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A bonded joint finite element for a symmetric double lap joint
subjected to mechanical and thermal loads
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SUMMARY

A bonded joint finite element (FE) for a symmetric double lap joint is developed that is capable of
predicting field quantities in the lap region. The element is a hybrid method and incorporates features
of classical analytical and numerical methods. The element stiffness and load vector formulations have
unique, load dependent, non-linear shape functions based on an analytical solution. The adaptive shape

functions are formulated in terms of the dimensionless mechanical load fraction ( ¯̄�P ) and total load ( ¯̄�tot)
and are capable of predicting the thermal and mechanical load response. The bonded joint element has
been implemented as a user element in the Abaqus R© commercial FE code. A comparison of the stress
predictions for the bonded joint element and a conventional 2D FE model is presented and are found to
be in good agreement. Therefore, the element provides a computationally efficient and mesh-independent
stress prediction. The single element reproduces the analytical solution with minimal analyst input and
can be easily incorporated into early design and sizing studies. Copyright q 2009 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Despite decades of development, the design and modeling of bonded joints is an active area of
research. Conventional finite element (FE) models are the current state of the art and are widely
available in the literature where work began as early as 1971 ([1, 2] are early references). More
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recently, promising advances in cohesive zone [3–9], discrete cohesive zone [10–12], fracture
mechanics [13], probabilistic prediction [14, 15], virtual crack closure technique [16–22] and other
adhesive region models [23–26] have greatly increased the predictive capability of FE techniques.
Cohesive zone models have been incorporated into commercial software including Abaqus R© [27]
and Genoa R© [28], as well as freely available research codes like Tahoe R© [29]. Despite their
availability, the listed techniques are expensive and require extensive user expertise. There are
ongoing efforts to develop rapid analysis techniques [30–32], a key enabling technology for vehicle
designers.

Though models built with the tools listed above can be accurate, they rely on the presence
of a meshed joint. Conventional volumetric elements represent the adherends; the adhesive is
represented by volumetric elements or a discrete traction law. There is substantial overhead in
creating and analyzing joints using these and other conventional FE-based numerical methods.
Mesh generation and manipulation is an obstacle for anything beyond academic geometries. Mesh
density is also a consideration, since the computational time for basic joints can be significant if
non-linear material properties and material degradation criterion are included. As a result, there
are ongoing efforts to evaluate analytical techniques that are less mesh dependent. For example,
the composites affordability initiative has recommended a p-based analysis code for analysis of
adhesively bonded joints,¶ since the use of p-based codes should be less mesh dependent than
h-based FE codes. Similarly, Bednarcyk et al. [33] used a higher-order, semi-analytical theory
(developed for functionally graded materials) to analyze a double lap and a bonded doubler joint.
These techniques were reported to be less mesh dependent than h-based analysis methodologies.
In this article, a bonded joint finite element (BJFE) is developed as a specialized element and
technique for efficient joint analysis. The BJFE has no mesh dependency and requires minimal
meshing overhead.

2. BACKGROUND

The objective of this article is to develop an element capable of predicting basic joint performance
with a limited number of degrees of freedom (DOF) and with little meshing overhead. As a
result, this element could be adopted for initial joint sizing in FE models at all system levels.
The element is formulated to predict stress and strain fields of orthotropic constituents in thermal
(or any scalar) and mechanical loading environments. The orthotropy of a joint is of particular
concern in laminated composite materials since transverse properties are often significantly lower
than in-plane properties in a laminate [34]. Temperature dependence is included since anisotropic
materials (such a long fiber-reinforced composites) often require high-temperature curing cycles.

There are many factors that affect the stress field and associated bonded joint failure. These
include adhesive spew [2] and the geometric discontinuity and unbounded stresses associated with
stepwise geometries [35]. Additionally, material non-linearity has a significant effect on the stress
field [34, 36] and requires a level of material characterization that is often unavailable early in
an analysis cycle. All of the specialized joint analysis techniques (cohesive elements, the virtual
crack closure technique and others) require material properties that can be difficult to obtain (such
as critical energy release rates and cohesive strengths). In many circumstances, a designer has

¶http://www.esrd.com [February 2007].
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Figure 1. Schematic of the double lap joint with end posts.

Figure 2. The FE mesh.

insufficient information or time to obtain a highly accurate solution and instead would prefer a
simple analysis that captures primary effects. These types of analyses are often useful in trade
studies and to identify likely problem areas needing further study.

With that goal in mind, it might be considered adequate to perform a conventional linear elastic
FE analysis on an idealized geometry such as a joint with square corners (i.e. the double lap joint
in Figures 1 and 2). In that solution type, however, the singular stress field causes a broad range
of predicted stresses near the edges, particularly at the material interfaces. This is an undesirable
and an unavoidable feature that emerges when a linear elastic material description is used for a
corner consisting of two materials that are perfectly bonded. The utility of the linear elastic FE

analysis is, therefore, somewhat limited with respect to joint to joint comparison.
For example, a double lap joint is schematically represented in Figure 1. The central adherend

is referred to as material a and the outer adherend is referred to as material c. Material b is the
adhesive and is thin in comparison to the adherends. A typical prediction of peel stress (�̄b22)
is illustrated in Figure 3.‖ It is apparent that the peel stress can be determined as a function of
longitudinal position over most of the joint. In the critical areas near the edges of the joint, however,
the predicted stress varies widely and is mesh dependent. The severity of the mesh dependency is
illustrated in Figure 4, where the predicted stress increases without bound with increasing element
density. Even when non-linear material properties are assumed, which sometimes can ensure that
the stress remains bounded [34], mesh dependency and convergence remain a concern. When this
is the case, it is a common practice to create several costly meshes at different densities in order

‖The typical result is taken from a model associated with Figures 1 and 2.
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Figure 3. Typical linear elastic peel stress distribution due to mixed loading.
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Figure 4. Typical mesh ‘convergence’ study for linear elastic stepwise geometry.

to verify that the stress results have converged. Smeltzer and Lundgren [32] is a recent example
of this practice.

In view of the alternatives presented above and in order to be useful to an analyst, the BJFE

must accurately represent the value of the most critical stresses in the joint while consistently and
correctly predicting the trends from joint to joint. It must accomplish this with no mesh dependency
and insignificant meshing overhead. Further, its use must not directly burden the user with the
significant calculations typically associated with analytical solutions such as those in [37]. In the
remaining sections of this article, a bonded joint element is developed to meet these requirements.
Planned extensions to the BJFE are expected to capture the primary effects of failure mechanisms
when a sufficient material description is available early in the design cycle.
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Figure 5. Symmetric double lap joint and BJFE representation.

The predicted stresses and resulting displacements have non-trivial spatial non-linearities and are
not well represented by a small number of linear or quadratic FEs. The displacement field, however,

can be represented by appropriate load-dependent adaptive shape functions N (
¯̄�P) with a single

element. Based on the stress predictions presented in Section 3, an element with a load-dependent

stiffness matrix K (
¯̄�P) and consistent loading vector F(

¯̄�P) are presented in the remaining
sections.

2.1. The element concept

Figure 5 is a schematic of the BJFE element concept. In it, the complete lap joint is replaced with
a single FE with 6 DOF. Four displacement DOF (q1, q2, q3, q4) are used to represent four discrete
displacement locations and two internal DOF (P1, P2) are used to determine the load ‘character’.
The displacement field is interpolated with application-specific adaptive shape functions, detailed
in Section 4. The load ‘character’ is a ratio of the thermal and longitudinal mechanical loads and
governs the internal displacement field via the adaptive shape functions [37]. The adaptive shape
functions allow accurate predictions of the stress and strain field in a double lap joint through use
of a single FE.

3. DERIVATION OF THE ADVANCED SHEAR AND PEEL MODEL

In [37], two dimensionless solutions are developed for a symmetric, orthotropic double lap joint
subjected to thermomechanical loading. The primary purpose of those solutions is to establish
relevant dimensionless parameters that predict the stress field. Using those parameters and the
‘simple’ analytical solutions that they are based on, the effects of various material and loading
properties on a joint stress field can be determined. The solutions were not precise in their
predictions, despite being adequate to correctly predict trends. It is anticipated that the user of the
BJFE would desire more precision; therefore, a more accurate analytical solution is developed in
this section for the BJFE.

The double lap joint’s response to thermal and longitudinal mechanical load is modeled. The
material is assumed to be linear elastic and orthotropic with linear orthotropic thermal expansion.
The joint is assumed to deform in plane strain.∗∗ The solution is more ‘complex’ than those that
were presented in [37]. It is developed, however, for automated use within the BJFE where solution
complexity is no longer an issue. The adaptive shape functions derived in Section 4 are based on
the equilibrium stresses developed in this section.

∗∗The material constitutive response is given by (A1).
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Figure 6. Generalized equilibrium parallelepiped.

Figure 6 shows a general 2D parallelepiped. Force equilibrium in 1 and 2 directions can be
written as: ∑

F1 = 0

= �y(�11(x+�x, y)−�11(x, y))+�x(�12(x, y+�y)−�12(x, y))∑
F2 = 0

= �x(�22(x, y+�y)−�22(x, y))+�y(�12(x+�x, y)−�12(x, y))

(1)

Equation (1) can be rewritten as the shear–normal stress relationship for each constituent:

��11(x, y)

�x
= −��12(x, y)

�y

��22(x, y)

�y
= −��12(x, y)

�x

(2)

In [37], the adherends were assumed to carry only longitudinal normal stress and the adhesive was
assumed to carry only shear and peel stresses. In this article, those assumptions are relaxed so
that the adherends also transmit shear stress. For convenience, the adherend shear stress fields are
assumed to vary linearly in y throughout the specimen.†† As a result, (2) dictates that the adherend
longitudinal normal stresses are functions of x only; the peel stresses are linear functions of x and
y. The longitudinal normal stress in the adhesive is still assumed to be zero, therefore (2) dictates
that the shear stress in the adhesive is a function of x only.‡‡

††A linear assumption is the lowest order polynomial that satisfies the equilibrium equations.
‡‡The assumption of zero longitudinal normal stress in the adhesive greatly simplifies the calculations and is

reasonable for calculating stress as long as the strain energy due to this stress component is small relative
to the total strain energy. The model breaks down in joints with similar adherend thermal expansion and a large
differential thermal expansion relative to the adhesive. In those joints, the longitudinal thermal stress of the adhesive
will be greater than the adhesive shear and peel stresses. Therefore, a different type of analysis is appropriate.
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Traction-free boundaries are present on the top and the bottom surfaces of the joint. The centerline
of the central adherend is free of shear due to symmetry. These requirements are expressed as:

�c12(x, tb+ tc) = 0

�c22(x, tb+ tc) = 0

�a12

(
x,− ta

2

)
= 0

(3)

Stress continuity at the joint interfaces requires:

�b22(x,0) = �a22(x,0)

�c22(x, tb) = �b22(x, tb)

�b12(x,0) = �a12(x,0)

�c12(x, tb) = �b12(x, tb)

(4)

Finally, longitudinal normal stress boundary conditions are imposed by the mechanical loads at
the edges of central adherend a and are expressed as:

�a11(0) = 0

�a11(l) = 2P

ta

(5)

By sequentially writing a linear form for each stress component (using the stress field assump-
tions) and by applying boundary and continuity conditions to determine the linear constants,
equations can be written for each stress component in terms of the central adherend stress �a11(x).
The process is as described in [37] with the addition of several stress components (�a12(x, y),
�a22(x, y), �c12(x, y), �c22(x, y)). The resulting stress equations are detailed on the left side of
Table I.

In addition to the boundary conditions specified in (3)–(5), the adhesive edge shear stress is
forced to zero using the ‘end post’ technique described in [37]. The technique, an extension of
[38], ensures that the traction-free boundary condition at the adhesive free edges is captured. An
infinitesimal end post transfers the edge shear stress to the adherend. The stresses in the end posts
are also listed on the left side of Table I.

The solution for the central adherend normal stress (�a11(x)) is computed via application of
the principle of virtual forces as detailed in Appendix B. In a brief summary of the computation,
each stress component is a function of �a11(x). For each component, a corresponding virtual stress
component is written in terms of the virtual normal stress �̂a11(x). (The virtual stress components
are listed on the right side of Table I.) By integrating potential energy over the volume of the
joint and minimizing for any admissible �̂a11(x), a differential equation is written for the central
adherend stress field �a11(x) as a function of all material properties and loads

d4�a11(x)

dx4
+�

d2�a11(x)

dx2
+��a11(x)+��T +�P =0 (6)
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Table I. Stresses and virtual stresses in the BJFE solution.

Equilibrium normal stress Virtual normal stress

�a11(x) �̂a11(x)
�c11(x)= P

tc
− ta �a11(x)

2 tc
�̂c11(x, y)=− ta �̂a11(x)

2 tc

�a22(x, y)= d2

dx2
�a11(x)

(
y2+ta y

2 − ta(tc+2tb)
4

)
�̂a22(x, y)= d2

dx2
�̂a11(x)

(
y2+ta y

2 − ta(tc+2tb)
4

)

�b22(x, y)=
ta
(

d2

dx2
�a11(x)

)
(2y−tc−2tb)

4 �̂b22(x, y)=
ta
(

d2

dx2
�̂a11(x)

)
(2y−tc−2tb)

4

�c22(x, y)=− ta
(

d2

dx2
�a11(x)

)
(y−tc−tb)2

4tc
�̂c22(x, y)=− ta

(
d2

dx2
�̂a11(x)

)
(y−tc−tb)2

4tc

Equilibrium shear stress Virtual shear stress

�a12(x, y)=−
d
dx �a11(x)(2y+ta)

2 �̂a12(x, y)=−
d
dx �̂a11(x)(2y+ta)

2

�b12(x)=− ta
(

d
dx �a11(x)

)
2 �̂b12(x, y)=− ta

(
d
dx �̂a11(x)

)
2

�c12(x, y)=
ta
(

d
dx �a11(x)

)
(y−tc−tb)

2tc
�̂c12(x, y)=

ta
(

d
dx �̂a11(x)

)
(y−tc−tb)

2tc

Equilibrium end post stress Virtual end post stress

�p22(x̄=0, y)= ta
(

d
d x �a11(x)

)
(y−tb)

2 tp
�̂p22(x̄=0, y)= ta

(
d
d x �̂a11(x)

)
(y−tb)

2 tp

�p22(x̄=1, y)=− ta
(

d
d x �a11(x)

)
(y−tb)

2 tp
�̂p22(x̄=1, y)=− ta

(
d
d x �̂a11(x)

)
(y−tb)

2 tp

In (6), all material terms have been grouped according to their order of derivative (� and �) and all
load terms have been grouped into thermal (��T ) and mechanical parameters (�P ). Equation (6)
can be non-dimensionalized with the following substitutions:

x̄ = x

l

�̄ = l2�

�̄ = l4�

�̄�T = l4

Ea11
��T

�̄P = l4

Ea11
�P

¯̄�tot = �̄P +�̄�T

¯̄�P = �̄P
¯̄�tot

¯̄��i j (x̄) = ��i j (l x̄)

Ea11
¯̄�tot

(7)
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In (7), x̄ is the dimensionless spatial coordinate measured from the left edge of the joint, �̄ and
�̄ are dimensionless material parameters, and �̄P and �̄�T are the dimensionless mechanical and

thermal loads. The dimensionless total load is ¯̄�tot and is used to further normalize the stresses

( ¯̄��i j (x̄)). Similarly, the mechanical fraction of the dimensionless total load is ¯̄�P . Each of the
terms in (7) are explicitly reported in terms of the constitutive and load quantities in Appendix D.
After substitution, (6) becomes:

�4

�x̄4
¯̄�a11(x̄, ¯̄�P)+ �̄

�2

�x̄2
¯̄�a11(x̄, ¯̄�P)+ �̄ ¯̄�a11(x̄, ¯̄�P)+1=0 (8)

A solution is:

¯̄�a11(x̄, ¯̄�P)= ¯̄A(
¯̄�P)e	̄1 x̄ + ¯̄B(

¯̄�P)e−	̄1 x̄ + ¯̄C(
¯̄�P)e	̄3 x̄ + ¯̄D(

¯̄�P)e−	̄3 x̄ − 1

�̄
(9)

This solution to (6) is an equation for the normalized central adherend stress ( ¯̄�a11(x̄, ¯̄�P)), from
which all stress components can be determined using (7) and the equations in Table I. As in [37],
the material parameters in (9) (	̄1 and 	̄3) are recast as the roots of the bi-quadratic differential
equation:

	̄
2= −�̄±

√
�̄
2−4�̄

2
(10)

The equations for the dimensionless basis functions ( ¯̄A, ¯̄B, ¯̄C , ¯̄D) are determined by application
of the boundary conditions§§ :

¯̄A(
¯̄�P) = 
3
AP


1
2

¯̄�P + 
A�T


1

¯̄B(
¯̄�P) = 
3
BP


1
2

¯̄�P + 
B�T


1

¯̄C(
¯̄�P) = 
3
CP


1
2

¯̄�P + 
C�T


1

¯̄D(
¯̄�P) = 
3
DP


1
2

¯̄�P + 
D�T


1

(11)

In (11), the basis functions are linear in the mechanical fraction of the total load ( ¯̄�P ). As a result,
they effectively separate the thermal and mechanical loads. The basis functions are composed of
several material parameter combinations, denoted by 
, whose values are listed in Appendix D.8.
In combination, (9)–(11) provide a solution to the double lap joint that is sufficiently accurate to
accomplish the goals of the BJFE.

§§The boundary conditions are summarized in Appendix C. See [37] for additional detail.
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4. FORMULATION OF THE FE

Figure 5 is a schematic of the BJFE. The element is one dimensional; all displacement DOF are
oriented along the 1-axis. Two of the displacement DOF (q1 and q4) are external and connect the
joint element to the external structure. The remaining displacement DOF are internal to the element
and are used in conjunction with supplemental equations in order to determine the mechanical

loading fraction ( ¯̄�P ) required by the adaptive shape function. The mechanical load that is carried
across the joint can be calculated using internal DOF P1 and P2.

The derivation of the element is presented in stages. First, the outer section sub-elements are
formulated from the equilibrium stress equation. The formulation is subsequently generalized for
the lap region sub-element. An equilibrium formulation is required since the displacement field is
governed by an adaptive shape function that is dependent on load character.

4.1. Stiffness and load contribution of the adherends outside of the lap region

The stress in the adherend structures outside the lap region is assumed to have no transverse
stress (�k22=0). The orthotropic adherend constitutive relationship is given in (A1). All Poisson
terms will be set to zero in the initial portion of the derivation, thus, the sub-elements outside the
lap region are equivalent to truss elements. A more general analysis would include these Poisson
terms, however, retaining them in this derivation deters the demonstration without adding value.

As a preface to the remainder of this section, the following derivation may seem unnecessary
since the truss element has linear shape functions and is well understood. The reader could skip to
the next section without loss of substance. The subsequent derivation of the lap region’s adaptive
shape functions, however, is completed using the same steps. The intermediate results of that
derivation are too long to be included in the text. As a result, a detailed derivation is presented for
this sub-element where it can be easily understood.

With a view to deriving the adaptive shape functions in the lap region, the stress field in the
outer center adherend is written directly from equilibrium

�a11(x̄)= P

ta
(12)

where x̄ is the natural coordinate of this section, defined as:

x̄= x

le
(13)

The sub-element local (x, y) directions are defined from the left edge of the sub-element and
the sub-element length is le as illustrated in Figure 7(a). The sub-element displacement DOF are
temporarily replaced by a single extensional DOF given by:

qe=q4−q3 (14)

From (A1) and (12), the strain field can be written as:

εa11(x̄)= �a11(x̄)

Ea11
+�a11�T (15)
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(a)

(b)

Figure 7. BJFE sub-elements: (a) sub-element for the central adherend outside of the lap region and
(b) sub-element for the lap region of the double lap joint.

Integration of the strain field yields the longitudinal displacement field

ua(x̄)=
∫ x̄

0
εa11(x̄)

(
dx

dx̄

)
dx̄+urb (16)

where urb is an integration constant that represents rigid body displacement of the element. The
extension (qe) is given by:

qe = ua(x̄=1)−urb

= le

[
P

Ea11ta
+�a11�T

]
(17)

The intent of this section is to understand the subsequent lap region derivation, therefore, recall that
the joint section stress field given in (9) is written in terms of dimensionless loads. To generalize the
loads for this sub-element, non-dimensionalizing substitutions are made:

P = �̄P Ea11ta

�T = �̄T

�a11

(18)

Parameters �̄�T and �̄P are dimensionless thermal and mechanical loads. Additionally, all critical

values can be written in terms of the mechanical load fraction ( ¯̄�P ) and the total load ( ¯̄�tot):

¯̄�tot = �̄T +�̄P

�̄P = ¯̄�tot
¯̄�P

�̄T = ¯̄�tot(1− ¯̄�P)

(19)

Combining Equations (12), (15)–(17), and (19), the longitudinal displacement field can be written as

ua(x̄)= le
¯̄�tot x̄ (20)
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and the extension DOF can be written as:

qe= le
¯̄�tot (21)

The displacement field of (20) is written in terms of the unknown total load ( ¯̄�tot). Using (21), the
total load can be isolated as a linear function of the extension DOF (qe),

¯̄�tot=
qe
le

(22)

In (20) and (22), a linear displacement field is recovered and can be written as a shape function

N (x̄, ¯̄�P)

ua(x̄) = x̄qe

= N (x̄, ¯̄�P)qe (23)

As the shape function has been determined from equilibrium, the mechanical load fraction ( ¯̄�P ) is
implicitly included in (22) and (23) (although it has been eliminated). Equation (23) is otherwise
unremarkable, however, it is a necessary step in the process of deriving a shape function from the
equilibrium equations.¶¶ Using (23), the strain and stress can be written in terms of qe and the

shape function derivative B(x̄, ¯̄�P),

εa11(x̄) =
(
dx̄

dx

)
d

dx̄
ua(x̄)

= B(x̄, ¯̄�P)qe
le

(24)

�a11(x̄) = Ea11 (εa11−�a11�T )

= Ea11

(
B(x̄, ¯̄�P)qe

le
−�a11�T

)
(25)

In the example of the central adherend outside the lap section, B(x̄, ¯̄�P)=1.
The strain energy and external work terms are:

U =
∫ ta

0

∫ 1

0
�a11(x̄,

¯̄�P)�εa11(x̄,
¯̄�P)

(
dx

dx̄

)
dx̄ dy

W = Pqe

(26)

In contrast to (12), which was used to obtain the shape functions, (25) and (26) are written in
terms of the temperature change and load (�T and P). This is necessary to correctly compute the
strain energy and work required for obtaining the stiffness matrix and load vector.

¶¶The standard FE process is to assume a polynomial shape function and derive all quantities from the resulting
displacement field.
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Restoring the discrete displacements (q3, q4) in place of the extension (qe), the strain energy is:

U = Ea11(q4−q3)
∫ y1
y0

∫ 1
0 B(x̄, ¯̄�P)((q4−q3)B(x̄, ¯̄�P)−�a11le�T )dx̄ dy

2le
(27)

With the work and strain energy fully defined, the potential energy equation can be used to extract
the stiffness matrix and load vector:

d

dqe
� = d

dqe
(U−W )

= 0

→ Keqe=Fe (28)

The sub-element stiffness matrix, Ke, is

Ke=
∑

� E�11
∫ y�1
y�0

∫ 1
0 B2

�(x̄, ¯̄�P)dx̄ dy�

le

[
1 −1

−1 1

]
(29)

and the sub-element load vector, F, is:

Fe= P

{−1

1

}
+∑

�
��11E�11

(∫ y1

y0

∫ 1

0
B�(x̄,

¯̄�P)dx̄ dy�

)
�T

{−1

1

}
(30)

In this section which focuses on the central adherend sub-element, the summations in (29) and

(30) include only the central adherend (�=a). It is evident that when B(x̄, ¯̄�P)=1 (for this sub-
element), the appropriate truss element stiffness is recovered. Therefore, the sub-element stiffness
and load quantities can be derived from equilibrium using non-dimensionalized loads and their
ratios. Identical sub-element formulations are used for the central adherend and outer adherends
(external to the lap region).

4.1.1. Stiffness and load contribution of the adhesively lap section. In the prior section, a general
method was developed for calculating a stiffness matrix and load vector which are load dependent.
More specifically, the stiffness matrix and load vector were derived as functions of the ratio of
dimensionless thermal and mechanical loads, rewritten in terms of the mechanical load fraction
( ¯̄�P ). Although the truss-type element derivation necessarily resulted in a linear displacement field
and a load independent stiffness matrix, the method is general. In this section, it is used to develop
an adaptive shape function for the displacement field of the lap region of a symmetric double lap
joint.

Following the order of the derivation in the prior section and applying it to the sub-element
in Figure 7(b), the equilibrium stress field must be known. Within the assumptions of its

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 79:94–126
DOI: 10.1002/nme



A BONDED JOINT FINITE ELEMENT 107

derivation,‖‖ the double lap joint stress field has the following components for the adherends and
adhesive:

�a11(x̄,
¯̄�P ,

¯̄�tot) = Ea11
¯̄�tot

(
¯̄A(

¯̄�P)e	̄1 x̄ + ¯̄B(
¯̄�P)e−	̄1 x̄ + ¯̄C(

¯̄�P)e	̄3 x̄ + ¯̄D(
¯̄�P)e−	̄3 x̄ − 1

�̄

)

�b12(x̄,
¯̄�P ,

¯̄�tot) = − ta
2

(
dx̄

dx

)(
d

dx̄
�a11(x̄,

¯̄�P ,
¯̄�tot)

)

�b22(x̄, y,
¯̄�P ,

¯̄�tot) = ta
2

(
dx̄

dx

)2( d2

dx̄2
�a11(x̄,

¯̄�P ,
¯̄�tot)

)
(y− tb)

�c11(x̄,
¯̄�P ,

¯̄�tot) = P

tc
− ta�a11(x̄,

¯̄�P ,
¯̄�tot)

2tc

(31)

The stress components not listed in (31) can be determined but are of less interest.
In the discrete space of the FE model, the known (or desired) quantities are the applied temper-

ature change (�T , assumed to be constant throughout the element) and the nodal loads and
displacements. The load quantities must be recast into their dimensionless forms to conform to
the governing equation for �a11(x). Non-dimensionalizing parameters are defined so that:

�T = �


�T
�̄�T

P = �


P
�̄P

(32)

Application of (32) to the equilibrium stress field and constitutive law, the strain can be written as

a linear function of the total load ¯̄�tot:

εa11(x̄,
¯̄�P ,

¯̄�tot)

¯̄�tot

= (1−�a13�a31)

·
(
e−	̄3 x̄ ¯̄D(

¯̄�P)+e	̄3 x̄ ¯̄C(
¯̄�P)+e−	̄1 x̄ ¯̄B(

¯̄�P)+e	̄1 x̄ ¯̄A(
¯̄�P)− 1

�̄

)

+ �


�T
(1− ¯̄�P)(�a33�a31+�a11)

εc11(x̄,
¯̄�P ,

¯̄�tot)

¯̄�tot

= Ea11ta(�c13�c31−1)

2Ec11tc
(e−	̄3 x̄ ¯̄D(

¯̄�P)+e	̄3 x̄ ¯̄C(
¯̄�P)+e−	̄1 x̄ ¯̄B(

¯̄�P)+e	̄1 x̄ ¯̄A(
¯̄�P))

‖‖See Section 3.
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+ �


�T
(1− ¯̄�P)(�c11+�c33�c31)

+ 1

Ec11tc
(1−�c13�c31)

⎛
⎜⎜⎝ Ea11ta

2�̄
+

¯̄�P
�


P

1

⎞
⎟⎟⎠ (33)

It is assumed that the total elongation is the same for the adherends. Therefore, the elongation
equations are:

qe =
(
dx

dx̄

)∫ 1

0
εa11(x̄,

¯̄�P ,
¯̄�tot)dx̄

qe =
(
dx

dx̄

)∫ 1

0
εc11(x̄, y,

¯̄�P ,
¯̄�tot)dx̄

(34)

As in the prior section, the sub-element elongation qe is defined as:

qe=q3−q2 (35)

In (34), the elongation is written as a function of the dimensionless total load ( ¯̄�tot). The total
load is not known a priori and must be eliminated in favor of an available quantity (the total
elongation qe) so that a stiffness matrix can be calculated. This is accomplished by application of
the boundary conditions to the result of (34):

(
dx

dx̄

)∫ x̄

0
εa11(x̄,

¯̄�P ,
¯̄�tot)dx̄

∣∣∣∣
x̄=0

= 0

(
dx

dx̄

)∫ x̄

0
εa11(x̄,

¯̄�P ,
¯̄�tot)dx̄

∣∣∣∣
x̄=1

= qe

(
dx

dx̄

)∫ x̄

0
εc11(x̄,

¯̄�P ,
¯̄�tot)dx̄

∣∣∣∣
x̄=0

= 0

(
dx

dx̄

)∫ x̄

0
εc11(x̄,

¯̄�P ,
¯̄�tot)dx̄

∣∣∣∣
x̄=1

= qe

(36)

Specifically, the elongation is zero when x̄=0 (x̄=0 is the reference from which elongation is
measured) and the total elongation is qe when x̄=1. Applying these boundary conditions and

solving for the total load ( ¯̄�tot) as a function of elongation (qe) in each strain equation, the total
load can be replaced in (33):

¯̄�tota = ¯̄�aqe

¯̄�totc = ¯̄�cqe
(37)
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The intermediate terms ( ¯̄�a,
¯̄�c) are detailed in Appendix D. Substituting (37) into (33), the

displacement field is known in terms of total elongation and the shape functions. Shape functions
and their derivatives can now be written for each adherend:

ua(x̄,
¯̄�P ,qe) = Na(x̄,

¯̄�P)qe

uc(x̄,
¯̄�P ,qe) = Nc(x̄,

¯̄�P)qe

Ba(x̄,
¯̄�P) = d

dx̄
Na(x̄,

¯̄�P)

Bc(x̄,
¯̄�P) = d

dx̄
Nc(x̄,

¯̄�P)

(38)

The shape functions in (38) are detailed in the Appendix E. With the established shape functions,
the stiffness matrix and load vector can be integrated numerically using the following equations:

Ke=
∑

� E�11
∫ y�1
y�0

∫ 1
0 B2

�(x̄, ¯̄�P)dx̄ dy�

le

[
1 −1

−1 1

]
(39)

Fe= P

{−1

1

}
+∑

�
��11E�11

(∫ y1

y0

∫ 1

0
B�(x̄,

¯̄�P)dx̄ dy�

)
�T

{−1

1

}
(40)

In (39) and (40), the summation includes both adherends (�=a,c). The sub-element stiffness

matrix is adaptive to the character of the load through ¯̄�P . The strain in the adherends is related,
via the material constitutive response given in (A1), to the stress fields known from (9) and
Table I. These strains are related to the stiffness matrix by shape functions derivatives.

The final requirement for element calculations is knowledge of the mechanical load (P) used

to determine the load character ( ¯̄�P ) of the lap section sub-element.

4.1.2. Calculation of the load carried across the lap section. Using the equilibrium equation for
the central adherend outside the lap section, it is known that the internal load can be determined
from:

qe= P2le
Ea11ta

+�a11le�T (41)

In terms of the displacement DOF, the above equation can be written as an additional equation in
the sub-element stiffness matrix and load vector:

[
Ea11ta
le

− Ea11ta
le

1

]⎧⎪⎨
⎪⎩
q3

q4

P2

⎫⎪⎬
⎪⎭={−Ea11 ta�a11 �T } (42)

In (42), the mechanical load (P2) can be written as an additional degree of freedom and that is
available during every increment.∗∗∗

∗∗∗The current formulation of the element carries two internal load DOF (P1 and P2) as illustrated in Figure 5.
Strictly speaking, this only requires one additional DOF.
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Figure 8. The solution procedure for the BJFE user element subroutine.

4.2. The FE implementation

The BJFE formulation requires an iterative solution since the mechanical load in the joint is not
known in general. Therefore, the adaptive shape functions have been implemented as a user element
subroutine (UEL) for Abaqus R©, a commercial non-linear FE package.

The displacement, stress and strain fields are dependent on the ratio of the mechanical to thermal

load through the mechanical load fraction ( ¯̄�P ). This ratio must be calculated by the BJFE. A general
approach for any solution algorithm was developed in Section 4.1. In the UEL implementation,
the Newton–Raphson solution algorithm allows complete elimination of the mechanical load DOF.
The equations describing the algorithm are described in [39]; Figure 8 is a flowchart of the
Newton–Raphson algorithm as it relates to the BJFE.

In addition to the constitutive and geometric quantities, the inputs to the BJFE are the current
iteration’s displacements (uM

i ) and the relative temperature change (�T ). The first step in the UEL
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is to compute the (constant) central and outer sub-element stiffnesses using (29). The central and
outer sub-element load vectors are then computed using (30) and uM

i . By first computing the
load vectors in the outer sub-elements, the mechanical load can be used to calculate consistent
shape functions and stiffnesses in the lap region.††† The thermal load (�T ) is assumed to be
constant through the element and is applied as a user distributed load [27] into the BJFE. The initial
iteration’s value of �T is determined automatically by the solver based on the method chosen by
the user. The default is a linear ramping of the temperature change over the step.

With knowledge of the current iteration’s value of the mechanical load fraction ( ¯̄�P ), the current
iteration’s shape functions and matrices are calculated for the lap zone sub-element. The lap zone
stiffness matrix and load vector are integrated numerically using a modified midpoint rule. The
modification offsets the integration point by 1

2 interval so that the extremes of the joint section are
included in the integration. Equal weighting is given to each interval, except that the end points
have a weighting of 1

2 the other intervals.
The number of integration points is defined by the user. The number is usually dictated by the

desire to resolve stress gradients within the lap zone.‡‡‡ The field quantities are calculated from
Table I (at each integration point) based on the calculated �T and P for the increment. Using this
procedure, all stress and strain quantities of interest are calculated in a manner consistent with the
shape function displacement field. Further, the shape functions and the resulting stiffness matrix
are consistent in the Newton–Raphson algorithm and; therefore, exhibit quadratic termination [40].
Though the displacement interpolation is non-linear in ¯̄�P , the element tangent stiffness is a smooth

function of ¯̄�P over the majority of the range of ¯̄�P . Worst-case analyses converged with relative
ease in all attempts.

The final task of the UEL is to assemble the sub-element stiffness matrices and load vectors into
element-level matrices with 4 DOF (using standard assembly techniques [40]) and return them to
the solver.

5. BENCHMARKING

The stress prediction of the BJFE has been compared with a conventional plane strain FE model.
In the BJFE, the entire model consists of a single element. In the conventional model, a 2D mesh
has been generated. Both models are based on the ASTM international (ASTM) double lap joint,
[41]. Figure 2 shows the conventional mesh; Table II(a) describes the assumed geometries. The
solver is Abaqus R© Standard and the conventional mesh consists entirely of bilinear incompatible
mode plain strain elements (CPE4I). Half of the joint is modeled due to symmetry. Loading is
specified as listed in Table II(b). The mechanical load is applied far away from the lap joint and

†††The outer sub-element load vectors provide the current iteration’s values of the mechanical loads in the lap
region sub-element (provided by P1 and P2 in the general procedure). These forces should be equal if no body
forces are applied; however, it is possible that they differ during iteration and have negligible differences after
the solution completes (according to the specified convergence tolerances). Therefore, the two values are averaged

for the purposes of calculating P and ¯̄�P .‡‡‡The stiffness and load matrices converge with a smaller number of integration points than is usually desired for
stress evaluation.
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Table II. Geometric and loading assumptions for model comparison: (a) ASTM
double lap joint geometric features (mm) and (b) assumed loading.

Component Thickness Length

(a)
Outer adherend 1.6 76.2
Adhesive 0.2 or 1.0 12.7
Central adherend 3.2 76.2

(b)
Load type Value

P (Nmm−1) 10
�T (◦C) 10

Table III. Assumed material properties in FE and BJFE solutions (moduli
in GPa, expansion coefficients in 
�◦C).

AS4/3501-6
Material Aluminum Titanium (0◦) FM300

E11 70 110 148 1.98
E22 70 110 10.6 1.98
E33 70 110 10.6 1.98
G12 26.3 41.4 5.61 0.71
G13 26.3 41.4 5.61 0.71
G23 26.3 41.4 3.17 0.71
�12 0.33 0.33 0.30 0.40
�13 0.33 0.33 0.30 0.40
�23 0.33 0.33 0.59 0.40
�11 23 9 −0.8 20
�22 23 9 29 20
�33 23 9 29 20

the thermal load is applied to all nodes. Displacement symmetry constraints are enforced along
the mid-plane of the central adherend. Non-linear geometric stiffness is assumed.

Aluminum (AL) is the central adherend in all models; the outer adherends are titanium (TI) and
AS4/3501-6 (AS4) [42]. For simplicity, the adhesive properties are assumed to be isotropic and
are estimated based on Cytec FM300 adhesive. The assumed material properties are summarized
in Table III.

The shear stresses from the conventional FE model are reported at the centerline of the adhesive.
The centerline is the most representative location for comparison with the uniform shear stress
predicted by the BJFE. The peel stress in the conventional FE model is reported at the interface
between the adhesive and the central adherend. The choice of through-thickness location has a
large effect on the predicted peel stress near the edge (as illustrated in Figure 3). The adhesive
to central adherend interface (a–b) comparison location is chosen because the BJFE model can
be used as a measure of the severity of the stress field caused by the singularity at this location.
The peel stress reported from the BJFE is the average peel stress through the thickness (the stress
equation is evaluated at y= tb/2).
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Continuum and BJFE models of AL–AL joint with 0.2mm adhesive (MPa): (a) �̄b12
due to �̄�T ; (b) �̄b22 due to �̄�T ; (c) �̄b12 due to �̄P ; (d) �̄b22 due to �̄P ; (e) �̄b12 due to

�̄P +�̄�T ; and (f) �̄b22 due to �̄P +�̄�T .

5.1. Comparison of the BJFE and conventional FE models

Figures 9–12 show stresses predicted by the conventional FE and BJFE models. Figure 9 illustrates
the stress predictions for an AL–AL double lap joint. When this joint is subjected to thermal loading,
as is shown in Figure 9(a) and (b), both models predict that the stress is negligible.§§§ This stress
result is intuitive, since the two adherends have identical thermal expansion coefficients (Table IV).

Figure 9(c) and (d) shows shear and peel stress predictions of the AL–AL joint subjected to
mechanical loading; good agreement is exhibited in both figures. The peak shear stress predicted
by the BJFE is similar to that predicted by the conventional FE model, though there is some
difference in magnitude and distribution. The difference in absolute magnitude is largest near
the edges where the stress singularity effects the conventional FE results. The BJFE adequately
captures the magnitude of the shear result where the singular stress field does not effect the FE

stress prediction. There is also a difference in the overall shear distribution. This difference is

§§§This is the special case of identical adherends. Thermal expansion of the adhesive is the primary source of
loading. As reported in [37], a different analytical procedure may be more appropriate.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Continuum and BJFE models of AL–TI joint with 0.2mm adhesive (MPa): (a) �̄b12
due to �̄�T ; (b) �̄b22 due to �̄�T ; (c) �̄b12 due to �̄P ; (d) �̄b22 due to �̄P ; (e) �̄b12 due to

�̄P +�̄�T ; and (f) �̄b22 due to �̄P +�̄�T .

primarily the result of the simplifications in the virtual work solution; however, the distribution is
in sufficient agreement that the difference is an unlikely primary concern when the BJFE provides
an appropriate engineering approach. Similarly, the peel stress predicted by the BJFE is in adequate
agreement with the conventional FE model. Neither stress quantity suffers from any mesh
dependency in the BJFE prediction. Figure 9(e) and (f) shows mixed loading for the AL–AL joint,
which are almost identical to the mechanical load predictions for this joint.

Figure 10 shows the stresses predicted by the conventional FE and BJFE models for an AL–TI
joint. Thermal loading is non-trivial and the stress predictions resulting from it are plotted in Figure
10(a) and (b) for shear and peel. In this joint type, the predicted shear stress is in good agreement
for thermal, mechanical, and mixed loading, as is shown in Figure 10(a), (c) and (e). In all cases,
the peak shear stress predicted by the BJFE adequately matches the conventional FE model. The
peak location is consistently found to be further from the edge in the BJFE than in the conventional
FE model. The peel stress predictions in Figure 10(b), (d), and (f), also show good agreement.
The stress predicted by the BJFE is similar to the conventional FE model and is representative of
the (unconverged) singular peel stress result.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Continuum and BJFE models of AL–AS4 (0◦) joint with 0.2mm adhesive (MPa):
(a) �̄b12 due to �̄�T ; (b) �̄b22 due to �̄�T ; (c) �̄b12 due to �̄P ; (d) �̄b22 due to �̄P ; (e) �̄b12

due to �̄P +�̄�T ; and (f) �̄b22 due to �̄P +�̄�T .

The BJFE solution is orthotropic; Figures 11 and 12 provide an example of a composite applica-
tion. The figures show two AL–AS4 joints subjected to thermal, mechanical, and mixed loading.
The laminate modeled in Figure 11 has fibers oriented longitudinally (0◦) and the laminate
modeled in Figure 12 has fibers oriented transversely (90◦). Despite the unlikelihood of the 90◦
fiber orientation (relative to the joint loading axis) in practical applications, the two figures show
that the BJFE solution is in adequate agreement with the conventional FE solution in both cases
and for all three load types.

By comparing Figures 9–12 to the corresponding plots in [37], it is apparent that the virtual work
solution used in the BJFE is more accurate than are the simpler solutions. This is a direct result
of the inclusion of additional stress terms in the virtual work solution. Based on the cumulative
agreement in Figures 9–12, it can be concluded that the BJFE element adequately predicts the
shear stress in a double lap joint. The peel stress predicted by the BJFE model is found to be
consistently in agreement with the value of the (unconverged) singular stress field in all figures.
Therefore, it can be used as a mesh independent indicator of peel stress, useful for joint-to-joint
comparison.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Continuum and BJFE models of AL–AS4 (90◦) joint with 0.2mm adhesive (MPa):
(a) �̄b12 due to �̄�T ; (b) �̄b22 due to �̄�T ; (c) �̄b12 due to �̄P ; (d) �̄b22 due to �̄P ; (e) �̄b12 due

to �̄P +�̄�T ; and (f) �̄b22 due to �̄P +�̄�T .

Table IV. Approximate size of the double lap joint FE models.

Model Nodes Elements DOF

CPE 22 100 21 600 44 300
BJFE 4 1 4

6. CONCLUSION

In this article, an BJFE has been developed. It is capable of predicting the lap joint field quantities
in the lap zone using 4 DOF. It does so without burdening the user with mesh dependency or
significant meshing overhead. The BJFE is formulated by embedding an analytical solution directly
within the element. Its stiffness and load response are based on adaptive non-linear shape functions
that are dependent on the load character. All critical terms are formulated as functions of the

dimensionless mechanical load fraction ( ¯̄�P ) allowing for solution via an iterative, non-linear FE
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solver. To demonstrate its capability, the element has been implemented as a UEL in the commercial
FE package Abaqus R©.

Based on comparison with conventional FE solutions, the 4 node BJFE is capable of adequately
predicting stress in a joint due to thermal and mechanical loads. With this element, initial sizing and
trade studies can be accomplished with a significantly reduced meshing investment and a reduction
in computation time (compared with the conventional FE method). The element lays a foundation
for advancements in bonded joint elements. Using the techniques demonstrated in this article, it is
anticipated that available analytical solutions can be reformulated as application-specific bonded
joint elements.

APPENDIX A: PLAIN STRAIN MATERIAL CONSTITUTIVE RESPONSE

The constitutive equations for material � are:

⎧⎪⎨
⎪⎩

ε�11(x)

ε�22(x)

��12(x)

⎫⎪⎬
⎪⎭=

⎡
⎢⎢⎢⎢⎢⎢⎣

1−��13��31

E�11
−��23��31+��21

E�22
0

−��13 ��32+��12

E�11

1−��23 ��32

E�22
0

0 0
1

G�12

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎨
⎪⎩

��11(x)

��22(x)

��12(x)

⎫⎪⎬
⎪⎭+

⎡
⎢⎢⎢⎣

��33 ��31+��11

��33 ��32+��22

0

⎤
⎥⎥⎥⎦�T (A1)

A plane stress assumption could be substituted by setting the out-of-plane Poisson terms to zero
(��13=��31=0).

APPENDIX B: EXTENDED DESCRIPTION OF THE VIRTUAL WORK CALCULATIONS

The principles of virtual work solutions are briefly summarized below. Equilibrium relations derived
in Section 3 are given in Table I as well as their associated virtual stress quantities.

In Table I, all virtual stress quantities can be written in terms of the central adherend virtual
stress �̂a11. The principle of virtual work is applied using

�W =∑
i

∫
(�̂i �i )dVi =0 (B1)

where i represents the quantities listed in Table I for each solution. Equation (B1) applies for an
arbitrary virtual stress �̂a11(x). Plane strain constitutive relations (described in (A1)) govern each
material (represented by the index �). The field equations and boundary terms of the BJFE solution
becomes apparent when integration of (B1) is performed by parts.
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APPENDIX C: BOUNDARY CONDITIONS FOR THE BJFE SOLUTION

The non-dimensionalized and normalized longitudinal normal stress boundary conditions for the
left and right edges of the joint are:

¯̄D(
¯̄�P)+ ¯̄C(

¯̄�P)+ ¯̄B(
¯̄�P)+ ¯̄A(

¯̄�P)− 1

�̄
= 0

e−	̄3 ¯̄D(
¯̄�P)+e	̄3 ¯̄C(

¯̄�P)+e−	̄1 ¯̄B(
¯̄�P)+e	̄1 ¯̄A(

¯̄�P)− 1

�̄
− 2P

Ea11ta�̄tot

= 0

(C1)

The non-dimensionalized and normalized shear stress boundary conditions at the edges
of the joint are:

−	̄3
¯̄D(

¯̄�P)+ 	̄3
¯̄C(

¯̄�P)− 	̄1
¯̄B(

¯̄�P)+ 	̄1
¯̄A(

¯̄�P) = 0

−	̄3e
−	̄3 ¯̄D(

¯̄�P)+ 	̄3e
	̄3 ¯̄C(

¯̄�P)− 	̄1e
−	̄1 ¯̄B(

¯̄�P)+ 	̄1e
	̄1 ¯̄A(

¯̄�P) = 0

(C2)

APPENDIX D: BJFE SOLUTION PARAMETERS IN TERMS OF MATERIAL PROPERTIES
AND LOADS

The following parameters are used to facilitate compact equations:

D.1. Dimensionless system parameters

Dimensionless system parameters are shown in Table DI.

D.2. Dimensional material parameters


� = + t3a
24l2

[
(�a12+�a13�a32)

Ea11
+ (�a21+�a23�a31)

Ea22

]
− t2a tc
24l2

[
(�c12+�c13�c32)

Ec11
+ (�c21+�c23�c31)

Ec22

]

+ t2a
4l2Ea11

(
tb (�a12+�a13�a32)+ tc

2
(�a12+�a13�a32)

)

+ t2a
4l2Ea22

(
tb (�a21+�a23�a31)+ tc

2
(�a21+�a23�a31)

)
− t2a
8l2

[
tc

3Gc11
+ tb
Gb11

]
(D1)


� = t2a
4Ec11tc

(1−�c13�c31)+ ta
2Ea11

(1−�a13�a31)

Table DI. Dimensionless system parameters.

Load parameters Material parameters

�̄P = 
P P
� �̄= 
�

�

�̄�T = 
�T �T
� �̄= 
�

�
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D.3. Dimensional load parameters


�T = ta
2Ea11

(�a11−�c11+�a33�a31−�c33�c31)


P = − ta
2tcEa11Ec11

(1−�c13�c31)

(D2)

D.4. Dimensional system parameter

� = +(1−�a23�a32)
t3a

8l4Ea22

[
t2a
30

+ tatc
6

+ t2c
4

+ tatb
3

+ tbtc+ t2b

]

+(1−�b23�b32)
t2a tb

4l4Eb22

[
t2c
4

+ t2b
3

+ tbtc
2

]

+(1−�c23�c32)
t2a t

3
c

80l4Ec22
(D3)

D.5. Denominators of the elimination coefficients

The denominators from (37) are:

¯̄�a = +le	̄1(1−�a13�a31)(e
	̄3+	̄1 −e	̄1) ¯̄D(

¯̄�P)

+le	̄1(1−�a13�a31)(e
2	̄3+	̄1 −e	̄3+	̄1) ¯̄C(

¯̄�P)

+le	̄3(1−�a13�a31)(e
	̄3+	̄1 −e	̄3) ¯̄B(

¯̄�P)

+le	̄3(1−�a13�a31)(e
	̄3+2	̄1 −e	̄3+	̄1) ¯̄A(

¯̄�P)

−le	̄1	̄3e
	̄3+	̄1

(
(1−�a13�a31)

�̄
−��T (1− ¯̄�P)(�a11+�a33�a31)

)

¯̄�c = − Ea11ta
2Ec11tc

le	̄1(1−�c13�c31)(e
	̄1 +e	̄3+	̄1) ¯̄D(

¯̄�P)

− Ea11ta
2Ec11tc

le	̄1(1−�c13�c31)(e
2	̄3+	̄1 −e	̄3+	̄1) ¯̄C(

¯̄�P)

− Ea11ta
2Ec11tc

le	̄3(1−�c13�c31)(e
	̄3 +e	̄3+	̄1) ¯̄B(

¯̄�P)
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− Ea11ta
2Ec11tc

le	̄3(1−�c13�c31)(e
	̄3+2	̄1 −e	̄3+	̄1) ¯̄A(

¯̄�P)

+ le	̄1	̄3e	̄3+	̄1

2Ec11tc

(
(1−�c13�c31)

�̄
(Ea11ta+2�̄ ¯̄�P�P)

)

+ le	̄1	̄3e	̄3+	̄1

2Ec11tc
(��T (1− ¯̄�P)(�c11+�c33�c31)) (D4)

D.6. Simplification coefficients

¯̄�a = 	̄1	̄3e	̄3+	̄1

¯̄�a

¯̄�c = 	̄1	̄3e	̄3+	̄1

¯̄�c

(D5)

¯̄�a = +le	̄1(1−�a13�a31)(e
	̄3+	̄1 −e	̄1) ¯̄D(

¯̄�P)

+le	̄1(1−�a13�a31)(e
2	̄3+	̄1 −e	̄3+	̄1) ¯̄C(

¯̄�P)

+le	̄3(1−�a13�a31)(e
	̄3+	̄1 −e	̄3) ¯̄B(

¯̄�P)

+le	̄3(1−�a13�a31)(e
	̄3+2	̄1 −e	̄3+	̄1) ¯̄A(

¯̄�P)

−le	̄1	̄3e
	̄3+	̄1

(
(1−�a13�a31)

�̄
− �


�T
(1− ¯̄�P)(�a11+�a33�a31)

)

¯̄�c = − Ea11ta
2Ec11tc

le	̄1(1−�c13�c31)(e
	̄1 +e	̄3+	̄1) ¯̄D(

¯̄�P) (D6)

− Ea11ta
2Ec11tc

le	̄1(1−�c13�c31)(e
2	̄3+	̄1 −e	̄3+	̄1) ¯̄C(

¯̄�P)

− Ea11ta
2Ec11tc

le	̄3(1−�c13�c31)(e
	̄3 +e	̄3+	̄1) ¯̄B(

¯̄�P)

− Ea11ta
2Ec11tc

le	̄3(1−�c13�c31)(e
	̄3+2	̄1 −e	̄3+	̄1) ¯̄A(

¯̄�P)
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+ le	̄1	̄3e	̄3+	̄1

2Ec11tc

(
(1−�c13�c31)

�̄

(
Ea11ta+2�̄ ¯̄�P

�


P

))

+ le	̄1	̄3e	̄3+	̄1

2Ec11tc

(
�


�T
(1− ¯̄�P)(�c11+�c33�c31)

)

D.7. System parameters 	̄[13] in terms of the orthotropic material properties

	̄
2=

±
√

9E2
b22l

4

4G2
b12t

4
b (�b23�b32−1)2

− 12Eb22l4(Ea11ta�c13�c31+2Ec11tc�a13�a31−2Ec11tc−Ea11ta)

Ea11Ec11tat3b tc(�b23�b32−1)

2

− 3Eb22l2

4Gb12t2b (�b23�b32−1)
(D7)

D.8. 
 parameters for the BJFE solution basis functions


AT
= 	̄3(e	̄3 −1)

�̄


BT
= e	̄1 	̄3(e	̄3 −1)

�̄


CT
= − 	̄1(e	̄1 −1)

�̄


DT
= − 	̄1(e	̄1 −1)e	̄3

�̄


AP
= −(	̄3e

2	̄3+	̄1 − 	̄1e
2	̄3+	̄1 +2	̄1e

	̄3 −e	̄1 	̄3− 	̄1e
	̄1) (D8)


BP
= e	̄1(−2	̄1e

	̄3+	̄1 + 	̄3e
2	̄3 + 	̄1e

2	̄3 − 	̄3+ 	̄1)


CP
= 	̄1(	̄3e	̄3+2	̄1 − 	̄1e	̄3+2	̄1 + 	̄3e	̄3 + 	̄1e	̄3 −2e	̄1 	̄3)

	̄3


DP
= − 	̄1e	̄3(2	̄3e	̄3+	̄1 −e2	̄1 	̄3− 	̄3− 	̄1e2	̄1 + 	̄1)

	̄3

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 79:94–126
DOI: 10.1002/nme



122 P. A. GUSTAFSON AND A. M. WAAS


1 = 	̄3e
	̄3+	̄1 − 	̄1e

	̄3+	̄1 + 	̄3e
	̄3 + 	̄1e

	̄3 −e	̄1 	̄3− 	̄3− 	̄1e
	̄1 + 	̄1


2 = 	̄3e
	̄3+	̄1 − 	̄1e

	̄3+	̄1 − 	̄3e
	̄3 − 	̄1e

	̄3 +e	̄1 	̄3− 	̄3+ 	̄1e
	̄1 + 	̄1


3 = Ec11	̄3t3b tc(�b23�b32−1)

3Eb22l4(�c13�c31−1)

APPENDIX E: BJFE SHAPE FUNCTIONS AND DERIVATIVES WITHIN
THE LAP REGION

Na(x̄,
¯̄�P)

le
¯̄�a

= −(1−�a13�a31)

·
(
e−	̄3 x̄ ¯̄D(

¯̄�P)

	̄3
+ −e	̄3 x̄ ¯̄C(

¯̄�P)

	̄3
+ e−	̄1 x̄ ¯̄B(

¯̄�P)

	̄1
+ −e	̄1 x̄ ¯̄A(

¯̄�P)

	̄1
+ x̄

�̄

)

+x̄��T (1− ¯̄�P)(�a33�a31+�a11)

Nc(x̄,
¯̄�P)

l ¯̄�c

= Ea11ta(1−�c13�c31)

2Ec11tc
(E1)

·
(
e−	̄3 x̄ ¯̄D(

¯̄�P)

	̄3
− e	̄3 x̄ ¯̄C(

¯̄�P)

	̄3
+ e−	̄1 x̄ ¯̄B(

¯̄�P)

	̄1
− e	̄1 x̄ ¯̄A(

¯̄�P)

	̄1

)

+ x̄(1−�c13�c31)

Ec11tc

(
¯̄�P�P + Ea11ta

2�̄

)

+x̄��T (1− ¯̄�P)(�c33�c31+�c11)

Ba(x̄,
¯̄�P)

le
¯̄�a

= (1−�a13�a31)

·
(
e−	̄3 x̄ ¯̄D(

¯̄�P)+e	̄3 x̄ ¯̄C(
¯̄�P)+e−	̄1 x̄ ¯̄B(

¯̄�P)+e	̄1 x̄ ¯̄A(
¯̄�P)− 1

�̄

)

+��T (1− ¯̄�P)(�a33�a31+�a11)
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Bc(x̄,
¯̄�P)

le
¯̄�c

= −(1−�c13�c31)
Ea11ta
2Ec11tc

(E2)

·
(
e−	̄3 x̄ ¯̄D(

¯̄�P)+e	̄3 x̄ ¯̄C(
¯̄�P)+e−	̄1 x̄ ¯̄B(

¯̄�P)+e	̄1 x̄ ¯̄A(
¯̄�P)− 1

�̄

)

+
¯̄�P�P(1−�c13�c31)

Ec11tc
+��T (1− ¯̄�P)(�c33�c31+�c11)

NOMENCLATURE

��i i orthotropic thermal expansion coefficient of component �

ā,b̄, ¯̄a, ¯̄b dimensionless basis coefficients
Ā,B̄,C̄ ,D̄ dimensionless basis coefficients
¯̄A, ¯̄B, ¯̄C , ¯̄D dimensionless basis coefficients
Ba, Bc element shape function derivatives
FN
i force vector in increment i

uM
i displacement vector in increment i

��T ,�P simplification coefficients
�T temperature change from a reference temperature
E�i i orthotropic engineering moduli of component �
Fel element force vector
F force in an end post
Gbi j orthotropic shear modulii of the adhesive
�̂�11(x) longitudinal virtual stress in component �
�̂�22(x,y) transverse virtual stress in component �
�̂�12(x) shear virtual stress in component �
c0,c1,d1,d0 integration constants
le length of current sub-element

A�T

,
B�T
,
C�T

,
D�T
simplification coefficients


AP
,
BP

,
CP
,
DP

simplification coefficients

1,
2,
3,
4,
5 simplification coefficients
Na,Nc element shape functions

�,
�,
�T ,
P ,� simplification coefficients
��i j Poisson’s ratios of component �
�,�,� lap joint system parameters
�̄,�̄,�̄,	̄1,	̄3 dimensionless lap joint system parameters
�̄aR,�̄cR dimensionless thermal to mechanical load ratios
¯̄�P ,

¯̄�P dimensionless mechanical load fractions
¯̄�tot,

¯̄�tot dimensionless total load parameters
�̄P ,�̄P dimensionless mechanical load parameters
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�̄�T ,�̄�T dimensionless thermal load parameters
�P ,��T mechanical and thermal load parameters
� potential energy
P mechanical load per unit depth
P1,P2 element internal mechanical load DOFs, per unit depth
¯̄�a,

¯̄�c,
¯̄�a,

¯̄�c simplification coefficients
qe sub-element extension degree of freedom
q1,q2,q3,q4 nodal displacement degrees of freedom
��11(x) longitudinal stress in component �
��22(x,y) transverse stress in component �
��12(x) shear stress in component �
t� material thicknesses of component �
ua axial displacement field
urb axial rigid body displacement
U strain energy
ε�i j strain in material �
W potential energy of external loads
x̄ sub-element natural coordinate x/le measured from

the left edge of the sub-element
x, y, z Cartesian coordinates
� �=[abcp] subscript representing central adherend (a),

adhesive (b), outer adherend (c), and end post (p)
i j i, j =[123] where i �= j
AL aluminum
AS4 AS4/3501-6
ASTM ASTM International
BJFE bonded joint finite element
CPE4I bilinear incompatible mode plain strain elements
DOD Department of Defense
DOF degrees of freedom
FE finite element
NASA National Aeronautics and Space Administration
TI titanium
UEL user element subroutine
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