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ABSTRACT

This dissertation is a study of the description and effects
of particle interactions in ionized gases. The principal results are:
(i) An expansion theorem for the Tinearized Fokker-Planck collision
operator for each component of a two-component fully ionized gas, and
(ii) A description of photon scattering from a partially ionized gas.

It is shown that the Fokker-Planck collision operator generates
a complete, continuous set of velocity-space eigenfunctions, for which
high-speed asymptotic forms are found. Since the set is continuous,
the expansion formula has the form of a generalized Fourier integral.

The effect of neutral atoms on the spectrum of photons
scattered by electrons in a partially ionized gas is shown to be
primarily a reduction in height and increase in width of the two
electron-plasma "wings." The scattered photon spectrum is described

for several characteristic cases,
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I. INTRODUCTION

The purpose of this dissertation is to investigate certain
aspects of the kinetic behavior of ionized gases. The emphasis here
is primarily on the description and effects of particle interactions.
Two principal results are obtained. The first, developed in Chapter
II1, is an expansion theorem for the linearized Fokker-Planck collision
operator for a two component fully ionized gas. The second, developed
in Chapter IV, is a description of photon scattering from a partially
ionized gas.

The function of Chapter I is twofold: it presents a brief
discussion of the present state of the art in the treatment of classi-
cal many-particle systems, thereby setting the stage for the rest of
the work; in addition it contains an outline of this work designed to
guide the reader. Chapter II contains a survey of some of the more
pertinent results of plasma kinetic theory.

The reader interested primarily in the results of this disser-
tation may choose to skip the first two chapters and proceed directly

to Chapters III and IV, which are essentially self-contained.

1. The Many-Particle Problem

The theory of classical many-particle systems may be studied
from three points of view. One may begin with the macroscopic, or
fluid, equations with parameters such as density, mass velocity, and

temperature as independent variables, and involving various transport
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coefficients, e.g., viscosity, heat conductivity, etc. Examples are

the Euler and Navier-Stokes equations.] An altogether different approach
involves the use of more fundamental and general microscopic formalisms.
On the one hand, one may work with equations describing the evolution

of one particle distribution functions, the well-known Boltzmann equa-
tion2 being a prime example. On the other hand, one may employ equa-
tions relating one~, two-, etc. particle distribution functions such as
the hierarchy of equations derived from the Liouville equation,3 which
latter treats the evolution of the distribution function for all N
particles in the system.

The fluid equations are generally considered adequate for
treating wide classes of problems in gas dynamics. In this range the
microscopic theory would not yield significantly different results. In
fact, subject to certain conditions which define their range of applica-
bility, the fluid equations, together with explicit formulas for the
various transport coefficients entering into them, are derivable from
the microscopic theor,y.z’4

There are, however, many important situations in which the
macroscopic theory does not give a correct description. In general,
this occurs when the length or time scales characterizing phenomena of
interest are not Tong as compared with the scales on which the micro-
scopic quantities fluctuate. Examples are the propagation of high-
frequency or short wavelength waves, and behavior near boundaries. In
these cases one must properly begin with the microscopic equations.

The solution of the Boltzmann equation (or, more generally, any
equation involving only the single particle distribution function) is,

in general, a matter of considerable difficulty even in cases
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corresponding to the physically simplest situations. Significant
progress has been confined almost entirely to the study of two limiting
cases in which two different approximation procedures can be applied.
A criterion for the range of validity of the approximate methods is
provided by the comparison of a characteristic time 9 or length L for
the relevant process with the average time 7. or mean free path L,
between particie encounters.

For high densities (¥>>7*. or L>>L.) the Chapman-Enskog

455 may be used. The first approximation of the theory consists

theory
in assuming collisions to be sufficiently frequent to maintain a local
thermodynamic equilibrium. The next approximation corrects the distri-
bution function by terms proportional to gradients in temperature T ,
flow velocity % , and density n ; this corresponds to the fluid equa-
tions with tra;;port coefficients for heat conduction, viscosity, and
diffusion. This high density region is in fact the range in which the
fluid equations provide an adequate description. Higher approximations
of the Chapman-Enskog theory lead to correction terms proportional to
higher derivatives of T;%) n . The successive approximations of the
Chapman~Enskog theory cor:;espond4 to an expansion of the distribution
function in powers of the mean free path L, . For example if we con-
sider sound waves with wavelength L=>>1_, the first and second approxi-
mations are already sufficient to give all significant features of the
process. When L becomes comparable to L. however, it is necessary to
go to the third and even higher approximations to obtain adequate
results; the third approximation already involves formidable labor and

has been used to solve only the simplest prob]ems.3 Consideration of

higher approximations is, in any case, of doubtful value Since the
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entire procedure breaks down in just the range where the contributions
from these higher-order terms becomes important. A different approach,
using expansions in terms of Hermite polynomials in velocity space, has

6 He uses some moments of low order in addition to

been given by Grad.
the usual ones representing n, ¢ and T, The procedure involves a gain
in simplicity over the Chapman:Enskog theory but is still quite compli-
cated. In any event, it is basically a high-density theory.

The opposite 1limiting case of low densities (z<< T, or L<<l.)
has been studied using iterative schemes beginning with the solution of

the "collisionless" equat’ionﬂ7’8

In the case of ionized gases immersed
in strong electromagnetic fields, such theories have been used
extensive]yt7 As with the approximation schemes employed in the high-
density case, these iterative procedures become unwieldy if more than
one iteration is necessary.

It would naturally be very desirable to have a method capable
of treating the microscopic equations over the whole range from low to
high densities. Unfortunately the describing equations are generally
non-linear, and even when linearized are extremely intractable, a prime
source of difficulty being the term representing interparticle colli-
sions. Relatively little work has been done in this intermediate density
region, often referred to as the kinetic regime. Attention has generally
focused on mathematical properties of the collision operator,]O on test
particle treatments,5 or on a numerical solution of the kinetic equa-
tion in a few simplified situations‘]] A notable exception is in the

work of Chang and Uh]enbeck.]2’13

These authors treated the propagation
of small amplitude sound waves in a monatomic gas composed of atoms

interacting via an inverse-fifth power force law, i.e., Maxwell
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molecules., They were able to show that the linearized Boltzmann colli-
sion operator for this case generated a complete set of velocity-space
eigenfunctions. Upon expanding the perturbed distribution function in
terms of these eigenfunctions, they obtained from the Tinearized
Boltzmann transport equation an infinite set of coupled algebraic
equations which they solved by successive approximation. Their results
were in quite good agreement with experimental observations on collec-
tions of neutral atoms.

In view of the difficulties involved in solving the microscopic
equations in the kinetic region, considerable interest has recently
been focused on the mathematical properties of the terms representing
collision effects. Motivation in this direction has been based in part
on the feeling that a knowledge of the spectral properties of the
(linearized) collision operator would lend insight into the kinetic

10,14 Grad]O has considered the Tlinearized

behavior of the system.
Boltzmann collision operator for particles interacting via the general

inverse power force law,

F= K/rs
where K is a constant and T is the interparticle separation. Grad
found that in order to obtain mathematical results it was necessary to
assume the interparticle force extended over a finite range; i.e.,
angular integrations in the collision integral were truncated at small
deflections., On the basis of this assumption he was able to
show that the spectrum consists of two parts: a discrete spectrum and
a continuous spectrum, The latter is bounded away from zero for "hard"
potentials ($>5 ), and approaches zero for "soft" potentials ( S< & ).

For the special case of the Maxwell molecule (3 =5) there is only a
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discrete spectrum. For S< 3 Grad was unable to find the spectrum.

15 has used Grad's results for inverse power-law

Recently Ferziger
molecules to show that the linear Boltzmann collision operator generates
a complete set of eigenfunctions. The form of the eigenfunctions was
not, however, obtained, In any event, the spectral and completeness
properties were not obtained for the Coulomb potential (S =2),

A major problem in plasma physics is that of determining the
properties of an isolated hot plasma; any material probe introduces
impurities, while for a fully ionized plasma the emitted radiation is
only moderately informative, any line structure arising from undesirable
impurities.

The interaction of an incident beam of radiation with a plasma

has proved to be a useful method for determining the electron density;

since the plasma acts roughly as a dielectric with coefficient

eE= |- %g% ) Q?z ﬁ-qﬂmeﬁﬁm)
transmission is cut off below the plasma frequency. Radiation above
the plasma frequency may also be used as a plasma probe, and several
experiments have used the modificiation in phase velocity produced by
the dielectric coefficient € as a measure of electron density.]6
It has been known for some time that the scattering of photons
or material particles from a system of interacting particles yields
detailed information on the structure of the scattering systemn]7
With the advent of intense light sources such as pulsed ruby lasers,
considerable attention has been given to the scattering of photons by
free electrons in ionized gases. Several authors have presented

analyses of this phenomenon, usually basing their descriptions on



-7 -

semi-intuitive derivations, and employing collisionless kinetic

18

theories. Notable among these are Salpeter, ~ and Rosenbluth and

19 20

Rostoker, Shortly thereafter considerations of relativistic effects
and nonlinear scatterinQZ] appeared.

The first experimental observation of photon scattering from
an ionized gas was reported by Bow]es,22 who observed the scattering
of a radar beam from the ionosphere, More recently many workers have
reported the measurement of optical photon spectra produced by scat-
tering from ionized gases in the laboratory. The observations are
generally in remarkable qualitative and quantitative agreement with
theoretical predictions, which is a rarity in plasma physics. An
iTlustration of this close agreement is given in the recently reported
work of Anderson.23

Provided the photon wavelength A is of the order of the Debye
length Ap or larger, the scattered spectrum is characterized by a
narrow central peak located at the incident frequency, and by two
symmetrically placed satellite peaks separated from the central peak
by A&Ugéb?e , the electron plasma frequency. The central peak
reflects the strong coupling of the electrons to the ions character-
istic of long wavelength plasma phenomena, while the satellites are
attributed to the resonant scattering of photons from longitudinal

18,19

electron plasma oscillations. As the photon wavelength becomes

large in comparison with the Debye length, the satellites become

narrower and rapidly increase in height, This has been attributed19

to a decrease in the effect of Landau damping on long wavelength plasma

oscillations.

24

Recently Ron, Dawson, and Oberman~' and Fante25 have computed
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the scattered photon spectrum for a fully ionized gas including the
effect of collisions. They find the difference between their results
and the collisionless treatments to be very small, of order ZX?’ , Where
_AL=Y\A1 is generally very large; in fact A 1is generally assumed large
for the various theoretical models to be valid.

In recent years considerable effort has been expended on the
production and diagnosis of gases that are only partially ionized.
Examples range from low temperature gas discharges to relatively high
temperature ( ~ 30ev) and high density plasmas generated by the laser
bombardment of solids. Since photon scattering has been proven to be a
most useful tool in the diagnostics of fully ionized gases, it is
natural to expect this usefulness may be extended to include systems
containing significant numbers of neutrals. In addition, since the
Thomson scattering cross-section for electrons is several orders of
magnitude Targer than the ion cross-section or the Rayleigh scattering

cross-section for neutra]s,26

we would expect that photon scattering

from electrons should be observable even when neutral densities exceed
electron densities. The primary difference between fully- and partially-
ionized gases in this respect would then be in the effects of neutral

atoms on the scattering process, since charge-neutral collision frequen-

cies may often be considerably larger than their Coulomb counterparts.

2, Outline of this Work

The purpose of this dissertation is twofold. In the

first part of this work we obtain the spectrum and prove an expansion

27

theorem for the linearized Fokker-Planck collision operator™" for

particles interacting via an inverse-square force law. In the second
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part of this work we employ a simple collision model to study the
effects of collisions on the spectrum of photons scattered from a
partially ionized gas. The plan of this paper is as follows.

In Chapter II we present a brief survey of plasma kinetic
theory, with particular emphasis on the description and effects of
charged particle interactions. Due to the Tong range nature of the
CouTomb interaction, when an ionized gas is in the kinetic regime, a
great number of particles are "colliding" simultaneously. In this case
the simple binary collision models employed to treat collections of
neutral particles are often deemed to be inadequate, As a consequence
many attempts have been made to develop suitable kinetic descriptions
for plasmas, and a comparison of the various treatments has often led
to confusion. The purpose of this chapter is to compare a few of the
better known kinetic models in an attempt to cast some light on their
similarities and differences.

In Part 1 of Chapter II we give a very brief phenomenological
derivation of the Boltzmann collision integral, and of the Fokker-Planck
collision operator for inverse-square law forces. Emphasis is on the
difference between short- and long-range interactions.

In Part 2 of Chapter II we briefly discuss the hierarchy of
equations generated by the Liouville equation. The effect of corre-
Tations between particles is studied by, on the one hand, neglecting
correlations altogether and, on the other, retaining two particle
correlations. In the first case we obtain the Boltzmann equation for
short-range interactions, and the V1asov28 equation for long-range
interactions. In the second case we obtain a kinetic equation developed

31

by Lenard,29 Guernsey,30 and Balescu. With proper assumptions this
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equation reduces to the Fokker-Planck equation.

In view of the mathematical difficulties involved in the
solution of the various kinetic descriptions, it is often advantageous
to replace the more accurate and less manageable collision descriptions
by a model that simplifies the solution of the kinetic equations. In
Part 3 of Chapter II we consider such a simplified collision model,
generally referred to as the Krook modeL32

The ultimate test of any theory lies in a comparison of the
predictions thereof with experimental observation. Due to the scarcity
of relevant experimental and theoretical information in plasma physics,
it is often instructive to compare the results of the various theories.
One hopes, in so doing, to acquire physical insight into both the
structure of the theories and the as yet unobserved properties of nature.
In the last three parts of Chapter II we make such comparisons for a
few illustrative cases,

In Part 4 we review some recent numerical treatments of relaxa-
tion to equilibrium in velocity space. In some cases it is possible
to compare the Fokker-Planck, Lenard-Guernsey-Balescu, and Krook descrip-
tions. From the information currently available we observe a negligible
difference between the predictions of the first two treatments. The
Timitations of a single parameter Krook-type model are discussed and
compared with other results.

In Part 5 of Chapter II we discuss the phenomenon of electron
runaway and the contribution of collisions to plasma transport para-
meters. The failure of the Krook model in the description of runaway
is noted, and the results of a computation using the Fokker-Planck

description are discussed. The majority of this section is devoted to
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a comparison of the different collision descriptions in the computation
of the plasma electrical conductivity. For field frequencies small
compared to the collision frequency, the Krook, Boltzmann, and Fokker-
Planck results are identical, For frequencies above the collision
frequency but below the electron plasma frequency Wpe the Boltzmann
and Fokker-Planck results differ only slightly. For frequencies above
wpe these collision descriptions break down; the reasons for this
failure are discussed. For high frequencies conductivity computations
based on the Vlasov equation and the first two members of the BBGKY
hierarchy give similar results, and match the results of the collision
description just below “JPQ‘

In the final section of Chapter II we present a brief review
of some recent work on collisional effects in plasma collective
behavior. Since relatively little work has been done in this area,
only a few comparisions of the different collision descriptions are
possible. In general it is found that for wavelengths long compared
to the Debye length damping is primarily collisional; for wavelengths
of the order of the Debye length or less Landau damping33 predominates.
Moreover, if a plasma is inherently stable, collisions increase the
damping of small amplitude oscillations. In contrast if a plasma is
unstable, collisions may increase the growth rate of the instability.

In Chapter IIT we obtain the spectral properties, and develop an
expansion theorem for the linear Fokker-Planck collision operator for a
two~component fully ionized gas. In Part 1 of this chapter we take
advantage of the small electron-ion mass ratio to decouple the equa-
tions for each species. For convenience we then concentrate our

attention on the ion collision operator and later discuss the extension
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of our results to the electron case.
To develop the expansion formula we follow the standard method

of assuming solutions to the kinetic equation of the form

flrt) = 95DV exp(-28) .

This reduces the equation to the form

L(g) g,(8) = = A 9,8
where L is a three-dimensional integrodifferential operator. In
Part 1 we show that ReA2o and TmA=0 as we would expect physically.
In Part 2 we introduce a spherical harmonic expansion which replaces

the three dimensional equation by an infinite set of uncoupled equations,

Lot Gt = = At G
where Lnxm(vﬁ is a singular integrodifferential operator. These are
then cast into a self-adjoint form in Part 3 by introducing a suitable
algebraic transformation on the functions G, (V, Angw) . MWith
boundary conditions obtained by combining the original kinetic equation
with the conservation Taws, we proceed to find the spectrum
which is continuous and for 1=°,l consists of all )\“_(,M zo‘—,(s w <4,
and for L4227 consists of all /\Mm>0) Azwmsd,

Although the spectral resolution theorem34

implies the existence
of an expansion theorem for self-adjoint operators, there always remains
the task of constructing the expansion explicitly. We turn to this task
in Part 4. Since wam is singular at v=e and v-=oe , we temporarily
replace the interval 6 £ v-200 by the interval e<v,gvsv,<% and use

a result of Tamarkin35 to show that L,y,. generates a complete ortho-

normal set on this interval, To return to the original interval and
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thus obtain the desired expansion theorem, we use the above completeness
property together with an extension of the theory of singular differen-

tial equations.36’37

This finally yields a continuous, normalizable
set of functions ?MM([‘ AMM) that is complete with respect to
functions square integrable in velocity space. Since the set is con-
tinuous, the expansion has the form of a generalized Fourier integral.
For v >3 (Ze/m)”"we have found asymptotic forms of the expansion
functions. Finally, in Parts 5 and 6 the extension to the electron
kinetic equation is discussed, as well as certain implications of our
results.

In Chapter IV of this dissertation we develop a theory of
photon scattering from partially ionized gases. The starting point for
the present discussion is the description developed recently by Osborn,38
which treats photon scattering from a fully jonized gas. The primary

concern in this work38

was with the establishment of a relationship
between the observed distribution of scattered photons and the dynamical
and statistical characteristics of the scattering plasma. It was
assumed that (i) the dynamical variables of the plasma obeyed the
classical equations of motion, and that (ii) the plasmas in question
were sufficiently highly ionized that the presence of neutrals could be
neglected.

In Chapter IV we examine the second assumption described above.
Our motivation in this direction is twofold, First, it is not clear
a priori when the presence of neutrals will be truly negligible.
Further, when their effect is significant, it must then be incorporated

in a description of the scattering process. Vineyard,39 18

40

Salpeter,

and Feyer™™ have discussed the contribution of neutrals to the plasma
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scattering function, but each based his discussion on semi-intuitive
arguments and in no case was a quantitative description developed.

It was shown in reference 38 that, neglecting relativistic
effects, the cross-section presented by an electron to a photon having
frequency o and direction &- for the scattering of that photon into

(wﬁw'+daﬂ )md(gﬁ£y+d£f)ingmtw

w!
G‘/w,m) w' D Y = 2 o-_r(é’) S(x, ow)
where U3 is the Thomson cross-section. The so-called scattering
function S(g,aca) is given by
| %0)
S= e S dte

-~ 03

Lt he

GEE(E’£>
where

= < Fel (ke Fels >
The normalization is such that N®is the total number of electrons in
the scattering volume, and the function ,58 is the Fourier-transformed
configuration space electron density operator, with transform variable
K .

In Part 1 of Chapter IV we briefly review some of the more
pertinent aspects of reference 38. Following Osborn,38 we employ a
classical representation of the density operators and develop and dis-
cuss various aspects of the classical scattering function. Certain
properties of a thermal equilibrium plasma relevant to the computation
of the scattering function are also discussed.

In general neutrals may influence the scattered photon spectrum
in two ways. The first, and perhaps more obvious, contribution is

significant when the number of photons scattered by neutrals into the
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frequency range of interest is not small compared with the number
scattered by electrons. Secondly, neutrals may bias the scattered
spectrum through their influence on the electron density operator. We
investigate this latter effect in Part 2 of Chapter IV. We approach
the problem along two somewhat different paths, The first is a simple
extension of the treatment in ref. 38, to include a neutral species in
the description. We show that this approach does not lead to a noticable
contribution from neutrals unless exceptionally high neutral densities
are present, At this point we take a somewhat different tack, employing
the simple Krook model to represent interactions with neutrals, and
leading eventually to a modified scattering function displaying signifi-
cant contributions from neutrals at neutral densities at Teast five or
six orders of magnitude lower than in our earlier treatment.

Part 3 of Chapter IV is devoted to a presentation and discus-
sion of the classical scattering function, with and without the effects
of neutrals, for several experimental configurations. Our results are

39,18,40 in that the effect of

in agreement with earlier predictions
neutrals is to heighten and narrow the central spectral peak, while
Towering and broadening the so-called electron plasma wings.

In Part 4 we discuss the implications and limitations of the
approximations and assumptions employed in the development of our
results: a few recent experiments are cited as illustrations. Exten-

sions of the present theory are suggested where such modifications may

lead to significant differences.



IT. A BRIEF SURVEY OF PLASMA KINETIC THEORY

1. Phenomenological Kinetic Equations

One of the earliest and still most successful descriptions of

a collection of free particles is the famous Boltzmann equation]’2

WA ‘JF" ! 'aF § A

— y o= sE"/st

gtj Wy 2 ﬁ} A%; ( // )
which expresses how FA changes 1n time due to streaming and to
encounters with other particles. Here F cﬁ' dB V, is the expected
number of type A particles in d P,J vV, about I, V. at time t, and

IN]

@An the force on a particle of type A and (§ F"VS’i‘) g repre-
s:nts the time rate of change of F produced by inter-particle
encounters. For our purposes we assume that only elastic encounters
are important.

In the classical theory of non-uniform neutral gases1’2
(S F"/Si’)s is taken to be the net number of particles of type A
entering the phase space volume element Jsﬂ d%}‘, per unit time due
to instantaneous binary encounters. Thus if 3=£-,{, is the relative
velocity of a colliding pair, then the flux o? particles of type B8

having velocity v, incident on any particle of type A having velocity
. ) B
vois dv;, F (i‘.,l{'l)‘t)li'*-,\{,,

e

If The (3,9) is the differential scattering cross-section, then the

number of particles of type A scattered out of the phase space volume
3 . . . .

element d A\ o’sv‘, into JQ during dt by collisions with type B

particles is

- 16 -
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J3r\d3\r| FA/f\)‘!.nt)da\rl Fe(ﬁng‘”t')%o-h& (3’9) JQ' dt .

The number scattered into this same volume in dT is
) ' / /
J%‘dsv’" FAA‘”!")-[;)J}R' F ('E‘)\!:‘_){:>a FAB (3 )6>J'9: ‘“'-'

As a consequence of momentum and energy conservation in the collision

we have2

and hence

(%‘;)%J?’r\ dt =
(43, (dmyg (9,60 g [PUEVF) = FAE) POG ot
the well-knwon Boltzmann collision integral.
A binary encounter is often described in terms of the impact
parameter b , the distance of closest approach if no interaction is

present., This latter quantity is related to the differential scattering

cross-section through the re]at10n3

bdbd¢ = ¢ (9,0)da
where dQ = f©d6d¢,
The derivation of the Boltzmann collision integral rests on
three basic assumptions, and as yet there is considerable debate as to

their significance:

(i) The collection of particles is sufficiently rarefied so
that only binary collisions need be considered;
(ii) The probability of finding two particles in d 3r

about € simultaneously is proportional to the product of
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their individual distribution functions;
AL . .
(ii1) the force 7" is distinct from the interparticle

forces, and it does not affect the collision process.

Assumption (i) implies that the interparticle potential is so localized
that, for a sufficiently dilute gas, the chances of finding more than
two particles within "range" of each other simultaneously is negligible.
While this assumption seems reasonable for dilute gases composed
of neutral atoms or molecules, it causes considerable difficulty in the
treatment of charged particles. The difficulty arises because electro-
static forces, being proportional only to the inverse square of the
distance, permit many particles to be within range of each other at a
given time, To see this, note that the effective interparticle potential

for a fully ionized gas not far from thermal equilibrium 154

VAB() = Cacy e—“//\o
C
where the Debye screening length ,\D is given by4
-1 Yo 2
A = o %"eee

where © is the temperature in energy units. It follows that the number

of particles interacting simultaneously is roughly

n/\%EA

or (for a singly ionized gas)

N = [(Q/Srrez)y\"/'s

which is usually quite 1arge.4 In contrast, charged particles will
3

3/2

suffer large angle deflections only when™ the impact parameter is of the

order of e‘/e , the distance of closest approach in a head-on collision.
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Since interparticle spacings are m'n"/% the fraction of particles

making such encounters at any instant is

(LY v at

h_us

Thus the binary collision assumption seems inadequate since it does
not appear to account for the many overlapping long-range encounters.

This was recognized by Chapmans’6

in the calculation of transport
coefficients for an ionized gas. Chapman found that integrals over the
impact parameter diverged for b» e due to the long range nature of the
Coulomb force. He overcame this difficulty by cutting off the integra-
tion at LMKX ~ n- i3 , and assuming that the resultant force on a

particle due to more distant encounters could be represented by an

internal electrostatic force in the streaming term of the Boltzmann

equation.
Cohen, Spitzer, and Routly’ sought to overcome Chapman's diffi-
culties by adopting a treatment developed by Chandrasekhar8’9 in a

study of stellar dynamics. Chandrasekhar's work was based on Jeans“.IO

demonstration that when particles interact through inverse-square
forces, the cumulative effect of the weak deflections resulting from

the relatively distant encounters is more important than the effect of
occasional large deflections. Chandrasekhar noted the strong similarity
between the Brownian motion of a colloidal particle and the motions of

particles interacting via inverse-square forces; his treatment is based

11 12

on a description of Brownian motion due to A, D. Fokker ~ and M. Planck,

While Cohen, g;lgl7 restricted themselves to slightly anisotropic velocity

distributions, the general case of arbitrary distribution functions was

13

considered by Rosenbluth, MacDonald, and Judd, We present a brief



- 20 -

9 13

derivation, following Chandrasekhar® and Rosenbluth, et al.
Assume that there exist time intervals 4% long enough for a
particle to suffer a large number of weak deflections but short enough
for the net mean square change in velocity, <<I4&v|[*> , to be small
compared with the mean square velocity. Let IDA}E,Aa() denote the
probability that in the time interval A+ a particle of type A having
velocity v undergoes a displacement Ay . Assuming that pA does not
depend explicitly on time, the distribution function for the A species

is then given by9

FA(z, v 6) = SJWA,V:) FAG, v-ar t-a¢) PAE-2xs0r)  (2.1)

Since At and AV are both assumed small, the integrand is expanded in

a Taylor's series:
FALLh =

| 4(a0) [F“(x.x, £ Pl a0) - a8 2 p A 0y -

A
= Av. %}_E_ A[\r'a&-) + FA f‘(f- PA/»‘{;AI3z +

L3A o
A
*FA 4 RFA SRR _a2%P { j
iR » ) — — ¥ G000
*1"!“5'539_{? riag o Py '(2.2)

Using the fact that
Aflo,
(g20ay) PRl aY) = 1,

equation (2.2) gives for the time rate of change of frjqresu]ting

from the cumulative effect of small deflections

At }_};‘;:ef)“" - alg . [FA fﬂ»‘fg,\ - % %, FAZ{A,'[AggA—f _7 (2.3)
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where

34& = Sﬂfm PALy; ay) 8y

{AI Ak‘f% = gcls(ﬂ.‘ﬂ PA/!".‘&@ Av A (2.4)
A Vs
and so forth.

Since ?Ag}Arepresents the mean change in AY” resulting

from encounters during 4t , we write

{Ag{%A = % SJ’%’ F84) gdn. 73 (91609 Ax, 4T

<Aec>A At (2.5)
and

EA*\{AEZA = ZB’§J3¢0F6/&-')§J_Qﬁe/3,ﬂ§gAJ{A AgAAi-

z < AV A‘\'}’_>A at | (2.6)
etc. for higher order terms, where 2 = |V -v’] s the magnitude of
the relative velocity. Rosenbluth, g§_§1j3 evaluated the Fokker-Planck
coefficients (2.5) and (2.6) assuming a two-particle Coulomb cross-
section, Since the integrals over,{k diverge logarithmically at Targe
impact parameters, they followed Cohen g;vgl7 and cut off the integra-
tion at bm«x A ,XD , the Debye screening length., After some alge-

braic manipulation Rosenbluth et al obtain

N LY 2 fL 2 e 8 EXY
)t >,,,, - % 3y [1 oY {F (x) S‘W' P - LRI

- A M, twm . Q] \J" ;('/
| F /3-‘)——“;;-?-54%— N, Fo -—-ﬂ-]
wnere

(N
Mo = dney C’g L. 1HMas g

MA CAQQ/)\Q



- 22 -

and Ahe is the reduced mass. Assuming the logarithm to be a suf-
ficiently slowly varying function of the relative velocity, the approxi-

mation is made

l"Ae a HT‘CA /{v\ e

eAeb,AAD
2
= f"_?ﬁli& A Dy (2.8)
wy :

14

(It can be shown * that this approximation introduces an error of less

than one percent in the determination of transport coefficients based
n (2.7).)
In the derivation of (2.7) only those terms porportional to

Aﬁ« l&Ae have been retained from the expansion (2.3) and in the evalua-
tion of the Fokker-Planck coefficients (2.,5) and (2.6). Al1 other terms
can be shown'S to be down by a factor (Am Apg) ' Thus the Fokker-
Planck equation may be viewed as an expansion in powers of the ratio of
mean kinetic energy to potential energy at a separation of A 0° and 1is

sound for Aﬁa JﬁAbsufficient1y large, or roughly

%) s 107 n (zm?)

Equation (2.7) may be transformed into a more symmetric form,

Since
3‘3—& gda\,: Fo(v')g-! - _?" SJ3 F8(r ):w' Vv,ﬁ
| , aF B
- S‘J Y ng‘
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This form of the Fokker-Planck equation was published by Landau15 in

1936.
While the above analysis treats the effects of a large number

of overlapping small-angle deflections occurring in the time interval

At , the form of the probability employed in (2.5) and (2.6) still
assumes that these small angle deflections are themselves due to binary
encounters. Moreover, we have retained the assumption (ii) of the
joint probability being proportional to the product of the two singlet
probabilities and have thereby ignored possible correlation effects.
In addition, the present description explicitly ignores the effects of
the relatively infrequent large angle deflections. Both Cohen7 and

Rosenb]uth]3

and their co-workers suggested the inclusion of a Boltzmann
collision operator for impact parameters below an unspecified critical
value, At the same time, they suggested the effect would usually be
negligible. Finally, we note in passing that the Fokker-Planck equation

as displayed above may be obtained4

by Taylor expandina the integrand

of the Boltzmann collision integral with Coulomb cross-section, cutting

off the integrals at bmxx = ’\D , and retaining only dominant terms.
Several authors have presented descriptions which take into

16,17,18 The method

account the electrostatic properties of the plasma.
is to consider a test particle as being subject to Tocal fluctuating
electric fields, and then calculating the Fokker-Planck coefficients on
this basis. In all cases the results are quite similar, and are tanta-
mount to including a dielectric constant in the functions r14e> in (2.7).
An advantage of this work is that the Debye length enters the descrip-

tion as a natural cutoff distance, without having to be introduced in

an gg hoc fashion as before. In contrast, the treatment yields a
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divergence at small impact parameters due to an improper handling of
close encounters. To overcome this a cutoff is postulated at an impact
parameter of the order of the distance of closest approach ~ ely@a

19

Hubbard '~ surmounted this Tatter difficulty by retaining the entire

infinite series in the expansion (2.2).

2, Kintetic Equations Derived From the Liouville Equation

The construction of kinetic theories on the basis of phenomeno-
logical considerations naturally raises questions concerning the
validity and range of applicability of the various descriptions. Per-
haps the most satisfactory scheme for surmounting these difficulties is
to begin with the most complete (and intractable) description available,
the Liouville equation,

For simplicity we consider a collection of / indistinguishable
particles, occupying a volume V , with no external forces. The
generalization to a multicomponent system is straightforward but tedious,
and will be indicated by reference where appropriate.

We define (Ml,;q) =1,2,.. N as the NV -particle
distribution function such that

o T 43 d>vy
=
is the probability of f1;d1ng the Lth particle in JSF;JSV}' for each

of the N particles, all at time & . Clearly

N
S'T(',J%I,Cﬁ v FN = .
L=

According to Liouville's theorem,20 FL is governed by the equation

N
2 h Y Y
SAPNIE A PE (2.10)
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where
RSN A )
N ‘0
Vi) = > VL)
Jt')d'fl:

/0
and V4 is the two-body potential. Thus we have

N )
ok, & NS VI R
3t + Z i 3. _W\_Z Z » },‘:‘( W =0, (2.11)
‘; ':. \]

L

The information contained in the Liouville equation (2.10) or
(2,11) is all inclusive but in general is inaccessible because of its
complexity. A method for extracting useful information has been devel-
oped independently by Bogolyubov, Born, Green, Kirkwood, and Yvon, and
is summarized in Montgomery and Tidman4 or in any good text on statis-
tical mechanics such as de Boer and Uh]enbeck°2]
To develop the so-called BBGKY hierarchy, we define reduced
probability distributions
R = V[T Jndaf, | s<n
S AP L t'N ) - (2.12)
Multiplying (2.11) by VS and integrating as in (2.12) we obtain an
expression for Fg which involves F;+, - In particular, for s =t and

=2 we have

»F >F N-1 (s Js 3V E
-S:i; 4,,‘-[" —B——— = d ﬁ_C! Vo > VY, (2.13)
w i
and
3E > LoV VvV, 2 F =
_):% t (g‘.%&"'wm,BMm) F’L - W( LAY o1 ¥, Fl
W’g D :
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While the Liouville equation uniquely determines the evolution of FL
from the initial condition ﬁJ/t‘ZO) , the derived relations for F§

do not uniquely determine the evolution of F% from F; (t=0), Instead,
the interactions of our § particles with the remaining N-S particles
are summarized in terms of a typical S+! particle and we require a
knowledge of F3+, to solve the problem.

We shall now see how, for a given set of circumstances, the
relations for Fi and Fa can be simplified. We will make assumptions
consistent with the physical conditions which we desire to treat and on
the basis of these assumptions introduce approximations which are
designed to retain the pertinent elements of information.

Our first approximation is of quite general validity. We assume
N tobe a large number and expand in terms of N . At the same
time, we allow the volume of the system to become arbitrarily Targe,
but such that N/V=n remains finite. This removes interactions with

the boundary, and reduces (2.13) and (2.14) to

AR 2, WV O

A. The Absence of Correlations. The Boltzmann and Vlasov Equations.

Writing F%,(E,)El)i],HL,tf> in the form

Ro= REWEERE0D +a(5,0,0.0,1)
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where 3 is a correlation function, and taking 3 =0 , the system

(2.15), (2.16) reducés to an equation for F, ,

MR F S0
St T s T gdr"JBLar “RG). (2

It is interesting to consider (2,17) in two contrasting cases. In the
first, we consider a dilute gas with short-range interparticle porten-
tials V!¢ » such that the effective range of the potential is much

smaller than the mean interparticle separation. Following Schonberg22

23

and Osborn®>, we rewrite (2.17) in the form

2
F ok RN WA VAL | ,
‘}"%‘*wl‘ g‘ =n \d*din "L, a\r Fw R F,(')F./Z))(zé]g)
which is equivalent to (2.17) since the additional terms are zero as may

2 .
3 we now introduce

be verified by partial integration. Following Osborn
a set of assumptions designed to Tend plausibility to the succeeding
argument,
(1) The potential \/rzis appreciable only over a suf-
ficiently well defined region of radius ~a such that the
£, integration in (2.18) is effectively confined to the
volume |£,-£.]< «.
(i1)  The length, a , is small compared to the mean inter-

. . . !/3
particle spacing, i.e.,

<< | . This implies that
O. can be chosen such that the probability of finding more
than two particles within a distance a. of each other at
any time is negligible, i.e., we choose a so that the
binary collision assumption is in some sense justified.

(i11) The above choice of & Tleads to a sufficiently

restricted region for the spatial integration in (2.18) so
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that R (0,9, 1) F (0, 0 t) = F (5,0, 8) R0, 5, 2)
for all {, defined by |£,-¢,]<a.
(iv)  The product F(1)F, (2) does not vary appreciably

over time intervals of order

v =a /Il -V,

(v) Two particles within a distance a of each other
will be presumed to be interacting so strongly that they
may be regarded as effectively decoupled from their

environment,

Assumption (v) permits us to interpret

1V .
m BF‘ == 2 T -4y
n
1 Vo -
w3, a., ¥-4, (2.19)

where Q‘ and a, are the accelerations experienced by particles 1 and
2 respectively throughout the duration of their close encounter, The
approximation (2.19) plus assumptions (iii) and (iv) then enables us

to approximate the integrand in (2.18) as follows:
L V't 2
™ ‘ﬁ:‘ . g—\,‘ E(E.,&)f) E(E\n!1,f)+
w }v VL E CE\)¥1>t>f:(&}ﬂyl)t>‘x

3\}' E(w')M‘)t)F/I'\"‘L!-t) wJ— ;}V’ F("-Hmlpi)F/I.)wl t)

7)}3(‘:‘:!)2‘1 i )t>F('“l)“\.—wltt) F(‘L”w" )F/E')Nm)%"]

Evidently we may interpret the velocities (Vv = qk‘ﬁa g13_5§L2') as the

?

ey
precollision velocities of a pair of particles entering into a strong
binary interaction, whereas ( &f.,g}‘) are the post-collision velocities

of the same pair. Introducing the notation

(v, -a,%, ¢, -a,7) = (4,¢0)
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we see that we may now approximate (2.18) as

n Sc/j(‘z jChlfl _——_]y_";:'[m, [E(v[‘”y"')f)ﬁ(fug’,!)t)—E(r,)!:'t)E(fl\““};-;t’}?(ZOZO)
1L, -0 1<

Note now that nothing in the intearand of (2.20) depends on [, . Thus
the space integration is readily performed if we introduce the variable

change ,@’Y.'L‘» whence

\

3 3
S,,/ L fd R (2.21)
It,~ L. l<a JRI< o
If we take 6 to be the distance between the two particles during their
close encounter and introduce a cylindrical coordinate system (see

figure (2.1) ) with 2 -axis parallel to the pre-collision relative

velocity, then (2.21) may be written as

2 ~a/2 /2
S S bdbd¢ S dz . (2.22)
43-:0 hb=o0 —0\/2

The quantity bdbd¢ s clearly the center of mass differential scat-
tering cross-section introduced earlier, which we may write as o JL .

Thus (2.21) may be written as

fomrq, = a SG‘JQ . (2.23)
5-Ll<a <+
It is understood that the restriction on the range of impact parameters
as displayed in (2,22) implies a corresponding limitation on the range

of the angular integration in (2.23). In these terms then, equation

(2.18) becomes, for the dilute short-range approximation,
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nje

Figure 2.1

Details of Binary Interaction

e

\ 2
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= vtV - 3—& = h Sdgfmsa/ﬂ[[,'ﬁmlo-("’

R0 5,2, 8) - Flns DR 2 20

Equation (2.,24) is, apart from normalization differences, the Boltzmann
equation in the absence of external forces,

Finally, let us consider again equation (2.17) when V' is the
Coulomb potential. In this case, as we have seen earlier, the notion
of a binary interaction length a is indistinct when the number of
particles in a Debye sphere is large. We could pick a length a say of
order a few times the distance of closest approach, but the choice is
vague. In this case the potential term would be divided into a "binary"
term and a "collective" term, this latter corresponding to the force
term in the Boltzmann equation. For example if we consider only collec-
tive effects, then we may regard the potential term in (2.17) as
producing an internal electric field which is a function of r, alone,

Wle define this field by

LI GE P V™ F (e, v t)
E[f,,ﬂ - e Prd?W Je, T B2, ¥,

and write (2.17) in the form

SR 3bh _eE »F
3?'*“%'5;, == 3.:1.-;,0 (2.25)

-

which is known as the Vlasov equation.

B. The Inclusion of Correlations. The Lenard-Guernsey-Balescu Equation,

It is clear from the foregoing discussions that the neglect of

correlations in the description of an ionized gas is a simplification
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which is difficult to justify, and which leads to problems such as the
divergence at large impact parameters. Since the B®GKY hierarchy
(2.15), (2.16)..., includes correlations, we might hope that the
kinetic equations we derive from it will be intrinsically free from
this divergence, In the following we present the salient points of an
important kinetic equation derived from the hierarchy which includes
two-particle correlations, We outline the work of Lenard24 and
Guernsey,25 which is based on earlier results of Bogo]yubové26

27

We begin with Mayer cluster expansions”™® of the distribution

functions, similar to that used in the previous section, We have, with
F.(h,t) = RO, 0)F () + 3/1\1#—') (2.26)

and

+F (18)q (231) # F (2t g (1,3,£) +

+|;{3,t)3(»,2,t) + h()23t) (2.27)
where h 1is a three-particle correlation function. We work in the
so-called plasma limit, n );>>1 , and we further assume the three-
particle correlations to be negligible (h>0). We consider only homo-
geneous plasmas, still with no external forces, so that the various

F;(i) are independent of position and the correlation functions

depend on [ and f& only in the combination T = Lﬁ;—j}[i

Bogo]yubov26

assumed that as a consequence of the assumption
v\AE >> | , the correlation functions would vary much more rapidly

in time than any of the distribution functions F}/f;fﬁ . He thus
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suggested that

(i) The distribution functions-Fi(ﬁ)t3 may be considered
time independent in solving for 9 [/)j)t).

(ii) The asymptotic value of the correlation function,
g(ﬁ,J)oo) , represented as a functional of the F (V}t) may
be used in solving for these latter quantities.

(i) As a consequence of (ii) the information contained

in the initial condition would not appear in the F (1)%)
and hence we may take g{t',j)o) =0.

26

Employing these assumptions, Bogolyubov™" was able to reduce (2,15)

and (2.16) to

oF _ SV (s Yy B
T ™ SJ% ._--;gx-.—-, Scl v —--——S-g::-’—“ (2.28)

where G is a time independent function of F(é R), and is the solution

of the integral equation

SF() Ftv)
G'(S:)\\[,)w'» = K(u)w, . [‘g{\)’»‘— F(v‘.":.,)"),ait F(&',)] +

+ gffjd% K(c-§ 5-n)

'}F(Nl G( > _ '}F/v—l) 6‘(\&){!32)]

LY ‘”‘1)

(2.29)

whose kernel is

= SVr-yt)
K(i,l{) - = L Jt >

The normalization is fa”U‘ F=n and we take V'*= e*/r

Lenard24 and Guernsey25 reduced the system of equations (2.28),

(2.29) to a single equation for F by following Bogolyubov's suggestion26
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of introducing spatial Fourier transforms. Their result was also ob-

tained by Ba]escu28 using a diagram technique;

where @ is a symmetric second rank tensor whose components are given
X

for - o) — ALK 62 (%)
Jl+ P, -]

«(2,31)

The integrand in (2.31), aside from the J -function, becomes
independent of % for £>0 (large impact parameters), so that the
integral converges in this Timit. Thus the incorporation of correla-
tions in the kinetic description removes, in a natural way, the trouble-
some divergence at large impact parameters. For f& large, the integrand
behaves as é-z -and hence the integral diverges for 2->oo, This is

17,18 of

the same divergence encountered in the electrostatic treatments
the Fokker-Planck equation discussed above, and is due to the neglect
of the three-particle correlation h when two of the three are of the
order of /e apart. In this case h is the same order of magnitude
as the binary correlation 3 , and cannot properly be ignored. To

achieve convergence in (2.,31) it is therefore necessary to make a short

range cutoff, i.e., integrate only within the sphere

4t 2 R, % B/t
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Lenard24 simplified (2.31) somewhat by showing that, if one
neglects contributions to (?Q{ coming from speeds greater than a few

times (Ze/mwz' ®Q  reduces to

@ (£,4) = ’l’;—%qzéa (A X5 53'—?: - (2.32)
The approximation introduced in going from (2.31) to (2.32) requires
that F[E) must be small, for velocities greater than a few times the
thermal speed, as compared with its values at lower speeds. Equation
(2.30) with (2.32) is, aside from a missing factor of 2, just the
Landau form (2.9) of the Fokker-Planck equation.

We might consider the foregoing as a rather convincing argument
supporting the use of the Fokker-Planck equation for ionized gases with
distribution functions satisfying the above condition, and which satisfy
the Bogolyubov assumptions (i) through (iii). These assumptions are
violated, for example, by systems in which F and 3 vary on the same
time scale. Examples are the interaction of high-frequency waves with a
plasma, or rapidly growing instabilities.

The generalization of equation (2.30) for a multicomponent
system may be found in Montgomery and Tidmang4 The generalization to a

30 and is

constant, uniform magnetic field was worked out by Rostoker,
considerably more complex than (2.30), (2.31).

Working with a multiple time scale theory developed by Bogolyubov
for certain problems in nonlinear mechanics, Frieman and Book3] have
developed a kinetic equation for homogeneous field-free systems that is

free of divergences for all impact parameters, For small impact para-

meters their result resembles the Boltzmann collision integral; elsewhere
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it is similar to equation (2.30).

The development of plasma kinetic equations is an active field,
and it is beyond our purpose here to survey the topic in its entirety.
In concluding this section we mention only briefly some of the problems
of current interest in this area, and related work.

In our derivation of equation (2.30) we assumed a homogeneous
system with no external forces. We noted earlier that the phenomeno-
logical kinetic equations generally assume that inhomogeneities and
local force fields do not significantly interfere with interparticle
encounters. MWhile these may often be valid assumptions, we would expect
them to fail when length and time scales characteristic of inhomogene-
ities or of local forces are small compared with A p OF AD/QEf (the time
required for the establishment of a Debye screening cloud about each
particle) where v;

T
Writing a kinetic equation that includes these generally neglected

is the thermal speed of the particles. At this

effects is not available. Many attempts have been made to overcome
these difficulties. Perhans the most noteworthy are in the work of Bohm

and Pines,32 Rostoker and Rosenb]uth,33 34 35

Dupree,” " and Frieman. While
none of these authors have presented a treatment satisfactory to all,
their work lends considerable insight into the problem at hand, and
often presents novel and significant mathematical tools, This work is

certainly a good starting pnoint for the interested reader.

3. A Simple Collision Model

We have so far been concerned with the development of a kinetic
equation for the description of ionized gases. While a satisfactory

theory is yet unavailable, it is apparent from our earlier discussion
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that the more rigorous the treatment, the less tractable it is in terms
of analytic solution. In point of fact, this problem is not unique to
the study of ionized gases, The Boltzmann transport equation has so
far been solved only for a few special cases, namely the inverse-fifth~
power force law suggested by Maxwell, and for certain scattering ker-

36 In view of these difficul~

nels relevant to neutron transport theory.
ties, it is often advantageous to replace the more accurate and less
manageable collision descriptions by a model that simplifies the solu-
tion of the kinetic equations. With the current paucity of experimental
information on fully ionized gases, such a model may often be a good
starting point for the interpretation of the little information that is
available. We thus consider briefly a collision model designed to
satisfy the conservation laws and an H-theorem, and which considerably
simplifies the mathematical analysis.

One of the earliest of these models, generally referred to as

37

the Krook model, was developed by Bhatnagar, Gross, and Krook. A

similar but somewhat simpler model was suggested independently by

We1ander938 The first Krook model, for a single component system, i537

(i o= - N(ct) [_F(gy,-b)-rN(»‘T,f)ﬂz%(vfw‘fnﬂj (2.33)

o

with
5 - [Zn@z;)t)]wzexp[— Z—é%}jgy;—?/t,ﬂg
(£,t) = SJBWF(M,, t), Sds\f@ =

)

$(5t) = v Flr et

s )
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and

3@ (1) ! N\ F
m T N(,B) 5"%(“ j'k)

where 7, and ©® define the flow velocity and kinetic temperature (in
energy“anits) at (ﬁ,tﬁ , and 0= is the parameter of the model.
The dimensions of No= are inverse time, and @ is generally

chosen to yield an appropriate collision frequency on the basis of

phenomenological considerationsi39 For an ionized gas, 0 1is gener-
ally chosen39 such that
0'
o~ BTme A A N o=nal
= “hAp .

While the Krook model is highly nonlinear, it is considerably
simpler than, e.g., the Boltzmann collision operator, since the

distribution function enters in (2.33) in a simple way: as
F gd’\rF) gc“u-v\([-') gclgu—vif:.

For the particular case of small amplitude perturbations near equili-
brium, the Tlinearized form of the Krook model permits solution of the
kinetic equation in closed form for several interesting cases,37’40

To Tinearize (2.33) we write
NL,t) = N, +en(L,t)
Flryt) = R(v) + e (L4t
@(nt) = 6, + eo(nt),
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where € 1is a small parameter, and where
Flv) = (mv )" Mexp (v 2/">
n(rt) = Sc/gu' £le,6,t) )

U-oq-: ZGQ/M)

N, (Qr*) _ 1 fcl%'u'?’?(-':. t) - nirt). (2.34)

o

We thus obtain, neglecting terms in ez

(), = o N, [F2yt) + RO w(s)+

PR B g0 ¢ (- 3)% ] 29

with

10!

= L \dar v eyt
(ct) = m gdg v gy t)

The extension of the Krook model to a two-component system was
first given by Gross and Krook,40 together with an application of the
linearized version to oscillations in a fully jonized gas. More
recently Sirovich,4] Liboff,42 and Oppenheim43 have presented similar

collision models for a general multicomponent system. While all of these

models are similar in form, they are not identical.
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The relationship between the Krook model and the more sophisti-
cated collision models rests primarily on intuitive grounds. In one
special case, however, a more direct relationship has been demonstrated.

44 showed that the

For the case of a Maxwell molecule, Gross and Jackson
linearized Boltzmann collision operator yields the Tinearized version
of (2.33) if all the non-zero eigenvalues of the collision operator are
approximated by a sing]e constant which appears as o in (2.33).

In Figure (2.2) we have indicated for convenience the relations

between the kinetic theories discussed above.

Fig, 2.2 Relations Between Kinetic Theories Discussed in Text
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BBGKY

Lenard = Guern Sea -
6alescu

Boltzmann Fo kker- Planck

4
Kroo k

4, Relaxation in Velocity Space

The ultimate test of a theory lies in a comparison of the pre-
dictions thereof with experimental observation. At the present writing,
the scarcity of relevant experimental and theoretical information is a
major source of difficulty in kinetic physicsz2 This is particularly

so in the physics of fully ionized gases4 where on the one hand, the
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maintenance of a plasma and reliable observation techniques still present
many unsolved problems and on the other hand, tractable theories allow-
ing for inhomogeneities, rapid temporal variation, and boundary effects,
are generally unavailable.

In the presence of these difficulties it may be instructive to
compare the results of the various theories, with the hope that this
would lend physical insight into both the structure of the theories and
the as yet unobserved properties of nature. In this and the following
two sections we intend to make such comparisons for a few illustrative
cases. Our division of these topics into three separate categories is
not intended to imply that they are mutually exclusive; it has been
effected for convenience alone.

The problem of determining how a homogeneous expanse of gas
behaves as it approaches equilibrium, i.e. "relaxes," is perhaps the
simplest problem in the kinetic theory of gases. The problem is of
interest here because it focuses attention on the collision operator.
Perhaps the simplest descrintion of the relaxation process is that ob-
tained from the homogeneous isotropic Krook model (2.35). Thus if fo

is the value of the distribution function at = 0 , then

) = R+ [R-NR]em T (2.3)

where F; is given in (2.34). The characteristic time N.e)'appearing in
(2.36) is generally referred to as a relaxation time. Due to the
complexity of the more sophisticated models, a study of relaxation via
analytic solution has generally not been achieved. While the simple

Krook relaxation time may often be a sufficiently accurate estimate of
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relevant time scales, it is easily recognized that the description of
a relaxation process by a single parameter could often be misleading.
For example, the rate at which a given distribution becomes isotropic
in velocity space if initially anisotropic, could be significantly
different than the rate at which it relaxes to a Maxwellian.

One method of estimating such rates without actually solving
the kinetic equation is to single out and consider a single "test"
particle in the gas. This procedure has been employed by Spitzer,39
who analyzed various aspects of the relaxation of the electron and jon
components of an ionized gas, such as (i) removal of angular anisotropy,
(ii) energy exchange, (iii) loss of energy of a particle by "dynamical
friction," Bohm and A]]er45 have similarly presented a detailed
analysis on the relative importance of electron-electron collisions in
establishing the velocity distribution of electrons in gaseous nublae
and stellar atmospheres. Montgomery and Tidman4 perform a test particle
analysis by assuming all particles except the test particle have a known
(equilibrium) distribution, The kinetic equation (in this case Fokker-
Planck) is then "linearized" about the test particle "distribution,"
and velocity moments of the Tinear equation are obtained, Relaxation
times %+, are then obtained by defining these as the ratio of the

velocity moment M in question to its time derivative, i.e.,

M
1Tl 2 573t
The relaxation times obtained from the test particle approach
generally depend on the initial speed of the test particle, the relative

temperatures of the species present, and the relative masses. For a
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two component ionized gas with equal electron and ion temperatures, it
is found that electrons become isotropic primarily through collisions
with ions; collisions with electrons play a small role in ion relaxa-
tion, and the relaxation to equilibrium of an isotropic electron dis-
tribution is primarily due to encounters with other electrons.

Although the qualitative conclusions reached in a test particle
treatment should generally be correct, they do not display all of the
information available in the kinetic equation. Hence, in lieu of an
analytic solution of the kinetic equations, several authors have
presented numerical treatments for various situations. MacDonald,

Rosenbluth, and Chuck46

have presented a numerical solution of the
Fokker-Planck equation (2,7) for an isotropic electron gas imbedded in
a positive neutralizing background. They assumed an initial Gaussian-
shaped distribution peaked in the vicinity of the speed (ze/m¥2 They
found the time required for the distribution to come within a few per-
cent of the final Maxwellian, throughout the range from zero energy to
several times the average energy, is about ten times the self-collision

time defined by Spitzer39 (

the mean time required for a thermal particle
to eventually suffer a 90° change in direction due to the cumulative
effects of many small angle encounters with like particles). MacDonald,
et al also found, as could be expected, that it takes considerably longer
to fill out the high velocity "tail" of the Maxwell distribution.
Recently Wu, Levans, and Primack47 have studied numerically the

relaxation of a two~component plasma with initially anisotropic electron
and ion temperatures, and with initially isotropic (but unequal) compon-

ent temperatures, using the Lenard-Guernsey-Balescu equation (2.30),

(2.31). They assumed that the distribution functions maintain a
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Maxwellian character throughout the relaxation process, having the

form

A ma P/ [ ]:- Ma Uy oM ‘f;:]
F (E’t) = ( 27(‘) @AI///’L{t) GA'L{t) exP Z@A”(t) Z—é:;—(z (2.37)

where
A _ 4 3 .~ FA
QA,,/t)=mAgc/3vw‘F 3A1"LMASJV'% F )
and that

’M}<<,) /M <<I.

QA” =7

The results are in qualitative agreement with the predictions of the

test particle theory, except when 623/695 > /0% . In this case, the
anisotropic electron temperature relaxation is governed by collective
phenomena, Since Wu, g;_g147 constrained their distribution functions
to the form (2.37), a comparison of their isotropic relaxation resu1ts

with those of MacDonald, g;_gl46

would not be fruitful. We can only
note that the collective effects manifest in (2.30), (2.31) are impor-
tant in the relaxation process, under certain conditions of anisotropy.
A direct comparison of the Fokker-Planck and Lenard-Guernsey-
Balescu equations has been achieved in another numerical relaxation
study, performed by Do1insky.48 Dolinsky solved both equations for
several different initial conditions, for an isotropic electron gas in

a neutralizing background, A comparison of the solutions showed a

difference of less than two percent, for all speeds and for all time.
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5. Transport Phenomena; Electrical Conductivity

Many of the interesting phenomena in kinetic theory involve
systems that are inhomogeneous or are subject to external fields. As
we discussed in Chapter I, the role of particle interactions in such
cases may or may not be important relative to other phenomena, depending
on the nature of the system under consideration, A simple and yet
interesting illustration is the phenomenon of electron runaway, which
occurs when an ionized gas is subject to a sufficiently strong electric
field.

Kruskal and Bernstein49 have studied electron runaway using a
transport equation with Fokker-Planck collision operator. For simplicity
they neglected electron-electron collisions, and assumed the electron-
ion mass ratio to be zero. Their analysis leads to a decomposition of
velocity space into three regions, for electric fields greater than a
critical value. In the first of these, the low velocity domain, the form
of the electron distribution function is dominated by collisions and
hence almost isotropic. The second region, one of intermediate velocity,
is characterized by "quasi-steady" flow in velocity space, for which the
Tow velocity region provides the source. Lastly there is a high velocity
region, fed by the intermediate region, in which the electrons acceler-
ate or "run away" almost freely under the action of the electric field,
with only a very weak diffusion due to collisions.

The phenomenon of ‘runaway, like the relaxation of high speed
electrons discussed earlier, reflects the rapid decrease of the Coulomb
cross-section with increasing relative velocity, It is apparent that

a simplified collision model that does not take into proper account the
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nature of the interacting particles would here lead to erroneous
results.

As we noted in Chapter I, there are many interesting circum-
stances wherein the macroscopic properties of a system exhibit only
small variations in times of the order of the inverse collision
frequency Y. or in space over distances of the order of the mean free
path L, 21M;/&Q . It is then possible to approximate the kinetic
description by a fluid description treating macroscopic quantities such
as density, mean velocity, pressure, etc,, where flows are Tinearly

related to the generalized forces driving them02’4’50

For example the
electric current is given by the product of the electric field and the
conductivity. For an isotropic system the conductivity is a scalar;
more generally it is a tensor.

Since we are concerned in this work with the description and
effects of particle interactions, it is instructive to consider the
calculation of transport parameters briefly. While all transport
coefficients are sensitive to particle interactions, the phenomena of
interest here can be illustrated by a consideration of the electrical
properties of a plasma. In the following discussion we will assume for
simplicity that the system being considered is free from magnetic fields,
temperature gradients, and inhomogeneities. We will further assume that
the applied field is spatially uniform; i.e., that,A>>f\D where A s
a length characterizing the field.

Considerable attention has been turned in recent years to
determining the conductivity of a fully ionized gas. The subject is not
only of interest as a problem in kinetic theory, but is also of practical

importance in that from a knowledge of the a.c. conductivity one can
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compute immediately the absorption coefficient for radiation in a plasma
and hence, by Kirchoff's law, the emission properties.4’50’5]
The earliest calculations of electrical conductivity were based

on phenomenological considerationsaz’39

Thus one simply assumes that
the current carrying electrons suffer, on the average, equal accelera-
tions by the electric field and decelerations due to collisions. Using
such considerations, Spitzer39 calculates a conductivity assuming all
current to be carried by the electrons, and neglecting interactions

between electrons. He finds the conductivity @& to be

_ MNae®
o = o, (2.38)

where AQ and m are the electron number density and mass, respectively,
and ¥ is the electron-ion collision frequency. We can easily obtain
similar results with a simplified Krook model. The d.c, conductivity
of a fully ionized gas has also been computed using a Fokker-Planck

collision operator., Spitzer, g;_a17’52

obtained a numerical result very
close to that given by (2.38) with Y. the "self-collision" frequency
defined earlier,

As we noted above, a significant contribution to the collisional
processes in a plasma arises from long-range Coulomb encounters, and
the duration of these encounters is quite sensitive to the relative
speed of the particles. While a Krook=type collision model seems satis-
factory for a fully ionized gas subject to low frequency or d.c. fields,
we would not expect such a simple representation of particle interactions
to suffice for frequencies co of order 3, or higher,

The earliest treatments of the a.c. response of a plasma

attempted to overcome these difficulties by employing velocity dependent
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collision frequencies54 or collision operators that described a diffusion
in velocity space,2 These approaches were not, however, founded on a
consideration of the nature of the interacting particles,

Several authors have computed the impedance Z =g~ of a
plasma employing the various kinetic theories considered earlier in this
chapter. Their results provide an effective means for comparing the
various theories. In Fig. 2.3 we have displayed the quantity RA,//Roc
where R s the real part of the plasma impedance Z , as a function of
a)/cur The results are given for a fully ionized hydrogen plasma
with A = 27" 107 , Where /L is given by W, AE , and are based
on a similar display due to DeNo]f.55

For frequencies ¢«> well below the collision frequency the
purely resistive impedance is constant and the results of the simple

1 agree with the Fokker-Planck ca"lcu1at1°onsa52 The Tow

51,52

Krook theory

frequency resistivity has been computed both including and excluding

(Lorentz gas) encounters between electrons. The effect of including
these is to increase the low frequency resistivity by a factor ~¢1.7

as is evident in the figure.

56 57 58

Bernstein and Trehan,
59

Robinson and Bernstein,”’ Kauffmann,

and Shkarofsky™  have obtained the a.c.plasma impedance using a Fokker-
Planck collision operator. Their results are summarized in Shkarofsky,
Bernstein, and Robinson.60 Marsha1]6] performed a similar analysis
using the linearized Boltzmann collision operator. None of these
authors included the effects of internal “self-consistent" fields; i.e.,
they did not include the Maxwell equations in their analysis. The
results for the Boltzmann and Fokker-Planck collision operators agree

within a few percent, and this difference is likely due to different
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computational procedures. For frequencies below ». these results match
the d.c. results, as is evident in the resistivity diagram. (For
frequencies not small compared to the collision frequency the impedance

2,54,60,61 reflecting inertial effects of the con-

has a reactive part
ducting charges.) As the frequency increases past Y the resistivity
increases and eventually approaches a constant, independent of e« ., For
frequencies well above », electron-electron collisions are seen to be
insignificant as compared with electron-ion collisions,

When the field frequency exceeds the plasma frequency Scheuer62
has argued that the resistivity should decrease, in contrast with the

Fokker-Planck or Boltzmann resu]ts.60’61

When e >ep Scheuer suggested
that the maximum effective impact parameter should decrease from the
Debye Tlength Wf/iuP to the length v3/eo . At distances larger than
U}//QJ , encounters do not contribute to the resistivity since they
are much Tonger in duration than the oscillations themselves. Dawson

63,64

and Oberman computed the high frequency impedance of a plasma using

the simple Vlasov equation including the internal electrostatic field.

62

Their results (see Fig. 2.3)) agree with Scheuer's reasoning ~ for

60,61 for

@ > cvp and join the Fokker-Planck and Boltzmann results
W< Wp They observed a slight bump in the resistivity near @ =<y
which they attribute to the generation of Tongitudinal plasma oscilla-
tions. For very low frequencies their resistivity does not decrease,
in contrast with tne collisional treatmento60’6]
This latter difference in the predictions of the two treatments
might be interpreted by reasoning as follows. For frequencies below the
plasma frequency the dielectric response of the plasma is fast compared

with the period of the imposed oscillation. For frequencies in the
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range ¥, <<co< cp , collisions are too slow to affect the plasma
response and a description incorporating only dielectric effects, i.e.,
the Vlasov equation, yields results that are insensitive to frequency.
For Tower frequencies the collisions become important and the response
is frequency sensitive. Evidently there is a range of frequencies
below wp where the collisional and collective, or dielectric, des-
criptions produce similar results.

Oberman, Ron, and Dawson65 have computed the high frequency
conductivity of a fully ionized plasma by solving the first two members
(2.13), (2.14) of the BBGKY hierarchy using a method due to Guernsey666
We note that the Bogoliubov hypothesis was not employed; i.e., the two
particle correlation function was allowed to vary on the same time
scale as the one-particle distributions. The results of Oberman, et

65

al™~ are in complete agreement with the predictions of the much simpler

Vlasov treatment.63’64
In concluding this section we note some other computations of
plasma transport parameters for the interested reader. In references
57 through 60 the low frequency ( ¢w<evp) thermal diffusion and
conductivity, and the viscosity have been computed as well as the
electrical conductivity, for a plasma having small temperature and
density gradients and immersed in a constant uniform magnetic field.

67

Kivelson and Dubois™ " have found the electrical conductivity for finite

wavelengths using the kinetic equation (2.30) of Lenard, et al. Berk68
has obtained the conductivity for finite wavelengths. His approach was

63,64 69 used

similar to that of Dawson and Oberman. Oberman and Shure
the first two BBGKY equations as in ref. 65 to compute the high fre-

quency conductivity with a magnetic field. The high frequency
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electrical conductivity has been computed quantum mechanically by DuBois,

70 7 Oberman and Ron72

Gilinsky, and Kivelson'~” and by Ron and Tzoar,
extended this work to include a magnetic field. The results are in
agreement with the classical descriptions.

We summarize briefly the effects of finite wavelengths, and
magnetic fields. For finite wavelengths it is convenient to refer to
the phase speed of the wave, U; =co/R where R =2r/A, For Vp = Vr
or less, and w ¥ «wp , the principal contribution to the conductivity

is e]ectrostat1c¢68’70

For greater speeds collisional effects predom-
inate. At high frequencies, w>¢aJ, , collisions are unimportant. In
the presence of a magnetic fie1d69 the conductivity in the direction of
the field is unaffected. In contrast the transverse components decrease
with increasing field strength until in the limit of infinite field
strength no current flows across the field.

Finally, Klevens, Primack, and WU73

have computed the a.c.
conductivity for @w><ap using the Lenard-Guernsey-Balescu equation
(2.30). Two specific cases are considered in detail:; in the first, the
unperturbed plasma has different electron and ion temperatures; in the
second, the unperturbed plasma is characterized by a relative drift
between electrons and ions. For the first case they find that for

6,/ 6; or 8,/6. % 10, the real part of the conductivity becomes
negative, For the second case they find that if the electron drift

speed exceeds 1.37 times the electron thermal speed, and if 8> /.078&, ,

the conductivity is again negative.
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6. Collisional Effects on Small Amplitude Plasma Oscillations

Until recently, most studies of plasma oscillations have been
concerned with relatively high temperatures and low densities, as in
thermonuclear devices, or with very weakly ionized systems such as the
ionosphere. For systems in the first category the collision frequen-
cies are generally very small compared with the oscillatory frequencies
of interest, and this is used as a basis for disregarding collisional
effects. For systems in the second category collisions with neutrals
often predominate, and a simple Krook-type model is employed to account
for these.

In recent years considerable experimental attention has been
given to fully ionized, relatively low temperature plasmas for which
the foregoing collisionless or simple collision model assumptions are
thought to be unsound. In addition, in the study of high temperature
unstable plasmas it has been recognized that an inclusion of even very
weak collisions can have a significant effect on the growth rate of the
instability. For these reasons there has appeared an incentive to
treat collective phenomena including the effects of particle inter-
actions,

In the following discussion we present a brief review of some
recent work on collisional effects in plasma collective behavior. Since
relatively few theoretical results are available, the work summarized
here should be considered as a first step in the direction of under-
standing these phenomena. In keeping with the objective of the present
treatise, our emphasis is on the nature and description of collisional

effects. The multitude of possible collective modes that a plasma may
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support often makes a generalization of specific results very difficult,
and few attempts to do so are made here. Since a considerable effort

has gone into the analysis and classification of collisionless oscilla-

tions, the reader having more than a passing interest in collective
phenomena would probably benefit by consulting the collisionless litera-
ture first,20s74-83

In the analysis of small amplitude plasma collective phenomena
it is frequently convenient to Fourier-Lapiace transform the governing

equations, together with the Maxwell equations for the electromagnetic

field, and then to solve the transformed equations for the internal

electric field, from which all other field quantities may be determined.83
The result is then displayed in the form83
A, %
E(ﬁ $) = € a (%) (2.39)
A V"\,
l¢ (£,9)]

where 5; is the plasma dielectric tensor (or constant for isotropic
systems), the elements of g“ are the cofactors of their counterparts
in € and Q_(é) is a vector incorporating the initial conditions. The
dependence of the électric field is given by the inverse Laplace trans-
form of (2.39), and since g” and & are entire functions of § and 2

83 one is usually interested in the zeroes

for many interesting cases,
of the determinant Ig_{éq §) | . Thus setting this quantity equal

to zero yields a relation between the wave vector X and the Laplace
variable ¢ = fe +7 , and hence one estimates the growth or decay rates,
etc. of various collective modes (it should be noted, however, that the
dispersion relation ?g | =© does not necessarily imply a one-to-one
correspondence between frequency and wave]ength84)
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In the following review the reader will note in some cases a
remarkable similarity between the collisional effects on plasma collec-
tive behavior, and the collisional effects on transport phenomena
discussed above, This is, of course, more than fortuitous. It can be

70,85 that the longitudinal and transverse dielectric and conduc-

70

shown

tivity tensors are related; for S= ico we have

€, (k) = T + trig, ()/,

Ep (k) = T + drify(4e)/(wr= 40
with I the unit dyadic.

” In an early attempt to treat Tongitudinal plasma oscillations
including collisions, Bhatnagar, Gross, and Krook37 employed the simple
collision model discussed earlier, They treated a one component plasma
consisting of electrons with fixed ions with no external fields, and
neglected collisions between electrons. (The assumption of fixed ions
implies the wave frequency is large compared to the ion plasma frequency.)
Their results may be summarized as follows: (i) For wavelengths long
compared to the Debye Tength or the mean free path a small change in the
oscillation frequency was observed as the collision frequency varied
from zero to infinity; the damping was slow (i.e., Y/cw<<|) and reached
its maximum when the collision frequency equalled the plasma frequency,
(1) For wavelengths shorter than both the Debye length and the mean
free path the damping was heavy and was primarily electrostatic, or
Landau damping.

Lenard and Bernstein36 treated the problem studied by Bhatnagar,
et a137’38

using a pseudo Fokker-Planck collision operator designed to
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represent a diffusion in velocity space, and which conserved electron
number density and yielded the Maxwell distribution for the equilibrium
state. Their velocity dependent "diffusion coefficients" however,

increased with velocity in contrast with the true Fokker-Planck coef-

ficients. Their results are in general agreement with Bhatnagar, g;_glf37

87 88

Comisar, ' Gorman and Montgomery, Burgers.89 and Wu and

0 have treated collisional damping of Tongitudinal electron

Klevans
oscillations in a one component plasma, including both electron-electron
and electron-ion collisions. Comisar87 used the linearized Fokker-Planck

collision operator, Gorman and Montgomery88 used Guernseys reduction66

89 solved a Boltzmann-Tike equation

of the first BBGKY equations, Burgers
with the Debye potential replacing the Coulomb potential, and Wu and
K]evans90 approximated the first two BBGKY equations and then employed

a Guernsey-1like reduction. A1l of these authors obtained similar

results, which were restricted to weak collisions and long wavelengths,
The results may be summarized as follows: (i) A wavelength-independent
damping constant was found for electron-ion collisions, (ii) a damping
constant porportional to kz was found for both electron-electron and
electron-ion collisions, (iii) collision damping dominated Landau damping,
(iv) electron-ion collisions dominate the damping, and (v) a small,
wavelength independent correction to the oscillation frequency was found,
In each of the first two cases the damping constant Y was found propor-

39

tional to the respective collision frequencies given by Spitzer. The

work of Comisar87 9

has been extended by Buti and Jain” to treat high
frequency transverse plasma oscillations. Their results are essentially
the same as Comisar's.

The collisional damping of electron plasma oscillations is
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easily described in terms of momentum transfer out of the collective
modes, due primarily to electron-ion collisions, and the damping
increases with increasing electron-ion collision frequency. In contrast,
we might expect the effects of collisions on low frequency ion waves to
be somewhat different, since momentum transfer to electrons is small,

92 have investigated collisional damping of longitudinal

Bhadra and Varma
ion waves using a simple Krook model and neglecting ion-electron colli-
sions. For equal electron and ion temperatures, the damping decreased
monotonically with increasing collision frequency. Their interpreta-
tion of this result is that since collisions do not transfer momentum
out of the wave, their only affect is to enhance the propagation.

Kulsrud and Shen93

have investigated the propagation of ion

waves using a Fokker-Planck collision operator in the limit of weak ion-
jon collisions, They found the spatial damping to decrease with increas-
ing collision frequency as with the time damping treated by Bhadra and
Varma,92 and calculated the relation between wave speed and collision
frequency for comparison with experiments on ion waves performed by

94

Motley and Wong. Their results are in fair quantitative and qualita=-

tive agreement with the experimental results, but they suggest this may
be only fortuitous since they attempted to extrapolate a time-damping
theory to explain spatial damping lengths,

We have so far been concerned with waves in isotropic plasmas.

42 9

Liboff = and Oppenheim g have treated Tongitudinal electron plasma

oscillations in the presence of a constant uniform magnetic field,
Liboff used a Krook model to represent collisions, while Oppenheim
employed a pseudo Fokker-Planck collision operator similar to that used

86

by Lenard and Bernstein, The two treatments give similar results
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for Tong wavelengths and low temperatures, and for magnetohydrodynamic
modes, in the absence of the magnetic field. The results differ, how-
ever, in the case of "microscopic Larmor resonance" modes, in the para-
meter range where wavelength is much Tonger than both the Larmor
resonance and the collision length, Liboff's Krook mode]42 gives an
infinite number of damped Larmor modes only at propagation precisely
perpendicular to the applied magnetic field. Oppenheim's model, in
contrast, gives an infinity of Larmor modes at arbitrary directions,
except parallel to the field. Oppenheim suggests this difference
reflects the velocity-space diffusion property of his collision operator.
The damping constants found by Oppenheim and Liboff were quite similar,
being proportional to the collision frequency in each case,

83 that small amplitude disturbances of a

It is well known
homogeneous plasma near thermal equilibrium are stable; i.e., any such
disturbances tend to decay in time. In addition, this inherent stability
is not affected by the inclusion or exclusion of collisional effects in
the describing equations, or by the imposition of a uniform magnetic
field. In contrast the presence of currents or spatial gradients is

known96

to be sufficient to induce unstable plasma behavior.

The study of plasma instabilities is a relatively new field but
nevertheless has received prominant attention in regard to both labora-
tory and extra-terrestrial phenomena, prime examples being the contain-
ment of hot p]asmas96 and the growth mechanism of stellar f]ares,97’98
Due to the considerable complexity of the equations employed, the
analysis of plasma instabilities has generally been restricted to
collisionless treatments. Only within the past two years have attempts

been made to include collisional effects, While these efforts have
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been few in number, the results indicate that these effects may have a
profound influence on plasma behavior. Certainly more work is needed
in this area.

In an early treatment including collision effects, Kuckes99
analyzed the propagation of low frequency ion waves in a current carry-
ing plasma without a magnetic field. Using a simple one-parameter
collision model, he showed that "collisional effects of the electrons
can lead to growth mechanisms for these oscillations," while "the
thermal motions of the ions leads to a damping." More recently

100

Bhadra, and Kulsrud and Shen93 have reported studies of ion acoustic

waves, employing Fokker-Planck collision operators in an iterative weak

100

collision analysis. Bhadra treated waves propagating parallel to a

strong magnetic field with a perpendicular density gradient, and Kulsrud

and Shen93

assumed a homogeneous plasma with a small external electric
field. Bhadra found electron-electron collisions to have a destabili-
zing effect, while electron-ion collisions tended to stabilize. Kulsrud
and Shen, in contrast, observed electron-ion collisions to decrease the
critical current; electron-electron collisions had negligible effect.

100

Bhadra also used a simple Krook model for purposes of comparison;

he found only a slight difference in growth rates under some conditions.



ITI, AN EXPANSION THEOREM FOR THE LINEARIZED FOKKER-PLANCK EQUATION
1. Properties of the Equation

In the first three sections of this chapter certain spectral
properties of the collision operator are established. While these
properties (apart from the reality of the spectrum) are not necessary
for the later development of the expansion theorem, they are both useful
by themselves, and enable certain conclusions to be drawn regarding the
final form of the expansion,

For our purposes it will prove convenient to write the Fokker-
Planck equation in the Landau form (2.9);

IFA 3 B'9r ma =A F 8
P BZ 27 SJ '[F aF a[’]'gne (3.1)
=GL

where
w%{»,w) Mae (3-3@'3@):

rlﬁ is a positive constant, 3 =v- u-’ , and J: is the unit dyadic.
It is not difficult to show] that the Maxwell d1str1but1ons F‘ 6
satisfy (3.1) for DF‘)/Di"=O) [= A G . In the vicinity of equﬂi-
brium we may write Fj= FMJ' [Ih’»’d'(i.’,t)j . Neglecting terms quadratic

in {3~ we then obtain from (3.1) the Tinear equation

A'pr /A o4, oY
i orn G- m ] g o
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We will refer to the quantity Ej.(y as the perturbation from equili-
brium,

Equation (3.2) as it stands is in fact a pair of coupled equa-
tions for f} and QB . Due to the quite small value of the electron-
jon mass ratio the equations are however only very weakly coupled.
Thus for example the effect of the ion perturbation on the electron
perturbation is small when compared with the effect of the ions and
electrons in the unperturbed equilibrium distributions. In addition,
it can be shown2 that in the approximation m; >> m, , the ions act
like a single component gas, In the following we will consider the
equation for the ions, The treatment of the electron equation is quite
similar, and the modifications necessary for this case will be indica-

ted later. We have then,

o Lol T N 3.3

We will for convenience drop the subscript "i" from E;L and

Fi . If-? satisfies the conditions

L u—{-’—.—.o) Abinn, FME'—-E:O

V=0 V- 00

) (3.4)

it is possible to show that (3.4) conserves number, momentum, and
kinetic energy densities.

Introducing 10/}[)'[') = %/&[)expf’/\t) in (3.3), we find

v
e

~AF, 99 = 3‘9‘ . 543\1" FoE/ 2 _ 09 . (3.5)

o)

Multiplying (3.5) by 9f and integrating over v- we have, after a parts

integration,
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Mo B lonl™ = (a2 3 (dar FMFM’[%—@]Q_

AN /
j u'a\r fbjol M[g%‘%,]@.(&m

The second term on the right in (3.6) vanishes provided 9A satisfies
the second of conditions (3.4) and

Arin U"/13A(g) = 0. (3.7)

=0

Assuming these conditions hold we exchange v and ¥/ in (3.6), noting

that @ (¥, ¢) = Q(¥ ) . We add the result to (3.6), obtaining

/\ Sc/su’ FM /3,\’2 =

“0/3 Ja ﬁa _2957]. g [ ’ (3:8)

oV’ %V*
Since g% is a real pos1t1ve quadratic form it follows that the right
side of (3.8) is real and positive or zero. Hence dm A=0and A =
Employing standard methods3 we can find from (3.8) the most
general form of 3/\ when A =0 ;

(3.9)

Al we

Qo () = avira - o

with Q) %y and A, arbitrary, but necessarily independent, constants.

2. Expansion in Spherical Harmonics

From (3.5) we have
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P_. . [FM ijBU'IFMl -%3\/‘_&, . g] ] (305)

3 Sy RIN E,

. 3
with F, = N, (;/7) ”—exp(—x,;'fz)) X;=m:/26 , ve have

9 Fu /Q\r’_. -Zd'wlF . Aso vyl @ =y @ , S0 (3.10) gives

N

g ELN
Sds\)’ FM -)jv%.; . @ = U' 'a,/-f [F 3,\ Q]
- {(:/BV’,leaAl ’Q—Q‘Z/‘ Q +

L2 g?_v. . fd%-'FM/ QR (3.11)

The first term on the right in (3.11) vanishes if 9, satisfies (3.4).

Using the relations
ok 3 9 /L
Q -—.j_ Wu@:—:—-zlw'bz;(a))

and introducing a dimensionless time 7 and dimensionless velocity ¢ in

(3.3),

=) = dalNe T (M o= 4y
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the kinetic equation takes the form

3 —e* Y / —e’t - ’]
- 2% [Ee Seoe fdgc € In lg =<l . (3.12)

The time 7 1is measured in units of the "Spitzer self-collision time,"4
and ¢ = || s in units of the rms thermal speed.
Equation (3.12), in three dimensions, may be replaced by a set

of uncoupled equations in one dimension by introducing the spherical

harmonic expansion

o A
NOESIDIEWNCEWRE WCTON
==t

£=0
We find (see appendix A)

: 0, -1 H ™
stC/C c CJ,\ /ﬁ-w/ :; 27% \j Ry\1> (3.13)
)P
/'L W
fclscle—c 3’]/,&_5/, - Z WH:L, \fé SM (3.14)
Ay m
1
SJ%I&,—C’ ’&‘Ell = L{‘TFT (3.15)

where

© INAFL 2 * e A _ it
RM :S de’el? (%) \be’cl 3:,1 t+ ﬁdc’c’(?’)(? ¢ 3»;«,6')
<
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S,y = S dete®(5) [ (£) - 1] e w '
5dc'c’3(c') [211-3( > j

—ct 72
T = 'E'{'C? < (C+#)%—erf(c>)

[
with etf () = 24 f dxexp(-x*) . The expressions for
o
KM and S, were found by Rosenbluth et 1.i5 using a different
£ nd €t al

method, for the axially symmetric case m = 0.

Combining (3.12) through (3.15) we find

et m I R T AN L
“)\G Z Y@ 3n1m 212— '35_‘ e 52 £ 7vv(’m dc ¢
wm

_ 2_ 9 _er 3T Agm 3.16
) Y-l e [ﬁe 3 (% &fﬂ.( )
£ym

Performing the indicated angular differentiations in (3.16) and then
employing the orthogonality property of the spherical harmonics, we

obtain the uncoupled equation

u d? 2 ) o/a
Tt Gt = T [TW t(&-29T el

1(J+:) _o) e’ _ AU+D)
Tjum Zj+l [R 2>Ru o Ryl -
(3.17)

bl ENVENCR SRV LA S ))
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The index wn is clearly superfluous and will be deleted in the following.

Performing the primed differentiations in (3.17) we find

M9y = [Z—Z% ecf(c -E-Ic*ic 4;21‘{- ¥
+ [(‘z'l'g% +%>e’ (FrR)E “‘F(y

! [Ze’°1— MQ‘Z’) {fll'ce'ct*‘ (1= 5z —”:fme(‘;g]ffnl

+ Y2 (1) (0 2) jdcle—c’z(g—l)’”qau(ﬂ)-

(24+1) (24+3)
!t s\ A+
é%ﬁ | + aa’]{dce—' (£)" G (<7) =

it 43
chjgl) fd e (5) Gug (<) =

- Ye ‘z[’(”)(’{”)] joco!c’e“'z (%>I—éu (') .

24t 2L +3

(3.18)

For boundary conditions we will use conditions (3.4), which were
obtained from the conservation laws. Although (3.7) is stronger than
the first of conditions (3.4) we will see below that the solutions of

(3.18) which satisfy (3.4) also satisfy (3.7).
3. Spectrum of the Radial Equation

If we introduce the transformation
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we obtain from (3.18) the formally self-adjoint equation

Bld? [P%L%l] [Ql */\Mj Ryt SC" Ky 1€ 10 @)=95 50

with

P)= L% o) = g ™
GO = (2 - ) Tecb@) + ($- 2 -F)e™ -
j/fj'g') - +({ 7,-/’L ("F(‘j

_d (e [+ A 6,3) -
K,t (()C/) - Z(lj:l— € (e 74+3 (C ’

/((/{-I-I) cc/ )][{c/c’)f (Cfc’)

2= /)] (e

Transforming (3.4) via (3.19) we have

/&I\:\’\ 8_61/2 C/(‘Iby\,( -0 (3;21/
¢ > o0 de

Arinn -

c >0 (%/I ‘ (3.22)

We will Tater show (Appendix B) that the problem (3.20)-(3.22) is self-
adjoint.

The spectrum of (3.20) is that set of numbers $A,,§ such that
(3.20) has non-trivial solutions which satisfy (3.21) and (3.22). We
have already seen that the ,4h4 must be real, and must be positive for

A2 2 and positive or zero for £<2.,
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We can find the spectrum of (3.20) by first considering the

related problem

jJE [P 45'2{7 t ):Q! "’/\MI:]E]M =0 (3.23)

with conditions on the functions %nlfz) identical to (3.21) and (3.22).
Clearly P )CIR/JC, and GQ are bounded and continuous for all finite

c except possibly near ¢ =0 . For ¢<<!| we have

O )

Q () = L+ 06y -AUr1) |32 - TF *O(f‘?.

In general we can write

Ple) = 5 dx (e - &™)

[74
and thus [°(¢) >0 for all c<oo . It follows that for £ # © ,
(3.23) has a regular singular point at ¢ =0,
For ¢ small, (3.23) has the asymptotic solutions

Ynt () = A A (c<<l) (3.24)

)

The first of these satisfies (3.22) for all £ . It also satisfies the
stronger éondition obtained from (3.7), Aw. (¢=0) c'J/zgh!(z) =0 .
The second solution satisfies neither condition. This is clear for
A#0 . For {=0 , the second solution is a constant which cannot
be zero since the solutions (3.24) are linearly independent.

For ¢ sufficiently large and for A,, #o , (3.23) takes the

asymptotic form
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d*
_Qﬁ; _liL I/?. ﬂj =0 (e Ao,

We find (A, >0 )

‘jvuz (c) =~ AM c3/4q,4(2)uc5/7'—~/”> (3.25)

with >, = '/2-/6'7,,//4/

Given £ and Awg » equation (3.23) has only one solution which
satisfies the condition at ¢=0 ., This solution thus contains only one
arbitrary constant and it follows that AM and ”/M in (3.25) aré not
independent. Whatever the relation between AM and 'v/u is, (3.25)
satisfies (3.21) for all positive /}hl . Hence the spectrum of (3.20)
contains all positive A,,, for each £ .

To determine the spectrum of the integrodifferential equation
(3.20) with (3.21) and (3.22) we note that K, (¢,¢’) is a Hilbert-
Schmidt kernel and the symmetric integral operator in (3.20) is conse-
quently completely con’cinuous‘6 According to Weyl's perturbation
theorem,6 the addition of a completely continuous symmetric operator
cannot alter the continuous spectrum of any symmetric operator to which
it is added. Since (3.23) is self-adjoint (see Appendix B) it is
syrﬁmetric, and it follows that the spectrum of each V4 -component of the
lTinearized Fokker-Planck equation contains all positive real A,p. For
A=0 andAL=1 we found A= 0 belongs to the spectrum; this corres-
ponds to a shift to an equilibrium different from that originally postu-
lated. For £2/ the spectrum is (1l+] )-fold degenerate, corresponding

to the (2L+1 ) different spherical harmonics of order £ .
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4, Outline of the Expansion Theorem

We now proceed with the development of an expansion theorem
based on (3.20). Our method is essentially an extension of the theory
due to Weyl and Levinson,7 to include singular integrodifferential
equations with Hilbert-Schmidt kernels. We give a brief outline in
this section. The details are left to the appendix.

Since the eigenfunctions of the kinetic equation are bounded
and continuous on every finite interval, it is natural to pursue an
expansion formula for functions «(<) square integrable on the interval
A: 0<c<oo . As with the earlier theory we first establish an expan-
sion formula on a finite subinterval § of 4 , §: a =c= b o<a,
b<0g so that the singularities of the Tinear operator are external to

s . The‘expansion formula we seek is then obtained by taking §> &
in a suitable manner. In the following we will mean by Z.A the integro-
differential operator in (3.20) and by Lg the operator obtained when
the lower and upper limits of the integral in (3.20) are replaced by a
and b , respectively. In the following the index £ will be retained
only where it is necessary}to avoid confusion.

We have already seen that P) l” and & are continuous on §
and that K, (¢,¢’) is bounded and integrable on the square a€c¢=b,

& 2c’<h, Tamarkin8 has shown that subject to these conditions, the
solutions of LS ¢=-/\¢ which satisfy homogeneous bondary conditions
atc=a andc=b form a complete orthogonal and normalizable set of
eigenfunctions fh;ng on § , with an associated denumerable sequence of
real eigenvalues %Agng' Assuming the hSn to be normalized, the

expansion formula on & is thus
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00 b
Ul = Z ;\g,\ gkdc u(e) A; (c) (3.26)
n=g

where t(e) 1is any function square integrable on S .

We now use the Weyl-Levinson theory to take § = A . Since the
subsequent development of the expansion theorem is in every respect a
duplication of the earlier theory, we will display only the salient
features.

Given A , the most general solution of Ly f=-4 4 is a linear
combination of the two linearly independent solutions, say ¢, s ¢z .

Thus we can write

kgh ) 45) = fon (P: (6A5) + I b (¢, Ag,)  (3:27)

where fg | and g . are complex constants. With (3.27), (3.26)

becomes

00 2 b
o33 o b flewoss, o

\17\"

Following Lev1nson we define an Hermitian, positive semidefinite
matrix fk , called the spectral matrix, with elements kak which con-

sist of step functions with jumps at the eigenvalues '4Sn given by

o Conto) = pigy (ben0) = T 55
Let (’é('\ +O)=/°g (r\) , and let fe (o) be the zero matrix. We use the

spectral matrix to replace the infinite series in (3.28) by a Lebesgue-

Stieltjes integral

nle) = g Z ¢(‘z\>(4k/)\)o/ﬁgdck(/\> (3.29)

-00)
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where
b
X, - famm bF () |
a
As §~ A (that is, a >0, b>o00), ps approaches a limit matrix Po

To find Py Tet A= umtlew , w>o, and Tet Xo= @ +mA)P, bea
solution of Ls¢=—/\P satisfying the homogeneous boundary condition

Gun X(a) + phaa Pa) K'(2) =0
and similarly let X, = (]5, tm)§ be a solution of the same equation

satisfying

G X + b p PR X (b)) =0,

Clearly m, =1, /q)/rgm (o) and similarly for m, .
As a0 and b= so, m, and W, approach Timiting values in the complex
m plane denoted respectively by wm, ) and Woo (A). These Timiting
values are clearly determined by the behavior of ¢, and ¢, for small
and large ¢ , for A complex.

For q§| and Qév, to be linearly independent it is necessary and

sufficient that their Wronskian equal a nonzero constant, say one;

P [qﬁl 4./~ ¢, qSJ = |, (3.30)

This Tast will be satisfied if qtl and gﬁl satisfy the conditions

¢ (5,}) = %o ¢,(3\A) = tu
PEYG (5,A) = - PEYE/BA) = punom,

where § 1is an interior point of § and o =¢-<T. These conditions

are also sufficient to ensure that ¢, , 5157_ are entire functions of A
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for each fixed ¢ on § (this follows from Tamarking).
With these properties secured we can 1°1'nd7 the T1imit values m,

and m,, and hence the Timit matrix /oA , whose elements are given by

A
/OAJk () ~ Pk (’7) = ’g‘_‘;w "7; i{%« MJ'kﬂmiw)ch (3.31)
where

M, (A) = S

i
S
>

f

—

E

.‘r

b3

3

M, (4)

MQZ(A) = Ma-'Moso )

To find the Md'k we need asymptotic forms of ¢l and cfz_ for
large and small ¢ . These are given by (3.24) and (3.25), as may be
verified by direct substitution. Taking ¢ . 9‘2 to be asymptotic
respectively to c"(, Al for ¢ small, we apply the homogeneous boun-

dary condition to sz and then take a0 to find

My = oo (/(;fo>

m, =~ (A=0), (3.32)

Thus for 1750 only My, can have a nonzero imaginary part and conse-
quently only ¢7_ will contribute to the expansion formula (3.29). When
=0 both solutions are regular at ¢ =0 and the Timit matrix is not
determined until we specify o . The boundary condition (3,22) dictates
the choice =0 .

For ¢ large we take
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¢Z x A'}(.C3/‘{ el (WCS/Z_m> \/M = t//iM//Z/{)Fﬂ'l/lf) ’\h,( >0
and find ¢, by integrating (3.30):

4 o - &M '[yu(cf/z_cmﬁ
' Smif AMV 504( ,lCo = Yot)

where ¢, is a constant of integration. Applying the homogeneous boun-
dary condition to 7% = ‘f’,*mbé\)sﬁz and then taking b oo with
b >0 we find

8t exp [L' (% < - Vu,l)j

57‘( //LAV\;- Y, G (VM? Cf/?‘—”/nﬁ

m,, =

(3.33)

Combining(3.31) through (3.33) we have finally

Jﬁ (he) = d/’,m (%) = Wg/zmz/j[’)‘&,,l )M >0.(3.34)

Since the spectrum is empty for /\M <o, /o(«\n;z)is constant on this range.

The expansion formula (3.29) becomes

M(C) = SM(PL (C)’\M) &/x)u)dﬁ(/\hf) (3.35)

with
(229}

W= YM(C)QS,L*(C)/M)JC.

The expansion converges in the mean for all functions u) square
integrable on (o6 ,00). If the spectral function Ve is not continuous
at AM =0, this point will contribute to the integral in (3.35).

We return to the description of perturbations from equilibrium,

If PX(‘(‘C")FCQ,O> is square integrable in velocity space, then from
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As we indicated earlier we decouple the electron kinetic
equation from the ion equation by dropping the term (m, /wm;) ’Dﬁ’/?y"
in (3,2), This amounts to neglecting the effect of the ion perturbation
on the electron perturbation; but retains the effects of encounters with
ions in the thermal distribution.

The uncoupled equation conserves electron number density provided
(3.4) holds, but does not conserve momentum or kinetic energy in the
electron gas. This is as it should be, since a substantial portion of
the electron momentum, and a small amount of the energy, is lost to the
jons,

Applying the methods of section 1 we find as before drA=o0 ,
/\ >0 , and for A=0 we find jﬁ‘ const., corresponding to (3,9),
The remainder of the development proceeds as before, A spherical harmon-
ic expansion yields a set of singular integrodifferential equations, and
the transformation (3.19) brings these into self-adjoint form. As
before, the expansion formula has the form of a generalized Fourier
integral.

[f, for example, the ions are protons, then we can take f:g= [;Z
If we use £ in place of o; in the definition of ¥ and € , then the

electron equations may be obtained from the ion equations by replacing

Tle) in (3.15) by T(e)+x"2T(x""c)  where « & de /Ky = we/m;
6. Discussion

We have used boundary conditions obtained by requiring the solu-
tions of the kinetic equation (3.3) to be consistent with the conserva-
tion laws. The Hilbert space then emerged as a natural function space

for the framework of the mathematical development., The question
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(3.19) and (3.35) we have

(2o}

e fle?) = Z gcl,b () Prpee Elw\ o~ T (3.36)
z(,W‘ fe)
with
= #
= Z!’itl” SC‘S‘ o £ (2,9
and

Y o (5 ) = -l %(‘,M)\ﬁm(e,?’).

The functions 4@4 correspond to ¢2 in (3.35) and are the solutions
of (3.20) satisfying (3.22).

We have defined the density, mean velocity, and kinetic tempera-
ture of the ion gas as being proportional respectively to the first

three moments of theeguilibrium distribution F

m If /D is continu-

ous at A,y =0 this point will not contribute to the expansion formula
(3.36) and the eigenfunctions (3.9) for Au"=o will not be contained in
the expansion, By virtue of the conservation Taws the functions (3.9)
will then be orthogonal to (3.36). Thus (3.36) is complete only if ©
has a jump at Ahlz o for j==0}l . It follows that the exclusion of
(3.9) from (3.36) yields an expansion which is complete with respect to

all square integrable perturbations conserving n ,<wy>, and & .
5. The Electron Kinetic Equation

lle have developed an expansion theorem based on the uncoupled
kinetic equation (3.3) for the ions. The extension to the electron

kinetic equation is straightforward and requires only a little algebra.
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persists (see e,g., the discussion of Uhlenbeck and Fordg) as to whether
square integrability should be a requirement on the distribution
functions from the beginning. In the light of the present work this
condition does not appear to be necessary, and for our purposes it would
not have been sufficient. To see this we note the condition

[d* [Rif]"< 50 Teads to

/&/:v\ U—S/z.F =0

o , (3.37)
which is weaker than the corresponding condition (3.4). Since both
solutions of (3.20) satisfy (3.37) for L= O, it would be possible to
have an expansion theorem for solutions of the kinetic equation which

are square integrable but do not satisfy the conservations laws,



IV, THE SCATTERING OF PHOTONS FROM A PARTIALLY IONIZED GAS
1. Some General Properties of the Scattering Function

In the first part of this chapter we present a brief review
of a classical derivation of the scattering function, and discuss
certain properties of an equilibrium gas relevant to the computation
of the scattering function. The rest of the chapter treats photon
scattering from a partially ionized gas.

The photon scattering can be characterized] by a cross-section
describing the effective area that a particle in the sample presents
to an incident photon, having direction Q- and energy Xw , for the
scattering of that photon into a small solid angle about the direction
AQKand into a small energy increment about Xe’. It can be shown
that, neglecting relativistic and dispersion effects, the electron

cross-section is given by]

r s — o
T (0, 8w L) = Lo (B) S (k000 (4.1)
where oz (6) is the Thomson cross-section and K 46 and Aco are

given by

K=t-4'  wo=f4flkt), sw= w-af

with w=ck , clck’, and

£k =0 /K =,

- 78 -
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The so-called scattering function S is given by

0
S(e,ae) =,;7;'7V-e g dte=tte% 6o (s 4) (4.2)

where
G (e d) = < peile,0) pE > (4.3)

The normalization is such that] N€ is the total number of electrons in
the scattering volume. lIt can be shown] that the scattering cross-
section for ions with mass M; is of order (me/m;)™ smaller than the
electron cross-section (4.1), where me is the electron mass. We will
thus neglect the photon scattering from ions, assuming local charge
neutrality in the scattering system. Scattering from neutrals will be
considered later,

The function ’;e in (4,3) is the Fourier-transformed electron
density operator. Since the derivation of (4.1) was necessarily quantum
mechanical, it follows that the density operators should be described
quantum=mechanically, It was argued in reference 1 that the difference
between the quantum and classical descriptions of the density operators
will often have negligible quantitative significance. On this basis
the somewhat simpler classical description was employed. We will
continue to assume the validity of this approximation here. The reader
interested in a quantum mechanical description of the scattering func-
tion would do well to consult the work of Rosenbaum, Zweifel, g£_§1@2’3

We are clearly concerned with the electron density operators

/33(25,15) ,where
foe(z,f) = ga/?’\f ge(é,‘l[)‘b)
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and

e

N
%ﬂ(zs,,, = ) (k- 2®) r-vip) | (4.5)
&

We seek ultimately the thermal average of the product of the Fourier-
transformed electron density operators as displayed in (4.3); i.e.,

with (4.4) we wish to obtain

54 et) = 45 d dond e CEX et oty

To compute the thermal average above we follow Osborn]

and generate

a set of equations for the phase-space density operators, which we then
solve subject to certain well-defined approximations. Since the
procedure for generating these equations has been delineated e]sewhere,]
we present only a brief summary here.

Assuming the dynamical variables of the system obey the classi-

cal equations of motion, we have

*J‘* = %‘%l = {XJP() Hz)

£ __9dH _
P g gPJ’H}

where

H=T+V

is the plasma Hamiltonian. The symbol { } means Poisson bracket, and

for any function A of the system dynamica] variables,

EA)HE = [%QJ%;% X 354
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It thus follows that

>
i

- S H,A¢

- LA

W

and hence

Alt)=e "t AL .

In particular, the phase-space density operator a‘“ for particles of

kind A is given by
N/‘f
9 M50t = e~ th D LX) § (r- ) (4.6)
P

If the plasma Hami]tonian is taken to be
A

N
H=14 2 Z (ZFW?A FED 2 VM-

A(srecfes) x A ok)(b
NN
8
+ Z VA (ll*'z.(ﬁ/)) (4.7)
A8 o(’p

A#D
then it is a straightforward matter to show that ﬂ “V,,t) satisfies
the equation
A o9 A
)

5?

Q7

S el ) SJ&’J%’\/"%'K’D33(%&({%) =0,
;

Ma 3V X (4.8)

Equation (4.8) is similar to eqn. (II.19) in reference 1, but
is now generalized to include any number of species in the scattering

system, Now as in reference 1 we let the average of ﬁ" be F4 ,

i.e.,
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FAlx ) = <gAQ gl (4.9)

and further define the fluctuation operator gg“
Sa"/zs, vt) = 9 xyt) - FAl ¢ +). (4.10)

Still proceeding as in reference 1 we combine (4.8), (4.9) and (4.10)
to obtain an equation for the fluctuation operators Sg A, and then
approximate this equation by neglecting terms quadratic in the fluctua-

tion operators. We obtain

Y fg A VS A | 3_,3254310/3,\//*8/__/
T x ' 1X=X1) )
D 2x Mmool X4

(x)[F"(z,y.t)Sae’(& rie) +8a ) DFD] =0 4

Equation (4,11) 1is now further simplified by assuming that the target
plasma is in the thermodynamic state, and further that the singlet
densities F?A s F:B are independent of space and time, and are

Maxwellian functions of the velocity. Euqgation (4.11) now reduces to

D8 A Yt 3RS o
SETES T ar a0

d8¢/ % VA (1 X0 $q Bfxl /1) = o,
() i (4,12)

It follows from (4.2) and (4.3) that we must solve the system
of equations (4.12) for the Fourier-transformed electron fluctuation

operators as functions of time for all T , —ee < t<00_  To this end

4

we introduce respective Laplace transformations for t>o0 and t< o :

H]
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S98 (s, ) = Swdfe'PtS%" (%,4t)

7

p=0+y
T +ieo >0
[ t
S," (x4t) = 57 Sc’?ep b1 (x, P
o-le (t>0) (4.13)
=0 (t<o)
Sty = (Cdte=PFSe i,y .
a—(*W;P - S ¢ 9 5T p=Ttiw

leo  Ttieo

t o L0
S (a,xt) = =57 S dpe® Sat (4 p)
T-lee (k<o) (4.14)
=g (t>e)
where
S9 A (x,x,t) = §9% + §a? (4.15)

and further introduce the Fourier transformation

Saaf (s,rp) = fﬁ?‘e%'zs gﬁf (3,%0),  (4.16)

We thereby obtain from (4.12)

: Y
(p-ixex) Sqf (e ) + 5 (k- 52 (0

ey

00 3 VL) [ SgB () p) = 85"k v0).
8

4,17)

We now divide (4.17) by ( p — ck-v ), integrate over & , and
define
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he (2,0) = §d% St (54p) (4.19)
and
= V), So’au— >R/
N, = K- (4.19)
A@ 'VV\A P,l'Eo )
obtaining

. 3 §q P (k¥ 0)
('*AM)‘\:A B Z A 4 hf =2 g : V—P-ﬁm/.v = .
B #A il

Now let & represent the determinant implicit in the system of equations

(4.20) and let Ay be the cofactor of h® . Then solving for h% we
find

e Ag/%,f) 8/,
he (5,0) = £ 2 Tl Sﬁf L )

p—ik-¥L

Finally, we multiply this Tast expression by gge*Yk,» ,0) thermal

average the product, and integrate over J[’ . These operations yield

LY
Sc]5u—dau-/<gge*/éf;i’jo) é’ag/z,y) 93>T = i%‘ fp TG c4%) (4.22)

where

G ) = < fe” o) G g

- (4,23)

We now perform the inverse Laplace transformations on (4.22),
as per (4.13) and (4.14), and employ the Laplace convolution re]ations,4

obtaining
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0o

Iy D+B(£'2,> eigu{(é'?)

3 Z T
i — W -
m ,P el A (%9 00 [t-2)
0 -1 00 ) Lk [t
dr D (¢,Be
- oo (0‘<0“__)7’:<o) (4.24)
where we have defined
T tieo ( ;
® PY Ae (E.P %0\>0*
- ' ____B_____L... + +
kr) = -
Dt (M) ) i'lm' gdPe A(!S,M —%o‘<0’_ - (4,25)
o -loo
WUriting
8 e
DB - D+ + D..

we can easily show (provided the interparticle potentials depend only
on the magnitude of the separation), since AB and 4 are functions of

the AAB only, that D(5 obeys the symmetry relations
D®(k2) = D8 (%-7) = DB(ko) = DBfFE-2)  (a.26)
and further
DE ey = DB*(k ) (4.27)
Combining (4.3), (4.4), (4.10), and (4.15) we have, with

(2 dar e = X et pe ) = (mfPre WOS (),
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where N€ = ne«x scattering volume,

G (k,£) = (zm)*ne N& §(¥) +

_,_Z Sdﬁfdslfl lrE [t SJ?C";B'.‘K’? DB(.‘E)?)G'&&S,\Z;L”D). (4,28)

- 00
Fourier transforming with respect to the time variable as per (4.2) we
find

S, a0 = (mPne §() S (6ea) + by T (24! S fenr-oed

2]

G (5, yoio Sd?e e De/ﬁ,f). (4.29)
- 60

To complete the description, i.e., to portray a given experiment,
we must specify the interparticle potentials and the quantity G_ee(o)
defined in (4.23). The complete specification of this latter quantity
requires a fairly detailed knowledge of the scattering system, and is
generally a formidable computational task. Nevertheless certain general
properties of C?Be(a) are readily established and are germane to a
description of the structure of S/ﬁ{/ Ay,

Consider the thermal average of the product of the time-indepen-
dent density operators for the species ( A, B ). With (4.5) or

(4,10) this quantity may be written either as

SUCTCONR @R IC IS
Cqr@qgp@hy = FA@F () +
b < 5qA(0) 58 (@) -
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A
where Q= LY As before we assume the functions s F® are
space-and-time independent Maxwellian functions of velocity FQA R

@ .
Fw . For later convenience we denote

G"(8,Q") = < $3 (@) S48 (o’ )> (4.32)
Since
fcﬁ@ d*Q' <9A@ 9 @)y = N N8 (4.33)
by definition of the density operators, it follows that

So’a@ 3’ ¢ (e e) =0. (4.34)

1€} .
Our interest here is in the functions C?A , the Fourier transform
GAB(£> being needed for (4.29).

We begin our analysis by separating (4.30) into two terms;
A

<P @geENy = 5, £(@a)< 7 (R ¢

A B
+<ZN ZN $(a-a*)§(a/-af) (4.35)
br% fase

We take the system Hamiltonian H = T+V to be as given in (4.7), and

define

Z. = gcff’ Ve -T/e , Zy = Sﬁx“e'v/e

where the respective integrations run over the coordinates of all N

particles in the system. We now write the second term in (4.35) as
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NA v e
<2 Sla-e*){(a'- Q%) -
dﬁp¢x44 B
(TrV)/BNANB
(dea' 2’z e TPy f(a-asee®)
L, pFR Y A=

I

vANG
MAYMEE) D (3% 2,718 § (e Sate®)
L8, p g’ﬁ' e

1}

A ) MEL) N (x,K), (4.36)

where
nt mAx) = R (2)

and n? is the number density of the A th species.
To determine the functions ane defined in (4.36) we take the
gradient of (4.36) with respect to X .
A B
Ab (x x/ NoN -
'91‘_1._){___) = f jﬁx” z e VI8 § x-x)S(sx )
X

A By o # ol gA=B
v -V/e v
_ __»_z O T P Vs "
]
Brp# o fA-b

From (4.7) we have
N<NC

V-4 S V) s ) }f e

c#D
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and hence o A NP A0 . *1)
A -
5 o
X ~ & D T
m#ng=A
NA’NA DVAA ('?SO"“XO-D
b T (4.38)
« 0

In the following we will neglect the second term on the right in (4.38).
This term is proportional to the force exerted on a particle by that
same particle, and we expect that the effects of neglecting this term
will not be manifest in any observable results.

The relation (4.37) now becomes

NA)NBJND ) V/Qavﬂnmsu( Xv-D
- _ 3N 2 -1 x-x0SxxB)e T2 (BT
- 5 Z Z SCI X ZV S(\* 35%
b A
ND
| SJBX”EJ'é(&X*)S(&M) Jox §(x"-x7) e
A

8 _v/e YyAPx*-x")
% {f D=A e U

We now separate this Tast into two terms; one for v‘=¢6 ( and hence

B =D ) and one for T#p
Can e (x &)

3%
Wr}Ne e AB( o
—-@'— fc/f}x“'c/3><”zv"5(23’%*)5@"25@5(2&”-5{5) e iv—é—):éﬂ -
£ &

ﬁ#d%@:ﬁ
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NANEND
S )Y (e W) fdoer ) S5 6 o,
D «p,r ~-V/e
P ol if 8= A,v;@ng A TR ®zr'e .

Recalling the definition (4.36) of m™*® (x &/) and introducing

N“ND _v/e
R AU Z gcl3><“S(zs*é“)tS(z’-wS(zs"—é“) 2y
T
(b#o(:/e A~o~#xﬂD Ao #p
the relation (4.39) becomes

on*®(x ¥") VAB(1% -]
1 B( ) ¥ A .n)_AB 3 ( )+_
X o 9X,

l AD (1x-x" "
t ) (4B o ey o tha

D wa
To compute the two-particle correlation functions mee s We

write n$eD as

ABD (x, £, X0 = n#n8nP + n AP0 )+ n® 0 (s, 5 +

&D
Fadn )+ L\: (2%, 2") (4,41)

b | . . .
where kg& is a three particle correlation. Inserting (4.41) in
(4,40) and neglecting tw3 then yields the system of equations

o) e VAN S0
9% 6" 9%

AD/ o e
P ) | L ey o, e
D
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Thus given the system potentials, the correlations may in principle be
computed from (4.42).

Two pertinent properties of the nlAe

can be demonstrated
without specifying the potentials. To obtain the first of these we
introduce a change of variables in (4.42) according to

T = x-X’ tle x"-x!
v w ) LYV N

This gives

3“1% A8 3V A 3, VAP0t 4o
S +—9'— n, N(“) ¢ 5 J! ————%é—-—-)nf ! )=0 (4:43)

Equation (4.43) is clearly invariant under the transformation L»-r
If we now add a constant vector o to A such that

ICral = 101,

AB
we find that (4.43) is unchanged. It follows that no is a function

of 1T1 alone; i.e.,

\

hlm = Y\fe(l;tl) = hl’*e’(rzg—z/;). (4.44)

In the sequel it will be necessary to have on hand information
regarding the normalization of leAea Since the normalization is
already specified by (4.33), we merely combine (4.,30), (4.31), (4.35),
and (4.36) to find Gw(@;@’> as a function of n,"® .

G5, & wr) = S, §(x-x) d(g-)nt MAW) +
MAL)MBE) [P g -ntnB] sy

Integrating now over ( X , X', W , V') we find, with (4.34),

WA
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gc’sxd g, x7) = NY(N® = Sag) (4.46)

or

Scﬂf n e (r) = n* (N®- Spe) .

We return now to our discussion of the scattering function.

e /
Fourier transforming G &, 2&;[){’) , we have
3 %=X
G (6,2, r00) = [dxdxe™ B e (a1 )

where GP€(6) is given in (4.23). With (4.44) it follows that

G € (5, v ¢0) = G@e[-es,y,[',o)) (4.47)

. g .
and since h1A is real we also have

ge ) ge X
G (kv 00) = Gk, reto) . (4.48)
Combining (4.29 and (4.47) gives
S (& se)= S(-k,- aw) , (4.49)

It follows easily with (4.27), (4.29) and (4.48) that S(k, 4w) is real,

as we would expect.5 With (4.28) we also have
Gk t) = G (g -t) = o7 (1), (4.50)
Combining (4.,2) and (4.50) we find

S (k00 = L e gat (T8 cee by (4.51)

ee . s
Hence when G satisfies (4.50) we can compute the scattering function



- 93 -

having only G ¢for t>o0 .

At this point, instead of inverting the Laplace transform as in
(4,24) and (4.25), an operation straight-forward in principle but

generally Herculean in practice, we adopt a procedure due to Rostoker 6

Thus we consider first the identity

S (k) = 5= S

coO o

Sdt OIS (1)

(e%) | o 'yl
1 { g [Sdt st SC'“’M IS te)
= 2,’T ) s
(4.52)
= S (M)n)) + 5§ (kv
where
s, = 282 Lol ) sy
since4
(gt o O < (00 iP5
(]
0 '-va)t
S dt cL( x SO - P 5= (4.54)

- 00

with F> indicating principal value,

Now Tet S+ (&,p), P =T+(¥ be the Laplace transform of some
function, and consider further the following inverse transformation

U (060 00 -
/&&A B ,

ur
-l - 00



- 94 -

1
NN
g o 8
X
o
™~
<

!\‘.
e__
<

Q\/\
&
’é

e

N

ﬁ\
(%)
’;\
\_/

-— -

w 1)
= L de eWtS(tS,v)) t>o ; = 0 t<o. (4.55)

In arriving at (4.55) we have used the definition (4.53) of the function
S+(E'[y> . Substituting (4.2) into (4.55) we have

T+l 00 (7] '\)[f;—-t')
boma | erts e - g f“* (R
0 -[ %0 Zoa

=5 Ne 6—6‘9{5 t) t>o0; =0, t<o. (4.56)

It follows that 81— and the Laplace-transformed correlation function

for +> O are related via

e
U"-50+ S /M,O‘-rh» = Q__wf 'brN"- G e(,,,(ﬂ-c») (4,57)

From (4.53) and the knowledge that the scattering function is real we
have, with (4.51)

S(k a0) = Rz L Gee(k THaw),

o->ot

We now combine this last with (4.3), (4.4), (4.10), and (4,22). After
Laplace transforming the forward scattering term (er)an"”\’e § (&)

and noting that
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Qﬁ_ AN ('271—)3’,\2/\/3 5(15) - (2”)3 ne S(.‘S)’Ql [S/A&J)—r%: PXIJJ]

A€ + .
YTN 0o >~ +14c0

- (211')3}'\9 $(k) §(ae)

we obtain

S(¥ a0y = (2m)®ne S(e)S(a0) +

Ag c/B\J’C’B [6,39/ U‘__)'
) D) riaenieer - (458)

Al

7TNe Ry °">°* B

2, The Electron Scattering Function For A Partially Ionized Gas

In this section we derive the electron scattering function for
a system composed of electrons and one species, respectively, of posi-
tive ions and neutral atoms, The extension to a more general multicom-
ponent system is straightforward but adds considerably to the algebraic
complexity. We will continue to assume that the equilibrium plasma is
characterized by a single temperature common to each species, and is
free from spatial gradients or external fields. le present two differ-

ent treatments, with somewhat different results.
A, Reversible Theory

From (4.58) we have, neglecting forward scattering,

(l( ACO)- /\)g ’&"“" —,——(x)

Tsot A
A ARA ee
(X)BHA (|+AM+—AJM i A“zé

- Ael' ("" Anv\— AVH' Aﬁ{)é@leg I

Ay = (Den /Aol (14 Au')} Go“e] (4.59)
| LV AV “'-Av\f (Aen/Aei> Gale
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where

A= |+ Ae ("F-A-mn"AMC—At'n) t

DN A c An
14 Ar ey B - 55 < 082

and

ge _ d !
(K’ﬂ ] g fu« v <ga s £ ¥,0) gge*'*)o>>

In writing (4.59) we have made use of the identities

-/Lci-Jmfé = Nee L\
_A-d\p Aﬁ{ A’(d\ = —A/Sol Ar{p A,b(.

We have displayed the scattering function in (4.59) in a form that will

facilitate an estimate of the significance of the terms involving the

neutrals. To this end it will prove useful to write ./LAain the form

/L,;A A _ VAB(S)nA[’

T >ct 4B - e

2

b [Z3
- Aa:w_uzjdue“

(4.60)
K% 4 u+ b
-00

KVzp
where

Voa = (ZQ/MA)I/l

and the sumbol */)" next to the integral means the path of integration
is deformed above the singularity.
. A . .
To estimate V B(E) when either or both of the pair ( A, B )

is a neutral atom, we assume the potential may be approximated by a
Yukawa potential, VAB(T‘) ¥ Cpp r-! exp (—-r/a)
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where a is the effective range of the potential,

o~ '0—80\/\/\

and C/w is a constant to be determined., We have easily

0\1'

VAR (k) = ey, T rtal

With k=l 2 >> 1078 cun , K% %<<| and thus

VA (k) > 41 a*c,, . (4.61)

To estimate the constant C‘Ae we recall that the center-of-mass differ-

ential elastic scattering cross-section for the pair ( A , B ) having

relative momentum X_/{ is given by7

OIS < A

where Mo is the relative mass. From (4.61) it follows that, in the
energy range of interest, 0‘”3/@) is approximately isotropic. Writing
it = Sc{acr’*ﬁ(e) = Jo "% 0, (em®)
8 . _ 7
where™ @, is of order !-10cm“, we have
-6?
Lxio™%" o (o)

@™ (6n) Mpg (7

To estimate the various terms in (4.59) we assume M, em;: and

CAB (ﬁ/lgcm\ A_/

take m, to be the mass of the £ '* atom, wm, ~ 2.5%/0'257«« .
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Assuming for simplicity equal electron and ion densities, we have, for

A= é?q3f? s

Ahv\ ~ _y_\_h Al-'v\ A CV\V\ al Z\_}:
e
'Al«" h -A'L.L' (el/KL) V\C
-3 y\“ l/’L e 1O
x —_— =
2 xle = 0 (e B 2,

yAn v -an" .
=€ ‘:-e j—j—;—: > 0,90 —3;0;'/"@‘)%7—-76: . (4.62)

Here @ is the laboratory scattering angle,

|gl= |&-21 = A~ tin &

A

and appears only in the argument of the sine, in contrast with the
kinetic temperature, also denoted by 6 .

Noting that9 the quantity in square brackets in (4.60) is of
order one or less for all values of Aco/xu; , we find (for A= 6943 A° )

/(M'«'\ A I n"
ot | A |, 6xlo’ﬁ(¢ml«uf) To (|

| At e L1

el

: Aen A " [ (4.63)
Aok AM] ¥ Y6 xj0” 2% () T"‘@[V‘“])

T>ot | e g/w)

and
Lioon AN Ley 237 1 )Q.ollz(““’“) e Ul
coot 70 QL " Ubrlo (" 0r 61@}91«) w7,

It is clear that the quantities in (4.62) and (4.63) are smaller for
larger m, (or m; ) and are largest (about a factor of twelve larger

than the abofe values) for a hydrogeneous scattering system.
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To determine the significance of electron-neutral correlations
in the scattering function, we must estimate the magnitude of the

quantity (see (4.45) and (4.59) )

Gt e [t () - ]
= =

G, SJ3FCL£°£ [hfeﬁﬁ _.“tm{]

) (4.64)

where we have assumed m, = WAy . To facilitate computation of the
pair correlation functions Yn?e appearing in (4.64) we introduce the
assumption that the average distance between any pair of particles is
large compared with the effective range of the charge-neutral or
neutral-neutral potentials. This range being typically of the order of

lo’€mn, the assumption implies particle densities small compared with

16 am=3 | Under this assumption it follows that the contribution
of neutrals to the correlaticn between charged particles may be

neglected, We thereby obtain from (4.43) a pair of equations for

nec(r) wq,e(P) . Taking advantage of (4.44) we can write these

as
dny® ot 1 ee S Y ee/r!) —
dF"_e“r"Ler = It Io- v'f"*m
e 2 \
_oneged (el les 0
& dr Jr!r—x'l )=

clVl’ le 1
e _nferd (gl ees
-%"- = Nt 2 dfgd = M /") +

3 ]
né g€ J 3.1 ! Le ’):
n @, a N
where %56 is the ionic charge and n€= ?;he . The equations above are

similar to a pair of equations treated by Lamb1O for a singly ionized
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gas; with ?¢'=l Lamb's equations coincide with ours. Following Lamb,
we first perform the angular integrations and then differentiate with

respect to € . The result is a pair of differential equations

_L d 1Jnfe> e™e dnet st '
-t - = (& n:e Le_ pfey) _
rhdelt de =~ I ¥ "8 (3iy"' M > =©

L d nd e
o4 m#> %‘Téed:; ‘/m\e( - gand )-.—o (4.65)

The system (4.65) permits a non-trivial constant solution,

Taking
€= A, ni€ = Au,
we find
?—JAL.
10

Lamb"~ has shown that for distances T large compared with ez]/éi s
the first derivatives in (4.65) contribute negligibly to the solutions.
Neglecting these terms, it is then a simple matter to show by direct
substitution that the functions

pee = &e-r//\o) 1[,:@ = eir%-e”r/'\”
r

satisfy (4.65) provided B = -2:Ba, and where

/\ iy - b{ﬂ' V\eel(H'?[)
0 =
We thus take the solutions of (4.65) to be

ne () = — ﬁ_g_z ~r/ A0 . 72,'/4;

' -7 /A
h{e(f): —rl r/o‘\"Az-

\

T
r>> fe
)
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The constants A, , B, are determined easily with the normalization

conditions (4.46), so that finally we have

(A _f/Ap |
e
nEe(S) = nene [“g er + 1= -,;‘/

. T /M
! Ly @ 2:€ e - .l{]
ni€ (0 = [ z —v tI° N (4.66)

where N = N & Nt
To estimate the significance of electron-neutral correlations

as per (4.64), we write n € () in the form
nrefr) = whne ):CF NORIE 7&7]

e
where <¢“ is a function that we expect will differ appreciably from
zero only for < Q.“’IG'“e‘w«, the range of the electron-neutral

potential. The normalization condition (4,46) gives

P O

Substituting the above form of nane

together with ne® from (4.66)
into (4.64) now gives, neglecting the contribution from terms in |/N

(which corresponds to the neglect of forward scattering)

G, .
g T (g (1+88) (e 5 7o)

With g ~A-la (7% lo=5cm)"! where A is the photon wavelength, we

approximate the integral above;
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gc‘grel:g-& ¢v\e[r) = gclarefq,g-j:/a, ¢me[r)

Thus finally we have, with A = #xX(0~% can

C;, (e 22)7 (16 40) (11 69)

x (1rn8) [,+ 0,9%10' 9?‘2_33 sw“j

We are now in a position to estimate the magnitudes of the
terms involving neutrals in (4.59). First, we note from (4.62) that
Do /Ly is negligible unless n"/ne 210" or larger. In such
cases the total light intensity scattered by the electrons is greatly
exceeded by that scattered by the neutrals. Since our interest here is
in the influence of neutral atoms on the electron scattering function,
and since we do not anticipate an experiment in which scattering from
electrons could be observed at such extreme density ratios, we will not
consider these extreme cases here,

It follows from (4.63) that (4.59) may be further simplified

provided

":o'_h ()" (oon=2) o™ fonn) W8 (6an=) < /027
elsy & (wr)

- (4.67)

3
Since particle densities do not generally exceed IO2 awrs(e‘g.,

-3

1o . . .
W& 10" 2 for graphite; n"a IO'Bxa’W) Cvn at atmospheric pressure),
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we would expect (4.66) to hold for almost all plasmas of interest here.

Thus when (4.62) and (4.63) are satisfied (4.59) reduces to

S(K peo) x

e e neé
e ke e L [(HA;;)GOQ-AezGJ g’+A“A¢@e§] (4.68)

where now

A = |+ A +Al’l.’(/—AV\€A€’V\> .

The dependence of the scattering function displayed in (4.68)
upon electron-neutral correlations (the term containing (E:B ) disap-

pears when

0 (o) 18 (e =*) 23

<< Jo 7 (4.69)
e (w)
If in addition the condition
) e e
- C - << |o (4.70)
8° (uw)
holds, then A, A,,<< | and (4.68) reduces to the result! for

a fully ionized gas. For n" % jo%> cn=? , (4.70) becomes

T, (an) ne (M_S>
8 *ler)

It 1s thus apparent that, unless very high neutral and electron densi-

<< |o?? (4.71)

ties are present, together with relatively low temperatures, the present
theory does not predict an observable effect of neutral atoms on the

electron scattering function,
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Before abandoning our quest for an observable effect of neutrals
in the spectrum of electron-scattered photons, we turn to a somewhat

different and more realistic formulation of the scattering function.
B. Irreversible Theory

It was noted in Chapter Il above that, since there are generally
many charged particles within range of each other simultaneously for
most plasmas, the effect of close binary encounters may often be
neglected. In this case one may represent the effects of particle inter-
actions by an appropriate electric field term in the kinetic equation.

In contrast, we would not expect such a "“field representation" to be
suitable for the representation of encounters between particles having
ranges of interaction that are small compared with the mean interparticle
distance. In the following discussion we adopt a scheme outlined in
Chapter II designed to give a more realistic treatment of the inter-
actions between charges and neutrals than that employed above.

Ne begin with equation (4,11) for the fluctuation operators of
the A th species:

3594 2694 1 , VAR (1% "))
'S_% t Ve Ti‘ ~ my ZB SJ%(’J"U” 3 .

_‘Q, A T A B/, n ) -
7 [F (Z,I,t) ggﬁ(yﬂc)g’;{) + gg 5,3{")5)!: (25,)[)1‘_)7_0,
v (4.72)
At this point in ref. 1 and in Part 1 above, the assumption of thermal
equilibrium was introduced for the target plasma. Before doing so here

it is convenient to exploit the difference between the relatively
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Tong-range Coulomb forces between charged particles and the relatively
short-range charged-neutral and neutral-neutral forces. To this end,

and with an eye on our ultimate goal, we multiply (4.72) by Sﬁeéé)gflo)

average the result, and introduce
"'e(x,%,, £) = /«Hf (Sa 3% 0) gj t)> (4.73)

We thus obtain from (4.72)

Ae Ae AB gy
At ol | faﬁx”d%" VA8 x-x

R X WA

1)

8 0
P) A ge/, ! " ‘t’ XX
2 [F s ) - Pl el e 2 25
We now introduce a change of variables according to

L= x-x", g'= x"-x'

o (4.74) takes the form

PN L Z gJS,Jg o YW1

m—— ——

T YA X

gL

2 [FA L) PR o) + P65 )] <o (479)

In writing (4.75) we have suppressed the dependence on the

variable x’ . Our identification of the integrand in
Me@) = gc/a'f'<§g’q/&<¥0)§tae(x,i’,0)\>r (4.76)

as the equilibrium phase-space correlation function for the pair

( A, e) implies that f7Afo> is a function of £ and ¥ only. It
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follows from (4.75) that f7he/f> is a function of £ , ¥ , and ¥ alone.

The identification of Gt %) ,
e
G* = gdﬁw N (5t (4.77)

as a time dependent correlation function, and the relationship between
the scattering function and the space-time Fourier transform of G

has been exploited above, The description of f"e by a linear trans-
port equation, as in (4675L has been suggested on the basis of a semi-

intuitive argument by Nelkin and Ghatak,]]

12

and has been employed by

them and by Yip and Nelkin = in a study of slow neutron scattering

13 have

from liquids and dense gases. Recently Van Leeuwen and Yip
derived a similar kinetic equation for f1Ae , for short range potentials,
from the cluster expansion of a one-particle distribution function.

At this point we introduce an approximation into the treatment
of the charged-neutral and neutral-neutral interactions. This leads us
ultimately to the binary collision description attained by Van Leeuwen

and Yip,13 and employed by Nelkin, gj_glf]]’]z

We thus adopt the
treatment outlined in Chapter II in going from equation (2.17) to the
Boltzmann collision integral (2.24). Thus the terms in (4.75) involving
the relatively short-range neutral interaction potentials \’Anﬂﬁilq)

are approximated as in Chapter II by a Tinear Boltzmann collision

integral, and (4.75) becomes

eA !
aree are {3 s 0 AVEAEE-SD)
3 TP L ’Wezd“'dv T

A=t

. %[F“’(x,y,t)f‘“ orert) + FA .t',ar",t)f‘“(x,x,ﬂj =
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jc’3 llgcl_ﬂ_,\r u"l’ozv\[ e(,,,l{',)i)f’“e/,f)[,")i‘) +
+ F ('w,wa" t) r\ Al*o)t) - FeA, .,-'t)'—'hc ,..,."‘t’) -

- FYc,0"t) l"ee(.t)[,t)j) (4.78)

and similarly for f“°, At this point we introduce the assumption
that the target plasma is in the thermodynamic state, and hence that
the singlet densities F'h . FTN are independent of space and time and
are Maxwellian functions of velocity.

We have argued in the preceding section that electron-neutral
correlations should, under most conditions, contribute negligibly to
the electron scattering function. It is worth noting that Sa]peter]4
has argued semi-intuitively that pair separations which are small
compared with both the photon wavelength and the Debye length contrib-
ute negligibly to the spectrum of photons scattered by electron
density fluctuations. This is in good agreement with the experimental

5

observations of Ramsden and Davies. This suggests that, since the
electron-neutral correlation is significant only for separations of
order'lo'§a~\ or less, it would be reasonable to ignore electron-neutral
correlations in our computation of the scattering function. A somewhat
different argument in support of this assumption is suggested by the
observation that fluctuations induced in the neutral distribution by
recoiling electrons should be insignificant. Referring to (4.73) we

see that neglecting neutral fluctuations implies neglecting electron~

neutral correlations. UWith these assumptions (4.78) becomes
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-1

ee ee .
?.Q_. + U ‘_b_l _ l\f_ (SME(.‘[)’%‘: So’a‘_/d%u—”\/ﬁc’y’) er(rl \f"‘t):

g

>

W
D

[

- Sa/w Scm ly-vo, [M“ 4N 5 ) - M G ”97 4.79)

and similarly for f“h . It is apparent that the neutral species colli-
sion operator in (4.79) conserves both electron and ion number densities,
but does not conserve total momentum and kinetic energy in the system, in
contrast with the collision operator in (4,78) which satisfies all three
conservation laws. This, of course, results from our neglect of
fluctuations in the neutral distribution.

An important consequence of the collision approximation manifest
in (4,78) or (4.79) is that while (4.75) is invariant under the time
reversal transformation t=>-T , Y >-U, these last two equations are
not invariant., Ue will return to consider the consequences of this
irreversibility shortly.

We now introduce a further approximation into the collision
description in order to avoid the complexities of the collision opera-
tors in (4.79) in their present form. We thus replace these operators
by the linearized version of the simple single parameter collision model
first proposed by Bhatnagar, Gross, and Krook,]6 and discussed in
Chapter II above. The model is constructed to satisfy, in this case,
the requirement of number conservation for each species, preserves the
irreversible nature of the above description, and provides a considerable
simplification for the subéequent analysis., Finally then, the kinetic

equations that we use are
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8{76& ;P@C ﬂ I gvee{”_.rlw 3 e ee
Y S0 T om J3 'l 3y T M) P ) -
-2 [t WLED. 3 e,
€
= V“e [MM/JQ J’g\f Pee/',’t) FPE’/ *;'tj (4 80
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ST U - n” Sd3rlcl3 //3\/“(“‘__2r b\f Mt (.f rxle/r Vi) -
/ b-v\

I

— _V.‘_l_ gd&rlﬁﬁw” oV! (\E—w‘? ,).a%; ML/V\T) Feew)« ""i‘)..
i P ;A

[V es

_ v“"[Mm/@ jdg\}_ piefy l{‘ﬂ - Pt'é‘/& [,{27'
(4.81)

The parameters "¢,

V" are clearly electron-neutral and ion-neutral
collision frequencies. Fourier-Laplace transforming (4.80) and (4,81)

as before, we eventually find, with (4.77)

- - d3r N (kv o)
G_’_ee(flp> = A '/'-FA[L"VP‘L(L); =

p—ipg ryve

3, e /¥ v o)
- | o v P 7
- A /\,eif o iE Lo (4.82)

where

A _ J3- M)
= 5 RV SNE SR 48)
A - (,’i'.Aee —yn‘e_ﬂyn>(}+Aﬁf— VM_Q“) "-nAL'G 'A‘?l’) (4ﬁ84)
and

Ny = 0 \/”Zg) P_ (ww_m?‘

(4.85)
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The functions PAe(f, \J:,o) are obtained from (4.76) and the Fourier-
transformed equilibrium phase-space correlations. Thus with (4.45) and

(4.66) we have, neglecting forward scattering,
and
Pifege) = g o]

where %C is the average ionic charge.

As a result of our having employed an irreversible theory in
the description of the correlation function, it is readily shown that
this quantity is not symmetric under the interchange ¢ =-1, in con-
trast with (4.28). In addition CFeeéﬁ,t)diverges exponentially for
£ > - 00 so that the integral in (4.2) does not exist. To overcome
this difficulty we follow Nelkin, gj_gl,,]]’12 and prescribe a behavior
for negative times different from that we would obtain by solving the
system (4.78), (P*¢ Fk) for t< 0., The prescription ensures the
convergence of (4.2), yields a real scattering function, as it must,
and the result is symmetric in K and & as required for classical

systemso5 The prescription is

G (5 -t) = 5% (). (4.88)

Fourier transforming (4,78) for both species we can show

G (k) = 6°(x 1), (4.89)

With the symmetry property (4.88) we can now compute the
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scattering function as before using only the Fourier-Laplace transformed
electron correlation function for > o . Thus with (4.59) and

(4.82) we eventually obtain

S(!S/Aco) =7-' Re Q'f"_f,.”;..- 2™ &

(x) E{/—X}ﬂ_a[ ———'g‘“—s.{l"(P“’"g_Qiz“V"my t

|+ (H?L,)(K,\,,B

- AL Zi - ne) N¢ (4,90)
rEa [m;m”z»sw {’ (pr> )ﬂﬂg

where

p= i CRIw: J 1= (prro)att "’“m_?("’

2 N\ Al /A
<) [’ t h 7—[3(’“\9)7— gl‘({)f v“)ﬂtz— »“—Qj..

- 9; [{W]zﬁ* [vaw€>_(2§[l-(@+le')ﬂf7

and

!
X z (I+&t')[/+/)</\p)i7 .

It will prove convenient for computational purposes to write
(4.90) in terms of dimensionless variables. We thus introduce the new

variables

-
A= (k) €= peo/eope ) = M A e (4.91)

wherei
S o= Yrne “t_ e’
W{.\e W, ) /\D =) ("f’?/) o
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We obtain from (4.83)

/OV:M A _ '/"' I'z JMe
- ot 0" = ZLJ— %A [ / _ (_4_)111;(/(51\.,_ A)]
' I Ui? .
- L (i [(::;) x’(fﬂmj
¢ ma \!//2

where the complex function

Z (x+iy)

is the plasma dispersion function tabulated by Fried and Conte9 and

,( _ ()+?L>I/z

The scattering function now takes the form

S(en0) =m0 (5) ™ (W) Rei &7 ()
(x) [(Z%{/('zf-l)z:{/' {Z;I“Z:— ZQ[(%):(’Z}_
- Zzt y/2 MZ Z] (4.94)

(4,93)

with
- [ A Bt B [ i ()
- ?zlﬁ?: Z*
and9

2 =-2[1+t26) .t .



- 13 -

The scattering function displayed in (4.94) will differ negli-
gibly from the result for a fully ionized gas] when the imaginary parts
of the arguments of the functions EZ(%),EZ/{) are small compared to

unity;
(“_AA‘_ Iz A
Me> WAL << . (4.95)

To secure an estimate of when this condition holds, we write the

collision frequencies »"* as

e \/x -
ynh G_onﬂ(m7_>hﬂ 1@) x /o 16 (4.96)

where G‘“A is of order one to ten cm2 as previously. With (4.91),

0

(4.95) becomes

A -6
" W x o
<< |

or
) (ém\)()‘a”\/émm)hv\ (am_3>
o 2

<< 35xlo!? ) (4,97)

For photons emitted by a ruby laser ( A= 6943 A ), this can be

written as

T (2ea¥) 0" (27%) 21
<< U4, b6x)0? o (4.98)

N e °
2N 5
Comparing (4.98) with (4.66) and (4.70) we find that the

scattering function (4.94) obtained with the irreversible theory will
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display neutral atom effects at neutral densities at least five or six
orders of magnitude lTower than those necessary to see these effects in
the reversible result (4.59). In the following section we describe and

discuss the photon scattering function as displayed in (4.,94).

3. Photon Scattering From a Partially Ionized Gas

In this section we discuss the results of the previous section
for various plasma configurations. For convenience we take m/ = m,,
To obtain quantitative information regarding the scattering

function, it is necessary to claculate the real part in (4.94), To this

end we write
‘Z: = RA —t'ip‘ ) ?: = R/\ -l'IA (4.99)
and define w = (w:/me)'* , and |
/2 ’ 4 .
Q, = (I" 3;1 kl: —7L M/(’Ii) QBE (Rl:&_Ing>

A, = (Z—éXIZiL*7£m1,Rz> @ = (eii—e"“IL' ée)

b = (1= 4" R e 1)) by = (gid " vid mR;)

o
)
i

{11l

(1= 2:4"Re - 7ilin T;) by = (Refy-T Iy)

ot
w
il

(5, - 7@/(//3{) l)é = (‘eR.[-I—ﬁ’e I)

) !
with A .-?(Z/H-?.,')'h',( as per (4.93). After some algebraic
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manipulation (4.94) becomes

- e \' ! N A - N A
S/E,Aaﬂ = (1) '('V‘LAQ e IAE N :1_r (4.701)
3 T
where
Vo = (Z?.,;,('Zi—I)(ReCi, +Ieqz) - Z?iw(“'%
N]_— = (Z%,,',(”‘-H) (Reqz —IM,) + 27_;“4/,”%/

i

AR B, )”7_- 531%{ - 7'[/“/ Lb’

Dr= bby + biby + ?,',("’ by . (4.102)

Using tabulated va]uesgof RA ) KA s IA and i'A we have com-
puted S as a function of §= Aa)/wpe for different values of A and
f73,~zé . Some typical results are plotted in Figures 4.1 through
4.3, To enhance our understanding of these results, we now develop
approximations to (4,103) in various limits., To this end we employ
both the power series and asymptotic expansions of the plasma dispersion

function, These are, v'espective]y,9 with t=x+z'(7 y
2
Y ()= e t —2t[;~'zt"/3 +L/i"'/lé‘—»-:~] (4.103)

and

e
Z/f) = fen'et f"):l +(1/2¢*) +(’5/%")+":7(4¢104)

where

0 > 0O
rE %1 B (4.105)
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Consider first S as a function of £ . For A<<| collective
effects play a negligible role in the scattering process. With (4.103),

(4.101) reduces under this condition to

S (k ac) « (k)™ ("7%)"1 Re i ELY

€
- t'qeli Z:‘

/
Q) If2 Te (?”‘76/7“) --?e,[ ﬁ&g’\
(ﬂ ( > ( ""Zej 'I»\)’L‘f‘ ["le/(/kn>

. (4.106)

11

This is identical in form with the result of Ghatak and Nelkin, For
'vle.—.o , (4.106) reduces to the well-known ideal gas form
- e R
S(x,8e) = k- (325 exp (-A5)
we /2 7
- K"l (aﬂ'_;-> QXP "‘W\e (Aw/K>/ZQJ . (4.]07)

For 4ze> O , the scattering function given in (4.106) becomes
11

narrower and increases in height as 78 increases in magnitude.
For A>>1 , w<<| , m=fu/me)’t and «?‘i( *ZLIM/(’V, or
less, (4.101) becomes

- /M \I ‘22?‘
v neo ) x 207" (k) (5™ po v L . (4.108)
g (,., 2y ) ?L/( e l— L'qu'm,(/ [Z:f

This last is similar to (4.106) but now the scattering electrons are
strongly counled to the ions, and the ion mass replaces the electron
mass in the scattering function, resulting in a narrower scattered
photon spectrum.

Next consider S with the condition

/(;AI€‘£7':’<<’) ﬂf‘-’wzi - (4.109)
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When (4,109) holds we find

Sk ney = k- (s (58) 6

a gt el % mt ThA ;'L_Sv.
() [(Z?,i/(’zwtl)Lal (¢ §>+ L/@.z/’f{me A )]' (4.110)

In this case the center of the scattered photon spectrum is dominated

by a relatively narrow "ion peak" provided

;4" > (244" " +1)"

or

-
% I:(M},')lll-Ij : (4.111)

Under the appropriate conditions the scattering function will

have a resonance at the electron and/or ion plasma frequencies. Thus
/

ford% 3 ,7@<</ and €~/ or larger, S takes the approximate

*
forms

(%) [?"(%%gtzz{- %>1§,+2(%>Z§j_; (4,113)

* The reader will note that, because of the two different asymptotic

forms (4.105), the form (4 112) cannot be obtained from (4.113) with
7 >0 .
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The resonance at Acq:aul,eis apparent in (4.112) and (4.113). It is
clear from (4,113) that the effect of collisions is to inhibit the
resonance effect, as we might expect. The height of the resonance is
inversely proportional toaze while the width increases as 426
increases.

For A>>[ , mé&¥] , and 75=€),wefMd

S (k,000) = 295 A"V k=" ()"

) €xp [' g ‘“N)j (4.114)
Li-c2y ] 7 (atdr) (42 2 Yere ot 42

where

1
wpt = drne g,

M
and n=n® 1is the electron number density as before, For 7‘?0 we
find a form similar to (4.113).
Finally, consider the scattering function in the Timit of very
strong collisions., With /{73 ,XM7L'>>I, and m&€% |, S takes

the approximate form

Sk, pw) =

()" ’i?)m Lo A"+ 21’ + R, 24 . (4.115)
4Lt +l [-iqed’ 2z

Hence in the strong collision 1imit collective phenomena

are unimportant (except possibly for m§ ¥ ; see (4,110) ), as

we would expect, The effects of electron-neutral collisions dominate,

and the approximate form (4.115) of the scattering function is similar
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to (4.106).

In Figure 4,1 we have plotted the normalized scattering function,
for a single ionized ( ?’i =] ) gas of carbon atoms, vs. § as a
function of the parameter A for Qe= 7"'—70 (zero effective neutral
density). The general qualitative dependence of S on the value of /
is clearly apparent. For /<< /| , § has the Gaussian form (4.107).
For L% | the resonance at € * | 1is present, becoming narrower and
higher as # increases, as per (4.112)., When € is small the effect of
ions dominates in S as suggested by (4.110) while an incipient ion-
plasma resonance is evident in the vicinity of m& =48k e =] .

For /(=>> [ s E; approaches the "strong coupling" form (4.108).

In Figure 4.2 we display the normalized scattering function, as
in Figure 4.1, for £ =),/8 as a function of the dimensionless collision
parameters 473 , '75 . For convenience we have assumed 42€==n41i :
from (4,96) this implies equal electron-neutral and ion-neutral colli-
sion cross-sections, i.e. m"¢= "5 As ,75 increases relative to A4~
collective effects are seen to disappear; the resonance near bew= e
becomes lower and broader as per (4.113). When,(79=>>l , 3 approaches
the form (4.115). Figure 4.3 is similar to Figure 4.2, only for

A= 1738,

To understand the behavior of the scattering function when
nze;é Malz , We have computed S for a few values of § with £=/.18 ,
when (1),(7€=o.3,1m7f=0./, and when (11)/7€=o,/,,€m7£=0,3z The
results are displayed below in tabular form., It is evident that
changes in the ion collision parameter have only a very small effect on

8 in the vicinity of €=1 , while changes in the electron parameter

simiTarly do not significantly disturb S for § small.
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Figure ‘4.1 Electron scattering functions for a singly ionized carbon
plasma, showing dependence on the parameter [ = (EKKD)'I.

The results
have been normalized to the ideal electron gas scattering function at
E = Av/wpe = 0.

Broken line represents ildeal ion gas scattering func-
tion for 4 = 5.25. Effective neutral density is zero for all cases.
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Figure 4.2 Electron scattering functions for a singly lonized carbon

plasma, showing the effect of neutrals for I = (2kAp)~

1l .2.35. The

results have been normalized to the ideal electron gas scattering func-

tion at & = Aw/wpe = 0. The parameter n® is defined by n€
and it is assumed that v*€ = (my/m.)L/2v0i,

= e/,

The broken line represents

the approximate form (eqn. (L4.115)) for £4° = 10.
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Figure 4.3 Electron scattering functions for a singly ionized carbon
plasma, showing the effect of neutrals for £ = (2K7\D)_l = 1.18. The
results have been normalized to the ideal electron gas scattering func-
tion at € = Aw/wpe = 0. The parameter 1€ is defined by n& = v1€/w o

The broken line represents the approximate form (eqn. (L4.115)) forP
o ,
/- = 10.
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Table 4.1

Comparison of Scattering Functions for

Different Collision Parameters

= -3 -2

S=S((7e),(m-7{,))‘j: I,[8§ 10 5 x 10

8‘——1—‘( L, 0.2) 1.21 1.14

g(b'l)0-1>

8———4-——(0" 0.3 0.992 0.85

3(0.3,0.3)

3.0 0.998 1.09

Se.1,0.1)

3.3, 0.1)

—_—t——

0.83 1.12
8(0.3,0.3)

0.986

1,23

0.81

0,989

This is as we would expect; when

Mjlf = ae/k >> |

Ver |
where V;,;=(28/M;)'hthe function ‘Z, is well approximated by the leading

terms in its asymptotic form (4,105) and electron dynamics dominate ion

dynamics in the scattering function. Similarly when

Q'€ = Lk

-

oe
ion dynamics play the dominant role.

<< |

These observations are reflected

in the approximate forms (4.110), 4.112), and (4.113) of the scattering
function,

In most experimental situations the scattered spectrum is

observed as a function of the shift AA in wavelength from the wave-
length of the incident photons, Consider for example the differential
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photon scattering cross-section as a function of AA for ruby laser
photons (A= 6943 A ), for a singly ionized carbon plasma with

he= 10,3 and

/= (ZKAD)"= % (l{-/f-' %)Uz(a”%%)'ﬁ, Q(%fl)z.(ét.ns)
IS

From (4.1) we have, converting to wavelengths,

(4,84, Q) = 2me (I+ é}-)—%/\"S(E,A/\)O}(@) (4.117)

where AA=A’=) ., It is clear from (4.116) and (4.117) that retain-
ing the terms in DA/) yields a cross-section that is asymmetric about
AA =0 , for constant K

Comparing (4.116) with the scattering function as displayed in
Figure 4.1, it is evident that, for constant K , retaining 8AA/A in
(4.116) has the effect of increasing the height of the peak at €=+ |
and lowering the peak at €= —) . In addition, the upper peak is
shifted nearer AA=0Owhile the lower peak is shifted further away.
Since it is not the scattering function but the cross-section that is
measured, however, we must also account for the factor (l+AA/ A )"3
in (4.117). Clearly this factor will contribute to a lowering of the
upper peak and an increase in height of the lower peak. The two effects
are thus competitive.

For the example at hand we have found the net effect to be a
5.9 per cent decrease in amplitude of the upper resonance, and an
equal increase in amplitude of the Tower resonance. In addition, the

Tocation of the upper resonance is shifted about 1.3 percent closer to

AA =0 while the lower resonance is shifted the same amount further
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away .

We have so far neglected contributions to the scattered photon
intensity due to elastic (Rayleigh) scattering of photons from the
neutral atoms. For simplicity we characterize the spectrum of neutral-
scattered photons by the ideal gas, or Doppler scattering function.

The ratio of Tight intensity scattered by neutrals to that scattered by

electrons is then

T n" ! (% UZ@‘P [‘ M (AQ/K)Z/Zej
/k_

0 n° S e

(W\v\/w‘e)'h) A=<l
T a_“é ] A~ (4.118)
r /("l /( >> |

where S (E,Amﬂ is the electron scattering function discussed above,

Q

~

and

- -l
()\R ~ |o (2 MLW

17

is the Rayleigh cross-section. It is evident that scattering from

neutrals is unimportant when

n" (wa /Me )I”' . A <<
n | oo
he E WE << le s (4.119)

Moreover when scattering from neutrals is significant, it is clear that
the effect will be manifest in the observed spectrum only in the
vicinity of the central ion peak; i.e., when A co<< Wpe.

From the foregoing discussion it is evident that the scattered

photon spectrum will contain electron plasma wings whenever
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A=z (1) %

£ Al [ o]t 'WW] "

A =8 3xi0 . & orer>

——

z

In addition, collisions with neutrals eliminate the wings when

ve

1"16 = 1 ),V\E

o 51
It thus follows, with (4.96), that the wings should be observable

whenever

51 (™) 6" W s 2 [0 [neen™3] "

4, Discussion

In the preceding analysis we have employed a treatment based
on a temporally irreversible kinetic theory to describe the effect of
neutral atoms on the spectrum of photons scattered from electron
density fluctuations in a partially ionized gas. Our analysis was

quite similar to that suggested by Yip g;_glf]2’13

for a description of
neutral particle (i.e. photons or neutrons) scattering from moderately
dense neutral gases. MWe remarked in Section 2 that an analysis based
on a reversible kinetic theory predicted neutral atom effects only at
unusually high neutral densities.

A recent experiment reported by Greytak and Benedek=I8 provides
striking quantitative support for the irreversible treatment. These

authors observed the spectrum of 63284& photons scattered from thermal

fluctuations in neutral gases near standard temperature and pressure,
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Their observation of a symmetric pair of spectral Tines located at
AN gr;o's/\ is in excellent agreement with the theoretical predic-

tion of Yip and Ne]kin]z"]9

for scattering from neutral gases. These
results clearly contradict the predictions of the reversible theory,
i.e., a Gaussian-shaped spectrum, at the relatively Tow densities
(n = leo'qow;'s) involved,

We have assumed in our computation of the classical scattering
function that each of the particle species could be characterized by
a Maxwell velocity distribution with a common temperature for all. For
many experiments this assumption is invalid, and could lead to errone-
ous conclusions, The extension of the present work to allow for
different component temperatures is straightforward but adds consider-
ably to the algebraic complexity. While such considerations are beyond
the scope of our purpose here, we note that several authors]4’20’2]
have investigated the effects of unequal temperatures for a fully
ionized two-component plasma. They showed that the scattering function
for such a system can be qualitatively different from that computed
with a single temperature model. In a recent experiment Kronast,

et 2122 14

have employed Salpeter's results ' in a measurement of electron
and ion temperatures in a theta pinch. For their particular experi-
ment they found B, [6;~a.

In our development of the electron correlation function
in Part 2, we tacitly assumed that the inclusion of close encounters
(collisions) between charged particles could be neglected. To lend
support to this assumption we employ a simple Krook model to estimate
the significance of Coulomb collisions, From the analysis of Part 2

it is evident that these effects should be negligible provided
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m, NI 4
A3 4.95
( W%f) ] A << | (4.95)
where now
<
«1" = ¥ (4.120)
4()(;3
with »° the Spitzer collision frequency23 for charged particles,
Lf
o~ Cmnelmtn A (4.121)
3/1
(%@)

Here s is the reduced mass for the pair in question and we assumed
for simplicity a singly ionized gas. Combining (4.95), (4.120), and

(4.121), the condition for neglecting Coulomb collisions becomes

Lol __ ; (4.122)
3 . . 23
where AsV\«\p . Since AA is generally a very large number,“” we

would generally not expect Coulomb encounters to be significant here,

24 and Fante25

(Ron, Dawson and Oberman have recently estimated the
effects of Coulomb encounters on the electron scattering function using
somewhat different analyses than the simple model employed here. They
found the inclusion of these effects produced a change in S of the
order of A~').

The principal result of this chapter is the electron scattering
function for a partially ionized gas, as discussed and displayed in
Part 3. It is apparent that for given values of 79 . ,76 . ;; A
and n , the scattering function as a function of 2A is uniquely

determined. Even so, we would not expect that a single experiment
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could serve to measure all of these quantities for a given plasma.

Our results apply for instruments with infinitely sharp
spectral resolving power and uniform average plasma density over the
scattering volume. Average density nonuniformities and the finite
resolving power of instruments together with the natural width of the
incident photon beam will add to the width of the observed spectral
structure and it may be necessary to take these into account in a
given experiment,

In addition to the extension of this work to allow for different
componenent temperatures, it would be most interesting to consider the
effects of magnetic fields and small spatial gradients, for fully or

partially 1on12ed gases.



APPENDIX A.  INTEGRALS

Let® be the angle between ¢ and <’. From the generating

function relation for Legendre polynomials we have

le-¢'I" < [c‘+c’1-—2¢/@4@_7'”1
NZA% (A1)
- ) (5] B(me) (eeo)
d=0

and similarly for ¢ € ¢’ . Writing 3A(E>-= Zf;h,M‘Y;”" and employing

the addition theorem for Legendre polynomials, we obtain (3,13).

To find (3.14) we use the relation

[H— x* - ngjm = yclx X [Hx ny] "

afa ™,

Combining (A1) and (A2) we have

le-¢'| = [.:1{-4’7'— Zcc! Gpd,@_]//l
(c’.‘.-.C)
: z‘” [(cz/cw ("/‘W'cﬂ@@]P (a0) (M)
&, L I !

and similarly for ¢ ¢ c’, From the pure recurrence relation for

Legendre polynomials we have

w@ f («#©) = ?Z{T A (cw@wzf*"’ By («2®). (A4)
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Combining (A3) and (A4) and then using the addition theorem as before
we find (3.14).

Finally (3.15) is obtained from (3.14) with 9,4 = 3,4,
with ng the Kronecker delta.



APPENDIX B.  THE SELF-ADJOINT PROPERTY

Let Lg be either (i) the differential operator in (3.20) or
(1) the integrodifferential operator in (3.20) defined as in

Chapter III, Part 4 on the closed interval 4t a=c = b o< a

h<coo | let LA be similarly defined on ( 6,9), Then in either case
(i) or (ii) there exists a complete orthonormal set of functions EAgH}
on § , generated by [S ¢= -)\45 with homogeneous boundary conditions at

o and b ,,]’2

Let € and 9 be any nonzero functions square integrable on

( o)oo), and consider the inhomogeneous problems

lSM-}—/\Ms-P) [_S\r+/\*v 9, (B1)

with the same homogeneous boundary conditions at a and b as in the
above homogeneous problem. Let %A #0 so that A will not belong to

the spectrum of the set glqg“} . Then the problems (B1) have nontrivial

solutions
M(C) = OOZ'L ¢J' (C)A) &1\/]( /,\) c!/og)xk/,\)
A )
Zoo J')k=l A
© L e T ) )
6 = j 2 N =) ’
L oo \}}‘k:l
with
b b

A, = g FEGT(qA)de, T, = La €) g (4A) de (B2)
Now let
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v,
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-

Zz ¢J' O‘; O/Z Sk
k=

h

k=1

with @, and & as in (B2). Multiplying U, by 3* and v¥ by € and

then integrating over § we have

b It . b
5 ﬂ*[c)“/‘ de = gi\z MK(A)CJ/O&'\)& (’\) 5 ﬁ*(‘> é).(c)’wc"

@ - k=] A=A &
i j’“ S A T () dpey, () (83)
..//\ j,k:l .A— __/\

and similarly

SILCIT YR

A=)

b
(t@urerde = | 2
a o J)k=l
Since (3.24) and (3.25) are asymptotic solutions for both the differential

and integrodifferential equations, the limit matrix /OA is the same in

either case. Taking § > A in (B3) and (B4) we have Pejy= /"Azz and

thus
% ey y
S 7 ()de = § e gf(‘)%*@d" (85)
o :

-

After taking/u\—wo and employing (B1), (B5) becomes

((LaYode = g(mwo/c

which is the desired result.



APPENDIX C.  PROOF OF THE EXPANSION THEOREM

This proof is based largely on the so-called Weyl-Stone-
Titchmarsh-Kodaira-Levinson theorem, as outlined by Yos1‘da,1 and by
Coddington and Levinsom2 Our goal is an expansion theorem for real
valued continuous functions n(¢c) in (0,00 ) with fic [u(e)| <00
The expansion functions are to be the solutions of the linear integro-

differential equation
[
L(PI) + (@+ M)d+ [ de'Kle) per) =o.

Here P= P[C)) P,, and K= K, are real and continuous and P>o , (6,00),
and §:° g::lc c/c’{K[f,c')}?Zw . The function & =@ ) is real and con-
tinuous, is regular at ¢ =0 for {=0 , and has a regular singularity
at ¢=0 ford#0 ,

An expansion theorem based on the solutions of

b
g (P 4 (g+ 1) + {Qdc'wc,m b¢') = 0 (cn)

which satisfy homogeneous boundary conditions at e<a |, b<o has been
established by J. D. Tamarkim3 Our task here is to extend the interval

(a, b)) to the interval (2,00 ).

Preliminaries, Tamarkin's Results

Let L£ represent the Tinear integrodifferential operator in
(C1). The following properties have been demonstrated by Tama\r‘kin,;3

(i)  For a fixed complex A 1let ¢, , ¢1. represent a pair of
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Tinearly independent solutions of quﬁ:—/\cﬁ , real for real A , satis-
fying the conditions ( )

¢, (5N =1 b, (s5,\) =0
Ps) ¢/ (5N =0 PE) @,/ (s,N) = |

(C2)

Then CP, , ,L s 45,, Cﬁ,, are entire in A for every fixed ¢ on $

(ii) For the self-adjoint boundary value problem

Lg ¢ - - ¢
otk pla) + poan P(a)B'(2) =0

b BO) + i p PYP() =

(C3)

there exists a sequence of real eigenvalues f)\‘nz and a complete ortho-
normal set of eigenfunctions f‘\;& In terms of these functions the

0
expansion formula for any « € b ({) is

b
nl) = Z he, (¢) Sdc’m(c') )«gﬂ (<), (ca)

To extend the interval §:(a, b) to A:fo,e0) we proceed as
follows. Since 4" . ﬂ form a basis for the solutions of LS¢="A¢

we can write

l'\gn (c) = f‘gm qsl (c)/\gm) t 1\SV\'L ¢1 (()/\fv\‘) (C5)

where ¢ ., T¢a, are complex constants. With (C5), (C4) becomes

n(e) Z Z RV‘J Q . ¢ 53: M@)C}&k*(c) - (c8)

n \J k=] a
Now define an Hermitian, positive semidefinite matrix [’; , called the
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spectral matrix, with e]ements,o%% consisting of step functions with

jumps at the eigenvalues A, given by

P8 (An to) = Pk (Aen-2) = fony Tonk
We Tet ﬁs{b) be the zero matrix and define f? away from the eigen-
values by (,‘, (A-rO) =(°;//\). We employ the spectral matrix to replace
the infinite series in (C6) by a Lebesque-Stieltjes integral;

00

o (3 weniumigm @

where
b

Hy = § dan@dg (o). (cs)

As § > 4 (that is, &0 , b »o0), Fs approaches a limit
matrix fa - Our task to to find the matrix @, and to prove the con-

vergence of the expansion (C7), (C8) in the 1imit.

Weyl's Limit Point and Limit Circle Theory

For any number my , the expression ¥,=@+m,@satisfies
equation (C1). We now choose m, so that %@ satisfies the boundary

condition
/
ol p W + o p P(V) ¥y =0 (c9)
at the point & . Then wm, must satisfy

AP G (5N + Pl (b, 1)
Ao (o) + P(2)d, (%))

m, [A) =
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Note that the one-point boundary condition (C9) has not restricted A

to real values, Since §15, . ¢, (15,' , and 451,' are all entire functions
of A ,my (A) is a meromorphic function of A . It is readily shown

that every zero of the entire function 7‘5 is real, and hence all the
poles of M, (A) 1ie on the real axis of the A -plane. Consider M, as a
function of A , b , and /5 . If we let 2= arv‘p and maintain A and b
at fixed values, we can write WM, as

Az + 8B
Cz+Dh

m, = . (C10)

Since

[AD=Bcl = | (5,0) 4/ (6,1) = 8, (b,0) 4,(5,n)] P(1)
= W, (6,4)#o0

where Wy (4 ¢.) is the Wronskian® of ¢ , ¢, evaluated at b , the
transformation (C10) is a one-to-one conformal mapping which transforms
the real axis of the 2 -plane into a circle €y in the complex w (A)
plane. Therefore if W A = #£ 0O » thenw, /A 2) varies on the circle
Cy,(A) with a finite radius, as 2 varies over the real axis of the 2
plane,

The equation of the image of the real axis, b2z =0 , 15

found from (C10);

(A +c*mg) (B + Dm) = (ArCm, (8 + D'mi) =0,

or (C11)

Wb (%b) Xf) =0

)



- 138 ~

which is the equation for {, (A). It follows easily that the center

. A
of €, is My ,

A _ W (¢},¢Q*)
Wb {¢’L) ¢'L*)

=2
&
|

and the radius is

(C12)

WL (‘P.,¢7.>
v (4) = / Wy (‘K,‘Pf)/ .

For the moment let @ , $, satisfy Lg(ﬁ' = /\,d{. L ¢7_= -8
with A, # A, Then the symmetry of Ly permits demonstration of the

Greens formula,

b
(- ) ddide = Ws(4,8) - Wi (4,60
S

Now with A, = A, = A and by virtue of (C2),

We (¢,¢.) = W, (4,8) = 1. (c13)

Further, with 05, (c) A*Y = 4}""/6)/\), ¢7_((}/\*)-_- @ A) , and making use

of Greens formula, we have

b b
2o {1t e = 2 06N 8 6Mde
S -
=/ WS’ [fbl(‘)/\)) ¢1 ((/N‘)j -
W, [l b, (o8]

NN N

Combining (C12), (C13), and (C14) we obtain
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N
o (n) = [elel (71 dgmde] b= o ()

Lemma 1. If co=%m A#ZO , then the interior of the circle &, (A) is
mapped onto the lower half plane of the 2 -plane by the transformation
(C10).

Proof. Since the real axis of the 2 -plane is the image of the
circle €, (A) by the transformation (C10), the interior of &, (A) is
mapped onto either the upper half plane or the lower half plane of the
Z -plane and further, the point at infinity of the wA -plane is mapped
onto the point-F(k)%,'/b,/\)/tﬁ,'(b,/\) of the 2 -plane,

On the other hand, we can write

b [ POIB! (4,0 /8, (5, 03] = & [P i//;:i - —L—*-ii,i?i‘:é’ﬁ

-t W (b, &)
P (b, M
e f:l b, (¢) M| e (C16)

7 > 0,
/ [ &, (b,)]
This means that - P(B)éq, /’3//\)/@1/6,/\5 belongs to the upper half plane of

the 2 -plane. Hence the point at infinity, which is not contained in
the interior of €, (A), is mapped into the upper half plane. This
proves the lemma,

Since Wg (cﬁumv;l, the transformation (C10) has an unique

inverse which is given by

= _ Py ¢/ (5,0 my (A) + &/ (5, A)
i ) b (b)) my, (1) + @) (4)1)

In view of Lemma 1, if W1 A= co >0, w belongs to the interior of

. (C17)
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the circle €, (A) if and only if bw, 2<0 , namely, /' (z -2*)>o0.
From (C17) it follows that

oy d/bA)erzé,/b/»)
L(2—2)= 2 [—P/) ¢7_(b/\)w'+¢,(b/l)

v Py B (oM wm? + 70, n)
GF (b, Nt + ¢ ¥ [b,1)

W, (8+méy, 45+ m*g*)
f G‘,rw\(ﬁlll .

Therefore, Qrm 2<0 if and only if

LW, (¢'+M¢1)Cé*+m¢z*) > 0, (c18)
By Green's formula we have

o g;? b +wy | de =

= [wg (¢ + M¢L,¢,*+M*¢5f)— Wh(c}‘,+m¢q,¢,*+w\<ﬁf_)7 (c19)
and from (C2),
Ws (ytm 6o, GXTmbl) = W (6,87) + Ws (61,65 m+
F W (G, 8%)mx + W (4,85)|m]*

i

)
g
Ea

3

(C20)
Combining (C18, (C19), and (C20) we have

Lemma 2. If co= b A> 0, then w is interior to the circle £, /A) if

and only if
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b 2 wm
jsm' (‘1/‘) +m ¢‘L(C/A\){ de < %___ )

and wm Ties on G, (A)if and only if
b
2
g l¢,[‘/">*’m¢z(‘://‘)/ dJe = ()'W‘——a: :

S
(Note: it is easily shown that Lemma 2 also holds when co = fm N<o )

It follows that, if w is inside €, , and b'<b | then

b b
(Vormpnlde < (1grmarde < oo
S s

Hence m is also in Cu » even though the centers of Cb and Cy

may not coincide. We thus have

Lemma 3. The circle €, contains €, for b’<b and hu /4 #o,

It follows that, as b=>oao , the circles C, converge either to
a limit-circle or to a limit-point. In the limit circle case we have
from (C15) that ¢L is Lz(s) o0) ; the same property is readily demonstra-
ted for 45, .

Next consider the boundary point o , e<a<b . For an

arbitrary real number o , the boundary condition

d o Ko + s PR =0

at the point a with ')5,{ = ¢,1—w1« 457_ » determines

mo () == XL G(%)n) + Fla) /(4 )
) HL b (3,0 + P) G, ()

and also the circle (g () » described by the equation

Wa (%q) %f) =0, (C21)



- 142 -

Similarly as in Lemma 2 we can prove

Lemma 4. If o =% A #6, then wa Ties on the circle G4 /A) or in its

interior depending on whether

gi’ﬁ(gm mby (e n)| e = - a\_%ﬂ_

or

S 2
[ 14,(0n) + mblomfde <~ ko

SimiTarly as in Lemma 3 we can prove

Lemma 5. The circle G, contains G, for a<a’ and b A70.
As before, as a >0 the circles (, converge either to a Timit-

circle or to a limit-point.

The Limit Matrix ps
l

Recall that

Lid =L (PIL) +ad + §;zu/<(e,c')¢(c'>.

Let ¢| R 45-,, be solutions of Lg¢=—/\¢5 satisfying the conditions

@, (s,n) =1 t(s,A) =0
PR d/(s,A) =o PBY &,/ (5,0) = |.

For the self-adjoint boundary value problem ( o< a , b<o0o)
Lg ¢ = - /\fﬁ
el @la) + na PL)@'(a) =0
coap ) + Bup P(6) () =0 (c3)
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there exists a sequence of real eigenvalues fA;h? and a complete ortho-
normal set of eigenfunctions fkg“g . The expansion formula for any

function p € ﬁ1(5> is

b
W) = 3 hey @) | del @) W, ). (c4)

MuTtiplying (C4) by w¥(e) and integrating over § gives the Parseval

relation
b

. 2
gu(cﬁ he, (¢') JC'/ . (c22)

jblm(e)ILJc = Z /

n

Similarly if up @) uy ) e *(5) then

S:C]c Ur /G>M;(C) = g ch ur (¢) 1»;:{4) ): S;]c Uy l«;:j . (C23)

Employing the representation (C5) and the spectral matrix /Og , (C22)

may be rewritten as

b 1 - N % n
5 [u)de = g > Gt Bae ) dlpsy, () (c24)
A ’eo j,k:l
where
b
ﬁfk = g JC M(‘) ¢k (‘)A) .

Applying the Parseval relation (C22) to any continuous function

A On (o)ao ) which vanishes outside some interval §, » contained in

S » one obtains

MJZk=,gf/AM"(A)J/D%'k/’\) (c25)

)
where
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qp) = { deu) ¢, (¢,2) .

Let yo\‘ff’,qu% be a solution of L¢¢ =—/\4>, b #0

satisfying the boundary condition

ik §(a) + fina Pla) ¢'d) = o

and similarly let /)éb =¢,wb¢m be a solution of the same equation

satisfying

wdp (0) + 2inp P ¢'b) =0

Then m, and m Tie on circles c, and <, in the complex wm -plane

whose equations are, respectively,

Wa (%, 65) =0, W, (%, ¥) =0 . (c26)

1

It is easily shown' that Green's function for the boundary value

problem (C3) is (jmAZ O )

Yo (5N %y (<)M cz.!
(, > Ma(A) = w (A) -
G, (c¢\n) =
§ ) Yol )%, (N Y

——VWA\/A) ~wy, (A)
where Wi, (A) —w, (A)=W, (%, ¥,). The Parseval relation in the form

(C23) 1is now applied to the functions

D > g .
MI (‘) = S—(‘—,)_J y Ug (5) = B(&'){ J)‘(= 1) |

yielding
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b
b iGy 3k
g Qe')fs 39(6;“ de = Z; YA k;h‘h[ o) %JMJ] (c27)

From the definition of Gg it follows that

G (s A) = Fal9yN) -
S() ! ) M:fﬂ)*mb(%) =

(C28)
— 7(‘10 ((/ A) c>S
ML\/A) -, /A)
and
3Gy (c,€/A) _ me (1) Xale/h) ;23
ye! Ps) [ma/N) = my (AY]
el=g (€29)

nﬂa/h) Y (i)‘A\ c>9
PLs) [wa (N)= m, (Y]

Using (C28) and (C29) and Green's formula, the integrals in (C27) can be

evaluated, For example

b
. Yo _UWe . .
= “% [ Gyl de = =, ?f |l de +

+ gsl%/@/\)lzc’ﬂg

= ]MQ/A)—wb/A)rszs /x«) Kl -
- W, m,m}

2¢ faa [Mu ) - Mq/"?]

’Ma\//\) - My /A>,L

—

(where we have made use of (C26) to arrive at the second step). There-

fore
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Claprs < mEoomnl

o

Similarly
b *
[ ) -m, 01] =33, f G5 MG, 00 -
= W, (%, h5,) = Ws (%, he, ) £ W (o) W) -

- W (b )
We [(va- 20,05, ] = [, 5] e, 17 )

U}

= wmy, A)- wm, //\):7 Q:\

and hence

b *
g GS (" g) /\) %;: (675/6 _ Ten X (C31)
a /\SV\—/\

*
In arriving at (C31) we have used the fact that V‘/a (%«, 1\;,)=0wh1‘ch

follows since both ?C,\ and %:h satisfy the same boundary condition at
a 3 similarly W, (%, ) l«f) =0 ,
Recalling the definition of the spectral function /-'g,, we combine

(c27), (€30), and (C31);

S” dpe (A _ Yo Mgy ()

- In-A1* )
where B
]
M&u M = Ma (A= My A (C32)

We can similarly show that
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29

5 d‘_’s'k (A) _ b, Mg, /A
7 (€33)
) 1A= w

where Mg,, is given by (C32) and

M - M A___J_m&//\)-rm/'ﬂ
s (A) 21 (M) TRy~ A

My (n)m,, (1)

V—V‘;/A) "“M./")

M&n =

From Lemma 2 and Lemma 4 we have

9 gi ///EGL(‘//\HICIC = "9"M W(a\//\))
o (1l e = S
S

Thus for a fixed A , Yw. A #0; Mg (A) and w, (A) are in oppostie half

planes. Suppose A=i{ in (C33). Then points wm, (/') 1ie on a circle &g

which is in C-g/z for A<—§- whereas points wy (¥) Tie on €, which is in

(35/7,1’0}* b>3s/2. Thus there is a constant k,> 92 such that

Imalt) - \MB/L')I> k, for a<£ | b> 3% . Since ma [t) and my ) are
3

uniformly bounded for a< 5 L>3-%_ , it follows from (C33), and the

definition of the Mgd'k that

{O IJfSJ'k//\)I < k. |

] +A%

-~ 00

Thus for w >0 |

»

§ Hdpg (] < k(1052

—

This last together with /);Jlk(o) =0 gives
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P D1 < K (1+A%) —w<A <o, (c34)

We are now able to prove the existence of the Timit matrix /JA . For

this we need the

Helly Selection Theorem.2 Let %M(’\%’ h=1,2,..., be a sequence of
real nondecreasing functions — ee<A <92 | and et H(/\) be a continu-

ous nonnegative function on the same interval. If

“’m (’\), < ]—I{A) nwel, 2, - ed<d < o0

then there exists a subsequence f)‘”k% and a non-decreasing function h

such that

ll‘\/x)l £ H/,\) - 60< A <00

and

It follows from (C34) and the Helly Selection Theorem that there exists
a sequence of intervals §, "‘(“m ba)s Sp /ojoo) and corresponding
boundary conditions prescribed by &, , @h , such thatfaw'k (A) tends
to a Timit oap (A), w>00 . 1t is easily seen that the limit matrix
f’A , like ,05, is Hermitian, is positive semi-definite, and is of
bounded total variation on every finite A interval.

It remains to establish an explicit formulation for fA . From

(C33) we have, with A= m+ie and §> 4,

[~s}

9"‘/\ MAJ'k ) _ f JﬁA!"‘{AZ .

)73 (/44—/\) +wl
— 039
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Let /\, R Al be points of continuity of Po . Then integrating the

above with cu;éo held fixed and finally taking cw >0 , we have
Ay ®
/é«w\ /&,;,\ S CJ 2l ’U
W >0 9\,\/\ MAdk (A)J//\ W >0 4 //M—/\ ’L+m7.
) - 0o
Ay A —1 /A -A]
WS [ (B5) - 27 (A,

| a2 =paiy () ]

[
Moo/") - M, (A)

where MA“ is given by

MAII -

= = L MM/")'I'W‘o/A\)
Marz = Ma b e [A) = we (V)

Moo (A) M, (1)
Man = W) - W, (A)

If both points & o , b=>00 are in the Timit point case, M,
and M, are unique and it follows easily that 2N is unique, If either
point is on a limit circle, the spectral matrix is not unique without
the specification of a boundary condition at the point in question,
Whether a particular case is 1imit point or 1imit circle is readily
determined from the asymptotic solution and the expression (C15) for the

radius of €, or its analog for C,

The Parseval Relation in the Limit § = A4

Consider a function w(<) having a continuous second derivative
on 0 =C<00 _ and which vanishes outside some interval 5, s contained

in § . Then applying (C25) to Ly« we have
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ST’L‘“’LJ‘ B 5121 SM(L:MW’,‘ de [f}%u)f}%&ji/{agjb (C35)

Applying Green's formula,

( () bde= [ (14 ude
=.”Ago@udc
= =AM,

and hence (C35) becomes

(C36)

(50

J k=t - J k=l
]
%0 1
R T
< A g)& Z s 45) dPsp
oo J,ks\
()
2 (C37)
-
= A g ’LSM’ JC)
G
this last following from (C36).
It is convenient to rewrite (C25) in the form
00 2 -4 g0
Slu{c)l de = (g + S g E g MSJ J/oa . (€25)
0 — 00 A \k

J k=)
Combining (C25) and (C37)

g:olu(dl”c - SA )

oo
J_Zka"sk D(sj*J(“a\jk[ < ;lﬁ— S “—sM'chc.
—A V%= e

(C38)
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To take the limit = A (that is, a=»p , b= ) in (C38) we need

the following

Integration Theorem,2 Suppose ft,h[/\)}is a real, uniformly bounded,

sequence of nondecreasing functions on a finite interval d€A=e , and

assume

Aen | (A) = h) del<e .

h—=>>00

If ‘? is any continuous function on (d €)<e ), then

45 (e b )= [FLMA).
d d

W => 00

We established earlier the properties of Pg)'k required by the
integration theorem, Thus letting >4 through the sequence of inter-
vals S... found above, it follows, using (C38) and the integration

theorem, that

A

g:fu\m\”d . - g

k

2 00
S Aoy | = G § ILaulde.
A k=) o

Now allowing A=»eo , there results the Parseval equality

%) ® =2
g Jute)*de = g Z A AT dPayi (C39)
0 oo 4 k=

for any m(c) restricted as above. We now show that the Parseval
equality holds for any w(e) in fiz'(a) °°)° First suppose M(¢>Zfl(0,oo)
and vanishes for ¢ sufficiently large and sufficiently small. Then
there exists a sequence of functions y, € leo,oo) possessing continuous

second derivatives and vanishing near ¢=0 and for all large < such

that
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[T}
/LV"M S IU(,,\—M’LJC =0,
n=>00 °
Applying (C39) to n,= Am
ee T % z 4 A ~r A ¥
g U= Un| de = Z {MW—MM)(M“ ’“J’w>d,"z\,'k . (C40)
o oo \);k=l

Since the left side of (C40) tends to zero as n,m > oo, it follows that

4 ~ v
the sequence of vectors fé‘(n’g s Un = Uy, Uy where

de,v\ = g de a, (c) qSJ'/g},\) (C41)
00

—

converges in the mean in fL(IOA) , and since the Tatter space is
comp]ete2 there exists a vector A which is the Timit in the mean of
this sequence, It is clear from (C41) that the components of & are the

continuous functions

Returning to (C39)

oo , ) . , 00 CAY
1 ' = Uyo U J Al
fo [u@|dec = 2, ga [an(e)] "de ’f;‘”\w ﬁg}kg nk ¢ LAk
0 1
VYR
= S 2 G Ay dpagy
oo k=l

which proves the Parseval relation for any «(c)€ fz‘/o)"o) vanishing
for all ¢ sufficiently large and sufficiently small. Suppose now

that n(e) is any function of class ¥ %(2,2¢) and define

u(le) x&cég

M"?}@: g a c<x, 9<c
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and
o

Hxg 0) = S Ury @ B (44) de

)
= S M(c) db: (‘//\)0/5
X
and similarly for “rs(‘> . Since (x<f‘) %<S)

S Z ( xﬂJ (1/\)(,3/( MWK)J/‘AJ ) (§f+%3)m&”z¢/c}

-0o d/(; X

it follows that the set of vectors ’Xxg converges (as X o ,«3~>w )
1 w (S

in the mean & f{oA) to a vector function X ¢ @A) . By letting

x> o |, %~>oo in

0 2 Y,

11 wx ] = Uu(c 1CIC

[ 2 Bty dpag = § 1uce

¢

- 0 J)k=,

there now follows the Parseval equality

00

S Z A B dpay, (A) = Smmﬁlc, (c42)

oo J/ =)
for any u\(c)fﬁ“/o)oo).

The Expansion Theorem for the Singular Interval

With the Parseval relation established, the proof of the expan-

sion theorem may now be given, Let D= (-7,7) and define

>
up (<) = _§7 %k::qu/()/\) & 0) dPag, (A). (C43)

If MI(C) and ygfe) are in fq'/"/“) » then the relation (C42) implies
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oQ 60 5 , 00 e

S Mr(6>u§(c)clc = S Z g Ug ¢k" de 5 U % c}(} (C44)

Zoo ‘),k:l o

which follows since we can write

1 , L '
Yup vy = |ug+ug] = | vp-ugl i wtivml =1 Jug-rag[*
Now consider some function T & XL(O,%) which vanishes for ¢<<, ,

A/
¢, < , and represent the transform of T by the vector T . Multi-

plying (C43) by T and integrating we have

" @7 de = g (§ D Gl 0 ) T e

- Ay /’\)( T*Cl‘ J/OAJk A)

""7 J)k !
1 3 v,
AT : (€45)
= g Zk_ “k TJ J/D"\lk .
_’»l J) =)
From (C44) for uy =« and ug =T ,
Cq o0 2 vy
g MT*C]C = { Z ﬁk 7;' JﬁAJlk : (C46)
- Zoo k=l

Subtracting (C45) from (C46), and using the Schwarz inequality,

S?(M,‘MD)T*Jc,ié (f £7>qu“?°,/°4/ (gw S )ZTR e

]—I

(£ (W s 2

*2 '7 J‘,k:Y Jk !
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Applying this inequality to the function T(2) given by

T(e) = {M@_MD@; e fesq e

c < <! ) Cz< <
we obtain
C‘L 5] 7 (A
7 _ A .
j [n)=uy@l de = (_gw >Z k U df‘\lk
C[ —’7 )k:,
or ﬁna]]y

S IV\(c)"S ZZ ((A>M’<(A)‘J/0‘Jk(’\>l°l <

l

" )

(f ) ) & X* dpae |

J k=|
Since the right side does not depend on ¢ , ¢, , the above holds

with €, o , € ™59 Lett1ng4l—>°0 yields the expansion

Y

ne) = § Zi %'(‘,A>'M:a)deJ'k /A)
oo J, =1

-—

which clearly converges in the mean in J\M'/Ojoa)o
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