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� Abstract
With a combinatorial library of bioimaging probes, it is now possible to use machine
vision to analyze the contribution of different building blocks of the molecules to their
cell-associated visual signals. For this purpose, cell-permeant, fluorescent styryl mole-
cules were synthesized by condensation of 168 aldehyde with 8 pyridinium/quinoli-
nium building blocks. Images of cells incubated with fluorescent molecules were
acquired with a high content screening instrument. Chemical and image feature analy-
sis revealed how variation in one or the other building block of the styryl molecules led
to variations in the molecules’ visual signals. Across each pair of probes in the library,
chemical similarity was significantly associated with spectral and total signal intensity
similarity. However, chemical similarity was much less associated with similarity in sub-
cellular probe fluorescence patterns. Quantitative analysis and visual inspection of pairs
of images acquired from pairs of styryl isomers confirm that many closely-related
probes exhibit different subcellular localization patterns. Therefore, idiosyncratic inter-
actions between styryl molecules and specific cellular components greatly contribute to
the subcellular distribution of the styryl probes’ fluorescence signal. These results
demonstrate how machine vision and cheminformatics can be combined to analyze the
targeting properties of bioimaging probes, using large image data sets acquired with
automated screening systems. ' 2009 International Society for Advancement of Cytometry
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QUANTITATIVE structure-property or structure-activity relationship (QSAR) analy-

ses are commonly used to objectively assess how the chemical structures of molecules

are related to their physiochemical properties or pharmacological activities (1–11).

In contrast, quantitative structure-localization relationship (QSLR) analysis (12–19)

remains relatively underdeveloped as a tool for bioimaging probe development. For

bioimaging applications, one would want to be able to objectively optimize the struc-

ture or physicochemical properties of a molecule in relation to a molecule’s visual

signal as captured by an imaging instrument. Nevertheless, unlike bioactivity assay

data, image data is inherently multidimensional (20–25), so QSLR analysis poses a

significant challenge. Parallel development and integration of machine vision and

cheminformatic analysis techniques is essential to further progress in QSLR analysis

and bioimage probe development (26,27).

Styryl dyes are fluorescent, lipophilic cations that have been used as specific

labeling probes for mitochondria, RNA, DNA, amyloid plaques, plasma membrane,

endocytic vesicles, and other structures in live cells (28–36). Different styryl mole-

cules absorb and emit light at various different wavelengths (37). Styryl molecules

can be synthesized from two basic building blocks, an aldehyde moiety and a pyridin-
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ium or quinolinium moiety, that react together through a con-

densation reaction that forms the central carbon-carbon dou-

ble bond of the molecule (28,29). In this manner, combinator-

ial libraries of prospective bioimaging probes can be readily

synthesized by combining different aldehyde and pyridinium

or quinolinium building blocks. Such libraries have been used

as a starting point to search or develop specific fluorescent or-

ganelle markers as well as in vivo bioimaging probes

(28,29,36). Incorporation of positron emitting isotopes in sty-

ryl molecules may allow for these molecules to be used as

whole-organism imaging probes in live animals and poten-

tially in humans (38).

For assessing the structure-localization properties of

styryl molecules, image analysis algorithms can be used to

automatically analyze the subcellular distribution of cell-

associated signals in images acquired using automated

microscope instruments (‘‘high content screening systems’’)

(39–44). As a hypothesis, fluorescence signals and their sub-

cellular localization can be mostly determined by generic

transport mechanisms governing the intracellular transport

of the styryl molecules. These generic transport mechanisms

are mostly influenced by nonspecific physicochemical prop-

erties of the probes such as lipophilicity, charge, or pKas of

ionizable functional groups (45–47). Alternatively, spectral

signals and subcellular localization may be mostly deter-

mined by specific binding interactions between styryl mole-

cules and specific cellular macromolecules localized at

different subcellular compartments (28,29). By studying the

extent that variations in chemical structure leads to varia-

tions in fluorescence signal, it may be possible to determine

whether specific chemical features or generic physicochemi-

cal properties are the key determinants of the localization of

the fluorescence signal.

Here, we analyzed a data set of images of HeLa cells incu-

bated with a combinatorial library of styryl molecules (26),

with over 15,000 images obtained in six different acquisition

channels (FITC, TRITC, and Cy5 channels at 1 s and 200 ms

exposure times). An orthogonal nuclear marker (HoechstTM

33342) was used to identify each cell in an image, and using

this marker as a reference, image analysis was performed to

extract the individual cell associated features. To relate the

chemical structure of the styryl molecules to their visual sig-

nal, the Tanimoto similarity coefficient of each pair of styryl

molecules in the database was computed using a chemical

fragment-based descriptor of each molecule. In turn, a similar-

ity vector of the cell associated fluorecence signal was calcu-

lated based on the relative cytoplasmic and nuclear intensity

of probe fluorescence (indicative of probe distribution

between these two compartments), and the coefficient of vari-

ation (CV) of pixel intensities (indicative of homogenous or

heterogenous staining patterns associated with probe accumu-

lation in discrete organelles) of the individual cells in the

images. By studying the relationship between chemical simila-

rities and signal similarities for individual pairs of probes, we

quantitatively analyzed the molecules’ cell-associated fluores-

cence signal in relation to the molecules’ chemical building

blocks.

MATERIALS AND METHODS

Data Acquisition

Styryl probes belong to a combinatorial library in which

each compound consists of one of eight pyridinium or quino-

linium groups (A-H) conjugated to one of 168 aldehyde

groups (1–168), with all 8 3 168 combinations (1,344 com-

pounds) considered (26,29). The chemical synthesis and struc-

tures of this styryl library has been previously published (29).

A KineticscanTM high content screening instrument (39) (Cel-

lomics, Pittsburgh, PA) was used to obtain images of HeLa

cells incubated with fluorescent styryl probes in phenol red-

free RPMI 1640 medium (Invitrogen). Probes were diluted to

50 lM concentration from a 10 mM stock dissolved in

DMSO. The compounds were imaged on 96-well plates using

the four channels of the XF93 filter set (Omega Optical, Brat-

tleboro, VT), as follows (48):

� Excitation: 365 � 25 nm; and emission: 515 � 10 nm

(Hoechst channel 1).
� Excitation: 475 � 20 nm; and emission: 515 � 10 nm (FITC

channel 2).
� Excitation: 549 � 40 nm; and emission: 600 � 12.5 nm

(TRITC channel 3).
� Excitation: 655 � 15 nm; and emission: 730 � 25 nm (Cy5

channel 4).

As a control compound, we used MitofluorTM Green

(Invitrogen) localizing to mitochondria. HoechstTM 33342

(Invitrogen) was added to every well of each plate (diluted to

5 lgs/ml from a 10 mgs/ml stock solution) to allow identifica-

tion of cell nuclei. Image acquisition was performed with the

203 magnification objective of the KineticscanTM instrument,

under influx conditions (with styryl probe in the medium)

and under efflux conditions (after washing and replacing with

fresh RPMI 1640 medium). A total of twelve images were

acquired for each well in each plate, with six images obtained

under influx and efflux conditions. These six images were:

HoechstTM channel at 1 s exposure; TRITC, FITC, and Cy5

channels at 1 s exposure; and TRITC and FITC channels at

200 ms exposure. The raw images produced by the instrument

are 512 3 512 pixels in size, with intensity values ranging

from 0 to 4,095. The images from this study are available using

a data access tool that is available from http://1cellpk.wikispa-

ces.com/DeepBlue-Tools.

Image Segmentation

Nuclear regions were identified by adaptively threshold-

ing the HoechstTM channel images. We did this by numerically

optimizing a thresholding performance measure defined as

the number of distinct objects in the thresholded image

between 100 and 800 pixels in size, determined to be a range

covering most cell nuclei in the images. The thresholding per-

formance measure is denoted N(T) for threshold T. For opti-

mization, we started with three points N(800 3 0.8), N(800),

N(800 3 1.2) centered around a threshold of T 5 800, which

was determined to be a good threshold for most images, by
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visual inspection. This set was then extended to either higher

or lower threshold values by multiplying either the largest

threshold by 1.2 or the smallest threshold by 0.8. This process

was iterated until a bracket of values was found in which an

interior point was the maximum among all values tested. This

interior maximum was used as the threshold for the image

under consideration. The algorithm was run independently on

each HoechstTM channel image in the data set. After identify-

ing the nuclear regions, all distinct, connected objects in the

thresholded image were identified using a labeling algorithm,

and were henceforth referred to as the nuclear regions. A nu-

clear region was retained for further consideration if it was

between 100 and 800 pixels in size. This range is specific to the

magnification and resolution of our data, and was empirically

determined through visual inspection of numerous images,

based on correspondence of the segmented nuclear regions to

the individual, single nuclei in the images. Regions of bright

HoechstTM channel pixel intensity smaller than 100 pixels or

larger than 800 pixels tended to be artifacts of various types.

With this method, the mean number of nuclei per image was

55 with a standard deviation of 26. Out of all experimental

and control images analyzed, 31 images had no nuclei detected

by the algorithm and were therefore not included in subse-

quent analysis.

Background Subtraction

For every set of six images acquired per well, the

HoechstTM image was segmented as described above, and the

resulting binary nuclear masks were dilated by 10 pixels. This

is sufficient to cover most of the pixels inside cells. The com-

plement of this dilated region was used to measure the back-

ground pixel intensity of the other five images acquired

through the FITC, TRITC, and Cy5 channels. The median in-

tensity value of the background pixels of each image was sub-

tracted from intensity value of every pixel in that image, and

these adjusted intensity values were then truncated at zero.

Selection of Images for Further Processing

To avoid artifacts that complicate analysis of subcellular

fluorescence (such as extracellular dye precipitates), images

were selected based on the premise that in an ideal image, the

fluorescence signal would concentrate much more around the

nuclei, rather than being randomly distributed in the image.

For this purpose, we dilated each nuclear region by 10 pixels

and defined the ‘‘inside intensity’’ (II) as the median intensity

of all pixels in the dilated nuclear region. Next, we dilated each

nuclear region by 10 more pixels (20 pixel dilation in total),

and defined the ‘‘outside intensity’’ (OI) as the median inten-

sity of all pixels in the complement of this region. Let D 5 II-

OI and let R 5 II/OI, and let S be the proportion of pixels in

the 20 pixel dilated regions that are at the peak level (4,095),

which is a measure of saturation. An image was selected if D

[ 300, R[ 1.2, and S\ 0.05. These values were defined based

on inspection of a sample of images that were manually classi-

fied according to whether they were useful for analysis.

Cell-Associated Image Features

A whole cell mask was constructed by dilating the nuclear

masks by five pixels. The complement of each nuclear mask in

its whole cell mask was taken as the cytoplasmic region mask,

or ‘‘cytoring.’’ We next calculated four numerical features for

each image based on the intensity values in the nuclear and/or

cytoring regions. These four features are: (1) Logarithm of

cytoplasm-to-nucleus intensity ratio, calculated as the median

of log(1 1 x) where x ranges over all cytoring pixels in the

image, minus the median of log(1 1 x), where x ranges over

all nuclear pixels in the image; (2) Total signal intensity, calcu-

lated as the median of all nuclear and cytoring pixels in the

image, summed over the three channels with 1 s exposure

times; (3) Spectral distribution of the fluorescence signal, cal-

culated as a triple of non-negative values summing to 1, where

the three values represent the median pixel intensity over all

nuclear and cytoring pixels in the image in the 1 s TRITC,

FITC, and Cy5 channels, normalized to the sum of these three

values; (4) Coefficient of variation (CV), calculated as the

usual coefficient of variation (ratio of standard deviation to

mean value) over all nuclear and cytoring pixels in the image.

All image and statistical analysis were done in Python using

the numpy and ndimage packages.

For inclusion in subsequent, quantitative analysis of

image features, a given image had to pass the following addi-

tional criteria: (1) for the nuclear-to-cytoplasmic ratio analy-

sis, either the nuclear or cytoplasmic median intensity (or

both) had to be at least 100 units (with 1,530 styryl image sets

passing this criterion); (2) for the total cellular intensity analy-

sis, the image was required to have at least one region (with

2,626 styryl image sets passing this criterion); (3) for the anal-

ysis of spectral distribution, at least one of the three spectral

channels was required to have a median intensity value within

each cell region of at least 100 units (with 675 styryl image sets

passing this criterion); and (4) for the coefficient of variation

(CV) analysis, the mean of all within-cell pixels was required

to be at least 100 units (with 1,730 styryl image sets passing

this criterion). Every image passing the aforementioned crite-

ria was visually inspected for evidence of probe toxicity or the

presence of insoluble dye complexes in the extracellular me-

dium. Images with [20% rounded cells with blebs or con-

densed nuclei (morphological features indicative of probe tox-

icity) or with evidence of dye precipitates, aggregates or crys-

tals interfering with cell feature measurements were manually

excluded from analysis.

Marginal and Pairwise Analysis

Marginal analysis of image features was carried out by

estimating the distributions (using kernel density estimators)

of a particular image feature for selected classes of compounds

(MitofluorTM Green control or styryl). These distributions

were then superimposed in graphs, and specific images from

points along the distribution were visually inspected to assess

whether the image feature being measured actually corre-

sponds to the visual interpretation of the probe’s fluorescence

distribution. Differences between marginal distributions for
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different classes of compounds indicate that at least for subsets

of the compounds, there are distinct localization patterns.

To determine if compounds that are structurally more

similar also tend to produce similar images, we performed

pairwise image analysis as follows: For each pair of probes, we

measured their chemical similarity in terms of Tanimoto simi-

larity based on the Cactvs 881 key fingerprint set (49). Tani-

moto similarities were linearly transformed to have mean zero

and standard deviation 1 across the entire library. Image fea-

ture dissimilarity was assessed using the L1 distance (sum of

absolute differences) for the components of a particular image

feature (e.g., the three components of spectral distribution of

probe fluorescence). Scatter plots of image feature dissimilar-

ity against Tanimoto similarity were generated by selecting

30,000 compound pairs at random. We then calculated run-

ning medians and 75th percentiles within intervals along the

horizontal axis containing 200 points. These raw percentiles

were then LOWESS smoothed and superimposed on the scat-

ter plot. Correlation coefficients between image feature dis-

similarity and Tanimoto similarity and two-sided P-values for

a null hypothesis of no correlation were calculated to summa-

rize the trends (Table 1).

RESULTS

Styryl Molecules Exhibit a Range of Cell-Associated

Fluorescence Patterns

We began by assessing how variation in chemical struc-

ture of styryl molecules influenced the intracellular intensity

and distribution of the molecules’ fluorescence signal in rela-

tion to MitofluorTM Green, a lipophilic cation used as a mito-

chondria-specific fluorescent marker (50). At the total inten-

sity level, the distribution of fluorescence signal acquired from

the styryl molecules was similar to that of MitofluorTM Green

controls (Fig. 1A). However, the ratio of cytoplasmic-to-nu-

clear fluorescence of styryl molecules was considerably lower

than that of MitofluorTM Green (Fig. 1B), consistent with flu-

orescence signals being more nuclear, more diffuse and com-

ing from sites other than mitochondria. Also, the coefficient

of variation (CV) of intracellular fluorescence of styryl mole-

cules was lower than that of MitofluorTM Green (Fig. 1C), in-

dicative of a more homogenous, intracellular fluorescence

localization.

Upon visual inspection, images of cells incubated with

different styryl molecules revealed different patterns of intra-

cellular fluorescence signal intensity and localization consist-

ent with the measured image features (Fig. 1). Those images

of cells with low cytoplasmic to nuclear ratio (Fig. 1B, image

1) generally had a diffuse cellular staining pattern that

appeared in both nuclear and cytoplasmic regions. Images of

cells with intermediate cytoplasmic-to-nuclear ratio (Fig. 1B,

image 2) often had strong cytoplasmic fluorescence suggestive

of mitochondrial or some other cytoplasmic organelle

accumulation, and often exhibited some punctate nuclear (nu-

cleolar) fluorescence. Images of cells with high cytoplasmic-

to-nuclear ratios (Fig. 1B, image 3) most closely resembled

MitofluorTM Green staining, in terms of the preferential locali-

zation of probe fluorescence in the cytoplasmic compartment

and visual resemblance to the typical, perinuclear localization

pattern of mitochondrial-specific fluorescent dyes.

A high value for the CV feature is an indicator of heterog-

enous staining patterns associated with vesicular or organellar

dye sequestration (26,40). Yet, a significant number of styryl

molecules exhibited lower CV values than MitofluorTM Green

indicative of diffuse staining. Images at the extreme, low end

of the CV values often had cells with diffuse, cytoplasmic fluo-

rescence (Fig. 1C, image 4). Images of cells with intermediate

CVs exhibited various localization patterns, from membrane-

associated (Fig. 1C, image 5) to more punctate or vesicular

staining patterns typical of mitochondrial or lysosomal stain-

ing. Images with the highest CVs of cell-associated fluores-

cence signals corresponded to cells with small dye crystals in

the perinuclear region (Fig. 1C, image 6).

We noted that the variance of cytoplasmic-to-nuclear

ratios (Fig. 1B) obtained from the MitofluorTM green controls

was greater than the distribution observed for styryl com-

pounds. This result was paradoxical at first, because the styryl

molecules correspond to a diverse collection of compounds

that should label cells differently, whereas MitofluorTM Green

is a single compound that should label all cells the same. How-

ever, we found that because the total nuclear signal of Mito-

fluorTM Green was very low, small variations in nuclear inten-

sity could lead to large differences in the calculated cytoplas-

mic-to-nuclear ratio. In the case of styryl molecules, the

nuclear and cytoplasmic signals are more similar to each other,

so larger variations in nuclear signal of styryl molecules have a

smaller effect on the cytoplasmic-to-nuclear ratio.

Phenotypic Effects That Confound Analysis of

Subcellular Localization Features Are Associated

with Specific Molecules

In any collection of prospective bioimaging agents, some

phenotypic effects resulting from probe accumulation inside

cells and nonintended interaction with cellular components

can be expected. Because toxic effects generally become appar-

ent after prolongued incubation with probes, we kept incuba-

tion times at the minimum. However, some styryl molecules

did cause cell shape changes which may be indicative of probe

Table 1. Correlation coefficients between image feature

dissimilarity and chemical structure similarity

SAME PYRIDINIUM

OR QUINOLINIUM

DIFFERENT PYRIDINIUM

OR QUINOLINIUM

Total intensity 20.05 (\0.01) 20.10 (\0.01)

Spectral distribution 20.06 (\0.01) 20.14 (\0.01)

CV 20.07 (\0.01) 0.00 (0.50)

Cytoplasmic-to-

nuclear ratio

20.04 (\0.01) 20.01 (\0.01)

Results are shown for each of four image features (total

intensity, spectral distribution, CV, and cytoplasmic-to-nuclear

ratio). Statistical significance of the correlations is shown in

parenthesis.
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toxicity (Fig. 2). Cell rounding and blebbing was specifically

observed with particular aldehyde-pyridinium (or quinoli-

nium) building block combinations. For example, cells incu-

bated with probes D132 and E132 were rounded, with E132

showing signs of blebbing. Yet, many cells incubated with the

closely-related probes A132, B132, D22, and E22 showed no

signs of cell rounding or blebbing (Fig. 2). For quantitative

structure-localization relationships, images of cell populations

exhibiting signs of toxicity were excluded from analysis.

A different kind of phenotypic effect was associated with

the appearance of cell-associated dye precipitates or crystals

(Fig. 1, image 6). Crystals could be identified based on their

extremely punctate and bright signal, as well as the rod-, star-,

or rhombus-shape of the particles (Fig. 3). Some of these crys-

tals could be observed in cell-free, extracellular regions of the

images. Yet, in many cases these crystals were closely asso-

ciated with the individual cell nuclei and led to very high CV

values as artifact (Fig. 1C, image 6). We found that these insol-

uble styryl molecules were mostly associated with specific

aldehyde groups, independently from the pyridinium or qui-

nolinium group. These aldehydes were 87, 88, 124, and 127.

As with dye-induced cell rounding, images with evidence of

dye crystals in the immediate nuclear periphery (as in Fig. 3)

were excluded from further analysis.

To test the stability of the probe fluorescence pattern, the

cytoplasmic-to-nuclear ratio and CV was compared with the

presence and in the absence of extracellular probe (following

prior incubation of cells with probes). Comparing these two

conditions, the correlation for cytoplasmic-to-nuclear ratio

was 0.64 and the correlation for CV was 0.92. Therefore, the

staining patterns observed for most probes appeared quite

stable, in steady state vs. efflux conditions. These trends were

confirmed by visual inspection of the corresponding images

(data not shown).

Different Isomers of the Pyridinium or Quinolinium

Building Block Yield Different Subcellular

Fluorescence Localization Patterns

Because the chemical fingerprint used to calculate the

Tanimoto coefficient is only sensitive to the presence or ab-

sence of a particular functional group in a molecule, many iso-

mers of molecules possess a Tanimoto coefficient of 1.0 and

therefore represent the most structurally similar pairs of mole-

cules in a library. If subcellular localization of a molecule is

Figure 1. The distributions of whole cell intensity (A), cytoplasmic to nuclear ratio (B), and whole cell coefficient of variation (C), along

with representative images (126) from various points along each distribution. All images are composites acquired from the HoechstTM

(blue) and TRITC channel (yellow, 1 s exposure in the presence of extracellular dye). Scale bar 5 10 lm. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

ORIGINAL ARTICLE

486 Machine Vision-Assisted Analysis of Structure-Localization



governed by nonspecific physicochemical properties of the

probes (like probe radius, lipophilicity, number of hydrogen

bonds, etc.), then subcellular probe signal should show mini-

mal variation among isomers, when compared with modifica-

tions that alter the chemical structure of the molecules by add-

ing or subtracting atoms or functional groups.

In the styryl library, six out of the eight pyridinium or

quinolinium building blocks, and 55 out of 168 aldehyde

building blocks possess structural isomers (Fig. 4). Unexpect-

edly, different isomers of the quinolinium building blocks

often possessed different subcellular localization patterns (Fig.

5). These patterns were consistent and associated with a speci-

fic isomer. For example, the fluorescence signal of molecules

D63, D72, D71, and D69 is present over the nuclear and cyto-

plasmic regions of the cell to similar extent, and they all ex-

hibit a similar, heterogenous membrane-staining pattern. In

contrast, the corresponding isomers E63, E72, E71, and E69

exhibit a distinctly bright and diffuse cytoplasmic staining

with much darker nuclei. We note that varying the length of

the hydrocarbon chain associated with aldehyde building

block 63, 72, 71, to 69 is expected to increase the lipophilicity

of the molecules by more than two orders of magnitude (data

not shown). This suggests that the quinolinium D and E

building block isomers exerts a far more prominent effect on

subcellular localization than a 100-fold change in lipophilicity.

Frequency histogram plots of CV and nuclear-to-cytoplasmic

ratio features support this observation: group D produced far

more compounds with high CV when compared with group

E, whereas groups D and E were very similar in terms of their

cytoplasmic-to-nuclear ratios (data not shown).

Different Isomers of the Aldehyde Building Block Yield

Different Subcellular Fluorescence Localization

Patterns

Like the isomers of the pyridinium or quinolinium build-

ing block, isomers of the aldehyde building block (Fig. 4) that

shared the same pyridinium or quinolinium building block of-

ten exhibited different patterns of cell-associated fluorescence

(Fig. 6). For example, in molecule D141 the methyl group on

the aldehyde building block is in the ortho position, whereas in

molecule D143, it is in the para position. Yet, the signal of

molecule D141 is associated with the heterogeneous, staining

across the whole cell, while that of the molecule D143 is

located in nucleoli as well as being diffusely localized in the

rest of the cell (Fig. 6).

In another example of aldehyde building block isomers

(Fig. 6), molecules E19 and E41 posses a methoxy group in

ortho and para positions, respectively, whereas molecules E42

and E131 possess a hydroxy group at the corresponding posi-

tions. In molecule E19 and E131, the fluorescence exhibits

Figure 2. Images of cells incubated with a group of related styryl probes, exhibiting normal (A132, B132, D22, and E22) and rounded (D132,

E132) cell shape phenotypes. All images are composites acquired from the HoechstTM (blue) and TRITC channel (yellow, 1 s exposure with

extracellular dye). Scale bar5 10 lm. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 3. Images of cells exhibiting cell associated insoluble dye aggregates or crystals, in the presence of styryl molecules possessing

the same aldehyde (87) but different pyridinium or quinolinium building blocks (A-H). All images are composites acquired from the

HoechstTM (blue) and TRITC channel (yellow, 200 ms exposure after extracellular dye washout). Scale bar 5 10 lm. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 4. Isomers of aldheyde building blocks (indicated by numbers separated by commas) and pyridinium or quinolinium building

blocks (indicated by letters separated by commas) in the styryl library. Note that some aldheydes have two or three related isomers. The

full collection of compounds screened in this study has been previously described (29).



mitochondrial/cytoplasmic localization. However, in molecule

E42 the fluorescence shows a punctate, cytoplasmic localiza-

tion in some cells, whereas in E41, the localization is in both

nuclear or cytoplasmic region (Fig. 6). Thus very small varia-

tions in the structure of the aldehyde building block can lead

to significant changes in the subcellular distribution of probe

fluorescence.

Similar Pairs of Styryl Probes Generally Yield Similar

Spectral and Intensity Signals but Dissimilar

Fluorescence Localization Patterns

Paired cheminformatic-machine vision analysis was per-

formed to study how variation in fluorescence signals acquired

from pairs of styryl probes was related to variation in their

chemical structure. Three different analysis were performed:

(1) total intensity analysis, which involved comparing the total

signal in FITC, TRITC, or Cy5 channels; (2) spectral analysis,

which involved comparing the fraction of the total fluores-

cence signal that is obtained from each channel; (3) spatial

analysis, which involved comparing the cytoplasmic-to-nu-

clear ratio and coefficient of variation of fluorescence signal in

each channel.

As expected, a clear relationship between chemical simi-

larity between each pair of probes in the library and their rela-

tive fluorescence in FITC, TRITC, and Cy5 channels was

observed. For pairs of styryl probes sharing the same aldehyde

building block but different pyridinium or quinolinium build-

ing blocks, the more similar the molecules (higher Tanimoto

coefficient) the more similar the fraction of total signal

acquired in each of the three fluorescence channels (Fig. 7A).

A similar trend was observed in terms of the relative signals

obtained in each of the three channels (Fig. 7B). However, for

pairs of probes sharing the same pyridinium or quinolinium

groups but different aldehydes, the trend was not as promi-

nent, either for the total signal intensity (Fig. 7C) or for the

spectral analysis (Fig. 7D). This indicates that variation in the

pyridinium or quinolinium building blocks exerts a stronger

effect on the fluorescence of the styryl molecules in FITC,

TRITC, and Cy5 channel than variation of the aldehyde, with

the more similar building blocks leading to more similar

intensity and spectral signals. The calculated correlation

Figure 5. Image pairs of cells incubated with styryl molecules synthesized with the same aldehyde building block (63, 72, 71, and 68) but

different quinolinium building blocks (D and E). All images are from the TRITC channel (1 s exposure with extracellular dye). Scale bar 5
10 lm.
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Figure 6. Image pairs of cells incubated with styryl molecules synthesized with the same quinolinium building blocks (D or E) but different

aldheyde building blocks (141, 143, 31, 19, 131, 42). All images are from the TRITC channel (1 s exposure with extracellular dye). Scale bar

5 10 lm.

Figure 7. The pairwise dissimilarity in the total signal intensity (A, C) or the spectral distribution of signal intensity (B, D) plotted against

standardized Tanimoto similarity between each pair of chemical structures in the styryl library. Pairwise comparisons were made for mole-

cules possessing different pyrdinium or quinolinium groups (A, B) or the same pyridinium or quinolinium groups (C, D). The total signal

intensity was calculated as the sum of intensities for 1 s exposures for FITC, TRITC and CY5 channels.



coefficients between image features similarity and chemical

feature similarity support these trends (Table 1).

In contrast, image feature analysis of cell-associated fluo-

rescence signals revealed no visually obvious trend relationship

between similarities in the chemical structure of each pair of

probes, and the cytoplasmic-to-nuclear ratio (Figs. 8A and

8C) or CV (Figs. 8B and 8D) of cell-associated probe fluores-

cence. Thus, for every pair of molecules in the library, pairs of

molecules that are similar to each other (based on their Tani-

moto coefficient) did not necessarily exhibit similar localiza-

tion of fluorescence signal when compared with less similar

pairs of probes, independent of whether the pairwise analysis

was done across different pyridinium or quinolinium (Figs.

8A and 8B) or different aldehyde (Figs. 8C and 8D) building

blocks. This result indicates that the mechanism leading to dif-

ferences in nuclear-to-cytoplasmic probe distribution or CV

values is less dependent on structural features captured by the

chemical fingerprint of the molecules, when compared with

the mechanism leading to differences in the spectral distribu-

tions or total fluorescence intensity in the FITC, TRITC, and

Cy5 channels. This is consistent with our other observations

(Figs. 5 and 6) that small changes in the structure of the mole-

cules, such as ortho vs. para isomers, exert a major effect on

their subcellular localization features. Again, these observa-

tions correspond to the correlation coefficients between image

features similarity and chemical feature similarity (Table 1).

DISCUSSION

The present study demonstrates how quantitative cyto-

metric analysis can assist the primary screening of a combina-

torial library of prospective bioimaging probes. In the past,

the use of high content screening instruments to search for

new bioimaging probes within large libraries of fluorescent

compounds had been limited by the complicated, image anal-

ysis task. In this study, for the actual screening run the total

number of experimental images were six images per well 3
two conditions 3 1,344 compounds 5 16,128 experimental

images. In addition, there were 16 control wells per plate 3 six

image acquisitions3 two conditions3 17 plates5 3,264 con-

trol images. In addition, over a thousand additional images

were acquired and analyzed in preliminary experiments (data

not shown), to determine optimal assay parameters and

instrument settings (for example, to establish the optimal cell

seeding density, camera integration time for the acquisitions,

and fine-tuning the various instrument and experimental

parameters). Although machine vision algorithms to facilitate

the discovery of bioimaging probes in large image data sets

acquired with high content screening systems are only begin-

ning to be developed, their application in this area is feasible

and timely.

Like many other lipophilic cations, styryl molecules can

accumulate in mitochondria attracted by the negative electri-

cal potential of the mitochondrial inner membrane (31,34,37)

Figure 8. The pairwise dissimilarity in the log cytoplasm-to-nucleus ratio (A, C) or the CV of cell-associated fluorescence intensity (B, D)

plotted against standardized Tanimoto similarity between each pair of chemical structures in the styryl library. Pairwise comparisons were

made for molecules possessing different pyridinium or quinolinium groups (A, B) or the same pyridinium or quinolinium groups (C, D).
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Nevertheless, styryl molecules can also interact with other cel-

lular components (28,32,33,36,37). To tailor styryl molecules

to specific bioimaging applications, understanding whether

generic transport mechanisms vs. specific molecular interac-

tions determine the localization of the molecules is important.

If generic transport mechanisms were primarily involved in

determining the subcellular distribution of styryl molecules, it

may be possible to use physiologically-based modeling

approaches to predict the subcellular distribution of these

molecules in specific organelles (45–47). However, in the com-

binatorial library of styryl molecules analyzed in this study,

specific interactions seem to be a key determinant of nuclear-

to-cytoplasmic probe distribution and the heterogeneity of

probe distribution captured by the CV feature.

In the case of the styryl molecules’ fluorescence signal,

the mechanisms determining the total intensity of signal

acquired in different fluorescence channels are more depend-

ent on generic chemical features of the probes captured by the

chemical fragment-based Cactvs fingerprint. The results indi-

cate that variations in the pyridinium or quinolinium building

block had greater effect on total intensity and spectral signals

than variation in the aldheyde building block (Figs. 7 and 8). In

a previous study, we found that the quinolinium building

blocks in combination with any aldehyde building block are

excited and emit at the wavelengths corresponding to the stand-

ard FITC, TRITC, and CY5 channels of the high content screen-

ing instrument, whereas pyridinium building blocks in combi-

nation with the same aldehyde are excited and emit at shorter

wavelengths (37). Thus, it is possible that variation in the alde-

hyde building block may exert a more pronounced effect on

probe signal if optical filters for detecting fluorescence at shorter

excitation and emission wavelengths were used.

An important question that will be addressed in future

studies is how variations in chemical structure of the probes is

related to differences in the patterns of subcellular fluorescence

observed at different times after probe addition to the cell, and

at different extracellular probe concentrations. In planned, fol-

low up studies, more thorough exploration of the effect of

probe concentration and incubation time will be performed.

We expect such variations to have a significant effect on probe

distribution based on (1) the concentration-dependent effect

of the specific binding affinity of the probes for different cellu-

lar components; (2) the concentration and time-dependent

effects of the probes on cell structure and function including

cytotoxicity; and (3) the relationship between the measured,

quantitative image parameters and the actual subcellular

probe distribution patterns. Multivariate regression techniques

applied to large image datasets still remain to be explored as a

way to study how probe chemical structure is related to probe

fluorescence distribution and kinetics at different doses and

time points. Indeed, the results of the present study points us

to a much broader, emerging research area at the intersection

of cheminformatics and machine vision.

In the emerging field of location proteomics, machine

vision techniques have been developed to analyze the subcellu-

lar distribution of proteins inside cells (20–22,24,25,51–53).

The present study builds on these advances, combining

machine vision with cheminformatic analysis, to establish

links between specific subcellular localization features to the

chemical structure of the probes. Based on previous studies,

styryl molecules are expected to concentrate in the nuclei, mi-

tochondria, plasma membrane or nucleoli, or be diffusely

localized in the cytoplasm (26,28–30,36,37,54). Thus, while

the subcellular localization features analyzed in this study,

namely the cytoplasmic-to-nuclear ratio and coefficient of

variation, are only two of many possible subcellular localiza-

tion features that could have been analyzed, these two features

are very informative in terms of capturing the expected subcel-

lular localization patterns exhibited by the styryl probes. As a

caveat, it is possible that other visual features yet to be ana-

lyzed may reveal a more significant relationship to generic

chemical features of the probes. Thus, we are currently per-

forming a more exhaustive search for cell-associated visual

features whose similarity may show a stronger correlation with

the Tanimoto similarity of the styryl probes.

In summary, high content screening and image cytometry

are now poised to advance the methods used for screening

prospective bioimaging probes. Traditionally, this has involved

the subjective evaluation of stained samples, relying on quali-

tative calls made after visual inspection by human experts.

Although manual, visual screening can easily overlook issues

such as probe toxicity or insolubility, in an automated screen

such issues constitute important confounding factors that

must be dealt with explicitly, in order to perform a meaningful

analysis. We found that, by excluding images with rounded

cells or with cell-associated dye aggregates, precipitates or

crystals, it is possible to minimize these confounding factors.

In turn, using combinatorial libraries of bioimaging probes

permitted analysis of probe signal and distribution in relation

to chemical structure. By varying one building block of the

molecule while keeping the others constant, we determined

the effects of chemical variations on image features. To con-

clude, after a candidate bioimaging probe is identified for a

specific application, more sensitive and specific analysis

including toxicity assays can be performed in follow up stu-

dies, as was already done with a family of RNA-selective

probes identified in this library (29). Nevertheless, results

from this library-wide QSLR study prompt us to revise our

original hypothesis, in favor of a more prominent role for spe-

cific, idiosyncratic interactions in determining the spatial

distribution of fluorescence signals obtained from styryl

molecules.
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