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Queueing Network Modeling of Elementary Mental Processes

Abstract

This article presents a queueing network model of elementary mental processes. As a
continuous-transmission network in its general form, the model unifies the existing
discrete and continuous serial models and discrete network models in a larger modeling
framework, and covers a broader range of temporal and structural arrangements that
mental processes might assume and can be subjected to empirical tests. Five elementary
but important types of queueing networks are described in detail and they are used to
reexamine existing models for reaction time. These networks include a tandem network
that takes existing discrete and continuous serial models as special cases, a fork-join
network that takes the PERT network model as a special case, a feedback network that
mimics a serial network with identical stages accurately at the level of mean RT, a
Simon-Foley network that allows noise components to overtake signal components and
predicts overadditive factor effects, and a cyclic network that processes a fixed number of

stimulus components at a time and predicts underadditive factor effects.



Why is there a delay between stimulus presentation and response initiation? This
has been one of the most enduring and fundamental questions that psychologists have
been fascinated with. The current belief of cognitive psychologists is that this delay is a
reflection of the dynamic activities of an underlying mental structure that transforms
stimulus into response. And most importantly, since the cognitive system is not amenable
to open inspection, the characteristics of this delay--also called reaction time (RT)--may
offer important clues to the possible configurations of the mental structure.

Theoretical models that use reaction time as the primary performance measure to
infer the general structure of mental systems are often called models for RT. Of great
interest to the present article are two issues that are central to RT modeling and theory in
cognitive psychology. The two issues also define two dimensions along which RT models
can be classified. One of the two is a temporal dimension distinguishing discrete-
transmission models from continuous-transmission models, and the other an architectural
dimension distinguishing serial-stage models from network models. All of the models
assume that the psychological activity that transforms stimulus into response is composed
of a system of mental processes. Discrete-transmission models assume that a mental
process transmits its processing output in an indivisible unit and will not make its output
available to other processes until it is completed. Therefore, a process can not begin until
all of its preceding processes are completed. Continuous-transmission models, in contrast,
assume that each process transmits its partial outputs to other processes continuously as
soon as they are available rather than waiting for the full completion of processing, and
thus a process can begin even though its preceding processes are still active. Serial-stage
models assume a serial arrangement of mental processes, whereas network models
assume a network configuration. The two dimensions jointly define four classes of
models as shown in Figure 1.

While the distinction between the terms "serial” and "network" is usually quite

standard in the literature, there exist some differences in the use of the terms "discrete"”



and "continuous" by different authors. As discussed by Miller (1988, 1990), the terms
"discrete" and "continuous” have been used in at least four different senses in cognitive
models--discrete versus continuous information representations, discrete versus
continuous information transformation, discrete versus continuous information
transmission, and discrete versus continuous variation in a priori state of an information
processing stage (see, Miller, 1988, 1990, for excellent discussions of this topic). The aim
of the present paper is to address the issue of discrete versus continuous information
transmission in conjunction with the issue of serial versus network arrangements. Several
important RT models are therefore not included in Figure 1, primarily because their
concerns were on discrete versus continuous information representation or
transformation. Prominent among these models include the model developed by Meyer
and his colleagues (Meyer, Irwin, Osman, and Kounios, 1988) and the stochastic
diffusion model (Ratcliff, 1988).

It should also be noted here that, although the terms "continuous" and "discrete"
have been used extensively in the literature to refer to models that do or do not allow
partial output and temporal overlap of process durations, there is no intrinsic relationship
between continuity of transmission and temporal overlapping of process activities. A
process may continuously transmit its partial output to its successors, but processes could
stll be in strict temporal sequence if each process has to wait until it has accumulated all
of the continuously-arrived inputs before it starts. Similarly, although partial outputs
transmutted 1n the form of a continuous flow will support overlapping process activities,
those transmitted as “discrete packets” will do so as well, as long as the number of
pachets that can be separately transmitted is greater than one. However, due to the lack of
a better term and to be consistent with the common practice in RT modeling, I will
continue 1o use “continuous” and "discrete” transmission to distinguish whether or not a

series of processes could be active concurrently.



Miller (1982, 1988) has suggested that discrete and continuous transmissions be
viewed as the extremes of a continuum defined by the extent to which the output of a
stage can be divided and separately transmitted to other stages (the grain size of
transmission). At one extreme, discrete transmission models have the largest possible
grain size because the output must be transmitted as a whole unit. At the other extreme,
outputs in continuous-flow models can be divided into an arbitrarily large number of
small units. Intermediate models assume grain sizes between the two extremes, which are
also called "nondiscrete models" (Miller, 1993). In this article, I will use the term
"continuous" to refer to both truly continuous flows and continuous transmission of
discrete packets of partial outputs.

Historically, the modeling work covered in Figure 1 started with the serial
discrete-stage models shown in the top-left quadrant. These models assume non-
overlapping durations of serially arranged processes or stages. The underlying models for
the subtraction method developed by Donders (1868/1969) and the additive factor
method developed by Sternberg (1969) belong to this class of models. Donders assumed
that processes can be added or deleted from a chain of processes while leaving intact the
rest of the chain (called the assumption of pure insertion). Based on this assumption,
Donders proposed that the mean duration of an inserted or deleted process can be inferred
by examining the difference between the mean duration of a task that does not include the
process in question and one that does--a method known as the subtraction method for
mean RT analysis. Since pure insertion appears to be a strong assumption, Sternberg tried
to relax this assumption by addressing the issue of how experimental manipulations
might change the durations of processes rather than insert or delete them. Sternberg
assumed that the mean duration of a process depends on experimental manipulations that
influence it, but not directly on the mean durations of other processes, and a change in the
mean duration of a process will not produce indirect effects on the mean durations of

other processes in the processing chain (called the assumption of selective influence).



Based on this assumption, Sternberg proposed an additive factor method for mean RT
analysis, according to which experimental factors that influence a common process will
interact with each other in an analysis of variance of the RT data, whereas those
influencing separate processes will be additive. The serial discrete-stage model and the
additive factor method have been the fundamental basis of a large body of experimental
literature.

While the models underlying Donders's and Sternberg's methods are models for
mean RT, numerous authors have examined properties of RT at the distributional level,
since much more can be obtained from examining RT distributions than from examining
mean RTs alone. It has been shown that examining RT distributions could be critical in
discriminating models that would demonstrate similar behavior at the mean level. When
the durations of serial processes are independent of each other, RT distribution is the
convolution of the process durations. McGill and Gibbon (1965) noted that reaction time
in a serial discrete-stage model can be described by the general-gamma distribution, if the
independent stage durations are exponentially distributed with different duration means.
Several authors argued that the convolution of normal and exponential distributions
provides a close approximation to observed RT distributions (Hockley, 1984; Hohle,
1967, Ratcliff and Murdock, 1976). Ashby and Townsend (1980, Ashby, 1982;
Townsend and Ashby, 1983) extended the assumptions of pure insertion and selective
influence to the distributional level, and proved a set of theorems that can be employed to
test these assumptions.

Models in the other quadrants of Figure 1 try to relax the assumption of serial and
non-overlapping process activities adopted by serial discrete-stage models with an aim to
generalize the class of RT models and broaden the range of possible mental structures for
elementary psychological processes. In the bottom-left quadrant of Figure 1, we find the

models that permit temporal overlap of sequentially arranged processes. Prominent



among this class of RT models include McClelland's (1979) Cascade model, and more
recently, Miller's (1993) queue-series model.

The cascade model assumes that the human information processing system
functions like a series of parallel linear integrators. These linear integrators take a
weighted sum of a subset of the outputs of the integrators at the preceding level and
produces continuous output that is always available for processing at the next level. The
heart of the cascade model is a cascade equation, which expresses the activation of a
linear integrator at a processing level as a function of the asymptotic activation of the
linear integrator that would result if the stimulus were left on indefinitely, and the rate
constants of the different processes in the system. McClelland examined the effects of
manipulating rate constants and asymptotic levels on RT and derived a set of predictions
for RT behavior. Similar to the additive factor method, the cascade model shows that
experimental factors affecting the rate of the same process will interact, whereas those
affecting the rates of different processes are additive. However, the predictions become
more complicated and start to diverge from those of the additive factor method when at
least one of the experimental factors affects the asymptotic level of activation.

The queue-series model recently developed by Miller (1993) assumes that the
cognitive system is composed of a series of stages and the stimulus is regarded as
consisting of a number, M, of distinct components. The important concept of grain size of
transmission 1s mathematically represented by the parameter M. Discrete-stages and
cascade-flows are treated as special cases of the queue series, corresponding to the cases
of M=1 and M=eo_ respectively. Other positive values of M represent intermediate
degrees of transmission continuity. In the queue series model, components are processed
separately through the series of stages. After finishing processing a component, each
stage immediately passes along that component to the next stage. The first stage
processes components either serially or in parallel, but each of the subsequent stages

selects and processes one component at a time. Thus, components may have to wait in



front of slow stages, and a series of queues could be observed in the system. The
response is made when all of the M components have passed through the series. Based on
the results of numerical simulations of the time for M customers to traverse through the
system, Miller concluded that, within the class of queue series models he considered,
experimental factors affecting different processing stages always have additive effects on
reaction time with discrete sequential stages but rarely do so with overlapping stages, and

thus, observations of factor additivity support discrete-stage models.

Insert Figure 1 about Here

Along another line of investigation, several authors have challenged the notion of
serial arrangement of mental processes and examined the possibility of parallel or
network configurations of process activities. Although the debate about whether the
human mind is capable of engaging in more than one mental activities at a time can be
traced back to the work of ancient philosophers and the founders of modern experimental
psychology, Christie and Luce (1956) appear to have been the first to address the issue of
parallel versus serial processing from a mathematical perspective. The most systematic
work in this area is a series of studies of Townsend (1972, 1974, 1976) and that of Ashby
and Townsend (1980, Townsend and Ashby, 1983). Townsend extended the notion of
processing stages from serial to parallel systems and analyzed the identifiability and the
equivalence of serial and parallel systems. Ashby and Townsend extended the
assumptions of pure insertion and selective influence from the level of mean RTs to the
level of distributions in serial and parallel systems.

A central concept in Townsend's analysis is the notion of intercompletion times
(ICTs). which refers to the time interval from the completion of one task element to the
completion of the next. In serial systems like those of Donders and Sternberg, task

elements are processed one at a time in strict serial stages, and each ICT is the duration of



a corresponding stage. In parallel systems, however, individual elements are processed
simultaneously, but they may be completed at different times. The fundamental basis for
Townsend's definition of a stage is serial completion rather than serial initiation or
concatenation of separate processes. Successive processing stages are defined as the state
of the system between successive completions of task elements. For example, stage i is
the state of the system from the completion of the (i-1)th element to the completion of the
ith. The concept of ICT played a critical role in Townsend's analysis of the identifiability
and equivalence of serial and parallel models (Townsend, 1974) and in Ashby and
Townsend's extension of the assumptions of pure insertion and selective influence from
the level of mean RTs to the level of distributions in serial and parallel systems (Ashby
and Townsend, 1980).

Townsend (1974) mentioned the possibility of hybrid mental systems that process
task elements in neither a parallel nor a serial manner. But a mathematical analysis of this
class of system in cognitive modeling did not appear until Schweikert (1978) introduced
PERT (program evaluation and review technique) methods to this research area.
Schweikert (1978) developed a class of PERT network models of mental processes,
which assume that the processes can be arranged as a network with serial and parallel
structures as special cases. The models adopted two fundamental assumptions: First, in a
PERT network, processes that are not on the same path are allowed to be active at the
same time, but those on the same path are assumed to operate in strict sequence. In other
words, a process can not start until all the preceding processes on the same path are
completed. Second, the PERT method for RT analysis follows the postulate of selective
influence of Sternberg (1969) and assumes that each experimental manipulation prolongs
the duration of one process, but does not change the duration of any other process. An
important result of PERT analysis is that when all the processes are arranged in sequence,
the predictions of the PERT method is consistent with that of the additive factor method,

in that experimental factors affecting the durations of separate processes are additive.



However, if all the processes are not arranged in a series, the effects on RT of
experimental manipulations prolonging separate processes can be interactive.

Schweikert (1978) started with deterministic PERT networks in which process
durations are assumed to be constants. This assumption was later relaxed in the
subsequent developments of stochastic PERT network models, in which process
durations are random variables (Fisher and Goldstein, 1983; Schweikert, 1982;
Schweikert and Townsend, 1989; Townsend and Schweikert, 1989). Townsend and
Schweikert (1985, 1989; Schweikert and Townsend, 1989) later generalized the results of
Townsend (1974), Schweikert (1978) and Ashby and Townsend (1980) on serial, parallel,
and hybrid network processes, and identified a set of conditions under which additivity,
overadditivity and underadditivity of experimental factors are expected. All this work,
however, assumes strict serial operations for processes on the same path, and thus, in
essence, a PERT network is a network of discrete process chains. This class of models
have naturally been referred to as discrete mental networks (Townsend and Schweikert,
1989) and is shown in the top-right quadrant of Figure 1.

The trend of research reviewed above is clearly in the direction of expanding the
scope of modeling to cover a broader range of temporal and architectural arrangements
that mental processes might assume. Later models try to relax certain assumptions of the
carhiest model assuming serial and discrete stages, while at the same time, try to mimic
the behavior of serial discrete-stage models, and identify the conditions under which
these models converge or diverge in their predictions and explanations of RT data in
factonal experiments. The cascade model matches closely the predictions of the additive
factor method if experimental manipulations only affect the rate of activations but not the
asymptotic level of processes. The queue-series model supports the additive factor
method only when it functions like a discrete series. A PERT network is fully consistent

with the additive factor method if all the PERT processes are arranged in a sequence.



In this article, I present a queuing network model for reaction time and elementary
mental processes. The model, in its most general form, is a continuous-transmission-
network model. As will be shown below, the model takes the existing models in the other
three quadrants of Figure 1 as special cases, and thus attempts to unify them in a larger
modeling framework. I will also reexamine the logic and conclusions of these models. It
turns out that many of the conclusions based on the previous models are open to
alternative explanations. Furthermore, I will show that the queueing network model
allows us to cover a broader range of possible mental structures that can be subjected to
empirical testing.

The idea of a queueing network arises naturally when one thinks of a network of
service stations (also called service centers, or simply, nodes), each of which provides a
service of some kind to the demanders for service (called customers), either immediately
or after a delay. Each node has a waiting space for customers to wait if they cannot
immediately receive their requested service, and thus multiple queues may exist
simultaneously in the system. The nodes are connected by arcs over which customers
flow from node to node in the network. Telephone communications systems, computer
networks and road traffic networks are examples of queueing networks. The study of
networks of queues started with the work of Erlang (1917) in the area of telephone
communications. However, much of queueing network theory stems from two papers by
J.R. Jackson (1957, 1963). Since then, queueing network theory has been extensively
applied to the modeling and analysis of a large variety of real world systems, and has
become one of the most commonly used tools for system performance analysis.

Itis not difficult to see, at least at the conceptual level, the close resemblance
between a queueing network and the current views of a human cognitive system.
However, in order to link queueing network theory with observable RT behavior, we
need to specify the model in concrete terms and make a set of specific assumptions. In the

following I will first present the queueing network model for reaction time in its general
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form, and discuss the basic assumptions of the model. This general discussion is followed
by 4 sections, each of which discusses an important and elementary type of queueing
network. I will show that the discrete and continuous-flow serial models are special cases
of a special type of queueing network called tandem queues, and PERT networks can be
regarded as a special case of another type of queueing network called fork-join networks.
A queueing network that allows noise components to overtake or bypass signal
components is described as a possible cause of positive dependencies between process
durations. Negative process duration dependencies are then shown to be an important
characteristic of closed queueing networks. Neither of the two classes of networks
follows the postulate of selective influence and both can be subjected to empirical testing.
Overadditive and underadditive factor effects observed in some factorial experiments are

given an interesting alternative explanation in terms of these queueing networks.

General Descriptions of the Queueing Network Model

General Assumptions and Notations

The queueing network model for reaction time assumes that a reaction time task is
carried out by a network of processing nodes, each of which provides a distinct type of
information processing service to the customers. I will also use the term "stimulus
components” adopted in Miller (1993) to refer to these customers. There are at least two
types of nodes in the network--those that receive customers from outside the network
(called input nodes) and those that only receive customers from other nodes of the
network (called internal nodes). A special class of queueing network called fork-join
network requires two additional types of nodes, which will be described in the section
about fork-join networks. For reasons that will be described below, an input node may or
may not immediately transmit its outputs to other nodes. But each internal node begins
processing as soon as it receives some customer, and immediately transmits any available

output (a serviced customer) to other nodes or to the outside of the network without
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waiting for the full completion of processing all of its customers. A node processes one
customer at a time (a single-channel server) and processes its customers according to
their order of joining the queue in front of the node (First-come-first-serve, FCFS). The
assumption of single channel processing is commonly made in psychological theories, a
recent example of which can be found in Miller's queue-series model. The implications of
assuming FCFS single-channel nodes for RT modeling will be discussed later. Consistent
with another common assumption of RT models, including the cascade model and the
queue-series model, I assume that there is a separate response unit at the end of the
processing network, which is responsible for the actual response.

Queueing network theory assumes that the sequence of customer arrival times and
the sequence of customer service times are random processes. The arrival pattern or input
to a node is described by the probability distribution of successive arrivals, which include
both external arrivals from outside the network and internal arrivals from other nodes in
the network. The service pattern or output of a node is described by the probability
distribution for service time. In order to describe a queueing network, a set of rules called
a switching process is also needed, which serves to route customers through the nodes of
the network from entrance to exit. This collection of nodes, arcs, external and internal
arrival processes and switching processes constitute the basic elements of all queueing
networks, including the queueing network model for RT.

In order to represent the queueing network model for RT mathematically, the
following notations are needed, which are now rather standard in the queueing network
literature. Two sets of notations are needed, the first for describing a stochastic queueing
process at a node, and the second for stochastic processes in a queueing network. A
queueing process at a service node in a network is described by a series of symbols and
slashes such as A/B/C/D/E, where A indicates the arrival pattern of customers as
described by the probability distribution for interarrival-time or arrival rate, B the

probability distribution for service time, C the number of parallel service channels at the
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node, D the restriction on waiting room capacity in front of the node, and E the queue
discipline (the manner by which the customers are selected from the queue for service).
The following symbols are used in this article to represent a queueing network:

1) K: the total number of nodes,

2) i: the identity of a node,

3) 1i: the mean arrival rate to node i from outside the network (the external arrival
rate),

4) Ai: the total mean arrival rate into node i (from outside the network and from
other nodes),

5) pij: the probability that a customer visits node j immediately after departing
from node i (the routing probability or switching probability), i=1,..., K, j=0,.., K, with
pi0 representing the probability that a customer leaves the network immediately after
visiting node i,

6) ui: the mean service rate for each channel of node i.

The state of a queueing network at any time instant, t, is commonly described by a
stochastic process called the queue length process, which characterizes the number of
customers (including those in service and those waiting in the queue) at each service
center of the network at that instant. More formally, the queue length process describes
the joint probability distribution for the number of customers at each service center, and
15 expressed mathematically as a vector-valued stochastic process with the vector
element, Ni(t), i=1, ..., K, specifying the queue length at node 1 at time t.

Stimulus Components as Customers

The model assumes that a stimulus is composed of a number, C, of distinct classes
of components, with Ni components of class 1, i=1,..., C. In the simplest case, there is
only one class of stimulus component that is responsible to RT (this is the case
considered in the queue-series model of Miller). We may call them "signal" components.

In a more general case, there may be two classes of stimulus components-- "signal"
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components and "noise” components. For most of the networks considered in this article,
the model assumes that the two types of components take the same path and have the
same service time requirements and thus they are indistinguishable. It will be shown in a
later section that this distinction becomes critical when noise and signal components are
assumed to take separate paths of a network, and this distinction will be shown to have
significant implications for queueing network analysis of certain types of RT behavior. It
is easy to image situations in which a finer distinction between the classes of stimulus
components may be necessary, but this paper will not extend the discussion further to
include those cases. As nicely summarized in Miller (1993), "the stimulus components
may be regarded as elementary stimulus features, complex semantic codes, objects, or the
associated neural activations" (p.703), and as in Miller, this article will not attempt to
develop the empirical means of identifying stimulus components.

Component Arrivals, Services and Routing Characteristics

As pointed out by Pachella (1974), the definition of stimulus onset is not always
psychologically obvious. It seems improbable that all stimulus components will arrive at
the perceptual receptor precisely at the same time. It is consistent with our intuition that
auditory stimuli are spread out in time, but at a finer level of analysis, even visual stimuli
are spread out in time. The main difference between the two is in the rate at which the
stimulus components arrive at the perceptual system. In probability theory and in the
queueing literature, the most commonly adopted assumption is that the interarrival times
of successive customers are independent and exponentially distributed with a mean

arrival rate of A. In other words, the component arrival process is a Poisson process with
rate parameter A. The queueing network model for RT will adopt this assumption, except
for a few special classes of networks discussed below for which more general results are
available that do not rely on this assumption.

Another commonly made assumption in the queueing network literature is that at

node 1, customers have an exponentially distributed service time requirement with a mean
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duration of —. ; is often called the service rate of node i. This assumption is similar to
Hi

the assumption of exponential process durations, which is commonly made in RT
modeling. As discussed by numerous authors, this assumption is not as strong as it
appears to be, and has received support from experimental studies (Ashby, 1982; Fisher
and Goldstein, 1983; Hockley, 1984; Hohle, 1967; Ratcliff and Murdock, 1976;
Rumelhart, 1970; Townsend and Schweikert, 1989). The queueing network model for RT
will adopt the same assumption, unless discussed otherwise.

Using the notations introduced in the previous section, this queueing process can
be denoted as M/M/1/eo/FCFS (or M/M/1 for short), representing a queueing process with
Poisson arrivals (also called exponential interarrival times), exponential service times, a
single-channel server at each node, no restriction on the maximum number of customers
allowed in the queue, and first-come, first-served queue discipline. Detailed discussions
about the importance and justifications of employing this type of queueing process in
performance modeling can be found in all standard textbooks on queueing theory
(Kleinrock, 1976).

Another most commonly made assumption in the queueing network literature is
that the routing probabilities are independent of the state of the system (i.e., the pjj's are
independent of Nj(t), i=1...., K). For the most part of this article, the queueing network
model for RT will adopt this assumption. The only class of networks discussed in this
article that do not follow this assumption is a special type of queueing networks called
fork-join queucing networks, which will be shown to take PERT networks as a special
Cdse

Product-form Networks (Jackson Networks)

It turns out that networks that have these three properties (Poisson arrivals,
exponential services, and state-independent routing probabilities) are the class of

queueing networks that have received the most research attention and enjoyed a most
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fruitful history of producing usable analytical results for applications. This class of
networks are called separable networks or product-form networks. They are also called
Jackson networks, named after the author who showed that this class of networks have
the following amazing property (Jackson, 1957): Tﬁe joint probability distribution for the
number of customers at each node can be written as a product of the marginal probability
distributions at each of the nodes. In other words, in terms of queueing length
distribution, the network acts as if each node can be viewed as an independent M/M/ 1
queue, with parameters Ai and i, although the actual internal flow in this kind of
networks is not always Poisson. More formally, we have,

P(N1=nl, ..., NK=nk) = (I1- l—i.) (2”—? )i (1)

1=1 e

where

n;j 1s the number of customers at node i,

Ai can be determined by the following equation, which is commonly referred to as

the "traffic equation":
K

A=7+ Z(pjikj) (2)
=1

This amazing property makes it possible to derive many important results for
product-form networks that are often not possible to obtain or analytically intractable for
other types of networks. Jackson networks have subsequently enjoyed a great success in
model development and have been successfully applied to diverse areas of applications.
Furthermore, numerous studies have demonstrated that many of the results for Jackson
networks provide close approximations to non-Jacksonian networks. It has been pointed
out that, in practical applications, inaccuracies resulting from violations of Jackson's

assumption typically are not worse than those arising from other error sources such as

inadequate measurement data (Boxma and Daduna, 1990; Denning and Buzen, 1978).
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Reaction Time as Network Sojourn Time

From the perspective of RT analysis, the most relevant performance measure of a
queueing network is a random variable called customer sojourn time--the total time for a
customer to traverse portions of or the entire network. More formally, if an arbitrary
customer, m, traverses nodes 1, 2, ..., J, between entering the network at node 1 and
exiting at node J, then its network sojourn time, Tm, is,

Tm=Tmj+Tmp + . + Ty (3)
where Tm; = Wm; + Smj, 1=1, ..., J. Trp; is the sojourn time of customer m at node i,
which includes the time it spends in waiting (Wm;) and the time it spends receiving
service (Sm;).

In order to link customer sojourn time with reaction time, the queueing network
model for RT assumes that a response is made when the response unit has accumulated M
of the N signal components (M and N are usually defined arbitrarily and can be made
arbitrarily close to each other). This assumption is similar to that in the accumulator
model (see, e.g., Pachella, 1974) and in the queue-series model of Miller (1993).
According to this assumption, total RT is the time interval between the instant of stimulus
presentation and the instant at which the Mth signal component arrives at the response
unit.

The model assumes that an input node in a discrete network has the function of
accumulating all the independently arrived M components and then transmitting them as
an "assembled package" to internal nodes. Components that arrive later than the Mth
component are not allowed to enter the network while the current "package" is being
processed by the network. Thus, in a discrete network, all nodes operate in strict sequence
without temporal overlap of node activities. In contrast, an input node in a continuous-
transmission network, like all internal nodes, transmits each customer immediately after it

has received and processed it. Therefore, all nodes could operate concurrently.
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To use an observable natural phenomenon as an analogy, we can imagine a
discrete network as a special type of highway transportation system in which shipping
materials arrive at the highway entrance independently, being assembled into one big
package there and then shipped through an otherwise empty highway (empty except for
the only package). Similarly, a continuous network can be imagined as a "normal”
highway, where shipping materials arrive at and pass through the entrance independently
and travel through the network individually like in a traffic-flow situation. As will be
discussed below, in some special classes of networks (discrete PERT networks or
continuous fork-join networks), the shipping materials may be disassembled into parcels
after having entered the network. Each parcel may take a separate path of the network and
then they are reassembled at the destination.

For most of the networks considered in this article, there is no need to distinguish
noise and signal components. For discrete networks of this type, reaction time (denoted as
RTq) is apparently the sum of the time required by the input node to accumulate M
components (T1) and the time for the assembled "package" to traverse through the
network (Tq), i.e.,

RTq=T1+T4 4)

For Poisson arrivals, the time interval between the first and the Mth arrival to the input
node (T1) follows the ordinary gamma distribution with parameters M and A (Ross, 1983;
Townsend and Ashby, 1983), and is independent of T4.

If the structure of a continuous-transmission network does not permit components
to overtake each other, then the Mth component to depart from the network is also the
Mth to arrive at the input node from the outside. Apparently, reaction time in this case
(denoted as RTe) is the sum of the time interval between the first and the Mth arrival (T?)
and the Mth customer's network sojourn time (T¢), i.e.,

RTc =Ty + Te (5)
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It is easy to see that T1=T?, because both can be described as the same ordinary
gamma distribution with parameters (M, A). For values of M that are not too small, this
distribution approximates a normal distribution. Several authors have shown that the
convolution of a normal and an exponential distribution provides a close approximation
to experimental data (Ashby, 1982; Hockley, 1984; Hohle, 1967, Ratcliff and Murdock,
1976). This finding may be borrowed as a tentative support of the role of T1 and T?.

Because T1=T? and they are independent of Tq and T, respectively, in order to
compare the RT behavior of a discrete and a corresponding continuous network (RT{ and
RTy), it suffices to compare Tq and T¢. To continue to use the highway system analogy,
equations (4) and (5) tell us that in order to compare the time needed for shipping M
pieces of materials in a discrete network (RT{) and that in its continuous counterpart
(RT¢), what is needed is to compare the sojourn time of a large package containing the M
components in an empty network (Td) with the sojourn time of one of the components
(the Mth one to arrive at the network) in a crowded network (T¢).

Sojourn Time in Queueing Networks

Several decades of queueing network research has shown that determining sojourn
time of a customer in queueing networks at the distributional level is a very complicated
problem and among the hardest in queueing network theory. For non product-form (non-
Jackson) networks, almost no explicit results exist. For product-form networks, although
we know that in terms of queueing length distribution, the network acts as if each node
can be viewed as an independent Poisson-arrival, exponential-service queue, it does not
imply that the sojourn times of a customer at successive nodes are independent of each
other. On the contrary, a well-established result is that the sojourn times of a customer at
successive nodes are, in general, not independent of each other (Simon and Foley, 1979;
Walrand and Varaiya, 1980).

Until now, exact expressions of network sojourn time distributions are usually not

available, because little is known about the complicated dependencies among sojourn
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times at successive nodes. An important exception to this statement is provided by the
sojourn time distribution of a customer along an "overtake-free" path in a product-form
network. A path is overtake-free if customers can not overtake or bypass one another on
that path. As a rule of thumb, it suffices to say that a path is overtake-free if all the nodes
on that path are single-channel FCFS nodes and every two nodes are connected by at
most one directed path. Historically, Reich (1957, 1963) was the first to have proved that
the successive sojourn times of a customer at the nodes of an overtake-free series system
are independent and exponentially distributed. This result remained the state-of-the-art
until the late 1970s when it was generalized by Walrand and Varaiya (1980), who proved
that in all product-form networks, the sojourn times of a customer at successive nodes
along an overtake-free path are independent and exponentially distributed with parameter
(ui-Ai) for node i (Walrand and Varaiya, 1980; Boxma and Daduna, 1990).

From elementary probability theory, we know that if X and Y are independent
random variables having respective distribution functions F and G, then the distribution
of X + Y is the convolution of F and G, denoted by F * G. Since the network sojourn time
of a customer is the sum of its sojourn times at the successive nodes from the input node

to the exit node, in an overtake-free product-form network, we have,
F(t) = Pr {T<t}) = (1- e WAy * _* (1-e-UpAPY, =0 (6)

E[T]=——+ .+ (7

Hi-A W-AJ

where

F(t) 1s the cumulative probability distribution of network sojourn time of a
customer, visiting nodes | to J on an overtake-free path,

E[T] 1s the mean of the network sojourn time,

(1- C’(“i')‘i)t) is the exponential probability distribution of a customer's sojourn

time at node 1,

" is the mean sojourn time at node i,
Hi-A
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Ki and A follow the standard interpretation introduced earlier, and A; satisfies the

traffic equation.

If a path linking node 1 to node J in a product-form network is not overtake-free,
equation (6) for sojourn time distributions will, in general, not valid. However, for the
whole class of product-form networks, equation (7) for mean sojourn times still holds for
any sequence of nodes. Actually, Lemoine (1987) has proved that equation (7) is a special
case of the following recursive equation, which characterizes the mean sojourn time of a

customer in all product-form networks:
K

1
E[Ti]=——+ ) pjE[Tj] ®)
Hi-Aj =1
where
E[Tj] is the expected value of the remaining network sojourn time of a customer

at the instant when it arrives at node 1 of a network with K nodes.

Apparently, if a customer visits node 1 to node J successively, without skipping

any node or visiting any node more than once, then we have pjj=1 for i=1 to J-1 and j=2
to J. and pjj=0 for all other values of i and j. In this case, equation (8) specializes to
cquation (7). Lemoine (1987) also derived the recursive relations for computing the
second moment of network sojourn times, which involves more unknown variables than
the number of equations. In general, exact computations of the second or higher moments
of sojourn times in a product-form network are not possible without additional
information about some characteristics of the network.

With these general descriptions and assumptions at hand, I am ready to examine
RT behavior in several interesting classes of queueing networks. I will first compare T
and T{ 1n the simplest network called tandem queues, in which nodes are arranged in
sequence. Then I will examine fork-join queues to show that they include PERT networks

as special cases. Tc and Td in a simple feedback queueing system will also be compared.
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In the last two sections, I will discuss the characteristics of Tc in two classes of
continuous-transmission queueing networks, the first of which allows noise components
to overtake signal components, and the second only allows a fixed number of customers

to exist in the system.

Tandem Queues as a Model for Reaction Time
Network Sojourn Time in Tandem Queues
The simplest type of queueing networks is tandem queues, also called series
queues, in which the service stations form a series system with flows always in a single
direction from the first node to the last node. As shown in Figure 2, customers may enter
from the outside only at node 1 and depart only from the last node. More formally,
assuming that external Poisson arrival to node 1 has a mean arrival rate of A, then we

have an open K-node network where

= A (i=1)

=0 (elsewhere)
and

=1 (=1+1; 1 Li<K-1)
pij < =1 (=K, j=0)

=0 (elsewhere)

Using the traffic equation for Jackson networks introduced earlier as equation (2),
1t 1s easy to see that in a Jackson tandem queueing system, the mean arrival rate for each
internal node is the same as that for the input node, i.e.,

A=A (for Vi)

When the tandem queueing system is formed by FCFS single-channel nodes, it is
impossible for the customers to overtake each other while traversing the system.

Therefore, equation (6) for computing sojourn time distributions holds. Substituting Ai in
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equation (6) with A for all i, we obtain the following expression for the network sojourn

time of a customer, Tc, in this continuous tandem queueing system (see, e.g., Boxma and

Daduna, 1990):
Pr {Te<t} = (1- e-(u({-l)t) x % (1- e-(uf(-l)t), t>=0 9)

If we assume that the mean service rates at the K nodes are all different from each
: C. .. C,. .. . . . .
other (i.e., by # p] , for i # ), then the convolution in equation (9) can be described by the
general gamma distribution, and can be written more simply as:

K
F;:((t) =1-¥ Cj e-(uic-K)t (10)
i=1

where

C
'k (1) is the cumulative distribution function (CDF) of T¢, and

(11)
(uJ-K (u1 -A)
J=1j#

As previous authors have noted, there is no practical need for considering the case in
which a subset of the K nodes have identical mean durations, since equal values can be
approximated with any degree of accuracy by using values that are almost, but not

exactly , equal (see, e.g., McClelland, 1979).

Insert Figure 2 about Here

Because Tc characterizes the RT behavior of a continuous-transmission queueing
network model, what we have learned here is that reaction time in a tandem queueing
system can be described by general-gamma distribution. In the following I will discuss
the implications of this result on RT modeling in the context of existing discrete and

continuous serial models for RT.
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Serial Discrete-Stage Model of McGill and Gibbon

In a serial discrete network, stimulus components are transmitted as an indivisible
unit from the first node to the Kth node, and there is no temporal overlap of stage
activities. The passage time for the unit to go through the K nodes is the sum of the
passage time at each of the K nodes. McGill and Gibbon (1965) have shown that general
gamma is the RT distribution if the passage time at each stage is exponentially distributed
with parameter u?, i=1 to K. More specifically, they showed that the passage time for a
serial discrete-stage model with K exponential stages with non-identical mean durations

has the following form:

d K d
Ig®=1- Z Cik e'(“i )t (12)
=1

where

—15 is the mean duration of the exponentially distributed passage time through

Hi
: d d. ...
stage 1, and i, # p]  fori#j,and
ud
Cik = KR (13)
Hy - W

=1
d : . . :
Apparently, [ (1) is the cumulative distribution function for Tq in equation (4).

The close resemblance of (10) (11) and (12) (13) is obvious, although the two sets
of equations were independently formulated by different authors for continuous and
discrete systems respectively. It is clear that the continuous-transmission tandem model
and the serial discrete-stage model demonstrate the same RT behavior, which is
characterized by the general-gamma distribution. Actually, the serial discrete stage model
of McGill and Gibbon can be treated as a special case of the tandem queuing model by

replacing (pic-l) in equation (10) with uid. In the queueing network literature, (p.ic-?») 1s

often called the "effective service rate" of node i.
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The major conceptual difference between the two general gamma functions is that
the serial discrete stage model has the largest possible grain size of transmission, and only
one "large" customer exists in the tandem network. Since no other customers are allowed
to enter the network until the current one has completed processing, we have a situation

in which A=0 and thus uf = u?. In the more general case of the tandem queueing model,

individual stimulus components enter and traverse the network like a traffic flow with A >
0. In order to have uf-k = p?, we must have u;: > uid. This is consistent with intuition--a
node serves a small customer faster than serving a large one, but the small customers in a
continuous system may have to wait a long time in queue due to the presence of other
customers.

To continue to use the transportation system analogy, it appears that the total time
required for packaging all the independently-arrived shipping materials into a package
and then shipping the package through an empty series system is identical to the
corresponding situation in which all the shipping materials are allowed to enter and
traverse through a "crowded" series system separately. It appears that, for the class of
models we have examined here, the detection of a general gamma distribution in a set of
RT data would not distinguish whether the underlying mental structure is discrete or
continuous. All the conclusions and inferences about discrete models based on general
gamma distributions are also applicable to the continuous tandem queueing model. The
additive stages models discussed next is an example.

Additive Stages Model of Ashby and Townsend

Donders’s assumption of pure insertion and Sternberg's assumption of selective
influence are both assumptions at the level of the mean stage durations. Ashby and
Townsend (1980) extended the two assumptions to the distributional level and supplied a
set of important theorems for testing the applicability of these assumptions to RT data.
Ashby and Townsend (1980) assumed that the RT process can be decomposed into a

number of additive stages. Their definition of a stage is based on serial completion rather
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than serial initiation or concatenation of separate processes--processes could start and be
active either strictly in sequence or simultaneously in parallel, but there exists a serial
order in their completion. Observable RT can be decomposed into a number of
intercompletion times (ICTs), with the jth ICT defined as the time between the
completion of the (j-1)th and the jth additive stages.

According to Ashby and Townsend, at the level of distribution, the assumption of
pure insertion becomes

RTk =RTk-1 + ICTk (14)
where RT is the observable RT when there are k ICTs in a task, ICTk is the
unobservable duration of the kth ICT, and RTk-] is independent of ICT.
Assuming that the kth ICT is exponentially distributed with parameter Vi, Equation (14)
can be written equivalently as

gk() = gk-1(0) * Vice VK

(15)
where gk(t) is the density function of RT.

If there are two levels of two experimental factors, A and B, and each factor
influences a different stage of processing at the level of distribution, then the probability
density function when factor A is at level i and factor B at level j can be written as

8AB;(1) =b(V) * ;1) * g,V (16)
where b(t) is the density function of all stages not influenced by either factor A or factor
B. Ashby and Townsend showed that, at the distributional level, the assumption of
selective influence becomes

ga 1B * 2A7B,() = 8ABy() * 8A,B (1) (17)

It is a simple exercise to show that general gamma distributions satisfy equations
(14)-(17), considering the fact that general gamma is the convolution of a number of
exponential distributions. It 1s not surprising, of course, that the discrete serial stage

model of McGill and Gibbon satisfies the assumptions of pure insertion and selective

influence at the distributional level. The importance of this result is that the continuous
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tandem queueing model satisfies the two assumptions as well. Ashby and Townsend
have pointed out that their extension of the model "does not rule out the possibility that
stages make use of partial information from preceding stages" (Ashby and Townsend,
1980, p.96). The tandem queueing model presented here is a concrete evidence in support
of this statement, and indicates that if experimental factors demonstrate additive effects

on reaction time, they do not imply that they must affect discrete processes.

Serial Continuous Models

McClelland's Cascade model. The cascade model of McClelland (1978) is a

continuous-flow serial-processing model. The model assumes that the human information
processing system functions like a series of parallel linear integrators. These linear
integrators take a weighted sum of a subset of the outputs of the integrators at the
preceding level and produces continuous output available for processing at the next level.
A central assumption of the cascade model is that the rate of change of activation of a
linear integrator unit is determined by its rate constant times the difference between the
asymptotic level it is being driven to and the activation level the unit has already reached.
Interestingly, as shown in McClelland's derivation and in standard electronics texts, the
type of units that satisfy this assumption behave like exponential servers.

The heart of the cascade model is a cascade equation, which gives an expression
for the activation of linear integrator | at processing level K to a stimulus S presented at

time t = 0. The equation has the following form:

K
()t
agyst)  =agys (- Yy Ge T
=
= aKl/S rK[l] (18)

where

Hi1s the rate constant of a linear integrator at level i, and pj # j, fori # j;
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Th
C:= —L (19)

u.-u.
=l

There are two independent terms on the right hand side of equation (18). The first

term, agy/s, does not vary over time. It represents the asymptotic activation value of

linear integrator ] at level K that would result as time goes to infinity. The second term,

T'K[t], is a dynamic term that characterizes how the activations of units at level K vary
with time. It can be easily seen that I'K[t] changes from O to 1 as time t goes from 0 to
infinity. Correspondingly, ag/s(t) approaches the asymptotic level of agy/s as time goes
to infinity. It is assumed that subjects adopt a response criterion level, and a response
occurs when the activation level at time t exceeds the criterion. According to the cascade
model, all of the units at the same processing level have the same activation function.
The appearance of a general-gamma function in equation (18) as the dynamic
term 1s not surprising, considering the fact that the units at each level behave like
exponential servers. The function of the cascade system is, in essence, similar to a series
of independent exponential servers with overlapping service durations. In fact, the
tandem queueing model could mimic the cascade model precisely by making an
assumption about how the response unit located at the end of the tandem queues works.
Instead of assuming that the response unit functions like a binary unit that initiates a
response unconditionally if and only if it has accumulated M signal components, a
modified tandem queueing model could assume that the response unit has a time-varying
response-activation strength, which at time t, is the product of the probability that it has
received the Mth signal component and the activation value of the Mth signal component
when it has arrived at the response unit. Analogous to the cascade model, the modified
model assumes that a response is made when the response activation strength of the

response unit exceeds the activation criterion set by a subject.
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Since the probability that the Mth signal component has passed through K nodes

and arrived at the response unit at time t is exactly what is expressed by Fﬁ(t) of equation

(10), we have,

a(t) = a [(1) (20)
where

a(t) is the response activation strength of the response unit at time t,

a is the response activation value of the Mth signal component when it has arrived

at the response unit.

Comparing 'K[t] in equation (18) with I‘ﬁ(t) of equation (10), we can see that the

only difference between the two is in the rate constants. If we use the "effective service
rates " of the tandem queues as the rate constants of the cascade model, the tandem
queueing model could mimic the behavior of the cascade model accurately, and all the
conclusions and inferences of the cascade model are applicable to the modified tandem
queueing model.

McClelland (1978) examined the effects of manipulating rate constants and
asymptotic activation levels on RT and derived a set of predictions for RT behavior.
Similar to the serial discrete-stage models, the cascade model shows that experimental
factors affecting the rate of the same process will interact, whereas those affecting the
rates of different processes are additive. However, the predictions become more
complicated when at least one of the experimental factors affects the asymptotic level of
activation. For example, two factors would interact if one affects the rate of the slowest
process and the other affects the asymptotic activation level.

Another interesting result of the cascade model is that the model is able to fit the
shape of the well-known time-accuracy curve closely. The tandem queueing model could
mimic this result as follows. Analogous to the cascade model, we assume that in yes/no

experiments, the response activation value of the Mth signal component when it arrives at
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the response unit is ay/y if it is from a stimulus that is appropriate for a yes response, but
is ay/n if it is from a stimulus that is appropriate for a no response. To be consistent with
the cascade model, we assume that actual response execution is a discrete event that adds
the duration of a single discrete stage (e.g., 0.1 sec.) to the time between the stimulus
presentation and the registration of the overt response. Then, following the same steps of
derivations in McClelland (1978, p.327), it can be shown that for the tandem queueing

model, the observed value of d' at time t is given by
[plt-.1]
{1+02(T[t -.1])2} 112

d'(t) = (ay/y - ay/n) (21)

Equation (21) is identical to equation (13) of McClelland (1979, p. 298), which has been
shown to fit the time-accuracy curve closely.

It should be emphasized here that although the modified tandem queueing model
could mimic the behavior of the cascade model, the two models have a fundamental
difference in their interpretations of the general-gamma function. In the cascade model,
the general gamma function, I'K(t), is an activation function that represents the relative
activation of a unit at level K at time t. In the tandem queueing model, the same function
represents the probability that the Mth signal component has passed through the Kth node
of the network at time t.

Of course, while attempting to mimic the cascade model, the modified tandem
model would also expose itself to the same "infinite-RT" problem of the cascade model,
pointed out by Ashby (1982). Ashby has pointed out that the cascade model always
predicts a nonzero probability that a response never occurs, because the activations may
never exceed their criterion level on some of the experimental trials. The lower the
asymptotic activation level relative to the response criterion, the more likely that a
response will never happen. This prediction of the cascade model is clearly inconsistent
with reality in simple RT experiments in which no incorrect responses are made. Clearly,
the modified tandem model suffers from the same problem, which can be dealt with by

following the same corrective steps discussed in Ashby (1982) for the cascade model.
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It should be noted here, however, that discrete-stage models as characterized by

general gamma distributions also have an "infinite-RT" problem, because ' (t)

d
approaches but is always smaller than 1 as t goes to infinity. I'g(t) is the probability that

the Kth discrete exponential process in the process chain has completed by time t. Or

equivalently, I'i(t) is the probability that the total duration of the first K discrete

d
exponential processes is smaller than or equal to t. Because I'g(t) is smaller than 1 for t

smaller than infinity, the general-gamma model also predicts a nonzero probability for
infinite RT. In essence, the discrete-stage model and the unmodified tandem queueing
model--both are characterized by a general-gamma distribution-- could be regarded as
having an implicit assumption that their response units have an infinite asymptotic
activation level, which is assumed to be finite for the response units of the cascade model
and the modified tandem model. Therefore, the "infinite-RT" problem becomes worse for
the latter two models because the finite difference between the asymptotic activation level
and response criterion provides an additional cause for infinite RT.

Miller's queue series model. The tandem queueing model that I am considering

in this article 1s one of many possible types of tandem queues, and the reason that I have
selected this particular one for discussion is because it is the only one for which analytical
results are available for customer sojourn times and the assumptions are consistent with
those most commonly made in the literature. But undoubtedly, other types of tandem
queues exist and could make different predictions for RT behavior. One excellent
example 1s provided by Miller in his queue-series model for RT presented recently
(Miller, 1993).

In Miller's queue-series model, the stimulus is regarded as consisting of a number,
M, of distinct components, and they are serviced by a series of processing nodes, each of
which functions as a queue. The queue-series model assumes that customers arrive at the

first node of the queue series at the same time, and they are processed either serially or in
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parallel there. The second node, like all subsequent ones, is a single-channel node, and it
processes components one at a time, not necessarily in the same order as they join the
queue (not FCFS). The queue-series model considers discrete-stage models, continuous-
flow models and intermediate models as special cases, corresponding to the cases in
which M=1, M=eo, and 1<M<eo, respectively.

Miller evaluated the behavior of the queue-series model through a novel
application of the PERT method. The queue-series model was represented as a PERT
network consisting of M X N separate processes--M is the total number of components
that constitute a stimulus and N is the total number of nodes in a queue-series. The
passage of the jth component through the ith node is represented as a PERT process with
a duration of tjj (i=1 to N; j=1 to M). The ith node cannot begin processing its jth
component until it has finished processing its (j-1)th components and the (i-1)th node has
finished processing at least j components. These temporal contingencies are naturally
represented as unidirectional paths from node to node in a PERT network, and the path
with the largest sum of tjjs is called the critical path. The length of the critical path is the
RT for the task.

Miller performed extensive numerical simulations of the PERT network
representation of the queue-series model to examine how experimental manipulations
might affect the time for M customers to traverse through the queue-series and concluded
that, within the class of queue-series models he considered, experimental factors affecting
different processing stages always have additive effects on reaction time with discrete
stages but rarely do so with overlapping stages, and thus, observations of factor additivity
support discrete-stage models. Nondiscrete queue-series models were shown to be more
likely to produce underadditive factor effects on RT.

Apparently, the conclusions from Miller's queue-series model is different from
those of the tandem queueing model, which has been shown to be able to mimic McGill

and Gibbon's discrete serial model and McClelland's cascade model closely, both of
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which could produce additive effects. The tandem queueing model also satisfies Ashby
and Townsend's (1980) assumptions of pure insertion and selective influence at the
distributional level. Since no analytical result is available in the queueing network
literature about sojourn times in the type of queue-series considered in Miller's model, it
is difficult to identify exactly why the two models behave differently. But it appears that
at least part of the explanation is offered by Miller in his discussion of the relationship
between the queue-series model and the cascade model.

Miller has pointed out that although the queue-series model is able to approximate
the shape of the activation functions of the cascade model by increasing the value of M,
the two models produce different effects on RT. The explanation was that the cascade
model allows experimental factors to have downstream effects, whereas the queueing
series model does not consider such propagation. More specifically, the queue-series
model has two explicit restrictions about the effects of experimental manipulations on
critical path membership for the tjjs. The first is that at most one experimental factor
influences whether each tjj is on the critical path, and the second is that when a tij is
influenced by an experimental factor, only that factors may determine whether the tjj is
on the critical path. As Miller pointed out, these restrictions essentially require that a
factor affecting an earlier stage must not have non-local, "downstream" influence on
critical path membership for the tijs of a stage affected by another factor. It is possible
that this could at least partially explain why the predictions of the cascade model and the
tandem qucueing models converge, while both diverge from the queue-series model.
Experimental manipulations only change the mean process durations (i.e., tjjs) in the
queue-series model, but both the tandem queueing model and the cascade model allow
experimental manipulations to change process durations at the distributional level.

Future research will undoubtedly offer deeper insight about why the two models
make significantly different predictions for RT behavior. At a more general level, the

present discussion of the two classes of series queueing systems clearly is a
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demonstration of the diversity of possible queueing models, both in their structures and
assumptions and in their predictions of RT behavior. Queueing network theories and
methods can be regarded as a unified conceptual framework as well as a set of

mathematical tools for developing and evaluating these models.

Mean RT in Fork-Join and Feedback Queueing Networks

A tandem queueing system is the simplest type of queueing network, in which all
customers visit the same sequence of service nodes and each node is visited by every
customer exactly once. Non-tandem network configurations arise when customers have
more complicated service requirements. For example, when the service requirements of a
customer do not have to be processed in strict sequence, a customer may split into several
new customers, each of which takes a separate path so that the customer's service
requirements can be processed by separate parts of the network in parallel. When all
customers do not have identical service requirements, they do not necessarily take the
same path of a network, and they may return to nodes previously visited or skip some
nodes entirely.

In this section I will discuss two classes of network configurations. I will first
consider what happens if a customer splits itself in a network. The reason that I discuss
this class of networks first 1s because they are closely related to the existing network
models of psychological processes. Then I will examine RT behavior in a simple
feedback queueing system in which a customer may visit a node several times before it
departs from a system. It turns out that for both classes of networks, it appears that
continuous-transmission models are not distinguishable from their discrete counterparts at
the level of mean RTs. At the distributional level, no conclusions can be drawn for fork-
join networks. For the feedback system, however, discrete and continuous models make

different predictions about RT distributions.
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Fork-Join Queueing Networks

As described earlier in this article, psychologists have challenged the notion of
serial arrangement of mental processes and examined the possibility of network
configurations of process activities. The current state of knowledge in this area is
represented by the class of PERT network models, originally proposed by Schweikert
(1978) and further developed by subsequent studies (e.g., Fisher and Goldstein, 1983;
Schweikert and Townsend, 1989; Townsend and Schweikert, 1989). In this part of the
article, I will show that PERT networks can be treated as a special case of a class of
queueing networks called fork-join networks in the same way that the serial discrete stage
models can be treated as a special case of the tandem queueing model.

Fork-join networks arise naturally when the service requirements of a customer do
not have to be processed in strict sequence (Baccelli and Makowski, 1990). In addition to
service nodes, which exist in all queueing networks, there are two special types of nodes
in a fork-join queueing network: fork nodes and join nodes. A customer arriving at a
"fork" node splits into several new customers, which are sent to separate service nodes,
and the corresponding join occurs at a "join" node when the services of all these new
customers are completed. These new customers themselves may also be forked and
joined while traversing the network. The multiple arcs emanating from a fork node or
entering a join node represent simultaneous creation or synchronized merging of multiple
customers. The function of a fork node is to divide the customer's service requirements
into subsets of demands that can be serviced by separate parts of the network in parallel,
while the function of a join node is to ensure that all the service requirements of a
customer are met before it departs from the system.

As a continuous-transmission system in its general form, a fork-join network
allows customers to enter, traverse, and leave the network separately like a flow.
Apparently, if a fork-join network behaves in a discrete way and processes only one

customer or its offsprings at a time, it becomes a PERT network. As models for RT, the
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relationship between a PERT model and a corresponding fork-join model is similar to
that between a serial discrete-stage model and a corresponding tandem queueing model.
A PERT model assumes that all the components of a stimulus are tied together in a single
unit before entering the network, although the unit may be forked and joined while
traversing the network. A response is made when the unit departs from the network. A
corresponding continuous-transmission fork-join network would allow individual
stimulus components to enter and leave the system separately and they would be forked
and joined in the same way as in the corresponding PERT network. A response is
initiated when M components have departed the system. Similar to the acyclic
characteristic of PERT networks, fork-join networks do not allow a customer to visit the
same node more than once, and they are often called acyclic fork-join queueing networks
(AFJQNs) in the literature.

The simplest instance of a non-trivial fork-join network is a parallel network
consisting of a number, K, of parallel queueing systems, as shown in Figure 3. Customers
arrive at the fork node as a Poisson flow with mean arrival rate A, and upon arrival, a
customer forks into K offsprings. The ith offspring is assigned to the ith queueing system
which consists of a single-channel FCFS service node and an infinite capacity queue. The
service times of the nodes are independent and exponentially distributed with mean 1/}
for node 1. A customer leaves the system as soon as all its K offsprings have completed
their service and are merged at the join node. The network sojourn time, Tc, of any
arbutranily selected customer is the maximum of the sojourn times of its K offsprings, i.e.,

Te=max(Ty. T2, ..., TK) (22)
where

Ty =Sy + Wj. is the sojourn time of the jth offspring of the customer at queue j
()=1....K), including both service time (Sj) and waiting time (Wj).

In the extreme case in which only one customer is allowed to enter the system

through the fork node, we have a corresponding parallel PERT network. All the
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offsprings of the admitted customer are processed immediately at the servers, and thus the
Tj’s only include service times (i.e., Tj:Sj, for all j), which are usually referred to as
process durations in PERT terms and are commonly assumed to be independent random
variables. The problem of determining customer sojourn time in this discrete network,
Tq, is that of finding the maximum of K independent random variables (referred to as
determining the length of the critical path). Unfortunately, the problem becomes more
difficult for fork-join networks, because the continuous nature of customer arrival makes
it necessary to consider the queueing effects at the K service nodes. Tj's are no longer
service times but sojourn times--the sum of service times and waiting times. Determining
the network sojourn time, T¢, becomes that of finding the maximum of K random

variables that are not necessarily independent of each other.

Insert Figure 3 about Here

Recently, Nelson and Tantawi (1988) proved that the Tj's in this simple parallel
fork-join system, j=1, ...., K, are associated random variables. Random variables T1, T2,
.... TK are said to be associated if cov(f(Ty, T2, ..., TK), g(T1, T2, ..., TK)] 2 0 for all
pairs of increasing functions of f and g. The properties of associated random variables
that are relevant to the present discussion are: All independent random variables are
associated, but associated variables are not necessarily independent. If T, T2, ..., TK are

associated, then

K
Plmax Ti>tJ<1- n P[T; <t (23)
191<R i=1
and the expected value has an upper bound expressed as,
= K
E[max Tj<t]< \(1- H P[T; <t))dt (24)
1<k =
0

In (23) and (24), equality holds if and only if Ty, T2, ..., TK are independent.
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For a parallel system consisting of exponential servers, (24) specializes to,

o K
E[Tc] =E[max Tj<t]< g(l - (1-e°(ui'x)t)dt (25)
|\ IS k > 1=1
In the case of K identical servers, (25) becomes
E[Tc] = Efmax Tj <t < [ (1-(1-c Mg = L g
T ek L “pr K (26)

where,

Hk is the harmonic series: Hg = le

1=

As Nelson and Tantawi (1988) pointed out, the lower bound for E[Tc] is obtained

by ignoring queueing effects. Let A=0, we have:

1 1
~Hyg <E[T]<—H 27)
W pr K

Baccelli and Makowski (1990) later generalized this result to include customer
arrivals that are not necessarily Poisson, and showed that as long as the parallel servers

are identical and exponential, the following expression holds,

] 1
EHKSE[T]SE HK (28)

where a and b are uniquely determined by the rate of exponential service (W) and the
probability distribution of customer arrival. For Poisson arrivals, a={L.

As pointed out by these authors, since both bounds grow at the same rate Hy,

E[T¢] itself must grow at the same rate. An interesting property of the harmonic series is

that Hg approximates logK for large K, which implies that mean customer sojourn time
grows logrithmically in the number of parallel servers (denoted as O(logK)).

Since the extreme case of A=0 corresponds to a PERT network of K parallel
exponential processes with identical mean durations, it is not surprising that the lower
bound obtained in (27) has the same form as that derived by Hartley and Wortham (1966)
for stochastic PERT networks and that by Townsend (1972) for discrete parallel

processes. This result suggests that the continuous-transmission fork-join network and the
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corresponding discrete PERT network demonstrate the same O(logK) behavior, and thus
it is impossible to distinguish whether the underlying mental network for a logarithmic
relationship between mean RT and an experimental factor is discrete or continuous.

An classic example in the psychological literature that shows a logarithmic
relationship between mean RT and an independent variable is the famous Hick-Hyman
Law of choice reaction time. Hick (1952) and Hyman (1953) independently discovered
that choice reaction time increased logrithmically with the number of stimulus-response
alternatives and can be expressed by the equation RT=a+blog2K, where a and b are
constants, and K is the number of stimulus-response alternatives. Apparently, this RT
relation could be explained equally well by a discrete parallel PERT model with K
identical processes or a continuous fork-join model with K identical servers.

When the service rates of the exponential servers are non-identical, the expected
sojourn time can be computed similarly with equation (25). Use the simplest case of two

parallel servers as an example, we have,
E[Tc) = E{max Tj<1] Sf(wl-(l-e—(ul'k)t)(l-e'(uz')‘)t))dt
3 S*’;e-ml-m o 2N B2V

= V(u1-A) + 1/(U2-A) - 1/[(U1-A) + (u2-A)] (29)
Let A=0. we have,
E[Tc] > L, b 1 (30)
Ul U2 HI+U2

The nght-hand side of expression (30) is identical to what was obtained in Townsend and
Ashby (1983). Through some simple algebraic manipulations, (30) can be written

cquivalently as,
ETe)2 —— + AL, K2 31)
WI+HHD  H2(I4HD)  MI(HI+M2)

which 1s the same as the result obtained by Townsend (1974) and that by Fisher and

Goldstein (1983) using Order-of-Processing Diagrams.
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Although the exact expression for E[T¢] is still unknown, the similarity between
the expressions for the upper- and the lower- bounds suggests that changes in E[T¢] as a
function of p1 and p2 must follow the same trend defined by the similarly-shaped upper
and lower bounds. Therefore, if all we know is that RT data collected in a behavioral
experiment can be described by the right-hand side of (30), then the data does not seem to
be sufficient for distinguishing whether the underlying mental structure is discrete or
continuous.

An interesting question is whether factorial experiments would allow us to
distinguish the two classes of models. Townsend and Ashby (1983) have shown that if
the durations of two parallel PERT processes (say, T1 and T?) are independent and if
experimental factors A and B separately and monotonically affects T1 and T2
respectively, then manipulations of A and B will always produce underadditive
interactions. A natural question is whether a corresponding parallel fork-join network
would show the same pattern of underadditive interactions.

Unfortunately, an answer to this question relies on a clear understanding of
several unsolved issues. All we know now is that sojourn times in a parallel fork-join
network are associated. It is still not clear whether or not and under what conditions the
sojourn times are independent. Suppose future research will show that they are
independent under certain conditions, then a parallel fork-join model satisfying these
conditions should be able to mimic the corresponding PERT model accurately. However,
the problem remains even if the sojourn times are proved to be dependent, because there
is another set of questions that need to be answered. For example, will a fork-join
network be able to approximate the PERT counterpart to any desired level of accuracy?
Furthermore, what Townsend and Ashby (1983) have shown is that independent parallel
PERT processes must predict RT underadditivity, but this does not necessarily imply that

RT underadditivity can only be observed when the processes are independent.
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In fact, Townsend and Schweikert (1989, Schweikert and Townsend, 1989) later
generalized this result on RT underadditivity to include a broader range of PERT
networks, where independence is not required as long as the postulate of selective
influence is satisfied. This postulate is stated in the form of a set of conditions that must
be satisfied by the density functions of process durations and slacks. This set of
conditions effectively preclude considerations of networks in which an experimental
factor directly affecting a process is able to exert an indirect influence on another process
through stochastic dependencies among the processes--referred to as an "indirect
nonselective influence"(Townsend, 1984). As will be discussed in the next two sections,
this "indirect nonselective influence" is an important characteristic of many queueing
networks without fork and join nodes. However, it is not clear whether the
synchronization constraints induced by the forks and joins are able to enforce fork-join
networks to follow the postulate of selective influence.

Compared to non-fork-join queueing networks and stochastic PERT networks,
which have been topics of much research since the late 1950s (Jackson, 1957) and the
early 1960s (Fulkerson, 1962), fork-join networks represent one of the new and most
difficult areas in queueing network research (Baccelli and Makowski, 1990; Nelson and
Tantawi, 1988). Fork-join networks belong to the class of non-product-form networks,
for which very little result is available in the literature and every problem becomes
computationally hard. The present discussion illustrates that, at least at the conceptual
level, PERT networks can be treated as a special case of fork-join networks. Furthermore,
in the special case in which the networks are formed by identical parallel exponential
nodes, the two classes of networks are able to mimic each other accurately at the level of
mean RTs. For network with more complicated structures, this article has raised more
questions than it has answered. Future research may find it worthwhile to further examine

the equivalence and the identifiability of the two classes of networks.
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A Single-Server Feedback Queueing System

The network in Figure 4 is a single server queueing system with instantaneous
Bernoulli feedback. Customers arrive at the system in accordance with a Poisson process
with mean arrival rate of . The server is a single-channel FCFS exponential server with
rate parameter L and an infinite queue capacity. After receiving service each customer
may immediately return to the end of the queue in front of the server with probability p or
depart the system with probability q=1-p. The feedback probability is independent of the
state of the system.

Since this feedback system satisfies all the three Jackson assumptions, it belongs
to the class of product-form networks--the joint probability distribution of the number of
customers being in their first, second, ..., and Kth loop has a product form. However, this
feedback system is not overtake-free, and the order of customer arrival is not preserved in
the order of their departure from the system. Because customers may overtake each other
while traversing the system, the sojourn time of an arbitrary customer is not only
influenced by the number of customers (and their remaining service requests) found upon
its arrival, but also by later arrivals. Thus, the sojourn times of a customer's successive

visits at the server are not independent of each other.

Takacs (1963) was the first to have examined this feedback system and derived an

exact expression for the mean network sojourn time of a customer, E[T¢], as follows:

E[Te] = —— (32)
qu-y

This expression can also be derived from equation (8) directly as follows (Lemoine,
1987). Because each customer is expected to visit the server 1/q times, the total arrival

rate at the server, A, is Yq (including both external and feedback arrivals). Therefore,

according to equation (8), the expected network sojourn time can be computed as:
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q

E[T] =

0| —
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As described earlier, RT is characterized by the time for the response unit to
accumulate M components. Of great interest to RT modeling, therefore, is the sojourn
time of the customer who is the Mth to depart from the system. However, queueing
network research investigates the issue of customer sojourn times from the perspective of
arrivals--How long does it take for the Mth arrival rather than the Mth departure to
traverse through the system. This difference in perspective does not pose a problem when
a network is overtake-free, as in the case of tandem queues and fork-join networks
discussed thus far, because the Mth departure is also the Mth arrival. But this simple
relation between arrival and departure does not hold for the feedback queueing system,
because of customer overtaking. An important result in this regard is that of Whitt (1984),
who has proved that in this feedback system the expected number of customers that
overtake a particular customer is the same as the expected number of customers that are
overtaken by this customer. This result implies that although on a particular trial of an RT
experiment, the Mth stimulus component to arrive at the system is not necessarily the
Mith to depart, over a large number of repeated trials, the Mth arrival is still expected to
be the Mth to depart. Therefore, in a typical RT experiment involving a large number of
trials, the network sojourn time of the arbitrarily selected Mth arrival as expressed in
equation (32) can still be used to infer the RT behavior of this feedback queueing system.

What is particularly interesting about equation (32) to RT modeling is that it tells
us that, at the level of the mean RT, this feedback system is able to mimic a serial system
with N identical exponential servers accurately. In equation (32), if we let g=1/N and

=M\, with N take integer values, we have

Em=—= N2y Lo (33)
qu-y  -A Ay p-h
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Clearly, E[T] = 2 —1—;\ in (33) is the expression for the expected sojourn time of a
=1 W-
1=

customer in a system of a series of N identical exponential servers with parameters L and
A for each server. Furthermore, E[T] = kN in (33) tells us that the detection of a linear
relationship between mean RT and N in a set of RT data is not sufficient to distinguish
whether the underlying mental system is consisted of a sequence of N identical servers or
of a single server with feedback probability of %
In psychological experiments a linear relationship between mean RT and a
discrete independent variable has traditionally been interpreted as an evidence in support
of a serial stage model. A classic example is Sternberg's memory scanning task, in which
the subjects are asked to remember a list of items (called "positive set") and then to make
a yes/no type of binary response about whether a displayed item is or is not a member of
the positive set. A large number of studies using this experimental paradigm have shown
a robust linear relationship between mean RT and the size of the positive set. The slope of
this linear relation is interpreted as the duration of a new stage inserted in the processing
chain when the size of the positive set increases by one. Townsend (1974) has shown that
a system of identical and independent parallel processes could predict the same linear
relationship with arbitrary slope k by assuming that the processing rate of the parallel

processes decreases as the number of items increases. More specifically, Townsend

\
showed that since E[T] = ! Z“l in parallel systems, E[T] = kN could be obtained if
K=

!
I
1=

H=—N Using the results discussed earlier in this section about fork-join networks, it

I1s easy to see that a corresponding continuous-transmission parallel fork-join network

could predict the same linear relation equally well. As Townsend pointed out, this

44



interpretation based on parallel systems is not necessarily intuitive or natural, particularly
considering the complicated relation between L and N.

The single-node feedback system offers us another plausible explanation of the
linear RT relation. The effect of adding a new item to the positive set may very well be
that of decreasing the departure probability q in this feedback system rather than that of
inserting an additional stage. Since q is related to set size N in a simple reciprocal relation
(q=%), this interpretation does not appear to be unnatural. A single-node system with a
feedback loop appears to be perhaps more parsimonious as a model for RT than a chain
of N nodes, particularly when N is large.

If the feedback system is a discrete system, then it seems impossible to
distinguish, even at the distributional level, whether a process visits the same node N
times or visits N identical nodes in series, because both can be characterized by the same
ordinary gamma distribution with parameter (N, it). However, for continuous-
transmission systems, the two classes of systems dissociate in their predictions of sojourn
time at levels higher than the means. Takacs (1963) has derived an exact expression for
the Laplace-Stieltjes transform of the network sojourn time distribution, and its form is
far more complex than that of the ordinary gamma distributions. Furthermore, the
existence of customer overtaking in the feedback system tend to produce a greater
variance in network sojourn time than the series system (Takacs, 1963; Lemoine, 1987).
Therefore, detection of large RT variances in conjunction with a linear mean RT
relationship appears to be an evidence in favor of the continuous-transmission feedback

model over a series model, although not necessarily a definitive evidence.

Simon-Foley Network and Overadditive Factor Interactions
If a Jackson network does not allow customers to overtake each other, then
sojourn times of a customer at successive nodes are mutually independent and

exponentially distributed random variables and network sojourn time can be described as
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general gamma distributions, which have been shown to play a central role in the McGill
and Gibbon's model, the cascade model, and the tandem queueing model. In this section I
will discuss a classic example of a non-overtake-free network shown in Figure 5. This
network is often referred to as a Simon-Foley network, which is a three-node Jackson
network with a single server at each node (Simon and Foley, 1979). Customers only enter
the system at node 1 and exit the system at node 3. After visiting node 1 a customer goes
directly to node 3 with probability (1-p), or goes to node 2 and node 3 in sequence' with
probability p. We may also think of this system as having two types of customers. Type 1
customers take the indirect route, whereas type 2 customers take the direct route. The two
types of customers have identical service requirements and priority level at the nodes they
visit, and the value of p decides the proportion of type 1 customers in the total customer
population.

This network has an interesting property: the sojourn time in the first and the third
queue (T} and T3) are not independent for those customers who go through the second
queue, but they are independent for those customers who go directly from node 1 to node
3. T and T2 are independent. T and T3 are also independent. Recent research has
shown that T3 is stochastically increasing in T for a customer that goes through node 2,
1e., P{T3>tIT} 1s increasing in T{ (Foley and Kiessler, 1989). A result that is
particularly useful for mean sojourn time analysis is derived by Walrand and Varaiya
(1980), who showed that the expected value of T3 increases as T increases. That is,

E[T3IT=t'] > E[T3IT|=t], t'>t>0 (34)
where E[T] represents the mean of T.

This relationship has a quite intuitive interpretation. Let A be a customer who
goes 1o queue 3 via queue 2 after leaving queue 1. Some customers who arrived and
departed from queue 1 later than A may arrive at queue 3 before A arrives there because
they have taken a direct route. The longer A had spent at queue 1, the more likely that A

had left a long queue waiting behind it there, and the more likely that many of these late
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arrivals would have arrived at queue 3 earlier than A because they took the direct route.
Thus, the longer A had stayed at queue 1, the longer A would have to wait at queue 3.
Clearly, this dependence between T3 and T can be found if and only if O<p<1 (i.e., both
the direct and the indirect routes exist) and only for those customers who take the indirect

route.

Insert Figure S about Here

These results can be used to offer a new and interesting explanation for
overadditive interactions observed in some factorial experiments. Let us examine what
happens when one factor affects T1 and another factor determines whether p equals 1 or
takes an intermediate value between 0 and 1. When p equals 1, there is only one type of
stimulus components, which can be regarded as signal components and they all take the
indirect route from node 1 to node 3. In this case, the network is overtake-free and the
sojourn times of a customer at the three nodes are all independent of each other. When 0<
p<l, some stimulus components take the direct route and others take the indirect route.
We may assume that those taking the direct route are noise components and those taking
the indirect route are signal components. In this case, noise components could overtake
signal components but signal components never overtake each other. In both cases, the
Mth signal component to arrive at the system is also the Mth to depart, so its network

sojourn time characterizes the RT behavior of this task network. Comparing the two

cases, it is clear that the effect of increasing T on RT would be greater when p takes
intermediate values than when p equals 1, since increasing T produces a corresponding
increase in T3 only when it is between 0 and 1. Therefore, when two experimental factors
affect T and p respectively, their joint effects on RT would be an interaction of the

overadditive type.
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As an example, let us examine the results of the lexical decision study of Meyer,
Schvaneldt and Ruddy (1975). This study has also been used by McClelland (1979)
throughout his article to illustrate the differences between the predictions of the cascade
model and the discrete-stage model in their explanations of RT behavior. Meyer and his
colleagues studied reaction time to decide whether a string of letters was a word or a
nonword and manipulated the visual quality of the display of the target word (with or
without "noise dots" superimposed on the letters). The factor of visual degrading was
manipulated in factorial combination with the relatedness of a preceding context word to
the target. The result was an overadditive interaction of the quality and relatedness
factors: Responding to associated words was 38 msec faster than to unassociated words in
the intact condition, and this RT difference was increased to 71 msec in the degraded
condition. Subjects responded to intact associated words 129 msec faster than to degraded
associated words. These authors suggested that, according to the discrete stage model,
visual degrading by dots and context priming have their effects on a common stage.
According to the predictions of the cascade model, McClelland suggested an alternative
explanation in that the interaction could be due to the joint effects of two factors each
affecting asymptotic activation or to the joint effects of a factor affecting the asymptotic
activation and another affecting the rate of the rate-limiting process.

In terms of the Simon-Foley network, I can offer another alternative explanation
which 1s interesting and intuitive. It seems reasonable to assume that there are two types
of sumulus components--letters are formed by signal components and the dots are noise
components. Both types of components must go through node 1 and node 3. After leaving
node 1, signal components must go through node 2 for some type of analysis that is not
required for noise components. Noise components are "filtered" out by node 1 and they
all go to node 3 directly from node 2. I further assume that associated words are served

faster at node | than unassociated words, but their sojourn times at node 2 are identical.

48



In the intact condition, noise components do not exist, and all customers go from
node 1 to node 2 and then to node 3. In this case, time requiremenis at the three nodes
(T1, T2, and T3) are all independent. The 38 msec difference between unassociated and
associated words reflects the difference in T for the two priming conditions. In the
degraded condition, the presence of noise components will cause an increase in T and
T3 because signal components must compete for service with noise components at the
two nodes. This is reflected by the 129 msec RT increase in RT that is shared by both
associated and unassociated words. More importantly, the presence of a direct route taken
by noise components produces a positive dependence of T3 on T1, and the increase in T3
is expected to be larger for unassociated words (with a longer T1) than for associated
words, as seen in the 33 msec increase in the RT difference between the two types of
words in the degraded condition (71-38=33).

Another example that can be used to further illustrate this point is the result
reported by Miller (1976). Miller found that degrading by dots produced an overadditive
interaction with the probability of stimulus occurrence, but degrading by contrast
reduction had additive effects with the probability manipulation. In terms of the
queueing network model, this result could be because degrading by dots creates "noise”
customers that overtake signal components, whereas degrading by contrast reduction do
not. Therefore, only degrading by dots will destroy the independence of T and T3 and
produce an overadditive interaction between degrading-by-dots and occurrence
probabulity.

The above discussion has suggested a plausible explanation to overadditive
interactions discovered in psychological experiments such as the lexical decision tasks, in
addition 1o that offered by Sternberg based on serial discrete stages and that by
McClelland based on cascade processes. It should be noted here that the presence of an
overadditive interaction does not confirm the presence of a network shown in Figure 5,

just as it does not exclusively confirm the hypotheses of Sternberg or McClelland.
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For the purpose of detecting the presence of a network arrangement of Figure 5,
there does exist a test that is stronger than detecting the presence of interactions. This test
is based on equation (34), and is provided by directly measuring the durations of T3 and
T} if related measurement methods are assumed to be available. This assumption is not
stronger than those for testing the validity of the Schweikert's PERT methodology for RT
analysis, which assume that we are able to prolong the duration of a process of interest,
and "we may be able to record time at several points in the network. We may know the
times at which various stimuli are presented and responses made, and we may also know
the times at which various physiological events occur" (Schweikert, 1978; p. 123).
According to Equation 34, if in a task situation in which prolonging a process produces a
corresponding increase in the duration of another process, but not vice versa, then there is
a great possibility that the task situation involves a continuous network of mental
processes shown in Figure 5, particularly if such a network also " 'makes sense' in terms
of other knowledge" (Sternberg, 1969, p. 283).

It should be noted here that this relationship between T1 and T3 is different from
the type of possible correlation of stage durations induced by factors such as motivation
or preparation. Several authors (e.g., Sternberg, 1969; Ashby and Townsend, 1980;
Townsend and Ashby, 1983) have pointed out that a subject-controlled factor (such as
preparation or motivation), that either vary from trial to trial or is controlled by
experimental manipulations such as reward magnitudes, would induce a correlation of
stage durations. For example, stage durations could both be short (or long) when the
motivation is high (or low). This type of correlation would not destroy the additivity of
factors that influence the two stages separately, because for any given level of the
subject-controlled factor, stage durations would still be independent. For the Simon-Foley
network, experimental manipulations that increase T would be expected to produce a
corresponding increase in T3, but not vice versa. The dependence of T3 on T is not

under the subject's control.
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Closed Queueing Networks and Underadditive Factor Interactions

This section considers a special class of queueing networks that predict
underadditive factor effects when they are used as models for RT. This class of networks
are called closed queueing networks. In a closed network, the same customers circulate
eternally through the network. A closed network can also be viewed as an open network
with the total number of customers held fixed. All the networks discussed above in this
article are open queueing networks. If for some psychological tasks, the cognitive system
has an upper limit in terms of the number of stimulus components or task components
that it could process at once, then a closed network would appear to be an appropriate
candidate for modeling the cognitive system when it functions at its full capacity. An
open network, on the other hand, would be useful for modeling a cognitive system that
has not reached its full capacity.

Closed networks have a special characteristic that has significant implications for
RT modeling. In a closed network, there always exists a negative correlation between the
number of customers at the various nodes. This is because in order to keep the total
number of customers fixed, an increase in the number of customers at one of the queues
will inevitably produce a corresponding decrease in the number of customers at other
queues. This negative correlation between the queue lengths at separate nodes will also
induce a corresponding negative correlation between the sojourn times of a customer at

these nodes.

The simplest type of a closed queueing network is called cyclic queues, which is
essentially a tandem queue with a fixed number, N, of customers allowed in the system.
The N customers can also be viewed as N "containers”, each of which is able to carry one

customer. When a customer departs from the last node, the container that carried it
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becomes empty and is immediately cycled back to the front of the system to admit a new
customer. To simplify the discussion, let us consider the simplest cyclic queue with two
nodes or stages as shown in Figure 6 (K=2). The following discussion uses N to represent
the maximum number of customers allowed in the system (the total capacity of the
system), Nj the number of customers at queue i, Si the mean service time requirement of
a customer at node i, and Tj the mean sojourn time of a customer at queue 1 (service time
plus waiting time), with i=1, 2.

Clearly, a customer's network sojourn time is the sum of its sojourn times at queue
1 and queue 2. Suppose that the system is functioning at its full capacity, then at the time
instant at which a new customer enters the system, there are exactly a total of N-1
customers already in the system. N1-1 of them are at queue 1, each having a service time
requirement of S1, and the remaining N-N| customers are at queue 2, each having a
service time requirement of S2. Therefore, the total network sojourn time, T, of the new

customer 18

T T1+T

N1 xS1+(N-N1)x S2 (35)

Let us examine what happens in a factorial experiment when one factor, A, affects
S and another factor, B, affects S2. Without losing generality, suppose B is held fixed
and a change of A from level 1 to level 2 results in a decrease in the processing rate of
node | and thus an increase in S|. Because queues tend to form in front of a slow server,
this increase in S| would produce an increase in N, which inevitably produces a
corresponding decrease in N2 (N2=N-N1). Thus, a customer would experience a shorter
delay at queue 2, although the service rate of node 2 has not been changed. In short,
factor B is expected to have a smaller effect on total customer sojourn time when factor A
is at a higher level than when A is at a lower level, resulting in an underadditive

interaction between the two factors.
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As discussed earlier, RT is defined as the total time for M customers to pass
through a network. Clearly, when the number of customers are not too small, RT should
demonstrate the same characteristic as the sojourn time of an arbitrary customer. To
illustrate this point, let us suppose that M is a multiple of N (M=F X N), and the
multiplication factor F is not too close to 1. Then, the total time for M customers to pass
through the network is the sum of the network sojourn time of the Nth, the 2Nth,..., and
the FNth customer. Because the system does not reach its full capacity until the Nth
customer has arrived at the system, the network sojourn time of the Nth customer may be
somewhat different from that of the 2Nth, ..., FNth customer. But when the value of F is
not too small, this difference becomes negligible, and we have

RT=FxT
This result indicates that the effects of the experimental factors, A and B, on RT should
be the same as their effects on T. That is, A and B should produce underadditive effects
in an RT experiment.

Underadditive effects have been observed in a number of studies, an example of
which is the study of Miller and Pachella (1976), in which the authors examined the joint
effects of the meaningfulness of the stimuli and stimulus contrast on reaction time in a
Sternberg-type memory scanning task. The high-meaningfulness condition used the digits
1-8 and the low-meaningfulness condition used pseudoletters as stimuli. The data showed
a 140 msec RT difference between the low and the high meaningfulness conditions when
stimulus contrast was high, and a 80 msec difference when stimulus contrast was low--
demonstrating an underadditive interaction between the two experimental factors.

In another study, Pachella and Miller (1976) found an underadditive interaction
between match-type and stimulus contrast in a letter-matching task, which required the
subjects to decide whether two simultaneously displayed letters had the same name or
not. The two match-type conditions corresponded to the situations in which the matched

letters are the same or different in case. The data showed that contrast reduction had a
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greater effect on the faster physical match trials (letters do not differ in case) than on the
slower name match trials. Evidence of underadditive factor effects were also found in a
number of other studies, including that of Stanovich and Pachella (1977) who showed
that reducing stimulus contrast increased RT more when the experimental task employed
a compatible rather than an incompatible stimulus-response mapping, and that of Miller
(1983) who found that whether or not the subjects were given a response cue had a larger
effect when a related perceptual process was easy than when it was hard.

These authors argued that these underadditivity results cannot be easily
interpreted by discrete serial-stage models, and have interpreted these results as an
evidence in support of models that assume temporal overlap of process activities
(Stanovich and Pachella, 1977; Miller, 1983). This interpretation was further supported
recently by Miller's queue-series model. As discussed earlier, underadditivity was
predicted by the queue-series model when the queue-series functions in a nondiscrete
manner (Miller, 1993). From the perspective of the queueing network model discussed in
this article, however, an underadditive interaction between two experimental factors may
indicate the presence of a cyclic queueing network as discussed here. We have seen
earlier in this article that concurrent processing in a continuous-transmission tandem-
queueing system do not necessarily predict underadditivity. Within the classes of models
considered in this article, underadditivity in a continuous-transmission serial system
are not caused by concurrent processing per se, but by its full-capacity operational status.

The type of negative correlation between sojourn times at successive nodes in a
cyclic queue is different from the type of possible trial-by-trial correlation pointed out by
Sternberg (1969). Sternberg considered a hypothetical task situation in which the stage
duration is supposedly to be shorter if its input is of higher quality, and the input is
supposedly to be of higher quality if the preceding stage has worked on it for a longer
time. Then on trials on which the first stage happened to take longer, the second would

be shorter. However, factor manipulations might remain additive if this negative
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correlation is observed only on a trial-by-trial basis, because trial-by-trial negative
correlation does not necessarily imply that independence at the level of means is
destroyed. As Sternberg pointed out, this type of relations are beyond the current scope of
empirical investigations.

For the cyclic queue, the presence and the magnitude of negative correlations are
under the control of experimental investigations, rather than caused by some random
extraneous factors, and they are observed at the level of mean durations, rather than only
on the trial by trial basis. The cause for the negative correlation is not because an earlier
stage has changed its output to be used by a later stage, but because the system is
functioning at its full capacity for a certain task situation, and the negative correlation
could be observed by making any of the nodes a processing bottleneck.

Another important interpretation of underadditive effects is that based on parallel
independent processes. As discussed earlier in the discussion about parallel fork-join
networks, Townsend and Ashby (1983) have shown that two experimental factors
influencing parallel independent processes separately would produce an underadditive
interaction. This result was later generalized by Schweikert and Townsend (1989) to
concurrent processes in a larger class of discrete networks. Just as what we have seen in
the last section that the discrete serial stage model, the cascade model and the Simon-
Foley queueing network model offer three alternative explanations for overadditive
interactions, the queue-series model, the parallel processes model and the cyclic queueing
model offer three alternative interpretations for underadditive interactions. The purpose
of this article is not to advocate one interpretation over another, but to broaden the scope
of thinking about the possible causes for certain RT phenomenon. Before more diagnostic
tests are available, it appears that the choice of a model among the alternatives should
rely on "intuitive and sometimes logical grounds for rejecting one model or interpretation

in favor of another” (Townsend, 1976; p.237).
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The results in the last two sections on Simon-Foley network and cyclic queueing
network have special theoretical significance in that they may suggest some new classes
of mental architectures that do not follow the postulate of selective influence but can be
subjected to empirical tests. Previous studies have discussed the possible existence of
indirect influence of experimental factors. However, as Townsend and Schweikert (1989)
have pointed out: "Although dependencies are extremely important in processing
networks, very little is known about how to identify them or show they may affect the
results of psychological experiments"(Townsend and Schweikert, 1989; p. 321). Simon-
Foley network and the cyclic queueing network are examples of networks in which
process dependencies exist and they are clearly defined and can be tested through
experimental investigations. Furthermore, since both types of networks are continuous-
transmission systems, further research along this direction can also offer deeper insights
into the debate about the discreteness and continuity in information processing.

In summary, this article presented a queueing network model for reaction time
that considers the temporal dimension of discrete versus continuous information
transmission in conjunction with the architectural dimension of serial versus network
configurations of elementary mental processes. A number of elementary but important
types of queueing networks are examined with regard to their predictions for RT behavior
if they are used as models for psychological processes. These networks include tandem
networks, fork-join networks, feedback networks, Simon-Foley networks, and cyclic
networks. Interestingly, each of the networks makes some testable predictions for
reaction time and offers some unique insights into the theoretical debates about possible
mental structures. These models also provide a new perspective for reexamining existing
models of psychological processes, and it turns out many of the conclusions of existing
models are subject to alternative explanations.

It should be emphasized here that queueing network theory, in its general form,

has the capacity to model a greater variety of processing systems than what have been
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considered in this article. And this capacity is rapidly expanding, because queueing
network is one of the most active areas of research in operations research and applied
mathematics. Undoubtedly, progresses in this area will make more methods, tools and
concepts available. This article has illustrated the power of queueing network methods in
establishing new models of human cognition and in serving as a larger modeling

framework for unifying some existing models.
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