ρ→0+

τ (ρ, η) = lim
N→0+

η
√

πerf−1(N) exp
(

erf−1 (N)2)

N
=

πη

2
, (C.35)

and thus, with R(τ) and Q(τ) from (C.23) and (C.24),

lim
ρ→0+

γ2 (ρ, η) = tr
{

C1R
(πη

2

)

CT
1

}

. (C.36)
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Then (5.27), (5.28) and (5.29) follow immediately from (C.36), (C.23) and

(C.24), respectively, using the notation

R̄η := R
(πη

2

)

, Q̄η := Q
(πη

2

)

. (C.37)

It follows from Theorem 5.3 that the solution of (5.28)-(5.29) exists and is

unique, with the property that R̄η ≥ 0, Q̄η ≥ 0.

(ii) In a similar fashion to part (i), note that the limits of γ2(ρ, η) and τ 2(ρ, η) as

η tends to 0+ exist. From (5.24), as η tends to 0+, N tends to 1. From (5.21),

as N tends to 1, λ tends to 0. Thus,

lim
η→0+

τ (ρ, η) = ρ, (C.38)

and hence,

lim
η→0+

γ2(ρ, η) = tr
{

C1R (ρ) CT
1

}

, (C.39)

which yields (5.30), using the notation γ2
ρ0 := tr

{

C1R (ρ) CT
1

}

. Note from

(5.19)-(5.20) that finding R(ρ) is equivalent to solving the conventional LQR

problem.

(iii) Note from (C.33) and (C.34) that 1/τ(ρ, η) is monotonically decreasing in ρ

and η, and bounded from below by 0. Using (5.21) and (5.22), it is possible to

show that

lim
η→∞

1

τ (ρ, η)
= lim

ρ→∞

1

τ (ρ, η)
= 0. (C.40)

Since A is Hurwitz, it follows from (5.19) and (5.20) that

lim
η→∞

γ2(ρ, η) = lim
ρ→∞

γ2(ρ, η) = tr
{

C1ROLCT
1

}

, (C.41)
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where ROL ≥ 0 is the solution of the Lyapunov equation

AROL + ROLA + B1B
T
1 = 0. (C.42)

Thus, (5.31) follows immediately from (C.41) using the notation

γ2
OL := tr

{

C1ROLCT
1

}

.

From (C.42), ROL is the open-loop covariance matrix, and hence, γ2
OL is the

open-loop output variance.

Proof of Theorem 5.7. Let (N,Q,R, λ) be the unique solution of (5.19)-(5.22), and

let K be obtained from (5.17). We begin by establishing that the matrix (A + B2K)

is Hurwitz. Note that Q satisfies the Ricatti equation (5.19). Using straightforward

algebraic manipulations, we obtain

∣

∣1 − K (jωI − A)−1 B2N
∣

∣

2
= 1 +

1

τ

∣

∣C1 (jωI − A)−1 B2

∣

∣

2
, (C.43)

where τ = (ρ + λ)/N2. From (C.43), the Nyquist plot of −K (jωI − A)−1 B2N

never enters the unit disk centered at the point (−1, 0) in the complex plane. Thus,

A + B2NκK is Hurwitz for all κ > 1/2. The result follows by setting κ = 1/N .

Then, the statements of the theorem are proved as follows.

(i) Note that xG is an equilibrium point of (5.32) if

AxG + B2satα(KxG) = 0. (C.44)

Since (A + B2K) is nonsingular, this equation implies that

xG + (A + B2K)−1B2[satα(KxG) − KxG] = 0. (C.45)
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Premultiplying (C.45) by K yields

[1 − Γ]KxG + Γsatα(KxG) = 0, (C.46)

where

Γ = K(A + B2K)−1B2. (C.47)

Using the Schur complement [118], we have

1 − Γ = det[I − (A + B2K)−1B2K]

= det[(A + B2K)]det(A) ≥ 0. (C.48)

It follows that Γ ≤ 1, and hence, (C.46) is satisfied only if KxG = 0. Thus,

from (C.45), xG = 0 is the unique equilibrium.

(ii) The Jacobian linearization of (5.32) about xG = 0 is given by

∆ẋG = (A + B2K)∆xG. (C.49)

Since (A+B2K) is Hurwitz, the result follows from Lyapunov’s indirect method

[44].

(iii) To prove (iii), we establish asymptotic stability of the origin via Lyapunov func-

tion. Recall that (A,B2) is stabilizable and (C1, A) is detectable. Also, note

that the origin of (5.32) is asymptotically stable if and only if it is asymptoti-

cally stable for the controllable and observable portion of its Kalman canonical

decomposition. Thus, assume without loss of generality that (A,B2) is con-

trollable and (C1, A) is observable. Then it follows from (5.19) that Q > 0.

Consider the candidate Lyapunov function

V (xG) = xT
G(εQ)xG, (C.50)



139

where

ε =
N2

ρ + λ
. (C.51)

It is straightforward to show that

V̇ (xG) = −xT
G(εCT

1 C1)xG − ε(ρ + λ)[
2u

N
satα(u) − u2], (C.52)

and thus,

V̇ (xG) ≤ 0 (C.53)

if

|u| ≤ 2α/N. (C.54)

Clearly, this is equivalent to

|BT
2 (εQ)xG| ≤ 2α, (C.55)

and hence, V̇ (xG) ≤ 0 for all xG ∈ X , where

X =

{

xG ∈ Rnx : xT
G

(

QB2B
T
2 Q
)

xG ≤ 4α2

ε2

}

. (C.56)

Now, define the set S such that

S =
{

xG ∈ X : V̇ (xG) = 0
}

, (C.57)

and assume that the trajectory xG(t) belongs to S for all t. Then, from (C.52),

C1xG = 0 and since (C1, A) is observable, xG = 0. Thus, by LaSalle’s Theorem,

the equilibrium point xG = 0 is asymptotically stable and X is a subset of its

domain of attraction.

Proof of Theorem 5.10. The proof is similar to that of Theorem 5.3. First, we use

the method of Lagrange multipliers to find the necessary conditions for optimality.
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To verify the regularity of the contraints, let (K,L,M,Na, Ns, P̃ , α, β) satisfy (5.43)

and (5.44), and for arbitrary symmetric matrices Q̃ and Λ = diag(λ1, λ2), define

Φ
(

K,L,M,Na, Ns, P̃ , α, β
)

= tr
{[(

Ã + B̃2ÑC̃2

)

P̃

+P̃
(

Ã + B̃2ÑC̃2

)T

+ B̃1B̃
T
1

]

Q̃

}

+ tr

{

Λ

[

diag
{

C̃2P̃ C̃T
2

}

− 1

2
Θ
[

erf−1
(

Ñ
)]−2

]}

. (C.58)

Differentiating Φ with respect to α, β and P̃ , and the setting the result to zero yields

−2λ1α

2erf−1 (Na)
2 = 0, (C.59)

−2λ2β

2erf−1 (Ns)
2 = 0, (C.60)

(

Ã + B̃2ÑC̃2

)T

Q̃ + Q̃
(

Ã + B̃2ÑC̃2

)

+ ΛC̃T
2 C̃2 = 0. (C.61)

Since Na ∈ (0, 1), Ns ∈ (0, 1), and α, β > 0, it follows from (C.59) and (C.60) that

λ1 = λ2 = 0, which, from (C.61), implies that Q̃ = 0. It is straightforward to show

that, consequently,

∂Φ

∂K
=

∂Φ

∂L
=

∂Φ

∂M
=

∂Φ

∂Na

=
∂Φ

∂Ns

= 0, (C.62)

and, thus, the constraints are regular.

Consider the Lagrangian

Ψ
(

K,L,M,Na, Ns, P̃ , Q̃, α, β, λ1, λ2

)

= tr
{

C̃1P̃ C̃T
1

}

+ tr

{[

(

Ã + B̃2ÑC̃2

)

P̃ + P̃
(

Ã + B̃2ÑC̃2

)T

+ B̃1B̃
T
1

]

Q̃

}

+ tr

{

Λ

[

diag
{

C̃2P̃ C̃T
2

}

− 1

2
Θ
[

erf−1
(

Ñ
)]−2

]}

. (C.63)
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and the partition

P̃ =







P11 P T
12

P12 P11






, Q̃ =







Q11 Q12

QT
12 Q22






.

Differentiating Ψ with respect to K, L, M , Na, Ns,P̃ , Q̃, λ1, λ2, α, β, and equating

the results to zero yields the necessary conditions for optimality

KP22 +
Na

ρ + λ1

(

Q11P
T
12 + Q12P22

)

= 0, (C.64)

Q22L −
(

QT
12P11 + Q22P12

)

CT
2

Ns

µ
= 0, (C.65)

QT
12P

T
12 + Q22P22 = 0, (C.66)

K
(

P12Q11 + P22Q
T
12

)

B2 +

√
π

4
λ1exp

(

erf−1(Na)
2
)

×
(

erf−1(Na)
−3
)

, (C.67)

C2

(

P11Q12 + P T
12Q22

)

L +

√
π

4
λ2exp

(

erf−1(Ns)
2
)

×
(

erf−1(Ns)
−3
)

= 0, (C.68)

(

Ã + B̃2ÑC̃2

)T

Q̃ + Q̃
(

Ã + B̃2ÑC̃2

)

+

C̃T
1 C̃1 + C̃T

2 ΛC̃2 = 0, (C.69)

(

Ã + B̃2ÑC̃2

)

P̃ + P̃
(

Ã + B̃2ÑC̃2

)T

+ B̃1B̃
T
1 = 0, (C.70)

KP22K
T − α2

2erf−1 (Na)
2 = 0, (C.71)

C2P11C
T
2 − β2

2erf−1 (Ns)
2 = 0, (C.72)

2ηaα − 2λ1α

2erf−1 (Na)
2 = 0, (C.73)

2ηsα − 2λ2β

2erf−1 (Ns)
2 = 0. (C.74)

In the subsequent analysis we assume that P22 and Q22 are invertible, although

similar results can be obtained by using pseudoinverses. From (C.64) and (C.65), we
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obtain

K = − Na

ρ + λ1

BT
2

(

Q11P
T
12 + Q12P22

)

P T
22, (C.75)

L = Q−1
22

(

QT
12P11 + Q22P12

)

CT
2

Ns

µ
. (C.76)

Defining T := P T
12P

−1
22 , it follows from (C.75) that

K = − Na

ρ + λ1

BT
2

(

Q11 − Q12Q
T
22Q

T
12

)

T. (C.77)

Note from (C.66) that T−1 = −Q−1
22 QT

12, and, thus, from (C.76)

L = −T−1
(

P11 + P T
12P

−1
22 P12

)

CT
2

Ns

µ
. (C.78)

Then, with

Q = Q11 − Q12Q
T
22Q

T
12, P = P11 + P T

12P
−1
22 P12, (C.79)

(C.77) and (C.78) become

K = − Na

ρ + λ1

BT
2 QT, (C.80)

and

L = −Na

µ
T−1PCT

2 . (C.81)

By substituting (C.80) and (C.81) into (C.69) and (C.70), it is straightforward to

show that

M = T−1
(

A + B2NaKT−1 + TLNsC2

)

T. (C.82)

The equations (5.46)-(5.48) for the parameters K,L,M follow immediately from

(C.80)-(C.82), noting that T is a similarity transformation and does not affect the

the controller transfer function K(sI − M)−1L. The equations (5.49) and (5.50) for

α and β follow directly from (C.71) and (C.72), respectively.

We now verify (5.51)-(5.58). Equations (5.51)-(5.54) follow by substituting (C.80)-

(C.82) into (C.69) and (C.70), where

R = P T
12P

−1
22 P12, S = Q12Q

−1
22 QT

12. (C.83)
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Multiplying (C.64) from the right by KT , substituting into (C.67), and then using

(C.71), yields (5.55). Multiplying (C.65) from the left by LT and substituting into

(C.68) yields (5.56). Finally, (5.57) and (5.58) follow immediately from (C.73) and

(C.74).

We now argue that the ILQG problem (5.41) has a solution, i.e., the minimum

exists and is attained. Note that (5.41) can be reformulated as

min
α,β

{

ηaα
2 + ηsβ

2 + min
K,L,M

σ2
ẑ

}

. (C.84)

It is known from [83] that, under Assumption 2, for every α, β > 0, the triple

(K,L,M) that solves

min
K,L,M

σ2
ẑ , (C.85)

exists. Moreover, the achieved minimum is continuous in α and β. Thus, the function

qG(α, β) = ηaα
2 + ηsβ

2 + min
K,L,M

σ2
ẑ (C.86)

is continuous for α, β > 0 and tends to ∞ as α → ∞ and β → ∞. Hence, qG(α, β)

achieves a minimum at some α∗ ≥ 0, β∗ ≥ 0. Let (K∗, L∗,M∗) be the minimizer

of (C.85) when α = α∗ and β = β∗. Then the quintuple (K∗, L∗,M∗, α∗, β∗) solves

(5.41).

The ILQG cost (5.59) follows immediately from (5.46)-(5.50). Since the optimiza-

tion has an achievable solution, any solution of (5.51)-(5.58) that minimizes (5.59)

solves the ILQG problem.

Proof of Theorem 5.13. Let (Na, Ns, λ1, λ2, P,Q,R, S) be the minimizing solution of

(5.51)-(5.58) and let K and L be obtained from (5.46) and (5.47). Similar to the

proof of Theorem 5.7, we first establish that (A+B2K) and (A+LC2) are Hurwitz.
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Since P and Q satisfy (5.51) and (5.52), it is readily shown that

∣

∣1 − K (jωI − A)−1 B2Na

∣

∣

2
= 1 +

1

τ1

∣

∣C1 (jωI − A)−1 B2

∣

∣

2

+
λ2

τ1

∣

∣C2 (jωI − A)−1 B2

∣

∣

2
, (C.87)

and

∣

∣1 − C2 (jωI − A)−1 NsL
∣

∣

2
= 1 +

1

τ2

∣

∣C2 (jωI − A)−1 B1

∣

∣

2
, (C.88)

where τ1 = (ρ + λ1)/N
2
a and τ2 = µ/N2

s . Thus, (A + B2NaκaK) and (A + LNsκsC2)

are Hurwitz for all κa > 1/2, κs > 1/2, and the result follows by setting κa = 1/Na

and κs = 1/Ns.

(i) The point [xG, xC ] is an equilibrium of the system if

AxG + B2satα (KxC) = 0, (C.89)

AxC + B2satα(KxC) − L (y − satβ(C2xC)) = 0, (C.90)

or, equivalently,

AxG + B2satα (KxC) = 0, (C.91)

Ae + L (satβ(C2xG) − satβ(C2xC)) = 0, (C.92)

where e = xG − xC . Since (A + B2K) and (A + LC2) are nonsingular we can

write

xG + (A + B2K)−1B2satα (KxC) − (A + B2K)−1B2KxG = 0, (C.93)

e + (A + LC2)
−1L (satβ(C2xG) − satβ(C2xC)) − (A + LC2)

−1LC2e = 0.

(C.94)

Premultiplying (C.94) by C2 results in

(1 − ΓC) C2xG + ΓCsatβ (C2xG) = (1 − ΓC) C2xC + ΓCsatβ (C2xC) , (C.95)
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where ΓC = C2(A + LC2)
−1L. Since

1 − ΓC = det (A + LC2)
−1 det (A) ≥ 0, (C.96)

it follows that ΓC ≤ 1. If ΓC 6= 1, then (C.95) implies that C2xG = C2xC ,

which, from (C.94), implies e = 0, i.e., xG = xC . Then, it follows from (C.89),

(C.93) and the proof of Theorem 5.7 that xG = 0, and, necessarily, xC = 0. If

ΓC = 1, then from (C.95)

satβ(C2xG) = satβ(C2xC), (C.97)

which, from (C.92) implies that Ae = 0. Then, from (C.89)

AxC + B2satα (KxC) = 0, (C.98)

which, through the proof of Theorem 5.7 implies that xC = 0. Thus, from

(C.97), C2xG = 0, and it follows from (C.94) that e = 0. Thus, xG = 0 and the

result is established.

(ii) The Jacobian linearization of the system about the equilibrium [xG, xC ] = 0 is

given by

∆ẋG = (A + B2K)∆xG, (C.99)

∆ė = (A + LC2)∆e, (C.100)

Since (A+B2K) and (A+LC2) are Hurwitz, the result follows from Lyapunov’s

indirect method.

(iii) As in the proof of Theorem 5.7, assume without loss of generality that (A,B2)

is controllable and (C1, A) is observable. Consider the candidate Lyapunov

function

V (xG, e) = V1(xG) + V2(e), (C.101)
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where

V1(xG) = xT
G(ε1Q)xG, (C.102)

V2(e) = eT Me, (C.103)

where ε1 = N2
a/(ρ + λ1), and where, since (A + LC2) is Hurwitz, M is the

positive definite solution of

(A + LC2)
T M + M(A + LC2) + I = 0. (C.104)

It follows that

V̇1(xG) = −xT
G(ε1C

T
1 C1 + ε1λ2C

T
2 C2)xG − ε1(ρ + λ1)[

2u

N
satα(u) − u2],

(C.105)

V̇2(e) =
(

eT AT + (satβ(C2xG) − satβ(C2xC))T LT
)

Me

+ eT M (Ae + L (satβ(C2xG) − satβ(C2xC))) . (C.106)

Thus, V̇1(xG) ≤ 0 if

|u| ≤ 2α

N
, (C.107)

and by the proof of Theorem 5.7, V̇1(xG) ≤ 0 for all xG ∈ X1, where

X1 =

{

xG ∈ Rnx |xT
G

(

QB2B
T
2 Q
)

xG ≤ 4α2

ε2
1

}

(C.108)

Now, assume that xG = xC . It follows from (C.106) and (C.104) that

V̇2(e) = −eT e, (C.109)

if

|C2xG| ≤ β, (C.110)

and thus, V̇2(e) ≤ 0 for all xG ∈ X2, where

X2 =
{

xG ∈ Rnx|xT
GCT

2 C2xG ≤ β2
}

. (C.111)
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Then, from (C.108) and (C.111), V̇ (xG, xC) ≤ 0 for all (xG, xC) ∈ Y×Y , where

Y = X1 ∩ X2. (C.112)

Now, define the set S such that

S =
{

(xG, xC) ∈ Y × Y|V̇ (xG, xC) = 0
}

, (C.113)

and assume that the trajectory (xG(t), xC(t)) belongs to S for all t. Then it

follows from (C.105)-(C.109) that C1xG = 0 and e = 0. Thus, since (C1, A) is

observable, xG = xC = 0, and by LaSalle’s theorem, [xG, xC ] = 0 is asymptoti-

cally stable and Y × Y is a subset of its domain of attraction.
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