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Abstract

A Bayesian approach is developed to perform capability analysis for a one-dimensional normal pro-
cess with symmetrical bilateral design specifications. The performance of the process is evaluated
based on three separate criteria: actual proportion nonconforming, potential proportion noncon-
forming and process centering. Capability indices based on these criteria are defined and discussed.
The probability that the process is capable given an observed sample is derived. The minimum val-
ues required for capability indices estimated from a sample to ensure that the process is capable are

also presented in both tabular and graphical formats.

1 Introduction

Integrated manufacturing systems require that accurate information be exchanged and analyzed
freely between many different departments. Specifically, a quantitative measure of production
quality is needed that can be well understood by people throughout the organization. It is this
need for improved communication that motivated the development of process capability indices.
According to Kane (1986), process capability indices are intended to provide a common, easily
understood language for quantifying the performance of a process. For this reason, these indices

have become the predominate measure of process performance used in industry today.

Intuitively, process performance can be defined by how well the process produces parts

which conform to the engineering design specifications. Unfortunately, the capability indices cur-



rently used are frequently inconsistent and misleading measures of conformance even for simple
one-dimensional process characteristics. When one considers the expanding use of multivariate tol-
erances to improve quality, the deficiencies with the current indices become even more alarming.
Because of these limitations, we have introduced new capability indices which solve these prob-
lems and yet complement the current system in order to minimize disruption to industry standards

and procedures.

In this paper, we introduce a system of three indices for measuring process performance
and provide a brief discussion and justification for their use. We then employ a Bayesian approach
for the case of a one-dimensional normal process with symmetric bilateral design specifications.
Using a noninformative prior, the probability that the process is capable given an observed sample
is derived and can be computed numerically. We define a capable process as a process where the
three indices simultaneously satisfy certain prespecified criteria. Numerical results summarized
in tables and figures are given to demonstrate the method and its usefulness in providing sound

statistically based inferences for process capability analysis.

2 Process Capability Indices

Process capability indices have become widely used as an attempt to convey the process perfor-
mance in a dimensionless and easily interpreted manner. The earliest form of this type of capability

index is
U-L
6o

where U and L are the upper and lower specification limits and ¢ is the standard deviation of the

Cp=

characteristic. In the standard case of a one-dimensional process with symmetric bilateral design
specifications, the nominal target value is centered between the specifications. The process char-
acteristic is generally assumed to be normally distributed and thus the process performance is a
function of both the process mean and standard deviation. As explained in Kane (1986), it is ap-

parent that Cp strictly measures the potential process performance since only the standard deviation



is related to the design specifications. Since the location of the process mean is not considered, it
is possible to have any proportion of parts outside the specification limits for a given Cp by merely
locating the process mean sufficiently close to, or outside, the specification limit. Thus Cp only
quantifies the potential performance of a process which is attained when the process mean is equal
to the design target T = (U + L)/2. The Cp index has become a fixture in industry for measuring the
potential capability of a process with perfect centering. A benchmark of 1.0 was chosen to relate
Cp to the standard six sigma spread used on control charts. Therefore, a process with Cp = 1.0
with an underlying stable normal distribution will produce nonconforming parts at a rate of 0.27
percent (or 2700 parts per million) assuming the process mean is centered at the target value. Here,
we use the ANSI (1982) definition of a nonconforming part defined as any part that falls outside

the tolerance zones.

Because of this one-to-one relationship between Cp and the proportion nonconforming,
capability indices are commonly used as a minimum benchmarking criteria for manufacturing pro-
cesses. In fact, both GM and Ford Motor Company specifically document the use of process ca-
pability indices for assessing process performance. For example, Ford’s Q-101 manual states the
requirement that all manufacturing processes must achieve minimum process capability indices
Cp and Cpk of 1.33 or better (1.0 for previously tooled parts). This standardized interpretation has
spread and most engineers and managers responsible for quality gauge their processes with process

capability indices in comparison to this 1.33 (or 1.0) benchmark.

One major use of process capability indices is enable decision makers with little statistical
training to make informed statistical decisions regarding the purchase or removal of long term cap-
ital equipment. An informed decision regarding the capability of a process must then consider both
the potential and actual performance of the process. While process potential is well summarized by
Cp, there exists some debate on how to effectively measure the actual process performance. The
two most common measures that have been introduced are Cpk [Kane (1986)] and Cpm [Chan,
Cheng and Spiring (1988)]. These indices simultaneously account for both the mean and standard

deviation of the process in an attempt to reflect the actual process performance. Unfortunately,



neither of these two indices have direct physical meaning. It has been shown that both Cpk and
Cpm are inconsistent measures of the actual proportion nonconforming thus making interpretation
difficult [Boyles (1991), Lam and Littig (1992)]. Furthermore, these indices are unsuitable for
extension to more complex multivariate processes. In order to solve this problem, Lam and Lit-
tig (1992) suggest reporting measures that have direct physical meaning and supply information
relevant to process description and improvement. In particular, they recommend three separate

criteria to judge or evaluate the performance of a manufacturing process.

1. p = Actual Proportion Nonconforming
The actual proportion of nonconforming parts currently being produced by the process is
often of primary interest. It is a function of both process mean and process variation and
therefore reflects the current state of the process. This measure describes the expected per-
formance assuming no actions are taken to shift the process mean or to reduce the process

variation.

2. p* = Potential Proportion Nonconforming
This measures the minimum possible proportion of nonconforming parts that can be achieved
through simple location shifts of the process mean. In the case of a symmetric distribution
such as normal considered here, this minimum value will be attained when the process mean

is centered within the specification limits.

3. k= Process Centering
This measures the deviation of the process mean from the design target with respect to the
allowable tolerance. For symmetric bilateral design specifications, a natural quantitative
measure of process centering is the k index defined in Kane (1986). Specifically, if p is the
process mean, Kane (1986) defines

o 2 |UT_ Lu I

which is the ratio of the deviation of the process mean from the design target with respect to

the allowable tolerance.



As discussed in Lam and Littig (1992), while it is informative to report actual and potential pro-
portion nonconforming, it is not directly compatible with the current corporate requirements. It is
therefore convenient to transform actual and potential proportion nonconforming into indices that
retain their physical meaning and at the same time communicate these values in a numerical format
that is familiar to engineers, managers and technicians. In particular, if p* and p are the potential

and actual proportion nonconforming of a process, they define

cp*=%<b-1 (1-92:) and cpp=§¢-1 (1-%) (1)
where ®(x) is the integral of a standardized normal density from minus infinity to any real number
x. Note that Cp+ in Equation (1) above is defined such that Cp« = Cp when the underlying process
follows a one-dimensional normal distribution. Hence, the interpretation of Cp~ is consistent with
the traditional Cp. This is of practical importance since Cp has become a well known, understood,
and deeply entrenched fixture in industry for measuring potential capability. While Cp is only ap-
plicable to one-dimensional processes and used in situations when normality or near-normality is
assumed, Cp+ and Cpp applies to all manufacturing processes provided that the actual and poten-
tial proportion nonconforming can be computed with sufficient accuracy. In particular, Littig and
Lam (1993) compute Cp+ and Cpp for nonsymmetric bilateral design specifications, and unilateral
design specifications. Littig, Lam and Pollock (1992) apply Cp+ and Cpp to multi-dimensional
processes. In general, the authors recommend that Cpr, Cpp and the k indices should be reported
for any process characteristic in order to consistently and effectively communicate the ability of a

process to meet the design specifications.

3 Joint Posterior Density Function of Cp* and CPU

Let X be the one-dimensional characteristic of interest and assume that it is normally distributed
with mean p and standard deviation 6. Define CPU as given in Kane (1986),

cpu=2_#
3¢
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The likelihood function of p and © based on a sample x{, X, ..., Xp is given by

n

)2
L(p,o) = (21to'2)'"/2exp [— Z (% 2“) } .
i=] 20

Using a noninformative prior for 4 and 6 meaning that y and logo are approximately locally uni-
form, i.e.,
1
p(1.0) o
the joint posterior density function is given in Box and Tiao (1973)
) (n-1y/2 {
fy(1.6 | %) = co™*! {ﬂ] exp {——2 (= 1?4 n(x - u)z]} e
2 26
where X and s are the sample mean and standard deviation respectively,
172 -1
n n-1
«a() e
=2 (2::) 2

and I'(x) is the gamma function evaluated at x. Observe that Cp» and CPU are functions of i and
o and we can uniquely solve for i and ¢ in terms of Cp+ and CPU. In particular,

U-L
2Cpr

_U-L

=6

and u:U—( )CPU. (3)

If 6[; and CPU are point estimates of Cp+ and CPU when X and s are used to estimate |1 and ¢
respectively, then

s=UlL and x=U- ULL CPU. (4)
6Cp* 2Cp*

Using the change of variables given in Equation (3) above with Jacobian equal to (U-L)2 /(12 Cg*)
and substituting Equation (4) into (2), it is readily verified that the joint posterior density function

|

of Cp» and CPU is given by

f5(Cp+, CPU | Cpx, CPU)

[h=1Cp+ Cp+ CpU CPU
= 3 1 l(,:g exp _d (n-1) d +9nC2*( - A)
Cp* 2 Cpt 2 Cpt Cp* Cp*




The marginal posterior density function of Cp- is therefore given by

112 n-1 2
—~ c (2x n—1Cp~ 1 Cp+
h(Cps | Cor) = _) d 2 -1
(Cp | Cp*) Cor ( - ( > Cp*) exp{ 5 [(n 1) (Cpt)

}.

4 A Bayesian Approach to Analyze Cp*, Cpp and k
Suppose that a process is considered capable whenever Cp+ > ¢, Cpp > ¢ and k < ko where
C1, ¢ and ko are prespecified constants. Observe that k < kg is equivalent to
Cp+(1 — ko) < CPU < Cp+(1 + ko).
Also using Equation (1), Cpp > ¢; is equivalent to the actual proportion nonconforming
p<2[1-®(3)|.
Since we assume that the underlying one-dimensional process is normal, it follows that
1 - p = ®(3CPU) — &(3CPU - 6Cp~)

and we require that

®(3CPU) — ®(3CPU — 6Cp+) > 20(3c;) — 1

for the process to be considered capable. Given any positive real number x, define a function g(x)
to be the smallest real number such that

d(3g(x)) — D(3g(x) — 6x) = 2d(3cy) — 1.
Since the normal density is symmetric, it is clear that Cpp > ¢ is now equivalent to
g(Cp*) <CPU < 2Cp* - g(Cp*)

We can now evaluate

P(process is capable | an observed sample)



to be equal to

q(cq,¢3.ko0) = P(Cpr > c1,Cpp > ¢3,k < ko | Cpx, CPU)

min{x(1+kg),2x-g(x) o
/ ,/ { } fa(x.y | Cp+, CPU) dy dx.

max{x(1-kg).g(x)}
In the special case whency =0 and ko = o0,

der0) = A >y Gp) = [ | Gy

The Bayesian approach to analyze the capability of a normal process with symmetric bilateral de-
sign specifications has been studied before by Cheng and Spiring (1989) for Cp and Chan, Cheng
and Spiring (1988) for Cpm with {t = T. The minimum values of C’\p* required to ensure that
q(c1,0,00) = 0.9, 0.95 and 0.99 with c; = 1 are tabulated in Cheng and Spiring (1989). Hence,

their results are a special case of the approach considered here.

In Figure 1, the curves represent the minimum required values for 6;- and C’p\p such that
q(1.0, 1.0, 0.33) = 0.90, 0.95 and 0.99 for sample size n = 25, 50, 75,100, 150 and 200. Suppose
the process is considered to be capable whenever Cp+ > 1.0, Cpp > 1.0 and the process mean lies
within the middle third of specification zone (i.e., k < kg =0.33). For example if n = 50, éi; =1.5
and C/p\p = 1.25, then the probability that the process is capable is greater than 0.95 but less than
0.99. This can be seen from Figure 1 since the point for the the sample values of C'Il; and C/;p lies
above the curve for n=50 at 0.95 but below the curve for n=50 at 0.99.

Given an observed value of CE, Tables 1 and 2 provide the minimum required C/p\p values
such that q(cy, ¢9, kg) = 0.90, 0.95 and 0.99 for sample size n =25, 50, 75,100, 150 and 200, and
various combinations of ¢{, ¢ and k. Suppose now that the process is considered to be capable
whenever Cp+ > 1.33 and Cpp > 1.33. For example, if n = 100 and we observe that é; =2.0, then
the process is considered capable with probability 0.95 whenever C’p\p > 1.508 from Table 2 with
q(1.33, 1.33, 0) = 0.95. '

Note that in Figure 1, all the curves decrease and then increase sharply for large values of
61;. This is because for large (fp: values, k < kg = 0.33 is the dominant constraint whereas for
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smaller values of 5{,*, the constraint Cpp > 1.0 dominates. In the case when kg > 1.0, all the curves
decrease to a constant value of 6&; as CT;* increases. This can be seen directly from Table 1 with
q(1.0, 1.0, o). For example when n = 50 at 0.99, as C]; increases from 1.33 to 2.0, the minimum

required Cfp\p decreases from 1.309 to the constant value of 1.292.
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q(1.0, 1.0, 00) q(1.0, 1.0, 0.33) q(1.0, 1.0, 0.2)

Cpr| n || 090 | 095|099 | 090 | 095 | 0.99 | 090 | 095 | 0.99
25 || 1.239 1.239 1.259
50 || 1.149 | 1.198 | 1.309 || 1.149 | 1.198 | 1.309 || 1.200 | 1.224 | 1.309
1331 75 | L.117 | 1.154 [ 1.230 || 1.117 | 1.154 | 1.230 || 1.183 | 1.198 | 1.238
100 | 1.100 | 1.130 | 1.192 || 1.100 | 1.130 | 1.192 || 1.174 | 1.186 | 1.214
150 | 1.079 | 1.103 | 1.151 || 1.079 | 1.103 | 1.151 || 1.165 | 1.175 | 1.194
200 || 1.068 | 1.088 | 1.128 || 1.068 | 1.088 | 1.128 || 1.160 | 1.169 | 1.184
25 || 1.230 | 1.308 1.232 | 1.308 1.352 | 1.384
50 || 1.148 | 1.195 | 1.293 || 1.158 | 1.197 | 1.293 || 1.318 | 1.336 | 1.372
1.50 | 75 || 1.117 | 1.153 | 1.227 || 1.133 | 1.158 | 1.227 || 1.307 | 1.320 | 1.347
100 | 1.099 | 1.130 | 1.190 || 1.120 | 1.138 | 1.190 || 1.300 | 1.312 | 1.334
150 ) 1.079 | 1.103 | 1.150 || 1.107 | 1.119 | 1.152 || 1.292 | 1.302 | 1.320
200 || 1.068 | 1.088 | 1.128 || 1.100 | 1.110 | 1.132 || 1.288 | 1.296 | 1.312
25 || 1.229 | 1.305 | 1.475 || 1.280 | 1.323 | 1.475 || 1.474 | 1.501 | 1.561
50 || 1.148 | 1.195 | 1.292 || 1.237 | 1.256 | 1.305 || 1.446 | 1.463 | 1.497
1.67 | 75 || 1.117 | 1.153 | 1.226 || 1.223 | 1.237 | 1.267 || 1.435 | 1.449 | 1.476
100 | 1.099 | 1.130 | 1.190 | 1.215 | 1.227 | 1.251 || 1.429 | 1.441 | 1.463
150 || 1.079 | 1.103 | 1.150 || 1.207 | 1.217 | 1.235 || 1.421 | 1.431 | 1.449
200 || 1.068 | 1.088 | 1.128 || 1.203 | 1.211 | 1.227 || 1.416 | 1.425 | 1.440
25 |1 1.229 | 1.305 [ 1.470 || 1.474 | 1.501 | 1.559 || 1.731 | 1.757 | 1.809
50 || 1.148 | 1.195 | 1.292 || 1.446 | 1.464 | 1.497 || 1.705 | 1.723 | 1.756
200| 75 § 1.117 | 1.153 | 1.226 || 1.435 | 1.449 | 1.476 || 1.694 | 1.708 | 1.735
100 § 1.099 | 1.130 | 1.190 || 1.429 | 1.441 | 1.463 || 1.688 | 1.700 | 1.723
150 | 1.079 | 1.103 | 1.150 {| 1.421 | 1.431 | 1.449 || 1.680 | 1.690 | 1.708
200 || 1.068 | 1.088 | 1.128 || 1.416 | 1.425 | 1.440 || 1.675 | 1.684 | 1.700

Table 1: Minimum Required Values for Cp» and Cpp such that (1.0, 1.0, kg) =0.90, 0.95 and 0.9

for Various kg and n
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q(1.33, 1.33, o0) q(1.33, 1.33,0.2) q(1.33, 1.0, 0.25)

Cpr| n | 090 | 095|099 | 090 | 095 | 0.99 | 0.90 | 0.95 | 0.9
25 1.458
50 || 1.535 | 1.604 1.536 | 1.604 1.372 | 1.396
1.67 | 75 || 1491 | 1.541 | 1.651 || 1.492 | 1.541 | 1.651 || 1.356 | 1.371 | 1.410
100 || 1.467 | 1.508 | 1.593 || 1.469 | 1.508 | 1.593 || 1.349 | 1.361 | 1.385
150 || 1.440 | 1.472 | 1.536 || 1.445 | 1.472 | 1.536 || 1.341 | 1.350 | 1.369
200 || 1.425 | 1.452 | 1.505 || 1.432 | 1.453 | 1.505 || 1.336 | 1.344 | 1.360
25 || 1.643 | 1.746 1.748 | 1.790 1.637 | 1.655 | 1.764
50 || 1.534 | 1.597 | 1.727 || 1.708 | 1.726 | 1.770 || 1.608 | 1.625 | 1.659
200 75 || 1.491 | 1.540 | 1.638 || 1.695 | 1.709 | 1.737 || 1.597 | 1.611 | 1.638
100 || 1.467 | 1.508 | 1.589 || 1.688 | 1.700 | 1.723 | 1.590 | 1.602 | 1.625
150 || 1.440 | 1.472 | 1.535 || 1.680 | 1.690 | 1.708 || 1.582 | 1.592 | 1.611
200 || 1.425| 1452 | 1.505 || 1.675 | 1.684 | 1.700 || 1.578 | 1.586 | 1.602
25 || 1.643 | 1.745 | 1.969 || 1.994 | 2.022 | 2.083 || 1.878 | 1.904 | 1.957
50 || 1.534 | 1.597 | 1.727 || 1.966 | 1.984 | 2.018 || 1.852 | 1.870 | 1.903
2.33| 75 || 1.491 | 1.540 | 1.638 || 1.955 | 1.969 | 1.996 || 1.841 | 1.855 | 1.882
100 || 1.467 | 1.508 | 1.589 || 1.949 | 1.961 | 1.984 || 1.834 | 1.846 | 1.869
150 || 1.440 | 1.472 | 1.535 || 1.941 | 1.951 | 1.969 || 1.826 | 1.836 | 1.855
200 || 1.425 | 1.452 | 1.505 || 1.936 | 1.945 | 1.961 || 1.822 | 1.830 | 1.846

Table 2: Minimum Required Values for Cp+ and Cpp such that q(1.33, ¢3, kg) = 0.90, 0.95 and
0.99 for Various ¢, ky and n
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