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Endonuclease-independent LINE-1 retrotransposition
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Long interspersed element-1 (LINE-1 or L1) elements are abund-
ant, non-long-terminal-repeat (non-LTR) retrotransposons that
comprise ~17% of human DNA'. The average human genome
contains ~80—100 retrotransposition-competent L1s (ref. 2), and
they mobilize by a process that uses both the L1 endonuclease and
reverse transcriptase, termed target-site primed reverse transcrip-
tion>°. We have previously reported an efficient, endonuclease-
independent L1 retrotransposition pathway (EN;) in certain
Chinese hamster ovary (CHO) cell lines that are defective in the
non-homologous end-joining (NHE]J) pathway of DNA double-
strand-break repair®. Here we have characterized EN; retrotrans-
position events generated in V3 CHO cells, which are deficient in
DNA-dependent protein kinase catalytic subunit (DNA-PKcs)
activity and have both dysfunctional telomeres and an NHE]J
defect. Notably, ~30% of EN; retrotransposition events insert in
an orientation-specific manner adjacent to a perfect telomere
repeat (5'-TTAGGG-3’). Similar insertions were not detected
among EN; retrotransposition events generated in controls or in
XR-1 CHO cells deficient for XRCC4, an NHE] factor that is
required for DNA ligation but has no known function in telomere
maintenance. Furthermore, transient expression of a dominant-
negative allele of human TRF2 (also called TERF2) in XRCC4-
deficient XR-1 cells, which disrupts telomere capping, enables
telomere-associated EN; retrotransposition events. These data
indicate that L1s containing a disabled endonuclease can use dys-
functional telomeres as an integration substrate. The findings
highlight similarities between the mechanism of EN; retrotrans-
position and the action of telomerase, because both processes
can use a 3’ OH for priming reverse transcription at either inter-
nal DNA lesions or chromosome ends”®. Thus, we propose that
EN; retrotransposition is an ancestral mechanism of RNA-
mediated DNA repair associated with non-LTR retrotransposons
that may have been used before the acquisition of an endonuclease
domain.

We previously reported an endonuclease-independent pathway of
L1 retrotransposition in a DNA-PKcs-deficient (V3) cell line (Fig. la;
see also Supplementary Table 1)°. In addition to its role in NHE], the
DNA-PKcs protein probably contributes to telomere capping, as
embryonic fibroblasts derived from two DNA-PKcs '~ mouse
strains exhibit an increase in anaphase bridges and telomere
fusions™'. Consistent with published results'®"?, V3 cells exhibit
an increase in the number of anaphase bridges when compared to
the AA8 parental cell line (Supplementary Fig. 1a). Moreover, 53BP1,
a protein that is recruited to DNA double-strand breaks and dysfunc-
tional telomeres, can localize to chromosomal ends in V3 cells'**°
(Supplementary Fig. 1b, ¢).

To gain an insight into the mechanism of L1 retrotransposition
in V3 cells, we characterized the sites of genomic integration. Four
retrotransposition events generated from an endonuclease-proficient
L1 showed the attributes of target-site primed reverse transcription
(TPRT) because they are 5’-truncated, end in a poly(A) tail, integrate
into an L1 endonuclease consensus cleavage site, and most were
flanked by variable-length target-site duplications (Fig. 1b; insertions
1-4)'*". The remaining insertion (Fig. 1b; insertion 5) isboth 5’- and
3'-truncated and lacks a discernible target-site duplication. The 5’
flank contains a 203-base-pair (bp) sequence that is homologous to a
hamster sub-telomere-like repeat (AF306800; P =1 X 10~*Y) that is
also present at some pericentromeric and interstitial regions of CHO
chromosomes'®. Thus, most endonuclease-proficient L1 retrotrans-
position events in V3 cells occur by TPRT®, although one insertion is
associated with a telomere-like sequence at its 5" end and is similar
structurally to previously described EN; retrotransposition events®.

We next examined EN; retrotransposition events in V3 cells. Two
insertions (Fig. 1b; insertions 8 and 9) were structurally similar to
previously characterized EN; events (Fig. 1b; insertions 6 and 7). The
last 532 bp flanking the 3’ end of insertion 9 showed homology to the
same hamster subtelomere-like repeat (AF306800 (P =7 X 107%%Y)
flanking the 5" end of insertion 5. In comparison, the sequences
flanking the 3" end of insertions 10 and 11 had different poly(A) tail
lengths (~33 bases and ~120 bases, respectively) that are followed
directly by the complement of a perfect series of telomere repeats (24
and 10 copies, respectively). The integrity of the repeats then degen-
erates and is followed by host DNA sequences. These data suggest that
both EN; retrotransposition events initiated at related but distinct
telomere repeats in V3 cells.

We next developed a polymerase chain reaction (PCR)/Southern
blot assay to determine the frequency of telomere-associated EN;
retrotransposition events (Fig. 2a). As controls, we amplified the
L1-telomere junction fragments from genomic DNA of insertions
10 and 11 using a primer specific to the 3" end of our engineered
L1 (that is, L1end326) and one of three primers specific for either
the telomere-L1 junction (that is, telol0T and telo3T) or telomere
sequence alone (that is, telo; see Methods). Southern blot analysis
using an L1 probe (that is, Llend191) identified a ~326-bp product
from insertion 10 genomic DNA using each primer set (Fig. 2b; lane
33-poly(A)). A heterogeneously sized product often was amplified
from insertion 11 (Fig. 2b; lane 120-poly(A)), which probably reflects
difficulty amplifying through the ~120-bp poly(A) tail. Sequencing
confirmed the identity of the products (not shown).

The PCR assay was then used to screen genomic DNAs isolated
from 17 EN; insertions generated in V3 cells. Experiments conducted
with Llend326 and telo10T revealed products in cell lines 3L, 10E,
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10L, 13E, 14E and 14L (Fig. 2b). In cell lines 10 and 14, the product
was evident in both early (E) and a later (L) passage cell lines (see
Methods). In cell line 3, we only detected a product in the later
passage cell line, indicating that the insertion occurred during its
establishment. In cell line 13, we only observed a product in the early
passage cell line, suggesting a failed PCR reaction from the later
passage cell line. We also observed faint bands of various sizes in
other lanes (Fig. 2b, lanes 2E, 4L, 9E); however, sequencing revealed
that only the intense bands in cell lines 3, 10, 13 and 14 contained
bona fide L1-telomere junction fragments (see Fig. 2c).

To rule out nonspecific amplification owing to the ten deoxythy-
midine residues in the telo10T primer, PCR assays were conducted
with the Llend326-telo3T or Llend326—telo primer pairs (Fig. 2b
and data not shown). Again, cell lines 3, 10, 13 and 14 yielded positive
signals, corroborating the above results. Sequencing revealed that the
products have poly(A) tails that range from approximately 13-86
bases (Fig. 2c). However, we also detected a signal in cell line 5
(Fig. 2b, right panel). Sequencing demonstrated that the EN; L1
insertion present in cell line 5 is truncated at the SV40 poly(A) cleav-
age site and only contains two deoxyadenosine residues at the L1—
telomere junction (Fig. 2c), explaining why this product was not
amplified using the L1end326—telo10T primer pair. Further analysis
of the L1end326—telo PCR products revealed that the L1 poly(A) tail
is always flanked by the complement of a perfect (5'-CCCTAA-3")
telomere repeat (Fig. 2¢), and we confirmed these results using
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different telomere primers (Supplementary Fig. 2). Finally, primer
pairs designed to detect telomere insertions in the opposite polarity
did not yield PCR products (Supplementary Table 3a). These data
indicate that the 3’ OH of a terminal telomere repeat (5'-TTAGGG-
3") was used to initiate reverse transcription.

To confirm EN;j retrotransposition at a chromosomal end, we
performed fluorescence in situhybridization (FISH) on V3 cells using
a 4.5-kb probe containing host genomic DNA sequences flanking
the telomere repeats present in insertion 10 (Figs 1b and 2d). If our
engineered L1 inserted at a telomere end, this probe should hybridize
to subtelomeric sequences. Approximately 83% of the positive FISH
signals in cells at metaphase localized to the subtelomeric regions on
five different chromosomes (Fig. 2d; see also Supplementary Table 2,
categories A-D). The remaining cells at metaphase showed FISH
signals located at different interstitial chromosomal locations
(Supplementary Table 2, category E). We also observed di-centric
chromosomes and karyotypic variation among individual V3 cells
(Supplementary Table 2, category D), supporting the hypothesis that
loss of the DNA-PKcs protein results in telomere dysfunction and
genome instability™'*'2.

We next examined whether an endonuclease-proficient L1 could
retrotranspose at telomeres in parental AA8 cells and V3 cells
(Supplementary Fig. 3e, f, and data not shown). As above, some faint
bands were visible after Southern blotting; however, sequencing
indicated that they were nonspecific products (data not shown).
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Figure 1| Characterization of L1 retrotransposition insertions in V3 cells.
a, A wild-type (WT) L1 with a retrotransposition indicator cassette (Rep).
The EN (D205A and H230A) and RT (D702A) mutants are shown. Right:
blasticidin-resistant foci in AA8 and V3 cells. b, Diagrams of wild-type (left)
and EN; (right) retrotransposition events. The pre-integration (insertions
1-3) and post-integration sites are shown. Arrowheads, L1 EN cleavage site;

uppercase lettering, target site duplications (TSD); green lettering, non-L1
‘filler’ DNAS; blue lettering/rectangles, putative telomere/subtelomeric
sequence; red and pink rectangles, genomic and cDNA sequences,
respectively. L1 numbering is relative to L1.2 (GenBank accession
M80343)*. (Additional details are provided in Supplementary Methods.)
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Moreover, the faint products were not observed using primers that
could amplify a larger L1-telomeric junction fragment (Supplemen-
tary Table 3). Thus, most wild-type L1 retrotransposition insertions
in both AA8 and V3 cells seem to initiate by conventional TPRT,
although it is possible that the sample size of our experiment is too
small (n=49) to detect telomere-associated events. Similar experi-
ments failed to detect Ll-telomere junction fragments among
cohorts of EN; retrotransposition events in either AA8 or XRCC4-
deficient cells (Supplementary Figs 3fand 4), suggesting that telomere-
associated retrotransposition is due to the dysfunctional telomere
phenotype associated with V3 cells.

We then assayed EN; retrotransposition in two clonal V3 cell lines
that expressed a mouse DNA-PKcs complementary DNA (mDNA-
PKcs comp5 and mDNA-PKcs comp15; Supplementary Fig. 3a). V3
cells exhibit increased radiation sensitivity and defects in a lymphoid-
specific DNA rearrangement, V(D)] recombination, when compared
with parental AA8 cells; the murine DNA-PKcs protein comple-
ments these phenotypes (Supplementary Fig. 3b, c¢). However, EN;
retrotransposition occurred at similar efficiencies in the V3 and
DNA-PKcs complemented cell lines (Supplementary Table 1 and
Supplementary Fig. 3d), and the complemented cells did not exhibit
a significant decrease in anaphase bridges when compared to V3 cells
(Supplementary Fig. 1a). Similar results were also obtained from V3
cell lines that were complemented with a human DNA-PKcs gene'**
(data not shown). Characterization of EN; retrotransposition events
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Figure 2 | EN,; retrotransposition initiates at the telomere. a, Primers used
in the PCR (pink)/Southern blot (green) assay are shown above the diagram.
b, Each lane contains PCR products from 17 DNAs from early (E) or later (L)
passage clonal G418-resistant cell lines hybridized with Llend191.
33-poly(A) and 120-poly(A) are positive control DNAs from insertions 10
and 11 (Fig. 1b). Size markers (bp) and primer pairs are shown. ¢, Sequences
of the PCR products using the L1end326-teloTTA primer pair. d, FISH
results in V3 cells using the ~4.5-kb probe from insertion 10 (red
rectangle). (Results are summarized in Supplementary Table 2.) White
arrows indicate positive FISH signals.
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Figure 3 | Destabilization of telomeres in XRCC4-deficient cells allows for
telomere-associated EN; retrotransposition events. a, CHO cells transfected
with an EGFP plasmid in either the presence or absence of a dominant-
negative TRF2 (ABAM) expression plasmid were flow sorted and subjected to
metaphase analysis. DAPI (4,6-diamidino-2-phenylindole)-stained
metaphases from cells lacking (left panel) or containing (right panel) the
TRF2 (ABAM) expression plasmid are shown. b, A wild-type or
endonuclease-deficient L1 was transfected into the indicated cell line in either
the presence or absence of the TRF2 (ABAM) plasmid and the resultant DNAs
were subjected to the PCR/Southern blot assay. Size markers (bp) are shown.
¢, Sequences of the PCR products using the L1end186-telo3T primer pair.
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in the complemented cell lines demonstrated an increase in telomere-
associated events; moreover, we detected telomere-associated retro-
transposition from a wild-type L1 (Supplementary Fig. 3e—g and
Supplementary Table 3b).

The inability to complement the EN; retrotransposition and ana-
phase bridge phenotypes in V3 cells requires further exploration. It is
possible that V3 cells have accumulated lesions that are not present in
the parental cell line, but contribute to the elevated efficiency of EN;
retrotransposition. Alternatively, species-specific differences between
the DNA-PKcs proteins used in these experiments may prevent com-
plementation of the dysfunctional telomere phenotype®**. In either
case, these data argue that the NHE] defect and dysfunctional telomere
phenotypes are genetically separable.

We then tested whether destabilizing telomeres in XRCC4-deficient
cells by expressing a dominant-negative allele of human TRF2 would
allow a suitable substrate for EN; retrotransposition®. TRF2 is a tel-
omere-binding protein required for the protection of chromosome
ends'®. Consistent with previous studies**°, control experiments indi-
cated that expression of the dominant-negative human TRF2 protein
leads to chromosomal fusions in the NHE]J-proficient 4364a and AA8
parental cell lines (Fig. 3a). Next, we demonstrated that telomere-
associated EN; retrotransposition events are readily observed in
XRCC4-deficient cells expressing the dominant-negative human
TREF2 protein, but not in control cell lines expressing the same protein
(Fig. 3b, c). These data are consistent with the hypothesis that a defect
in NHEJ allows L1 to use a dysfunctional telomere as an integration
substrate®®?.

We conclude that EN; retrotransposition can occur in an orienta-
tion-specific manner at terminal telomere repeats. We propose that
dysfunctional telomeres generated either by a loss of DNA-PKcs or
the expression of a dominant-negative allele of human TRF2 in an
NHE]J-deficient cell line allow the L1 retrotransposition machinery
to use the 3" OH present at a dysfunctional telomere as a primer to
initiate EN; retrotransposition (Fig. 4)°"'"**%". The finding that the
L1 reverse transcriptase does not require terminal base pairing
between the primer and template to initiate reverse transcription
provides biochemical support for this model*.

We further speculate that integration of an L1 at the end of a
chromosome would lead to chromosomal rearrangements, perhaps
by initiating bridge-breakage-fusion cycles. Indeed the products of
bridge-breakage-fusion cycles may provide recombination and/or
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Figure 4 | Model for EN,; retrotransposition in NHEJ-deficient cells
containing dysfunctional telomeres. A 3’ OH at a dysfunctional telomere
can serve as a primer for reverse transcription of L1 RNA during EN;
retrotransposition. The blue rectangle represents the telomere of a
chromosome; the green oval depicts the centromere; the orange line
indicates L1 RNA; the red line indicates the L1 cDNA; the blue circle
symbolizes the L1 RT. It is unclear whether base pairing between the L1
mRNA poly(A) tail and the thymidine residues at the telomere stabilizes
priming, and how the resultant retrotransposition event is resolved.
However, the event may be unstable, leading to secondary rearrangements
and internal localization of the L1.
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initiation substrates for EN; retrotransposition, leading to the struc-
tural features observed in insertions 5 and 9, respectively (Fig. 1b).
Notably, we cannot formally exclude the possibility that breaks at
interstitial telomeres can also act as substrates for EN; retrotransposi-
tion. However, the simplest explanation for our data is that dysfunc-
tional telomeres can serve as substrates for EN; retrotransposition.

METHODS

Oligonucleotide sequences and constructs used in this study. The sequences
and constructs used in this study are described in detail in Supplementary
Information.

L1 retrotransposition assay. The 3’ untranslated region of a retrotransposition-
competent human L1 (L1.3) contains either a blasticidin or neomycin reporter
(Rep) cassette designed to select retrotransposition events**'®. The relative posi-
tions of the CMV promoter (P) and SV40 late polyadenylation signal (pA) used
for L1 expression are indicated in Fig. la. The relative positions of the SV40
promoter (P') and the thymidine kinase polyadenylation signal (inverted
‘lollipop’) required for reporter gene expression are also shown. Some of the
mneol-based constructs include a prokaryotic promoter and a bacterial origin of
replication (ColEI, black rectangle) to allow the recovery of retrotransposition
events as autonomously replicating plasmids in Escherichia coli'®. The reporter
gene is interrupted by an intron in the same transcriptional orientation as the L1.
This arrangement ensures that the reporter transcript will only be translated after
L1 retrotransposition. A modified version of a transient transfection protocol
was used to introduce the L1s into cells** (see Supplementary Information for
details).

Recovery of retrotransposition events. Genomic DNA was isolated from G418-
resistant clonal CHO cell lines harbouring an L1 retrotransposition event, and
the events were characterized as described previously'® (see Supplementary
Information for details).

Analyses used. PCR and Southern blot analyses were performed using standard
procedures (see Supplementary Information for details). FISH, anaphase bridge
analyses, immunocytochemistry and metaphase analyses were performed using
standard procedures (see Supplementary Information for details).
Characterization of mDNA-PKcs comp5 and comp15. The phenotypes of the
mDNA-PKcs comp5 and mDNA-PKcs comp15 cell lines were characterized with
respect to protein levels, V(D)] recombination, radiation sensitivity and EN;
retrotransposition (see Supplementary Information for details).
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