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Review

Biology of Adenovirus and Its Use as a Vector
for Gene Therapy

MICHAEL J. McCONNELL and MICHAEL J. IMPERIALE

INTRODUCTION

DENOVIRUSES WERE FIRST DISCOVERED half a century ago by

Rowe and colleagues, who were trying to culture adenoid
tissue in the laboratory (Rowe ef al., 1953). Since that time,
nonhuman adenoviruses have been isolated from a number of
species including chimpanzees, pig, mouse, and dog, as well as
other mammalian and avian species (Shenk, 1996). Although
human adenoviruses cause significant levels of respiratory, oc-
ular, and gastrointestinal disease, they have been the object of
intense study over the years mainly as a model system for ba-
sic eukaryotic cellular processes such as transcription, RNA
processing, DNA replication, translation, and oncogenesis.
Early on, it was shown that the virus could recombine during
growth in culture (Lewis et al., 1966a,b; Pierce et al., 1968;
Lewis and Rowe, 1970), ultimately setting the stage for the use
of the virus as a vector for gene delivery into cells, animals,
and humans. Many features of adenovirus make it well suited
for gene delivery, including the ability to grow recombinant
viruses to high titers, a relatively high capacity for transgene
insertion, and efficient transduction of both quiescent and ac-
tively dividing cells, usually without incorporation of viral
DNA into the host cell genome. These characteristics, as well
as the development of many methods for manipulating the vi-
ral genome, have made adenovirus a popular choice as a gene
delivery vehicle. This is evidenced by the fact that adenovirus
is currently being used in roughly one-quarter of all gene ther-
apy clinical trials, making it second only to the use of retro-
viral vectors (Journal of Genetic Medicine Website, www.
wiley.co.uk/genmed/clinical). In this review, we summarize our
current understanding of the life cycle of the human aden-
oviruses and then discuss how the structure and function of vi-
ral genes impact the use of the virus as a gene delivery vehi-
cle. Readers desiring a more comprehensive coverage of the
biology of the virus are directed to the volumes edited by
Doerfler and B6hm (2003, 2004).

VIRUS STRUCTURE

The adenovirus virion is a nonenveloped icosahedral parti-
cle about 70-90 nm in size with an outer protein shell sur-
rounding an inner nucleoprotein core (Fig. 1). The facets of the
virus capsid are composed primarily of trimers of the hexon
protein, as well as a number of other minor components in-
cluding protein Illa (pllla), pVIL, pVIII, and pIX. The capsid
vertices consist of the penton base, which acts to anchor the
fiber protein, the moiety responsible for primary attachment of
virions to the cell surface. Adenovirus cores contain the viral
DNA as well as pV, mu, and the histone-like protein pVIIL. The
genome itself is a linear, double-stranded DNA that is approx-
imately 36 kb long. Each end of the genome has an inverted
terminal repeat (ITR) of 100-140 bp to which the terminal pro-
tein is covalently linked. Genes are encoded on both strands of
the DNA in a series of overlapping transcription units (Fig. 2).
Virions also contain approximately 10 copies of the adenovi-
rus protease, a cysteine endopeptidase that cleaves many of the
structural preproteins into their mature form at the final stage
of viral assembly.

THE VIRAL LIFE CYCLE

Binding and entry

The 51 distinct serotypes of human adenovirus have been
classified into six groups (A-F) based on sequence homology
and their ability to agglutinate red blood cells (Shenk, 1996).
Most studies have been carried out on adenovirus serotype 2
(Ad2) and Ad5 and, unless otherwise stated, it should be as-
sumed that the information below refers to work done on these
serotypes. For all groups, except group B adenoviruses, initial
attachment of virion particles to the cell surface occurs through
binding of the fiber knob to the coxsackievirus B and adeno-

Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI

48109.

1022



ADENOVIRUS IN GENE THERAPY

1023

Protein V

Protein VII

Terminal protein

Hexon

Penton base

FIG. 1.

virus receptor (CAR). CAR is a type 1 transmembrane pro-
tein in the immunoglobulin superfamily and is present in many
human tissues including heart, lung, liver, and brain (reviewed
by Howitt ef al., 2003). CAR normally functions as a cell-to-
cell adhesion molecule on the basolateral surface of epithelial
cells (Honda et al., 2000). Work has suggested that excess
fiber produced during infection may act to disrupt epithelial
barriers by blocking CAR function, thus promoting efficient
spread of virus within and between tissues (Walters er al.,
2002). The CD46 molecule, a complement-regulatory protein,
has been identified as a cellular receptor for group B aden-
oviruses (Gaggar et al., 2003; Segerman et al., 2003; Sirena
et al., 2004). Group B adenoviruses have therefore received
considerable attention because of their ability to transduce
cells, such as hematopoietic stem cells, dendritic cells, and
malignant tumor cells, which can be resistant to infection by
adenovirus groups that use CAR as the primary attachment

Schematic of the adenovirus particle, showing major components of the capsid and the core. Adapted from Shenk (1996).

receptor (Shayakhmetov er al., 2000; Rea er al., 2001;
Havenga et al., 2002). Strategies that take advantage of the
various cell tropisms between adenovirus groups have been
developed, including the construction of chimeric viruses car-
rying fiber genes from alternative serotypes (Mastrangeli et
al., 1996; Balamotis et al., 2004; Slager et al., 2004).

After initial attachment to the cell surface, an exposed RGD
motif on the penton base interacts with members of the a, in-
tegrin family, triggering virus internalization by clathrin-de-
pendent, receptor-mediated endocytosis (Stewart et al., 1997;
Meier et al., 2002). For Ad2 and AdS5, the acidic environment
of the endosome induces escape of virions into the cytoplasm,
although the mechanisms underlying this process are poorly un-
derstood. Once in the cytoplasm, dynein mediates trafficking
of virions along microtubules toward the nucleus, where they
subsequently dock with the nuclear pore complex (NPC) (Trot-
man et al., 2001; Kelkar et al., 2004). Disassembly of the cap-
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FIG. 2. Map of the adenovirus genome and transcription units. The central, solid line represents the viral genome. Positions of
the left and right ITRs, the packaging sequence (i), the early transcription units (E1A, E1B, E2, E3, and E4), and the major late
transcription unit (major late promoter [MLP], L1-L5) are shown. Arrows indicate the direction of transcription.
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sid at the NPC allows for import of the viral genome and com-
mencement of the viral transcriptional program.

Early genes and DNA replication

The first viral transcription unit to be expressed is E1A. As
with almost all adenovirus transcription units, E1A produces
multiple mRNA and protein products by way of differential
mRNA processing. Two E1A transcripts are produced during
early infection: a 13S mRNA encoding the 289R (where R
stands for amino acid residues) protein (in AdS) and a 12S
mRNA encoding the 243R protein. These proteins can immor-
talize primary cells in culture and, when expressed in conjunc-
tion with E1B proteins, cause tumors in rodents (reviewed by
Ben-Israel and Kleinberger, 2002). Despite their transforming
potential, the E1A and E1B genes, referred to collectively as
the E1 region, are not associated with human cancers. During
infection, the E1A proteins function to trans-activate the other
adenovirus early transcription units (E1B, E2, E3, and E4) and
to induce the cell to enter S phase in order to create an envi-
ronment optimal for virus replication (Berk, 1986). The primary
mechanism by which E1A forces quiescent cells to actively cy-
cle is by interfering with proteins of the retinoblastoma (Rb)
pathway (Harlow et al., 1986; Moran, 1993). Rb acts as a tu-
mor suppressor by inhibiting cell cycle progression via binding
to E2F, a transcriptional activator that promotes expression of
genes necessary for driving the cell into S phase (Nevins, 1995).
The 289R and 243R products are able to sequester Rb and re-
lease repression of E2F, allowing it to activate its target genes.
E1A proteins have also been shown to modulate the activity of
p107 and p130, two members of the Rb family that are also in-
volved in regulating cell cycle progression (Parreno et al.,
2001).

The E1A proteins have been shown to use a variety of
mechanisms to subvert cell cycle checkpoints in addition to
interfering with proteins of the Rb family. E1A can directly
bind and inhibit components involved in cell cycle control
such as the cyclin-dependent kinase inhibitor p21 (Chat-
topadhyay et al., 2001). Furthermore, E1A can interact with
a number of host factors involved in mediating chromatin
structure including p400 (Fuchs et al., 2001) and the
histone acetyltransferases (HATs) p300/CBP, pCAF, and
TRRAP/GCNS5 (Chakravarti et al., 1999; Hamamori et al.,
1999; Lang and Hearing, 2003). Chromatin remodeling is
thought to increase the accessibility of DNA to the transcrip-
tional machinery, suggesting that interactions between E1A
and HATs may act to promote the expression of genes nec-
essary for induction of S phase. It has also been shown that
the 289R protein can mediate expression of target genes by
binding directly to cellular transcriptional machinery such as
the transcription factor CBF1, a component of the Notch sig-
naling pathway, and the mammalian mediator subunit, Sur2
(Ansieau et al., 2001; Stevens et al., 2002).

Cell cycle deregulation by E1A results in accumulation of
the tumor suppressor p53. During the response to stressful
stimuli, activation of the p53 pathway can result in apoptosis,
preventing the survival of potentially damaged cells. In in-
fected cells, the adenovirus E1B-55K protein acts to block
pS53-dependent apoptosis by directly binding p53 and inhibit-
ing its ability to induce expression of proapoptotic genes
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(Sarnow et al., 1982; Ben-Israel and Kleinberger, 2002). Work
has shown that the E4 region product E4orf6 cooperates with
E1B-55K to carry out these functions (Querido et al.,
2001a,b). Expression of E1A during infection also promotes
apoptosis by sensitizing cells to the tumor necrosis factor a
(TNF-a)- and TRAIL (TNF-related apoptosis-inducing li-
gand)-mediated death receptor pathways (Shao ef al., 1999;
Routes et al., 2000). The second product of the E1B tran-
scription unit, the 19K protein, is able to block downstream
mediators of these pathways and inhibit programmed cell
death (Perez and White, 2000; Tollefson et al., 2001). In the
case of TNF-a-mediated apoptosis, the E1B-19K protein can
bind directly to the proapoptotic proteins Bak and Bax to pre-
vent mitochondria-mediated apoptosis (Sundararajan et al.,
2001). It is thought that these mechanisms for inhibiting apop-
tosis keep the cell alive as long as possible in order to maxi-
mize viral yields (Rao et al., 1992). In addition to its anti-
apoptotic functions, the EI1B-55K protein facilitates the
transport of viral mRNAs to the cytoplasm during the late
stages of infection (Pilder er al., 1986).

The E2 region encodes proteins necessary for replication of
the viral genome: DNA polymerase, preterminal protein, and
the 72-kDa single-stranded DNA-binding protein (reviewed by
de Jong et al., 2003). Even though adenovirus replicates in the
nucleus, it requires its own enzymatic machinery because of its
chromosomal structure. It does not have telomeres, so the in-
tegrity of the DNA ends is ensured by the use of a viral pro-
tein, preterminal protein (pTP). The preterminal protein is co-
valently linked to the 5’ end of each genome strand and acts as
a primer for the viral DNA polymerase. Initiation of polymer-
ization begins by covalently attaching the first nucleotide of the
growing chain to the pTP. Genome replication occurs via a
strand displacement method mediated by the 72-kDa protein
and the DNA polymerase.

Products of the viral E3 region function to subvert the host
immune response and allow persistence of infected cells. The
immune system has evolved a number of mechanisms for de-
stroying virus-infected cells, including cell lysis by cytotoxic T
lymphocytes and activation of receptor-mediated apoptotic
pathways by chemokines. The E3-gpl19K protein acts in two
ways to prevent the presentation of viral antigens by the MHC
class I pathway and subsequent cell lysis by cytotoxic T cells.
E3-gp19K was first found to prevent translocation of MHC
class I molecules to the cell surface by sequestering them in the
endoplasmic reticulum (ER; Burgert er al., 1987). More re-
cently, it has been shown that E3-gp19K can bind to TAP (trans-
porter associated with antigen processing), an ER protein re-
sponsible for transporting cytosolic antigens into the lumen,
suggesting that the E3-gpl19K protein may directly interfere
with the loading of peptides onto MHC class I molecules (Ben-
nett et al., 1999). The E3-10.4K, 14.5K, and 14.7K proteins
have all been shown to inhibit the induction of apoptosis by the
chemokines TNF-«, Fas ligand (FasL), and TRAIL (Gooding
et al., 1991; Shisler et al., 1997; Chen et al., 1998; Li et al.,
1998; Benedict et al., 2001). In the case of E3-10.4K and 14.5K
proteins, this inhibition occurs by inducing the clearance of
chemokine receptors from the cell surface and targeting them
to the lysosome for degradation, hence their designation as the
receptor internalization and degradation (RID) complex. The
E3-10.4K and 14.5K proteins have also been shown to block
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TNF-a-induced secretion of the inflammatory mediator arachi-
donic acid, possibly via their inhibition of phospholipase A,
translocation to the cell membrane (Krajcsi et al., 1996; Dim-
itrov et al., 1997).

The E4 transcription unit encodes a number of proteins that
have been known to play a role in cell cycle control and trans-
formation; however, the mechanisms underlying these functions
have remained unclear until recently. Early studies on the
E4dorf1 protein of Ad9 demonstrated that it is able to induce es-
trogen-dependent mammary tumors in mice (Javier et al.,
1991). Interestingly, Ad9 E4orf1 can bind the candidate tumor
suppressor ZO (zonula occludens) protein whereas the non-
oncogenic Ad5 E4orfl cannot (Glaunsinger et al., 2001). Fur-
thermore, the transforming ability of Ad9 E4orf1 is dependent
on its ability to stimulate membrane-associated phosphatidyl-
inositol 3-kinase (Frese et al., 2003). These functions
suggest that transformation by E4orf1 of Ad9 occurs via mech-
anisms distinct from those employed by E1 region proteins. In
Ad2 and AdS, E4orf3 and E4orf6 encode gene products with a
number of diverse functions. Both proteins have been shown to
increase the ability of E1 genes to transform primary rodent
cells, increase the expression of viral late genes, and inhibit ge-
nome concatemerization by cellular DNA repair enzymes (re-
viewed by Tauber and Dobner, 2001; Stracker et al., 2002).
In the case of E4orf6, enhanced transformation is thought to
occur via its ability to block pS3-mediated trans-activation by
inhibiting the binding of p53 to cellular transcription factors
(Dobner et al., 1996). E4orf6 has also been shown to coop-
erate with the E1B-55K protein in targeting p53 for degrada-
tion by cullin-containing ubiquitin ligases (Querido et al.,
2001a). In addition to the functions listed, the E4orf3 protein
also mediates the organization of nuclear structures termed
PML oncogenic domains (PODs; Carvalho et al., 1995). Al-
though the function of these domains is not clear, they have
been shown to play a role in transformation, transcription, and
apoptosis in infected cells (reviewed by Maul, 1998). Inter-
estingly, an E4orf3 point mutant unable to facilitate the re-
arrangement of PODs was severely defective in viral DNA
replication (Evans and Hearing, 2003). The E4orf6/7 tran-
script is produced by fusion of orf7 and a 5" portion of orf6.
The functions of this gene product appear to complement those
of the E1A proteins in activating E2F-dependent promoters.
Whereas E1A sequesters Rb, releasing repression of E2F, the
E4orf6/7 protein binds directly to E2F and promotes its acti-
vation of viral and cellular promoters (Hardy et al., 1989;
Huang and Hearing, 1989; Schaley et al., 2000). Most prod-
ucts of the E4 region have antiapoptotic effects; however, the
E4orf4 protein interacts with protein phosphatase 2A to stim-
ulate p53-independent apoptosis (Shtrichman ez al., 1999). It
is speculated that induction of programmed cell death path-
ways by E4orf4 may facilitate the release of progeny virions
during the late stages of infection.

Late gene expression and viral assembly

Most adenovirus late genes are expressed from five regions,
L1-L5, and are transcribed from one promoter, the major late
promoter (MLP). The major late transcription unit (MLTU) en-
codes approximately 15 to 20 different mRNAs, all of which
are derived from a single pre-mRNA by differential splicing
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and polyadenylation. These transcripts primarily encode struc-
tural proteins of the virus and other proteins involved in virion
assembly. In addition, the 100K protein, a product of the L4 re-
gion, carries out a number of functions during the late phase of
infection including acting as a chaperone for hexon trimeriza-
tion and mediating recruitment of ribosomes to viral mRNAs
(Cepko and Sharp, 1982; Xi et al., 2004). After the onset of
DNA replication, transcription from the MLP is induced to high
levels, ensuring the production of adequate amounts of struc-
tural proteins for the assembly of progeny virions. Manipula-
tion of late genes encoding the structural components of the
capsid has been explored as a strategy for changing the tropism
of gene therapy vectors. Alterations of hexon, penton, fiber, and
pIX have been shown to successfully mediate retargeting
(Wickham et al., 1995; Dmitriev et al., 1998; Vigne et al., 1999;
Vellinga et al., 2004).

Although virion assembly takes place in the nucleus, hexon
trimerization begins in the cytoplasm, where the 100K protein
associates with hexon soon after translation (Cepko and Sharp,
1983). Hexon trimers are then translocated to the nucleus in a
process involving pVI (Wodrich et al., 2003). Once there, they
associate with penton and minor capsid components to form the
protein shell. Early pulse—chase experiments and the analysis
of temperature-sensitive mutants suggested that genome en-
capsidation occurs via insertion of viral DNA into these pre-
formed capsids (Edvardsson er al., 1976; D’Halluin et al.,
1978a,b). Furthermore, characterization of viruses with muta-
tions in the L1-52/55K gene indicates that this protein is re-
quired for the encapsidation process as infection with these mu-
tants produces only empty or partially filled capsids (Hasson et
al., 1989; Gustin and Imperiale, 1998). However, an alternative
model has been suggested in which genome-containing cores
nucleate assembly of the protein coat. Findings that the viral
IVa2 protein is required for the formation of capsids and binds
to the adenovirus packaging sequence, a region on the virus
chromosome required for efficient genome packaging, support
this model of assembly (Zhang and Imperiale, 2000, 2003;
Zhang et al., 2001). Interestingly, the IVa2 protein was shown
to bind the L1-52/55K protein in infected cells, although the
relevance of this interaction remains unclear (Gustin et al.,
1996). The L4-33K protein also appears to play a role in virus
assembly as mutants carrying complete or partial deletions of
this gene are defective in capsid formation (Fessler and Young,
1999; Finnen et al., 2001).

The packaging sequence itself is a series of seven repeats
(A1-A7) at the left end of the genome (Hearing et al., 1987).
Although each of the repeats fits a consensus motif, they are
not functionally equivalent as Al, A2, AS, and A6 have been
shown to be most important for genome encapsidation (Grable
and Hearing, 1990). Once assembly and DNA encapsidation
have occurred, the adenovirus protease cleaves a subset of the
structural proteins into their mature form to produce fully in-
fectious virions (reviewed by Mangel et al., 2003). Cell lysis
and release of progeny virions occur approximately 30 hr
postinfection in a process involving the E3-11.6K protein, also
called the adenovirus death protein (ADP; Tollefson et al.,
1996a). Unlike other products of the E3 region, ADP is pro-
duced only during the late phase of infection and is transcribed
from the MLP rather than the E3 promoter (Tollefson et al.,
1996b).
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USE OF ADENOVIRUS VECTORS

For any gene therapy vector to attain utility in patients it must
deliver genes to the intended target and provide expression for
an appropriate length of time to achieve a therapeutic effect. Ide-
ally, a vector should be administered systemically and infect only
tissues in which gene delivery is desired, thus limiting toxicity
to surrounding tissues and organs. Targeting adenovirus vectors
to specific tissues has proven to be problematic, however, be-
cause of high-level expression of adenovirus receptors on many
cell types. Many strategies have been developed that show
promise in altering the tropism of adenovirus vectors (Curiel,
1999; Wickham, 2000). Much progress has also been made in
achieving prolonged, robust expression of transgenes after vec-
tor administration. Improvements along these lines have been ob-
tained mostly through deletion of multiple adenovirus genes,
thereby reducing vector replication and the subsequent immune
destruction of transduced cells. The construction and biology of
these vectors are discussed below. A schematic showing the ge-
nome structure of commonly used vectors is presented in Fig. 3.

First-generation vectors

As described above, genes in the E1 region are necessary for
activation of viral promoters and expression of both early and
late genes. Thus, removal of the E1 coding sequence results in
viruses that are severely impaired in their ability to replicate.
Furthermore, the E1 region encodes the oncogenic transform-
ing functions of the virus. For these reasons, replacement of the
El region with transgenes was the initial strategy used in the
construction of adenovirus vectors, giving rise to the so-called
first-generation vectors. The ability to delete the E1 region is
made possible by the existence of cell lines that provide these
functions in trans. The classic cell line for this purpose is the
293 cell line, a human embryonic kidney-derived line that has
been transformed by the adenovirus E1 region (Graham et al.,
1977). Production of El-deleted vectors was initially carried
out by homologous recombination in mammalian cells between
constructs carrying the left and right ends of the genome (Chin-
nadurai et al., 1979). However, this method proved to be inef-
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ficient and has prompted the development of techniques rely-
ing on standard cloning in bacteria and subsequent transfection
of recombinant chromosomes into mammalian cells for virus
production (reviewed by Danthinne and Imperiale, 2000). Re-
moval of the E1 region alone allows approximately 5.1 kb for
insertion of therapeutic genes because adenovirus can package
up to 38 kb without affecting viral titer and growth rate (Bett
et al., 1993).

Many of the first-generation vectors also contain a deletion
in the E3 region, mainly for practical reasons. To optimize the
yield of vectors in early experiments using overlap recombina-
tion, investigators used the Ad type 5 mutant d/309 or its de-
rivatives, which contain in the E1 region two unique restriction
sites due to partial deletion of E3 (Jones and Shenk, 1978).
Thus, the likelihood of regeneration of the starting wild-type
virus, which could arise as a result either of incomplete re-
striction digestion or religation of viral DNA in the cell, was
minimized. Furthermore, E3 genes are entirely dispensable for
virus growth in vitro and their removal, together with deletion
of E1 genes, allows up to 8.2 kb for transgene insertion. Data
have suggested that expression of E3 genes from vectors may
be beneficial in vivo because of their ability to dampen many
host immune processes. It has been reported that expression of
the entire E3 region or the E3-gp19K product alone can increase
persistence of transgene expression in some rodent models
(Bruder et al., 1997; llan et al., 1997). However, conflicting
data have shown that expression of the E3-gp19K protein has
no effect on the length of transgene expression (Schowalter et
al., 1997). These discrepancies may be due in part to differ-
ences in the nature of the transgene or the tissue type that was
analyzed. Nevertheless, the inclusion of E3 genes in vectors re-
mains an area of active investigation.

Although first-generation vectors have proven to be highly
promising as vehicles for gene delivery, problems do exist. The
first drawback associated with these vectors becomes apparent
during vector production. Recombination between the E1 re-
gion sequences in the complementing cell line and the recom-
binant virus can give rise to viral progeny with functional E1
genes that are replication competent (Lochmuller ez al., 1994).
Thus, recombinant virus stocks must be assayed for the pres-
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FIG. 3. Genome structure of first-generation, second-generation, and helper-dependent vectors. Regions that have been deleted
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ence of replication-competent viruses. Helper cell lines such as
PER.C6 and 911, in which the overlap between E1 sequences
in the cell and those commonly present on recombinant virus
chromosomes is reduced, have been constructed in order to min-
imize this occurrence (Fallaux et al., 1996, 1998). The second
and more troublesome problem associated with the use of first-
generation vectors is their stimulation of a cellular immune re-
sponse, resulting in the destruction of transduced cells that are
expressing therapeutic transgenes. Indeed, a number of early
studies showed that administration of E1-deleted vectors to im-
mune-competent animals results in only transient transgene ex-
pression (Yang et al., 1994a, 1995; Dai et al., 1995). It is the-
orized that the immune response is stimulated by low levels of
replication that can occur even in the absence of the E1 genes.
This idea is supported by findings that genome replication and
late gene expression can occur from El-deleted vectors in vivo
(Yang et al., 1994a,b). Although stimulation of a robust im-
mune response may preclude the use of first-generation vectors
in some settings, they still remain promising for applications
requiring short-term gene expression such as cancer therapy and
vaccination.

Second-generation vectors

To prevent the immune response generated by low-level
replication of El-deleted viruses, vectors deleted for multiple
genes have been created to inhibit viral gene expression more
effectively. These second-generation vectors have been con-
structed primarily by the removal of E2 and E4 coding se-
quences, also providing the benefit of a larger capacity for trans-
gene insertion. The major drawback encountered during
construction of these multiply deleted viruses is the need for
isolation of cell lines expressing the missing functions in trans.
Although this can be a time-consuming process, vectors prop-
agated in these cells are less likely to undergo recombination
to give replication-competent viruses. In the case of E2 genes,
cell lines have been produced that stably express the single-
stranded DNA-binding protein, preterminal protein, the viral
DNA polymerase, or a combination of the three (Schaack er al.,
1995; Amalfitano et al., 1996; Gorziglia et al., 1996; Amalfi-
tano and Chamberlain, 1997). Vectors containing deletions in
these genes are incapable of genome replication, and in the case
of polymerase-deficient vectors, no replication occurs even in
the presence of high levels of E1A (Amalfitano ef al., 1998).
Furthermore, experiments in immune-competent mice demon-
strate that transgene expression from vectors lacking the DNA
polymerase gene was sustained much longer than from vectors
without the deletion (Hu et al., 1999). Results from experiments
in which all or part of the E4 region has been deleted are less
clear. As described above, the E4 region encodes products in-
volved in many aspects of viral replication. It was thus theo-
rized that removal of all or part of the E4 transcription unit
would impair viral replication and gene expression such that an
immune response would not be triggered. Rodent models have
suggested that the deletion of some or all E4 proteins may af-
fect the length and level of transgene expression; however, this
regulation appears to be both tissue and promoter specific (Ar-
mentano et al., 1997; Brough et al., 1997; Dedieu et al., 1997,
Wang et al., 1997; Lusky et al., 1998; Grave et al., 2000).
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Helper-dependent vectors

The approach that holds perhaps the most promise for long-
term gene expression in the absence of complicating effects due
to the presence of viral genes is that of gutted, or helper-de-
pendent, adenovirus vectors (Clemens et al., 1996; Chen et al.,
1997). In this strategy, all of the viral structural genes are
deleted from the viral chromosome, leaving just the two ITRs
and the packaging signal. Such a chromosome can accommo-
date up to 37 kb of transgene sequences. To propagate the
helper-dependent genome, the presence of a helper virus that
provides the functions required for replication and assembly is
required, as production of a complementing cell line has not
been possible because of the need for high levels of some virion
components and the toxicity of some of these proteins to the
cell. The main problem to date is the inability to completely
separate virions containing the helper-dependent chromosome
from those containing the helper virus genome (Steinwaerder
et al., 1999; Sandig et al., 2000). Early strategies that were pur-
sued to reduce helper virus contamination included the use of
a helper virus carrying a mutated packaging signal, and mini-
mizing the size of the helper-dependent chromosome compared
with that of the helper virus with the hope that the two types
of virions could be separated on the basis of their different den-
sities. Even using these techniques, however, helper-dependent
virus preparations contained significant levels of contaminat-
ing helper virus. More recently, helper viruses in which the
packaging sequence is flanked by loxP or frt sites have been
constructed (Parks et al., 1996; Umana et al., 2001). When these
viruses are used to propagate helper-dependent vectors in cells
expressing Cre and Flp, respectively, the packaging sequence
on the helper virus is excised, resulting in a significantly lower
percentage of contaminating helper virus. Indeed, by deriving
improved helper cell lines and culture conditions, helper virus
levels can be reduced to below 0.01% (Palmer and Ng, 2003).
However, recombination between helper-dependent and helper
chromosomes, leading to helper chromosomes that can be pack-
aged, is still encountered during virus propagation. A novel
method using baculovirus to provide helper functions was re-
ported to allow for production of helper-dependent vectors with-
out contamination by helper virions, although attempts to use
this process for large-scale preparations also resulted in the for-
mation of replication-competent viruses (Cheshenko et al.,
2001). Nevertheless, in vivo studies using helper-dependent
vectors have produced promising results (DelloRusso et al.,
2002; Ehrhardt and Kay, 2002; Mian et al., 2004; Muruve et
al., 2004; Pastore et al., 2004).

Oncolytic vectors

Gene correction strategies require that vectors deliver ther-
apeutic genes to target tissues and allow for the persistence of
transduced cells. Adenovirus vectors that aim to selectively kill
target tissues, termed oncolytic or conditionally replicating ade-
noviruses (CRAds), have been developed for the treatment of
cancer. Malignant cells often have mutations in tumor sup-
pressor genes required for regulating cell cycle progression,
such as the p53 and RbI genes. Selective replication of on-
colytic adenoviruses lies in their ability to replicate only in cells
in which these cell cycle checkpoints have been disrupted. As
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described above, the E1B-55K protein normally inhibits the
ability of p53 to induce apoptosis in infected cells. Thus, it was
posited that a vector deleted for the E1B-55K gene should be
able to replicate in and lyse only a cell in which p53 function
has been lost (Bischoff et al., 1996). Indeed, vectors deleted for
the E1B-55K gene have been tested in animal models and clin-
ical trials and show promise in selectively destroying malignant
tissues (Heise et al., 1997; McCormick, 2003). Interestingly,
the dependence of these viruses on mutations in p53 to repli-
cate is unclear as they seem able to replicate in tumor cells re-
gardless of p53 status, all the while sparing normal cells from
lysis (Goodrum and Ornelles, 1998; Hall et al., 1998; Roth-
mann et al., 1998; Harada and Berk, 1999). Cancer cells lack-
ing Rb function have been targeted in a similar way, using
viruses in which the Rb-binding domains, but not the domains
necessary for promoter activation, have been deleted from the
E1A proteins (Fueyo et al., 2000). An alternative approach for
achieving conditional replication is to place the E1A and/or E2
and E4 transcription units under the control of a promoter ac-
tive only in malignant tissues. One example of this strategy is
placement of E1A under the control of the human telomerase
reverse transcriptase (hTERT) promoter, a promoter active in
many cancer cells but not in normal tissues (Zou et al., 2004).
Most recently, oncolytic adenoviruses carrying “suicide genes”
have been used, thereby increasing the toxicity of vectors to
target tissues (Hawkins and Hermiston, 2001; Hawkins et al.,
2001).

THE IMMUNE RESPONSE TO VECTORS

After systemic administration of adenovirus, a large propor-
tion of vector is sequestered by the liver. Subsequent uptake by
resident macrophages results in the rapid release of large quan-
tities of inflammatory cytokines (Muruve et al., 1999). Thus,
in addition to the adaptive immune response brought about by
low-level expression of viral genes, a substantial innate immune
response is triggered on virus administration. Activation of the
innate immune system is stimulated by the virus particle and
therefore is not dependent on transcription from viral DNA.
This response can cause inflammation of both target and sur-
rounding tissues, resulting in considerable loss of transduced
cells, and can also lead to severe systemic toxicities (reviewed
by Liu and Muruve, 2003). Furthermore, high titers of anti-
bodies against capsid proteins, either preexisting because of pre-
vious exposure to natural virus or generated as a result of vec-
tor administration, may inhibit subsequent dosing with the same
vector. A number of strategies are being developed that aim to
avoid antibody-mediated vector neutralization in order to allow
for repeated dosing. These include the use of vectors derived
from serotypes that do not cross-react, the use of adenoviruses
from other species (e.g., chimpanzee), and coadministration of
vectors with immunosuppressive drugs (Mastrangeli er al.,
1996; Mack et al., 1997; Fitzgerald et al., 2003; Reyes-San-
doval et al., 2004). Another strategy that has also shown
promise is to coat vectors with inert chemicals such as poly-
ethylene glycol (Croyle et al., 2001, 2002). In addition to prob-
lems associated with the production of neutralizing antibodies,
loss of transgene expression can occur via the actions of anti-
viral cytokines. The mechanisms by which transcription is
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turned off are not well understood, although there is evidence
that cytokines can interfere with the function of some com-
monly used promoters (Qin et al., 1997).

SUMMARY AND FUTURE DIRECTIONS

In the early days of gene therapy, adenovirus vectors were
looked on with great excitement as potential tools for almost
any therapeutic application. The potency of the immune re-
sponse to first-generation vectors, in retrospect, might have
been anticipated because it was known that the requirement
of the E1 region for replication was not absolute (Gaynor and
Berk, 1983; Imperiale et al., 1984). Nevertheless, the utility
of adenovirus for future gene correction strategies may re-
bound if advances in the development of helper-dependent
vectors continue at their present rate, resulting in increased
removal of helper virus contamination. Similarly, vectors car-
rying mutations in E2 genes show great promise. In the mean-
time, adenovirus is arguably the vector of choice for treat-
ment of localized cancer, as the results of ongoing clinical
trials are encouraging. Additional modifications to the tro-
pism of the virus will be required, however, before adenovi-
rus will be useful for systemic treatment of metastatic dis-
ease. Perhaps the greatest obstacle to both systemic delivery
and long-term gene correction will be the innate immune re-
sponse, to which even helper-dependent vectors are suscep-
tible. Although the previous 50 years have provided consid-
erable knowledge of adenovirus biology, we clearly need to
continue our study of this intriguing virus and how it inter-
faces with the host in order to make it a more generally use-
ful tool for gene therapy.
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