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Genetic variation in human NPY expression affects
stress response and emotion
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Understanding inter-individual differences in stress response
requires the explanation of genetic influences at multiple pheno-
typic levels, including complex behaviours and the metabolic res-
ponses of brain regions to emotional stimuli. Neuropeptide Y
(NPY) is anxiolytic1,2 and its release is induced by stress3. NPY is
abundantly expressed in regions of the limbic system that are
implicated in arousal and in the assignment of emotional valences
to stimuli and memories4–6. Here we show that haplotype-driven
NPY expression predicts brain responses to emotional and stress
challenges and also inversely correlates with trait anxiety. NPY
haplotypes predicted levels of NPY messenger RNA in post-
mortem brain and lymphoblasts, and levels of plasma NPY.
Lower haplotype-driven NPY expression predicted higher
emotion-induced activation of the amygdala, as well as diminished
resiliency as assessed by pain/stress-induced activations of endo-
genous opioid neurotransmission in various brain regions. A
single nucleotide polymorphism (SNP rs16147) located in the pro-
moter region alters NPY expression in vitro and seems to account
for more than half of the variation in expression in vivo. These
convergent findings are consistent with the function of NPY as an
anxiolytic peptide and help to explain inter-individual variation in
resiliency to stress, a risk factor for many diseases.

Variation in stress resiliency influences many human characteris-
tics, including both normal and pathological behaviour7.
Maladaptive responses to stress are critical in the development of
many psychiatric disorders, including mood and anxiety disorders8,9.
Anxiety and emotionality (neuroticism) are moderately to highly
heritable traits (40–60%) but are also strongly influenced by expo-
sures to stress in a pattern consistent with gene–environment inter-
action10. These observations point to the importance of genes that
modulate the effects of stress. Genes—such as the serotonin trans-
porter—that have so far been implicated in emotional responses have
small effects on complex behavioural traits11, but larger effects on the
metabolic responses of the brain to emotional stimuli accessed by
brain imaging12–14.

We evaluated effects of neuropeptide NPY on emotion and stress
resiliency using a haplotype-based approach intended to capture
effects of unknown loci or locus combinations. We analysed func-
tionally grouped NPY haplotypes against a complex behaviour, trait
anxiety, and also on intermediate phenotypes accessed by two differ-
ent brain imaging modalities in which gene effects might be more

strongly manifested. An NPY seven-marker panel (Supplementary
Fig. 1a) genotyped in 516 Finnish Caucasians captured the major
haplotypes and linkage disequilibrium features observed in the
International HapMap Project (http://www.hapmap.org). A block
of strong pairwise linkage disequilibrium encompasses 70% of the
gene and extends from the 59 region to exon 3 (Supplementary Fig.
1b). Five haplotypes (H1–H5) account for 93.8% of chromosomes in
this block (Fig. 1a).

We observed haplotype-driven NPY mRNA expression in post-
mortem brain (US Caucasians, Miami sample) by detecting the dif-
ferential expression of alleles at single nucleotide polymorphism
(SNP) rs5574 C/T, selected because of its high frequency and location
in the transcript. Of these 28 samples, chosen because all were
heterozygous for rs5574, 16 (57%) showed differential allele expres-
sion at an allele ratio of more than 1.2, in either direction. H1 and H4
were low-expression haplotypes, H2 was high, H3 was intermediate
and H5 was unclassified because only two H1/H5 heterozygous brains
were available (Fig. 1b). This expression-based functional classifica-
tion is consistent with a cladistically based clustering of haplotypes,
indicating that expression variation is linked to gene ancestry (Fig. 1a).
The effects on expression of the more common H1, H2 and H3
haplotypes were verified in 47 lymphoblastoid cell lines derived from
healthy Finnish men (Fig. 1c) representing the six common diplotypes
(72% of all diplotypes). On the basis of lymphoblast NPY mRNA
levels, the expression value for each haplotype was calculated by
regression analysis. Expression values for the six common diplotypes
were well predicted under a co-dominant model and had a threefold
range (see Supplementary Fig. 2 for details). Diplotypes were clustered
into three expression groups: low (LL: H1/H1), intermediate (LH: H1/
H3, H3/H3 and H1/H2) and high (HH: H2/H3 and H2/H2) (Fig. 1c).
We applied this grouping in subsequent analyses. Two loci, rs3037354
and rs16147, which differentiate the three common haplotypes (see
Fig. 1a), correlated with expression (Supplementary Fig. 3). However,
NPY haplotypes accounted for more variation. Finally, haplotype-
predicted NPY expression was correlated with plasma NPY peptide
levels available in a US sample (New Haven) in both controls (n 5 24)
and alcoholic patients (n 5 18) sampled during a no-stress condition.
Individuals with the low-expression LL diplotype had lower NPY
levels than those with high-expression HH diplotypes; individuals
with LH diplotypes were intermediate (P , 0.0001 in controls and
P 5 0.0074 in alcoholic patients; Fig. 1d).
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These common, functionally significant NPY haplotypes were
evaluated for their effect on brain responses to emotion and stress.
Amygdala activation in response to threat-related facial expressions
and other provocative stimuli predicts affective arousal, including
anxiety responses15,16. We employed a widely used functional mag-
netic resonance (fMRI) probe12,17 to assess whether NPY diplotypes
predicted amygdala reactivity to threat-related facial expressions in
71 healthy volunteers (Pittsburgh sample). This model has been used
to identify greater amygdala reactivity in individuals possessing the
lower-transcribing allele of the serotonin-transporter-linked poly-
morphic region (5-HTTLPR)12,18. As shown in Fig. 2, amygdala
activation in individuals with the low-NPY-expression (LL) diplo-
type was higher than in those with the high-expression (HH) diplo-
type (P 5 0.003). NPY diplotype predicted amygdala reactivity in an
allele-dosage fashion, and it accounted for 9% of the variance in the
fMRI amygdala response to emotional challenge. Task-related
hippocampal activation was similarly predicted in an allele-dosage
fashion (P 5 0.006; Fig. 2). Functional interactions of the amygdala
and hippocampus are crucial for emotional memories, and long-
lasting changes in hippocampal architecture are induced by stress19.

We also tested the ability of NPY haplotypes in a model of physical
and emotional stress involving moderate levels of sustained muscular
pain. This physical and emotional stress activates endogenous opioid
neurotransmission in regions of the brain that regulate pain, stress
and emotion20,21. Endogenous opioid release suppresses pain, stress
and anxiety-like responses in animal models22,23 and humans21. The
behavioural effects of NPY are mediated, at least in part, through
interactions with the endogenous opioid system24,25. We measured
endogenous opioid release by decreases in the availability of m-opioid
receptors in vivo during the painful stressor, quantified by means of

positron emission tomography (PET) with the selective m-opioid
receptor radiotracer [11C]carfentanil20,21 (see Supplementary
Methods for details). In 35 healthy volunteers (Ann Arbor sample),
we found that highly expressed NPY diplotypes predicted signifi-
cantly higher levels of stress-induced m-opioid system activation in
several brain regions (Fig. 3 and Supplementary Table 1) including
prefrontal cortex, posterior insula, medial and lateral thalamus, vent-
ral basal ganglia (ventral caudate, ventral putamen and nucleus
accumbens) and amygdala (analysis of variance (ANOVA),
P , 0.05 after correction for multiple comparisons). NPY diplotype
accounted for 13% of the variance in activation of m-opioid neuro-
transmission in the amygdala, 18–35% of the variance in prefrontal
cortex, thalamus and nucleus accumbens, and 37% of the variance in
posterior insular cortex. In comparison with its effects on the activa-
tion of endogenous opioid neurotransmission by painful stress, NPY
explained less of the variance in the more complex, self-rated pain
and affective response phenotypes. NPY diplotypes accounted for 3%
of the variance in subjective pain (McGill Pain Questionnaire sensory
subscale) and 5% of the variance in emotional experience (Positive
and Negative Affectivity Scale negative affect) (Supplementary Fig.
4).

In comparison with gene-influenced brain imaging responses in
which allele action has been evident even in small data sets12–14, trait
anxiety is a complex behaviour for which gene effects are small11, and
it is the type of gene-influenced behaviour that is perturbed by
external factors such as exposure to stress10,26. However, it is import-
ant to understand the role of NPY in complex behaviours and in
different contexts. In a relatively modest sample of 137 healthy
Finnish Caucasian controls, expression predicted by NPY diplotype
was inversely correlated with trait anxiety (Fig. 4a), measured with
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Figure 1 | Haplotype-predicted NPY expression in brain, lymphoblasts and
plasma. a, Configuration, frequencies (right) and cladistic clustering (left)
of major NPY haplotypes (H1, H2, H3, H4 and H5; frequency more than
1%) in Finnish Caucasians (n 5 516). b, Differential allele expression of NPY
mRNA showing allelic ratio (log2(C/T)) of rs5574 in 28 heterozygous human
post-mortem cerebella (Miami sample) grouped according to diplotypes
(columns 2–5, means 6 s.d.) to infer expression levels of H2, H3, H4 and H5
relative to H1 (the T allele is found only within H1, as shown in
a). Diplotypes are compared using a two-tailed t-test. Column 1 presents all
samples; column 6 shows controls for allelic amplification efficiency.
c, Expression levels of the six common diplotypes in 47 lymphoblastoid cell

lines derived from healthy Finnish Caucasians. Expression values of the
three major haplotypes (H1, H2 and H3) were calculated from observed
diplotype values (points and error bars show means 6 s.e.m.) by multiple
regression and were used to predict diplotype values (bars) under a co-
dominant model (see Supplementary Fig. 2 for details, including fit to
model). Diplotypes were grouped as low (LL), intermediate (LH) or high
(HH) in expression. Numbers above columns are n. d, Diplotype-predicted
plasma NPY levels (means 6 s.e.m., standardized with Z scores; New Haven
sample) in controls (black diamonds; LL, n 5 16; LH, n 5 113; HH, n 5 39)
and alcoholic patients (grey squares; LL, n 5 29; LH, n 5 72; HH, n 5 27). P
values were calculated by regression analysis.
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the Tridimensional Personality Questionnaire (TPQ) Harm
Avoidance subscales HA1 (Fear of Uncertainty; P 5 0.035) and
HA2 (Anticipatory Worry; P 5 0.031). There was no correlation with
the HA3 (Shyness with Strangers) or HA4 (Fatigability and Asthenia)
subscales. Diplotype-predicted NPY mRNA expression was lower in
the small number of Finnish participants with clinical anxiety dis-
orders (n 5 18) diagnosed with the Structured Clinical Interview for
the Diagnostic and Statistical Manual of Mental Disorders, 3rd edi-
tion revised (SCID), in comparison with the same 137 healthy
Finnish controls (Fig. 4b). Within Finnish participants with SCID-
diagnosed alcoholism (n 5 138), drug addiction (n 5 38), anxiety
disorders (n 5 18) and major depression (n 5 22), we observed no
correlation of NPY-diplotype-predicted expression with any of the
HA subscale scores. This may indicate dysregulation of the stress axis
in these patients; in addition, the sample sizes were not large. None of
the seven individual markers (Supplementary Fig. 1a) were assoc-
iated with HA subscales. In contrast with the larger effects of NPY
diplotype on brain functional responses, the effects of NPY on trait
anxiety were modest, accounting for 3.3% of the variance in HA1 and
3.4% of the variance in HA2. Very large study samples are required
for the consistent detection of gene effects on a complex behaviour
such as trait anxiety. We have presented converging results in which
modest effects of genes at the level of complex behaviour are sup-
ported, and mechanistically clarified, by larger effects on brain-
imaging phenotypes reflecting response to emotion and stress.

Population stratification, a potential confounding factor, was
addressed with the use of ancestry informative markers (AIMs). As
detailed (Supplementary Fig. 5), 186 highly informative AIMs were
genotyped; this process was followed by a factor analysis anchored
against a panel of 1,017 Centre d’Étude du Polymorphisme Humain
(CEPH) worldwide diversity samples representing 52 populations,
and yielding ethnic factor scores for each individual. These 186 AIMs
yielded a similar seven-factor solution to that observed27 on the basis
of short tandem repeat markers genotyped in the same populations.
Our analyses of PET pain/stress response, plasma NPY levels and
TPQ Harm Avoidance subscales were not confounded by ethnicity,
as revealed by comparisons of individuals above and below medians.
For the emotional fMRI imaging sample we had available a set of 15
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Figure 2 | Effect of diplotype-predicted NPY mRNA expression on fMRI-
measured amygdala and hippocampal activation in response to threat-
related facial expressions. Top: statistical parametric maps representing
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activation is shown overlaid on an average sagittal and coronal MRI. Bottom:
right amygdala (black diamonds) and hippocampal (grey squares) activities
(means and s.e.m.) from clusters grouped by NPY diplotypes.
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mRNA expression on pain/stress-induced
m-opioid system activation. Activation
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change in the m-opioid receptor binding potential
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MRI image. See also Supplementary Table 1 for
details of the localization and statistics.
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AIMs, again with no difference between low and high responders
(data not shown).

We identified a locus accounting for part of the NPY haplotype
effect by testing the four moderately common variants found in the
NPY promoter region (21016 base pairs (bp) to 63 bp; see
Supplementary Fig. 6a for details) for their ability to influence
mRNA expression. The five naturally occurring allele combinations
were inserted into a promoterless reporter gene vector (pDsRed2-1)
and NPY promoter haplotype-driven expression was analysed by
transient transfection into the raphe neuronal cell line RN46A. As
shown in Supplementary Fig. 6b and Supplementary Table 2, the
2399C allele (rs16147) accounted for a 30% decrease in basal
expression determined by comparing the allelic variations between
the promoter haplotypes. In addition, the TGins allele located at
2883 bp (rs3037354) may decrease expression, although to an extent
not reaching statistical significance. The combination of 2399C and
2883TGins reduced expression 47%. These results are consistent
with the effect of 2399C and the smaller effect of 2883TGins on
mRNA expression in post-mortem brain and lymphoblastoid cell
lines, and with the greater predictive value of haplotypes both in vitro
and in vivo (Fig. 1b, c, and Supplementary Fig. 3), and underlies our
choice to emphasize haplotype effects of NPY.

Haplotype-based association analysis maximizes the ability to cap-
ture information, haplotypes serving as proxies for unknown alleles.
However, the existence of multiple haplotypes can lead to a loss of

analytic power without some mode of clustering, for example on a
cladistic basis28. In this study we functionally grouped most NPY
haplotypes and diplotypes according to levels of expression in vivo.
There were two less common haplotypes (H4, with a frequency of
4.3%, and H5, with a frequency of 4.6%) that were excluded from
association analyses because of a lack of definitive in vivo expression
data. However, on the basis of in vitro data for both (Supplementary
Fig. 6b), and limited brain expression data for H4 (Fig. 1b), it is likely
that H4 is a low-expression haplotype and H5 is a high-expression
haplotype. In addition, the H5 haplotype uniquely contains the mis-
sense variant Leu 7RPro (rs16139C). Several studies have associated
Pro 7 with disordered glucose and lipid metabolism29,30 but not with
anxiety, and Pro 7 was not associated with anxiety in our data set
(data not shown).

We observed effects of haplotype-predicted NPY expression on
human trait anxiety and on neurobiological circuits and neurotrans-
mitter systems implicated in the regulation of emotional and stress
responses. Although the effect of haplotype-predicted NPY expres-
sion was modest for trait anxiety, consistent effects were observed
across related measures and were more evident for brain metabolic
responses to emotional images as measured with fMRI and molecular
imaging measures of the activation of the endogenous opioid system
after a stressful challenge. These findings indicate the important role
of NPY in modulating inter-individual variation in emotion and
stress resiliency, and reflect the value of a multilevel approach to
the genetic analysis of behaviour.

METHODS SUMMARY

Participants from five independent samples were analysed. A sample of 516

Finnish Caucasians was used to identify NPY haplotype configuration and link-

age disequilibrium structure, and subsamples were analysed for lymphoblast

NPY mRNA, trait anxiety, and anxiety disorders. The New Haven sample

(n 5 42) was measured for plasma NPY. The Pittsburgh sample (n 5 71)

received fMRI after an emotional probe. The Ann Arbor sample (n 5 35) under-

went [11C]carfentanil PET during a pain/stress challenge. A collection of post-

mortem brains from the Miami sample was genotyped and 28 heterozygous

cerebella were used for differential allele expression. A full description of

participants’ demographic data and psychiatric diagnoses is provided in

Supplementary Methods. Informed consent was obtained under the auspices

of human research protocols approved by institutional review boards of the

National Institutes of Health, the University of Helsinki, the University of

Pittsburgh, the University of Michigan, and Yale University. NPY genotyping

was performed with 59-nuclease assays. Genotyping with 186 AIMs was per-

formed with an Illumina 1536-SNP array. NPY mRNA quantification in lym-

phoblastoid cell lines was performed with reverse transcription (RT) followed by

TaqMan real-time PCR. Detection of allele-specific NPY expression in post-

mortem brain was performed with an RT-coupled 59 nuclease assay. Plasma

concentrations of NPY were measured by radioimmunoassay. DNAs containing

NPY promoter haplotypes were inserted into a reporter vector, pDsRed2-1, and

transfected to the RN46A cell line for the analysis of promoter variants. Details of

the fMRI emotional model, the blood-oxygenation-level-dependent (BOLD)

fMRI acquisition parameters, the experimental design for pain stressor chal-

lenge, the PET scan processes, image reconstruction, and the data analysis are

provided in Supplementary Methods.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Genotyping. NPY genotyping was carried out using 59-nuclease assays for six

SNP markers (rs17149106, rs16147, rs16139, rs5573, rs5574 and rs16475) in

accordance with the standard TaqMan Assay protocol (ABI). A dinucleotide

insertion/deletion polymorphism (rs3037354) was genotyped by sequencing

because of the presence of an adjacent SNP. Results were analysed on an ABI

7900 Sequence Detector, using Sequence Detection System 2.0 software.

Genotyping accuracy was verified by genotyping in a replicate 10% of samples,

randomly selected. Genotyping accuracy was greater than 0.99. Genotype com-

pletion rate was greater than 0.96. Sequencing was performed with BigDye

Terminator v3.1 reagent and analysed on an ABI 3100 sequencer. The Finnish

Caucasian sample, the PET imaging pain stress response sample (Ann Arbor)

and the sample measured for plasma NPY levels (New Haven) were also geno-

typed with AIMs with the use of a GoldenGate Assay (Illumina) 1,536-marker

array. The marker selection was based on the HapMap Project reference allele

frequency (RAF) among European Caucasians, Asians, and Africans (Yoruban).

Selected markers have an RAF difference greater than 0.7 and RAF ratio larger

than 10:1 between at least one pair of the continental populations and is balanced

to distinguish between continental populations31.

NPY mRNA quantification by real-time PCR. Total RNA was isolated from

lymphoblastoid cell lines derived from healthy Finnish men with TRIzol reagents

(Invitrogen). RNA samples were treated with RNase-free DNase (Ambion) to

remove contaminating DNA. NPY mRNA quantification was performed with a

two-step TaqMan real-time RT–PCR assay. Total RNA (1mg) was reverse-tran-

scribed into cDNA with a Cloned AMV First-Strand cDNA Synthesis Kit and

random hexamers as primers, following the manufacturer’s instructions. cDNA

(3ml) was applied in 25ml of a TaqMan real-time PCR reaction on an ABI 7700

Sequence Detector with the ABI Assay-on-demand gene expression kit and using

b-actin as an endogenous control for normalization. Signals were analysed with

Sequence Detector System software 2.0. Relative NPY mRNA expression was

calculated by the formula 2{DDCt , where DCt is the difference in Ct (PCR cycle

number when signal has reached the threshold) between NPY and b-actin. A

triplicate of each sample was used to determine each measurement and the assay
was repeated at least three times.

Detection of allele-specific expression of human NPY in cerebellum.
Differential allelic expression analysis was performed with a RT-coupled 59

nuclease assay. A coding SNP, rs5574 (C/T) located in NPY exon 3, was selected

as an endogenous reporter for the assay (see Supplementary Table 3 for primer/

probe sequences). Total RNA (1mg) extracted from post-mortem cerebella of

individuals heterozygous at rs5574 was reverse-transcribed. cDNA (2 ml) was

used in a 25-ml reaction for TaqMan real-time PCR. For the control of amp-

lification efficiency, a template with an artificial 1:1 allelic ratio, constructed by

inserting one copy each of the cDNA amplicon containing either the C allele and

T allele in tandem into the pDsRed2-1 plasmid, was also assayed on the same

plate. The principle and the method of computation of allele expression ratios

were described previously32.

Quantification of plasma NPY. Blood samples were obtained at 08:45 (45 min

after placement of the intravenous catheter) and every 15 min thereafter for a

total of eight time points under the neutral condition. Plasma concentrations of

NPY were measured by using our previously well-characterized double-antibody

radioimmunoassay with 125I-NPY as the tracer33. The working range of the NPY

assay is 19.5–1,250 pg ml21, and the assay sensitivity is about 15 pg ml21. The

intra-assay and inter-assay coefficients of variation are about 4% and 14%,

respectively. NPY concentrations were standardized with the Z score to mini-

mize between-assay variation.

Report gene constructs and transfection assays. Human NPY promoter and
upstream regulatory region (from 21016 bp to 63 bp) were amplified by PCR in

a 50-ml volume from genomic DNA of individuals who were either homozygous

or heterozygous for the five common haplotypes of the region. The PCR frag-

ments were digested with both Xho I and HindIII restriction enzymes, and ligated

into the multiple cloning sites upstream of the DsRed protein reporter gene of

the pDsRed2-1 plasmid (BD Biosciences). Ligation products were used to trans-

form 50ml of TOP10 competent cells (Invitrogen). Plasmid DNAs were

extracted, and clones with an insert of the correct size were verified by DNA

sequencing. For transfection analysis, RN46A cells were grown in 50% DMEM

medium and 50% Ham’s F-12 medium supplemented with 10% FBS. Cells were

plated out 24 h before transfection at a density of 5 3 105 cells per well in 24-well

plates, and each group of samples was plated in triplicate wells. The constructed

NPY promoter haplotype-pDsRed plasmid DNA (1.6mg) and green fluorescent

protein (GFP) plasmid DNA (0.05mg), used as a transfection efficiency control,

were co-transfected into the cultured cells with Lipofectamine 2000 (Invitrogen)

in accordance with the manufacturer’s instructions. pDsRed vector DNA with-

out a NPY promoter insert was also used for each transfection as a negative

control. Both red (DsRed protein reporter gene) and green (GFP) fluorescent
signals were captured through a fluorescent microscope with the use of OpenLab

software (Improvision), 48 h after transfection. For each well of the transfected

cells, ten fields of signals were captured across the same centre areas of the well,

and a total of 30 fields of both red and green signal were captured for each group

of cells. For each field red and green fluorescent signals were measured in the

same region of interest (ROI) with the red signal of each field normalized against

the green signal. The transfection analysis was repeated at least three times. The

mean and standard deviation of reporter gene signal were calculated for each

promoter haplotype group, and the expression levels were compared between

haplotypes by using a t-test (two-tailed).

Data analysis. Genotype distributions were tested at each polymorphic locus for

departure from Hardy–Weinberg equilibrium. Pairwise linkage disequilibrium

coefficients (D9) were estimated and linkage disequilibrium block structures

were evaluated with Haploview34. A minimum average D9 value of 0.80 was used

to define block boundaries (however, the average D9 in most blocks was sub-

stantially higher). Maximum-likelihood estimates of haplotypes and frequencies

were determined with PHASE v2.02 (ref. 35), and diplotypes were assigned to

each individual. For haplotype cladistic clustering, the Manhattan distances
among haplotypes were calculated with a modified metric in which more weight

was given to markers with higher minor allele frequency and to markers with

higher r2 values to neighbouring markers (Q.Y., unpublished observations).

Continuous variables were compared among diplotype groups by a two-tailed

t-test, analysis of variance, and regression analysis, and are presented as

means 6 s.e.m.
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