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I. Introduction

In a series of papers, Denman and Liu []1.-31, introduced a procedure for

the approximate solution of the nonlinear ordinary differential equation:
x""+ fx) = 0, (1)

where the dot = indicates differentiation with respect to time t and
f(x) is a nonlinear function, The present paper applies the same procedure
and its extensions to discuss certain aspects of the following problems in
nonlinear mechanics: (a) the generalized Duffing equation; (b) the gener-
alized Van der Pol (or Rayleigh) equation and finally {c) the generalized
Mathieu-type equation. All solutions are compared with those by well=known

methods or experimental results.

IT. Linear Ultraspherical Polynomial

The ultraspherical polynomials Pék) on the interval [a,B] are de-
fined as the sets of polyﬁomials orthogonal on this interval with respect
to the weight factors [1-(x-x,) E/AQTK -1/2 , where A = (p-at)/2 , x, = (p+a)/2
and A > - 1/2 . Expanding f(x) in these polynomials and truncating after

)

J

*(x) = a(x),ng) (x') + a§}J P§k) (x') ,

0
where x' = (x-x.)/A ,

(2) f+i fAx+xc )Py <l) (x) w(r,x)dx

n

a

T 01 w,x)ax

and w(i,x) = (l-~x2)>"l/2 , A > - 1/2,

-1-



In the usual normalization, Pék> =1, Pﬁk)(x) = 2Xx ., However,
: (M)o(2) . () -
since a P (x) remains unchanged if P, is multiplied by a constant,

any convenient normalization can be used. Normalization such that P&k)(x) =X

is chosen in the present paper.

The following are three examples which will be used in the ana-

lyses to follow:

1. f(x) = ax + bxS  in [a,8] yields the approximation
J

£ (x) = [ax, + bxg + 3bx, A2/2(x+1)] + [3bA2/2(2+?\) + a + 3bx]

[x - x.] (3)
2. f(x) =sinx in [o,B] yields the approximation
£(x) = [sin x, n(A) + cos x Ao (A)Bex_ 1, (k)

where p(A) = M{Mm1) J (A)/(A/2) ; T is the Gamma function and J,(A)
is an ordinary Bessel function of order A . The function AA(A) is tab-
ulated in 4],
3. f(x) = sinh x in [a,B]
f (x) = [sinh x 7§x(A)] + cosh XCKR+1(A)(X-XC> , (5)
where K (A) = I(W1)I,(A)/(a/2)" , end TI,(A) is the modified

Bessel function of order X\ .

III. Applications of the Method

Consider the nonlinear differential equation:

x 0+ g(x) + £f(x) = F, sin pt + Fq , (6)

where the forcing function consists of a constant plus a sinusoidal part.
Assume the existence of a steady-state oscillation and the expandability

of the nonlinear functions f(x) and g(x°) into ultraspherical polynomials.
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The interval of expansion for f(x) is [a,B] , where a and B are
minimum and maximum amplitudes respectively. Similarly, g(x°) is expanded
in the interval [y,a] , the minimum and maximum velocities of the motion.

The linearized f (x) and g*(x‘) are then substituted into (5) to yield

x°7 + cgxc +(D§XrF

(K)]

sin pt + [Fl + Wy X, = b CxVe = &) ’ (7)

C

2 2 ()

where any starred quantity is associated with the ultraspherical polynomial

approximation and the bar over the letter is used to denote quantities as-
. . . . . —(2)

sociated with the velocity expansion, i.e., cy = al /V,V = (& - 7)/2,

v, = (8 +7)/2, and (Di = agx)/A . Equation (7) is a linear differential

equation, hence

()

(A 2 .
o t Cyv, - ag )]/w4 + T, sin (pt + )

x = [F) + agx, - a

(2 - $2)2 + (cpp)21 /2 (8a)

1

where @ = tan [c*p/(aé - pg}] (8b)

From the definitions of the minimum and maximum excursion and

velocity, (8a) yields

2 A —(A 2
[F1 + w,x, - ag ) + Ve = a(() )]/CD* ’

C g
v, =0,
2 2.2 2,-1/2
A =F[(ef - 20 + (cqp)P172

V =1pA ,
which simplifies to

Fl = agk)



It is to be noted that for free nonlinear oscillations, i.e.,

F, =F, = 0, Equations (92) and (9b) are still valid.

Several classes of problems are given below to illustrate the technique.

A. Generalized Duffing Equation

Iet the form of the differential equation be
x'' 4+ ex’ 4+ f(x) = F_ sinpt + Fy , (10)

where c¢ 1is the damping constant. Immediately, Equations (9a) and (9b)

simplify to
A
r, = alM (92)
rS = [(of - 29)° + (cp)PI® (5b)

Two cases are examined:
Case 1, f(x) = ax & bx~5, & ,b>0 and B =0
This is the original form of Duffing's equation, the response

curves in view of (3) are given by (9b), where
2 2
wg =a + 3bA°/(2 + A)2 (11)

Case 2, f(x) = sin x
This case describes the problem of the pull-out torque in syn-

chronous motors [5}. Equation (9a) and (9b) become, in view of (4)



Fg = {lcos x A, (8) - p°1% + (cp)®} A%, (12)
which can be combined into
P2 = {117 /0 (8))2 Aup (B) - D212 + (cp)Pha® (13)

As is common practice with such forced oscillations prcblems: an amplitude
A 1s first prescribed, and then the amplitude-frequency relaticnships are

shown for different values of the system parameters: c¢ , F and Fp -

0
In Figure 1 an amplitude-frequency plot for the special case
when Fl =c=A=0, i.e., an undamped sinusoidally forced system, is
shown in dotted lines. It is noteworthy to observe that a one-term Chebyshev-
polynomial (i.e., A\ = O) approximation for sin x yields the same guali-
tative characteristic as a cubic Maclaurin series approximation.
Many other nonlinear f£(x)'s are given in [1] and [2], which

would yield similar results as given above.

B. Self-excited Oscillations

A "self-excited" system is characterized by input as well as dis-
sipation of energy. If more energy is provided than dissipated, the ampli-
tude may increase and conversely. A fixed amplitude, called its "limit
cycle", arises only if the two processes balance each other.

l. Free Oscillations

Such systems are typified by Van der Pol's equation:
oo 24y .
x"T -p(l -x)x"+x=0 , (14)

where p 1s a parameter. It can be written as Rayleigh's equation



-

yoo -y -yS3) vy =0, (15)

through the transformation y° = x . Consider the generalization of
Equation (15): the velocity term is written as g(y°) and the resulting

differential equation becomes
yoo +e(y)+y =0, (16)

0.

il

where g(y*) is a nonlinear odd function and g(0)
It is a well-known fact that in order for a system described by
Equation (16) to execute self-excited oscillations, it is essential that
the slope of g(y°) be negative for small y° . If there exists a steady-
state limit cycle about the origin, then the velocity interval is obviously

[-V,V] or the linearized form of (16) becomes

VO o+ cxy 4y =0, (17)
However, a limit=-cycle motion demands cy = O , which yields the condition
on the maximum velocity in the limit cycle. Again, several examples are
given:
case (a), gly°) = u(l - y°2/3)y° (Rayleigh's equation)
Equation (17) becomes, in view of (3)
yoo - ull - vE/2(e+)]lyr +y = 0. (18)
The condition that c¢y must vanish gives:

v = [2(2 + 2)]H/? (19)

Hence, for steady=-state oscillation, the linear approximation is

}1/2

Vo= [2(2 + ) sin(t + ¢) (20)

For Chebyshev polynomials, i.e. A = 0, (20) becomes



x =y =2sin(t + @), | (21)

a well-known approximate result for (14) and (15).
Alternatively, one can examine the linearized version (18)
directly: note that if V > [2(2 + )\)]l/2 , the system is dissapative
while for V < [2(2 + x)]l/2 the system is unstable. At vV = [2(2 + 1)]%/2
a strongly stable limit cycle is established. Whatever the initial velocity
and displacement the oscillation will tend toward the stationery value (21).
case (b), g(y*) = - siny*

The linearized differential equation becomes
yorom A (Vy sy =0 (22)
Limit-cycle velocity occurs at

or

0 (23b)

Jk+l(v)

TFor any given A , there exists an infinity of roots in (23b).

This indicates an infinite number of limit cycles which can be
shown to be alternately stable and unsteble, For X = 0, the limit cycles
occur at the zeros of J,(V) = O, which agrees with the results of
Eckweiler [6], who compared his results with the limit cycles obtained from
the Liénard construction.,

Case (c¢), g(y') = ~-sinhy® +cy’, 0<ec<1l

Similar to the previous case, one obtains an infinity of alternate-

ly steble and unsteble limit-cycles which occur at the zeros of

L1(V) = c(v/2)"/r(a2) (k)
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2, Forced Oscillations

(a) Van der Pol's Equation with Forcing Term

To begin with one notes the linearization scheme when

applied to the equation

X' - px® o+ vx'3 +.m§x = F, cos(pt + $) , (25)
where pn , v and wg are positive constants, yields the steady-state solu-
tion

x = Bol(e? - 99 - (3wP/e(20) - 1)%”] T Peoe (ot + 0)

For steady-state oscillation, V = pA , hence

A° = Fg[(wg - p°)2 - (3vAPpP/(2+0)2 - 1)°pP1
Or following [5], one can rewrite the above as

olo” + (1-p)°] =7°, (26)

2
where ¢ = (p2 - wg)/up, p = 3vA2p2/2u(2+k) and F~ = 3F§v/u3(2+k)2 .
Again, Equation (22) compares exactly with the standard equiva-
lent linearization with A = O . If the "spring" is non-linear in (25),
2

only the wg term in (26) changes. The procedure is straightforward.

(b) f(x) = sinh x and g(x*) = - sin x" in Equation (6)

The differential equation is

x'* - c sin x' + sinh x = Fsin pt + F c >0, (27)

l )

which typifies the problem with both nonlinear variable damper and spring.

To eliminate F; , one usually resorts to a substitution of the form
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Z = X + Fl , which fails to achleve a simplication in the present case,
The method of ultraspherical approximation, however, yields the result

in a straightforward manner. Following (9a), (9b) and (9c) one obtains

F, = sinh x, KK(A)
2 - 242 ¢ 121 A2
Fg = {{cosh Xea AX+1(A) - p°1° + [cp AX+1(PA>] } AT, (28)

which combines into

Fg = {[\/l + (Fl/xx(A))ngl+l(A) - p°)?
+ [ep Ay, (p8)]7]a% (29)

As usual, one prescribes amplitude A +to obtain the response curves.

IV. Method of Continuous Variation of A

In 7], a method was introduced to fake advantage of the "free" index
A of the ultraspherical polynomials Pél)(x) . The free oscillation pro-
blem governed by (1) has an "exact" solution in terms of guadratures, i.e.
its period is a function of emplitude or T = 71(A) . The linearized version
of (1) also has a period solution of the form =% = t%(MA) . By equating
the exact and linearized periods, one obtains a functional relationship be=-
tween A and A, i.e. XA = A(A) , which can be used profitably in a variety
of situations to improve the results of (ultraspherical polynomial) equiva-
lent linearization. The present section extends the technique and applies
it to forced single-degree-of-freedom non-linear problems governed by the

differential equation (6). Suppose g(x°) and forcing terms vanished in

(6), i.e.,
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Further, assume (30) has a steady-state period given by
T = 1(%0,A) . (31)
The corresponding approximate solution of (30) is
™ = T%(N,X.,A) , (32)

where any starred quantity is associated with the ultraspherical polynomial
approximation. By equating (31) and (32), one may obtain the functional

relationship

A = AM(xg,A) (33)

which will be used to improve the solutions to (6). The improvement rcsults
through the assumption that the period-amplitude relationship of forced
oscillation given by (6) is related as in "free" motion denoted by (30).

V. Applications of the Technique

A. The Slightly Damped Problem with Sinusoidal Forcing

The differential equation is
x'* + cx’ + f(x) = F, sin pt (34)
where f(x) 1is assumed to be odd. According to (9b), one obtains
Fo = [(02 - p°)° + (cp)®Ia® (35)
Condition (33) demands, in the present case

A
= 1= 2o, = 22720 (0(a) - v ax (36)

where U(x) = [ f(x)dx = potential function. Hence, a substitution of (36)
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into (35) yields
72 = {[(2n/7)% - p°1° + (cp)?a® (37)

O

We note that in (37), if ¢ and F, vanishes, it reduces to the exact

solution for period of the free oscillation problem.

The evaluation of T = 7(A) in (37) falls into two categories
depending on the way f(x) is given: (a) f(x) 1is a given mathematical
function, then the problem reduces to (36), i.e., one of quadratures;

(b) f(x) 1is given as a set of points on a graph, then the graphical
techniques presented in [8] and [9] is preferred over lengthy numerical
integration. Using the case of f(x) = sin x as an example, its exact

period in free oscillation is
r = bk[sin(a/2)] , (38)

where K(k) is the complete elliptic integral of the first kind. Hence,

(37) gives
Fg = {[n/2k(sin(a/2))1% -p°}°A% + (cpr)? (39)

Figure 1 compares the results of: (a) when X = 0 in (13), (b) when either
the numerical method of Runga-Kutta-Gill (fourth order) or an analog com-
puter is used on the governing differential equation. The superiority of

the present technique for large amplitudes is quite obvious from the figure.

B. Hyperbolic Sine Spring with Damping and Forcing

For the case of f(x) = sinh x , its exact free period is given in

(1], hence choice for A is:

Ry, (&) = {x cosn(a/2)/2K[tanh(4/2)]}? (40)
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The new response curves for g(x') = cx* 1in (6)

2 = {[1+ (F,/ XX(A))Q]I/Q[n cosh (A/2)/2 K(tanh(a/2))12 - p2}2a2+ (cpa)2
(41)

The process of determining the value of A for which Equation (40) holds

is rather tedius. Fortunately, in the present case, it was shown in [1]

that the range of A varied at most from 0 —»1/2 for A from O -5 o .

The choice of A =0 in (41 is indicated by the results in [1j. On

Figure 2 are also shown typical amplitude-frequency plots with Fo s Fl

and c¢ as parameters. Similarly, the new response curves for (27) are eas-

ily shown to be given by:
re = {[1+ (Fy/ XK(A))g]l/Z[ﬂ cosh (A/2)/2 K[tanh(A/2))]° - p°}on®

+ [ep A (pA)A]E (42)

A1

VI. Alternate Procedure

If one were to rewrite (6) as

x"* + g(x") + h(x) = F_ sin pt , (6)

where h(x) = £(x) - F{ , then the exact and approximate period solutions of
x"" + h(x) =0 (43)

will play similar roles as before, i.e., the assumptions contained in
Equations (30) to (33) are equally valid for (43).
One example will suffice to illustrate the procedure. Consider

the generalized Duffing equation:

3

X'+ ax + bx’ = F, + FO s;n pt, a, b>0 (4h)
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1/2 1/2 3,1/2
) b

Llet y = x(b/a) T = ta y My = F‘l(b/a3)l/2 and n, = F_(b/a”)

then (44) has the dimensionless form

y"+ ¥ +y> -0 = sin QT (45)
1/2 :

where Q = p/a and ' = d/dT . The exact solution to
yU Ay Y - =0 | (46)

is given in [2] as

] /2

T/To = (H/n)[klk'l/s(Yg-Yl K(ky) , (47)

where Yl and Y2 corresponds to the turning points o, B, i.e.,

Yy = a(b/a)l/g, Yo = B(b/a)l/2 . The other constants are: r = (Y] + ¥,)/2 ,
s=£+g+(ﬁ+y%m,kgzum)-u+3£n£+(%+rﬁnﬁ+<H+rﬁ],

= and T = 2na Hence, by (9a) and (9b), one obtains

R 1/2
1 1 0

r+ r3 + 3vA3/2(2+1)

1

and

Mo = A{s(¥,-¥))/ky K T(4/x) K(x)IZ - 0%},

which combines into

—r -3 +
2 = Jo(r + 1) {e(r,-¥,)/k, Ky (/K ()T

2,2
- , 48
3r f } ( )

where the judicious choice for A 1is given by

[1+ 3r% + 382/2(2 + 0)] = s(¥, - ¥q)/kyk'q [ (4/n)K(ky )12 (49)
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It is to be noted that if the external sinusoidal forcing n, =0, (48)
yields the exact solution of the step function excitation problem. In
contrast, if n =1, =0, (48) does not yield the correct solution to the
free oscillation problem. A natural question to ask is: which one of the
two procedures is better? If n > > Ny the technique of the present
Section is obviously superior, while the method of Section V would be the
choice if 1, > >1n; . In case the two n's are of the same order of mag-
nitude, the preference would be decided on the basis of analytical simpli-
city, which is decidedly in favor of Section V.

VII. Parametric Excitations of a Pendulum

In recent papers, Skalsk and Yarymovych [10] and Struble [11; have ex-
amined the problem of a pendulum executing large amplitudes which are sus-
tained by a harmonic oscillation of the pendulum support in the vertical

direction. The motion of the pendulum is governed by the nonlinear equation

0 + 2Ko* + (wi +t"/L) sin 8 = 0 , (50)

where K = damping coefficient, _ = (g/L)l/2

o = natural frequency of smallk

amplitude oscillation and ¢ = vertical displacement of the pendulum support.

Equation (50) is first transformed into the dimensionless form
e" + 2¢co' + (e - n2q cos nz) sin © = 0, (51)

where z =wt , c = K/(b2 , e = w%/wg , q = gO/L and ¢ = Co cos n Wt .
The assumption of nw as the support frequency indicates that the solutions
anticipated are subharmonics of order l/n , where n are the integers
greater than one. If sin © were replaced by the first term of its Maclaurin

series expansion, one obtains the classical Mathieu equation
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" + 2c0' + (e - n°q cos nz) 6 = O (52)

The form of the solution and its stability is completely delineated by the
Strutt diagram, which separates the (e,q) plane into stable and unstable
regions with c¢ as a parameter.[5] Suppose one were to choose the system
parameters such that the solution is unstable with respect to (52), in
what way does the nonlinearity in (51) induces stable finite steady-states?
In the examinations of [10] and [11], the sin 6 term was expanded into a
Maclaurin series, which was then truncated to suit the order of the analysis
attempted. It is not convenient to give the solution to (52) immediately.
Treating c¢ and q as small quantities, one can, following [11], express
a general perturbational solution of Equation (51) in the form of an asymp-
totic series:

n

i
0 =Acos (z - 0) + _Z Q- 6,
i=1

(53)
For ¢ =g = 0, Equation (52) yields the elementary solution © = A cos

(z -~ 0) , where A and ¢ are arbitrary constants. For g £ O, but
small, one permits slow time-variations in A and ¢ as in the variation
of parameter approach. The additive terms in powers of the parameter g
follow an expansion-type perturbational procedure. The assumed solution

(53) is substituted into (51) with sin @ represented by a polynomial,

one obtains:

[280" + A" - AO'2 - A] cos (z - 0) - [2a" - 240" - AQ"] sin (z - 0) + ae}

+ qgeé + ooeo + 2¢[A'cos(z - Q) - A(L - ¢') sin (z - Q) + Q8] + qgeé +.o..]

+ (e - n%q cos nz){al[A cos(z - ¢) + 961 + q292 + ... ] + a3[A3cos3(z - )

+ 342 cos®(z - ¢)qel + 3A cos(z - 0)g° Q% Fouen O(q3)]} =0 (54)
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where a,'s are constants which are functions of the amplitude A . Using
only the first term of the ultraspherical polynomial expansion for sin ©
and the standard justification for the variation of amplitude and phase,
i.e,, the first derivative terms are of 0(q) and the second derivatives

are of 0(q°) , one obtains, to the first order in q , the variational

equations:
2M¢'+[AMlUUe-l]A==O, (55)
24 + A =0, (56)

where ¢ = 0(q) . Equations (55) and (56) have well-known solutions.

The perturbational equation is, to 0(g)

0y + 2c0f + [e Ay, 1(A)]6; = n° cos nz My,(A) A cos(z - 0) (57)

However, it is very easy to verify that,
2 cos nz cos(z - 0) = cos [(L + n)z - ¢] + cos[(L - n)z - 0] (58)
Hence, Equation (57) becomes

2. /.
o + ECGi + [eAR+l(A)}91 = (U~A/2)an+l(A){cos[(l + n)z - §] + cos

1
[(1-n)z - §1} (59)
The complete non-resonant solution, is, therefore,
6 =A cos(z - ¢) + a8y (60)

where A and ¢ are the solutions given by (55) and (56) and 6, 1is given

by the solution of (59).
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For nearly-resonant conditions of the 1/2 subharmonic, i.e.,

n -2 , expand the second term of (59) as

cos[(1 - n)z - §] = cos[(n - 2)z + 20] cos(z - §)
- sin[(n - 2)z + 20] sin(z - ¢) (61)

Substituting (61) back into (54) and equating the coefficients of sin(z - ¢)

and cos(z - ¢) s One obtains the nearly resonant variational equations

, 2 2
2AQ" + A" - AQ'T + 2cA' - A(1 - ea;) = (n qalA/E)cos [(n -2)z +20] (62)
[2A" - 280" - AQ"] + 2cA(1 - §1) = (n2qalA/2) sin [(n - 2)z + 20] (63)

As before, to the first order in q ,

§' = [(1 - aje)/2] + (a"asy/4) cos 7 (64)

A" = - cA + (n®qhay/4) siny (65)
where y = (n - 2)z + 20 . Equation (64) can be rewritten as

y' = (n-1-ape)+ (n°ga, cos 7)/2 (66)

Solving for dz in Equations (65) and (66) yields

B ~chA + nqual sin 7/)4‘ _ P(A)7) (67)

dA
& (n-1-age)+ (ngqal cos y)/2 ~Q(a,y)

Singular points correspond to P and @Q approaching zero simultaneously or

sin y = he/n?q Ay, 1(R) , (68)

where use was made of ajp = Al+l(A) and accordingly,
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12 [Tary, (8)12 - 2
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Equation (6¢) is the bifurcation equation of the first ultraspherical

polynomial approximation.
From the method of continuous variation of A , Equation (38) is

substituted into the above Equation (69) to yield

o] (70)

(w * [n/2K(kq)] 1/2
) 1+ 2\/(12[1t/2l<2(kl)}LL - ¢

Figure 3 compares the three results obtained with (a) reference
[10], (b) when A = 0 in (69) and (c) Equation (70). The superiority of
the linear ultraspherical approximation over a second-order Maclaurin ex-
pansion is indicated.

In order to study the effect of initial conditions, one must ob-
tain the integral curves of motion given by (67). For simplicity in dis-

cussion, let ¢ = 0 , Equation (67) can be rewritten as
{(n - 1)/K[(sin A/2)] - [e - (n2q cos y)/2]}ada
“[(n°aa” sin y)/4] & = 0, (71)

where use was made of (38). Equation (71) is an exact differential equation

whose integral is:
(n - 1) [ [A/K(sin A/2) ] dA - [(e/2) - (n°q cos 7)/4]A2 =M = const (72)

For each value of M , (72) defines a trajectory in the A - ¢ phase plane,
where A 1is the polar distance from the origin and y the polar angle.

The singular points for the undamped case occur at either
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y=0 or n, if A#0 (73)
or

A= 0 (74)
and

K[sin(A/2)1[e ¥ 29] = 1 . (75)

In order to find the positive roots of A in (75), one notes that the
interval 2/n < e+ 29 <0 corresponds to O <A <z . The roots give
centers and saddles as singular points and depending upon the values of
e ¥ 29 , one gets four phase portraits similar to those shown in [121.
Higher-order subharmonics can be similarly analyzed but since
the paper is primarily to illustrate the applicability of the method of
ultraspherical polynomial approximation, further examples will be shown

in a later paper.

VIII. Discussion and Conclusions

In this paper, the approximate behavior of a single-degree-of-freedom
nonlinear oscillator with a forcing function consisting of a constant part
and a sinusoidal part is obtained. The linearization of the nonlinear
functions in the system by ultraspherical polynomials yield results which
are equivalent to standard techniques (e.g. first approximation of the
method of Kryloff and Bogoliuboff) when the polynomial is the Chebyshev
polynomial of the first kind, i.e., A =0 . In this sense, the present
method is a generalization of many previous linearization schemes. Next,
the free index A was taken advantage of. It was observed that in undamped

free oscillations, the approximate period must equal the exact period for
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at least one combination of X, and A for the interval -1/2 <A< =,
The appropriate value of A for a given x, and A 1s noted. When one
further assumes that the steady forced oscillations have identical period-
amplitude characteristics as in free oscillations, then the appropriate
value of X 1is used for the forced oscillation problem. The net result

of these manipulations is to begin the first approximation with the free

nonlinear oscillation. Of course, the period-amplitude relationships in

forced motion are not identical to those in free motion, hence the results
given are approximations. As pointed out by Rauécher [13], developments
which begin at point 1 in Figure 2 will have more rapid convergence to

the true solution than the usual perturbations from O . (the neighbor-
hood of the free linear solution) The method of Rauscher differs from

the present one in that he used the solution of the nonlinear free oscil-
lation problem (by guadrature) to convert the forced oscillation eguation
back into anofher free oscillation., The process is iterated through a
series of quadratures.

The present linearization process allows one to deal with a linear
forced differential equation, whose solution generally can be written down
by inspéction, without recourse to secular term arguments. The nonlinear
part of the analyses is only associated with the free-oscillation problem,
which i1s a considerable simplification from most methods.

At no point in these approximation procedures was it necessary to
restrict the nonlinear spring parameters to a small value, (the damping
coefficient and forcing function are considered small) a usual requirement

for analytical methods. The method is very accurate as evidenced by Figure 1.
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Given a nonlinear f(x) , either analytically or graphically,
the period solution of the free oscillation problem furnishes immediately

accurate results for the associated nonlinear forced oscillation problem.
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