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Abstract: The authors propose a robust transformation linear mixed-effects model for longitudinal con-
tinuous proportional data when some of the subjects exhibit outlying trajectories over time. It becomes
troublesome when including or excluding such subjects in the data analysis results in different statistical
conclusions. To robustify the longitudinal analysis using the mixed-effects model, they utilize the multivari-
ate ¢ distribution for random effects or/and error terms. Estimation and inference in the proposed model are
established and illustrated by a real data example from an ophthalmology study. Simulation studies show a
substantial robustness gain by the proposed model in comparison to the mixed-effects model based on Aitchi-
son’s logit-normal approach. As a result, the data analysis benefits from the robustness of making consistent
conclusions in the presence of influential outliers. The Canadian Journal of Statistics 37: 266-281; 2009
© 2009 Statistical Society of Canada

Résumé: Les auteurs proposent un modele linéaire a effets mixtes robuste pour les études longitudinales
des données de proportions continues. Ce modele s’applique lorsque des sujets ont des trajectoires aber-
rantes. Le choix d’inclure ou non de tels sujets est difficile a faire surtout lorsque I’analyse des données
résulte a des conclusions statistiques différentes. Afin de rendre robuste les analyses longitudinales dans
les modeles a effets mixtes, ils suggerent d’utiliser une distribution T multidimensionnelle pour les ef-
fets aléatoires ou les termes d’erreurs. L'estimation et I’inférence a 1’aide du modele suggéré sont faites
et illustrées a 1’aide de vraies données provenant d’une étude ophtalmologique. Des études de simulation
montrent un gain de robustesse substantiel du modele suggéré par rapport au modele a effets mixte basé sur
I’approche logit-normale d’ Aitchison. En conséquence, 1’analyse des données bénéficie de la robustesse en
obtenant des conclusions cohérentes en présence de valeurs aberrantes influentes. La revue canadienne de
statistique 37: 266-281; 2009 © 2009 Société statistique du Canada

1. INTRODUCTION

In many biomedical studies, the longitudinal continuous measure with a certain constraint is
recorded as a primary response variable of interest. Frequently proportions are observed, which
are confined to (0, 1). For instance, percent decrease in glomerular filtration rate at different
follow-up times from the baseline are recorded and analysed in nephrological studies, in which
such a measure of rate characterizes more directly the loss of renal function than original serum
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creatinine levels. Oncologists are often more interested in percent change of tumour size than
actual size since the baseline tumour size at diagnosis varies from patient to patient. One key
feature of this type of measurement is its confinement within a finite interval, often the unit
interval. One issue, that is, often ignored in the analysis of such data is the presence of outliers,
which appears more subtle than in the analysis of unconstrained data. This is because a small
difference between two proportions, especially when both are close to the interval limit O or 1,
can potentially correspond to a very large discrepancy in the real line scale. Therefore, outliers
in such data are likely hidden as human eyes fail to detect them easily in plots of the data.
Misidentifying influential outliers can incur misleading conclusions.

In this article we utilize the eye surgery data of Meyers et al. (1992) to illustrate such subtlety
and the merit of robust analysis. The data were collected from a prospective ophthalmology study
concerning the use of intraocular gas (C3Fg) to provide internal tamponade of retinal breaks in the
eye in complex retinal surgeries. The outcome variable was the percent of gas left in the eye. The
gas, with three different concentration levels, 15%, 20%, and 25%, was injected into the eye before
surgery for 31 patients. They were then followed three to eight (average of 5) times over a 3-month
period, and the volume of gas in the eye at the follow-up times was recorded as a percentage of
the initial gas volume. The primary interest was to investigate whether concentration levels of
the gas injected in patients’ eyes affect the decay rate of the gas. Figure 1a shows all gas volume
decay trajectories across three gas concentration levels. None of the patients’ trajectories looks
suspicious, except the very bottom one (Patient #15) in the 25% level group, which appears isolated
from the others in the same group. The logit-transformed gas volumes are shown in Figure 1b,
where the measurements are now in scales from —oo to oo, and the solid lines represent the
LOESS smoothing curves, respectively. Figure 1b clearly indicates that the separation of patient
#15 disappears. However, it is interesting to note that in the 15% concentration group, patient
#16’s trajectory appears to deviate from the others in the same group. This outlying patient is
confirmed by Qiu, Song & Tan (2008) using a diagnostic plot developed in Jensen & Birch (2009)
and Williams et al. (2006).

To build a linear mixed model for the logit-transformed proportion, we examine Figure 1b and
conclude the following: (i) The LOESS curves appear virtually linear, suggesting that the time
covariate should enter into the linear model in a logarithmic scale; (ii) the intercepts of the three
concentration levels differ substantially; and (iii) the slopes of the LOESS curves in the 25% and
20% levels may be lower than that of the 15% level. To be specific, let y;; be the proportional
observation for the ith patient at the jth follow-up time. Conditional on the random intercept by;,
the logit-transformed variables logit(y;;) are independent and normally distributed with the mean
wij and the variance o2. The conditional mean, ij, is modelled by both main and interaction
effects as follows:

Hij = Po + boi + Prlog(tij) + P2GAS20; + B3GAS25; + P4 GAS20; x log(ri))
+ B5GAS25; x log(t;)), M

where the random intercepts bg; ~ N (O, rz), and GAS20 and GAS25 are two dummy variables for
gas concentration levels 20% and 25%, and t;; is the time in days from gas injection. Here level 15%
is regarded as the reference, and the random intercept by describes the patient-specific proportion
of the remaining gas volume 1 day after the gas injection. Such cross-patient heterogeneity of the
initial gas percent is evident, as pointed out above.

Using SAS PROC MIXED, we fit the data with model (1), and found that both GAS20 and
GAS25 covariates are not statistically significant (see the first row in Table 5), with P-values
0.338 and 0.132, respectively. When we excluded patient #16 from the analysis, using exactly
the same model (1) and the same software, we found that covariate GAS25 became statistically

DOI: 10.1002/cjs The Canadian Journal of Statistics/ La revue canadienne de statistique



268 ZHANG ET AL. Vol. 37, No. 2

Congenimaion - 18]

Lo
Los
Fi0.4

ro.2
0.0

Proportional Volume

0.8
08
044
0.2 .
0.0 4 C
0 20 a0 &0 80
Days
by ———"—""—"— I
5

Logit of Proportional Volume

o 1 2 3 4
Logerithm of Days

FIGURE 1: (a) Longitudinal plots of observed proportions of the remaining gas volumes in the surgical eyes
across three gas concentration levels. (b) Longitudinal plots of logit-transformed proportions of gas volumes
with LOESS smoothing curves across three gas concentration levels.

significant (see the second row in Table 5), with P-value 0.018. This difference in the two analyses
is not surprising because the normal distributions assumed in model (1) are generally incapable
of accommodating outlying data or unduly large (or small) measurements. Practically, whether
or not to conclude the significance of covariate GAS25 is troublesome, which will affect making
related clinical decisions.

To overcome the impasse, in this article we propose a solution, in pursuit of a robust sta-
tistical inference based on the utility of the #-distribution instead of the normal distributions,
which results in a logit-# model. In the literature, Lange, Little & Taylor (1989), Pinheiro, Liu
& Wu (2001), and Song, Zhang & Qu (2007) have observed the robustness gain from the utility
of t-distributions in regression analysis. Due to the fact that the #z-distribution is heavy-tailed,
especially when the degrees of freedom are low, it can naturally accommodate extreme obser-
vations. The method proposed in Song, Zhang & Qu (2007) considers no constraints on the
response variable and thus may be regarded as a special case of our development in this article
with the identity transformation. Moreover, the logit-f model also includes Aitchison’s logit-
normal model (Aitchison, 1986) as a special case when the #-distributions have large degrees of
freedom.
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With regard to the specification of a robust mixed-effects model, the #-distribution can be used
to relax the normal distribution assumption either on the error terms or on the random effects.
According to Pinheiro, Liu & Wu (2001), outliers can arise from either the source of population
heterogeneity (i.e., random effects) or the source of random errors, respectively referred to as
b-outliers or e-outliers. Thus, there are four types of models, depending on which sources outliers
arise; they are, normal-normal (NN), normal—¢ (NT), #—normal (TN), and 7—¢ (TT) transformation
mixed-effects models. For example, the NT model refers to a transformation mixed-effects model
with normally distributed random effects and #-distributed error terms in response to the situation
where outliers arise only from the error terms. Through comparisons of these four models, not
only can we identify influential outliers but we can also determine the source from which identified
outliers arise.

In previous analyses of longitudinal proportional data, Song & Tan (2000) and Song, Qiu &
Tan (2004) proposed marginal models based on the GEE method, and Qiu, Song & Tan (2008)
proposed a simplex generalized linear mixed model (GLMM) for such data. All these analyses
assumed the simplex distribution (Jgrgensen, 1997) for the proportional response, with the logit
link function on the mean in the setting of generalized linear models. In contrast, in this article we
model the median of the logit-transformed proportion using the z-distribution. The resulting model
is not in the paradigm of the generalized linear models because the #-distribution does not belong
to the class of exponential dispersion models (Jgrgensen, 1997). Moreover, the interpretations are
not the same regarding the effects of the covariates as those of simplex GLMM given in Qiu,
Song & Tan (2008).

The rest of the article is organized as follows. Section 2 extends Aitchison’s logit-normal
model to the logit-# model. Section 3 presents a likelihood-based inference in the proposed
model. Section 4 is devoted to simulation studies to assess the performance of the proposed
model and inference, especially in the aspect of robustness against outliers. Section 5 provides a
detailed analysis of the eye surgery data, and some concluding remarks are given in Section 6.
The Appendix includes related technical details regarding the derivatives of the log-likelihood
function.

2. ROBUST LINEAR MIXED-EFFECTS MODELS

To specify the robust LMM for longitudinal proportional data, let us first define the logit-¢ (LT)
distribution. The density of a g-dimensional ¢ distribution, Mt,(d, 2), with d degrees of freedom
and a positive definite scale matrix €2, is given by

I'((d+q)/2)

(d)/2T(d/2) q
(md)?/?T°(d/2) ., xeRY, )

X/Q(T)—lx 7(q+d)/2
px|T) = —

1Q(z)| 71/ {1 +

where T denotes a set of distinct parameters in the scale matrix €2. It is known that the #-distribution
given in (2) has mean 0 and variance matrix D(t) = (d)/(d — 2)2(7), d > 2; see Fang, Kotz &
Ng (1990) and Kotz & Nadarajah (2004).

For convenience, we rewrite the above density (2) in terms of the variance matrix D(t) as
follows:

I'((d+4q)/2)

{m(d — 2)}4/°T°(d/2) , x€eRI

X/D(r)flx _(q+d)/2
px|7) = —

D(r)|"V? {1
ID(@)| {+ T
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Consequently, the one-dimensional #-density is

2 Id+1)/2} 52 —(d+1)/2
p(x|t7) = Jrd = 2)tI'(d/2) {l + - Z)ﬂ} , XE€R,

where 72 is the variance of the r-distribution. When the degrees of freedom d tend to oo, the
t-distribution converges to the normal distribution with the same mean and variance. Therefore, a
t-distribution with a large d can be regarded as an approximation to the normal distribution. The
random vector x is said to follow a g-dimensional  distribution with mean g, variance matrix D(t)
and degrees of freedom d, if x — p ~ Mt,(d, D(7)), denoted by x ~ Mt,(d, i, D(t)). Note that
the #-distribution is symmetric around the mean u, so the u is also the median. If a componentwise
transformation x = log(y/(1 — y)) ~ Mt,(d, p, D(7)) is made, then y is said to follow the logit-
t distribution LT,(d, p, D(7)), denoted by y ~ LT,(d, ., D(7)). Since the logit transformation
is monotonic, medians of x and y are invariant, but their means are not. This fact gives rises
to convenience on the choice of median as the primary population attribute for interpreting the
proposed robust LMM throughout this article.

It follows from the logit transformation that the density function of the distribution LT(d, u© =
0, 72) is given by

2y —(+d)/2
L@+ 1/2) e ()
Ad= DT — ) | @2 |

pOyITH) = 3)

where for the one-dimensional case, the subscript g is omitted in the notation for convenience.
Figure 2 displays one-dimensional density functions (in solid lines) of the LT distribution,
LT, n =0, 'L'z), at different degrees of freedom d = 3, 6,9 and different values of the dis-
persion 2=0.1,1,3, together with the logit-normal (LN) densities (in dashed lines) with the
same means and variances.

From Figure 2, it is easy to see that (i) with a small variance, the LT distribution has heavier
tails than the LN distribution, and the LT distribution approaches the LN distribution when the
degrees of freedom increase; and (ii) when the variance is large, the LN density exhibits two
modes as opposed to one mode in the density of the LT distribution. The bimodality implies that
it is more likely to observe proportions close to the boundary values 0 and 1 than to observe
data around the mean or the median (here the mean and the median are the same because of the
symmetry) according to the LN distribution. This creates some difficulty in the interpretation
of the data generation mechanism, as well as in the maximum likelihood estimation due to the
potential problem of multiple roots. Unfortunately, our example of the eye surgery data is found
to be in such a situation (see Section 5 for details). Therefore, it is appealing to develop a new
model that cannot only handle outlying longitudinal data points but also overcome any potential
bimodality. It is worth pointing out that the bimodality is not a fixed feature for the LN distribution
and it may disappear if y is not zero and the variance 72 is small.

A robust LMM is specified as follows. Let y;;, j = 1, ..., n; be the jth repeated measurement
of subject i. Conditional on random effects b;, y;; are independently distributed according to
LT(d, wij, 02), where the g-dimensional random effects b;,i =1, ..., n, are independent and
each b; ~ Mt,(d, 0, D(t)), with variance matrix D(t). The conditional median (;; takes the
form

Mij = X;j,B + Z;jbi, 4)
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FIGURE 2: Density functions of the logit-¢ (LT) distribution (solid lines) and the logit-normal (LN) dis-
tribution (dashed lines) with dispersion 2> = (0.1, 1, 3) from left to right and degrees of freedom of LT
distributions d = (3, 6, 9) from top to bottom.

where X;; and Z;; are, respectively, the matrices of covariates corresponding to the fixed effects
and random effects for the ith subject at the jth time.

Consequently, the normal-normal (NN) LMM corresponds to d = d = oo, the normal—t (NT)
LMM, d < oo and d = oo, the —normal (TN) LMM, d = oo and d < oo, and the t—¢ (TT) LMM,
d = d < co. Note that equal degrees of freedom are required in the TT LMM for the sake of
identifiability pertinent to the estimation of the degrees of freedom (Song, Zhang & Qu, 2007).
These four models form a primary platform for us to contrast influences of outliers in estimation
and inference, as well as to determine from which sources outliers arise.

3. ESTIMATION AND INFERENCE

We develop the maximum likelihood estimation and inference procedures in the proposed models.
Suppose that the random effects b; follow a g-dimensional distribution with density p(b;|t, d)
and that conditional on b; the response vector y; follows an n;-dimensional distribution with
density p(y;|b;, ), where n = (8', 02, d)'. Then, the likelihood function is given by

L0)=T[1a® =T] | il mptbtz. b, )
i=1 i=1

where 8 = (B, 7/, o2, d)’ denotes the vector of all the model parameters to be estimated. The
involved integral has a closed form for both NN LMM and TT LMM, but not for NT LMM or TN
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LMM. In this article we invoke the Gauss—Hermite quadrature method to numerically evaluate
an integral that has no analytic form.
For the TT LMM, it is easy to show that the likelihood for subject i is

(L= yin) - yin (1= yin)} T (45 - (42
L.(0) = {yir(1 = yi1) -+ - yin,(1 = yin)} 7' T ( 2 ) 4 (Wi — XiB)'V; 1(Wi — X;B) |
{n(d — 2)yni20 (D) v;|1/2 d—2

(6)

where w; = (logit(y;1), . . . , logit(yin;)) and V; = Z,~D(r)Z§ + 021,”. It follows immediately that
the log-likelihood of @ for the ith subject is given, subject to a constant, by

__ 1 F(d—;ni) d+n; (W, — X;B) V. (wi — XiB)
(@)= — - log|Vi| + lo — i ogd 14 Wi = APV Vi (Wi = &)U
2% ¢ d i/2 s d-2

(N

For TN LMM and NT LMM, we list those formulas in the Appendix.

The maximum likelihood estimation of 6 can be obtained under a standard route by maximizing
the log-likelihood function £(@) = log L(6#) with respect to #. This may be done by solving the
score equation £(f) = 0, where £(0) is the first order derivative of the log-likelihood £(f) with
respect to 6. We use a Gauss—Newton type algorithm (Ruppert, 2005) to search for the roots of
the score equation, in which the second order derivatives of the log-likelihood are not needed
in iterations. The key feature of this algorithm is to take step-halving that guarantees a steady
increase in the likelihood at each iteration. Precisely, the (k 4+ 1)™ iteration proceeds as

O+ = 65 + 5B71(6M0(6),

where B(0) = % Sor 4i(0){£;(9)} is an approximate Fisher information, and 8 is the step-halving
term that usually starts at 1 and halves each time until 201y > £(8%) holds in each iteration.
The asymptotic covariance matrix of the MLE @ is estimated by the inverse of B(f) evaluated at
the output from the last iteration.

The Appendix includes all the detail concerning the first order derivatives, £(6), for the three
models, the TT LMM, the NT LMM, and the TN LMM. To deal with constraints on some param-
eters, such as 02 > 0, 72 > 0, and d > 2, in the estimation we simply take the log transformation

on each of them.

4. SIMULATION

We conducted a simulation study to compare the proposed LT model with the LN model with
respect to robustness against both b-outliers and e-outliers. We simulated longitudinal proportional
data with b-outliers or e-outliers according to the following two steps. First, we chose a model
similar to that used in the eye surgery data analysis in Section 5. That is,

w;j = Po + P1log(tj) + Poxi +boi +&ij, j=1,...,5, (®
where the group covariate x; was set as 0 or 1, with each subgroup containing 25 subjects, and

the time covariate t; = 1,2, ...,5. The true values of the regression coefficients were set as
(Bo, B1, B2) = (2.0, —0.8, 1.0), the random effects by; were i.i.d. N(O, 12) with the true 72 = 1,
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and errors g;; were i.i.d. N(0, 02) where the true o> = 1. The proportional observations were

producedbyyij=%i=1,...,25,j=1,...,5.

Second, we generated a data set of n = 50 subjects according to the chosen NN LMM (8).
This dataset contained no outliers, and the NN LMM should fit the simulated data well.

Third, we created a contaminated dataset with either b- or e-outliers corresponding to each
uncontaminated dataset generated in the second step above. To introduce b-outliers into a dataset,
we randomly selected 2%, 6%, or 10% subjects as outlying patients whose random effects by,
were then replaced by values generated from a different normal distribution with 100 times larger
variance, that is, N (0, 102).

In parallel, to bring e-outliers into a dataset, we randomly selected 2%, 6%, and 10% subjects
and then randomly selected a time point for each of these selected subjects, at which the original
value of the error was replaced by a new one generated from N(0, 52).

We considered two models in the comparison. One was the NN LMM, the model generating
the uncontaminated data. Certainly, any outliers will challenge the performance of this model.
The other was the TT LMM, which represents a class of models in which the degrees of freedom
determine tail properties of the distribution and hence the flexibility of the model responds to
outliers. Therefore the TT LMM is expected to accommodate both b- and e-outliers and to result
in desirable robustness. We ran 200 rounds of simulation to draw conclusions.

To assess to what extent an outlier affects the performance of the proposed model, we utilized
two criteria related to the performances on estimation of regression coefficients and estimation
of standard errors, respectively. The first one was the standardized relative change (SRC) in the
estimation for each regression coefficient (Song, 2007, page 113), defined by

ANN ANN ATT ATT

jo ﬂj,n / ﬁj,o - IBj,n
s.e.(ﬁijnN) s.e.(ﬁ}i)

The second one was the ratio of mean square error changes (RMSEC) between the contami-
nated and uncontaminated datasets, both of which were fit by the NN LMM and the TT LMM,
respectively. That is,

SRC()) =

., j=012.

IMSE(BYY) — MSE(B}Y)

RMSEC(8;) = , Jj=0,1,2,

IMSE(BTT) — MSE(STT)

where .0 and B j,n are the MLEs of the fixed effect estimates based on the two datasets with and
without outliers, respectively.

Obviously, either SRC > 1 or RMSEC > 1 implies that the TT LMM is more robust than the
NN LMM in the estimation of regression coefficients or in the estimation of standard errors.

Table 1 reports a summary of the model performances in light of these two criteria, where
we used median instead of mean to evaluate the average performance, simply to avoid some
extreme values of the two criteria. Table 1 clearly indicates that (i) the MLE in the TT LMM
over-performed that in the NN LMM, as all the values of the two criteria are above 1. In this
simple simulation setting, the TT LMM may be up to five times more robust than the NN LMM.
(1) In our simulation setting, the b-outliers seem more troublesome to the MLE in the NN LMM
than the e-outliers, because the values of the two criteria are generally higher for the cases related
to the b-outliers than those related to the e-outliers. In fact, our findings here are in agreement
with those from many other studies (e.g., Lange, Little & Taylor, 1989; Pinheiro, Liu & Wu,
2001; Song, Zhang & Qu, 2007); that is, the ¢ distribution is helpful in achieving robust estimation
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TABLE 1: Median standardized relative change (SRC) and median ratio of MSE changes (RMSEC) for the
estimation of each fixed effect between contaminated and uncontaminated datasets fitted by the NN LMM
and the TT LMM, based on 200 replications.

Contamination Bo B B>
Percent Source SRC RMSEC SRC RMSEC SRC RMSEC
2% b-outlier 4.59 4.17 1.91 5.26 4.83 3.18
6% b-outlier 1.92 1.89 2.12 1.59 2.42 1.64
10% b-outlier 1.63 1.45 1.98 1.47 1.78 1.58
2% e-outlier 3.06 3.08 2.46 3.69 2.64 2.07
6% e-outlier 1.35 1.38 1.07 1.46 2.01 1.30
10% e-outlier 1.28 1.44 1.03 1.59 1.88 1.27

and inference. (iii) It is interesting to note that the values of the criteria decrease as the percent
of b-outliers increases. This implies that the capability of the TT LMM to handle the outliers
was not constant, and, as a matter of fact, it deteriorates as the number of the outliers increases.
This is not surprising. Like every other robust model the TT LMM has a breakdown point to its

robustness.

To see more details as to how well the MLE performed in the two models, in Table 2 we listed
a summary of average estimates of the fixed effects and their 95% quantile intervals. This table
shows again that the MLE was affected more by the b-outliers than by the e-outliers, since wider
quantile intervals and bigger bias are obtained in the b-outliers cases than in the e-outlier cases.

TABLE 2: Average point estimates of the fixed effects with 95% quantile intervals obtained from the NN
LMM and the TT LMM, respectively, based on 200 replications.

Bo

Bi

B2

Model Outliers
NN 2%b
TT 2%b
NN 6%b
TT 6%b
NN 10%b
TT 10%b
NN 2%e
TT 2%e
NN 2%e
TT 6%e
NN 10%e
TT 10%e

2.40 (1.96, 2.83)
2.09 (1.62, 2.53)
1.95 (1.32, 2.70)
1.98 (1.43, 2.58)
1.86 (0.96, 2.69)
1.91 (1.27, 2.62)
1.96 (1.28, 2.57)
1.98 (1.43, 2.53)
2.01 (1.48, 2.57)
2.02 (1.48, 2.54)
2.00 (131, 2.63)
2.01 (1.41, 2.59)

—0.80 (—0.91, —0.71)
—0.80 (—0.90, —0.72)
—0.78 (—0.86, —0.70)
—0.79 (—0.88, —0.71)
—0.76 (—0.85, —0.66)
—0.78 (—0.87, —0.68)
—0.79 (—0.91, —0.70)
—0.80 (—0.89, —0.73)
—0.80 (—0.93, —0.67)
—0.80 (—0.91, —0.69)
—0.79 (—0.93, —0.65)
—0.80 (—0.92, —0.67)

0.63 (0.02, 1.28)
0.94 (0.36, 1.60)
0.97 (—0.01,1.86)
1.01 (0.15, 1.76)
1.00 (—0.09, 2.09)
1.03 (0.27, 1.78)
1.03 (0.39, 1.81)
1.03 (0.4, 1.78)
0.99 (0.33, 1.62)
1.01 (0.40, 1.55)
0.97 (0.29, 1.77)
1.00 (0.25, 1.72)
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5. DATA ANALYSIS

Now we turn to the analysis of the eye surgery data introduced in Section 1. We first identified
potential outliers and then used the proposed robust TT LMM to carry out estimation and inference.
The data were previously analysed by Song & Tan (2000) and Song, Qiu & Tan (2004) using
the GEE type marginal model, and by Qiu, Song & Tan (2008) using the generalized linear
mixed-effects model (GLMM) with the utility of the simplex distribution. In the simplex GLMM,
high-order Laplace approximations were invoked to evaluate integrals, resulting in an approximate
inference in the forms of penalized quasi-likelihood (PQL) and restricted maximum likelihood
(REML).

5.1. Outliers
To identify b-outliers, we began with individual logit-transformed linear regression models,

logit(yij) = Po+ B1 log(t,-j) + v + &, fori=1,...,n,j=1,...,n;,

where Bp + v;,i = 1, ..., n are individual intercepts. We applied the least squares method to
estimate the regression coefficients; that is,

n nj

BoProvii=1,...om=arg  min Z} _Z;{logit(yi,-) — fo — B log(ty) — vi)*.
i=1 j=

The distribution of the resulting estimates v;,7 = 1, ..., n is helpful to identify outlying random

effects or b-outliers.

Figure 3a displays a side-by-side boxplot of the standardized individual intercepts over three
gas concentration levels. The outstanding point in the boxplot of gas level 15% corresponds to
patient #16, who has been identified previously as an outlying patient. Two outliers appear in the
boxplot of the gas level 20%, which were not identified previously, corresponding to patients #7
and #25. No outliers are found in the boxplot of the gas level 25%. In addition, the size of the box
varies among the three gas groups, because the number of subjects in each group is different. In
fact, this variation in the random effects has been investigated and found to be unrelated to the
gas group level in Qiu (2001).

el G0 ]

Standardized Resadual
0
1]

15% 0% 25% L . " 1 L e -
Concentration el -2 -1 0 1 2 -4 -2 0 2

FIGURE 3: (a) Boxplots of random effects at three gas concentration levels. (b) Normal-quantile and #-
quantile plots of the standardized residuals obtained from individual regression models.
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To examine e-outliers, Figure 3b displays the normal-quantile plot (the left panel) and the
t-quantile plot (the right panel) for the standardized residuals obtained from the above individual
linear regression models. The quantiles in the right plot were calculated using the #-distribution
with 5 degrees of freedom. This 7-quantile plot indicates a clear improvement on the lower
left tail to accommodate outliers. This suggests that using a ¢ distribution for the error distri-
bution can overcome such moderate violation of normality assumption. Here we did not iden-
tify any specific e-outliers, but just noted that the conclusion from the preliminary analysis has
been in favour of a #-distribution for the error terms. We focused on the b-outliers in the data
analysis.

5.2. Robust Analysis

We considered four LMM in the data analysis in order to assess the influences of the identified
b-outliers on estimation and inference. Table 3 lists the model components needed to specify these
LMMs, where the conditional median w;; takes the form of Equation (1).

We prepared three datasets in this analysis, including (i) the full dataset with all b-outliers, (ii)
the sub-dataset with only patient #16 deleted, and (iii) the sub-dataset with all three b-outliers (#16,
#7, and #25) deleted. We used subscripts f, P1, and P2 to denote the respective analyses of these
three datasets. Similar to the investigation in the simulation study, in Table 4 we calculated the
standardized relative change (RC) in the estimation of differential effects of two gas concentration
levels (20% and 25%). The RC quantifies the robustness of an LMM with the utility of #-distribution
in the random effects, in the error terms, or in both, versus the naive NN LMM. Clearly, the use
of the -distribution is beneficial to acquire consistent results and robust performances for the
mixed-effects model in the data analysis.

TABLE 3: Model components in the specification of an LMM for the eye surgery data analysis.

Distribution
Model Conditional (y;j|bo;) Random Intercept (by;) Parameters ()
NN LMM LN(;j, 0°) N(0, %) Bo, Br, B2, 07,
TT LMM LT(d, ju;, 0°) 7(d,0, 1) Bo, B1, B2, 0%, %, d
TN LMM LN(i;, 0%) 7(d, 0,7 Bos Bis Br, 0%, 7%, d
NT LMM LT(d, i, %) N, %) Bos Bi, B2, 0%, T2, d

TABLE 4: Standardized relative change (SRC) on the estimation of differential effects of the two higher gas
concentration levels in the NT LMM, the TN LMM, and the TT LMM. The estimation from the NN LMM
is the reference.

Without Patient #16 Without Patients #16, #7, and #25

Covariate NTLMM TNLMM TTLMM NTLMM TNLMM TT LMM

GAS20 (B,) 1.22 2.49 5.07 1.50 1.78 9.69
GAS25 (B3) 1.18 2.38 3.57 1.19 1.84 3.80
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TABLE 5: The maximum likelihood estimates and standard errors of parameters in the linear mixed-effects
models for the eye surgery data.

Model Bo B B2 Bs B Bs o’ = d
NN, 3.07 —1.27 0.68 1.22 —0.27 —0.25 2.01 2.30 —
(0.63) 0.19) 0.77) (0.81) (0.23) (0.23) 0.23)  (0.68) —
NN, 2.34 —1.22 1.31 1.85 —0.31 —0.30 1.98 1.87 —
0.62) (0.21) (0.74) (0.78) (0.24) (0.25) 0.23)  (0.58) —
NN,» 2.32 —1.21 1.29 1.85 —0.28 —0.31 1.91 1.13 —

(0.51)  (0.20) (0.62) (0.64) (0.25) (0.24) (0.23)  (0.40) —

TN, 270  —128 095 148  —026 —024 200 428 254
(0.58)  (0.19) (0.68) (0.70) (0.23) (0.23) (0.23) (1.86)  (2.49)

TN, 230  —0.96  0.82 175  —0.68 —090 258 181 238
046)  (0.24) (0.56) (0.57) (0.28)  (0.30) (0.41)  (0.30)  (0.21)

TN, 247 —125 126 178  —037 -036 203 994 208

(0.46) (0.21) (0.58) (0.57) (0.25) (0.25) (0.24) (0.46) (0.05)

NT, 2.41 —-0.97 0.76 1.20 -037 -0.59 2.86 1.78 2.87
(0.54) (0.22) (0.67) (0.70) (0.25) (0.26) (1.22) (0.55) (0.93)

NT,, 1.70 —0.85 1.21 1.65 —-0.48 071 2.79 1.52 2.86
0.54) (0.19) (0.66) (0.69) (0.23) (0.23) (1.13) (0.47) (0.88)

NT)» 1.64 —0.82 1.11 1.65 —-0.40 —0.76 3.06 0.98 2.62

0.45)  (0.18)  (0.56) (0.58) (0.23)  (0.22) (1.44) (0.34) (0.76)

TT, 3.44 —0.86 0.91 1.61 —-0.47  —0.66 4.30 4.12 2.61
(0.65) (0.36) (0.81) (0.81) (0.39) (0.39) (2.02) (1.91) (113)

TT,, 2.87 —0.76 1.04 1.79 -054 —-0.75 491 413 2.46
(0.58) (0.33) (0.75) (0.73) (0.37) (0.36) (1.73) (1.44) (1.03)

TT,, 2.98 —0.78 0.98 1.78 -049 —-0.74 4.52 2.63 2.50

(0.52) (0.30) (0.66) (0.65) (0.37) (0.33) (047) (0.23) (0.58)

Subscripts f, P1, P2 correspond to the full dataset, the sub-dataset without patient #16, and sub-dataset without
patients #16, #7, and #25, respectively.

Table 5 lists the estimates and standard errors, where 50 quadrature points were used in
Gauss—Hermite quadrature method to evaluate the integrals in the NT LMM and the TN LMM.
All the estimated degrees of freedom are between 2 and 3, suggesting that both distributions for the
random effects and the error terms are heavy-tailed. This confirmed the findings in the preliminary
analysis above. Also, the goodness-of-fit of these four models can be simply compared by their
values of the log-likelihood although they are not nested. For the case of the full data analysis, the
TT LMM obtained the largest log-likelihood (—339.50), followed by the NT LMM (—343.18),
then the TN LMM (—344.05) and the NN LMM (—350.70). The improvement of the TT LMM
over the NN LMM is noticeable.

Time is a predominant covariate for the gas decay, and its significance had been little affected
by the outliers. However, the significance of gas levels has been affected by the outliers, especially
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for B3, the differential effect between the two levels of 15% and 25% gas concentrations. The
two models with the utility of #-distribution for the random effects by;, namely the TN LMM and
the TT LMM, all indicated the significant differential effect in either the full data and partial data
analyses. This conclusion agrees with the conclusion made from the NN LMM with the outliers
deleted. In addition, by comparison the estimates of 83 and the standard errors between the first
sub-dataset (P1) and the second sub-dataset (P2), it seems that two outlying patients (#7 and #25)
did not affect the estimates much but did affect the standard errors substantially, judged by the
fact that a smaller dataset (i.e., P2-dataset) gave smaller standard errors. However, 8, became
significant in the NN, NT, and TN models after deleting #7 and #25, but it remained insignificant
in the TT model. It further showed that the TT model is more robust than the other three models
with respect to outliers.

The estimated marginal variances of the response are in the NN LMM 62 + #> = 4.31, and
in the TT LMM 62 + 2 = 8.42, respectively. As suggested in Figure 2, some caution may be
needed for the use of the LN distribution to model the proportional data when the corresponding
LT distribution has a large variance (8.42) and small degrees of freedom (2.5). Summarizing all
the analyses above, we prefer the TT LMM as our final model to draw conclusions: time and the
differential effect of gas concentration level 25% versus level 15% are statistically significant.
This means patients who were assigned to the gas level 25% took longer time to absorb the gas
to a given level than the patients in gas level 15% group. This finding is in agreement with that
given in Qiu, Song & Tan (2008).

6. CONCLUDING REMARKS

We have proposed a robust transformation mixed-effects models for the analysis of longitudinal
proportional data, based on a new logit-z distribution. It includes Aitchison’s logit-normal as a
special case. Robustness is a desirable property in both modelling and statistical inference when
some outlying observations are present. Due to the hierarchical structure of a mixed-effect model,
the ¢-distribution can be assumed for random effects, error terms or both to accommodate different
types of outliers. Outliers in the mixed-effect model analysis of longitudinal data can be classified
as b-outliers or e-outliers, according to if they come from random effects level or the conditional
error terms. A preliminary analysis is an important step to identify potential outliers. This article
has suggested four models, namely NN LMM, NT LMM, TN LMM and TT LMM, to form a
primary platform to assess the influence of potential outliers and to determine from which source
influential outliers arise.

The proposed robust model requires some analytical and numerical effort in the implementa-
tion of the MLE, compared to a straightforward application of the normal linear mixed model to
fit logit-transformed data. However, the robust gain in the proposed model is substantial, where
no extra model assumptions are required additional to those similarly given in the normal linear
mixed model. As far as robustness is concerned, the proposed model is conceptually simpler and
numerically easier than the simplex mixed-effects model introduced in Qiu, Song & Tan (2008).
In particular, the TT LMM has a closed form in its likelihood function, and hence the related
estimation and inference are as simple as the normal linear mixed model.

Since the numerical evaluation of integrals in the likelihood is required in the NT LMM
and the TN LMM, the dimension of the random effects is restricted to be low, say 3 or less. This
limitation of the quadrature numerical method can be alleviated by the application of Monte Carlo
simulation method (e.g., McCulloch, 1997). If one is only interested in a robust analysis, then the
TT LMM is recommended because the likelihood in the TT LMM has a closed analytic form and
hence related computation is fast no matter what the dimension of the random effects. Of course,
with no help from the other NT LMM and TN LMM, one may not be able to assess the influence
of an outlier on goodness-of-fit.
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APPENDIX: LIKELIHOOD FUNCTION AND FIRST ORDER DERIVATIVES

To ensure the positivity of parameters o2, > and d — 2, letlog(c?) = &, log(t?) = ¢, log(d — 2) =
w.Theno? =, 12 =eb,d = e® + 2.
For the NT LMM, the likelihood is evaluated under the following given distributions:

s , d+1/2
i r{d+1)/2} (wij — X[;B — Zj;bi)?*
peilbo 131fn(d—2)0F<d/2>yij<1—yij>{ T -2 ©
and
b)) = ! D) 10
P00 = s P {5 o

It follows from (5) that £;(8) = log [ p(yilboi) p(boi)dbo;i = [ p(yi, boi)dbo;. Thus,

30 31 i bo; !
a((, ) - { / ()gpa(z’o)P(YMbol‘)P(bOi)dbOi} { / P(yz'lbol')p(boz')dbol} :

where the integrals are evaluated by Gauss—Hermite quadrature method with 50 quadra-
ture points. Let w;; = logit(y;;), j=1,...,n;5i =1,...,n. Then, w; = (w;1, ..., wml.)’, i =
1, ..., n.From (9) and (10), we obtain the log-likelihood function and the scores as follows:

d+1 1 1 d
log p(yi, boi) o< nj qlogT’ — )~ 71 g(d —2) — = logo —logT 3
A )2
d + 1 Z] (wzj X;]ﬂ bOl) _ llog 12 _ b(z)i ’
(d —2)0? 2 272

dlog p(yi. boi) _ d+ ])i Xij(wij — Xi;8 — boi)

B — (d —2)0% + (wij — X};B — boi)*’
dlog p(yi, boi) _ ni  d+1 i (wij — X8 — boi)*
% 2 2 = (d—2)02 + (wij — X[;B — boi)?’
dlog p(yi, boi) 2, 0
B AR
dlog plyi, boi) _d 2| d + 1 1 d)] <« (wij — X};B = boi)*
= — —— —Yo(=z)p— ) logql
™ S i) = 5 — () ;og R AP
d+1 i (wij — X;8 — boi)*
d-2 = (d —2)0? + (w;ij — ngﬂ —bo)? |’
where o(-) is the logarithmic derivative of the gamma function.
For the TN LMM, the distributions involved in the likelihood function are
(wij — X};8 — Zjbi)?
plyilbi) = —_ expy———— 5 , (1D
o H Oy,](l yij) 202

DOI: 10.1002/cjs The Canadian Journal of Statistics/ La revue canadienne de statistique



280 ZHANG ET AL. Vol. 37, No. 2

and

- —(d+q)/2
I'((d +q)/2) 1 b, D(t)"'b;
b;) = D LD & IS bt s . 12
POV = a—prray PO T (12)
From (11) and (12), the log-likelihood and scores are given by
ni I\ d+1 b
! 2 / 2 -
loz P b oc =5 loB ™ = 355 ) oy =Xy = b0’ == 1°g{1+(d_’2>,z}

+logr (411 L (d—2)—logT d
0 —— | — zlog(d —2)—1o =
g 5 5 log el {5

1
=3 > Xij(wij — Xj;8 — boi),
j=1

dlog p(yi, boi)
B

dlog p(yi, boi)

1 - ’ 2 2
= 9> (Wi —X[;B—bo)* —nio” 5,
o0& 20 P

dlog plyi, boi) _ 1dbj; — (d —2)7°

a 2 d—-2t2 403
dlog plyi, b)) d —2 d+1\ 1 /d
o ) l{‘/’o( 2 > d—2 ¢o<2>}

bZ. (d+ b2,
—log{ 1+ —% _ 4 Oi .
g { d—272 ' (d—220 +(d - Db,

For the TT LMM, from (7) we obtain

00:0)  d+n X Vi (wi — X;B)

B 2 d-2+(yi— XV (wi—X|B)

. 2 MNw: — X BYV IV i (w: — X/
WO _ 7 Lwevity,) - G Z XPV V= X)L

o€ 2 d—2+(w; —X/BYV; (yi — X|B)

' 2 ) . X'RY .—1 .—1 . _ X/
861(0) — _L tr(V[—IJni) _ (d +nl)(Wl X[ﬂ) Vl J”_lYl (Wl Xlﬁ) ,
% =2 a2+ (i~ X[BYV; (wi — X;B)

W;(0)  d—2 d+n; ni d (w; — X8V (w; — XB)
w 2 [%( 2 )_d—z_%(z)_log{“r d—2 }

d + ni)(w; — X\B)Y V7 (w; — XB)
2((d — 202+ (d = 2)(w; — X.B)YV;  (wi — XiB)} |
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