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Bacterial RNA and small antiviral compounds
activate caspase-1 through cryopyrin/Nalp3

Thirumala-Devi Kanneganti', Nesrin Ozéren', Mathilde Body-Malapel', Amal Amer’, Jong-Hwan Park’,
Luigi Franchi', Joel Whitfield', Winfried Barchet®, Marco Colonna?, Peter Vandenabeele®, John Bertint,
Anthony Coyle*t, Ethan P. Grant*t, Shizuo Akira® & Gabriel NGfez'

Missense mutations in the CIASI gene cause three autoinflamma-
tory disorders: familial cold autoinflammatory syndrome,
Muckle-Wells syndrome and neonatal-onset multiple-system
inflammatory disease'. Cryopyrin (also called Nalp3), the product
of CIASI, is a member of the NOD-LRR protein family that has
been linked to the activation of intracellular host defence signal-
ling pathways™’. Cryopyrin forms a multi-protein complex
termed ‘the inflammasome’, which contains the apoptosis-
associated speck-like protein (ASC) and caspase-1, and promotes
caspase-1 activation and processing of pro-interleukin (IL)-18
(ref. 4). Here we show the effect of cryopyrin deficiency on
inflammasome function and immune responses. Cryopyrin and
ASC are essential for caspase-1 activation and IL-18 and IL-18
production in response to bacterial RNA and the imidazoquino-
line compounds R837 and R848. In contrast, secretion of tumour-
necrosis factor-o and IL-6, as well as activation of NF-kB and
mitogen-activated protein kinases (MAPKs) were unaffected by
cryopyrin deficiency. Furthermore, we show that Toll-like recep-
tors and cryopyrin control the secretion of IL-18 and IL-18
through different intracellular pathways. These results reveal
a critical role for cryopyrin in host defence through bacterial
RNA-mediated activation of caspase-1, and provide insights
regarding the pathogenesis of autoinflammatory syndromes.

To define the role of cryopyrin in inflammatory responses, we
generated cryopyrin-deficient mice by homologous recombination
using a targeting construct to replace exons I and II of the cryopyrin
gene (Ciasl), which encode the pyrin domain of cryopyrin that is
essential for effector function of the protein (Supplementary Fig. 1).
Ciasl ~'~ mice were fertile and appeared healthy when housed in a
standard specific pathogen-free environment.We initially investi-
gated the role of cryopyrin in caspase-1-dependent IL-1f secretion
using thioglycollate-elicited peritoneal macrophages and bone
marrow-derived macrophages (BMDMs) and multiple bacterial
and synthetic ligands. Stimulation of peritoneal macrophages or
BMDMs with several TLR2 and TLR4 agonists, including diacylated
(Pam,CGDPKHPHSF) and triacylated (Pam3;CSK,) synthetic lipo-
peptides, lipoteichoic acid, highly purified lipopolysaccharide (LPS)
and lipid A induced comparable levels of IL-18 in wild-type and
Cias1 '~ macrophages (Fig. 1a and Supplementary Fig. 2). Similar
results were obtained when macrophages were stimulated with
bacterial ligands and treated briefly with ATP (Supplementary
Fig. 3), a signal that enhances the secretion of IL-1f in pre-stimulated
macrophages °. Incubation of macrophages with muramyl dipeptide
(MDP) did not induce secretion of IL-1@ above background levels in

wild-type and CiasI '~ macrophages, even after addition of ATP
(Fig. 1a; see also Supplementary Fig. 3). Furthermore, production of
interferon-o induced by several viruses was unimpaired in macro-
phages and dendritic cells from CiasI '~ mice (Supplementary
Fig. 4).

Notably, secretion of IL-18 and IL-18 induced by the low mol-
ecular weight imidazoquinoline compounds imiquimod (R837) and
resiquimod (R848), which are known to activate pro-inflammatory
responses in the mouse through TLR7 (refs 6, 7), was abro§ated in
both peritoneal macrophages and BMDMs from Ciasl '~ mice
(Fig. la—c). In contrast, cryopyrin was dispensable for the production
of the pro-inflammatory cytokines tumour-necrosis factor-o
(TNF-a) and IL-6 induced by stimulation with R837 (Fig. 1c).
These results indicate that cryopyrin is specifically required for the
secretion of IL-18 and IL-18 induced by the synthetic molecules R837
and R848.

The induction of IL-18 secretion is thought to involve the
upregulation of pro-IL-18 through transcriptional mechanisms via
NEF-kB, followed by a second stimulus that leads to the activation of
caspase-1, processing of pro-IL-18 and release of mature IL-13
(refs 5, 8). We found that stimulation with R837 induced comparable
levels of NF-kB, extracellular signal-regulated kinase (ERK) and p38
activation in wild-type and Cias] '~ macrophages (Fig. 2a). In
contrast, activation of NF-kB and MAPKs was abolished in TLR7-
and MyD88-deficient macrophages (Fig. 2b; see also Supplementary
Fig. 5), consistent with previous results’. Importantly, proteolytic
processing of pro-caspase-1 was induced in wild-type macrophages
by both R837 and R848, as determined by detection of the mature
20-kDa subunit of caspase-1 (Fig. 2c). Such activation of caspase-1
was abrogated in macrophages lacking cryopyrin (Fig. 2¢) or ASC
(Fig. 2e), an adaptor that links cryopyrin to caspase-1 (refs 4, 9). In
contrast, activation of caspase-1 was unimpaired in Ciasl '~
macrophages in response to LPS and lipid A (Fig. 2d), further
indicating that the ligand-recognition function of cryopyrin is highly
specific. In our hands, MDP did not induce proteolytic processing of
pro-caspase-1 in mouse macrophages (Fig. 2d), consistent with its
inability to induce IL-13 secretion (Fig. 1a). Notably, activation of
caspase-1 induced by R837 proceeded normally in TLR7- or MyD88-
deficient macrophages (Fig. 2f, g). These results demonstrate that
cryopyrin is essential for caspase-1 processing, independent of NF-kB
and MAPK activation in response to R837 and R848. Furthermore,
TLR7 and MyD88 are required for NF-kB and MAPK activation but
are dispensable for caspase-1 activation.

Structurally, R837 and R848 resemble purine bases', suggesting
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Figure 1| Cryopyrin is required for IL-13 and IL-18 secretion in response to
imidazoquinoline compounds R837 and R848. a, b, Peritoneal
macrophages (a) and BMDMs (b) from wild-type (black bars) or Ciasl -
mice (white bars) were stimulated as indicated for 24 h, and cell-free
supernatants were analysed by ELISA. LA, lipid A; LTA, lipoteichoic acid;
FSL-1, Pam2CGDPKHPHSEF. ¢, Peritoneal macrophages (left panels) and
BMDMs (right panels) were stimulated with the indicated concentrations of
R837 for 24 h, and cell-free supernatants were analysed by ELISA for
production of IL-18 (top), TNF-a (middle) and IL-6 (bottom). W'T, wild
type; —/—, Ciasl =/~ Error bars represent the standard deviation of
triplicate cultures. Results are representative of at least three separate
experiments.

that the natural ligand of cryopyrin could be DNA or RNA. Secretion
of IL-1@ and IL-18 was induced by Escherichia coli RNA in wild-type
and Cias1 ™'~ macrophages, but was abolished in Cias] ~/~ macro-
phages (Fig. 3a and Supplementary Fig. 6). Treatment with chloro-
quine did not affect the production of IL-18 induced by bacterial
RNA (Supplementary Fig. 7). E. coli RNA induced rapid activation of
caspase-1 in wild-type but not in Cias1 '~ macrophages (Fig. 3b). As
we found with E. coli RNA, stimulation with total RNA from two
different bacteria (Listeria monocytogenes and Legionella pneumo-
phila), but not total RNA from mouse liver, induced activation of
caspase-1 in wild-type but not in Cias1 ~'~ macrophages (Fig. 3¢, d).
Treatment of the RNA preparations with RNase abolished their
ability to induce caspase-1 activation (Fig. 3d), indicating that
RNA, but not a contaminating product, triggers caspase-1 activation.
Furthermore, secretion of IL-18 and processing of pro-caspase-1
induced by bacterial RNA was abrogated in macrophages lacking
ASC, but was unimpaired in TLR7- or MyD88-deficient macro-
phages (Fig. 3e and Supplementary Fig. 8). These results show that
bacterial RNA activates caspase-1 and IL-1f secretion, and that
these events are mediated through cryopyrin and ASC, and are
independent of TLR7 and MyDS88.

Mononuclear cells from patients with autoinflammatory syn-
dromes spontaneously secrete IL-13 and IL-18, and show enhanced
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Figure 2 | Caspase-1 processing and NF-kB activation in mutant
macrophages stimulated with R837 or R848. a, b, BMDMs from wild-type
and Ciasl '~ mice (a) or wild-type and Trl7 '~ mice (b) were stimulated
with R837 (5pg ml ") for the indicated times, and extracts were
immunoblotted with antibodies that recognize phosphorylated (P-)ERK,
p38, IkBa and total protein. IkBa phosphorylation can be used as a measure
of NF-kB activation. c-g, BMDMs from wild-type and the indicated mutant
mice were stimulated with R837 (5 p.g ml ") or R848 (5 ng ml™) (¢, e-g),
LPS, lipid A (LA) or MDP (10 p.g ml ") (d). Cell extracts were
immunoblotted with an antibody against caspase-1. Arrows denote
pro-caspase-1 and its processed p20 subunit.

production of IL-1f and IL-18 in response to low amounts of LPS*'".
This is consistent with the observation that disease-associated
cryopyrin mutations show constitutive activity’. We therefore
examined the ability of low doses of LPS to cooperate with low
amounts of various microbial ligands in the production of IL-18. LPS
synergized with R837, but not with lipopeptides, lipoteichoic acid,
lipid A, flagellin or CpG oligodeoxynucleotide for the secretion of
IL-18 (Fig. 4a). Such enhancement of LPS-mediated IL-18 pro-
duction by R837 was abrogated in Ciasl ~'~ macrophages (Fig. 4a).
The susceptibility to high doses of highly purified LPS induced
comparable lethality in wild-type and Ciasl ~’~ mice (Supplemen-
tary Fig. 9). The synergy between LPS and R837 might be explained,
at least in part, by the ability of LPS to induce cryopyrin expression'”.
Consistent with our in vitro results, co-administration of R837 and
LPS to mice induced higher levels of IL-1f in serum than injection of
R837 or LPS alone (Fig. 4b). Furthermore, the enhancement of the
LPS response by R837 was abolished in CiasI '~ mice (Fig. 4b). The
serum levels of IL-6 and TNF-o were also enhanced by co-injection of
LPS and R837 when compared to those observed after administration
of each molecule alone (Fig. 4c, d). Moreover, reduced levels of IL-6
and TNF-a were detected in the serum of CiasI '~ mice after
stimulation with LPS plus R837 (Fig. 4c, d), presumably owing
to the induction of IL-6 and TNF-« by IL-18 and/or IL-18 in vivo".

These studies show that cryopyrin has an essential role in the
secretion of IL-18 and IL-18 by controlling the activation of
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Figure 3 | Cryopyrin is essential for activation of caspase-1in response to
bacterial RNA. a, BMDMs from wild-type (black bars) or Ciasl '~ mice
(white bars) were stimulated as indicated, and cell-free supernatants were
analysed by ELISA for production of IL-1§8 or IL-18. b—d, BMDMs from
wild-type and Cias1 ~/~ mice were stimulated with RNA purified from E. coli
(b) or the indicated bacteria (c) with (4) or without (—) RNase digestion
(d), and cell extracts were immunoblotted with an antibody against caspase-
1. e, BMDMs from wild-type and Asc”'7, Tlr77'" and Myd88 ~~ mice were
stimulated with purified RNA from E. coli or mouse liver for 3 h.

pro-caspase-1 in response to bacterial RNA or the synthetic
compounds R837 and R848. We provide evidence that secretion
of IL-18 and IL-18 is regulated by separate signalling pathways
that are independently controlled by TLR and NOD-LRR
proteins. Previous studies, using an overexpression system in
human HEK293 cells, have suggested that MDP mediates
cryopyrin-mediated activation of caspase-1 and maturation of
pro-IL-18 (ref. 14). We found no evidence that MDP induces
the activation of caspase-1 or the release of IL-1f in mouse
macrophages, consistent with previous results'®. Our studies,
however, do not rule out the possibility that cryopyrin responds
to MDP under certain conditions in the mouse and/or human
system.

Our results indicate that TLRs and cryopyrin are involved in the
activation of immune responses induced by the same or similar
microbial structures®'*'®. Bacterial RNA might be derived from
phagocytosed bacteria or lysis of bacteria in the extracellular space
and transported into the host cytosol, leading to cryopyrin recog-
nition and activation. The mechanism by which cryopyrin and
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Figure 4 | R837 and LPS cooperate in the production of pro-inflammatory
cytokines in a cryopyrin-dependent manner. a, BMDMs from wild-type
(WT) or Cias] ~'~ mice (—/—) were co-stimulated with LPS and the
indicated stimuli for 24 h or left unstimulated (unstim). Cell-free
supernatants were analysed by ELISA for IL-18 production. b-d, Groups of
wild-type and Ciasl ~'~ mice (n = 7 mice per group) were co-injected
with LPS (200 p.g), R837 (200 p.g) or LPS plus R837 (200 p.g each), and levels
of IL-1B (b), IL-6 (c) or TNF-a (d) in serum were determined by ELISA at
the indicated times. Error bars represent standard deviation of serum values.

TLR7/TLR8 discriminate between microbial and endogenous RNA
remains poorly understood, but differences in nucleoside modifi-
cation and the polyA-tail between bacterial and mammalian RNA
might be involved'**. R837 and R848 are used as immune response
modifiers in the clinic and are being considered as vaccine adju-
vants®*. The potent adjuvant, antiviral and antitumour activity
exerted by the imidazoquinoline compounds could be explained by
their ability to activate both TLR and cryopyrin signalling. The
identification of cryopyrin as a critical factor for caspase-1 activation
induced by bacterial RNA has implications for host defence and
RNA-based vaccines as well as for our understanding of inflamma-
tory diseases.

METHODS

Mice. Ciasl-knockout mice were generated by homologous recombination in
embryonic stem cells by replacing exons I and II of the cryopyrin/Ciasl gene
(encoding the amino-terminal Pyrin domain) with an IRES-8-gal-neomycin-
resistance cassette using a targeting vector (Supplementary Fig. 1). A positive
embryonic stem cell clone was used to generate chimaeric mice. 129/C57BL/6
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chimaeric mice were crossed with C57BL/6 females to generate heterozygous
mice. CiasI-knockout and wild-type mice were generated by crossing male and
female heterozygous mice. TIr7, Myd88 and Asc knockout mice have been
described®*.

Microbial ligands and antibodies. Ultrapure LPS from E. coli 0111:B4 (Invivo-
gen) was used in all experiments. FSL-1, Pam;CSKy, lipid A, flagellin, R837 and
CpG oligonucleotide were purchased from Invivogen and muramyl dipeptide was
purchased from Bachem. Purified total RNA from E. coli and mouse liver was
purchased from Ambion. Total RNA from L. prneumophila and L. monocytogenes
was prepared using a RiboPure-bacteria kit (Ambion) and RNase (Novagen).
The 260/280 absorbance of RNA was 1.7/2. Rabbit anti-mouse caspase-1 and
anti-cryopyrin antibodies have been previously described'>*. Antibodies against
mouse Ik-Ba, phospho-Ik-Ba, p38 and phospho-p38 were from Cell Signalling.
Western blotting. For analysis of caspase-1 activation, macrophages were
cultured with ligands for 1-3 h and then with medium containing 5 mM ATP
(Sigma) for 30 min. Extracts were prepared, transferred to nitrocellulose
membranes and immunoblotted with primary antibodies, and then proteins
were detected by enhanced chemiluminescence as previously described*.
Measurements of cytokines. BMDMs and peritoneal macrophages were pre-
pared as described™. Cells were stimulated with various microbial and synthetic
ligands for 24 h, and supernatants were analysed for IL-18, IL-18, TNF-a and
IL-6 secretion. FSL-1, Pam3;CSK,, LPS, lipoteichoic acid, lipid A and MDP were
used at 1 pgml™". For analysis of the cooperation between LPS and various
ligands, 10 ngml™" LPS and 10 ngml ™" of ligand were used. Mouse cytokines
were measured in culture supernatants using enzyme-linked immunoabsorbent
assay (ELISA) kits from R&D Systems.
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