Angewandte
 Comemie

Supporting Information

© Wiley-VCH 2009
69451 Weinheim, Germany

Supporting Information

Ketone Hydrosilylation with Sugar Silanes Followed by Intramolecular Aglycone Delivery: An Orthogonal Glycosylation Strategy

Zachary A. Buchan, Scott J. Bader, John Montgomery*
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
jmontg@umich.edu

All reagents were used as received unless otherwise noted. Solvents were purified under nitrogen using a solvent purification system (Innovative Technology, inc., Model \# SPS-400-3 and PS-400-3). $\mathrm{Ni}(\mathrm{COD})_{2}$ (Strem Chemicals, Inc., used as received), CuCl (SigmaAldrich, used as received), 1,3-dimesitylimidazolium chloride ($\mathrm{IMes} \cdot \mathrm{HCl})^{1}$ were stored and weighed in an inert atmosphere glovebox. $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}$ were distilled and stored under inert atmosphere in Schlenk flasks. All nickel reactions were conducted in flame-dried glassware under a nitrogen atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained in CDCl_{3} at rt , unless otherwise noted, on a Varian Mercury 400 or Varian Unity 500 MHz instrument. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR spectra were recorded in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.27 ppm). Chemical shifts of ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ppm from the central peak of $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ on the δ scale. High resolution mass spectra (HRMS) were obtained on a VG-70-250-s spectrometer manufactured by Micromass Corp. (Manchester UK) at the University of Michigan Mass Spectrometry Laboratory.

General Procedure for the Preparation of Sugar Silanes

The respective 2-OH sugar (1.0 equiv) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Freshly distilled NEt_{3} (2.0 equiv) was added and stirred for 3 minutes, $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}$ (1.5 equiv) was then added. This was allowed to stir for 4 hours then volatiles were removed by rotary evaporation, the resulting oil was extracted from NaHCO_{3} (aq.) (diluted over ice) 3 times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried quickly over MgSO_{4}, filtered, concentrated, and the resulting oil was either used directly or stored frozen in $\mathrm{C}_{6} \mathrm{H}_{6}$. Note - the sugar silanes are stable for months when stored frozen in benzene, alternatively the corresponding 2-OH sugars are very stable to be stored for long periods of time on the bench top.

General Procedure for the $\mathrm{Ni}(\mathrm{COD})_{2} / \mathrm{IMes}$ Promoted Hydrosilylation of Ketones

A solid mixture of $\mathrm{Ni}(\mathrm{COD})_{2}(10 \%)$, $\mathrm{IMes} \cdot \mathrm{HCl}(10 \%)$, and $\mathrm{KO}-t-\mathrm{Bu}(10 \%)$ was dissolved in dry THF $(0.02 \mathrm{M})$ at rt under an inert atmoshphere $\left(\mathrm{N}_{2}\right)$, and stirred for 10-15 minutes until the catalyst mixture was a dark blue color. $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}$ (1.1-2.2 equiv) was
then added to the catalyst mixture followed by the addition of the sugar silane (1.1 equiv), and ketone (1.0 equiv) as a solution in dry THF (0.2 M). Upon completion of the reaction, as monitored by TLC, the reaction mixture was filtered through a short plug of silica gel with a mixture of $\mathrm{EtOAc} /$ hexanes and concentrated by rotary evaporation. The resulting residue was purified via flash chromatography $\left(\mathrm{SiO}_{2}\right)$ to afford the desired product. Note - When doing the site-selective hydrosilylation of a ketone in the presense of a free hydroxyl group, the use of 2.2 equiv of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$, and a 0.05 M solution in THF results in higher yields of the desired product.

General Procedure for the $\mathbf{C u C l} / I M e s$ Promoted Hydrosilylation of Ketones

A solid mixture of $\mathrm{CuCl}(5 \%)$, $\mathrm{IMes} \cdot \mathrm{HCl}(5 \%)$ and $\mathrm{KO}-t-\mathrm{Bu}(10 \%)$ was dissolved in dry toluene $(0.015 \mathrm{M})$ at rt under an inert atmosphere $\left(\mathrm{N}_{2}\right)$, and stirred for 20 minutes. A mixture of ketone (1.0 equiv) and silane (1.1 equiv) was dissolved in dry toluene (0.2 M), the catalyst was then added to this mixture as a solution in a minimum of dry toluene. Upon completion of the reaction, as monitored by TLC, the reaction mixture was filtered through a short plug of silical gel with a mixture of $\mathrm{EtOAc} / \mathrm{Hexanes}$ and concentrated by rotary evaporation. The resulting residue was purified via flash chromatography $\left(\mathrm{SiO}_{2}\right)$ to afford the desired product.

General Procedure for the NIS/TMSOTf Mediated Glycosylation of Silyl-linked Compounds

The respective silyl-linked compound (1.0 equiv) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.02 M) and cooled to $-40{ }^{\circ} \mathrm{C}$. N -iodosuccinimide (NIS) (1.3-1.4 equiv) and 2,6-di-tert-butyl-4methyl pyridine (2,6-DTBMP) (2.0-4.0 equiv) were added and stirred for 3 minutes. To this solution, trimethylsilyl trifluoromethanesulfonate (TMSOTf) (1.2-2.4 equiv) was added, this is stirred for $10-15$ minutes and then warmed to $0^{\circ} \mathrm{C}$. Upon disappearance of the silyl-linked compound, as monitored by TLC (generally 30 to 90 min), $n-\mathrm{Bu}_{4} \mathrm{NF}$ (510 equiv, 1 M THF) was added, and the reaction was warmed to rt and stirred overnight. The reaction mixture was then quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.) and extracted three times from sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) with EtOAc. The combined organic extracts were dried over MgSO_{4}, filtered, concentrated, and purified by flash chromatography on SiO_{2} to afford the desired product.

Ethyl 2-O-dimethylsilane-3,4,6-tri-O-benzyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (Scheme 1, compound 1a)

Following the general procedure, ethyl 3,4,6-tri- O-benzyl-1-thio- β-D-glucopyranoside $(1.237 \mathrm{~g}, 2.50 \mathrm{mmol}),{ }^{2} \mathrm{NEt}_{3}(0.697 \mathrm{~mL}, 5.00 \mathrm{mmol})$, and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}(0.416 \mathrm{~mL}, 3.75$
$\mathrm{mmol})$ were stirred for 4 hours at $0^{\circ} \mathrm{C}$. The product ($1.38 \mathrm{~g}, 2.50 \mathrm{mmol}, 100 \%$) was obtained as a red oil after aqueous work up. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.28(\mathrm{~m}$, $13 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (sept, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.553(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.546(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), 3.75 (dd, $J=$ $10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 3 \mathrm{H}), 3.49$ (ddd, $J=9.5$, $5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dq}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dq}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.31(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 138.5,138.2,138.0,128.34,128.30,128.27,127.9,127.71,127.69,127.52$, $127.48,127.45,87.2,86.1,79.2,77.9,75.9,75.6,75.0,73.4,69.1,24.7,15.0,-0.6,-0.8$; IR (film, cm^{-1}) 2956, 2926, 2864, 2129, 1651, 1385, 1083; HRMS (ES) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 575.2263$, found 575.2269.

Phenyl 2- \boldsymbol{O}-dimethylsilane-3,4,6-tri- \boldsymbol{O}-benzyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (Scheme 1, compound 1b)

Following the general procedure, phenyl 3,4,6-tri- O-benzyl-1-thio- β-D-glucopyranoside $(1.00 \mathrm{~g}, 1.8 \mathrm{mmol}),{ }^{2} \mathrm{NEt}_{3}(0.513 \mu \mathrm{~L}, 3.7 \mathrm{mmol})$, and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}(307 \mu \mathrm{~L}, 2.8 \mathrm{mmol})$ were stirred for 4 hours at $0{ }^{\circ} \mathrm{C}$. The product ($1.10 \mathrm{~g}, 1.8 \mathrm{mmol}, 99 \%$) was obtained as a red oil after aqueous work up. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.38(\mathrm{~m}, 16 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.85 (sept, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric) $4.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J$ $=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=9.5,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.29(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.24(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4$, 138.2, 138.0, 134.1, 131.5, 128.8, 128.4, 128.3, 127.9, 127.8, 127.7, 127.53, 127.49, 127.48, $127.2,88.8,87.2,79.2,77.8,75.6,75.1,75.0,73.4,69.0,-0.6,-0.9$; IR (film, cm^{-1}) 3060 , 3028, 2864, 2129, 1452, 1362, 1066; HRMS (ES) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 623.2263, found 623.2274.

Ethyl 2-O-dimethylsilane-3,4,6-tri- O-benzyl-1-thio- α-D-mannopyranoside (Scheme 1, compound 2a)

Following the general procedure, ethyl 3,4,6-tri- O-benzyl-1-thio- α-D-mannopyranoside $(1.74 \mathrm{~g}, 3.5 \mathrm{mmol}),{ }^{2} \mathrm{NEt}_{3}(0.98 \mathrm{~mL}, 7.0 \mathrm{mmol})$, and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}(587 \mu \mathrm{~L}, 5.3 \mathrm{mmol})$ were stirred for 4 hours at $0^{\circ} \mathrm{C}$. The product $(1.93 \mathrm{~g}, 3.5 \mathrm{mmol}, 100 \%)$ was obtained as a red oil after aqueous work up. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.39(\mathrm{~m}, 13 \mathrm{H}), 7.15-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (sept, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=10.0,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dq}, J=13.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dq}, J=13.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.24(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 138.43,138.40,138.1,128.28,128.25,128.20,127.89,127.65,127.59,127.50$, $127.4,85.0,80.7,74.9,74.6,73.2,72.5,72.2,72.1,69.1,25.2,15.0,-0.6,-0.7$; IR (film, cm^{-1}) $3030,2870,2122,1453,1384,1250,1097$; HRMS (ES) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SSi}$ $\left[^{-1}+\mathrm{Na}\right]^{+} 575.2263$, found 575.2273.

Phenyl 2- O-dimethylsilane-3,4,6-tri- O-benzyl-1-thio- α-D-mannopyranoside (Scheme 1, compound 2b)

Following the general procedure, phenyl 3,4,6-tri- O-benzyl-1-thio- α-D-mannopyranoside $(0.765 \mathrm{~g}, 1.4 \mathrm{mmol}),{ }^{2} \mathrm{NEt}_{3}(0.390 \mathrm{~mL}, 2.8 \mathrm{mmol})$, and $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{H}) \mathrm{Cl}(0.233 \mathrm{~mL}, 2.1$ $\mathrm{mmol})$ were stirred for 4 hours at $0^{\circ} \mathrm{C}$. The product ($0.828 \mathrm{~g}, 1.4 \mathrm{mmol}, 98 \%$), was obtained as a red oil after aqueous work up. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.37(\mathrm{~m}, 14 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.87(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (sept, $J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), .4 .48$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{ddd}, J=9.5,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.26(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.22(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.36,138.31$, 134.4, 131.3, 128.9, 128.32, 128.28, 128.18, 127.9, 127.65, 127.57, 127.4, 127.2, 88.7, 80.5, $75.0,74.5,73.2,72.8,72.5,72.3,69.1,-0.6,-0.7$; IR (film, cm^{-1}) 3061, 3030, 2869, 2123, 1453, 1368, 1251, 1101; HRMS (ES) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$623.2263, found 623.2248 .

Ethyl 2-O-dimethyl[(4-phenylbutan-2-yloxy)silane]-3,4,6-tri-O-benzyl-1-thio- β-Dglucopyranoside (Table 1, compound 4a)

Following the general procedure, $\mathbf{1 a}(182 \mathrm{mg}, 0.33 \mathrm{mmol})$, freshly distilled (bulb-to-bulb) benzylacetone ($45 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$), $\mathrm{Ni}(\mathrm{COD})_{2}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(10 \mathrm{mg}$, $0.03 \mathrm{mmol})$, and KO-t-Bu ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) were stirred at rt for 13 hours. The desired product was obtained as an inseparable mixture of diastereomers (54:46) ($204 \mathrm{mg}, 0.29$ $\mathrm{mmol}, 97 \%, 54: 46$) as a clear oil, upon purification by flash chromatography on SiO_{2} ($10 \% \mathrm{EtOAc} / \mathrm{Hex}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.40(\mathrm{~m}, 16 \mathrm{H}), 7.14-7.19$ (m, $2 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.88(\mathrm{~d}, J$ $=11.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.75(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.74(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.52-4.63(\mathrm{~m}$, $3 \mathrm{H}), 4.40(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.5 \mathrm{H}$ anomeric), $4.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.5 \mathrm{H}$ anomeric), 4.00-4.08 $(\mathrm{m}, 1 \mathrm{H}), 3.67-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.80(\mathrm{~m}, 3 \mathrm{H})$, $2.55-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.21$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.23(\mathrm{~s}, 1.5 \mathrm{H}), 0.22(\mathrm{~s}, 1.5 \mathrm{H}), 0.19(\mathrm{~s}$, $1.5 \mathrm{H}), 0.18(\mathrm{~s}, 1.5 \mathrm{H})$, Note - diastereomers are reported as a $1: 1$ ratio of the total amount of protons; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major and minor diastereomer signals reported $\delta 142.53,142.50,138.8,138.2,137.9$, 128.3.4, 128.32, 128.24, 128.19, 127.9, 127.7, $127.5,127.26,127.24,127.21,127.1,125.58,125.56,87.1,86.2,79.1,78.2,75.18,75.15$, $74.9,74.48,74.43,73.4,69.1,68.3,68.1,41.0,32.04,32.02,24.7,23.7,23.6,15.1,-0.8,-$ $0.9,-1.2,-1.3$; IR (film, cm^{-1}) 3029, 2965, 2923, 2865, 1496, 1453, 1366, 1256, 1134, 1086; HRMS (ES) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{52} 0_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 723.3152$, found 723.3162.

Ethyl 2-O-[(1,4-dioxaspiro[4.5]decan-8-yloxy)dimethylsilane]-3,4,6-tri-O-benzyl-1-thio- β-D-glucopyranoside (Table 1, compound 4b)

Following the general procedure, $\mathbf{1 a}(182 \mathrm{mg}, 0.33 \mathrm{mmol}), 1,4$-cyclohexanedione monoethylene acetal ($47 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{Ni}(\mathrm{COD})_{2}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(10$ $\mathrm{mg}, 0.03 \mathrm{mmol})$, $\mathrm{KO}-t-\mathrm{Bu}(3.4 \mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{Ti}(\mathrm{O}-i-\operatorname{Pr}) 4(98 \mu \mathrm{~L}, 0.33 \mathrm{mmol})$ were stirred for 3 hr at rt . The product ($197 \mathrm{mg}, 0.28 \mathrm{mmol}, 93 \%$) was obtained as a viscous yellow oil after purification by flash chromatography on SiO_{2} (10 to 20% EtOAc/Hex). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.38(\mathrm{~m}, 13 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.93$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.53(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.40(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$
anomeric), 4.01 (tt, $J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{dd}, J=11.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=9.25,1 \mathrm{H}), 3.55(\mathrm{t}, J=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (ddd, $J=$ $9.5,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dq}, J=12.75,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dq}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.64-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,138.2,138.0,128.32,128.30,128.2,127.9,127.72$, $127.69,127.5,127.2,127.0,108.4,87.0,86.2,79.1,78.3,75.1,74.9,74.4 .73 .4,69.1$, $68.3,64.17,64.15,32.03,32.00,31.34,31.32,24.6,15.0,-0.9,-1.3$; IR (film, cm^{-1}) 3030 , 2929, 1497, 1453, 1363, 1255, 1094; HRMS (ES) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 731.3050 , found 731.3062 .

Ethyl 2-O-[4-(dimethylsilyloxy)-1-methylpiperidine]-3,4,6-tri-O-benzyl-1-thio- β-Dglucopyranoside (Table 1, compound 3c)

Following the general procedure, $\mathbf{1 a}(182 \mathrm{mg}, 0.33 \mathrm{mmol})$, N -methyl-4-piperidone (37 $\mu \mathrm{L}, 0.30 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(98 \mu \mathrm{~L}, 0.33 \mathrm{mmol}), \mathrm{Ni}(\mathrm{COD})_{2}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$, IMes $\cdot \mathrm{HCl}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{KO}-t-\mathrm{Bu}(3 \mathrm{mg}, 0.03 \mathrm{mmol})$ were stirred for 6 hours at rt . The product ($200 \mathrm{mg}, 0.30 \mathrm{mmol}, 100 \%$) was obtained after flash chromatography on $\mathrm{SiO}_{2}\left(15 \% \mathrm{MeOH} / E t O A c \mathrm{w} / \sim 1 \% \mathrm{NEt}_{3}\right)$ as a viscous light orange oil. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.38(\mathrm{~m}, 13 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.53(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), 3.88 (br s, $1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=9.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}$, $J=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (ddd, $J=10.0,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dq}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.72 (dq, $J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.98-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.74-$ $1.86(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.25 \mathrm{~Hz}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,138.1,137.9,128.33,128.31,128.2,127.9,127.7$, $127.5,127.3,127.1,87.0,86.1,79.1,78.2,75.1,74.9,74.5,73.4,69.1,52.9,45.9,34.2$, $24.6,15.1,-0.9,-1.3$; IR (film, cm^{-1}) 3030, 2927, 2864, 2780, 1452, 1362, 1255, 1148, 1087; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 666.3285$, found 666.3284 .

Ethyl 2-O-[((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)dimethylsilane]-3,4,6-tri-O-benzyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (Table 1, compound 4d)

Following the general procedure, $\mathbf{1 a}(243 \mathrm{mg}, 0.30 \mathrm{mmol}),(-)-\mathrm{menthone}{ }^{3}(62 \mathrm{mg}, 0.40$ mmol), $\mathrm{CuCl}(2 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(7 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{NaO}-t-\mathrm{Bu}(3 \mathrm{mg}$, 0.03 mmol) were stirred for 8 hours at rt to give the product as an inseparable $2: 1$ mixture of diastereomers. The product ($192 \mathrm{mg}, 0.27 \mathrm{mmol}, 68 \%, 2: 1$) was obtained as a clear oil upon purification by flash chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.41(\mathrm{~m}, 13 \mathrm{H}), 7.07-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.67 \mathrm{H})$, 4.97 (d, $J=11.5 \mathrm{~Hz}, 0.33 \mathrm{H}) 4.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.86(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.67 \mathrm{H})$, 4.75 (d, $J=11.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 4.72(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.50-4.63(\mathrm{~m}, 3 \mathrm{H}), 4.39(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 0.67 \mathrm{H}$ anomeric), $4.38(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.33 \mathrm{H}$ anomeric), $4.26(\mathrm{br} \mathrm{s}, 0.33 \mathrm{H})$, $3.66-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 2.67 \mathrm{H}), 3.48-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.20$ (septd, $J=7.0,2.5 \mathrm{~Hz}, 0.67 \mathrm{H}), 1.99-2.04(\mathrm{~m}, 0.67 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 0.67 \mathrm{H}), 1.48-1.65$ $(\mathrm{m}, 2.33 \mathrm{H}), 1.26-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.32\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}\right), 1.31\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}_{\text {minor }}\right)$, $0.74-1.15(\mathrm{~m}, 10.67 \mathrm{H}), 0.73$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}$), 0.23 ($\mathrm{s}, 3 \mathrm{H}_{\text {major }}$), 0.19 ($\mathrm{s}, 3 \mathrm{H}_{\text {minor }}$), $0.15\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }+ \text { minor }}\right)$, Note - diastereomers are reported as a $2: 1$ ratio of the total amount of protons, the stereochemistry of the major diastereomer and the dr of the reduction was determined on a crude reaction mixture of the silyl-linked compound after complete desilylation by $n-\mathrm{Bu}_{4} \mathrm{NF}$ and comparison to known compounds; ${ }^{4,5}{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) major and minor diastereomer signals reported $\delta 138.9,138.8,138.24,138.22$, $138.0,128.34,128.31,128.16,128.13,127.94,127.89,127.7,127.5,127.3,127.2$, $127.11,127.96,87.2,87.0,86.4,86.3,79.1,78.3,78.2,75.2,75.1,74.9,74.5,74.3,73.4$, $72.6,69.3,69.2,68.8,49.7,48.8,45.4,43.1,42.6,35.3,34.5,31.6,28.7,25.5,25.2,24.8$, $24.6,24.0,22.8,22.4,22.2,21.2,21.1,20.9,15.9,15.0,-0.4,-1.0,-1.5$; IR (film, cm^{-1}) 3029, 2953, 2921, 2866, 1453, 1365, 1254, 1067; HRMS (ES) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 729.3621$, found 729.3639.

Phenyl 2-O-[((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)dimethylsilane]-3,4,6-tri-O-benzyl-1-thio- β-D-glucopyranoside (Table 1, compound 4e)

Following the general procedure, $\mathbf{1 b}(198 \mathrm{mg}, 0.33 \mathrm{mmol}),(-)-$ menthone ${ }^{3}(46 \mathrm{mg}, 0.30$ $\mathrm{mmol}), \mathrm{CuCl}(2 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$, and $\mathrm{NaO}-t-\mathrm{Bu}(3 \mathrm{mg}$, 0.03 mmol) were stirred for 5 hours at rt to give the desired product as an inseparable 2:1 mixture of diastereomers. The product ($144 \mathrm{mg}, 0.19 \mathrm{mmol}, 64 \%, 2: 1$) was obtained as a clear viscous oil upon purification by flash chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.41(\mathrm{~m}, 16 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 2 \mathrm{H})$, $5.02(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 4.98(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.89(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.33 \mathrm{H})$, $4.86(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.67 \mathrm{H}), 4.78(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.67 \mathrm{H}) 4.73(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.33 \mathrm{H})$, 4.52-4.66 (m, 4H), $4.27(\mathrm{br} \mathrm{s}, 0.33 \mathrm{H}), 3.76-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.66$ $(\mathrm{m}, 3.67 \mathrm{H}), 2.21$ (septd, $J=6.75,2.25 \mathrm{~Hz}, 0.67 \mathrm{H}), 2.01(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 1.80-$ $1.89(\mathrm{~m}, 0.67 \mathrm{H}), 1.48-1.64(\mathrm{~m}, 2.33 \mathrm{H}), 1.26-1.41(\mathrm{~m}, 1.33 \mathrm{H}), 1.09-1.18(\mathrm{~m}, 0.67 \mathrm{H}), 0.75-$ $1.07(\mathrm{~m}, 5.67 \mathrm{H}), 0.87\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {minor }}\right), 0.85\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}\right), 0.84(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}_{\text {minor }}$), $0.74\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}\right), 0.25\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }}\right), 0.20\left(\mathrm{~s}, 3 \mathrm{H}_{\text {minor }}\right), 0.16(\mathrm{~s}$, $\left.3 \mathrm{H}_{\text {minor }}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }}\right)$, Note - diastereomers are reported as a $2: 1$ ratio of the total amount of protons, the stereochemistry of the major diastereomer and the dr of the reduction was determined on a crude reaction mixture of the silyl-linked compound after complete desilylation by n-Bu ${ }_{4} \mathrm{NF}$ and comparison to known compounds, ${ }^{4,5}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ major and minor diastereomer signals reported 138.8, 138.7, $138.26,138.24,138.0,137.0,134.5,131.1,131.0,128.8,128.37,128.33,128.30,128.18$, $128.15,127.90$, 127.8, 127.73, 127.69, 127.67, 127.52, 127.51, 127.3, 127.2, 126.97, 126.96, 126.91, 89.1, 88.8, 87.2, 87.0, 79.03, 78.98, 78.16, 78.12, 75.2, 75.1, 74.9, 73.9, $73.8,73.4,72.7,69.14,69.07,68.9,49.7,48.8,45.4,43.2,35.2,34.5,31.6,28.7,25.6$, $25.2,24.0,22.8,22.3,22.2,21.2,21.1,20.9,15.9,-0.4,-1.1,-1.2,-1.4$; IR (film, cm^{-1}) 3030, 2953, 2919, 2867, 1454, 1383, 1256, 1067; HRMS (ES) m/z calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{SSi}$ $\left[^{M}+\mathrm{Na}\right]^{+} 777.3621$, found 777.3635.

Ethyl 2-O-[(1,4-dioxaspiro[4.5]decan-8-yloxy)dimethylsilane]-3,4,6-tri-O-benzyl-1-thio- α-D-mannopyranoside (Table 1, compound 5a)

Following the general procedure, $\mathbf{2 a}(182 \mathrm{mg}, 0.33 \mathrm{mmol})$, 1,4-cyclohexanedione monoethylene acetal ($47 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(98 \mu \mathrm{~L}, 0.33 \mathrm{mmol}), \mathrm{Ni}(\mathrm{COD})_{2}(8$ $\mathrm{mg}, 0.03 \mathrm{mmol}$), IMes $\cdot \mathrm{HCl}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{KO}-t-\mathrm{Bu}(3 \mathrm{mg}, 0.03 \mathrm{mmol})$ were stirred at room temperature for 4 hours. The product ($183 \mathrm{mg}, 0.26 \mathrm{mmol}, 86 \%$) was obtained as a colorless oil after purification by flash chromatography on SiO_{2} (10 to 20% $\mathrm{EtOAc} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.37(\mathrm{~m}, 13 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.28$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.83(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=10.0,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.00$ $(\mathrm{m}, 5 \mathrm{H}), 3.82(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=$
$10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dq}, J=13.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dq}, J=13.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-$ $1.86(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.49,138.47,138.3,128.27$, $128.25,128.21,127.9,127.8,127.6,127.52,127.49$, $127.36,108.4,85.4,80.3,74.9,74.8,73.2,72.2,71.0,69.2,68.1,64.20,64.17,32.05$, $32.00,31.2,25.2,15.0,-1.5,-1.7$; IR (film, cm^{-1}) $3030,2938,2874,1452,1378,1256$, 1099, 1036; HRMS (ES) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 731.3050$, found 731.3055 .

Phenyl 2-O-[((1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy)dimethylsilane]-3,4,6-tri-O-benzyl-1-thio- α-D-mannopyranoside (Table 1, compound 5b)

Following the general procedure, 2b (198 mg, 0.33 mmol$)$, (-)-menthone ${ }^{3}(46 \mathrm{mg}, 0.30$ mmol), $\mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$, and $\mathrm{NaO}-t-\mathrm{Bu}$ (3 $\mathrm{mg}, 0.03 \mathrm{mmol}$) were stirred for 4 hours at rt to give the desired product as an inseparable $2: 1$ mixture of diastereomers. The product ($171 \mathrm{mg}, 0.23 \mathrm{mmol}, 75 \%, 2: 1$) was isolated as a colorless oil upon purification by flash chromatography on SiO_{2} ($5 \% \mathrm{EtOAc} / \mathrm{Hex}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 16 \mathrm{H})$, $5.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.33 \mathrm{H}$ anomeric), $5.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.67 \mathrm{H}$ anomeric), $4.88(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.67 \mathrm{H}), 4.77(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.70(\mathrm{~m}$, $2 \mathrm{H}), 4.46-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 0.33 \mathrm{H}), 3.97-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.74-$ 3.88 (m, 3H), 3.53 (td, $J=10.5,4.5 \mathrm{~Hz}, 0.67 \mathrm{H}$), 2.14 (septd, $J=7.0,3.0 \mathrm{~Hz}, 0.67 \mathrm{H}$), $1.92-1.97(\mathrm{~m}, 0.67 \mathrm{H}), 1.66-1.77(\mathrm{~m}, 0.67 \mathrm{H}), 1.43-1.63(\mathrm{~m}, 1.67 \mathrm{H}), 1.20-1.35(\mathrm{~m}, 1.67 \mathrm{H})$, 1.11 (ddt, $J=12.25,9.75,2.75 \mathrm{~Hz}, 0.67 \mathrm{H}), 0.72-1.04(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}_{\text {major }}$), $0.82\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}\right.$), $0.80\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {minor }}\right), 0.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}_{\text {minor }}$), $0.71\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}\right.$), $0.17\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H}_{\text {minor }}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }}+\right.$ minor), Note - diastereomers are reported as a $2: 1$ ratio of the total amount of protons, the stereochemistry of the major diastereomer and the dr of the reduction was determined on a crude reaction mixture of the silyl-linked compound after complete desilylation by n $\mathrm{Bu}_{4} \mathrm{NF}$ and comparison to known compounds; ${ }^{4,5}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major and minor diastereomer signals reported δ 138.53, 138.47, 138.43, 138.3, 138.2, 134.74, 134.66, 131.7, 131.4, 131.3, 128.9, 128.8, 128.3, 128.2, 127.92, 127.85, 127.77, 127.66, $127.63,127.58,127.35,127.12,127.09,89.3,89.0,80.3,75.03,74.85,73.16,73.13$, $72.99,72.86,72.6,72.2,72.1,70.7,70.6,69.28,69.24,68.8,49.8,48.6,45.3,43.1,35.1$, $34.4,31.6,28.8,25.7,25.5,25.3,24.0,22.8,22.4,22.2,21.1,21.0,20.8,15.8,-1.20$, -$1.22,-1.36,-1.40$; IR (film, cm^{-1}) $3029,2952,2915,2866,1453,1255,1099$; HRMS (ES) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{8} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 777.3621$, found 777.3640.
[4-phenylbutan-2]-3,4,6-tri-O-benzyl- α-D-glucopyranoside (Table 1, compound 6a)

Following the general procedure, compound $\mathbf{4 a}(112 \mathrm{mg}, 0.16 \mathrm{mmol})$, NIS ($47 \mathrm{mg}, 0.21$ mmol), TMSOTf ($35 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$), 2,6-DTBMP ($66 \mathrm{mg}, 0.32 \mathrm{mmol}$) were stirred for 10 min at $-40^{\circ} \mathrm{C}$, and 30 min at $0^{\circ} \mathrm{C}$, then excess $n-\mathrm{Bu}_{4} \mathrm{NF}(0.96 \mathrm{mmol}, 0.96 \mathrm{~mL})$ was added as a 1 M solution in THF and stirred overnight to afford the desired products as a 46:54 mixture of diastereomers as clear oils, which were separated and characterized independently (combined $90 \mathrm{mg}, 0.15 \mathrm{mmol}, 97 \%, 54: 46$) upon purification by flash chromatography on SiO_{2} ($20 \% \mathrm{EtOAc} / \mathrm{Hex}$). Major diastereomer ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.39-7.42 (m, 2H), 7.25-7.36 (m, 13H), 7.13-7.21 (m, 5H), $5.02(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, 1 H anomeric), $4.97(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-$ $3.92(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.76(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.07(\mathrm{~m}$, $2 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8$, $138.8,138.2,137.9,128.35,128.34,128.32,128.27,127.9,127.8,127.66,127.63$, $127.56,125.8,96.0,83.6,77.3,75.3,75.0,73.5,72.8,72.7,70.8,68.4,38.6,32.0,19.1$; IR (film, cm^{-1}) 3461, 3061, 3029, 2924, 1495, 1453, 1381, 1129, 1065, 1034 ; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$605.2879, found 605.2877. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 13 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.14-7.17 (m, 2H), 4.99 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.96(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.83(\mathrm{~m}, 6 \mathrm{H}), 2.64-2.75(\mathrm{~m}$, $2 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,138.8,138.1,137.9,128.42,128.35,128.32,128.27,127.93$, $127.87,127.83,127.70,127.63,127.59,125.9,98.5,83.5,77.4,75.28,75.26,75.0,73.5$, $73.2,70.6,68.5,38.0,31.5,21.3$; IR (film, cm^{-1}) $3559,3471,3029,2922,2864,1454$, 1363, 1129, 1066, 1036; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 605.2879$, found 605.2876 .

8-(1,4-dioxaspiro[4.5]decane)-3,4,6-tri- O-benzyl- α-D-glucopyranoside (Table 1, compound 6b)

Following the general procedure, compound $\mathbf{4 b}(425 \mathrm{mg}, 0.60 \mathrm{mmol})$, NIS ($175 \mathrm{mg}, 0.78$ mmol), 2,6-DTBMP ($185 \mathrm{mg}, 0.90 \mathrm{mmol}$), TMSOTf ($142 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) were stirred for 10 min at $-40^{\circ} \mathrm{C}$, then warmed to $0^{\circ} \mathrm{C}$ and allowed to stir for 1 hour. n-Bu4 $\mathrm{NF}(3.0$ $\mathrm{mL}, 3.0 \mathrm{mmol}$) was added as a 1 M solution in THF, warmed to rt and stirred overnight.

The product ($289 \mathrm{mg}, 0.49 \mathrm{mmol}, 82 \%$) was obtained as a colorless oil after flash chromatography on $\mathrm{SiO}_{2}\left(33 \% \mathrm{EtOAc} / \mathrm{Hex} w / 5 \% \mathrm{NEt}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.22-7.38 (m, 13 H), 7.10-7.14 (m, 2H), $4.98(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.94(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}) 4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{ddd}, J=10.0,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.57-3.66 (m, 6H), $1.96(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.66-1.91(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,138.1,137.9,128.33$, 128.31, 127.9, 127.84, 127.80, 127.7, 127.63, 127.56, 108.0, 97.0, 83.6, 75.3, 75.0, 73.5, 73.4, 72.9, 70.6, 68.4, 64.3, 64.2, 31.6, 31.3, 29.9, 28.1; IR (film, cm^{-1}) 3476, 3029, 2937, 1496, 1453, 1365, 1134, 1068, 1028; HRMS (ES) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$613.2777, found 613.2786.

4-(methylpiperidin-1)-3,4,6-tri- O-benzyl- α-D-glucopyranoside (Table 1, compound 6c)

Following the general procedure, compound $\mathbf{4 c}(125 \mathrm{mg}, 0.19 \mathrm{mmol})$, NIS $(55 \mathrm{mg}, 0.24$ mmol), 2,6-DTBMP ($77 \mathrm{mg}, 0.38 \mathrm{mmol}$), TMSOTf ($41 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) were stirred at $40^{\circ} \mathrm{C}$ for 10 min , then warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 hour, then excess n-Bu NF was added $(1.14 \mathrm{~mL}, 1.14 \mathrm{mmol})$ as a 1 M solution in THF, warmed to rt and allowed to stir overnight. The product ($73 \mathrm{mg}, 0.13 \mathrm{mmol}, 70 \%$) was obtained after purification by flash chromatography on SiO_{2} (7:1:2 to 3:1:1 EtOAc: $\mathrm{MeOH}: \mathrm{MeCN} w / \sim 1 \% \mathrm{NEt}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 11 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.99(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{ddd}, J=10.0,3.75,1.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.79(\mathrm{~m}, 6 \mathrm{H}), 2.68(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.20(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.16(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.62-1.77(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,138.0,137.9,128.40,128.37,128.36,128.0,127.9,127.84$, $127.77,127.69,127.6,97.1,83.6,77.3,75.3,75.1,73.5,72.9,70.7,68.5,53.1,46.1,32.5$, 30.8; IR (film, cm^{-1}) 3453, 3030, 2920, 2850, 2784, 1452, 1384, 1155, 1068, 1043; HRMS (ES) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 548.3012$, found 548.3019.
(1R,2S,4S)-2-isopropyl-4-methylcyclohexan-3,4,6-tri-O-benzyl- α-D-glucopyranoside (Table 1, compound 6d)

Following the general procedure, compound $\mathbf{4 e}(87 \mathrm{mg}, 0.12 \mathrm{mmol})$, NIS ($34 \mathrm{mg}, 0.15$ mmol), 2,6-DTBMP ($47 \mathrm{mg}, 0.24 \mathrm{mmol}$) and TMSOTf ($25 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) were stirred for 10 min at $-40^{\circ} \mathrm{C}$, warmed to $0^{\circ} \mathrm{C}$ and stirred for 45 min , then excess n-Bu NF was added ($0.72 \mathrm{~mL}, 0.72 \mathrm{mmol}$) as a 1 M solution in THF , warmed to rt , and stirred overnight. The product ($49 \mathrm{mg}, 0.08 \mathrm{mmol}, 72 \%, 5: 1$) was obtained as an inseparable 5:1 mixture of diastereomers as a colorless oil after purification by flash chromatography on $\mathrm{SiO}_{2}(10$ to $20 \% \mathrm{EtOAc} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major diastereomer $\delta 7.26-$ $7.43(\mathrm{~m}, 13 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.98(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.84$ $(\mathrm{m}, 5 \mathrm{H}), 3.41(\mathrm{td}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (septd, $J=7.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.78-1.05(\mathrm{~m}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, diagnostic peaks of the minor diastereomer at $5.03(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.2 \mathrm{H}$ anomeric), and 4.11 (br s, 0.2 H) (aglycone carbinol); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major and minor diastereomer signals reported $\delta 138.8,138.2,138.0,128.36,128.33,128.11,127.96$, $127.92,127.85,127.7,127.64,127.60,100.1,95.4,83.5,81.1,77.5,75.2,75.0,73.6$, $73.5,73.0,72.6,70.6,68.6,48.7,48.2,42.9,37.3,34.9,34.2,31.6,28.4,26.4,25.5,22.8$, 22.2, 21.2, 21.1, 20.9, 15.7; IR (film, cm^{-1}) 3564, 3030, 2922, 2867, 1453, 1384, 1132, 1067, 1027; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 611.3349$, found 611.3355 .

8-(1,4-dioxaspiro[4.5]decane)-3,4,6-tri-O-benzyl- β-D-mannopyranoside (Table 1, compound 7a)

Following the general procedure, compound 5 a ($144 \mathrm{mg}, 0.20 \mathrm{mmol}$) NIS ($59 \mathrm{mg}, 0.26$ mmol), 2,6-DTBMP ($83 \mathrm{mg}, 0.41 \mathrm{mmol}$) and TMSOTf ($44 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were stirred at $-40^{\circ} \mathrm{C}$ for 15 minutes, warmed to $0^{\circ} \mathrm{C}$ and stirred for 45 min , then n - $\mathrm{Bu}_{4} \mathrm{NF}(1.2 \mathrm{~mL}$, 1.2 mmol) was added as a 1 M solution in THF and the reaction was warmed to rt and stirred overnight. The product ($67 \mathrm{mg}, 0.11 \mathrm{mmol}, 57 \%$) was obtained as a colorless oil upon purification by flash chromatography on SiO_{2} (40 to $50 \% \mathrm{EtOAc} / \mathrm{Hex}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 11 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}$ anomeric), 4.07 (br s, 1H), 3.89-3.98 (m, $5 \mathrm{H}), 3.86(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.58(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{ddd}, J=9.5,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.3$, 138.2, 137.9, 128.5, 128.35, 128.31, 128.1, 127.9, 127.8, 127.7, 127.5, 108.2, 97.4, 81.6, $75.23,75.16,74.3,73.7,73.4,71.3,69.3,68.8,64.3,31.4,31.3,29.9,27.9$; IR (film, cm^{-}
${ }^{1}$) $3476,3029,2940,2872,1452,1372,1100 ; \operatorname{HRMS}(\mathrm{ES}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{8}$ $\left[^{M}+\mathrm{Na}\right]^{+} 613.2777$, found 613.2781.
(1R,2S,4S)-2-isopropyl-4-methylcyclohexan-3,4,6-tri-O-benzyl- β-Dmannopyranoside (Table 1, compound 7b)

Following the general procedure, compound $\mathbf{5 b}(68 \mathrm{mg}, 0.09 \mathrm{mmol})$, NIS ($26 \mathrm{mg}, 0.12$ mmol), 2,6-DTBMP ($37 \mathrm{mg}, 0.18 \mathrm{mmol}$), and TMSOTf ($20 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) were stirred at $-40^{\circ} \mathrm{C}$ for 10 min , then warmed to $0^{\circ} \mathrm{C}$ and stirred for 1.5 hours. n - $\mathrm{Bu}_{4} \mathrm{NF}(0.63 \mathrm{~mL}$, 0.63 mmol) was added as a 1 M solution in THF and stirred at rt overnight to give the products as a $10: 1$ mixture of diastereomers. The products (combined $39 \mathrm{mg}, 0.07 \mathrm{mmol}$, $74 \%, 10: 1$) were isolated as a white solid and clear oil respectively, and characterized independently after purification by flash chromatography on SiO_{2} (10 to 20% $\mathrm{EtOAc} / \mathrm{Hex}$). Data for the major diastereomer matches that previously reported. ${ }^{6}$ Major diastereomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.38-7.41 (m, 2H), 7.24-7.36 (m, 13H), $4.91(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J$ $=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}$ anomeric), $4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{ddd}, J=10.0,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (s, 1H), 2.29 (septd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.70$ (m, 2H), $1.24-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.80-1.05(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.83 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,138.3,138.0$, 128.44, $128.35,128.29,128.16,127.8,127.75,127.71,127.68,127.5,96.1,81.9,76.5,75.3,75.2$, $74.4,73.6,71.2,69.7,69.2,47.7,40.4,34.3,31.3,25.3,23.1,22.3,21.0,15.8$; IR (film, cm^{-1}) 3472, 3028, 2950, 2920, 2865, 1452, 1383, 1102; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$611.3349, found 611.3337. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 13 \mathrm{H}), 4.91(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}$ anomeric), $4.07(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.69(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (ddd, $J=9.5,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.16-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.44(\mathrm{~m}, 2 \mathrm{H})$, $0.80-1.00(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,138.3,138.0,128.42,128.35,128.31,128.1$, $127.9,127.73,127.69,127.65,127.5,101.3,81.8,78.5,75.3,75.2,74.3,73.6,71.3,69.5$, 69.0, 48.3, 41.1, 35.0, 28.9, 26.2, 24.6, 22.4, 21.3, 20.9; IR (film, cm^{-1}) 3444, 3027, 2917, 2848, 1452, 1383, 1103; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 611.3349$, found 611.3359 .

Ethyl dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-ol]-3,4,6-tri- O-benzyl-1-thio- β-D-glucopyranoside (Scheme 3, compound 8a)

Following the general procedure, 1a ($182 \mathrm{mg}, 0.33 \mathrm{mmol}$), dihydrotestosterone ${ }^{7}(87 \mathrm{mg}$, $0.30 \mathrm{mmol}), \mathrm{Ni}(\mathrm{COD})_{2}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(10 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{KO}-t-\mathrm{Bu}(3.4$ $\mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(195 \mu \mathrm{~L}, 0.66 \mathrm{mmol})$ were stirred for 6.5 hr at rt to give the product as an inseparable 5:1 mixture of diastereomers. The product ($226 \mathrm{mg}, 0.27$ $\mathrm{mmol}, 89 \%, 5: 1$) was obtained as a viscous yellow oil after flash chromatography on $\mathrm{SiO}_{2}(20$ to $25 \% \mathrm{EtOAc} / \mathrm{Hex}) .{ }^{1} \mathrm{H}$ NMR 7.24-7.40 (m, 13H), $7.06(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.17(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.47-3.81\left(\mathrm{~m}, 7 \mathrm{H}_{\text {major }+ \text { minor }}\right), 2.68-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.00-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 0.56-1.82\left(\mathrm{~m}, 31 \mathrm{H}_{\text {major }}+\right.$ minor $)\{$ assignable peaks within this multiplet: 1.32 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}_{\text {major }}$), $\left.0.73\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }}\right), 0.71\left(\mathrm{~s}, 3 \mathrm{H}_{\text {major }}\right)\right\}, 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H})$, diagnostic peaks for minor diastereomer $4.97\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {minor }}\right), 4.90(\mathrm{~d}, J=11$ $\mathrm{Hz}, 1 \mathrm{H}_{\text {minor }}$) benzylic, Note - the stereochemistry of the major diastereomer and the dr of the reduction was determined on a crude reaction mixture of the silyl-linked compound after complete desilylation by n - $\mathrm{Bu}_{4} \mathrm{NF}$ and comparison to known compounds; ${ }^{8,9}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major and minor diastereomer signals reported $\delta 138.9,138.2$, 138.0, 128.34, 128.31, 128.2, 127.95, 127.93, 127.72, 127.69, 127.5, 127.3, 127.0, 87.2, 87.0, 86.2, 82.0, 79.1, 78.3, 78.1, 75.3, 75.1, 74.9, 74.6, 73.4, 71.7, 69.1, 67.2, 54.5, 54.1, $51.01,50.95,44.9,42.9,38.8,38.2,37.1,36.74,36.67,36.4,35.9,35.5,35.4,32.3,31.64$, $31.57,31.47,30.5,29.7,29.4,28.6,28.4,24.7,23.4,23.3,20.7,20.3,15.1,12.3,11.4$, 11.1, $-0.9,-1.0,-1.1,-1.2$; IR (film, cm^{-1}) $3429,3028,2925,2867,1496,1452,1362$, 1253, 1133, 1067, 1027; HRMS (ES) m / z calcd for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$865.4509, found 865.4501.

Ethyl
2-O-[(3R,5S,8R,9S,10S,13S,14S,17S)-3-(dimethylsilyloxy)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-ol]-3,4,6-tri-O-benzyl-1-thio- α-D-mannopyranoside (Scheme 3, compound 8b)

Following the general procedure, 2a ($182 \mathrm{mg}, 0.33 \mathrm{mmol}$) dihydrotestosterone ${ }^{7}(87 \mathrm{mg}$, $0.30 \mathrm{mmol}), \mathrm{Ni}(\mathrm{COD})_{2}(8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{IMes} \cdot \mathrm{HCl}(10 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{KO}-t-\mathrm{Bu}(3.4$ $\mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{Ti}(\mathrm{O}-i-\operatorname{Pr})_{4}(195 \mu \mathrm{~L}, 0.66 \mathrm{mmol})$ were stirred for 6.5 hr at rt to give the desired product as an inseparable 6:1 mixture of diastereomers. The product (202 mg , $0.24 \mathrm{mmol}, 80 \%, 6: 1$) was obtained as a viscous off-white oil after flash chromatography on SiO_{2} (10 to $20 \% \mathrm{EtOAc} /$ hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major diastereomer $\delta 7.24-7.38(\mathrm{~m}, 13 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.84(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.12-4.16 (m, 2H), $3.98(\mathrm{t}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.0$, $2.25 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (dd, $J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.70(\mathrm{~m}$, $2 \mathrm{H}), 2.01-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dt}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-1.66(\mathrm{~m}, 17 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$, (td, $J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.80-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.69-0.78(\mathrm{~m}, 1 \mathrm{H}), 0.76$ $(\mathrm{s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H})$; diagnostic peak for minor diastereomer at $5.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.15 \mathrm{H}$ anomeric), Note - the stereochemistry of the major diastereomer and the dr of the reduction was determined on a crude reaction mixture of the silyl-linked compound after complete desilylation by n - $\mathrm{Bu}_{4} \mathrm{NF}$ and comparison to known compounds; ${ }^{8,9}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major and minor diastereomer signals reported $\delta 138.5,138.3,128.3,128.2,127.9,127.7,127.6,127.5,127.4,85.5$, $82.0,80.4,74.9,74.8,73.2,72.1,72.0,70.6,69.2,67.0,54.3,51.1,44.9,43.0,39.0,36.7$, $36.4,36.0,35.5,25.3,23.3,20.3,15.1,11.4,11.1,-1.4,-1.5,-1.7$; IR (film, cm^{-1}) 3465 , 3030, 2925, 1452, 1371, 1255, 1097, 1047; HRMS (ES) m / z calcd for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{SSi}$ $\left[^{M}+\mathrm{Na}\right]^{+} 865.4509$, found 865.4484.

3-(3R,5S,8R,9S,10S,13S,14S,17S)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-17-ol 3,4,6-tri- O-benzyl- α-D-glucopyranoside (Scheme 3, compound 9a)

Following the general procedure, compound $\mathbf{8 a}(145 \mathrm{mg}, 0.17 \mathrm{mmol})$, NIS ($54 \mathrm{mg}, 0.24$ mmol), TMSOTf ($75 \mu \mathrm{~L}, 0.41 \mathrm{mmol}$), 2,6-DTBMP ($141 \mathrm{mg}, 0.69 \mathrm{mmol}$) were stirred for 5 minutes at $-40{ }^{\circ} \mathrm{C}$, and 1 hour at $0{ }^{\circ} \mathrm{C}$ then excess n - $\mathrm{Bu}_{4} \mathrm{NF}(1.7 \mathrm{~mL}, 1.7 \mathrm{mmol})$ was added as a 1 M solution in THF and stirred overnight to afford the desired products as a 5:1 mixture of diastereomers. The products (combined $117 \mathrm{mg}, 0.16 \mathrm{mg}, 95 \%, 5: 1$) were obtained as colorless viscous oils, separated and characterized independently upon purification by flash chromatography on SiO_{2} (30 to $40 \% \mathrm{EtOAc} / \mathrm{Hex}$). Major diastereomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 11 \mathrm{H})$, 7.14-7.17 (m, 2H), $5.02(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), 4.87 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{ddd}, J=10.0,3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.11(\mathrm{~m}, 1 \mathrm{H})$, $1.96(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.13-1.52(\mathrm{~m}, 12 \mathrm{H}), 1.07$ (td, $J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.70-0.78$ (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,138.1,138.0,128.44,128.37,128.2,127.90$, 127.87, 127.83, 127.7, 127.6, 97.3, 83.8, 82.0, 77.4, 75.2, 73.5, 73.3, 73.1, 70.7, 68.6, $54.3,51.0,43.0,40.2,36.7,36.0,35.5,33.1,32.5,31.4,30.5,28.4,27.4,23.3,20.4,11.4$, 11.1; IR (film, cm^{-1}) 3453, 3063, 3030, 2928, 1496, 1453, 1358, 1135, 1067; HRMS (ES) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{6} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 747.4237$, found 747.4250. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 11 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H})$, $5.03(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.98(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=$ $10.0,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.78(\mathrm{~m}, 7 \mathrm{H}), 2.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=12,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dt}, J=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-$ $1.68(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.47(\mathrm{~m}, 10 \mathrm{H}), 1.01-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.98(\mathrm{~m}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H})$, $0.74(\mathrm{~s}, 3 \mathrm{H}), 0.60-0.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,138.2,138.0$, $128.35,128.33,127.9,127.8,127.7,127.6,127.5,97.0,83.8,81.9,77.4,75.3,75.0,73.5$, $73.0,70.5,68.7,54.4,51.0,45.0,43.0,36.8,36.7,36.0,35.6,35.5,31.6,30.5,29.7,28.5$, $27.8,23.4,20.8,12.3,11.1$; IR (film, cm^{-1}) $3439,3029,2928,1452,1356,1207,1131$, 1067, 1025; HRMS (ES) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 747.4237$, found 747.4258.

3-(3R,5S,8R,9S,10S,13S,14S,17S)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-17-ol 3,4,6-tri-O-benzyl- β-D-mannopyranoside (Scheme 3, compound 9b)

Following the general procedure, compound $\mathbf{8 b}(131 \mathrm{mg}, 0.16 \mathrm{mmol})$, NIS ($49 \mathrm{mg}, 0.22$ mmol), 2,6-DTBMP ($128 \mathrm{mg}, 0.62 \mathrm{mmol}$), and TMSOTf ($68 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$), were stirred at $-40^{\circ} \mathrm{C}$ for 10 min , then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 1.5 hours. n - $\mathrm{Bu}_{4} \mathrm{NF}(1.6$ $\mathrm{mL}, 1.6 \mathrm{mmol}$) was then added as a 1 M solution in THF, and the reaction was taken to rt
and stirred overnight to give the products as a $6: 1$ mixture of diastereomers. The products (combined $103 \mathrm{mg}, 0.14 \mathrm{mmol}, 92 \%, 6: 1$) were isolated as viscous, colorless oils, which were separated and characterized independently upon purification by flash chromatography on SiO_{2} ($30 \% \mathrm{EtOAc} / \mathrm{Hex}$). Major diastereomer ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 13 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}$ anomeric), $4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.04-4.07 (m, 1H), $3.87(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=$ $11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=$ $9.5,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.02-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-1.68(\mathrm{~m}, 18 \mathrm{H}), 1.05(\mathrm{td}, J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-1.00$ $(\mathrm{m}, 1 \mathrm{H}), 0.72-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.3, 138.2, 137.9, 128.4, 128.33, 128.28, 128.1, 127.8, 127.74, 127.69, 127.5, 97.2, $81.9,81.8,75.2,75.1,74.3,73.5,72.8,71.2,69.3,68.9,54.2,51.0,42.9,39.4,36.7,35.9$, $35.5,34.2,32.5,31.4,30.5,28.2,25.0,23.3,20.3,11.4,11.1$; IR (film, cm^{-1}) 3452,3028 , 2926, 2866, 1452, 1363, 1105, 1056; HRMS (ES) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 747.4237, found 747.4250. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 11 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}$ anomeric), $4.55(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=9.75$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.79 (dd, $J=10.75,1.75 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60-3.75$ (m, 2H), 3.68 (dd, $J=10.5,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (ddd, $J=9.5,5.75,1.75 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=12.0,3.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (dt, $J=13.25,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dq}, J=12.75,3.25 \mathrm{~Hz} .1 \mathrm{H}), 1.20-1.62(\mathrm{~m}, 11 \mathrm{H}), 0.75-$ $1.10(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.58-0.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,138.2,137.9,128.5,128.4,128.3,128.1,127.9,127.8,127.7,127.5,97.2,82.0$, 81.7, 77.4, 75.3, 75.2, 74.4, 73.4, 71.3, 69.4, 68.8, 54.5, 51.0, 44.7, 43.0, 37.0, 36.7, 35.7, $35.5,34.2,31.6,30.5,29.2,28.7,23.4,20.8,12.3,11.1$; IR (film, cm^{-1}) $3462,3028,2926$, 2848, 1452, 1383, 1101, 1071, 1026; HRMS (ES) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 747.4237, found 747.4247.

Ethyl 2-O- 2-(4-(dimethylsilyloxy)cyclohexyl)ethanol -3,4,6-tri-O-benzyl-1-thio- β-Dglucopyranoside (Compound 11, Scheme 4)

Following the general procedure, $\mathbf{1 a}(182 \mathrm{mg}, 0.33 \mathrm{mmol})$, hydroxyketone $\mathbf{1 0}^{10}(43 \mathrm{mg}$, $0.30 \mathrm{mmol}), \mathrm{Ni}(\mathrm{COD})_{2}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(10 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{KO}-t-\mathrm{Bu}(3.4$ $\mathrm{mg}, 0.03 \mathrm{mmol})$, and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(195 \mu \mathrm{~L}, 0.66 \mathrm{mmol})$ were stirred for 3 hr at rt to give the desired product $\mathbf{1 1}$ as an inseparable $5: 1$ mixture of diastereomers. Compound $\mathbf{1 1}$ $(187 \mathrm{mg}, 0.26 \mathrm{mmol}, 86 \%, 5: 1)$ was obtained as a viscous colorless oil after purification
by flash chromatography on SiO_{2} (25 to 30% EtOAc/hexanes). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.39(\mathrm{~m}, 13 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), 4.10-4.12(m, 1H), $3.53-3.78(\mathrm{~m}, 7 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.0,5.0,1.75 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dq}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.72 (dq, $J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.25-1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H})$; diagnostic peaks for minor diastereomer: $4.74(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 1 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.17$ (s, $3 \mathrm{H})$ Note - the relative stereochemistry of the major and minor diastereomers was confirmed based on the Karplus correlations of the carbinol methine proton of the desilylated diol; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major and minor diastereomer signals reported $\delta 138.9,138.2,138.0,129.1,128.34,128.32,128.2,127.9,127.74,127.70$, $127.6,127.2,127.1,87.1,87.0,86.3,86.1,79.1,78.5,78.2,75.1,74.9,74.5,73.4,71.5$, $69.2,67.6,60.9,61.1,39.6,38.9,35.5,33.2,32.7,31.4,27.13,27.09,24.7,15.1,-0.89$, -$0.90,-1.16,-1.17$; IR (film, cm^{-1}) 3437, 3031, 2926, 2858, 1454, 1364, 1255, 1057, 1028; HRMS (ES) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 717.3257$, found 717.3283.

Ethyl 2-O- 4-(2-(dimethylsilyloxy)ethyl)cyclohexanone -3,4,6-tri- O-benzyl-1-thio- β -D-glucopyranoside (Compound 12, Scheme 4)

Following the general procedure, $\mathbf{1 a}(182 \mathrm{mg}, 0.33 \mathrm{mmol})$, hydroxyketone $\mathbf{1 0}^{10}(43 \mathrm{mg}$, $0.30 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{IMes} \cdot \mathrm{HCl}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$, and $\mathrm{NaO}-t-\mathrm{Bu})$ ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) were stirred for 3 hr at rt to give the desired product. Compound $\mathbf{1 2}$ ($119 \mathrm{mg}, 0.17 \mathrm{mmol}, 57 \%$) was obtained as a colorless oil after purification by flash chromatography on SiO_{2} ($20 \% \mathrm{EtOAc} /$ hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-$ $7.38(\mathrm{~m}, 13 \mathrm{H}), 7.08-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric $), 3.74-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.72(\mathrm{~m}, 2 \mathrm{H})$, 3.62 (t, $J=9.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.75,4.75,1.75 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77$ (dq, $J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dq}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.38(\mathrm{~m}, 4 \mathrm{H})$, 1.93-2.01 (m, 2H), 1.77-1.86 (m, 1H), $1.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.32$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.3$, $138.7,138.2,137.9,128.4,128.34,128.26,127.9,127.78,127.76,127.6,127.3,127.1$, 87.1, 86.2, 79.2, 78.2, 75.2, 75.0, 74.6, 73.5, 69.1, 60.5, 40.8, 38.0, 32.7, 32.6, 32.4, 24.7, $15.1,-1.95,-2.02$; IR (film, cm^{-1}) 3031, 2925, 2865, 1715, 1453, 1384, 1256, 1089, 1029; HRMS (ES) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 715.3101$, found 715.3095.

2-(4-cyclohexyl)ethanol-3,4,6-tri-O-benzyl- α-D-glucopyranoside (Compound 13,

 Scheme 4)

Following the general procedure, silyl-linked compound 11 ($81 \mathrm{mg}, 0.12 \mathrm{mmol}$), NIS (37 $\mathrm{mg}, 0.16 \mathrm{mmol}$), 2,6-DTBMP ($96 \mathrm{mg}, 0.47 \mathrm{mmol}$), and TMSOTf ($51 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) were stirred at $-40^{\circ} \mathrm{C}$ for 10 min , then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 1.5 hr . $n-\mathrm{Bu}_{4} \mathrm{NF}$ $(1.2 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added as a 1 M solution in THF, warmed to room temperature and stirred over night. The products 13 (combined $67 \mathrm{mg}, 0.11 \mathrm{mmol}, 97 \%, 5: 1$) were isolated as a clear oil and white crystalline solid respectively, and independently characterized after purification by flash chromatography on SiO_{2} (50 to 65% EtOAc/hexanes). Major diastereomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.44(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.37 (m, 11H), 7.14-7.18 (m, 2H), $5.00(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.86(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.52 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.80(\mathrm{~m}$, $7 \mathrm{H}), 2.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.60(\mathrm{~m}, 7 \mathrm{H}), 1.22-1.37(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,138.1,137.9,128.39,128.35,128.34,128.0,127.9$, $127.85,127.76,127.66,127.58,97.0,83.7,77.3,75.25,75.15,73.5,73.03,72.97,70.6$, $68.5,60.7,39.0,32.7,30.8,28.7,27.6,27.5$; IR (film, cm^{-1}) $3436,3031,2926,2860$, 1453, 1363, 1132, 1067, 1028; HRMS (ES) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$599.2985, found 599.2974. Minor diastereomer ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.36 (m, 11H), 7.13-7.17 (m, 2H), $5.04(\mathrm{~d}, J=4.0 \mathrm{~Hz} 1 \mathrm{H}$ anomeric), $4.98(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (ddd, $J=10.0,3.75,1.75$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60-3.79(\mathrm{~m}, 7 \mathrm{H}), 3.56(\mathrm{tt}, J=11.0,4.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.48(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.14-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.92-1.04(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8,138.2,138.0,128.38,128.37,128.35,128.0,127.8,127.72$, $127.66,127.57,97.0,83.7,77.4,75.3,75.1,73.5,73.0,70.5,68.6,60.9,39.4,33.33$, $33.29,31.7,31.3,31.1$; IR (film, cm^{-1}) 3401, 3032, 2924, 2853, 1452, 1353, 1130, 1070, 1040; HRMS (ES) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 599.2985$, found 599.2971.

4-(2-ethyl)cyclohexanone-3,4,6-tri-O-benzyl- α-D-glucopyranoside (Compound 14,
Scheme 4) Scheme 4)

Following the general procedure, silyl-linked compound 12 ($80 \mathrm{mg}, 0.12 \mathrm{mmol}$), NIS (36 $\mathrm{mg}, 0.16 \mathrm{mmol}$), 2,6-DTBMP ($95 \mathrm{mg}, 0.46 \mathrm{mmol}$), and TMSOTf ($50 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$)
were stirred at $-40^{\circ} \mathrm{C}$ for 10 min , then warmed to $0^{\circ} \mathrm{C}$ and stirred for $30 \mathrm{~min} . n-\mathrm{Bu}_{4} \mathrm{NF}$ $(1.2 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added as a 1 M solution in THF, warmed to rt and stirred over night. Compound $14(41 \mathrm{mg}, 0.07 \mathrm{mmol}, 62 \%)$ was obtained as white crystalline solid after purification by flash chromatography on SiO_{2} (50 to $60 \% \mathrm{EtOAc} /$ hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.38-7.41 (m, 2H), 7.22-7.37 (m, 11H), 7.15-7.19 (m, 2H), $4.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$ anomeric), $4.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.84(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.85(\mathrm{~m}, 5 \mathrm{H}), 3.68(\mathrm{dd}, J=10.25,2.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.5$, $9.0 \mathrm{~Hz} 1 \mathrm{H}), 3.56(\mathrm{dt}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 4 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.60-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.7$, $138.6,138.0,137.9,128.42,128.37,128.0,127.85,127.82,127.74,127.69,98.5,83.4$, $77.5,75.3,75.1,73.6,72.9,70.8,68.6,66.2,40.62,40.60,35.1,32.9,32.7,32.4$; IR (film, cm^{-1}) 3450, 3031, 2926, 1713, 1453, 1357, 1135, 1068, 1028; HRMS (ES) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 597.2828$, found 597.2818.

REFERENCES

(1) Voges, M.H.; Rømming, C.; Tilset, M. Organometallics 1999, 18, 529-533.
(2) Glucosilanes were synthesized from D-glucose pentaacetate, and Mannosilanes were synthesized from D-Mannose following: Callam, C.S.; Lowary, T.L. J. Org. Chem. 2001, 66, 8961-8972. through the orthoester intermediate, and Düffels, A.; Green, L.G.; Ley, S.V.; Miller, A.D. Chem. Eur. J. 2000, 6, 1416-1430 through the 2-OH intermediate.
(3) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K.; J. Am. Chem. Soc. 2001, 123, 9168-9169.
(4) Vidal, P.; Esturau, N.; Parella, T.; Espinosa, J.F. J. Org. Chem. 2007, 72, 3166-3170.
(5) Reiners, I.; Wilken, J.; Martens, J. Tetrahedron: Asymmetry 1995, 6, 3063-3070.
(6) The major diastereomer was previously reported, Mayato, C.; Dorta, R.L.; Vasquez, J.T. Tetrahedron: Asymmetry 2004, 15, 2385-2397.
(7) Hu, Y.; Wittmer, L.L.; Kalkbrenner, M.; Evers, A.S.; Zorumski, C.F.; Covey, D.F. J. Chem. Soc., Perkin Trans. 1, 1997, 3665-3671.
(8) Hanson, J.R.; Hunter, A.C. J. Chem. Research (S), 2003, 216-217.
(9) Yang, J.; Gabriele, B.; Belvedere, S.; Huang, Y.; Breslow, R. J. Org. Chem. 2002, 67, 5057-5067.
(10) Itagaki, N.; Kimura, M.; Sugahara, T.; Iwabuchi, Y. Org. Lett. 2005, 7, 4185.

