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Local realism is the idea that objects have de®nite properties
whether or not they are measured, and that measurements of
these properties are not affected by events taking place suf®ciently
far away1. Einstein, Podolsky and Rosen2 used these reasonable
assumptions to conclude that quantum mechanics is incomplete.
Starting in 1965, Bell and others constructed mathematical
inequalities whereby experimental tests could distinguish
between quantum mechanics and local realistic theories1,3±5.
Many experiments1,6±15 have since been done that are consistent
with quantum mechanics and inconsistent with local realism. But
these conclusions remain the subject of considerable interest and
debate, and experiments are still being re®ned to overcome
`loopholes' that might allow a local realistic interpretation. Here
we have measured correlations in the classical properties of
massive entangled particles (9Be+ ions): these correlations violate
a form of Bell's inequality. Our measured value of the appropriate
Bell's `signal' is 2:25 6 0:03, whereas a value of 2 is the maximum
allowed by local realistic theories of nature. In contrast to
previous measurements with massive particles, this violation of
Bell's inequality was obtained by use of a complete set of
measurements. Moreover, the high detection ef®ciency of our
apparatus eliminates the so-called `detection' loophole.

Early experiments to test Bell's inequalities were subject to two
primary, although seemingly implausible, loopholes. The ®rst
might be termed the locality or `lightcone' loophole, in which the
correlations of apparently separate events could result from
unknown subluminal signals propagating between different regions
of the apparatus. Aspect16 has given a brief history of this issue,
starting with the experiments of ref. 8 and highlighting the strict
relativistic separation between measurements reported by the
Innsbruck group15. Similar results have also been reported for the
Geneva experiment14,17. The second loophole is usually referred to as
the detection loophole. All experiments up to now have had
detection ef®ciencies low enough to allow the possibility that the
subensemble of detected events agrees with quantum mechanics
even though the entire ensemble satis®es Bell's inequalities. There-
fore it must be assumed that the detected events represent the entire
ensemble; a fair-sampling hypothesis. Several proposals for closing
this loophole have been made18±24; we believe the experiment that we
report here is the ®rst to do so. Another feature of our experiment is
that it uses massive particles. A previous test of Bell's inequality was
carried out on protons25, but the interpretation of the detected
events relied on quantum mechanics, as symmetries valid given
quantum mechanics were used to extrapolate the data to a complete
set of Bell's angles. Here we do not make such assumptions.

A Bell measurement of the type suggested by Clauser, Horne,
Shimony and Holt5 (CHSH) consists of three basic ingredients
(Fig. 1a). First is the preparation of a pair of particles in a repeatable
starting con®guration (the output of the `magic' box in Fig. 1a).
Second, a variable classical manipulation is applied independently
to each particle; these manipulations are labelled f1 and f2. Finally,
in the detection phase, a classical property with two possible
outcomes is measured for each of the particles. The correlation of
these outcomes

q�f1;f2� �
N same�f1;f2�2 Ndifferent�f1;f2�

N same � Ndifferent

�1�

is measured by repeating the experiment many times. Here Nsame

and Ndifferent are the number of measurements where the two results
were the same and different, respectively. The CHSH form of Bell's
inequalities states that the correlations resulting from local realistic
theories must obey:

B�a1; d1; b2; g2� �jq�d1; g2�2 q�a1; g2�j

� jq�d1; b2� � q�a1; b2�j < 2 �2�

where a1 and d1 (b2 and g2) are speci®c values of f1 (f2). For
example, in a photon experiment15, parametric down-conversion
prepares a pair of photons in a singlet Einstein±Podolsky±Rosen
(EPR) pair. After this, a variable rotation of the photon polarization
is applied to each photon. Finally, the photons' polarization states,
vertical or horizontal, are determined.

Our experiment prepares a pair of two-level atomic ions in a
repeatable con®guration (entangled state). Next, a laser ®eld is
applied to the particles; the classical manipulation variables are the

???

1

2

a

    
     

  
     

???

1

2

Manipulation
1

(φ1)

Manipulation
2

(φ2)

Measure 1

Measure 2

Detection laser

Classical

Classical

q(φ1,φ2)

q(φ1,φ2)

"Magic"
box

"Magic"
box

b

φ2

φ1

Figure 1 Illustration of how Bell's inequality experiments work. The idea is that a `magic

box' emits a pair of particles. We attempt to determine the joint properties of these

particles by applying various classical manipulations to them and observing the

correlations of the measurement outputs. a, A general CHSH type of Bell's inequality

experiment. b, Our experiment. The manipulation is a laser wave applied with phases f1

and f2 to ion 1 and ion 2 respectively. The measurement is the detection of photons

emanating from the ions upon application of a detection laser. Two possible measurement

outcomes are possible, detection of few photons (as depicted for ion 1 in the ®gure) or the

detection of many photons (as depicted for ion 2 in the ®gure).
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phases of this ®eld at each ion's position. Finally, upon application
of a detection laser beam, the classical property measured is the
number of scattered photons emanating from the particles (which
effectively measures their atomic states). Figure 1b shows how our
experiment maps onto the general case. Entangled atoms produced
in the context of cavity-quantum-electrodynamics26 could similarly
be used to measure Bell's inequalities.

The experimental apparatus is as described in ref. 27. Two 9Be+

ions are con®ned along the axis of a linear Paul trap with an axial
centre-of-mass frequency of 5 MHz. We select two resolved levels
of the 2S1/2 ground state, j # i [ jF � 2;mF � 22i and j " i[
jF � 1;mF � 21i, where F and mF are the quantum numbers of
the total angular momentum. These states are coupled by a coherent
stimulated Raman transition. The two laser beams used to drive the
transition have a wavelength of 313 nm and a difference frequency
near the hyper®ne splitting of the states, q0 > 2p 3 1:25 GHz. The
beams are aligned perpendicular to each other, with their difference
wavevector Dk along the trap axis. As described in ref. 27, it is
possible in this con®guration to produce the entangled state

jw2i � 1���
2

p �j " " i 2 j # # i� �3�

The ®delity F � hw2jrjw2i, where r is the density matrix for the state
we make, was about 88% for the data runs. In the discussion below
we assume |w2i as the starting condition for the experiment.

After making the state |w2i, we again apply Raman beams for a
pulse of short duration (,400 ns) so that the state of each ion j is

transformed in the interaction picture as

j "j i ! 1���
2

p �j "j i 2 ie 2 ifj j #j i�; j #j i ! 1���
2

p �j #j i 2 ieifj j "j i� �4�

The phase, fj, is the phase of the ®eld driving the Raman transitions
(more speci®cally, the phase difference between the two Raman
beams) at the position of ion j and corresponds to the inputs f1 and
f2 in Fig. 1. We set this phase in two ways in the experiment. First, as
an ion is moved along the trap axis this phase changes by Dk×Dxj.
For example, a translation of l=

���
2

p
along the trap axis corresponds

to a phase shift of 2p. In addition, the laser phase on both ions
is changed by a common amount by varying the phase, fs, of the
radio-frequency synthesizer that determines the Raman difference
frequency. The phase on ion j is therefore

fj � fs � Dk×xj �5�

In the experiment, the axial trap strength is changed so that the
ions move about the centre of the trap symmetrically, giving
Dx1 � 2Dx2. Therefore the trap strength controls the differential
phase, Df [ f1 2 f2 � Dk×�x1 2 x2�, and the synthesizer controls
the total phase, ftot [ f1 � f2 � 2fs. The calibration of these
relations is discussed in the Methods.

The state of an ion, |#i or |"i, is determined by probing the ion with
circularly polarized light from a `detection' laser beam27. During this
detection pulse, ions in the |#i or bright state scatter many photons,
and on average about 64 of these are detected with a photomulti-
plier tube, while ions in the |"i or dark state scatter very few photons.
For two ions, three cases can occur: zero ions bright, one ion bright,
or two ions bright. In the one-ion-bright case it is not necessary to
know which ion is bright because the Bell's measurement requires
only knowledge of whether or not the ions' states are different.
Figure 2 shows histograms, each with 20,000 detection measure-
ments. The three cases are distinguished from each other with
simple discriminator levels in the number of photons collected with
the phototube.

An alternative description of our experiment can be made in the
language of spin-one-half magnetic moments in a magnetic ®eld
(directed in the zÃ direction). The dynamics of the spin system are the
same as for our two-level system28. Combining the manipulation
(equation (4)) and measurement steps, we effectively measure the
spin projection of each ion j in the rÃj direction, where the vector rÃj is
in the Ãx 2 Ãy plane at an angle fj to the yÃ axis. Although we have used
quantum-mechanical language to describe the manipulation and
measurement steps, we emphasize that both are procedures com-
pletely analogous to the classical rotations of wave-plates and
measurements of polarization in an optical apparatus.

Here we calculate the quantum-mechanical prediction for the
correlation function. Our manipulation step transforms the starting
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Figure 2 Typical data histograms comprising the detection measurements of 20,000

experiments taking a total time of about 20 s. In each experiment the population in the |"i
state is ®rst coherently transferred to the jF � 1;MF � �1i to make it even less likely to

¯uoresce upon application of the detection laser. The detection laser is turned on and the

number of ¯uorescence photons detected by the phototube in 1 ms is recorded. The cut

between the one bright and two bright cases is made so that the fractions of two equal

distributions which extend past the cut points are equal. The vertical arrows indicate the

location of the cut between the 0 (1) bright and 1 (2) bright peaks at 25 (86) counts.

a, Data histogram with a negative correlation using f1 � 3p=8 and f2 � 3p=8. For

these data N 0 > 2;200, N 1 > 15;500 and N 2 > 2;300. b, Data histogram with a

positive correlation using f1 � 3p=8 and f2 � 2 p=8. For these data N 0 > 7;700,

N 1 > 4;400 and N 2 > 7;900. The zero bright peak extends vertically to 2,551.

Table 2 Correlation values and resulting Bell's signals for ®ve experimental
runs

Run number q(a1, b2) q(a1, g2) q(d1, b2) q(d1, g2) B(a1, d1, b2, g2)

1 0.541 0.539 0.569 -0.573 2.222
2 0.575 0.570 0.530 -0.600 2.275
3 0.551 0.634 0.590 -0.487 2.262
4 0.575 0.561 0.559 -0.551 2.246
5 0.541 0.596 0.537 -0.571 2.245
..............................................................................................................................................................................

The experimental angle values were a1 � 2 �p=8�, d1 � 3p=8, b2 � 2 �p=8�, and g2 � 3p=8. The
statistical errors are 0.006 and 0.012 for the q and B values respectively. The systematic errors (see
text) are 0.03 and 0.06 for the q and B values respectively.

Table 1 The four sets of phase angles used for the Bell's experiment

Experiment input f1 f2 Df ftot
.............................................................................................................................................................................

a1b2 -p/8 -p/8 0 -p/4
a1g2 -p/8 3p/8 -p/2 +p/4
d1b2 3p/8 -p/8 +p/2 +p/4
d1g2 3p/8 3p/8 0 +3p/4
.............................................................................................................................................................................
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state, |w2i, to

jw92i � 1

2
���
2

p {�1 � ei�f1�f2���j " " i 2 e 2 i�f1�f2�j # # i�

2 i�1 2 ei�f1�f2���e 2 if2 j " # i � e 2 if1 j # " i�} �6�

Using the measurement operators ÃN same � N tot�j " " i h " " j�
j # # i h # # j� and ÃNdifferent � N tot�j " # i h " # j � j # " i h # " j�, the cor-
relation function is calculated to be

q�f1;f2� �
1

8
�2j1 � ei�f1�f2�j

2 2 2j1 2 ei�f1�f2�j
2
� � cos�f1 � f2�

�7�

The CHSH inequality (equation (2)) is maximally violated by
quantum mechanics at certain sets of phase angles. One such set is
a1 � 2�p=8�, d1 � 3p=8, b2 � 2�p=8� and g2 � 3p=8. With these
phase angles quantum mechanics predicts

B 2
p

8
;
3p

8
; 2

p

8
;
3p

8

� �
� 2

���
2

p
�8�

This violates the local realism condition, which requires that
B < 2.

The correlation function is measured experimentally at four
sets of phase angles, listed in Table 1. The experiment is repeated
N tot � 20;000 times at each of the four sets of phases. For each set of
phases the correlation function is calculated using

q �
�N0 � N2�2 N1

N tot

�9�

Here N0, N1 and N2 are the number of events with zero, one and two
ions bright, respectively. The correlation values from the four sets of
phase angles are combined into the Bell's signal, B�a1; d1; b2; g2�,
using equation (2). The correlation values and resulting Bell's
signals from ®ve data runs are given in Table 2.

So far we have described the experiment in terms of perfect
implementation of the phase angles. In the actual experiment,
however, a1, d1, b2 and g2 are not quite the same angles both
times they occur in the Bell's inequality. In our experiment the
dominant reason for this error results from the phase instability of
the synthesizer, which can cause the angles to drift appreciably
during four minutes, the time required to take a complete set of
measurements. This random drift causes a root-mean-squared error
for the correlation function of 60.03 on this timescale, which
propagates to an error of 60.06 for the Bell's signal. The error for
the Bell's signal from the ®ve combined data sets is then 60.03,
consistent with the run-to-run variation observed. Averaging the
®ve Bell's signals from Table 2, we arrive at our experimental result,
which is

B 2
p

8
;
3p

8
; 2

p

8
;
3p

8

� �
� 2:25 6 0:03 �10�

If we take into account the imperfections of our experiment
(imperfect state ®delity, manipulations, and detection), this value
agrees with the prediction of quantum mechanics.

The result above was obtained using the outcomes of every
experiment, so that no fair-sampling hypothesis is required. In
this case, the issue of detection ef®ciency is replaced by detection
accuracy. The dominant cause of inaccuracy in our state detection
comes from the bright state becoming dark because of optical
pumping effects. For example, imperfect circular polarization of
the detection light allows an ion in the |#i state to be pumped to |"i,
resulting in fewer collected photons from a bright ion. Because of
such errors, a bright ion is misidenti®ed 2% of the time as being
dark. This imperfect detection accuracy decreases the magnitude of
the measured correlations. We estimate that our Bell's signal would
be 2.37 with perfect detection accuracy.

We have thus presented experimental results of a Bell's inequality

measurement where a measurement outcome was recorded for
every experiment. Our detection ef®ciency was high enough for a
Bell's inequality to be violated without requiring the assumption of
fair sampling, thereby closing the detection loophole in this experi-
ment. The ions were separated by a distance large enough that no
known interaction could affect the results; however, the lightcone
loophole remains open here. Further details of this experiment will
be published elsewhere. M

Methods
Phase calibration

The experiment was run with speci®c phase differences of the Raman laser beam ®elds at
each ion. In order to implement a complete set of laser phases, a calibration of the phase on
each ion as a function of axial trap strength was made. We emphasize that the calibration
method is classical in nature. Although quantum mechanics guided the choice of
calibration method, no quantum mechanics was used to interpret the signal. General
arguments are used to describe the signal resulting from a sequence of laser pulses and its
dependence on the classical physical parameters of the system, the laser phase at the ion,
and the ion's position.

In the calibration procedure, a Ramsey experiment was performed on two ions. The ®rst
p/2 Rabi rotation was performed identically each time. The laser phases at the ions'
positions for the second p/2 Rabi rotation were varied, f1 for ion 1 and f2 for ion 2. The
detection signal is the total number of photons counted during detection. With an
auxiliary one-ion experiment we ®rst established empirically that the individual signal
depends only on the laser phase at an individual ion and is C � Acosfj. Here C and A are
the offset and amplitude of the one-ion signal. We measure the detector to be linear, so that
the detection signal is the sum of the two ions' individual signals. The two-ion signal is
therefore

C � Acosf1 � C � Acosf2 � 2C � 2Acos
1

2
�f1 � f2�

� �
cos

1

2
�f1 2 f2�

� �
�11�

By measuring the fringe amplitude and phase as fs � �f1 � f2�=2 is swept, we calibrate
f1 2 f2 as a function of trap strength and ensure that f1 � f2 is independent of trap
strength.

We use the phase convention that at the ion separation used for the entanglement
preparation pulse the maximum of the correlation function is at f1 � f2 � 0 (or
Df � ftot � 0). Our measurement procedure begins by experimentally ®nding this
condition of f1 � f2 � 0 by keeping Df � 0 and scanning the synthesizer phase to ®nd
the maximum correlation. The experiment is then adjusted to the phase angles speci®ed
above by switching the axial trap strength to set Df and incrementing the synthesizer
phase to set ftot.

Locality issues

The ions are separated by a distance of approximately 3 mm, which is greater than 100
times the size of the wavepacket of each ion. Although the Coulomb interaction strongly
couples the ions' motion it does not affect the ions' internal states. At this distance, all
known relevant interactions are expected to be small. For example, dipole±dipole
interactions between the ions slightly modify the light-scattering intensity, but this effect is
negligible for the ion±ion separations used29. Also, the detection solid angle is large
enough that Young's interference fringes, if present, are averaged out30. Even though all
known interactions would cause negligible correlations in the measurement outcomes, the
ion separation is not large enough to eliminate the lightcone loophole.

We note that the experiment would be conceptually simpler if, after creating the
entangled state, we separated the ions so that the input manipulations and measurements
were done individually. However, unless we separated the ions by a distance large enough
to overcome the lightcone loophole, this is only a matter of convenience of description and
does not change the conclusions that can be drawn from the results.
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Structural polymers are susceptible to damage in the form of
cracks, which form deep within the structure where detection is
dif®cult and repair is almost impossible. Cracking leads to
mechanical degradation1±3 of ®bre-reinforced polymer com-
posites; in microelectronic polymeric components it can also
lead to electrical failure4. Microcracking induced by thermal
and mechanical fatigue is also a long-standing problem in poly-
mer adhesives5. Regardless of the application, once cracks have
formed within polymeric materials, the integrity of the structure
is signi®cantly compromised. Experiments exploring the concept
of self-repair have been previously reported6±8, but the only
successful crack-healing methods that have been reported so far

require some form of manual intervention10±18. Here we report a
structural polymeric material with the ability to autonomically
heal cracks. The material incorporates a microencapsulated heal-
ing agent that is released upon crack intrusion. Polymerization of
the healing agent is then triggered by contact with an embedded
catalyst, bonding the crack faces. Our fracture experiments yield
as much as 75% recovery in toughness, and we expect that our
approach will be applicable to other brittle materials systems
(including ceramics and glasses).

Figure 1 illustrates our autonomic healing concept. Healing is
accomplished by incorporating a microencapsulated healing agent
and a catalytic chemical trigger within an epoxy matrix. An
approaching crack ruptures embedded microcapsules, releasing
healing agent into the crack plane through capillary action. Poly-
merization of the healing agent is triggered by contact with the
embedded catalyst, bonding the crack faces. The damage-induced
triggering mechanism provides site-speci®c autonomic control of
repair. An additional unique feature of our healing concept is the use
of living (that is, having unterminated chain-ends) polymerization
catalysts, thus enabling multiple healing events. Engineering this
self-healing composite involves the challenge of combining polymer
science, experimental and analytical mechanics, and composites
processing principles.

We began by analysing the effects of microcapsule geometry
and properties on the mechanical triggering process. For example,
capsule walls that are too thick will not rupture when the crack
approaches, whereas capsules with very thin walls will break during
processing. Other relevant design parameters are the toughness and
the relative stiffness of the microcapsules, and the strength of
the interface between the microcapsule and the matrix. Micro-
mechanical modelling with the aid of the Eshelby±Mura equivalent
inclusion method19 has been used to study various aspects of the
complex three-dimensional interaction between a crack and a
microcapsule. An illustrative result from these studies is presented
in Fig. 2a, which shows the effect of the relative stiffness of the
microcapsule on the propagation path of an approaching crack.
The crack, the sphere and the surrounding matrix are subjected to
a far-®eld tensile loading, j`, perpendicular to the crack plane.
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Figure 1 The autonomic healing concept. A microencapsulated healing agent is

embedded in a structural composite matrix containing a catalyst capable of polymerizing

the healing agent. a, Cracks form in the matrix wherever damage occurs; b, the crack

ruptures the microcapsules, releasing the healing agent into the crack plane through

capillary action; c, the healing agent contacts the catalyst, triggering polymerization that

bonds the crack faces closed.
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