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ABSTRACT 

The fate of plasmid DNA complexed with cationic lipids delivered intravenously in mice was evaluated at 
selected timepoints up to 6 months postinjection. Blood half-life and tissue distribution of plasmid D N A and 
potential expression in tissues were examined. Southern blot analyses of blood indicated that intact plasmid 
D N A was rapidly degraded, with a half-life of less than 5 min for intact plasmid, and was no longer detectable 
at 1 hr postinjection. Southern analyses of tissue demonstrated that intact D N A was differentially retained in 
the lung, spleen, liver, heart, kidney, marrow, and muscle up to 24 hr postinjection. After 7 days, no intact 
plasmid D N A was detectable by Southern blot analysis; however, the plasmid was detectable by the polymerase 
chain reaction ( P C R ) in all tissues examined at 7 and 28 days postinjection. At 6 months postinjection, 
femtogram levels of plasmid were detected only in muscle. Immunohistochemical analyses did not detect 
encoded protein in the tissues harboring residual plasmid at 1 or 7 days postinjection. 

OVERVIEW SUMMARY INTRODUCTION 

The present study evaluates the pharmacokinetic half-life 
and tissue distribution of plasmid D N A following intrave­
nous injection in mice. This study extends the time frame of 
previous in vivo analyses to 6 months following i.v. injec­
tion. Injected mice exhibit no expression of the encoded 
gene as assayed by immunofluorescence. This represents 
the first systematic in vivo pharmacokinetic study of intra­
venously injected D N A complexed with cationic lipids, and 
is relevant to many gene therapy protocols utilizing direct 
injection of plasmid D N A plus lipids. The results provide a 
preliminary basis for the safe initiation of cancer immuno­
therapy clinical trials in which plasmid D N A is directly 
injected into tumors. 

D i r e c t intratumoral injection of plasmid dna encod­
ing foreign surface antigens or cytokines is a promising 

new approach for the treatment of cancer (Nabel et al., 1992b, 
1993; Vile and Hart, 1993). While a majority of malignancies 
arise in immunocompetent hosts, tumors escape host defenses. 
One theory by which tumor cells may evade immune surveil­
lance is by altering their ability to express the major histocom­
patibility complex (MHC) class I molecules on their cell sur­
faces, thereby rendering themselves less visible to the immune 
system. Freshly isolated cells from naturally occurring tumors 
frequently lack or have decreased expression of M H C class 1 
antigens (Schmidt er a/., 1981; Isakovef a/., 1983; Lampson ef 
al., 1983; Funa et al., 1986). Studies have shown that direct 
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gene transfer of M H C class I molecules into tumors may facili­
tate recognition of tumors by the immune system (Nabel et al., 
1992b; Nabel era/., 1993). 
Although an ex vivo approach of transfecting cells from indi­

vidual patients for gene therapy has been successful, there are 
some limitations to the technique. These include the need to 
culture cells in vitro from each patient to avoid allogeneic tissue 
rejection, the tendency of cells to undergo phenotypic alteration 
in culture, the possibility of outgrowth of aberrant transformed 
cells, and the requirement for expertise to prepare cultured cells 
prior to reintroduction. Additionally, many gene therapy protocols 
require transduction with an integrating retroviral vector prior to 
reintroduction ofthe cells in vivo, thereby raising safety concems. 

In vivo introduction of recombinant D N A into tumors utiliz­
ing plasmid D N A expression vectors simplifies the gene trans­
fer procedure and minimizes delays in treatment. Although 
tumors are the ultimate target of this gene transfer technology, 
the design of the current studies addresses the effects of D N A 
circulated inadvertantly throughout the body, which may result 
following direct tumor injection. The intravenous (i.v.) route of 
plasmid D N A injection was investigated because it provides the 
greatest potential for detection of systemic expression and man­
ifestation of systemic toxicity. 

Studies in mice have demonstrated the overall safety of i.v. 
DNA-cationic lipid injection as an in vivo gene transfer meth­
odology (Nabel et al., 1992; Stewart et al., 1992). A previous 
clinical protocol utilized direct D N A injection into tumors for 
cancer immunotherapy trials (Nabel et al., 1992b). The intro­
duction of the gene encoding the heavy chain of an M H C class I 
molecule, HLA-B7, into patients with end-stage IV melanoma 
appeared to be safe. It resulted in transgene expression local­
ized to the site of injection and was associated with tumor 
regression in 1 of 5 patients (Nabel et al., 1993). W e have 
expanded upon this initial finding and have entered a phase 1 
clinical trial with a modified expression vector, pVCL-1005, 
encoding both the HLA-B7 heavy chain gene and the p2-micro-
globulin (PzWi) light chain gene. This plasmid contains a se­
quence encoding an intemal ribosome entry site (IRES) be­
tween the H L A - B 7 and Pjm c D N A s to coexpress them from the 
same promoter (Parks et al., 1986; Jang et al., 1988, 1989; 
Ghattas et al., 1991). This differs from the plasmid used in the 
first clinical trial (Nabel et al., 1993) in that the addition of an 
IRES and the gene encoding P2m improves the expression level 
of the complete M H C class I molecule, containing both heavy 
and light polypeptide chains. In this preclinical study, the tissue 
distribution and half-life of pVCL-1005 plasmid D N A was an­
alyzed over an extended period of time following i.v. injection 
in mice as VCL-1005, plasmid complexed with cationic lipids. 

W e found that the injected plasmid D N A persisted for at least 
6 months postinjection following i.v. administration. More­
over, by immunohistochemical analysis, there was no detect­
able protein expression in those tissues that retained the greatest 
amount of plasmid. These results provided a basis for the expan­
sion ofhuman chnical trials using direct plasmid D N A injection. 

MATERIALS AND METHODS 

Plasmids 

Supercoiled plasmid D N A was prepared by the method of 
H o m et al. (1995). Plasmid pCMVintLux (Manthorpe et al.. 

1993) contains the human cytomegalovims immediate early 
gene promoter (Thomsen et al., 1984; Boshart et al., 1985; 
Ghazal etal., 1987) and intron A (Chapman etal., 1991) at the 
5' end of a c D N A encoding the gene for firefly luciferase (De 
Wet et al., 1987). Additionally, pCMVintLux possesses the 
SV40 small T intron and polyadenylation processing signal at 
the 3' end ofthe c D N A for luciferase (Fig. IA). 

Plasmid pVCL-1005 contains the Rous sarcoma vims long 
terminal repeat (RSV-LTR) (Gorman et al., 1983) promoter/ 
enhancer that drives transcription of both the M H C class I 
human leukocyte antigen B7 gene (HLA-B7) and the chimpan­
zee Pjii gene (Fig. IB). The H L A - B 7 gene was originally 
derived from the plasmid pLJ-HLAB7, a gift from Dr. Alan 
Korman (Institut Pasteur, Paris). The c D N A for H L A - B 7 heavy 
chain was originally cloned from a human B-cell library. The 
c D N A encoding chimpanzee ^2'^ was included to allow syn­
thesis and expression of the complete major histocompatibility 
complex on the cell surface (Zamoyska and Fames, 1988; 
Williams etal., 1989). The clone encoding Pjm was a gift from 
Dr. Alejandro Madrigal, Stanford University. A n intemal ribo­
some entry site (IRES) sequence was placed between the 
HLA-B 7 and ^ 2 ^ cDNAs. The IRES was used to enable coex­
pression of the two genes from a single promoter in eukaryotic 
cells (Elroy-Stein et al., 1989; Morgan et al., 1992). To facili­
tate purification of the plasmid, and to obviate the use of ampi­
cillin selection during the growth of the bacteria, the gene 
encoding ampicillin resistance (|3-lactamase) was replaced with 
the gene encoding kanamycin resistance (aminoglycoside phos­
photransferase) originally derived from the bacterial transposon 
Tn903 (Nomura et al., 1978). pVCL-1005 also possesses tran­
script polyadenylation and termination signals from the bovine 
growth hormone polyadenylation sequence (Gordon et al., 
1983). 
Plasmid pVCL-1004 contains the identical pBR322 back­

bone, kanamycin resistance gene, R S V - L T R promoter, and 
HLA-B 7 sequences as pVCL-1005. However, it lacks the IRES 
and pjm sequences, and the eukaryotic transcript is terminated 
with the SV40 small t antigen gene polyadenylation and termi­
nation sequence. Plasmid pRSV-BL contains the R S V pro­
moter in a pBR322 backbone and has been previously described 
(Manthorpe et al., 1993). Plasmid pRSV-lac Z encodes the 
gene for p-galactosidase (P-Gal) under control of the R S V 
promoter in a pBR322 backbone and has been previously de­
scribed (Norton and Coffin, 1985). 

In vitro transfection and immunofluorescent staining 

The plasmids described above were transfected into L293 
human embryonal kidney cells (Pjm positive/HLA-B7 posi­
tive) and UM-449 human melanoma cells (Pjm negative/ 
H L A - B 7 negative) using cationic lipid-based delivery. Cationic 
lipid reagents contain a net positive charge, and can bind to 
negatively charged molecules of D N A . Such reagents have 
been shown to facilitate transfection of plasmid D N A into cells 
cultured mv/rro (Feigner era/., 1987; W a n g and Huang, 1989) 
and were used successfully in vivo in the clinical protocol for a 
previous cancer immunotherapy trial (Nabel etal., 1992b). The 
transfection reagent used in the above clinical protocol, pVCL-
1004 complexed with DC-Cholesterol:DOPE at a cationic lipid-
to-DNA molar ratio of 3.0, was used for reference in this in 
vitro experiment. The cationic lipid D M R I E (1,2-dimyristoyl-
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oxypropyl-3-dimethyl ammonium bromide; Feigner et al., 
1994) and the neutral lipid DOPE (dioleoyl phosphatidyletha­
nolamine; Feigner, 1990) were formulated into liposomes at an 
equimolar ratio (1:1). With either plasmid, 2 X 10^ cells in 
six-well plates were transfected with 20 p,g of D N A , com­
plexed with the appropriate lipid, in 2 ml of OptiMEM 
(GIBCO/BRL, Gaithersburg, M D ) at 37°C. Four hours later, an 
additional 2 ml of OptiMEM/20% fetal bovine semm (FBS) 
was added to the cultures, and the cells continued to incubate 
for a total of 48 hr. Cells were then rinsed with 2-3 ml of 
phosphate-buffered saline (PBS), harvested in 2 ml of PBS 
containing 2 m M E D T A , and divided between two 12 x 75 
m m polystyrene culture tubes (about 0.5 x 10* cells per tube). 
Cells were gently pelleted by centrifugation at 300 x g for 7 
min at 4°C. Supematants were discarded and one half of each 
culture was incubated for 1 hr on ice with either IOO |xl anti-
HLA-B7 monoclonal antibody (culture supematant from hybri­
doma BB7.1, A T C C #HB56) for specific staining, or 100 pX of 
PBS, 5 % fetal bovine semm (FBS) for nonspecific staining. All 
incubations and washes were done with chilled reagents and 
buffers containing 0.1% NaNj. Cells were washed with 4 ml of 
PBS and incubated in the dark with R-phycoerythrin-labeled 
sheep anti-mouse IgG, F(ab')2 fragment for 0.5 hr on ice. Cells 
were washed with PBS, resuspended in 0.2-0.4 ml of PBS/1% 
formaldehyde, and stored in the dark at 4°C until analyzed by 
flow cytometry. 

Flow cytometric analysis was performed with a FACScan/ 
LYSIS II system (Becton-Dickinson), using a 488-nm argon 
laser for excitation and the FL2 channel for detection at 585 nm. 
For each sample, 10,000 cells were counted, in triplicate. Data 
acquired from the triplicate determinations were presented in 
combined single-parameter fluorescence histograms, compar­
ing for each sample the negative control distribution (nonspecif­
ically stained cells) and test distribution (specifically stained 
cells). Cells of interest were identified by light scatter; data 
analysis gates were placed during analysis. In addition, the 
frequency of positive cells in each culture was determined by 
threshold analysis, setting the cut-off value for false positivity 
at 3%. This method may underestimate the positive population 
when there is an overlap between positive and negative distribu­
tions, but allows a semiquantitative evaluation of pVCL-1005 
relative to pVCL-1004. Flow cytometry analysis was per­
formed by Cytometry Sorting Specialities (San Diego, CA). 

Preparation of VCL-1005 for in vivo studies 

VCL-1005 is defined as the formulation consisting of a plas­
mid D N A , pVCL-1005, complexed with the cationic lipid 
D M R I E / D O P E at a DNA/lipid mass ratio of 5:1. VCL-1005 
was prepared for administration by diluting the plasmid D N A 
pVCL-1005 with lactated Ringer's solution to a concentration 
of 1.0 mg/ml. The lyophilized lipid D M R I E / D O P E was recon­
stituted in a single vial with lactated Ringer's solution to a 
concentration of 0.96 mg/ml D M R I E and 1.12 mg/ml D O P E 
and diluted 1:4 with lactated Ringer's to give a final concentra­
tion of 0.192 mg/ml of D M R I E and 0.224 mg/ml D O P E . A n 
equal volume of plasmid D N A at 1.0 mg/ml was mixed by 
gentle vortexing with diluted D M R I E / D O P E to form VCL-
1005. This complex was used immediately for i.v. injection 
into mice. CMVintLux was prepared for injections in the same 
manner as VCL-1005. 

Intravenous administration of VCL-1005 

Plasmid DNA-lipid complexes were prepared as described 
and administered to ICR mice (6 weeks old, Harlan Sprague 
Dawley, San Diego, C A ) as a single i.v. dose of IOO |xl (50 |jig 
of plasmid D N A ) via the tail vein. Three female mice per 
timepoint were used for blood time course studies, and two 
males and two females per timepoint for tissue time course 
studies. 

D N A isolation and analysis 

Mice were sacrificed at the indicated times postinjection and 
exsanguinated by cardiac puncture. Blood was immediately 
mixed with E D T A to a final concentration of 100 roM in mi­
crofuge tubes and frozen in liquid nitrogen. The following 
tissues were then taken for subsequent analysis: bone manow 
(femur), brain, heart, kidney, liver, lung, large intestine, small 
intestine, ovary/testis, spleen, and quadriceps muscle. Each 
tissue was placed in a microfuge tube and immediately frozen in 
liquid nitrogen. Tissues and blood were stored at — 80°C until 
D N A extraction. 

D N A was isolated fi-om blood or tissues by ovemight incuba­
tion at 65°C with 0.5 ml/tube of 0.5 mg/ml proteinase K (Boeh­
ringer-Mannheim, Indianapolis, IN) in 50 m M Tris-HCl pH 
8.0, 100 m M E D T A , 100 m M NaCl, 1 % SDS. Each mixture 
was subsequently extracted two to four times with equal vol­
umes of buffered phenol, and then extracted with chloroform 
one to two times. D N A was precipitated at room temperature 
with 2 volumes of ethanol, pelleted at 12,000 x g in a mi­
crofuge for 10 min, rinsed in 7 0 % ethanol, and dried at room 
temperature in a laminar flow hood. The D N A pellets were 
resuspended in 100 |xl water with 0.1 mg/ml RNase A (Sigma, 
St. Louis, M O ) and incubated at 37°C for 30 min. To remove 
digested R N A , D N A was again precipitated at room tempera­
ture with 2 volumes of ethanol, pelleted in a microfuge for 10 
min, rinsed in 7 0 % ethanol, and dried at room temperature in a 
laminar flow hood. The D N A pellet was rehydrated in 50-100 
\l\ of water. OD260 readings were taken to determine D N A 
concentration. A \-\i,g sample was m n on a 0.8% agarose gel to 
visually confirm concentration of samples. 

Southern blot analysis 

Sample DNA (5-10 |JLg/lane) was separated by electrophore­
sis on 1% agarose in 1 x T A E buffer (Ausubel et al., 1987) at 
35 V ovemight. D N A was transfened by standard Southem blot 
procedures to Genescreen hybridization transfer membrane 
(Dupont N E N , Boston, M A ) using a Posiblot pressure control 
apparahis under conditions recommended by the manufactarer 
(Stratagene, La Jolla, CA). Following transfer and U V cross-
linking of D N A to the filter, membranes were prehybridized for 
15 min to 3 hr in 1 % bovine semm albumin (BSA), 7 % SDS, 
0.5 M NaHP04 pH 7.2, I m M E D T A at 65°C, and were then 
hybridized to the probe at 65°C ovemight. The probe to p C M V ­
intLux was a random-primed ̂ ^P-labeled 1,289-bp Xba l-Eco 
R V fragment of plasmid pRSV-luciferase. The probe to the 
HLA-B7 portion of VCL-1005 was a random-primed ̂ ^P-la-
beled 1,058-bp Bgl II digest fragment. Blots were washed in 
2x SSC, 0.1% S D S at room temperature for 10 min, and then 
in 0.5% BSA, 1 % SDS, 40 m M NaHP04 pH 7.2, 1 m M E D T A 
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at 65°C for 1 hr with multiple changes of buffer (Ausubel etal., 
1987). 

PCR analysis 

Two sets of primers specific to plasmid sequences were made 
to amplify either a junction between the 3' end of the RSV 
promoter and 5' end of HLA-B7, or within the kanamycin 
resistance gene. HLA-Is sense and HLA-3a antisense primers 
produced an amplicon 491 bp in size. Kan Is sense and Kan 3a 
antisense primers amplified a 426-bp fragment. 

HLA I s sense primer 5 '-GCAACATGCCnTACAAG-
GAG-3' 

HLA 3a antisense primer 5'-TAGATCTGTGTGTTCCG-
GTCC-3' 

Kan Is sense primer 5'-GGCAAGATCCTGG-
TATCGGT-3' 

Kan 3a antisense primer 5 '-CGTACTCCTGATGATG-
CATGG-3' 

Primers were end-labeled in a kinase reaction containing 500 
pmoles of oligonucleotide, 250 (xCi (12.5 p,l) [^-^^PJATP (Du-
pont-NEN, >6,000 Ci/mmole), 1 x T4 kinase buffer (70 m M 
Tris-HCl, pH 7.6, 10 m M MgClj, 5 m M dithiothreitol), and 10 
units of T4 kinase (New England Biolabs) in a 50-|i,l reaction 
volume. The reaction was carried out for 30 min at 37°C and 
stopped with I \x,l of 0.5 m M EDTA. 
Hot-start PCR amplification using Ampliwax beads (Perkin-

Elmer) was performed in a Perkin-Elmer 9600 thermocycler 
using the following program: 

1 X 94°C, 3'; 58°C, 110"; 75°C, 45" 
5 X 94°C, 1'; 58°C, 110"; 75°C, 45" 
25 X 94°C, 1'; 58°C, UO"; 75°C, I' 
I X 94°C, 1'; 58°C, 110"; 75°C, 6' 

The final concentrations for all PCR components in a IOO-p,l 
volume were as follows: 200 \iM of each dNTP, 20 pmoles of 
each labeled primer, 1 (xg of extracted genomic DNA, and 2 
units of Tai] Polymerase (Stratagene) in 1 x Taq Polymerase 
buffer (10 m M Tris, pH 8.3, 50 m M KCl, 1.5 m M MgCl2, 
0.01% gelatin). 
PCR reactions were mn on nondenaturing 5.6% polyacryla­

mide gels with IX TBE mnning buffer. Gels were m n at 80 V 
for 14 hr or at 120 V for 7 hr. Twenty percent of the PCR 
reaction was loaded per lane with 1X stop dye. Gels were dried 
and exposed to Fuji R X autoradiographic film. Exposure times 
ranged from 30 min to 3 hr. 

Immunohistochemical analyses 

HLA-B7 expression was analyzed in ICR mouse liver, 
spleen, heart, lung, and kidney tissues using avidin-biotin im­
munoperoxidase staining at 24 hr (n = 4) and 7 days (n = 4) 
following i.v. injection of VCL-1005. Two animals injected 
with pRSV-BL served as negative controls. Anti-HLA-B7 
monoclonal antibody (mAb) BB7.1 or H2K'' m A b SFI-1.1 
(PharMingen, San Diego, CA), were used at a concentration of 
7.14 M.g/ml. Spleen, lymph nodes, and liver tissues from a 

HLA-B7/hP2m double-transgenic mouse were used as positive 
controls and were the generous gift of Dr. Per Peterson (The 
Scripps Research Institate, La Jolla, CA). Samples were em­
bedded in O.C.T. (Tissue Tek, Elkhart, IN) and frozen in liquid 
nitrogen. Serial sections (6-8 fjim) from two randomly selected 
areas of tissue were cut with a cryostat microtome, air-dried on 
glass slides at room temperature for 30 min, fixed in acetone for 
15 sec at -20°C, and stored at -70°C. All subsequent steps 
were performed at room temperature. Liver tissue sections were 
treated with avidin/biotin blocking kit as described by the man­
ufacturer (Zymed, South San Francisco, CA). Adjacent sec­
tions from each sample were incubated in 1% normal rabbit 
serum in PBS for 15 min to block nonspecific binding, and then 
incubated with biotinylated anti-HLA-B7 m A b or anti-H-2k'' 
m A b for 1 hr. After three 5-min washes in PBS, 4 p.glmi 
peroxidase-conjugated streptavidin (Jackson ImmunoResearch 
Labs, West Grove, PA) was applied for 30 min. After another 
wash, the peroxidase staining was developed using an A E C 
chromogen kit (3-amino, 9-ethyl carbazole, Biomeda, Foster 
City, CA) as recommended by the manufacturer. Sections were 
then counterstained with Mayer's hematoxylin (Zymed), 
washed in tap water, and mounted with Aqua-mount (Lemer 
Laboratories, Pittsburgh, PA). 

R E S U L T S 

Three plasmids were chosen for this study, pCMVintLux, 
pVCL-1004 and pVCL-1005 (Fig. 1). The first, pCMVintLux, 
contains the gene encoding firefly luciferase under the control 
of the C M V promoter. The second, pVCL-1004, contains the 
HLA-B7 heavy-chain cDNA under the control of the RSV 3' 
LTR promoter and has been shown to express its gene product 
in transfected tumor cells in vivo (Nabel et al., 1993). The 
third, pVCL-1005, is a modified version of pVCL-1004 de­
signed to enhance expression of the M H C class I antigen HLA-
B7. It contains two cDNAs transcribed as a single mRNA: 
HLA-B7 heavy chain plus chimpanzee P2m light chain, under 
the control of a single RSV promoter (see Materials and Meth­
ods). The peptide sequences of chimpanzee and human P2m are 
identical (Suggs etal., 1981). The Pjm light chain is necessary 
for the complete M H C class I molecule to be expressed on the 
cell surface (Williams et al., 1989). HLA-B7 is a M H C class I 
molecule which, if seen as allogeneic, may stimulate tissue 
rejection by identifying expressing cells as foreign to a nonex­
pressing host. Plasmid maps of pCMVintLux, pVCL-1004 and 
pVCL-1005 are shown in Fig. I. 

Expression in cultured cells 

Prior to in vivo analysis, HLA-B7 cell-surface expression 
from pVCL-1004 and pVCL-1005 was initially assessed in 
vitro in transfected L293 embryonal kidney cells 02™"^) and 
UM-449 melanoma cells (Pzm"). Expression was analyzed by 
flow cytometry using fluorescence-labeled secondary antibod­
ies. The P2m"^ L293 cells express endogenous HLA-B7 on the 
cell surface, as demonstrated by fluorescence on cells trans­
fected with the negative control plasmid, pRSV-LacZ (Fig. 
2A). However, transfection of L293 cells with plasmid pVCL-
1004 (HLA-B7 only. Fig. 2B) or with pVCL-1005 (HLA-B7 
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pCMVintLux 

7632 bps Xbal 

Bglll 

and P2m, Fig. 2C) enhanced H L A - B 7 expression, as indicated 
by the population of cells that have greater fluorescence inten­
sity. Transfection with pVCL-1005 appeared to generate about 
1.5-fold more H L A - B 7 positive cells than transfection with 
pVCL-1004. 

To test the difference between bicistronic expression of 
H L A - B 7 heavy chain plus P2m light chain and monocistronic 
expression of H L A - B 7 , 3 2 ™ " UM-449 melanoma cells were 
transfected with either pVCL-1005 or pVCL-1004. pRSV-
LacZ transfection served as a negative control with which cells 
appeared to have little detectable expression of H L A - B 7 (Fig. 
2D). Transfection with pVCL-1004 generated only low levels 
of H L A - B 7 expression (Fig. 2E). However, transfection with 
pVCL-1005, containing genes encoding both H L A - B 7 and 
P2m, elicited an increase in detectable levels of H L A - B 7 cell-
surface expression (Fig. 2F). The antibody to H L A - B 7 is spe­
cific for the complete M H C class I molecule, including both 
light and heavy chains. Thus, the inclusion of the Pjm gene in 
the H L A - B 7 expression vector resulted in increased H L A - B 7 
expression in cells which otherwise appear deficient in the 
expression of this protein. 

Pharmacokinetics of plasmid in blood 

Following the detection of efficient cell surface expression in 
vitro of H L A - B 7 from the pVCL-1005 constmct, experiments 
were carried out to determine the systemic distribution of plas­
mid D N A following i.v. tail injections in mice. A n immune 
response, while desirable in the tumors to which the plasmid is 
targeted, could inadvertantly be elicited against normal tissues 
should the plasmid be expressed indiscriminantly throughout 
the body. Thus, a phjumacokinetic analysis of plasmid D N A in 
blood following i.v. injection was conducted using Southem 
blot analysis. Range-finding studies were initiated witb the i.v. 
administration of 50 pg of pCMVintLux plasmid D N A , pre­
dominantly supercoiled, complexed with D M R I E / D O P E . Total 
D N A was isolated from blood at 1, 5, 15, 30, and 60 min 
postinjection and analyzed by Southem blot. The results indi­
cated that supercoiled plasmid was not present, and that intact 
Unear and relaxed circular plasmid forms were detected, but 
rapidly diminished between 1 and 30 min postinjection (Fig. 
3A). Over the time course analyzed, the probe hybridized to 
material migrating faster than intact plasmid that gave the ap­
pearance of a smear on the blot. This indicated homologous but 
degraded plasmid sequences migrating at molecular weights 

FIG. 1. A. Plasmid map of pCMVintLux. The cytomegalo­
vims immediate early gene promoter/enhancer and intron A 
control the c D N A encoding firefly luciferase (Lux). B. Plasmid 
map of pVCL-1004. The R S V - L T R promoter drives expression 
of the c D N A for H L A - B 7 . C. Plasmid map of pVCL-1005. The 
R S V - L T R promoter drives expression of 2 c D N A s , H L A - B 7 , 
and P2m. The two genes are separated by an intemal ribosomal 
entry site (IRES), which permits coexpression of the two genes 
from a single promoter in eukaryotic cells. SV40 int p(A), 
SV40 small t intron and polyadenylation signal; b G H p(A), 
bovine growth hormone transcription terminator and polyade­
nylation signal; amp, p-lactamase gene; kan, aminoglycoside 
phosphotransferase gene. 
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H L A - B 7 expression by flow cytometry following indirect fluorescent staining. Data acquired from the triplicate measurements of 
10,000 cells are presented in combined single-parameter fluorescence histograms, comparing for each sample the negative control 
distribution (nonspecifically stained cells) and test distribution (specifically stained cells ) as defined in Materials and Methods. 
Cell n u m b e r is s h o w n on the y axis, and relative fluorescence intensity is s h o w n on the x axis. In each panel, the nonspecific 
(negative control) distribution is represented by the curves with the highest peaks, while specifically stained cells are represented 
by the curves shifted to the right or displaying deviation from the normal distribution. Greater shifts to the right indicate greater 
fluorescence intensities; m o r e complete separation between the negative and the positive distributions is an indication of a higher 
frequency of positive cells. A and D. Data from cells transfected with p R S V L a c Z D N A . B and E. Data from cells transfected with 
p V C L - 1 0 0 4 , containing the gene for the H L A - B 7 heavy chain only. C and F. Data from cells transfected with p V C L - 1 0 0 5 , 
containing the genes for both H L A - B 7 and the P j m light chain. 
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FIG. 3. Southem blot time course of plasmid in blood after intravenous injection. Following intravenous administration of 50 p-g 
of plasmid D N A complexed with lipids, whole blood from three female ICR mice was isolated at each of the indicated times 
postinjection and D N A extracted. Five micrograms of each sample were separated on a 1 % agarose gel. The transferred blot was 
probed witb a random primed ^^P-labeled plasmid fragment. A. pCMVintLux injected. B. VCL-1005 injected, neg., negative 
control uninjected mouse blood D N A ; pos., positive control uninjected mouse blood mixed with supercoiled plasmid D N A 
complexed with lipids, and then extracted; S, supercoiled plasmid; L, linear; R, relaxed. 

lower than intact plasmid. The rapid appearance of this low-
molecular-weight material showed that injected D N A was un­
dergoing degradation within minutes. While degraded plasmid 
D N A sequences remained detectable at 30 min postinjection, 
the smear virtually disappeared from Southem blots by 60 min. 
As a positive control, supercoiled plasmid D N A was added to 
blood in vitro, immediately frozen, and extracted witb the rest 
of the samples (Fig. 3A). This positive control showed that 
even brief exposure to blood resulted in the immediate conver­
sion ofthe supercoiled plasmid to relaxed and linear forms. The 
results demonstrate that i.v. administered supercoiled plasmid 
D N A was immediately subjected to degradation, probably from 
nucleases present in the semm. Degradation or tissue entrap­
ment led to the disappearance of most of the plasmid from blood 
within 1 hr, as assayed by Southem blot. 

Consistent with the results of the above experiments using pC­
MVintLux, pVCL-1005 was found to be rapidly degraded follow­
ing i.v. administration (Fig. 3B). The half-life ofthe intact (linear 
or relaxed circular) plasmid was less than 5 min, although de­
graded material was seen up to the 30-min timepoint. By 60 min, 
no H L A - B 7 hybridizable D N A was detected by this method. The 
consistency between results indicated that the rapid disappearance 
of plasmid D N A firom blood was independent ofthe sequence. 

Pharmacokinetics of plasmid DNA in tissues 

To detennine the fate of plasmid taken up by tissues, a 
pharmacokinetic analysis of plasmid in tissue was conducted 
following i.v. administration of either CMVintLux (data not 
shown) or VCL-1005. Total D N A was isolated from bone mar­
row, brain, heart, kidney, liver, lung, large intestine, small 
intestine, ovary/testis, spleen, and muscle at timepoints ranging 

between 5 min to 6 months postinjection. At the earliest time 
point (5-10 min), intact linesu and relaxed circular plasmid 
D N A was detected in all tissues by Southem analysis (data not 
shown). Because the animals were not perfused prior to isolation 
of tissues, this detectabihty was due, in part, to residual plasmid 
circulating in the blood. The highest level of residual plasmid was 
detected in the heart, kidney, liver, lung, and spleen, which are 
highly vascularized tissues. However, within 1 hr, plasmid D N A 
was detected mainly in the bone marrow, beart, kidney, liver, 
lung, spleen and muscle, but not detected in the brain, large 
intestine, small intestine and ovaries. Data from individual female 
mice is shown for VCL-1005 in Fig. 4A, with results that were 
identical to pCMVintLux. Results were also consistent with simi­
lar tissues in male mice. Plasmid D N A remained detectable by 
Southem blot for up to 24 hr postinjection, with the highest signal 
intensities found in the same tissues as at 1 hr postinjection (Fig. 
4B). However, the exposure times for the autoradiograms were 
about 17 times longer with the 24-hr postinjection samples than 
with the 1-hr postinjection samples. Intact plasmid D N A remained 
detectable in tissues at 24 hr postinjection. 

Southem analyses of 7-day postinjection samples of pVCL-
1005 did not reveal any intact plasmid in tissues (Fig. 4C), as 
compared to the linearized positive control plasmid m n in par­
allel. The nonspecific hybridization seen near the top ofthe blot 
was likely due to hybridization of mouse genomic D N A by the 
highly homologous human H L A - B 7 probe, a consequence of 
long exposures of the autoradiogram. This hybridization was 
also seen in D N A from negative control mouse tissues (lactated 
Ringer's injected animal) in Fig. 4C, and therefore was not due 
to integration of plasmid into genomic D N A . The Southem blot 
technique has a sensitivity limit of about I pg of plasmid D N A , 
assuming the signal is in one band. Since 10 |Jig/lane of total 
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plasmid plasmid 

7 days negative mouse plasmid 

FIG. 4. Southem blots of tissue D N A following intravenous injection of VCL-1005. Following intravenous administration of 50 
|xg of plasmid D N A complexed with lipids, D N A from ICR female mice tissues was isolated at each of tbe indicated times 
postinjection. Results were consistent with similar tissues in male mice. Ten micrograms of each sample were separated on a 1 % 
agarose gel. The transfened blots were probed with a random primed ̂ ^P-labeled fragment of the H L A - B 7 gene. Positive control 
was plasmid D N A mixed into negative mouse genomic D N A . S, Supercoiled plasmid; L, linear; R, relaxed. A. 1-hr postinjection. 
B. 24 hr postinjection. C. 7 days postinjection and uninjected. 

genoinic D N A was analyzed, detection of 1 pg would represent 
0.15 copies of plasmid per genome. 

PCR analyses 

To detect levels of plasmid that were less than 1 pg, samples 
collected later than 24 hr postinjection were analyzed by PCR. 
P C R analysis was conducted using tissue samples collected 7 
days, 28 days, and 6 months posfinjection. ̂ ^P-labeled, plas­
mid-specific primers were chosen to amplify either the junction 

between the R S V promoter and H L A - B 7 heavy-chain gene, or 
within the kanamycin resistance gene. P C R was quantitated by 
comparing the band intensities of the samples to plasmid stan­
dards m n in parallel in a 32-cycle reaction. Although Southem 
analyses indicated that no intact plasmid D N A was present in 
tissues tested at time points beyond 24 hr, P C R results show the 
presence of plasmid sequences in all tissues at 7 and 28 days 
postinjection (Fig. 5). At 7 days, the samples that amplified to 
the greatest extent were the marrow, heart, kidney, liver, lung, 
spleen, and muscle. These same tissues were the ones in which 
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F I G . 5. P C R on extended timepoint postinjection tissue samples. Following intravenous injection of 50 p g of V C L - 1 0 0 5 , 1 (Jtg 
of genomic D N A from the indicated tissues was amplified by P C R containing ^^P-labeled primers specific for the plasmid. 
Samples were separated on a nondenaturing 5 . 6 % polyacrylamide gel. Seven-day, 28-day, and 6-month postinjection results are 
shown. C. Negative control tissue D N A ; M , male; F, female. Lanes designated as negative are P C R products from uninjected 
tissue D N A . Standards are P C R products from purified plasmid amplified in 1 p,g of negative genomic D N A . 
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FIG. 6. Anti-HLA-B7 immunostaining of mouse tissues. Positive-control HLA-B7 heavy-chain/hP2m double transgenic mouse 
spleen (A) or liver (C) tissue were stained for HLA-B7 using the BB7.I monoclonal antibody. Note extensive pericellular 
orange-yellow peroxidase staining. Spleen (B) and liver (D) tissues from ICR mice collected 24 hr following i.v. injection of 
VCL-1005 and stained with BB7.1 m A b were negative forHLA-B7 expression. 
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Southem blots detected the greatest amount of plasmid at earlier 
timepoints. The range of residual plasmid, as estimated from 
band intensities, was 1 fg/|Ag sample in the brain, intestines, 
and gonads, to about 64 fglpg sample in the marrow, heart, 
liver, spleen, and muscle, representing approximately 250-
16,000 copies/Jig genomic D N A . 
By 28 days, marrow, heart, kidney, liver, lung, spleen, and 

muscle still had the greatest amounts of amplifiable plasmid, 
although positive bands could be detected in all samples upon 
long autoradiographic exposure. The largest decrease from the 
7-day samples appeared to be in the liver, and the smallest 
decrease in the lung. All 28-day tissues, with the exception of 
the lung, had less intense bands than the 7-day samples. The 
range of residual plasmid had diminished to less than 500 aglpg 
in the brain, liver, intestines, and gonads, and to about 16 fg/(jLg 
genomic D N A in the manow, heart, lung, and spleen. These 
amounts represent as much as a 128-fold decrease from the 
7-day level, equiv2dent to about 125-4,000 copies/|jLg of ge­
nomic D N A . In a mouse haploid genome of 3 x 10' bp, this 
represents about 0.0015-0.096 copies/genome at 7 days, and 
about 0.0008-0.024 copies/genome at 28 days. Variability ex­
isted within the equivalent tissues among different animals, but 
the level of plasmid was at or below the level of 100 fg/p-g 
genomic D N A in all samples by 28 days. At 6 months postin­
jection, pVCL-1005 plasmid was detected predominantly in 
muscle, at approximately 2-8 fg/|xg genomic D N A , or about 
0.012 copies/genome (Fig. 5). Because of background and vari­
ability, we could not discem if tissues had fewer than O.CK304 
copies/genome. 

Immunohistochemistry 

To determine if the plasmid remaining in the tissues was 
being expressed, immunohistochemical analyses were carried 
out on the tissues that retained the greatest amount of plasmid 
after i.v. administration of VCL-1005, specifically the heart, 
kidney, liver, lung, and spleen. The specificity ofthe HLA-B7 
antibodies used in the present study was determined by immu­
nostaining sections from tissues of HLA-B7 heavy-chain/hP2m 
double transgenic mice. Spleens from these double transgenic 
animals exhibited very strong pericellular HLA-B7 staining 
(Fig. 6A) and livers were moderately stained (Fig. 6C). In 
contrast, no HLA-B7 immunostaining was seen in any of the 
heart, kidney, lung (data not shown), spleen, and liver (Fig. 
6B,D) tissues collected from mice I and 7 days after injection 
with VCL-1005. Therefore, despite the fact that the heart, kid­
ney, liver, lung, and spleen contained some ofthe highest levels 
of intact pVCL-1005 plasmid D N A by Southem and P C R anal­
yses at 1 and 7 days, none of these tissues was positive for 
HLA-B7 expression. 

D I S C U S S I O N 

The consequence of direct intratumoral plasmid DNA injec­
tion may be the inadvertant introduction of D N A into other 
tissues via the bloodstream. Using plasmids encoding either a 
reporter gene or a complete M H C class I molecule, it was 
demonstrated that most of the plasmid D N A administered i.v. 

was rapidly degraded and cleared from blood within minutes 
and from tissues within hours of administration. The most sig­
nificant decrease in detectable plasmid occurred during the first 
hour following injection. 

Although the predominant plasmid conformation present in 
the DNA-lipid complex prior to injection was supercoiled, the 
only detectable intact forms in either the blood or tissues after 
injection were linear and relaxed circular D N A . Plasmid D N A 
was apparently subjected to s e m m nucleases in the blood al­
most immediately upon i.v. injection. The half-life of intact 
plasmid in blood was less than 5 min. By Southem blot analy­
ses, intact plasmid was present in blood as long as 15 min 
postinjection, but only degraded plasmid was present at 30 min. 
By 60 min, even the degraded material had been cleared from 
the blood, and there was no detectable retention of intact plas­
mid D N A by Southem blot analysis (sensitivity limit = 1 pg). 

Specific tissues retained plasmid D N A immediately after i.v. 
injection, but the amount greatly diminished in all tissues 
within hours. One hour after i.v. administration, plasmid D N A 
was detected predominantly in the lung, spleen, liver, heart, 
kidney, marrow, and muscle. By Southem analysis, there was 
no detectable plasmid in the brain, large intestine, small intes­
tine, or gonads at the 1-hr timepoint. Southem analysis also 
demonstrated that plasmid D N A remained in the liver, spleen, 
lung, manow, and muscle, although at diminished levels, up to 
24 hr postinjection. At the 7- and 28-day timepoints, which 
could only be analyzed with the increased sensitivity of PCR, 
there was detectable plasmid in all tissues examined. However, 
most of the residual plasmid was detected in the same tissues as 
had been previously determined by Southem blot analysis. P C R 
analysis at the 6-month timepoint revealed that only muscle had 
any significant levels of plasmid above background. These re­
sults demonstrated that the amount of plasmid D N A remaining 
in the tissues following i.v. injection of 50 |xg plasmid drops 
significantly with less than 0.15 copies/genome within 24 hr, 
less than 0.096 copies/genome at 7 days, less than 0.024 copies/ 
genome at 28 days, and less than 0.012 copies/genome at 6 
months. 

Occasionally, plasmid D N A was detected in tissues other 
than the manow, heart, kidney, liver, lung, spleen, and muscle 
in animals beyond the 28-day timepoint (data not shown). 
These findings were variable among animals and among differ­
ent experiments, and probably represent contamination. Longer 
autoradiographic exposures at each timepoint revealed that all 
tissues amplified at very low levels of approximately 0.0003-
0.0004 copies/genome. These results were frequently indistin­
guishable from negative controls and thus were considered 
background. This low level may also represent nonspecific 
amplification from mouse genomic D N A , or variable low-level 
retention of plasmid in mouse tissues. 

Although the amount of plasmid in the 6-month muscle sam­
ples appeared to be greater than in the 28-day samples, this does 
not represent an accumulation of plasmid in the muscle. More 
likely explanations are that variability exists among animals 
from different experiments, and that the P C R quantitation is 
only an estimate. Because skeletal muscle is one ofthe tissues 
that can be transfected in vivo upon direct intramuscular (i.m.) 
injection (Wolff era/., 1990, 1991; Acsadi era/., 1991;Jiaoer 
al., 1992; Davis et al., 1993a,b), and plasmid D N A can be 
detected for greater than 1 year following direct i.m. injection. 
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the continued presence of intact plasmid in muscle might be 
expected following i.v. injection. 

While it was clear that some plasmid D N A was detectable by 
P C R for at least 6 months postinjection, there was no detectable 
HLA-B7 protein expression at earlier timepoints in tissues 
where the plasmid was observed to accumulate and when max­
imal expression was expected. Since immunostaining analysis 
is relatively insensitive compared to PCR, further studies on 
m R N A transcript levels following i.v. plasnud injection will 
need to be addressed. The observation that HLA-B7 protein 
expression levels were too low to be detected by immunostain­
ing may suggest that levels were likely to be too low to elicit an 
immune response when administered systemically. Addition­
ally, luciferase assays of mouse tissues following i.v. p C M V ­
intLux injection did not result in luciferase expression in any 
tissues (unpublished observations). 

In the present stady, we have used a bicisttonic plasmid, 
pVCL-1005, in which the cD N A s for HLA-B7 and P2m are 
under conttol of a single R S V promoter. The utility of this gene 
combination is demonsttated by higher M H C class I expression 
levels obtained when using this plasmid to transfect cells in 
vitro compared to using a plasmid encoding the HLA-B7 heavy 
chain alone. The plasmid pVCL-1005, which encodes both 
HLA-B7 heavy chain and Pjm light chain, appeared to increase 
HLA-B7 surface expression in cells which contain low levels of 
endogenous P2m. Additionally, even in cells that express en­
dogenous P2m, such as L293 cells, HLA-B7 expression levels 
increased following transfection with pVCL-1005. 

Current injection technology does not permit exclusive trans­
fection of tumor tissue. However, histological analyses of the 
Uver, spleen, heart, and lung at timepoints at which peak ex­
pression was expected, did not reveal expression of HLA-B7 
protein. It is possible that the expression levels were below the 
limit of detection with this technique. In vivo expression of this 
plasmid has been shown indirectly in BALB/c mice, which 
gave rise to antibodies to both heavy and light chains of the 
HLA-B7 protein following direct i.m. injection pVCL-1005 
(unpublished observations). However, in a companion safety 
study, none of the animals that received an i.v. administration 
of VCL-1005 exhibited signs of autoimmune attack (see accom­
panying paper by Parker et al.). 

The intravenous injection of D N A with cationic lipids has 
been reported previously to result in expression of a chloram­
phenicol acetyltransferase (CAT) reporter gene product in many 
mouse tissues 48 hr postinjection (Zhu etal., 1993). Moreover, 
these investigators were able to detect plasmid D N A sequences 
by P C R 63 days postinjection in lung, heart, and spleen. Al­
though the P C R results from the present study were consistent 
with D N A detection results in terms of plasmid localization, 
expression of plasmid encoded HLA-B7 was not found in tis­
sues following i.v. administtation of VCL-1005. Future inves­
tigations should elucidate the contributions made by factors 
such as m R N A and protein stability to the levels of protein 
expressed in vivo (Ledley and Ledley, 1994). 

This stady represents the first systematic in vivo pharmaco­
kinetic stady of intravenously injected D N A complexed with 
cationic lipids and was presented in support of ongoing clinical 
trials. It is relevant to many cunent and future gene therapy 
trials utilizing direct injection of plasmid D N A and should 
facilitate understanding of the safety of this procedure. 
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