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INTRODUCTION

Apparently the factor of safety is meant to account for all
the variables which are known to affect the stress and strength of the
member. The utilization of a factor of safety of this kind has justifi-
cation only when its value 1s based on considerable experience, with
parts not too different from the one under consideration. However, when
substantial changes in the geometry, the processing, or the function of
the part are contemplated, a major error may result if the old factor of
safety 1s projected to the new set of conditions.

This can be illustrated by the problem of automotive axle
shafts which, in the past, have been failing in service in large numbers.
These shafts have been fabricated from a steel with a tensile strength
of 240,000 psi, and yet, the operating stresses as measured in actual
service were found to be only 15,000 psi. This produced an apparent
factor of safety of 240,000/15,000 = 18.5 This is obviously a fictitious
value, since the shafts were failing in service, and the true factor of
safety was less than one. The explanation lies in the fact that axle
strength to be compared with the 15,000 psi operating stress should
not have been the ultimate strength of the material (240,000 psi) but
the fatigue strength corresponding to the surface firnish of the shafts,
the mode of loading to which the shaft was subjected, etc. When the
ultimate strength was reduced by these derating factors the resultant
value was found to be 12,000 psi. This strength, when compared with
the 135,000 psi stress produced the realistic factor of safety of 0.9.

Examples such as this lead to the next phase in the
relationship between stress and strength, namely to the concepts

of a significant stress and a significant strength. By significant
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stress is meant the actual stress imposed on the part and it may in-
clude the effect of stress raisers, magnification dvue to impact loading,
residual stresses, etc. By significant strength is meant the actual
strength of the part in its fabricated form, under actual operating con-
ditions. A rational approach to significant strength still employs
ultimate strength as the basis. However, instead of an indiscriminate
grouping of all the factors affecting the ultimate strength into one
index, it attempts to evaluate quantitatively the effect of each individual
factor pertaining to the part and the conditions under consideration.
The result is a value which is strictly applicable to the part under
consideration and to the set of loading conditions to which the part is
subjected in service.

These concepts of significant stress and significant strength
represent a major step toward a more realistic prediction of the prob-
ability of failufe and, as such, they have been included in the present
investigation. By themselves, however, they are not sufficient. This
is because the prevailing practice is to use the mean values of the
calculated strength and stress, ignoring the natural scatter that
stresses and strengths may have.

The variability in these two factors results in the existence
of a statistical distribution function of stress and strength and is
the heart of the Interference Theory. Thus, for proper prediction of
the probability of failure, an estimate must be made of both the mean
value and the dispersion characteristics of both the strength distribu-

tion and the stress distribution.
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The strength of the part, as all properties of non-homogeneous
materials, varies from specimen to specimen, in view of the variation in
hardness, surface finish, degree of stress concentration, etc. The
operating stress imposed on the part varies too. These stresses vary
from time to time in a particular part, from part to part in a particular
design, and from environment to environment. Therefore, both the mean
value and the dispersion characteristics of stress and strength must be
determined.

Once these distributions are found, probability of failures
can be computed from the interference area. Means of determining these
distributions and the resultant interference represent the objectives

of the present investigation.



STRESS/STRENGTH INTERFERENCE

Suppose there are two barrels containing slips of paper, each
having a number printed on it. The numbers in barrel Y are distributed
according to distribution Y , as in Figure 1, and the numbers in barrel
X are distributed according to distribution X . If, at random, slips
of paper from each barrel are selected and paired, they may be classified
into successes and failures. A success is constituted by a strength value
exceeding a stress value, as for example, when X; >y . Failure will
occur if xo < yp as shown. It will be noted that, although the shaded
area is a measure of interference, it is not interference itself: a pair
of points x5 and Y3 although in the shaded area, will not produce
failure. By continued pairing of stresses and strengths, at random, pairs
will be found where the stress will exceed the strength. By continued
experimentation a good estimate of the probability of interference can
be found.

Most studies have assumed both the stress and the strength
distribution to be normal. This is a natural assumption to make in order
to solve a practical problem, as no work was found in literature dealing
with an analytical expression for two interference distributions when
they are not normal.

When the stress and strength distributions are assumed to be
normal the probability of interference (and, therefore, failures) is the
area under the standardized normal curve corresponding to the value of

*
standardized normal variate, 2z , determined from the equation:(l)

y - bxl ()
JE - %

* Numbers in parentheses designate References at end of paper.

VA =

L
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where
L= mean stress
J
Wy, = mean strength
0° = stress variance
Y
2

= strength variance

Q
>
!

The value of interference corresponding to the value of =z (computed

from Equation (1)) can be obtained from Table I of  vs &1

where
o = probability of interference (failures)
K = 2z
67

For example if 2z = 1.96 then from Table I, for K, = 1.9 , the
interference = .025, that is percent failure = 2.5%.

So far the discussion has been limited to the cases when both
the stress and strength distributionscan be assumed to be normal. In
cases when either one or both are not normal the problem is much more
involved. For example, the intersection of a normal and a log-normal
distribution produces a distribution of an unknown origin.

In the past, problems such as this were solved largely through
a "brute force'", by a Monte-Carlo technique. Essentially, Monte-Carlo
method consists of a sophisticated means of randomly selecting a sample
from one distribution and comparing it with a sample taken from a
different distribution. This is accomplished with the aid of tables
of Random Numbers. The resultant paired data are plotted as a
cumulative density function on a normal probability, Weibull, etc.

paper and percent interference is read from the graph.



Tabulation of the values of « versus

Normal Curve.

-7

TABLE I

Normal Distributionl

Ka for the Standardized

2/
00 -7 2
a=P(z>K,) = L e dz
K 2n
04
= Area under the Standardized Normal Curve
from z = Ka to 2 = w
/[‘\]\
?_‘/
0o Ky
- vA »

Ky .00 .01 .02 .03 Lok .05 .06 .07 .08 .09
0.0 .5000 .4960 .4g920 4880 .48LO L4801 L4761 JL7o1l k681 LL6L1
0.1 4602 4562 4522 JLWB3 Lhh3 hbolk L 436hk 4325 U286 L LoL7
0.2 4207 4168 4129 L4090 .4052 L4013 .397h .3936 .3897 .3859
0.3 .3821 .3783 .3745 3707 .3669 .3632 3594 3557 .3520 3483
0.4 .34k6 3409 L3372 L3336 .3300 L3264 3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .,2946 .2912 .2877 .284% ,2810 .2776
0.6 2743 ,2709 .2676 .2643 ,2611 .2578 .2546 ,2514% .2483 2451
0.7 .2420 .2389 ,2358 .2327 ,2296 ,2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .203%3 .2005 .1977 .1949 ,1922 ,1894 ,1867
0.9 .1841 ,1814 ,1788 .1762 .17% .1711 .1685 .1660 .163%5 .1611
1.0 .1587 .1562 .1539 ,1515 .1h92 1469 ,1kk6 .1423 .1bol L1379
1.1 .1357 .1335 .13k ,1292 .1271 .,1251 .12%0 .1210 .,1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 ,1020 .100% .0985
1.3 .,0968 ,0951 .0934% .0918 .0901 .0885 .0869 .,085% ,08%8 .0823
1.4 .0808 .0793 .0778 .0764% .07T49 .0735 .0721 .0708 .0694% .0681
1.5 L0668 .0655 .0643 ,0630 .0618 .0606 .0594% ,0582 .0571 .0559
1.6 .0548 ,0537 .0526 ,0516 .0505 ,0495 .o4B5 ,0475 .0kES L0455
1.7 L0446 .0M36 .ob27 0418 .0LO9 .0kO1l .0392 L0384 .0375 .0367
1.8 .0359 .,0351 .034k ,0336 .0329 .03%22 .03k ,03%07 .0301 .029k
1.9 .0287 .0281 .027hk 0268 .0262 .,0256 ,0250 L0244 ,0239 ,0233
2,0 .0228 ,0222 ,0217 .0212 ,0207 .0202 ,0197 .0192 .0188 .0183
2.1 .017S9 .0174 .0170 .0166 .0l62 .0158 .0154% ,0150 .0146 .0143
2.2 ,0139 .,013 .013%2 .0129 ,0125 ,0l22 ,0l19 .0116 .0113 .011l0
2.3 .0107 .0104% .,0102 .00990 .00964% .00939 .00914% .00889 .00866 .00842
2.k .00820 ,00798 .00776 .00755 .00734 0071k 00695 00676 .00E57 .00639
2.5 .00621 .0060% .00587 .00570 .00554 ,005%9 ,00523 .00508 0049k ,00L8O
2.6 .00466 00453 .00kLO ,00427 .00415 .00402 ,00391 ,00379 00368 .00357
2.7 .00347 ,00336 ,00326 ,00317 .00307 .00298 ,00289 ,00280 .00272 .0026k
2.8 .00256 .00248 ,00240 .00233 ,00226 ,00219 .00212 .00205 ,00199 ,001.93
2.9 ,00187 .00181 .00175 .00169 .00164 ,00159 .00154 ,00149 00144 ,00139




In the present investigation a method of Integrals was used
in preference to the Monte-Carlo technique. This method involves
determining the expression resulting from the interference of the two
distributions under consideration and establishing percent interference
from this integral.

The advantages of the Integral method are:

1. For some distributions the integrals have been already

tabulated and percent interference can be read
directly from the table.

2. In those cases where the integrals have not been already

tabulated, they can be evaluated by numerical analysis
as done in the present investigation
3. The major shortcoming of the Monte-Carlo technique is
that it requires a very large sample size for any accuracy.
This shortcoming is avoided when the Integrals are used.

4, One of the objectives of the present study was to develop
and evaluate an analytical expression for interference of
any two distributions. Such expression is possible when
the method of Integrals is used, but not when Monte-Carlo
technique is employed.

When the two distributions are normal the interference can be
simply expressed by a z-distribution, as described before. From an
extensive survey of literature no work was found dealing with the analytical
expression when the two interfering distributions are not normal. The
purpose of this phase of the investigation, then, was to develop and
to evaluate the complex integral resulting from the two non-normal

distributions.
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For reasons stated, the method of Integrals was chosen and
an analytical expression was developed for the general case of two
interfering distributions.2> This would include cases such as Weibull-~
Weibull, Weibull-Normal, Normal-Normal, Exponential-Exponential, etc.
It was then necessary to find the way of solving the complex integrals
expressing such interferences. Numerical analysis was carried out
using IBM 7090 Computer with MAD language to solve these integrals.
Tables were then prepared for the interference as a function of the
distribution parameters. (See Reference 2)

These tables include the combinations:

Stress Distribution Strength Distribution
Normal Weibull
Weibull Weibull

because Normal and Weibull are the distributions most frequently found
in actual engineering practice. The reason for choosing Weibull as
the strength distribution for the two cases was that strength data,
particularly fatigue strength data,can be more conveniently expressed

in terms of the Weibull parameters (X , ©, b) than Normal parameters

o
(u, o) . It was felt that this restriction would not apply to the

stress distribution.

STATISTICAL DISTRIBUTION OF STRENGTH - Since fatigue strength
represents the major interest in the engineering application of the
Interference Theory, this problem was studied in some detail.
Statistical distribution of the fatigue strength of a mechanical com-
ponent is a function of a number of factors, such as type of loading,

surface finish, stress concentration, heat treatment, temperature,
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processes, and time. Fach shows variability which is characterized by
some form of a distribution. The effects of these factors on the
statistical distribution of strength were studied in the present inves-

tigation.

CONVERSION OF LIFE DATA TO STRENGTH DATA - Most fatigue testing
involves subjecting a number of specimens or parts to the same stress
and repeating this process at various stress levels. The data thus
obtained, known as life data, are used to construct the conventional S-N
diagram. In this case, the scatter obtained is the scatter in life at
a given stress. In the present investigation the attention was focused
on the nature of the scatter in the fatigue strength at a given life.

To obtain such data it is necessary to fatigue test all the specimens
with different stresses imposed on them in such a& manner that all would
fail at a predetermined life. Practically, this is impossible. Another
method is Strength Response Tesé2)which in the present investigation was
found inapplicable because of scarcity of the required data. Therefore,
the following method, described below, was chosen.

The fatigue life data were obtained for various materials
under various conditions. These data were then plotted on the con-
ventional S-N diagram. Here, it is assumed that to each specimen of
the population can be attributed an individual S-N curve, and that there
exists for any population of specimens (at fixed test conditions) a
family of non-intersecting S-N curves, which can be determined with any
desired accuracy, each curve corresponding to a given probability.

Average S-N curve is then fitted to all the test points on
the S-N diagram using the least square method. Passing through each

test point draw S-N curve parallel to the average S-N curve., These will
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make a family of S-N curves (Figure 2). Now if the fatigue strength
distribution at N = Ny 1life is required, draw a vertical line at

N = N; intersecting the family of S-N curves. These points of inter-
sectlon 5, Sp, ... represent a sample from the strength distribution

o)

at a desired life. The data are then plotted on the probability paper
as a cumulative distribution function to determine the strength distribu-
tion. In this study Weibull distribution was adopted.

The Weibull distribution is of great usefulness in the analysis
of fatigue data. The utility and value of the Weibull distribution re-
sults from the fact that it covers a considerable variety of distribu-
tion patterns and data which fit any of these pattems plots as a straight
line on special graph paper, known as Weibull probability paper. Although
the Weibull distribution provides a versatile means for describing the
life characteristics, it can also be used for describing the mechanical
properties, such as fatigue, tensile and rupture strengths studied in
the present investigation.

The Weibull equation is a three parametric mathematical function

having x as a variable. The general expression for the Weibull density

function is;

x-Xo b
X=X . b-1 20
Flx) = 2 (L9 e ) (2)
0-Xo ©-Xg
XoSX_<_°°

and the general expression for the cumulative distribution function is:
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Figure 2. S-N Diagram for Converting Life Data to Strength
Data.



where

x-X_Db
- (g5
-AQ
l-e B
X S_Xsoo

X is the lower bound of strength

O is the characteristic strength, where 63.2% of the

population have strengths less than or equal to this value

b is the Weibull slope.

Versatility of the Weibull distribution is illustrated in

Figure % which shows different forms of the distribution for various

values of b . The Weibull slope

b defines the shape of the curve,

whereas © , the characteristic strength, is related to the standard

deviation and to the mean strength values.

It is therefore possible

to have several forms of a particular distribution depending on:

l. The value
2. The value
3. The value

As to special

the truncated normal distribution when b

of b (where 6 and XO are
of 6 (where b and X, are
of X, (where © and b are

cases of Weibull distribution,

constant).
constant).
constant).

it reduces to

is approximately equal to

5.5 and to the truncated exponential distribution when b 1is equal

to 1.0.

Determination of the Weibull Parameters - In order to determine

the Weibull parameters for the strength data the following steps are

required:
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The scatter of fatigue life at a given stress level, as
obtained from the literature or other sources, is converted
to the scatter of fatigue strengths at a given life in the
manner discussed in Section: CONVERSION OF LIFE DATA TO
STRENGTH DATA.

The fatigue strengths obtained from above are then arranged
in the increasing order of value and median rank is
assigned to each value as described in the example that
follows,

The strengths are then plotted on the modified Weibull
probability paper on the abscissa against the median ranks
on the ordinate. (Figure 4)

In plotting the data an assumption was made that the lower
bound of strength X, (i.e. the minimum strength that can
be expected in the whole population) is not zero, which is
an obvious case, and therefore the next step was to deter-
mine the probable value of X, . This value should be
somewhere between the lowest value of the sample and zero.
Xo was determined by trial and error. This was done first
by subtracting the assumed value of X, from the original
set of data, and then plotting on the Weibull probability
paper. This was repeated until the straight line plot
resulted.

As shown in Figure 4, the Weibull slope b was read
directly and the value of © was found equal to

(o, + XO) .

1
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This method is illustrated by the following example:
Material: Dgpe Steel, S, =270 ksi
Conditions: Type of Load - Completely Reversed Bending
Surface Finish - Mechanically Polished
Stress Concentration Factor, Ky = 1.0
Test Temperature, 80°F
Fatigue Strength distribution data at 106 cycles are (in ksi):

57.3, 59.2, 62.5, 55.3, 61.4

In order to make Weibull cumulative plot, it becomes necessary
to decide what rank is to be assigned to each particular strength value.
The lowest strength in a group tested will have a definite percentage of
the total population having strength lower thén this, if the entire popu-
lation were tested. If we knew exactly the percentage of the population
having strength lower than the lowest in the sample, that percentage would
be the true rank of the lowest strength in the sample. However, since we
do not know the true rank, we make an estimate of it. We use an estimate
such that in the long run the positive and negative errors of the estimate
cancel each other. That is, half the time we would give the lowest
strength a rank that is too high and the other half of the time a rank
too low. A rank with this property is called median rank., A table of
median ranks is given in Table II. The test data are then arranged in
an increasing order of value and the appropriate median ranks for sample

size n =5 are read from Table II as follows:
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x, ksi Median Ranks, %
55.3 12,94

57.3 3147

09.2 50.00

61l.h4 68.53

62.5 87.06

These data are then plotted on the modified Weibull probability
paper as shown in Figure U4, curve A.

In plotting these data an assumption was made that the lower-
bound of strength X, (i.e. the minimum strength that can be expected
in the whole population) is zero. This is obviously not the case, and
the next step was to determine the probable value of X, o This value
should be somewhere between the lowest value of the sample (55.3 ksi)
and zero. As the first trial therefore assume that X, 1is %5 ksi .

By subtracting XO from the original set of data, the follow-

ing is obtained:

(x - X)) ksi Median Ranks, %
20.3 12,94
22.3 3147
ok,2 50.00
26.4 68.53
27.5 87.06

When these are plotted (Figure U4, curve B) the resultant

curve is not a straight line. Therefore, other values of X, are

(3)

assumed, and the same procedure is repeated until, for a certain

assumed X, one can best linearize all the test points. In this case
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the best line nearest to a straight line is for XO = 50 ksi, curve C.
Through these points, then, a straight line is fitted using the Least
Square Method.
The value of (x - X;) at 63.2% is read off to determine the

characteristic strength © :

0 = x at 63.2%
(XDXO)65.2% = 97 = 10.3 ksi
0 = (x)65‘2% = 9 +x, = 10.3 + 50

60.3 ksi

The Weibull slope b is determined by drawing a line parallel to the
straight line of X, = 50 and passing it through the pivot point. The
point where this line intersects the Weibull slope scale is the value
of the Weibull slope. In this case, b = 3.0. Hence, the Weibull

parameters for the given set of fatigue strength data are:

Xo = 50 ksi
© = 60.3 ksi
b = 5-0

The analytical form for the corresponding Weibull equation is:

x-50 )5.0

F(x) = 1 -e 0.3-50

The parameters X, , b and © were determined for various materials,
under various conditions, on the basis of all the available test data
obtained. These were tabulated and the most representative parameters
were then plotted.(e) A sample of the tables and the plots is shown

in Figure 10 and Table IIT.
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STATISTICAL DISTRIBUTION OF STRESS

STRESS SPECTRUM VS STRESS DISTRIBUTION -~ The problem of stress
distribution, in the Interference Theory, is much more involved than
the problem of strength distribtution. Consider, for example, the
problem of a connecting rod in a reciprocating engine. Because of the
variation in hardness, surface finish, etc. the fatigue strength will
vary from one rod to another. This will result in a distribution curve,
in which the strength will be plotted on the abscissa and the number of
rods having a given strength (i.e. frequency of occurrence) on the
ordinate.

Consider now the stress distribution in the connecting rods.
The stresses in the rod result from the combined effect of gas pressure
loading and inertia loading. If the attention is now focused on a single
rod, then the variation in the two types of loading will produce a
distribution of stresses in this particular rod. The resultant curve
will be a plot of the stresses in the rod on the abscissa and the number
of times that this stress occurs in this particular rod on the ordinate
(Figure 5(a)).

This, however, is not what is wanted in the application of the
Interference Theory, because this distribution of stresses cannot be
matched with the distribution of strength. In the strength distribution
the ordinate gives number of rods having given strength. Therefore in
stress distribution the ordinate must read number of rods having given
stress (and not number of times given stress occurs in a single rod).
This can be obtained by considering the fact that different engines will

be subjected in service to different operating conditions and, therefore,

=22



Number of Times that the
Rod is Subjected to a Given Stress

Number of Rods Having

>
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(a) Distribution Not Wanted

Given Stress

Stresses in a Connecting Rod

(b) Distribution Desired

Figure 5.

Stresses in Connecting Rods

Stress Distribution for the Interference Theory.



2l
the distribution of gas pressure loading and inertia loading will vary
from engine to engine. As pointed out in the following section, a
spectrum of stresses must be converted to an equivalent stress for the
purpose of Interference Theory. Therefore, if a spectrum of loading
due to different service conditions varies from engine to engine, in a
population of connecting rods the equivalent stress will vary from rod
to rod. Thus the statistical stress distribution desired for the Inter-
ference Theory may be obtained (Figure 5(b)). In this distribution the
equivalent stress will be plotted on the abscissa and the number of
rods (frequency of occurrence) having that stress on the ordinate. The
distribution then can be compared with the strength distribution to obtain

the probability of interference.

CONVERSION OF STRESS SPECTRUM TO AN EQUIVALENT STRESS (sequ) - By
definition, equivalent stress is a completely reversed stress of constant
amplitude which, when imposed on a part should cause failure at the same
life as if the stress spectrum was imposed instead. Thus, the damage
accumulated at any given life, due to this equivalent stress, will be
the same as if due to the spectrum of stress.

The first step is to convert the operating stresses, which may
have some mean stress assoclated with them, to zero mean stresses, that
is, to the completely reversed stress. This can be done by means of
the Modified Goodman Diagram. Draw the Goodman diagram on a cartesian
paper. (Figure 6) The point X or point Y on this diagram is the
endurance strength (Sn) of the part subjected to the loads. S, can

be computed from the equation:



Maximum Stress, ksi

=

b
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Mean Stress, ksi

Figure 6. Modified Goodman Diagram.
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Where S; is endurance limit of the material

Ky 1s the size factor

K, 1is the loading factor

K3 is the surface finish factor

Ky 1is the surface treatment factor

K5 is the stress concentration factor

Kg 1s the temperature factor

K7 is the life factor
Su is the ultimate tensile strength of the material.

Now, from the spectrum of operating stresses plot each stress
cycle on this diagram as shown (for example, line AB). Connect CA and
CB and extend to the vertical line where mean stress is equal to zero.
Hence, XY 1s the zero mean stress equivalent to AB . After reducing
all such mean stresses, the stress spectrum will then have all stress
cycles completely reversed. This spectrum can then be reduced to a

single equivalent stress (S of constant amplitude, by means of

equ>

Miner's Rule which implies linear damage accumulation. For the proce-

dure see the solved example in Section: APPLICATION TO DESIGN PROBLEMS.



INTERFERENCE OF STRESS DISTRIBUTION WITH STRENGTH DISTRIBUTION

After strength distribution and stress distribution are deter-
mined the two are compared and percent interference is determined. For
a given strength distribution the percent interference will depend on
the distribution of the equivalent stress Sequ . A search through
literature and other sources produced considerable amount of data leading
to strength distribution but very little information on stress distribu-
tion.

In some engineering applications there is very little scatter
in stresses., This leads to a stress distribution with standard deviation

equal to zero. This distribution can be represented by a straight line,

as in Figure 7, and the interference can be determined as shown.

f(x) ‘ Strength
Stress
® T
(8]
[ o
o
5
(]
[ 5]
o
'S |interference —
P
e
[
2
(=2
®
w
0 X S X
o) equ

Stress or Strength, ksi

Figure 7. Interference with Standard Deviation
of Stress equal to Zero,

-27-
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For a given S , interference may increase or decrease, if

equ
the life to which the components are designed is changed. This is shown
in terms of S-N diagram in Figure 8.

In those engineering applications where the scatter in stresses
is appreciable the above approach will obviously not apply. On the basis
of past experience, in the present investigation the stress distribution
(Sequ) was assumed to be normal and the range of standard deviations to
be not less than .0lp and not more than .10y where y 1is equal to
SeClu . The resulting interference is represented qualitatively in
Figure 9.

A design problem employing this method is illustrated in

section that follows.
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Stress, ksi

equ
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S=N curves with
.1% Probability
50% Probability

99.9% Probability

el s — ——-——-—1

Strength Strength
Distribution ¢ Distribution
at 105 cycles\ at 100 cycles

\\h— Interference

Life, cycles

103 1ot 10° N

Figure 8.  S-N Diagram Representing the Dependence of Interference

on Life.



Frequernicy of Occurrence

Figure 9.
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APPLICATION TO DESIGN PROBLEM

Once the parameters of the strength distribution (X, b Q)

07
and stress distribution (H = Sequ and o0 = kuy , where Kk represents
fraction of the average stress) are determined, the percent interference,
that is percent failures, can be computed with the aid of Tables VII and
VIII. (Tables of interference values corresponding to a w31~ range of
values of stress and strength distribution parameters are given in
Reference 2.) Specific steps to be taken are illustrated by the follow-
ing example.

A certain machine part was designed to withstand in service
10,000 load cycles. The problem was to predict its reliability under
the following conditions:

Material: T -6Al-WLv, 8, =177 ksi, S, = 166 ksi

Design Life: th cycles

Type of Loading: Bending, completely reversed

Size: 0.25 in.

Surface Finish: Hot rolled

Theoretical Stress Concentration Factor: ki = 1.0

Operating Temperature: 600°F

Weibull Parameters
The first step was to determine strength distribution in
terms of the Weibull parameters. From Table IIT or Figure 10, Weibull

parameters corresponding to the above conditions were found to be:

X, = 50 ksi
b = 2,65
0 = T77.1 ksi.

-31-



Characteristic Strength O, ksi
Lower Bound of Strength X,, ksi

Weibull Slope b.

32

FATIGUE STRENGTH

Effect of Temperature

Sy = 177 ksi, 8y = 166 ksi

200
[
1ooh-.-'" 80°F
‘__§ - h o
B S S e T, AN
0 —— — - ]
-"‘-\. ;- d of
Lo :?'—
600°F
800°F
20 900°F
)
10|
200
100) —
80;_ 80°F—4
e e = =4“OO°F '
\":—.d___~ - .
40 ~—4h=¥=e§5=-u"" = __:::4[::::
600°F
2 800°
900°F
X
1 (o]
— 900°F 80° F
o LOO°F
h:15?800 F ;;g; ; 4
2»——
00°F b
| |
103 2 L 6810k 2 . L 6 8100 2 L 68 100

Rotary Beam Bending

Lif

Hot Rolled

Composition: Mean Stress = 0O
6% Al, 49V, Max .07% Ny , max .10% C, Heat Treatment:
max .015% H, max .40% Fe, max .30% O (A: sol. treated 1690°F, 12 min.

Figure 10.

WQ, aged 900°F, 4 hrs. air cooled)

Weibull Parameters.
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The Equivalent Stress
As to the stress distribution, the part was instrumented and
stress spectrum was recorded as shown in columns 1 and 2 of Table IV.
In order to determine the parameters of the stress distribution
(Sequ =u ,and o) Miner's rule was used. From the S-N curve of the
material (Figure 11), the number of cycles to failure, N , corresponding

to stresses in Column 1, Table IV were determined. This is shown in

Column 3, Table IV. Using Miner's rule and tabulated data in Table IV,

Néqu. was determined:
2. 05
Nequ = lx ny
2, o
i
N = 1 x k25 = l9¥5xl&jccks
equ o y ]

21.845 x 10-4

From the S-N curve (Figure 11), the stress corresponding to
Nequ = 1.945 x 10° cycles was found to be Sequ = 99 ksi . Hence, a
completely reversed stress application of 55 ksi can be substituted

for the recorded stress spectrum (Columns 1 and 2, Table IV).

PREDICTION OF PERCENT FAILURES - Once the strength and stress
distribution parameters are established, percent failures can be
determined.

In some engineering applications the scatter in the operating
stresses is very small and, therefore, the standard deviation of the

stress can be assumed to be zero., In those cases the percent failures

can be determined as follows:
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TABLE IV

Stress and Life Data for Miner's Rule

Completely* Occurrences n , Number of cycles n
reversed cycles to failure, N N
stress S , ksi
1 2 3 b
52,0 200 3,5 x 107 5.710 x 10~
5k,1 80 2,h x 10 3.333 x 10'4
56.5 50 1.6 x 102 3,125 x 10~
58.0 60 1.2 x 10° 5.000 x 10“LL
59.3 20 1.0 x 10?2 2.000 x 10~
62.0 10 6.6 x 10“ 1.515 x 10-4
64.8 5 4.3 x 10" 1.162 x 107"
3
% n; = hos % N, = 21.845 x lO"’LF
1

* Actually, stress was not completely reversed. It was reduced with
the aid of the Goodman diagram to a completely reversed stress using
the procedure given in ©Section: CONVERSION OF STRESS SPECTRUM TO

AN BQUIVALENT STRESS (S, ).
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(X__?_‘p_)b
Interference (Failures) = F(x) = 1 -e °- %o = ghaded area under
the curve in Figure 7 where
x = Sequ = 55 ksi
Xy = 50 ksi
b = 2.65
© = TT7.1 ksi .
_(55 i 50)2.65
F(x) = 1-e \[T"H =20
-1 e-.0114
= ,0113
Percent Failures = 1.13%

In those engineering applications where the scatter of stress
is appreciable percent failures may be found as follows. In actual

engineering practice, standard deviation lies in the range

0,01 <

Tla

< 0.10

In the absence of any specific information, an average value of € = 0.05

1L
can probably be assumed. Using this value, percent failures were

determined:
Strength Stress
XO = 50 ksi o= Sequ = 55 ksi
b = 2,65 ¢ = 0.05u
0 = TT.1 ksi = 0,05 x 55 ksi

= 2.75 ksi
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From the above data, parameters C, A and B(x), to be used in the

tables of Interference values (Tables VII and VIII), were computed:

0 - X
= O = 77;1 - 50
C . 575 ~ 10
X - 1 50 - 55
A = = -1.82
o 2.75
B = b = 2.65

The Interference value corresponding these parameters was determined
by interpolation between Table VII (for B(x) = 2.0) and Table VIII

(for B(x) = 3.0):

Interference 2 .0245

or, Percent Failures = 2,45%,

Thus, probabilities of failure to be expected are:
In the event of no scatter in stresses - 1.13% Failures.

For the scatter of the order of 0.05u - 2.45% Failures.

The Effect of Design Factors

In this manner, the effect of variocus design factors on
percent failures, can be determined. Table V shows the effect of
temperature on percent failures for design conditions states in the
above example, Table VI gives the effect of life on interference for
a different set of conditions stated below:

Material: M10 Tool Steel, Su = 330 ksi

Design Life: 10 cycles

Type of loading: Bending, completely reversed
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TABLE V

Effect of Temperature on Percent Failures

Weibull Parameters

Equivalent of Strength Percent Failures
Stress
Temperature X5 b 9, 0=0 o0 =0.05
Material °F Sequs ksi  ksi ksi
T, -6A1-4V 600 55.0 50 2.65 T7.1 1.13 2.45

80 55.7 70 3,2 96,8 0.0 0.0
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TABLE VI

Effect of Life on Percent Failures

Weibull Parameters

Equivalent of Strength Percent Failures
Life, Stress,
. . X5 b o, oc=0 o0=.028,
Material cycles Sequ’ ksi Kot Koi
10u 127  1.89 163.5 0.0 0.0
M 10 Tool
102 122 119 1.95 153.2 0.865 2.0k
Steel
6

10 111 2.0 1k43,5 10.80 12.03
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Surface Finish: Mechanically Polished

Theoretical Stress Concentration Factor: kt = 1.0

Heat Treatment: Preheat 1450°F 1/2 hr., harden 1250°F 5 min.,
0Q until black, AC, Temp. 1100°F 2 hrs., AC,
Retemp. 1100°F 2 hrs., AC, after finishing

operation, Nitrided 975°F 48 hrs.



CONCLUSIONS AND RECOMMENDATIONS

A method was developed for employing stress-strength Inter-
ference Theory as a practical engineering tool to be used for designing
and quantitatively predicting the reliability of mechanical parts and
components subjected to mechanical loading.

This method is based on the considerable empirical data
gathered and it also has sound theoretical basis. This method eliminates
the concept of a Factor of Safety and substitutes Percent Failures.

Although a great deal of data were gathered and analyzed in
the course of the present study, no data were found to permit the
establishment of confidence intervals on the probability of failure.

This method can be used for two cases most commonly encountered

in engineering practice:

Stress Distribution Strength Distribution
Normal Normal
Normal Weibull

The effect of type loading, surface finish, surface treatment,
temperature, stress concentration, heat treatment etc., on the statis=-
tical distribution was also studied. These effects were expressed in
terms of Weibull parameters XO, 0, and bg,

For most of the materials studied, the lower bound of fatigue
strength (X,) and the characteristic strength (8) have a linearly
decreasing relationship with life, on a log-log scale., In *the case
of the Weibull slope (b) it decreases or increases linearly with life,
on a log-log scale, depending on the material and the loading, surface,
etc. conditions.
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As to the problem of stress distribution, the data found in
literature and other sources were in the spectral form. For use in
the Interference Theory they had to be converted into a distribution
of equivalent stresses.

The problem of stress distribution demands further work.
Means of conversion from stress spectrum to stress distribution should
be refined and a more exact form of the statistical distribution of the
equivalent stress should be established.

In order to verify the validity of the Interfersnce Technique
developed here it should be checked against an actual life situation.
That is, percent failures should be computed for an actual engineering
problem. These results thenshould be compared with actual service

failures.
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