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ABSTRACT

In this dissertation we study the equation Ix = Nx under the
assumptions that L is a linear operator with domain and range in a
real Hilbert space S, and N is an operator (not necessarily linear)
whose domain and range also lie in S. Our purpose is to present an
existence theory which guarantees that this equation has at least one
solution. We apply this theory to the study of nonlinear boundary
value problems of ordinary differential equations.

The existence theory presented i1s closely related to an exist-
ence theory recently developed by L. Cesari for boundary value prob-
lems of ordinary and partial differential equations. Our theory re-
duces to the one of Cesari when L is a self-adjoint differential op-
erator. Cesari chooses a system of axioms concerning the existence
of certain linear operators H and P possessing special properties.
Using these two operators, the problem of determining a solution to
the equation Ix = Nx is reduced to solving a finite system of equa-
tions in finitely many unknowns.

For our existence theory we assume that L is a closed linear
operator satisfying the properties: (a) the domain of L is dense in
S; (b) the range of L is closed in S; (c) the null spaces for L and
the adjoint L¥ have finite dimensions p and g, respectively. It
follows that there exist linear operators H, P, and Q with properties
analogous to the properties of Cesari's operators H and P. The op-
erator H is a continuous right inverse for L, while the operators P
and Q are projection operators which project into the domains of IL¥*
and L, respectively. These three operators depend only on the linear
operator L and are independent of the operator N.

Using these three operators, we establish the existence of at
least one solution X€S to the equation Lx = Nx provided a certain set
of inequalities are satisfied and provided a particular finite system
of equations in finitely many unknowns is solvable. At the same time
we obtain estimates on the norm of such a solution X. If P > g, then
the finite system of equations is a system having more unknowns than
equations or the same number. For this case we present two existence
theorems for the equation Lx = Nx.

These existence theorems are used to study the equation Ix = Nx
when L is a differential operator on a finite interval [a,b], S is
the real Hilbert space Lola,b], and N is a nonlinear operator in S.
We prove that L is a closed linear operator which satisfies conditions
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( (b), and (c), and hence, we obtain the existence of the operators H,
P, and Q. The operator H is shown to have an integral representation.

Our existence theorems then yield existence theorems for a
solution of the differential equation ILx = Nx in the real Hilbert
space S = Lola,b]. In case L is a self-adjoint differential op-
erator, we can construct H, P, and Q in such a way that P = Q, and
such that H and P satisfy the axioms of Cesari. Thus, we show that
the Cesari theory is applicable to the study of self-adjoint dif-
ferential operators. Our theory is a generalization of the Cesari
theory which is especially useful for the study of non-self-adjoint
differential operators.

If the differential equation Ix = Nx has a solution Q, then we
prove that all the hypotheses of our existence theorems are satisfied,
and that ¥ is one of the solutions guaranteed by the existence theorems.

As an application of our theory we show that the nonlinear boundary
value problem

[x"+x+ ox” = Bt, 0<% <o

has a solution provided the constants O,B satisfy the conditions
|| <1, lﬁ| < .001, and we obtain estimates on the nom of such a
solution.



CHAPTER 1

INTRODUCTION

In this thesis we discuss the existence of solutions to the equa-
tion

Ix = DNx, (1.1)

where L i1is a linear operator with domain and range in a real Hilbert
space S, and N is an operator (not necessarily linear) whose domain
and range also lie in S. We present an existence theory which ig
applicable when L is an unbounded operator defined on a proper subget
of S. Thig theory has applications to the study of nonlinear boundary
value problems in ordinary differential equations.

Our theory is closely related to an existence theory recently de-
veloped by Cesari [3]. When L is a self-adjoint differential operatcr,
our theory reduces to the one of Cesari. In his study of Equation
(1.1) Cegsari presents a system of axioms concerning the existence
of linear operators H and P with convenient properties. Using thesge
two operators, the problem of determining a solution to Equation (I1.1)
is reduced to the problem of solving a finite system of eqguations in
finitely many unknowns. We examine the Cesari axioms and their im-
plications in Appendix I.

Bartle [2], Cronin [7], and Nirenberg [19] have developed existence

theories for an equation which is similar to Equation (1.1). They cor-



slder the equation

Ix + F(x,y) = O (1.2)

in Banach spaces S and ¥. In thig equation L:S - S is a bounded lin-
ear operator and F(x,y) is a function which maps a neighborhood of
the origin in S x Y into S with F(0,0) = 0. For y near the origin in
Y they seek solutions xeS of Equation (1.2). They also reduce the
problem to one of solving a finite system of equations in finitely
many unknowns. In Appendix II we relate these three theoriesgs to the
theory presented in this thesis, and we determine the relationships
which exist between the three of themn.

We present an existence theory for Equation (1.1) in Chapter 2.
By assuming that the linear operator L satisfies reasonable conditions,
we show that there exist linear operators H, P, and @ with properties
analogous to the properties of Cesari's operators H and P. Using
these three operators, the study of Equation (1.1) is reduced to
solving a finite system of equations in finitely many unknowns. The
conditions on L are satisfied by all differential operators on a finite
interval [a,b}, go our existence theory may be uged to study nonlinear
boundary value problems of ordinary differential equations.

If the operator L is a self-adjoint differential operator, then
we can construct H, P, and Q in such a way that P = Q, and such that

H and P satisfy the axioms of Cesari. Thus, we show that the Cesari



theory is applicable to the study of self-adjoint differential operators.
Our theory is a generalization of the Cesari theory and is especially
useful for the study of non-self-adjoint differential operators.

Let us summarize our existence theory as it appears in Chapter 2.

We consider Equation (1.1),
Ix = Nx,

in a real Hilbert space S. The operator L is a cloged linear operator
with domainJ{ﬁIJ and range ZZ(L) in 8, and the operator N is an opera-
tor in S with domain A (N) such thattzr(IJ(W;OKN) # #. We assume that
L satisfies the following conditions:

(a) The domain ¢®(L) is dense in S;

(b) The range 7£kL) is closed in S;

(¢) The null space for L has dimension p <o, and the null
space for the adjoint operator L* has dimension g < .

When these conditions are satisfied, there exist operators H, P, and
Q with convenient properties (see Theorem 2.4). The operator H is a
continuous right inverse for L, while the operators P and Q are pro-
Jection operators which project into,%?(I#) and (L), respectively.
These three operators depend only on the linear operator L and are in-
dependent of the operator N.

Using these three operators, we obtain the exigtence of at least
one solution %eS to Equation (1.1) provided a certain set of inequali-

ties are satisfied and provided a particular finite system of equations



in finitely many unknowns is solvable (see Theorem 2.7). At the same
time we obtain estimates on the norm of such a solution Q. Ifp 2 g,
then the finite system of equations is a system having more unknowns
than equations or the same number. For this case we present two
existence theorems for Equation (1.1) (see Theorems2. 9 and 2.10).

In Chapter 3 we introduce the notion of a differential operator
L in the real Hilbert space S = Lysla,b] and summarize some of the
familiar properties of these operators. In particular, we show that
each differential operator in S is a closed linear operator satisfy-
ing the above conditions (a), (b), and (c). TFor a given differential
operator L we determine its adjoint L* using classical methods and
congtruct a continuous right inverse H using the results of Chapter
2. The operator H is represented as an integral operator.

- The results of Chapters 2 and 3 are combined in Chapter k4 to
yield existence theorems for nonlinear ordinary differential equations
of the form Ix = Nx (see Theorems 4.1 and L.2). As a special case
we examine self-adjoint differential operators L, showing that our
exigtence theory reduces to the Cegari theory when L is a self-adjoint
differential operator.

In Chapter 5 we assume that there exists an exact solution ¥ to
the ordinary differential equation Ix = Nx, and then show that all
the hypotheses of our existence theorems are satisfied. It follows

that % is one of the solutions guaranteed by our existence theorems.



As an application of our theory we study in Chapter 6 the non-

linear boundary value problem

x" +x+ax® = Bt, 0<t <o,

where O and B are real constants. The linear part L of this equation
is a non-self-adjoint differential operator with p > g (p =1, g =0).
We show that this equation has a solution provided the constants o, B
satisfy the conditions la[il, |B|§ .00, and we obtain estimates on

the norm of such a solution.



CHAPTER 2

A GENERAL THEORY FOR THE EQUATION Ix = Nx

2.1 THE RIGHT INVERSE OPERATOR H

In this chapter we study the functional equation ILx = Nx where L
and N are operators defined in a real Hilbert space S. The sgymbols
ﬂO{&J and :f%IQ will denote the domain and range, respectively, of
any operator L defined in S. In case L is a linear operator, the
symbol 71(L) will denote the null space or kernel of L. Most of the

linear operators we shall study will be closed operators.

Definition 2.1 An operator L is closed if the relations xne,D/(L),

x, > x, and Ixp > y imply that xe¢O{L) and ILx = y.

Thisg definition is equivalent to the statement that the graph of L ig
a closed sgubset of the Hilbert space S&S. If Lo is a linear operator
in S, then the adjoint operator I* is defined iff p&{L) is dense in S.
When L#* ig defined, it ig a closed operator whether L is closed or not.
If I is a closed linear operator with /gfi) dense in S, then.ﬁ%l#) is
also dense in S and I#* = L. In the next chapter we shall show that
all ordinary differential operators are closed linear operators with
dense domains.

Let S be a real Hilbert space with inner product (x,y) and norm

HX”3 and let L be a closed linear operator in S with the following



properties:
/
(Ia) The domain X'(L) is dense in S,
(Ib) The range 7f/(L) is closed in S,

(Ic) The null spaces /(L) and //(I*) are finite-dimensional
linear gubspaces in S.

Choose elements ¢i,..., ép in6x¢fL) to form an orthonormal base for
)Z(L), and choose elements Wy,..., Wy inﬂf(L%) to form an orthonormal

base for /{(I*). Then
p = dim (L), ¢ = aim/Z(1*). (2.1)
Iet‘ZKIJl'denote the orthogonal complement of )Z(L) in 8, i.e.,
Q(L)‘L = {xeS|(x,4;) = Ofori = 1,...,p).

We introduce a new linear operator L; by taking the restriction of L

to the linear subspace XT{IJ(]NKL)l:

Ly = Llf@/(L)(VL(L)*L : (2.2)

lemma 2.1 The linear operator Lj is 1-1 and its range is precisely

the range of L.

Proof. First, suppose xe,O/(Ll) and Lix = 0. Then xe ﬁ{L)ﬂmL)L
and Ix = 0, so xeﬁ'(L)(-Y/Z(L)J'° Hence, x = O and it follows that Lj

is 1-1L.



Next, we note that %(Ll)c_: %(L) Take ye€ /g(L) Then there

exists XGIOJ(L) such that Ix = y. Iet

i=1

We see that ze,ﬁ{L)ﬂ AL and Iy z = Iz = Ix = y. Thus, ye€ %(Ll)
and A1) S H1a).

Q.E.D.

Definition 2.2 We define a linear operator H in S by

H = Lo = [LIML)Q%(L)J‘]"&

Theorem 2.1 The linear operator H has the following properties:

(a) The domain of H is g(L) and the range of H is

PUCHI Y1690

(b) H is a 1-1 continuous linear operator.

y for all ye%(L).

D
X -Z(x,gzﬁi)géi for all xe,O/(L).
i=1

(¢) IHy

1]

() HIx

il

Proof. (a) This follows from the last lemma.
(b) Because Li is 1-1, we get that H is 1-1. Now %(L) and
Z(L)J' are both closed linear subspaces in S, so we can congider them
as Hilbert spaces under the induced inner products. We congider H as
)

a linear operator defined on all of the Hilbert space ’/if(L) and having

values in the Hilbert space %(L)'L. Take x,€ %(L), xe7€(L), and



ye)Q(L)l with x, » x and Hxy » y. Assert that xeyékL) and Hx = y.

Let y, = Hx,. Then yneﬂ@éL)(w7Z(L)L and

Ly, = Liyn = LlHXn = Xno

S10]

YHGaO(L); yn > ¥y, and Ly, =~ x.

Since L is a closed operator, we conclude that yGJT{L) and Ly = x.

Thus, ye/ﬁfL)(}-zxL)l‘and Liy = x. This implies that XE/%kLl) =7%kL)

and

which establishes the assertion. By the Closed Graph Theorem [9, p. 57]
we conclude that H is continuous.

(¢) This follows from the definition of H.

iY
(d) Take xe)SfL) and let y = x -:{: (x’¢i>¢i‘ Then
i=1
ve ML)H%(L)L, so HLiy = y = HLy. Thus,
1Y
Hix = HL (y +Z(x,séi)séi)
i=1
= HLy
= ¥

Q.E.D.
In this theorem we have constructed a continuous right inverse

operator H for the given operator L. This operator will be very im-
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portant in our subsequent work.

2.2 THE PROJECTION OPERATORS P AND Q
Let N be an operator in S withéﬁﬁfi)(lx%N) # é. 1In general, the
operator N will be nonlinear, but later in this chapter we shall assume

certain continuity conditions on N. We want to examine the equation
Ix = Nx, (2.3)

establishing existence theorems for it. We shall introduce two more
operators P and Q which, when utilized with H, will yield an.existence
theory for Equation (2.3).

Let m be an integer with m > q where g = dim?Z(L*). Choose
m

elements wq+l,..., Wy in /011#) such that the elements wi,..., ®

form an orthonormal set in S. Thus, wieﬂﬁflﬁ) for i = 1,...,m and

(wy, wj) = B3y for i,j = 1,...,m. (2.4)

Clearly

;?Klﬁ) S < Wiyeee, Wy >

where the bracket symbol is used to denote the linear subspace spanned

by ®Wiye0.; Wy. We need a lemma.

Lemma 2.2 %(L) = 72(L*)'L ana Gt - 7](1).
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Proof. First, take ye /L)(L) Then there exists erO{L) such that
Ix = y. For each z€ %(L*) we have
(y,2z) = (Ix,z) = (x,I¥z) = O,
or ye 7L(L*)'L. Thus, F(L) S 7(1#)E.
Next, we take ye ﬁ(L*)'L Then (y,z) = O for all ze/)Z(L*) Be-
cause Z(L) is closed, we can write
y = y1 tye
where ylG%(L) and yo is orthogonal toﬁ(L), i.e., (Ix,ys) = 0 =
(x,0) for all xe ;&L) From the definition of L¥* we see that yge,dL*)

and I*ys = 0. Hence, yge%(L*) and (y,ys) = 0. But

2
Iyl = (yayey) = - (yoy1) = O

NS ) s .L - ’
0. Thus, y = y1€ &,(L) and /[(L*) g:f(L). This proves that

or yo

y A

eyt '
(I*)”, and from this we get that

2wt < ol o e,

1]

Q.E.D.
From this lemma we note that the elements Og+1s »++ Uy belong to

ﬁ (L), and hence, we can form the elements Ha)q+_l,...,1-lasfn. Clearly
Hoog eﬁ/(L)m ?Z«(L)"L for i = g+l,...,m. Let Sy be the linear subspace
in S spanned by the elements 551,...,55.9, which were chosen to form an

orthonormal base for @L), and by the elements Hodyip,« .. ,Hipy:

8o = < PrseeesPprHOgr1se e HY> (2.5)

We claim these elements are linearly independent. Suppose



m

b
}: bs ¢i + }Z 4 Hwi = 0.
i=1

i=g+1

. 4
Since Hwg eﬁ%KL) for i = g+l,...,m, we have (éj,Hwi) =0 for J=1,.e4,p

and 1 = g+l,...,m. Thus, b. =0 for j=1,...,p and

i= q+l

But H is 1-1, so :{:Ciwi =0and ¢4 = 0 for i = g+1,...,m. This es-
i=q+1

tablishes the independence. We shall assume throughout the rest of

this chapter that S, is a subset of¢ﬁ(N).

Lemma 2.3 The linear subspace S, has dimension p+m-q, S5 is a subset
ofﬂ@{ldfwﬂﬁ{ﬁ), and the elements él,...,ép,qu+l,...,me form a base
for Sy

The proof of the lemma is clear. We are now ready to define the

operators P and Q.

Definition 2.3 The operator P: S + S ig defined by

m

Px = j{:(x,wi)wi for all xeS.
i=1

The operator Q: S + S is defined by

Y m
Qx = }:(x,éi)éi-+E: (X,I#a&)Hmi for all xeS.

i=1 i=q+1

Clearly P and Q are continuous linear operators in S. The next few



15

theorems will establish their properties.

Theorem 2.2 The operator P is a continuous linear operator in S with
the following properties:

(a) Pwj =y for i =1,...,m.

(b) The range of P is the linear subspace <W1,.s.,0p> which
is a subset of (/’()Y(//L*); the range of the operator I - P i1s a subset of
(L),

(c¢) P” =P.

—
O
~—
av)
b
i

x for all X€ <Wi, e, Wy~

Proof. (a) This follows from (2.4) and the definition of P.
(b) The first part follows from (a). For the second part
take x€S and let y = x - Px. We want to show that ye[/(L) For

1 <J < q we have

3 =0

(r0) = (emg) =) (rop)(ey 0

i=1

or

(c) For xcS we have from (a) that

m
2
Px P E(X,(Dj_)(l)i

i
n[>~7s
¥
e

‘-J-
g
'_l



1h

(d) This istrivial to check using (a).

Q.E.D.

Theorem 2.3 The operator Q is a continuous linear operator in S with
the following properties:

(a) Qéi = éi for i = 1,...,p and QHw; = Ho; for i = g+l,...,m.

(b) The range of Q is the linear subspace Sg which is a subset
ofﬁﬁfi).

(c) Q" =Q.

(d) Qx = x for all x€S,.

Proof. (a) Since ¢; €/(L) and ® eaiféﬁ), we have

(ﬁéi:L*wj) = (Mi:wj) = 0 for j = l,...,m,
S0
D
Q¢i = j{:(¢i’¢j)¢j +0 = g for 1 = L,ee.,p.
J=1

L
Also, we have Hmiex?fgdfwfﬁﬁL) and LHp; = w; for i =q+l,...,m,

and hence,

(Hmi,éj) = 0 for j = l,eee,p
and
(Hog ,I¥ws) = (LHwi,0j)
= (®,03) for i,j = q+lyes.,m.
Thus,
QHw; = Hog for i = g+l,...,m.
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(b) and (d) follow from (a). To show (c) take xeS. Using

(a) we have m

Q i Gody )by +) (e To Jny

1=g3+1

O
>
1l

i (xs8, )85 +>m: (x, Loy JHog
i=1

i=qg+1

Qx.
Q.E.D.

Note that P and Q are projection operators. The operator P is
an orthogonal projection. In genersl, the operator Q is not an ortho-
gonal projection. The next theorem relates the four operators L, H,

P, and Q.

Theorem 2.4 The following properties are valid:

(a) H(I - P)IX = (I - Q)x for all x€¢§{L).

(b) I1H(I - P)x

1l

(I -~ P)x for all xeS.
(¢) IQx = PIx for all xefﬁ(L).

(a) QH(I - P)x = O for all xeS.

Proof. The proof of (b) is clear since I - P has its range in ZQ(L)
and H is a right inverse for L. To show (a) and (c), take xea@(L).

Then
m

(I -P)Ix = Ix -) (Ix,w)w;
i=1
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Ix - ;ﬁ x,Lﬁ»
va——

m
i=1
m
§: (x, L¥w; Jos ,

and hence, by Theorem 2.1 (d) we have

H(I - P)Ix = HIx -Z (x, L*wg )Hog

]
=

§
O
N
<

Also, we have

i
.r\/jg
¥
iy
£
g

i=q+1
and
m
Plx = Z(wa)w
i=1
m
=) (x, I*w Joog
i=

I
1 1=
N
Re
[
é“
l_.l



L7

Finally, for each x€S we have

m
QH(I - P)x = i(H(I - P)x,$; )P4 +>: (H(T - P)x, I¥w; )Hao;
i:l i=q+_l
m
= ;Z (IH(I - P)x,w; )Ho;
i=q+L
m
= }: (X-Pxﬁ%)ﬂmi
1=q+L
where
m
(X-PX,(Di) = (Xsa)j_> ‘Z(X:wj>(ijwi)
J=1
= 0 for i = gq+l,...,m.
Thus,
QH(I - P)x = O.

Q.E.D.
The properties listed in the last theorem are analogous to the
properties satisfied by Cesari's operators in [3]. We shall use these
properties to develop an existence theory for Equation (2.3):
Ix = Nx.
Suppose there exists an element xe,ﬁ(L)(wﬂﬁ{N) with Ix = Nx.

Using part (a) of the last theorem, we have

H(I - P)Nx H(T - P)Ix
= X - QX.

Thus, there exists an element x*e€S, such that



18

Qx x*
(2.6)

x* + H(I - P)Nx.

»
I

Iet us try to reverse this argument. Take x*¥€Sy and suppose

tmmeemgmzmzﬂN)mmhtmm

x = x* + H(I - P)Nx. (2.7)

}

Clearly xe/t (L). By part (d) of the last theorem we have Qx = Qx¥

or
Qx = x¥*, (2.8)
Thus,
x = Qx + H(I - P)Nx
and

Ix

]

IQx + IH(I - P)Nx.
Using parts (b) and (c) of the last theorem, we get

Ix = PLx + Nx - PNx
or

Ix - Nx = P(Ix-Nx). (2.9)
Therefore, x is a solution of Equation (2.5); provided

P(Ix-Nx) = O. (2.10)
We have shown that if x€95{N) is a solution of Equation (2.7)

corresponding to x*eSy and if x is also a solution of Equation (2.10),
then x is a solution of the original Equation (2.3). Equation (2.7)

will be called the auxiliary equation.
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In the next section we shall introduce sufficient conditions
for the existence of a unique solution x to the auxiliary Equation
(2.7) corresponding to each x* belonging to a subset V of S5. In
the last gection of this chapter we will give sufficient conditions
that there exist x*€V, such that the corresponding element x also
gsatisfies Equation (2.10), and hence, yields a solution to the

original Equation (2.3).

2.3 SOLVING THE AUXILIARY EQUATION
Let S' be a linear subspace in S and let p be a seminorm defined
in S'. In most applications p is actually a norm on S'. We assume
the following condition i1s satisfied:
(ITa) The linear subspace yOfL) is a subget of S'.
In our applications S is the Hilbert space of square-integrable func-
tions f(t) on a finite interval [a,b], L is a differential operator
in S whose domaian(L) consists of functions which are at least con-
tinuous, and S' is the set of functions in S which are bounded almost
everywhere; for this case condition (ITa) will certainly be satisfied.
Note that
5,C A1) C s
We assume that the following condition is satisfied:
(IIb) There exist constants‘%zz 0 and?@’ > 0 such that
l&(x - B)x]l < Axl
for all xeS. (2.11)

S(B(T - P)x) <Plx
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Choose an element x,€Sy. Noting that xoejf{Lﬂrlxﬁ%N), we let

7 = H(I - P)Nx,. (2.12)
Choose constants e and e' such that

7l < e, u(y) <e'. (2.13)
Let ¢, d, r, and Ry be real numbers with 0 <c <d and 0 < r < Rg.

We define sets V and go in S by

Vo= {xeSolllx-x0]l < ¢, plx-xp) < r) (2.14)
and

8o = (xes'|x-xoll < 4, nlx-x0) < Ro). (2.15)

Clearly xoevg;;éo, 8o these two gets are nonempty. For each x*¥eV we
define
8(x¥) = (xeS'|Qx = x*, |lx-xoll <4, u(x-x) < Rol). (2.16)
Clearly x*eS(x*), so each of the sets S(x*) is nonempty. Note that
x* € S(x*)glg% for all x*eV.
Assume the following condition is satisfied:

(IIc) The set Sg is a subset ofnng), and there exists a
constant £ > O such that

[Nx-Ny|| < £l|x-y|| for all x,7€80.  (2.17)

This 1s the continuity condition on N which we mentioned earlier.

Definition 2.4 The operator T : é@{N) -+ 5 1s defined by

Tx = Qx + H(I - P)Nx for all x»e%r).
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Observe that TXGZY(L) for each xegﬁzN), and hence,
T :J(/DT)+S'-

For each x*cV let T(x*) denote the restriction of T to S(x*):

T(x*) = T|s(x*). (2.18)
Then for each x*eV we have T(x*) : S(x*) » 8' with
T(x*)°x = Qx + H(I - P)Nx
or
T(x*)ex = x* + H(I - P)Nx for all xeS{x*).
(2.19)
Theorem 2.5 If conditions (IIabe) are satisfied and if
-%g <1, cte < (1—%z)d, r+e' < Roaéjﬂd, (2.20)

then for each x*cV the operator T(x*) is a contraction and maps S(x*)

into S(x*).

Proof. Fix an element x*eV. Take xeS(x*) and let y = T(x¥).x. We

want to show that ycS(x*). Now

y = x*¥ + H(I - P)Nx,
so yeS' and
Qy = Qx* + QH(I - P)Nx
= Qx*
= x*,

Also, we have

ly=xoll = [lx* + B(I - P)Nx - xo
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= HX*-XO + H(I - P)Nx - H(I - P)Nx, + 7|

b Bll-tino]| + e

S c
< o+ Bl + e
< ¢ +;££d + e
< 4
and
w(y-x5) = w(x¥-x, + H(I - P)Nx - H(I - P)Nx, + 7)
< x| ¢ e
< r *-zg'ﬂd +e'
< RO'
Thus, yeS(x*) and T(x*) : 8S(x*) » s(x*). For x1, x5 € S(x*) we have

IT(x*) x1 - T(x*) x5 |JH(I - P)Nxy - H(I - P)Nxg
By - e

Bilxs - xal.

IN

IN

Hence, T(x*) is a contraction.
Q.E.D.

We assume that one more condition is satisfied:

(IId) For each x*eV the set S(x*) is closed in S.

Theorem 2.6 If conditions (IIabed) are satisfied and if relations
(2.20) are valid, then for each x*eV there exists a unique element
xeS(x¥*) which is a solution to the auxiliary Equation (2.7) correspond-

ing to x*:
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x = x* + H(I - P)Nx.
Furthermore, x€ jﬁlﬂ{)ong), Qx = x*, and
Ix - Nx = P(Lx-Nx).

Also, the solutions x vary continuously with the x*:

eyl < (1£8) Mty (2.21)

Proof. The first part of the theorem follows from the .Banach Fixed
Point Theorem applied to the contraction T(x*) in the complete metric
space S{x¥*). All the other parts of the theorem have been shown ex-
cept the continuity (2.21). Take x*eV and y*eV, and let xeS(x*) and

yeS(y¥*) be the elements with

x = x*¥ + H(I - P)Nx
and
y = y* + H(I - P)Ny.
Then
x=yll < llxx-y*|| + [|B(T - P)(wx-1y)]|
< [ty +Aalleay]
or

(1-20)[x-yll < [sceyt].
Q.E.D.

This last theorem guarantees that the auxiliary Equation (2.7)
can be solved for each x*e¢V. In fact, it permits us to set up a cor=-
respondence between each x*eV and the solution xeS(x*) of the auxiliary

equation.
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Definition 2.5 Let conditions (IIabcd) be satisfied and let relations

(2.20) be valid. The continuous operator &L: V oé“/(L)ﬁgo is de-
fined by (x*) = x for x¥eV where x is the unique element in S(x*)
which is a solution to the auxiliary Equation (2.7) corresponding
to x*.

Note that for each x*¢V we have

(x*) e VG‘J(L)

and

Hence, the expression P(Ide*-Nin*) defines an operator mapping V into
the linear subspace < Wi,..s,0p>- The next theorem is really a corollary

of Theorem 2.6.

Theorem 2.7 Let conditions (IIabcd) be satisfied and let relations
(2.20) ve valid. If there exists an element x*eV such that
P(LIx*-N{x*) = 0, (2.22)
then the element x = Q’(x*) is a solution of the original Equation (2.3),
Qx = x*, and
lx=xoll < d5 1(x-%0) < Roe (2.23)

In Theorem 2.7 the problem of solving the original Equation (2.3)
has been reduced to the problem of solving Equation (2.22). This is
guite a simplification since Equation (2.22) is really a system of m
equations in p+m-q unknowns. Equation (2.22) is called the bifurca-

tion equation or the determining equation. We examine it in more de-
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tail in the next section.

2.4 SOLVING THE BIFURCATION EQUATION

In this section we introduce sufficient conditions for the exist-
ence of a solution x*eV to the bifurcation Equation (2.22). We begin
by writing Equation (2.22) in a simpler form and showing that it can

be defined by means of a continuous operator.

Definition 2.6 The operator ¥ /?/(L)ﬂﬁ(N) > <1, ...,0> is defined

by
\x = P(Lx-Nx) for all xe J(L)[ JJ(N).
Note that if conditions (IIac) are satisfied, then the sets V and
dzT{L)(WEO are both subsets of‘w@?l&fwfng), and hence, we can form the

operatorsSUlV and$U|¢0?IJ(\§o.

Lemma 2.4 Let conditions (IIac) be satisfied. Then.&lis a continuous

i~
operator when restricted to the set A??L)(]So-

Proof. Take x,yetgfL)(\SO. Then

Fx-Yg

1l
g
£
S

§
o
=
A
5
S

1]
=
3
s
&
I—J-
A5
i
3
g
i
B

SO

bl < ) 1oy, | +) | ety )|
i=1 i=1
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<U) el +me ey

i=qg+l

Q-E.Du
Throughout the remainder of this section we assume that condi=-
tions (IIabed) are satisfied and relations (2.20) are valid. Thus,

the continuous operators Qﬁ,&ulx7kL)()§o, andgylV exist with

A ‘ ~
V> ﬂL)ﬂso—f; W1y e 0>
and

y LN

7 @l""(bm.>.

Note that
sU_ZZx* = P(LIQ'X* - Ngx*) for all x*eV. (2.24)

Therefore, the continuous operator Wi maps the "ball” V, which is a
subset of the p+tm-q. dimensional Euclidean space S5, into the m dimen-
sional Euclidean space <Wi,...,d,”. The bifurcation Equation (2.22)

can be rewritten as

y/Q?x* = 0.

According to Theorem 2.7 if O belongs to the range of the operator VUQf,

then there exists a solution x to the original Eguation (2.5) with
lx-xo[} < d, u(x-%5) < Roe
In other words, if we can establish sufficient conditions for O to

belong to the range of the operator@&&i then we will obtain an exist-

ence theory for the equation Ix = Nx.
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The operator'VQQ?is a difficult operator to work with since &7
is defined using the Banach Fixed Point Theorem, i.e., Qris defined
by an iteration process. On the other hand, the continuous operator
¢4V'is an operator which is easily obtained. These two operators can

be compared.

Theorem 2.8 ILet conditions (IIabcd) be satisfied and let relations

(2.20) be valid. Then
HF&ZX*-%X*H < Cézd+e)z for all x*eV. (2.25)

Proof. Take x*eV and let x =SZIX*. Then xeS(x*), Qx = x* = Qx*, and

PIx IAx = IQx*

I

= P-L.X:*J

SO

L v - s

P(Ix-Nx) - P(Ix*-Nx*)

P(Nx*-Nx).

By Bessel's Inequality we have

| Yo

2 e
Now x*evg;féo and xégo since ;Z maps V into /Xéorwgo, and hence,

ook - St < allxeex

But
x - x¥ = H(I - P)Nx

H(I - P)Nx - H(I - P)Nx, + 7,

]
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SO
I e - ol <5 [l + o]
< (hiae)s.
Q.E.D.
Using this theorem we shall determine conditions on ¥4V'which will
guarantee that O belongs to the range of the operator y/Qf.
Apply the Gram-Schmidt process to the linearly independent elements

Hog+1, ... ,H0y to obtain orthonormal elements nq+l""’nm' Let

m
Tli = ZainLDj fOI‘ i = q+l,§..,mo (2»26)
J=q+l
L
Then each 7; is an element in A1) mﬁ(L) s
So = <Y$l)°";55p)nq+l:-°-:nm>:
and each xeS, can be written as

P m

x = Z bifi +Z eini (2.27)

i=1 i=q+1

where by = (x,8;), ¢; = (x,13), and

P m

el = ) b,2+) 2. (2.28)
i i *

i=1 i=qt+l

Iet M = ptm-q; let EM be a copy of Euclidean M-space where we represent
M

each point E€E as an M-tuple:

§ = (bl,.-o)bp,Cq-{—l’.o.,Cm);

also, let E" be a copy of Euclidean m-space where we represent each
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point ueEm as an m-tuple:

u = (ul,...,um).
We define two operators I'y : £ So and Ty @ <Wi,...,n > > E*
b
y o m
Fa(byyeessbpyCqelseersCn) =,§ bsps +Z Ciny (2.29)
4
i= i=g+1
and

m
I's j;1uf%> = (Uiyees,up) . (2.30)
i=1

Clearly 'y and I's are continuous linear operators with HFi(E)H =
el  for all EeE" and Iro(x)]] = ||lx|| for all xe<wy,...,wp>. Thus, these

two maps are isomorphisms. ILet

P m
X, = Zboigéi +ZcOini € S, (2.31)
i=1 i=q+1l
and then we define
M
go = (bol""’bopicoq+l""’c0m) [ E . (2v52)

Clearly I'1(&g) = xg-

Lemma 2.5 Let conditions (IIabed) be satisfied and let relations
(2.20) be valid. Then there exists a number € > O such that the set
(& e BYJe-t ]l <e)

is mapped by I'; into the set V.
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Proof. Choose a constant My > O such that u(éi) <My for i =1,...,p

and p(ni) <My for i = g+l,...,m. Let

r }.

min { c,
MM1

o)
il

°

If & = (byiyees,bp,Cqtlseee,cm) € B with le-e.ll < e, then we

have T'1(&) € Sy with

Ire(e) = x| = [Ira(e-eo)ll = [e-tol <c
and
m
U-(Fl<§)“‘xo) = H(i(bi‘boi>¢j_ +Z<ci“coi)ni
i=1 i=qg+1
P m
< E:Ibi-bOi[Ml +§; lci-COilMl
i=1 i=q+1
< Mfle-t |
S r.

Thus, I'1(&)eV.
Q.E.D.

Remark. In applications the numbers ¢ and r are often related in such
a way that xeS,, HXH < c implies w(x) < r. For this case we have
vV = [xeSOIHXuxOH <c},
and in the last lemma we can take € = c.
Choose a number € > O such that the set

Y = (e [e-Eoll <€) (2.33)

is mapped by I7 into the set V. We have
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YTy s iy — L2y

and

TUQ-435—~€> v ———35;9 dgkL)rjgo‘"—EE:—€><le,...ﬂq&>““jl%-f> E™,

m
Definition 2.7 The operator V: EM -+ E is defined by

v(e) = TIs y/rl(g) for all geEM.

The operator ¢|Qf is a continuous mapping from the ball 2/1 which
ig a subset of the Euclidean space EM, into the Euclidean space E",
If we write out ¥ in coordinate form,
¥o= (bayeeesly)s
then we have
£ = (bl,...,bp,cq+l,...,cm),

}: Dbyt }2 cing,

J=q+1

i

yra(€) PLI'1 (&) - PNM1(§)

]

P c. L) - PNI'; (&
q+l

}: w:> - PN (&)

q+l i=g+1

i

1

“'Z (er(g);wi)wiy
i=1

i= q+l J q+l

or
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r % L

D) bggy ) egngdiey) for im0
\lrfi(bl}'°'}bp)cq+]_1"')Cm) S s=1 i=q+1

E J J=q

| n P m

| J=q+1 j=1 j=q+1

for i = g+l,...,m.

(2.3L4)

The next theorem is an existence theorem for Equation (2.3).

Theorem 2.9 ILet m = 1, let conditions (IIabcd) be satisfied, and let
relations (2.20) be valid. If there exists a number & > O such that

the interval [-5,8] is a subset of W(Qﬁ and if

(htate)s <s, (2.35)
then there exists x*eV such that the element x = g(x*) is a solution of

the original Equation (2.3), Qx = x*, and
lx-%0ll < @, w(x-%0) < Ro-

Proof. Choose éi,ﬁgézpsuch that V(&1) =& and V(Es) = -5. Let

x1¥ = T1(€1) , xz¥ = Ta(ks).

Clearly x1* and xs* are elements of V, and by Theorem 2.8

I SU,\U: x1* - SUXJ.*” <?%

and

Hngxz* - y/xg*u < B,

Thus,



Irs WIri(es) - 8

or

Similarly, we get

Since F,gsUZ Fl(w is

If we set x* = I';(¢&),

Applying Theorem 2.7,

To conclude this

relaxes the condition

53

lfzzyﬁffl(ﬁl) - ng/ T1(&1)]

IV x1* - W x| <3

I V’Z’Fl(él) > 0.

raWgries) <o.

connected, there exists &e?y‘such that
g ri(s) = o.
then x*eV and

(LT x* - N x%) = o.

we obtain the desired result.
Q.E.D.

chapter we give another existence theorem which

m=1l. Let conditions (IIabecd) be satisfied and

let relations (2.20) be valid. In addition we assume that the follow-

ing conditions are satisfied:

(IITa) p > q,

(I11b) (g

(IIIc) The
are

(ITId) The

)=O:

first order partial derivatives of V exist and
continuous onabg

Jacobian matrix for ¥ has rank m at §5.

The first condition is equivalent to the condition M > m, which means

that ¥ maps from a high dimensional space into a lower dimensional
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space. The second condition says that

P(lxo-Nxg) = O,
which means that x, can be thoughtof as an approximate solution to
the equation Ix = Nx. In applications this suggests how one should
choose x5« The third condition corresponds to putting certain dif-
ferentiability conditions on the operator N. The last condition

guarantees that the range of ¥ covers a neighborhood of the origin

in Em.

Ilemma 2.6 Iet conditions (IIabed) be satisfied, let conditions
(ITIabed) be satisfied, and let relations (2.20) be valid. Then there
exigts a number & > O such that the set

W= (ucE®[lul <o)
is a subset of W(?S, Furthermore, there exists a continuous mapping
A: W -7 such that

V[A(u)] = u for all ueW.

Proof. This follows immediately from the Inverse Function Theorem of
advanced calculus, the proof of which suggests how one can determine
the number 5.

Q.E.D.

Theorem 2.10 Iet conditions (IIabed) be satisfied, let conditions

(IIIabcd) be satisfied, and let relations (2.20) be valid. If & > O

is a number chosen ag in Iemma 2.6 and if
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/
({ea+e)s < 5,
then there exists x*¢V such that the element x =ZZ x* is a solution

of the original Equation (2.%), Qx = x*, and

lx-x0ll < d, w(x-x5) < Ry.

m
Proof. Congider the two continuous maps I: W > E and Fgf/Q’PlA:

W - Em where I(u) = u. Take ueW and let x* = '1A(u). Then x*eV and

e (x#) - 4T AW
g (xx) Y (=)

< (,é,ed+e)z,

Irdg vy Aw) - T(w)|

I

or

“ngliflA(u) - I(w)|| < & for all ueW.
This inequality implies that for each ueaw, the line segment Jjoining
I(u) and FzyjélelA(u) does not contain the origin of Em. By the
Poincaré-Bohl Theorem [7,p.32] we conclude that the local degree of
FQQ/;ZFIA at O relative to W is equal to the local degree of I at O
relative to W:

a(r g rin,w,0) = d(I,W,0).

But 4(I,W,0) = 1, and hence,

a(r¥g rinw,0) £ o.

Therefore, there exists an element ueW such that
rgsugrlz\(u) = 0.

Setting x* = [';A(u) we have x*eV and
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P(L ,Jx* - Nf[x*) = 0.

The proof is completed using Theorem 2.7.
Q.EnD.



CHAPTER 3

DIFFERENTTAL OPERATORS

3.1 THE DEFINITION OF THE DIFFERENTTIAL OPERATOR L

In the last chapter we developed a general theory for solving the
functional equation Ix = Nx in a real Hilbert space S. This theory
was designed for applications to nonlinear differential equations.
We must define the notion of a differential operator in a Hilbert
space and show that these operators have the properties of the operator
L in Chapter 2. This is the purpose of Chapter 3. Our main reference
for this work is Dunford and Schwartz [9, ch.13].

Throughout this chapter we let I denote the finite interval
[a,b] of the real axis. Consider the real Hilbert space S = Lo(I) con-
sisting of all real-valued functions f(t) which are square-integrable

on I. We take the usual inner product and norm in S:
b

(f,g) = ff(t)g(t)dt

and

Il = (£,£) .

Definition 3.1 A formal differential operator of order n on the inter-

val 1 is an expression
n

T Z =1 (t) %E)l

i=0

where the real-valued functions ai(t) belong to Cw(I), and the function

57
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an(t) is not zero at any point of I.

| The Hilbert space S = Lo(I) contains many linear subspaces which
could serve as a domain for a formal differential operator T. Cor-
responding to each such subspace is a different linear operator in S.
The next two definitions give two of these linear subspaces which will

be very important in our work.

Definition 3.2 By HH(I) we denote the linear subspace of S consisting

of all functions f(t) with the following properties: f is continuous

on I, the derivatives f‘,f”,...,f(n”l)

(n-1)

exist and are continuous on I,

(n)eS

and T is absolutely continuous on I with T

Definition 3.3 Let HS'(I) denote the set of all functions in H (T)
each of which vanishes outside some compact subset of the interior of
I. (The compact subset may vary with the function).

Before examining the linear operators which we get by applying T
to the subspaces Hn(I) and HS(I), let us give a well known existence

and uniqueness theorem.

Theorem 3.1 Let T be a formal differential operator of order n on the
interval I, let g be a function in S, let tyel, and let CosCLyeeesCnay

be an arbitrary set of n real numbers. Then there exists a unique

n
function feH (I) such that

(a) T = 29
d 1
(v) @ £(to) = ei fori=0,1,...,n-L.
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Proof. The classgical proofs can be altered to prove this theorem.

See [9,p.1281].

Corcollary 1 If g has k continuous derivatives in I, then f has ntk

continuous derivativesin I and Tf(t) = g(t) for all tel.

Corollary 2 The set of all functions feHn(I) with 7f = O forms an n-
dimensional linear subspace of S.

Now we define the linear operators mentioned above.

Definition 3.4 Iet T be a formal differential operator of order n on

the interval I. The operators TO(T) and T1(T) are defined in S by

1l

(a) daiTo(T)) = HQ(I), To(T)f .Tf for all fegéiTo(T)),
(b) &ZTle(T)) Tf for all fQ/ﬁfwl(T)).

n
H (1), Ta(7)f
The linear operators T_(T) and Ti(r) both have domains which are

dense in S, and hence, both operators have adjoints. Clearly

T, (1) C Tal7), (3.1)

and by the last corollary the null space for Ti(T) has dimension n.
We assert that Ti(r) is a closed operator. To show this we must in-

troduce the notion of the formal adjoint.

Definition 3.5 Let 7 be a formal differential operator of order n on

the interval I. The formal differential operator

n

- ij(t) 3-;) ”

j:
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where

bi(t) = i _(-l>k(]5> <§;) - a, (),
k=J

is called the formal adjoint of T.

Each of the functions bj(t) belongs to C7(I) and by(t) = (-1)"

an(t), g0 7% 1s indeed a formal differential operator. It can be

shown that T = (1%)*.

Theorem 3.2 I1If T is a formal differential operator of order n on

the interval I, then Ti(T) = T (r%)*,

Proof. See |9,p.1294].

The differential operators which we are going to study are ob-
tained from the operator Tl(T) by imposing a set of boundary conditions.
The definition of a boundary value will be given in a modern abstract
form, which permits us to study differential operators using the methods

of functional analysis.

Definition 3.6 Iet T be a formal differential operator of order n on

the interval I. Since Ti(T) is a closed operator by the last theorem,
it is easily seen that its domainf%ﬁh(T)) becomes a Hilbert space

under the inner product:

[£f,8] = (f,g) + (T1(T)f, To(T)E). (3.2)

A boundary value for 7 is a continuous linear functional B on the Hilbert

space ¢5{T1(T)) which vanishes on %ﬁfTo(T)). In addition, if B(f) = O
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)

for each function T in ./ (T:1(7)) which vanishes in a neighborhood of

a, then B is called a boundary value at a. A boundary value at b is

defined similarly. An equation B(f) = O, where B is a boundary value

for 1, is called a boundary condition for T.

This concept of a boundary value can be related to the classical

notion of a boundary value.

Theorem 3.3 Let T be a formal differential operator of order n on

the interval I.

Proof.

(a)

(b)

The space of boundary values for T is a linear space of
dimension 2n.

The functionals

2y = fWay L 1 -0,1,...,0-1, (3.3)
and

B (£f) = £ (b)) , i=0,1,e..,n-1, (3.4)

are boundary values for T at a and b, respectively. They
form a base for the space of boundary values for T.

If B is a boundary value for T, then there exist real
numbers Op,01,««e,0p_ ;) BosP1yee.,Bn-y such that

Neq Ne=q
Be) = ) el +Z 5,51 (2) (5.5)
1=0 i=0

for all fG%O{Tl(T))u Conversely, each expression (3.5)
defines a boundary value for T.

See [9, p.1298 and p.1301].
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With these preliminaries out of the way, we can now introduce the
notion of a differential operator. Let 7 be a formal differential oper-
ator.of order n on the interval I and let Bi(f) =0,1i=1,...,k be a

set of k linearly independent boundary conditions for T (the set may

be vacuous).

Definition 3.7 The linear operator L, which is the restriction of

T1(T) to the linear subspace offﬁle(T)) determined by the boundary con-

ditions Bi(f) =0, 1=1,...,k, 18 called a differential operator of

order n on the interval 1:
L= my(n)] ) (5.6)
where

Xf(L) = {feX/?(Tl(T))[Bi(f) = O fori=1,...,k}. (3.7)
A :

From this definition we observe that A(To(T)) = HO(I) is a subset
of%ﬁfi), and hence,rD(L) is a dense linear subspace in S. Thus, the
differential operator L has an adjoint. In the study of differential
equations the adjoint operator always plays an important role. We

shall show how to determine the adjoint operator L* corresponding to

a differential operator L in the Hilbert space S = Lo(I).

3.2 THE ADJOINT OPERATOR L¥*
Iet T be a formal differential operator of order n on the interval
I and let L be the differential operator obtained from 7 by the imposi-

tion of a set of k linearly independent boundary conditions Bi(f) = 0,
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i=1,...,k. We shall determine the adjoint operator L¥, showing that
I*¥ ig a differential operator obtained from T* by the imposition of a
set of (2n-k) linearly independent boundary conditions. The main ref-
erence for this section is the paper of Schwartz [21].

For each pair of integers £4,j with 0 < £, < n-1 we define func-

43
tions F, (1) on I by
rn-ﬁ-l .
i 1-
-1 <') <§f> : -
2] zz. (& Bgagey (B)s IHE Snel
i=]
Feolr) = (.8)
O ) j+£ > n"l L d

These functions appear in the fundamental formula relating T and 1%,

the well known Green's formula.

n
Lemma 3.1 (Green's formula) If f(t) and g(t) are functions in H (I),

then
(tf,g)-(f,T*g) = }: Fﬁj(T)f(z)(b)g(J)(b)
£,3=0  n- (3.9)
) B Peela).
£,3=0/ )

Proof. See |9,pp.1285-1288].

let F1 and Fo be the nxn square matrices given by

Po= (0] ad Fo o= [E9(0)]). (3.10)

These two matrices are known to be non-singular [9,p.1287]. Using

Theorem 3.5 we write out the boundary values Bi,...,Bx which determine
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L:
(NGO B
J ' :
Bi = Z aijA +ZBiJ‘B(J) ) 1 = 1)ooo,ko (5511)
j:O J=O

Tet B be the kx2n matrix given by

— —_
alo"°al Ne~=1 aloe--sl Ne=1y

B = . . . . (3.12)

| Oko++Ok n-y  Bror Pk ney | -

Because the boundary values Bi,...,B; were assumed to be linearly inde-

pendent, the matrix B has rank k. Consider the system of equations

-2

n-i
Z Qy 3% + Zaijyj = 0, 1= 1,ees,k. (3.13)
J=0 j=0

This is a system of k-equations in the 2n-unknowns Xosee3Xnoqs¥0s0ee,
yn-,+ Since B has rank k, the space of solutions to (3.13) has dimen-
sion 2n-k. let X;, 1 =1,...,2n-k be a set of Z2n-tuples of real num-
bers which form a base for the set of solutions of (3.13). We write

1 101 i .
Xi = (Xo,oon,xnal,yo,voo,yn_l), 1= .l,...,erl-k. (391}"')

Finally, let X be the (on-k)x2n matrix whose rows are the X;. Since

the X; are independent, the matrix X has rank 2n-k. We define a (en-k)

x2n matrix = -
Hor++0 noy  Ploe+ Pl noy
% _ - . N .
s \ ° . . (3.15)
| 9% ko YBn-kn-; BA-ko BA-kn-; |
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by ey
~ . .
s = =) KT
E:O fOI‘ i = 1.,...,21’1—}{

) j=0,1,...,n-1,

-1
* 143

£=0

and let B¥, 1 = 1,...,2n-k be the boundary values for T¥ defined by
i

N=-3 n=-j3
B* = ) o* A +j{15%. 8(3), 1-1,...,200k.
i 1J 1J
J=0 =0 (3.17)
Since
-F; 0
B* = X (3.18)
0 Fp

we conclude that B* has rank 2n-k, and hence, the boundary values Bt,

«oo,B¥ are linearly indepencent.
on -k

Theorem 3.4 The adjoint operator L* is precisely the differential
operator obtained from the formal adjoint 7% by imposing the 2n-k

linearly independent boundary conditions Bi(f) =0, i=1,...,2n-k.

Proof. Let L be the differential operator obtained from 7% by the im-
position of the set of (2n-k) linearly independent boundary conditions

B¥(f) = 0, 1 = 1,...,20k. We shall show that T = L*.

~

(a) Take ge=2%L) and let g¥ = Lg = 1*g. Then for each

fe;@{L) the 2n-tuple
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X = (f(a),f'(a),.a.,f(n“l)(a>,f(b),f'(b),-n-,f<“‘l)(b))

is a solution of the system (5.15), and hence, there exist real num-

bers ci,...,Cpn.k such that

2n-k

that is,

£ =0,1,...,n-1.

Thus, using Green's formula we have

(1f,g)-(f,8%) = (f,g)-(f,7%g)

n-1 2n-k

}: E: za )e yzg( )(b)

£,3=0 i=1

1 2n-k

ZZF (1) esxgld)(a)

£,3=0 i=1

2n=k Ney
e ) er 3
i=1  j=0
2n-k n-1
(3)
+Z cy Oﬁ;j A (g)
i=1 j=0
2n=-k
*
= Z CiBi(g>
1

il

i



by

or
(Lf,g) = (f,g*) for all fegﬁfL).
. . ~ ~
This implies that ge</{L*) and L¥*g = g* = Lg. Therefore, L C I*.

(b) To complete the proof it is sufficient to show that

Xy o

/ / y
A1) C (L), Teke any function g€/5(L*). Now TO(T)Q;,L, so by

—_—

Theorem 5.2 we have

T (r)* = Ta(T¥),

and hence, gGaOle(T*)) = H'(I). Choose functions ci(t), 1= 1,000,

0
on-k in C (I) such that

£ i £ i
Gg )(a) = X, , ci )(b) = y; for £ = 0,1,...,n-1.

Clearly di(t)efﬁfL) for i = 1,...,20n-k. Again using Green's formula

we get

O
It

,(Lci;g>‘(ci:L*g)

(Tciyg)'(oi:T*g)

n-1 Nw=21

= ZFﬁJ(T)yzg(j)(b) —Z FﬁJ(T)X;g(J)(a)
£, 3=0 £,3=0
n=1 Nn=1

= ElﬁuiéJ%g)+E}€3AU)@)
3=0 J=0

= B¥*(g) for 1 = 1,...,2n-k.
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Hence, ge%ﬁ?L)w
Q.E.D.

Iet us consider several examples.

Example 1 ILet I = [0,1], let 7f = f" + f, and let L be the differential
operator obtained from T by imposing the two boundary conditions

J—Bl(f)

Y

| Batt)

Then n = 2, k = 2, ap(t) = 1, a1(t) = 0, and a,(t) = 1. By Definition

il
H
—
(@)
N
1}
O

]
Hy
—
[
~
+
L)
—
—
~
i
(@)

-

3.5 the formal adjoint 7* is given by

*f = ba(t)f" + bi(t)f + b (t)F
where
ba(t) = (-1)° (Das(t) = 1,
ba(t) = (-1)7 (Dault) + (-1)% (Dasls) = o,
bo(t) = (-1)° (Qan(t) = 1,
™ = f" + f.

Thus, T is formally self-adjoint. From (3.8) we have

F, (1) = (-1)°(Qaxlt) + (-1) (Blaslt) = o,
() = (-1 (Daglt) = -1,

RO = (1°(Qeslt) = 1,

Foo(1) = 0,

S0



0 -1
Fl = Fg =
1 0
Now
1 0 0 O
B =
o o0 1 1],
and from this we see that we can take
0O -1 0 O

Therefore, by (3.18) we have

s _ |01 00 o100 1000
0 0-1 1] |-1 0 0 O o 0 1 1f,
0 0 0-1
0 0 1 0]
or
Bi(f) = f£(0) = 0
B*(r) = f£(1) + £'(1) = oO.
2

Hence, L and L¥ are determined from 7 = 1% by the same set of boundary
conditions, that is, L = I*¥. This self-adjoint differential operator

was studied by Cesari in [3].

Example 2 Let I = [O,2r], let 7f = f" + f, and let L be the differen-

tial operator obtained from T by imposing the single boundary condition

In this example n = 2 and k = 1. Ag in the last example the formal ad-

Joint is given by

T*F = f" + f,
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and also

Now

w
1
]_J
o
o
2y
a

SO we can take

0-1 0 0
X = -1 0|
0 0 1|
Thus,
0-1 0 0 01 0 0 1 0 0 O
B¥ =|{0 0 -1 O -1 0 0 0f =10 0 0 1
0 0 0 1 0 0 0-1 0O 0 1L 0
0 0 1
2
or
[ B¥(£) = £(0) = O
Z BZ(f) = f'(ex) = O
| BX(f) = f(en) = O.

The adjoint operator L¥ is obtained from T = 7% by imposing the three
boundary conditions Bi(f) =0, 1 =1,2,5. We use the differential
operator L of this example in Chapter 6.

The next theorem gives a characterization of the self-adjoint dif-

ferential operators.
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Theorem 3.5 Iet T be a formal differential operator of order n on
the interval I and let L be the differential operator obtained from
7 by the imposition of a set of k linearly independent boundary con-
ditions B;(f) = 0, 1 = 1,...,k. The operator L is self-adjoint,
L = L¥*, iff the following conditions are satisfied:

(a) k = n;

(b) T = 1%, i.e., T is formally self-adjoint;

(¢c) The matrices B and B¥ are row equivalent.

Proof. Suppose L is self-adjoint. Consider the two systems of equa-

tions
n=-1 n-1
* = i =
(%) E: Oijxj~+E: Bijyj 0, i=1,...,k
3=0 5=
and
n=1 n=-1
*% + * = § = - ke
(**) O?j X Bij Vs 0, i=1,...,2n-k;
J:O j=O

the coefficients are just the elements in the matrices B and B¥.
(a) Iet W, denote the solution space of (¥) and let W, denote

the solution space of (¥*¥). We know that
dim Wy = ©2n-k and dim Wo = 2n - (2n-k) = k.

ASS@I‘t wl = w2, Take a 2H=‘tuple (XO’ e s ’Xn_l,yo, e o o ,:)fn_l)EWld Then
we can choose a function f£(t) in C(I) such that

) f(j)(b> = Y

f(j)(a) - x. ;

J fOI‘ j = O’l)'oa’n‘“,la

Thus,
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Ne=1 n-1
p(e) =) aee) ) bV
3=0 3=0

= O fOI‘]‘.:l,...,k,

or fe,&fi) = ﬂffL*)w Hence,

n-1 n-1
- - * s B
B?(f) = 0 = E; O?j e -+}:Bij vy 1= 1,...,20-Kk,
3=0 3=0

or (xo,...,xn_l,yo,...,yn_l)eW2 and ng;_W2. Similarly we can show
that WZQ;_Wl. We conclude that Wy = Wo and 2n-k = kX or k = n.

(b) We have

N=1

Zai(t) @%—)

1=

i

=)
1]

and

._1
*
I
>~
o’
|—l-
N
o+
p
o IQ
+
~—

i=0

1l

We must show that a;(t) = by(t) for i = 0,1,...,n-1. Fix the integer
i with 0 <1 < n and take any to with a < t5 <b. Choose a function
4(t) in C7(I) which is identically 1 in a neighborhood of t, and is

identically zero in neighborhoods of a and b. Consider the function

£(t) = -125-'- #(t) (t—to)i on I.

Clearly feaﬁ(L)==f%E#), so Lf

]

I*f or 1f = 7%f. But in a neighbor-
hood of t, we have

L
il

I

£(t) (t-to>i,

and hence,
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Tf(to) = ailto) = T*(ts) = bilte).

Thus, ai(t) = bi(t) for a <t < b, which shows that a;(t) = by (t)
on I. Since i was arbitrary,we have 7 = 7%,

(c) We showed that the matrices B and B¥ were row equivalent
in part (a) of the proof.

The reverse implication is trivial to prove.

Q.E.D.

3.3 AN INTEGRAL REPRESENTATION FOR THE OPERATOR H

To conclude this chapter we show that each differential operator
L in the real Hilbert space S = Lo(I) is a closed linear operator and
satisfies conditions (Iabc) of Chapter 2. This establishes the exist-
ence of the right inverse operator H, which can be represented as an

integral operator in S = Lo(I).
n

i
Iet T =:{1 ai(t) <§é> be a formal differential operator of order
i=0

n on the interval I and let L be the differential operator in S = LQ(I)
obtained from T by the imposition of a set of k linearly independent
boundary conditions Bi(f) =0, 1 =1,...,k. We assert that L is a

closed operator.

Theorem 3.6 The differential operator L is a closed linear operator

in S.
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Proof. Take a sequence of functions fie/afi) with fi »f and Ifj~+g.
We must show that feﬂﬁ{i) and Lf = g. Since LC;;Tl(T), we have
fieﬂéffl(T))'and If; = Ta(r)fy. But Ti(r) is a closed operator by
Theorem 3.2, S0 fG/O(Tl(T)) and T1(7)f = g. Now in the Hilbert

space Aifil(T)) we have

[£;-f,f5-f) l£5-21% + [To(7)E5-Ta (7)) 2

2 2
leg-£l + llves-gll™,
and hence, the functions f3 converge to the function f in the Hilbert

space /del(T)). Since Bj(fi) = O, by the continuity of Bj on

%7(T1(T)) we get

B.(f) = 1lim B

3 : .(fi) = 0

J

for j = l,...,k. Thus, feﬁL) and Lf = T1(7)f = g.
Q.E.D.

We observed earlier that the domairx%ﬂi& is dense in S. Since

To(t) CLCTi(r) (3.19)

and

7 (%) € ¢ C Ty (%), (3.20)

from Corollary 2 of Theorem 3.1 it follows that the null spaces 4Z(L)
and QKL*) are finite-dimensional linear subspaces in S of dimension
< n. We assert that the range of L is closed in S.

Choose functions @i1,...,5, in 40651(7)) to form an orthonormal

base for the null space;Q(Tl(T)). With no loss of generality we can
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assume that the ¢i are chosen so that the functions él,...,ép are
inﬁﬁfL) and form a base for the null space”/(L). Clearly each ¢;

belongs to Cw(I). Consider the nxn matrix

o(t) =| . . (3.21)

g0y L gl |
It is well known that this matrix is non-singular for each tel
[6,ch.3]. If we compute ot by forming the adJjoint matrix of &, .then
we find that the element in the j-th row, n-th column of ® % is just
Wi(t)
detd®(t)
where Wj(t) is the determinant of the matrix obtained from ®(t) by re-

placing the j-th column by (O,e..,0,1). Thus,

det@(t) ) (5.22)

n
}: (1 WJ(t) 0 for i = 0,1,.40,n-2
3=1 n-1.

1l for i

We define a function G(t,s) on the square IxI by

ps5(t) Wy(s)

G(t,s) = - )detQ(s) a<t, s <b. (3.23)

j=1

Clearly G(t,s) is continuous on IxI. This function is freguently
used in the study of differential equations, e.g., see [6,pp.87-88].

We examine its properties in the next two lemmas.
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Temma 3.2 If u(t) is an absolutely continuous function on I and if
u'(t) = g(t) a.e. where g(t) is a continuous function on I, then

ueCHI) and u'(t) = g(t) for all tel.

Proof. We have
1 t
u(t) = u(a) +b/;u'(s)ds = u(a) +k/;g(s)ds.

The fundamental theorem of calculus tells us that u(t) is differentiable

on I and u'(t) = g(t) for all tel.
Q.E.D.

Lemma 3.3 ILet f(t) be any function in S = Lo(I) and let

t.
u(t) = L/\G(t,s)f(s)ds for tel.

a
Then the function u(t) belongs th&f%l(T)) and

Ti(t)u = f.

Proof. By definition we have
C ¢ [ wy(s)
= . J s
u(t) = Zl ¢J(t)u[ Ln(S) det@(s)} £s)ds
J=

for a <t <b. This representation shows that u(t) is continuous on

I and, in fact, is absolutely continuous on I. Using (3.22) we get

u'(t) Z B (% >faZ§:t¢ Z det@(’z)
= Z t>f [ detcb( )}

H

(s)ds a.e..
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By Lemma 3.2 we conclude that u'(t) exists everywhere on I and is a
continuous function on I. By repeated use of (3.22) and Lemma 3.2
we conclude that the derivatives u',u",...,u(n'l) exist and are con-

tinuous on I with

n . t
- Z¢§l)(t)f { fisle) } f(s)ds, a <t <b,
P an(s)detd(s)

a

(n-1)
for i = 0,1,...,n-1. Thus, u is absolutely continuous on I, and

again by (3.22) we have

(n) Wj(t)
Z 2 f apdetd e + Z é detcb(t)
= J=l

C ) [ [ J ()
= }Z éj (t)\Z{n (5 ) 3050 (s) f(s)ds + %) a.e. .

J=1
Hence, u(n)eS and we have shown that u(t) belongs to /(Ti(T)).

Finally we note that

n = s ™) ) sy n )
i=0

n n ( |

S fe) +) ay()) 4 J fbn )dew( )] #(e)ds
i=0 J=1
Y o)

£(t) +;Z;T ( )VSJ(t)LZq [;n(s)detQ(s)] (e)a
= f .,

Q.E.D.
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Theorem 3.7 The range of the differential operator L is closed in

S.

Proof. Iet:ﬁﬁt) be a sequence of functions in Z?(L), let f(t)eS, and

let f; + f. We must show that fe7(L). ILet

t
uy (£) = G(t,s)fj(s)ds for tel
J
and
t
u(t) = \/ﬁ G(t,s)f(s)ds for tel.

a
By Lemma 3.5 the functions ui(t), i=1,2,... and the function u(t)
belong to/ﬁ(%l(T)) and Ti(7)uy = f5, Ti(t)u = f. Assert uj - u.

Choose Mi > O such that |G(t,s)| <M; on th square IxI. Then

t
lug (£)-u(t)] sf |G(t,s)|[£;(s)-f(s)]ds
a b '
< Mlh/ﬁl'lfi(s)—f(s)}ds

< My (b-a)1/2 £:-ll,
and hence,

2

2
lug-ull® < My~ (b-a)®||£; -£|

Thus, ui€f76T1<T>>, ue JAT1(7)), uy - u, and T1(7)uy » T1(T)u. This
means that the uj converge to u in the Hilbert space J(Ti(r)). By

the continuity of By On«O(Tl(T>) we have

1im Bj(ui) = Bj(u) for j = 1,eee,k.

1>

Now chooge functions vi(t) in/O(L) such that Lvi = fy. Then
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vi-us€,J(T1(7)) and Ti(7)(vi-uy) = 0. Hence, there exist real num-

(1) (1)

bers ¢y ",...,c,) ° such that

vi(t) = j{: cii) ¢£(t) tug(t), 1= 1,200, .

=1

But Bj(vi) =0 for j=1l,...,k, SO

Z Cgi)Bj(é,g) = = Bj,(ui); J=1l,..05k

A=1
or
n
(%) Lin chl) Bj(;éf,) = - By(w), § = 1,....k.
£=1

If we let T be the linear transformation from Euclidean n-space into
Euclidean k-space induced by the matrix with coefficients Bj(f,),

then (*) says that the k-tuple (-Bi(u),...,-Bg(u)) is a limit point of
the range of T. But the range of T is certainly a closed linear sub-
space in BFuclidean k-space, and hence, this k-tuple belongs to the

range of T. Thus, there exist real numbers ci,...,c, such that

n

(*%) ZE:CEBj(éz) = - Bj(u)) J=1l,... k.

£=1
Iet n

) eale) ().

L=1

v(t)

From (¥**) it follows that Vexﬁfi), and also,

Q.E.D.
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We have shown that the differential operator L is a closed linear
operator in the Hilbert space S = Lo(I) and satisfies conditions

(Iabc) of Chapter 2. Therefore, the linear operator

B o= (o, )t

exists and is a continuous right inverse for L. The basic properties

of H are given in Theorem 2.1. We show next that H can be represented

as an integral operator.

S~
Theorem 3.8 Let B be the kx(n-p) matrix

EXTHR Ba(d, ) oo Bald)

Bz(¢p+l) Bo(#

pta

. L] .

. - .

» (3

_Bk(¢p+l) e e e e B(dy)

and let T be the linear transformation from Euclidean (n-p) - space

into Euclidean k-space induced by T:

n n :
Nogryseosen) =( ) Bald e, vons ) B(Byey) -
1=p+3 1=p+y

Then T is 1-1.

Proof. Suppose T(cp+l,...,cn) = 0. Let

f(t) = j{:ci¢i(t) for tel.

i=p+;
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Since the éi are orthonormal, we must have fejZ(L)L. Also, we have

f€M1(T)); T:(1)f = 0, and

n

Bj(f) = Ez ciBj(éi) = 0 for j=1,...,k.
i=p+1
Thus, fe/ﬁfi) and Lf = 0, or fG;?(IJfA]ZKIJL. This implies that f = C

and c¢5 = O for i = ptl,...,n.
Q.E.D.

This theorem has three corollaries which are very useful in es-

tablishing the integral representation for H.

Corollary 1 n-p <k where n is the order of the formal differential
operator T, p is the dimension of the null space ?%CL), and k is the
number of linearly independent boundary conditions defining the dif-

ferential operator L.
A
Corollary 2 The matrix B has rank n-p.

Corollary 3 There exists a (n-p)xk matrix

Aoty 1 Poris o femik

AP+2 1 AP+2 2 " :

. .

S An l ° - . . v . L] L] [ 4 An:k- J

such that AB = I, p, i.e.,
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k

ZA.B(é.) =8ys for i,j = p+l,...,n.
/@ ) 2 )
i J 1] (5.2&)

£=1

A
Proof. ©Since B has rank (n-p), there exists a finite sequence of

~
kxk elementary matrices El,...,Ep which transform B to row-echelon

form: 1 0

Ep 1B 1 k

n-p

Let A be the (n-p)xk matrix obtained from E,...Ey by retaining only

the first (n-p) rows.
Q.E.D.

/\
Remark Given the matrix B we can easily compute the matrix A by using
elementary row operations as in the proof of Corollary 3.

We define functions y{(s), i =1,...,n on the interval I by

b
B .,fgéi(t)G(t,s)dt 1=1,c00,p

W(s) =4 (3.25)

k n-1n

_ () Wp(s) .
Z ZZAMB“%J () an(s)detd(s) PHLy e

L ,2=l j:o p:l

The numbers sz are just the coefficients of the boundary wvalues Bi,...,

B, as given in (3.11). Clearly each function.yf(s) is continuous on I.

Theorem 5.9 The right inverse operator H for the differential operator

L has an integral representation given by
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t

ZzﬁJ fba s)ds +fG(t,s)f(s)ds, tel,

- o (3.26)

for all functions f(t) in the range of L.

Proof. Take any function f(t) in the range of L and let g = Hf. Let
t

u(t) = fG(t,s)f(s)ds for tel.

a

Both g and u belong to xﬁ/fl )) and T1(7)(g-u) = 0. Thus, there

exist real numbers ci,...,c, such that
n
() ) = ) cgyle) +ule).
j=1

L
Now gej{(L) , and hence, (g,$;) = 0 for i = 1,...,p or
b

~fu(t)5z§i(t)dt

a

a
far
[}

bf t
_f j;}(t,s)f(s)ds ¢i(t)dt for i = 1,...,p.

a a

]

This integral can be rewritten using PFubini's Theorem as

5 ffgé G(t,s)dty £(s)ds

0
H

or

0
|

b
;= Jf y{(s)f(s)ds for i = 1,e0.,D0
a

Also, we have g€¢dfi), so By(g) = 0 for £ = 1,...,k or
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n
}: C'Bz(¢j) S Bz(u) for £ = 1,...,k.

J
j=p+l
Using (3.24) we get
k n k
z z chiﬂBE(géj) = -z A;By(u) for i = ptl,...,n
£=1 j=p+1 =1
or
k
cy = —}; Aing(u) for 1 = p+l,...,n.
£=1

We shall write out the expression Bg(u) in detail. In the proof of

Lemma 3.5 we showed that

t
(3) - "o s) | s)ds, j = n
utd (‘t) = Z f (: det@(s)] f( )a s dJ 0,c04,

p:
and hence,
n-1 n-1
B (u) = j{: a .u J)(a + B .u
4 L
j:o j=O

T T D), PT el } o
- ;z Bﬂj;{: & (b)\éw[;n(s)detQ(s) fle)d
J=0 o=1

for 4 = 1,...,k. Thus,

k‘ n-1 n ‘ b Wp(s)
¢y = - z Z ZA-izﬁgjﬁgéJ)(b)f [an(s)detd)(s)Jf(s)ds
£=1 j=0 p=1 ' a

or

b
Ci = f %(S)f(s)ds for i = p+l,-.o,l'l.
a
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Substituting these expressions for the c; into (¥), we get the desired

result.
Q.E.D.
We define a function K(t,s) on the square IxI by
n
K(t,S) = ZSéJ(t) %(S) + G*(“‘G,S), a<t,s S b,
=L (3.27)
where
[ G(t,s) fora<s<t <D
G*(tﬁs) =$ (5«.28)

i 0 for a < t < s S b.

Clearly the function K(t,s) is square-integrable on the square IxI.

Corollary The operator H is a completely continuous operator from

Zﬁ(L) into ZKIJL, and has an integral representation given by

b
Hf(t) = fK(t,s)f(s)ds, tel, (3.29)

a

for all functions f(t) in the range of L.

Proof. The integral representation follows from the theorem. For the
complete continuity we must show that if {fi)} is a bounded sequence in
7€kL), then the sequence {Hfi] contains a subsequence converging to
some limit in?&(LyLo Let {f;} be a bounded sequence inkﬂ?(L). The
linear operator Hy: S = S defined by

b

H.f(t) = fK(t,s)f(s)ds for all feS
a
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is known to be completely continuous in S. Hence, there exists a

subsequence {Hlfij} which converges to a function geS. But H =

Hllﬁ?(L), so

HE, = Hif; e7)(L)*
J J
and

Hfij——9 g as J——.

+ +
Since%(L) is closed in S, we conclude that ge %(L) . This completes

the proof.
Q.E.D.

By means of this theorem and its corollary we can determine two
important bounds on the operator H. As in Chapter 2 we let q = dim
¢
/&(L*) and then choose an integer m > q and functions wi(t),...,

wm(t) in a@f&#) such that the wj; form an orthonormal set in S and

wl(t),...,wq(t) form a base for the null space jz(L*). Let P be the

projection operator given in Definition 2.3, i.e.,
m

Pf = (f,w;)o;  for all feS.
i=1

Fix tel and consider K(t,s) as a function of s on the interval I.

Clearly this function is square-integrable on I, and

b n t

b
[t omeiae =) gy Yt (edar + [ ol ey ()as

a j=1 a

for i =1,...,m while
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b

b
f[ (t,8) 295 f £)ag + 2Zvﬁ f L8 ) (&)at

a i,3=1
%
2
+ f[G(t,é)] at
a

Thus, these two integrals give continuous functions of t on the inter-

C

val I. We define a function Kp(t,s) on the square IxI by

Kp(t,s) = K(t,s) Z(fK(té (e)ae cbi(s), a<t,s<b.

(3.30)

Clearly this function is square-integrable on the square IxI. If

we fix tel and consider Km(t,s) as a function of s on the interval

I, then this function. is square-integrable on I with

b

f[Km(t,E)]2d§ = f[K(t,E,)]ZdE -Z<f (t,8)w;(E)a

(3.31)

a

Thus, this last integral defines a continuous function of t on the in-

terval I. Choose constants“%/and"zg such that

b b \ /2 ,
ff [Km(t,s)]zdsdt <¥y (3.32)

nd
& b 1/2

maxf [Km(t,‘i)]edé f%f (3.33)

tel g

Theorem 5.10 The linear operator H(I - P) has an integral representa-

tion given by
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b
H(I - P)f(t) = me(t,s)f(s)ds, tel, (3.34)

a
for all functions f(t) in S. Also, for each f in S:
iz - 22l <Al (5.35)

and

|H(T - P)f(%)] _<_%, If]l  for all tel. (3.36)

Proof. Teke any function f(t) in S. Then

b m

H(I - P)f(t) = fK(t,s)[ s) -Z<f > )} ds
fK(tsf( )ds -i f K(t,s)w ><ff(§)wl >
b . s
f t,s)f(s)ds -Z lf( K(t,&)w > s ( % f(s)ds
& i=1 &
=/ [K t,s) i <ﬁ(t Ew 9@1(3\)" f(s)ds
a i=1 2 -

=ij(t,s)f(s)ds , tel,
a

and by the Schwartz inequelity we have

b b
H(I - P)f(t)] < <f[Km(t,s)]2d9 / <f[f(s)]2ds> b

a

< %ﬁ“f” for all tel.

Using this same argument we get
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il

le(I - P)e(+)| 7 at

b
||f||2/ f [Km(t,s)]gds at

a a

{2 2
<t il

(- 2)e|”

IN

Q.E.D.



CHAPTER L

THE NONLINEAR DIFFERENTTAL EQUATION ILx = Nx

L.1 THE EXISTENCE THEOREMS
Let I be the finite interval [a,b] of the real axis and let S =
Lo(I) be the real Hilbert space consisting of all real-valued functions

f(t) which are square-integrable on I with the usual inner product

(f,g) and norm Hf . Let 8' be the linear subspace in S consisting of
all functions which are bounded a.e. and let g be the uniform norm in

S, i.e., p(f) = inflc| |f] < c a.e.} for feS'. The number p(f) is

frequently called the essential supremum of |f

°

n .
Let T =z a; (t) (%t)l be a formal differential operator of order
1=0

non I and let L be the differential operator in S obtained from T by
the imposition of a set of k linearly independent boundary conditions
B;(f) = 0, 1 = 1,...,k. Iet N be an operator in S with,O(L)ﬂj?{N) £ 4.
We are going to combine the results of Chapters 2 and 3 to ob-
tain existence theorems for the nonlinear differential equation
Ix = Nx. (L.1)
We proceed by carrying out the following steps:
1. Determine the adjoint operator I* using Chapter 3, Section 2.
2. Iet p = dim %(L) and choose functions yﬁl(t),,..,yﬁn(t) in

n
J%&l(T)) = H (I) to form an orthonormal base for the null space

70
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54(T1(T)) in such a way that the functions ¢l(t),..“,¢p(t) are invﬁfi)
and form a base for the null space Z4L).

3. Iet q = dinLﬁflﬁ) and choose functions wl(t),...,wq(t) in
x7{L*) to form an orthonormal base for the null space 72(I*),

L, Determine the function G(t,s) using (3.23); determine the
matrix A using Corollary 3 of Theorem 3.8; determine the functions
y{(t),..., yﬁ(t) using (3.25); determine the function K(t,s) using
(3.27); and finally, determine the integral representation for the
operator H using Theorem 3.9 and its Corollary.

5. Choo;e an integer m > q and choose functions wq+l(t),...,
wm(t) in aﬁ(é*) such that the functions wi(t),...,wn(t) form an
orthonormal set in S.

6. Compute the functions L*wq+l,...,L*wm and the functions
qu+l,,.,,Ham,

T. Determine the projection operators P and Q using Definition
2.3,

8. Determine the function Ky(t,s) using (3.30).

9. Choose constants zgand fé by means of (3.32) and (3.33),
regspectively.

10. Let S, be the linear subspace <¢l,...,ép,Ha@+l,...,Hmm>
and check that S, is a subset of aﬁkN),
11l. Apply the Gram-Schmidt process to the functions qu+l,...,

Huy to obtain orthornormal functions mg+qsees Ny With
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m
N, = j{:ajiHmj for i = g+l,...,m.

J=a+1
12. Let M = ptm-q and determine the linear operators I'y: EM + 5o
and Ip: <Wi,e.e,0> =+ E® which are given by (2.29) and (2.30), re-
spectively.
13. lLet g/and ¥ be the operators given in Definition 2.6 and
Definition 2.7, respectively. Determine ¥ explicitly using (2.3L4).

14, Choose a function Xo€S, and let

m

P
Xo = }:boiéi'+§:°oini°

i=1 1=q+;
Let & = (bol,.,.,bop,coq+l,...,com)eEM. (We usually choose x, such
that $U(xo) = 0, that is, ¥(E,) = 0).

15, Determine the function y(t) = H(I - P)Nxo(t) and choose con-
stants e and e' by means of (2.13).

We have compiled this list in order to facilitate the application
of the theory of Chapter 2 to Equation (4.1). Each of the steps listed
above can easily be carried out in practice. Most of them are indepen-
dent of the operator N; only in the tenth step is a restriction placed
on N, namely that Sogé.xﬁfN). This is a very mild restriction which
is satisfied in most applications since N is usuvally defined for at
least all the continuous functions in S. Thils condition guarantees
that x5 i1s an element inaoﬁN), and hence, we can determine the element

y = H(I - P)Nxoo We can eliminate this condition completely if we
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assume that condition (IIc) is satisfied, which automatically guaran-
tees that xoeﬁﬁ{N).
Using Theorem 2.9 and Theorem 2.10, we obtain the following two

existence theorems for Equation (L4.1).

Theorem 4.1 ILet m = 1. If there exist constants c, d, r, Ry, £, €,

and & with 0<c<d, O<r<R,, £>0, €>0, and 5>0 such that
(a) The set go = {xes'| ||x-x| < d, p(x-%5) < Ry} is a subset
of J*( N) and
HNX-NyH < ﬂ”x-yH for all x,yéﬁo,
(p) féz <1, cte < (l-’,ﬁﬂ)d, r+e' < Ry —?é‘ﬁd,
(c) The set )= { §€EM| H§-€OH < €} is mapped by I'i into the
set V= (xeS| [x-x,]l <e, n(x-x,) <71},

(@) [-8,8]c w(@@ and (Z£d+e)£ <8,

then there exists xe,ﬁ(L)(wéxskN) which is a solution to Equation (L4.1),

and

! ”X xoll <d, [lQx-xof < e
(L.2)
] u(x < Ry, m(Qx-x,) < r.

Proof. Clearly conditions (IIabc) are satisfied and relations (2.20)

are valid. Condition (IId) has been shown to hold by Cesari [3,p.LOk4].

We have only to apply Theorem 2.9 to complete the proof.
Q.E.D.
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Theorem 4.2 ILet p > g and let V(£,) = O. If there exist constants

c,d, r, Ry, 4, €, and dwith 0 < ¢ <@, O <r <Ry, £ >0, €>0, and

& > 0 such that

(a) The set go = {xeS'] [|x-x0ll < d, (x-%,) < Ry} is a subset

of [z\%N) and ~
INx-Ny|| < £lx-yl| for all x,yeS;

(b) 7é?z <1, cte < (1448)d, r+e' < Ry A sa;

(¢) The set ”- {éeEM] |€-toll < €} is mapped by F1 into the
set V= {xeSOI HX-XOH < ¢, u(x>xo) < r}, the first order partial
derivatives of ¥ exist and are continuous on Zlﬂthe Jacobian matrix
for ¥ has rank m at €_;

(@) The set W = {ueE™| [lul <8}is a subset of W(Q&, there
exists a continuous mapping A: w-——%{&° with

v [A(u)] = u for all ueW,
and (%&d+e)2 < B;
then there exists xeﬁ%{L){]/Ofﬁ) which i1s a solution to Equation (L.1), and
lx-xoll < @, llax-xll < e

(4.3)
w(x-x5) < Ry, w(@x-x5) < 7.

Proof. This follows immediately from Theorem 2.10.

4.2 THE SELF-ADJOINT CASE
Congider the special case in which the differential operator L is

self-adjoint, i.e.,
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L = I¥. (h.k)

In this case we haveyﬁ(L) = %ﬁfL*), and

L) = J1¥), p = q. (4.5)
Thus, by Lemma 2.2 the Hilbert space S = Lo(I) is the orthogonal
direct sum of ///Z(L) and #(L), and hence,

B (L) -~ (L).

When we choose the functions ¢i(t), i=1,...,p and the functions
wi(t), 1 = 1,...,q, we can take

pi(t) = w;(t) fori=1,...,p =gq.
(4.6)

The functions wp+l(t),...,wm(t) can be chosen in a manner which will

simplify our work.

Theorem 4.3 If the differential operator L is self-adjoint, then the

operator H 1s a completely continuous self-adjoint linear operator on

Zf(L).

Proof. By the Corollary to Theorem 3.9 the operator H is a completely
continuous operator fronll%IJ into ?Kldi'= X%IJ. Take feﬁg(L),
) .
ge?t(L) and let u = Hf, v = Hg. Then ueA/(L), ve #(I), and Iu = T,
Lv = g. Hence,
(af,g) = (u,v) = (Im,v) = (f,Hg)
or
(#f,g) = (f,Hg) for all f,ge?g(L).

Therefore, H 1s self-adjoint.
Q.E.D.
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Theorem 4.4 TIf the differential operator L is self-adjoint, then
there exists an orthonormal sequence of functions wi(t), i = ptl,
pt2,... in Z?(L) and a sequence of non zero real numbers h;, 1 =

pt+l,p+2,... such that:

(a) Hw: = hsos

1 ;01 for 1 = p+l,p+2,...

(b) Each eigenvalue for H occurs in the sequence {hi};
o0

(¢c) Hf = Z hy (f,01 )Jo; for all fef(L).

i=p+;

Proof. This follows from the fact that H 1s a completely continuous
self-adjoint linear operator in the Hilbert space 19(L). See [23,

p.336].
Q.E.D.

Choose functions wi(t), i=rp+tl,pt2,... as in the last theorem.
Then for any integer m > p the functions wl(t),...,wm(t) have all the
required properties of the last section. Note that if feS and (f,wi) =

0 for i = 1,2,..., then fe 7]_(L)’L =f(L) and

oo
4
Hf = z hi(f,wi)wi =70,
1=p+1
or f = 0 since H is 1-1L. Therefore, the functions mi(t), i=1,2,c6.

form a complete orthonormal sequence in the Hilbert space S Lo(I).

1]

Let

$;(t) = wi(t) for i = p+l,p+2,... ;o
(4.7)

and let
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0 for i =1,...,p

Moo=y (4.8)

1
— for i = pt+tl,pt2,... .

[ hy

The functions éi(t), i=1,2,... are functions ine/(L), they form
a complete orthonormal sequence in S, and

If; = Ngp; fori=1,2,... .
(4.9)

The projection operators P and Q are given by

m

Px = Z (x,85)84
i=1

and
m

}101 Cedy )by +) (oot by

1

Qx

1

1 i=p+;
P m

Coby by +) Gody iy
=1

i=p+;

1

(X)¢i)¢i ’

s

or
P = Q. (4.10)

In case the differential operator L is self-adjoint and the g and wi

are chosen as eigenfunctions as above, the general theory given in the

last section reduces to the theory of Cesari [3].



CHAPTER 5

THE BASIC CONDITIONS OF THE EXISTENCE THEOREMS

In Chapter 2 we have developed a theory for solving the
equation Lx = Nx, which has been applied in Chapter 4 to the differ-
ential equation Lx = Nx where L is a differential operator of order n
in the Hilbert space S = Lo(I) and N is some operator in S. Our basic
existence theorem is Theorem 2.7. The existence Theorems 2.9, 2.10,
4.1, and 4.2 are all special cases of this theorem. To apply Theorem
2.7 we have to show that conditions (IIabcd) are satisfied, that the

inequalities
%,z <1, cte < (1-;@)& , rte' < Ry -‘f'zd (5.1)

are valid, and that there exists x*eV such that
P(L Jx* - n (]x*) = 0. (5.2)

In the event that the equation ILx = Nx is known to have a solu-
tion gﬁ.it is reasonable to ask whether the above conditions are
gatisfied and if Q‘is one of the solutions given by Theorem 2.7%7 In
this chapter we examine thig guestion in detail for the case of dif-
ferential operators.

As in Chapter 4 let I be the finite interval [a,b] of the real
axis and let S = Lo(I). Let S' be the linear subspace in S consisting
of all functions which are bounded a.e. and let p be the uniform norm

in 8'. Let L be a differential operator of order n in S obtained from

78
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a formal differential operator T by imposing a set of k linearly in-
dependent boundary conditions and let N be an operator in S with,d(L)
ﬂ/ﬁ{N) # 4. To simplify our calculations we assume that/&{L) is a
subset ofyy(/N). This is usually the case in applications.

Suppose there exists a function %(t) in %L)m JN) such that

Lx = N (5.3)

We shall show that under reasonable conditions it is possible to choose
the integer m, the projection operators P and Q, the constants'é and
“é, the function xo(t), the constants e and e', and the constants c,
d, r, Ry, and £ such that the hypothesis of Theorem 2.7 is satisfied,
and that % is one of the solutions guaranteed by Theorem 2.7.

We begin by carrying out part of the program of Chapter k4:

1. Determine the adjoint operator L¥.

2. ILet p = dim?l(L) and choose functions gi(t),...,4, (t)
in,é}(/'l‘l(-r)) = H'(I) to form an orthonormal base for the null space
7]/(([‘1(1‘)) in such a way that the functions yﬁl(t),...,;zfp(t) are inﬁ(/L)
and form a base for the null space QZ(L)

3. Determine the function G(t,s), the functions S‘{(t),..,,
%(t), and the function K(t,s) so as to obtain the integral representa-

tion for the operator H:

]

b t

b
HE(t) = fK(t,s)f(s)ds = é,(t)f&-g(s)f(s)ds +/é(t,s)f(s)ds.

Ly d
J=1 a (5.4)



80

let q = dim}?(L*) and choose a sequence of functions wi(t),

i=1,2,... intxﬁzif) such that the w; form a complete orthonormal

sequence in S and the functions wy(t),...,w (t) form a base for the

q
null space ;&(L#). We can find such a sequence because ¢5(£*) is

dense in S. For each integer m > g we define projection operators

Pp and Qp in S by

m
P X = }:(x,wi)wi, xeS, (5.5)
and =t
D m
QX = Z(X’¢i>¢i +Z(x, L¥w, JHo; , x€S. (5.6)
i=1 i=qty

These are the same projection operators we have been working with in
the last three chapters. For each integer m > g let Km(t,s) be the

function on IxT defined by
m b
| wete(8)as) oy(s),  6:D)

and let ié.and ng.be the constants given by

, P b 5 1/ 2
R 20 R R

and

2
m

tel

? /2
maxf[Km(t,g)] 2 d§> . (5.9)

By Theorem 3.10 we have that
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H(I - P )£(t) /Km t,s)f(s)ds, teIl, (5.10)
a

for all functions f(t) in S, and

15T - 2 E] < £alfl
for all feS.

w(H(T - Py )f) E/émllf” (5.11)

This is true for each integer m > q.

Theorem 5.1 (a) 1im ¥, = 0 .
m->eo '
(b) 1lim 7é/' = 0 .
mwo 0
Proof. In Chapter % we observed that the integrals
b b
’ 2
j K(t,t)]” d& and fK_(t,g)wi(g)dg , i=1,2,...
a a

define continuous functions of t on the interval I. ILet

b
£(t) = f K (t,¢)]° as
a
and b
a(t) = fK(tE, ;(8)dE for i = 1,2,... .
a

These are continuous functions on I and f(t) > 0 on I. Fix tel and
considerI{(t,s) as a function of s on I. Since this function is

square-integrable on I, by Parseval's equality we have

11mE <fK(t £ Jw; (£)d >

b

2
f[m,g)] at

a

or
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(t) = 11m Zloc t)l for each tel.
i=1

Using Dini's Theorem, we conclude that the sequence of continuous

functions

converges uniformly to O on I. By this last result and Equation

(3.31) we have

0 = {f(f(t - |a(t|>dt}
= 1imj.f<f[x(t,§)]2dé -i [fbK(t,é)wi(&)dé]2> at
>l s Na jo1 &

[ b b

;w ff [Km(t,é)]gdé dt

= lim

5

-

= Iim {% }Z

n
m-roo

0 = llmuG(t)'i O‘<t )
- s (fon ) o )

i=1

and

meo [Lel

= lim maxf Km(t,é) d§
a

= lim {ém]g . Q.E.D.

m->eo
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Theorem 5.2 Let x be any function inﬁﬂf;). If x, = Qx form =

d4,9+l,..., then x, *» x, Ix, + Ix, and the functions xp(t) converge
uniformly on I to the function x(t). The convergence is determined

by: —
’ bexgl <2 1],

Y o) < 2 A, (5.12)

sl = (=) a1 D2,

i=1

Proof. By Theorem 2.4 we have Ix, = IQ x = P Ix or

m
Iy = }: (Lx,op g -
i=1

Since the Wy are complete, we get the desired convergence Lxy, + Ix.

Note that ||Ixy| < ||Lx| by Bessel's inequality. Also by Theorem 2.k

we have
H(I - P )L(x-xp) = (I - Qp)(x-xp)
el < 7 1mae-tag |
< oA
and

u(x-x,) <2 %mHLXH.
Q.E.D.
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For each pair of real numbers € > 0, & > 0 let

Wie,8) = (xe8'| [lx&l| <€, n(xR) < ). (5.13)

We assume that the following condition is satisfied:
(IV) There exist constants € > 0, & > 0, and £ > O such that the
gset W(e,&) is a subset of ¢&fﬁ) and
|| Nx-Ny || < bl|x-y|| for all x,yeW(e,s).

Note that XeW(e,d), so this set is nonempty. Iet

X, = Qﬁlé? form = q,g%l,... . (5.1k4)

Each function X belongs to S' and by the last theorem

-2 | —o0, 1 (g-R)—0

Choose an integer m, 2> q such that the following conditions are satis-
fied:

(a) xy € W(e/2,8/2) for all m > my,

(b) ﬁ@é 4 <1/3 for all m > mg,

(c) ‘i&(ﬂe+ IsND < ¢/6 for all m > my,

(a) /,ém(ﬁe + nxll) < 8/6 for all m > m,

(e) %ém fe < 8/3 for all m > m.

Now we choose all the quantities which are needed in order to
apply Theorem 2.7. Fix any integer m > m, and let P and @Q be the pro-
Jjection operators

P = P, , Q@ = Qp.

We choose the constants%iand 7@ by taking
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Let Sy be the linear subspace in S spanned by the functions él,...

ép,qu+l,...,Hmm and let

Corresponding to the function y = H(T - P)Nxo, we choose

@
I

£(se + MR, e = Al + ).

Then
7l = (T - Pl
< B (oot + )
< A (se + 1)
< e,
and similarly,
u(y) <e'.

Let ¢, d, r, and Ry be the constants given by

c = €¢/6, 4 = ¢/2, r = 8/6, R, = B/2.
Clearly O <c <d and O < r < R,. As in Chapter 2 we let V and S,
be the sets given by

v {xeSO| [x-x0]l < e, b (x-x,)< r}

il

and

5 {(xes'| [x-%ll < d, u(x-x0) < Ry},
Also, for each x*eV let

S(ef) = (xes'| Qect, ool < 4, iGaeexo) < Rl

Note that if xeS,, then xeS',



86

el < llx=x g+ llxg &I

< d+efe = g
and

n(x-%) < plx-x,) + n(x,-%)

IN

R, +8/2 = b,
and hence,'go S;‘V(€;5)£;;/47§)- Therefore, conditions (IIabed) are
satisfied. Also, we have
B = B <1/,
c+e +él&d < ¢/6 +¢e/6 + 1/3¢/2 = a,
and

r+e! +l'zd <8/6 +8/6 +}{Me/2 <R

Therefore, the relations (2.20) are valid. From Definition 2.5 we ob-
. . 7 ™ . .
tain the continuous operator ¥ : V—- u(L)(WSo which assigns to

each x*e¢V the unique element xeS(x*) which satisfies the equation

x = x* + H(I - P)Nx.
Note that x eV, QGS(XO), and by Theorem 2.4 we have

x, + H(I - P)NK Xg + H(I - P)IL

= QX+ (I -Q)%
0N
= X
and hence, QZ Xy = £ and P(LZZXO-NZZ;O) = 0. Therefore, the hypo-

A
thesis of Theorem 2.7 is satisfied, and we see that x is one of the

solutions which is guaranteed by this theoren.



CHAPTER 6

AN EXAMPLE

In this chapter we use the results of Chapter L to study the non-

linear boundary value problem

x"(t) + x(t) + axa(t) = Bt, 0<t <2n
(6.1)
x(0) = 0

where O and B are real constants. From Theorem 4.1 it will follow that
this equation has a solution for all (o,B) with |af < 1, |B] < .o0L.
We shall obtain estimates on the norms of these solutions.

Let I be the finite interval [0,2r] and let S = Lo(I) be the real
Hilbert space consisting of all real-valued functions f(t) which are
square-integrable on [0,2x]. The inner product and norm in S will be
denoted by (f,g) and ||f||, respectively. ILet S' be the linear subspace
in S consisting of all functions which are bounded a.e. and let p
be the uniform norm in S'.

Let L be the differential operator of order 2 in S obtained from
the formal differential operator Tx = x" + x by imposing the single
boundary condition

B:(f) = f£(0) = o. (6.2)
We have n = 2 and k = 1. Iet N: S'——>8 be the operator given by
Nx = - ox“(t) +Bt, 0<t <o, (6.3)

/
N

().

where & and B are real constants. Clearly,éij) = 8 andfﬁég)g;_y(f

87
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We proceed to carry out the steps listed in Chapter k.
1. In Example 2, Chapter 3 we showed that T is formally self-adjoint
and that the adjoint operator I¥ is obtained from T = T* by imposing

the three . linearly independent boundary conditions

B¥(f) = f(0) = 0
{ BY(f) = f'(2n) = 0 (6.4)
LBg(f) = f(ex) = O.
2. lLet
= is:i_n 2 = .!:_COS o °
pa(t) — sin ¢, p=(t) T b (6.5)

Clearly ¢1(t) and ¢o(t) are functions inygfil(T)) = H2(I) which form
an orthonormal base for the null space 2}T1(T)). If x(t) is any func-
tion in the null space 5%KL), then x = b1d1+bf- and x(0) = 0, i.e.,
bs = 0 and x(t) = b1g1(t). Thus,

N = <(t)> p=1. (6.6)

3. Note that if x(t) is any function in the null space??EL*), then

X=Iuﬁ_+bj2am

b
x(0) = 2 = 0
Vr ’
b
x'(ex) = 7 = 0,
V.7t
bo
x(ex) = = = 0
Vi ’

or by = bp = 0. Thus,



N(x) = <o>, P(u) =5, q¢ = 0. (6.7)

4. We have
gin t cos t
o(t) = L
Jr
cos t -sin t s
detd(t) = - L
T
1
0 cos t
Wi(t) = det Jx = - i cos t,
1 - l;-sin t b
T
- —
i%— sin t 0
Wo(t) = det T ~ L sin t,
»\7; cos t l_}
and hence,
G(t,e) = - x [B2(t)Wi(s) + da(t)Wals)]
or
G(t,s) = sint cos § - cos t sin s, 0 < t,s < 2r.
(6.8)
Now
1
B = [Bi(fa)] = [-"-]
Jr )’
so we can take
A = [VC(]

Thus,
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2
y{(s) = - L J[ sin t (sin t cos s - cos t sin s)dt
‘\/—TI IS

= Vi (-cos s + == cos s - L sin s)
21 21
and
yé(s) = 0 since Bio = P11 = O,
or
y{(s) = Vit (~cos s + 2= cos s - L sins)
‘ et on 0<s<on
(6.9)
%(S) = 0.,
Therefore,
2%
g
Hf(t) = sint ’u/\ (- cos s +=— cos s - = sin s)f(s)de
en 2x
0
(6.10)
t t
+ sin t '\/ﬁcos s f(s)ds - cos tl/ﬁsin s f(s)ds,
0 0
0 <t < 2, for all functions f(t) in fﬁ(L) = S.

5. Consider the function w(t) = (t-21)sin t. Clearly o(0) = w(2r) =

0 and
w'(2x) = [(t-21)cos t + sin t] = 0,
o
and hence, weJ(I*¥). We choose m = 1 and w3(t) = ﬂlﬂ o(t). Now
w
21
2 2 5
llol| =f (t-2) sin t dt
0
3
8t - 3w

= —_—

6
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6 1/2
m o= 1, o1(t) = — (t-trn)sin t, 0 <t < ox ,
8¢~ - 3m -7
(6.11)

6. To compute IL¥w; we have

o(t) = (t-2n)sin t,
w'(t) = (t-2x)cos t + sin t,
w"(t) = -(t-2r) sin t + 2 cos t,
and hence,
Thwy () = 2 [——3—6———- ]1/2 cos t, 0 <t < 2r.
8t - 3x

(6.12)

To compute Hwi we first compute the functions H(sin t) and H(t sin t).

By (6.10) we have

21
. . S 1 . .
H(sin t) = sin t:/q (-cos s + — cos s - = sin s)sin s ds
ar o
0

t t

2
+ gin tl/wcos s sin s ds ~ cos tz/ﬁsin s ds
0 0

= - i sin t -~ E cos t
2

and
2

H(t sin t) sin t':/n (-cos s + = cos s - L sin s)s sin s ds

an on
0 £ "
2
+ sin tl/qs sin 8 cos s ds ~ cos tl/qs gsin s ds
0 0
2
~Xgint +Lgint - L cos t.

2 4 b

Therefore,



1/ 2 2
Hoy(t) = [——?;Ji———} [E.sin t + ot cos t - Lo cos %] s
8 - 3x b L
0 <t < ar.
(6.13)
7. The projection operators P and Q are given by
; an
Px(t) = [f—géL—-_] (t-21)sin tl/\ x(&) (&-2t)sinkdé, 0 <t < 2,
8It -31t 0
(6,1&)
and
on
Qx(t) = Lgin tl/ﬁ x(&)sintdt + 2 [}-Egi—-—;] [E-sin t
0 5 8n” - 3x L
ort (6.15)
2
+ ot cos t - Lo COS't] 'JF x(&)cost d&, 0 <t < 2,
b 0
for all functions x(t) in S.
8. We have
K(t,s) = sin t (-cos s + — cos s - é— sin s) + G*(t,s), 0 < t,s < 2r
an 7 - -
(6.16)
where
G(t,s) for 0<s<t <2
G*(t,s) =
0 for 0 <t <s < 2r
Also, o0
[ e teeas - ),
0

and hence,

Ki(t,s) = K(t,s) - Hoi(t) wi(s), 0 <t,s < 2r. (6.17)
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9. To determine the constantsé and %’, we must compute several

integrals. We have

23‘[ 23-r
5 2
f [S‘{(s)]ds = th(—c.oss+i-c.oss-’-]-'-—sins) ds
on o1
0 0
2
S5 5,
b) 8
t t
fG(t,s)Sul(s)ds = \/—:rrf[sin t cos s - cos t sin s] [-cos s + 5 cos s
an
0 0 1
- = sin slds
o
2
= Lt sin t —[Et sin t +—3—t cos t -—5—-sint,
alx 2 8/x 8/x
and ‘
Tt t
2 2
f[G(t,s)] ds = f[sin t cos s - cos t sin s] ds
0 0
t
= —-isint cos t.
2 2
Therefore,
2 an
2 gu 2
[ meeifas = [ thaHe) + ox(e e s
0 0
21 t
" e)? [,
= [ga(£)] -] DH(s)] as + 282(t)" | G(t,s)H(s)ds
0 t 0
2
+f[G(t,s)] ds
0
or
21
2 t T 1 2 1 2
[K(t,s)]ds = —+ (=~ =—)sint - =gsint cos t - t sin“t
A 2 3 8y 2
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3 . 1 & 2
+ 2=t sin t cos t + Zf-t sin t. (6.18)
bt T
By (3.31) we have
en an 5 5
2
f[Kl(t,s)] ds = fEK(t,s)] ds - [Ho(%)] , (6.19)
0 0
and hence,
21 o 2 2
2 2 2
f f [Ki(t,s)] dsdt = f f [K(t,s)] dsdt - ||Huwq||
0O o o O
where o o
2 o 5
f f[K(t,s)] dsdt = —— - =
0 O 3 ®
and ) ot .
2 2
|Ho, || = ——8-6-—— f (L sint +xtcost -5 cost)at,
| 8 - 3x 5 L L
2 i 5 3
Jwa)” = | ] |22 AL 7—“.] : (6.20)
| 8 - 3x 5 6 32
Therefore,
e ex 5 3
5 «
f f [K1(t,s)] asat = ;2. 36 8t . m_ _ E_>
_ 3 8 8 -3x \15 6 32
= 1.998188.
/2
Since [1.998188] = 1.413573, we choose

%/= 1.b1k, (6.21)

If we write out (6.19), we get
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on
f [Kl(t,g)]2d§ = .51t + sint [1.007L0O9 -t + .0780051:2]
0
2
+ sin2t [-.25 + .119366t - .0197L8t + .001572t3]
2 2 3 4
+ cos t[-.2u8161t + .039496t - .001572t%].

Usging a computer to carry out the calculations, we get the estimates

e
2
691546 < max f [(K1(t,£)] a < 692546,
o<t<en 0
Since [.6925&6]1/2 = .832194, we choose
Z‘ = .833 . (6.22)

10. ILet SO be the linear subspace <¢1,le> . We note that

s, C A(w) QMNL

11. Using (6.20) we have

N1(t) = airhwi(t), 0<% <2, (6.23)
where
1
aly =
|| Ho |
e N (et ) | e
87° - 3x 5 6 32
= ,502738.
Thus,
8 5 3 —1/2 2
T,.(t) = Gn oz It P osint+ntocost - cost
15 6 30 L i
(6.24)

for O S t < 2x.
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12, We have

M = pti-g = 2. (6.25)

Iet E2 be a copy of Euclidean 2~space where we denote the points by € =

1 _
(bl,cl) and let E be a copy of Euclidean l-space where we denote the

2 _ 1
points by u = (u1). Then I;: E —> S, and It <wi>—E" are
given by

Fi(by,e1) = bads +c1m (6.26)

and
Fo(uiwy) = ua. (6.27)

13. The function ¥ can be computed using (2.3&). We have

21
V(byi,c1) = aiic: -Jf N[bigs + c1 nNplwoy(t)dt
0
o
2
- aues - [ @3(6)1- @ (baga(s) + e m(s))” + prlas
0
2n 21
2 2
= ajziC1 + Oby ’\/hwl(t)[él(t)] dt + 9ab1C1L/:Dl(t)¢l(t) n
0 0
or et
+ aclef w1 (t)[ nl(t)]edt - Bft w1 (t)at
0 0

These four integrals are given by

2n

1 [p1 ]2 JE- 6 j> sin
f (t)[A1(t)1%at - <87c - f(t on)ein t dt

0
_k <_..6___> i/
5 8ﬂ3 - 3

t)dt
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en
b/\ wl(t)¢l(t) B1(t)dt = .?il (éﬂ36_ 5%) *%fﬁ(t-Qﬁ)sinzf ( % sin t
2

+ 7t cos t - %—xcos t) dt

21'(28.]_1 < 6 > s
3 J% 8> - 3x

or
fwl(t)[ ﬂl(t)]gdt a112<-—6—-——> a/gf(t-%r)sin t ( L osin 4
87> - 3 0 L

£ 2
+7tcost =~ Z— cos t) dt

- an <__. 6 >3/2 (3%3 ) 140x>
8r° - 3x o7 81
or

and or
& 1/2
f t wy(t)dt e f t(t-2r)sin t dt
8" - 3x

0 0

Il

Therefore,

2
1/ 2
\V(bl;cl> = &8311C1 = -l—l- <———é—-§-——> 2 Cby + hat 811 < 36 >Olb1cl
5 N8 - 3x 3V 8n” - 3n

.\ 2< 6 >3/ 2/ Sk :Luo:f> 2
a11 (T35 — - =) OQc1
8n~ - 3w 27 81

2

or

V(by,cq) .502738c1 - 211427003

+ .0938510b1cy (6.28)
+ .053881Lo.’cl2.

14, ILet xo(t) =0, i.e., we take x_ = bol¢1 +t ¢co; M1 where bol = Cco, = 0.

O

Clearly x5€S,,



and

15, We must determine the function y(t) = H(I - P)Nxo(t). We have

Nxo(t) = Bt, o
PNx (t) = B (——6———> (t-2n)sin t-f t(E-2n)sing 4t
8x° - 3 0
= O,
(I - P)Nxo(t) = Bt,

and

BH(t)

il

H(T - P)Nxo(t)
on

. S 1 .
P sin t° (-coss+—coss—_—s:ms)sds

en on
0 % £

+Bsint-ﬁcossds-Bcost‘i/%sinsds
0

I}

B sin t + Bt.

Thus,
y(t) = 28 sint +Bt, 0<t < on. (6.29)
Now o
2 2 o
Il = I8l ~f(2 sin t + ) dt
0
2 3
= Bl ( 8" L)
b}
or
3 1/2

I = 18l (Z- -k < 873502 Jpl.
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We choose

e

8.374[8]. (6.30)
let £(t) =2sint +t, 0 <t < 2rx. Then y(t) = Bf(t), £(t) > 0 on

the interval [0,2x], and |y(t)] = |p

«f(t). Thus,

8] - max f£(t).
0<t<er 0<t<o2n

5
b
Y
o
i

To maximize f(t) on [0,2r] we have

f'(t) = 2cost+1 = O,
cos t = - 1/2,
or
s - B br
p p

Thus, the maximum for f(t) occurs at one of the four points 0,

ot b or op:

~ ) e Y

p 3
-
£f(0) = 0
(20 = 3+
3
j f(ﬂ) - _\/_5 +£
3
| f(2r) = ox.

We choose
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e' = 6.284|p]. (6.31)
Having chosen xo(t) = 0, we must choose the constants ¢, d, r, Ry,
L, €, and & such that the hypothesis of Theorem 4.1 is satisfied. For

any number ¢ > O and any function x(t) in Sy With HXH < c, we have

2 2 2
X('t) = blél(‘t) + Cl'f]»l(t) with by + cq f_ c ,
SO
1x(£)] < clga(t)]| + clma(t)].
But
L L
t = — int| <
[62(t) P |sin t| <
and
| m(e)| = axa|Hoi(t)]
N 1/ 2
= a11<?—?§i—-—;> |E- sint + % t cos t - Ef cos tl
8x - 3x L L
6 >1/2 <rr 2 2>
< ay| —m——— —+2r +x ),
- ll(&ra - 3n 2
and hence,
1/ 2
lx(6)] <c| L+ a1 <ﬂ 6 > <3n2 + i>J
NP 813 - 3¢
Let
1/ 2
6 2
r = C[——+a11< 3 > <51f +">J = 3.0L9797c
T 8t - 3m
(6.32)
and
e = c. (6.33)

Then the set
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Vo= (xeSol [x-x |l < e, n(x-x) < 1)

reduces to the set

Vo= (xS, [Ix] < e,

and the set

I~ (s | el <o)

is mapped by I'; into the set V. Also, if d and Ry are numbers with

O0<cec<dand 0 <r <Ry, and if

5, = (xes'| Ikl <, 1(x) < RJ,

o~

then S, is a subset of,47(i3 and for xeS,, yeSy we have

Nx(t) - Ny(t) ox () + ay(t)

I

aly(t) + x(£)] [y(t) - x(¢)],

INx(t) - Ny(t)] < 2Rglal [x(t) - y(t)]
and
2 2 2 2
Mz - Nyl < uRy || Jlx -yl
lvx - Nyl < 2Rolaf Jlx - vl
Iet

£ = 2R |al. (6.34)
We assume that Ial < l. The principal inequality that we must

satisfy is /gﬂ <1, i.e.,
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(1.b1k) (2R |af) < 1.
This inequality is satisfied if (L.L14)(2R,) < 1 or
R, < .353607. (6.35)
We shall replace the inequality‘é& < 1 by the Inequality (6.35) and
the assumption Ial < 1l in the work that follows. Now we want to choose
c, d, and R, suéh that r < R,, i.e., 3.049797c < R,. Thus, we must have

¢ < 233807 _ 11504k,
3.,049797

If ¢ satisfies this inequality, then

v(0,c) .502738¢c + .05588hon2
> ¢(.502738 - .03388ke)

and

v(0,-c) - .502738c + .05388uac2

]

< - c(.502738 - .05388kc),

and hence, the interval

[-c(.502738 - .03%388Lc), c(.502738 - .03388Lc)]
is a subset of w(Zﬁ. let

5 = .502738¢ - .0%%88ke”, (6.36)

We must determine a bound on the parameter P and choose constants

¢, d, and Ry such that
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O0<e<d

3.049797c < Ry
R, < .353607
e +8. 37k Bl + (L. ulu)(za )d <

a
3.049797c + 6.284 |B] + 855)(2Ro
)

<
| [(1.414)(2Ry)a + 8.374 [B]] (2Ry) < .502

58c -~ .03388ke”

)a
<

or

—

O0<e<d

3.049797c < R,

R, < 253607 ‘.

¢ + 8.374 [B] + 2.828 Ryd < 4 (6.57)
3.049797c + 6,284 |B| + 1.666R.d < Ry

| 5. 656Ro2a + 16.748 |B|R, < 502758c - .03388k4c%,

A

We assume that the parameters & and P satisfy the conditions

lal <1, [B| < .001, (6.38)

and choose the constants c, d, and R, as follows:

¢ = L0l
& = .03 (6.39)
Ry = .l .
Then
r = .030498
4 = .2la
c - o1 (6.50)
5 = ,00502k,

and the inequalities (6.37) are satisfied. From Theorem 4.1 we con-
clude that for each pair of real numbers (Q,B) with lal <1, IB| < ,00L
there exists a real-valued function x(t) which is twice continuously

differentiable on the interval [0,2r] with
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x"(t) + x(t) + oaxa(t) = Bt, 0<t<eon
x(0) = 0

and

Il < .03, [x(+)] < .1



APPENDIX I

THE THEORY OF CESARI

The existence theory for the equation ILx = Nx described in Chapter
2 is closely related to the existence theory of Cesari [3], where the
same equation is considered. Cesari gives a system of axioms concern-
ing the existence of linear operators H and P with special properties.
These two operators play crucial roles in the development of his theory.

The original problem for this thesis was to determine conditions
on the linear operator L which would be sufficient to guarantee the
exlstence of the corresponding operators H and P. It was hoped that
the resulting class of linear operators L would be large enough to in-
clude all the differential operators on a finite interval [a,b]. How-
ever, this was not the case. As long as L was restricted to being a
gself-adjoint differential operator, the desired operators could be
shown to exist; when L was allowed to be non-self-adjoint, then
examples arose where it was impossible to construct H and P with the
desired properties. If we desire an existence theory which is applicable
to all differential operators, then we need a new theory. It is Just
such a theory which is presented in Chapter 2. In case L is a self-
adjoint differential operator, our theory reduces to the Cesari theory.

We are going to examine the existence theory in [3] and illustrate

the difficulties which can arise when one tries to construct the op-

105
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erators H and P. Iet S be a real Hilbert space with inner product
(x,y) and norm HXH, let L be a linear operator in S with domainyafi),
and let N be an operator in S with domain ﬂﬂ(&) such thathTfi)rWtéth) #
f. Cesari discusses the existence of solutions £es to the equation
Ix = Nx. (1)

He assumes that linear operators H and P exist with the following
properties:

(a) The operator P is a projection operator from S into S with
finite-dimensional range S, and null space 81; S5 is a subset ofﬁﬁ(i),
and S, is spanned by orthonormal elements ¢1;---;¢m5 the range of the

operator I - P is S;.

(b) Px = }:(X’¢i)¢i for all xeS.

i=1
(c) The operator H maps S; into Si, and
H(I - P)Ix = (I -P)x for all xeﬂdrz).
(d) PH(I - P)x = O for all xeS.
Choosing an element x,€S, and a number ¢ > O, and letting V be the sub-
set of Sg given by
Vo= (xeSol| x-xol < e},
Cesari introduces suitable restrictions to show that it is possible to
determine a unique solution xeaéiﬁ) to the equation
x = x*¥ + H(I - P)Nx (2)
corresponding to each element x*eV. He also makes the following assump-

tion:
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(e) For each x*eV the corresponding element xelﬁf&) is an
element of¢§f£), and
IH(I - P)Nx = (I - P)Nx
IPx = Plx.
Under these restrictions the unique element xe/ﬁf&) corresponding to
x¥eV is a solution to Equation (1) provided x also satisfies the equation
P(Ix-Nx) = O. (3)
Thus, Cesari proceeds to determine x*eV such that the corresponding x
satisfies Equation (3), and hence, yields a solution to Equation (1).
We shall make two remarks to illustrate the difficulties which

arise when one tries to construct the operators H and P with properties

(a) - (e).

Remark 1 It is desirable to construct H and P using only the proper-
ties of the linear operator L and independent of the operator N. The
resulting theory should be general enough to be applicable to a large
class of nonlinear operators N. This class of operators should in-
clude all the operators Ny: S ——>S of the form

Nyx = y for all xeS
where y is an element in S. If the Cesari theory is to be applicable
to all the operators Ny, then from (e) we must have

HI - 2)y e (2)
and

IH(I - P)y = (I -P)y for all yesS.
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The last equation says that
Ilx = x for all xeS;,
which implies that Sy is a subset of the range of L and H: S;—> Slr\ﬂ(L).
Thus, H must be a partial right inverse for L.
Let »%%IO and 7XIJ denote the range and null space for the operator

L, respectively. Since S; is the range of the operator I - P, it follow:
that

P: S'—“"f>%9(£)
and

I-P: S——->7€(L).
Take any element x belonging to the null space %(L*) of the adjoint op-
erator I¥. For each yeS the element y-Py is an element in )é%L), and

hence, there exists ze/dfi) such that Lz = y-Py. Thus,

(x,y-Py) = (x,Lz)
= (I¥*x,z)
= 0
or
(x,y-Py) = 0 for all yeS.
But P is self-adjoint, so
(x-Px,y) = O for all yeS

or

x = Px e SO.
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Thus, the null space fZ(L*) must be a subset oﬂgﬂ(ﬂ). This condition

is not satisfied for all differential operators.

"

Example Suppose Ix = x" + x is the differential operator on [0,2r]
whose domainpﬂfi) is determined by the boundary conditions x(0) = O,
x(ox) = 0, and x'(2x) = O. It can be shown that I*x = x" +x with do-
main ¢0(L*) determined by the single boundary condition x(0) = 0. It
follows thath(L*) is the l-dimensional subspace generated by the func-
tidn sin t. But sin t does not belong to¢§{i), i.e., JYI¥*) is not a
subset Of¢6(£). We examine these particular differential operators in

Chapter 6.

Remark 2 If the theory of Cesari is applied to the special case where
N is given by
Nx = 0 for all xeS,
then Equation (2) reduces to finding x such that
x = x¥
where x*eV. From (e) we must have
Ix* = PIx* € 5, for each x¥*eV,
or L maps V into S,. For each element yeS, we can choose & > O such
that HayH < c, and setting z = xo + Oy, we have zeV, LzeSy, x0€V,
Ixo€Sy, and
aly = Lz - on € Sg;

or LyeS,. Thus, Sg is a finite-dimensional invariant subspace for the
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linear operator L. In general, not all differential operators have

such invariant subspaces.

Example Consider the differential operator Lx = -x" on [O,rn] whose
domain‘xﬁfi) is determined by the boundary conditions x(0) + 2x(ﬁ) = 0,
x'(0) - 2x'(x) = 0. Suppose L has a finite-dimensional invariant sub-
space Sy. Let él(t),...,¢m(t) be functions which form a base for Sj.

Then we can write

m
J=1
where the aji are real numbers. Choose a complex number A and complex
numbers Ci,...,c, not all zero such that
m
;j 83iC1 = A cy for g = lyeee,m,
i=1
and let
m
p(t) = j;j cyps(t)  for 0 <t <.
[
i=1

The complex-valued function #(t) has the properties that #(0) + 24(x)
_ 0, 4'(0) - 28 (x) = 0, and

- g =

m
\
cy#}
1

i=

- Z Z aji01 £

i=1l j=1

2.
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But the assoclated differential operator over the complex numbers is
known to have no eigenvalues [6,p.300]. Thus, L has no finite-dimen-
sional invariant subspaces.

The above remarks illustrate the difficulties which arise when

one tries to use the Cesarl theory for an arbitrary differential op-

erator L.



APPENLCIX IT

THE THEORIES OF BARTLE, CRONIN, AND NIRENBERG

Bartle [2], Cronin (7], and Nirenberg [19] have each developed

existence theories for the equation
Lx + F(x,y) = 0 (1)

in Banach spaces S and Y, where L is a bounded linear operator defined
on all of S with values in S and F(x,y) is a function which maps a
.neighborhood of the origin in SxY into S with F(0,0) = 0. The pur-
pose of this Appendix is to examine each of these three theories, de-
termining any relationships which might exist between them and -deter-
mining any relationship which they might have with the existence theory
developed in this thesis.

Before getting into the details of these three theories, let us
make several comments. Note that if we fix an element yeY and let
Nx = -F(x,y), then Equation (1) has the same form as the equation we
studied in Chapter 2. Thus, when the theories of Bartle, Cronin, and
Nirenberg are applied in a Hilbert space, we would expect them to be
related to the special case of our theory when we assume L is every-
where defined and bounded. We will find that such a relationship
exists when we examine the Nirenberg theory.

Nirenberg treats Equation (l) is a very general setting, present-

ing three methods for establishing the existence of a solution. The
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material for his three methods is based on lectures by K. O. Friedrichs
[10,11]. Bartle considers Equation (1) under more specialized circum-
stances, and his theory is essentially the same as Nirenberg's third
method. Cronin discusses a very special form of Equation (1); her
work is an abstract version of part of the work of Schmidt [20] on non-
linear integral equations, and it is also intimately related to Niren-
berg's third method.

Now let us begin our discussion of these three theories. We shall
examine the general pattern of development which each one uses: the
construction of an inverse operator for L, the determination of an
auxiliary equation, and the determination of a bifurcation equation.

We shall start with the Nirenberg theory because it is the most general.

In [19) Nirenberg assumes the following hypothesis for the linear
operator L: the null spacej&ﬁL) admits a projection operator Q@ and the
range 'J%IJ is a c¢losed subspace in S which also admits a projection
operator p. Let P denote the projection operator I - p, so I - P is
a projection of S onto ¢f%10. Under the above hypothesis Nirenberg
shows that there exists a bounded linear operator H: Z&Iﬂ———é}S which

is a right inverse for L and has the properties:
IAx = x for all xe £ (L),
and
HIx = x - Qx for all xe8.

The operator H(I - P) gives an extension of H to all of S.
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Method 1 If xeS is a solution to Equation (1), then applying the op-
erator H(I - P) it follows that
x = x¥ - H{I - P)F(x,y) (2)
where x* = Qxe ZKIJ. Equation (2) is the auxiliary equation used in
Method 1. Under suitable restrictions it can be shown that Egquation
(2) has a unique solution x = x(y,x¥*) for x*eﬁ(L) and yeY with suf-
ficiently small norms. ZFor such a solution
Ix + F(x,y) = PF(x,y),
i.e., x = x(y,x¥) is a solution to Equation (1) iff
PF(x(y,x*),y) = O. (3)
This last equation is the bifurcation equation for Method 1. At this
point the element y is usually fixed sufficiently small. To obtain a
solution to Equation (1) one only needs to determine a solution x¥ to
the bifurcation Equation (3), which is usually a system of g-equations
in p-unknowns where p = dimﬁZ(L), q = codim Zf?L).
Note that if we let Nx = - F(x,y), then Equations (1), (2), and

(3) can be written as

Ix = Nx, (11)
x = x* + H(I - P)Nx, (2")

and
PlIx(y,x*) - Nx(y,x*)] = O. (3")

When S is a real Hilbert space, codinlf%lo =g <o, and Q and p are

the orthogonal projections onto iQ(L) and Z?(L), respectively, then
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Method 1 is essentially the same as the special case of our theory
when ,ﬁ(&) = 5 and m = q. 3Both theories use the same operators H, P,
and @, and both theories have the same auxiliary and bifurcation equa-

tions.

Method 2 The second method that Nirenberg describes is equivalent to
the first method. Since it adds nothing pertinent to our discussion,

we shall not discuss it here.

Method 3 (due to P. Ungar) The third method differs from the first two
~methods in that it uses a different type of inverse operator for L.
It assumes the additional hypothesis that
dim 74L) = codim ﬁL) = p<o .

Iet B: ?%(L)————~4>P(S) be a 1-1 linear operator fronLZKIO onto P(8),
let W = BQ, and let Li: S——>S be the bounded linear operator given
by

I = L+ W.
L; is a 1=1 mapping of S onto itself, and hence, L; has a bounded

inverse. Ilet

The operators L and T are related by
TL = I - Q.
For any solution xeS to Equation (1) it follows that

x + TF(x,y) = x* (L)
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where x* = Qxe //(L). Equation (4) is the auxiliary equation which is
used in this method; it is very similar to the auxiliary equation used
in Method 1. If x = x(y,x*) is a solution to Equation (4), then
(LH)x + Flx,y) = (LHW)x¥,
or
Ix + F(x,y) = W(x¥-x),
i.e., x = x(y,x*) is a solution to Equation (1) iff
W(x* - x(y,x*)) = O. (5)
Equation (5) ig the bifurcation equation for this method. TFor fixed
y it reduces to a system of p-equations in p-unknowns.
The one new feature which distinguishes Method ? from Method 1
is the use of the operator T instead of the operator H. However, T

is closely related to H as the following lemma shows.

Lemma The linear operator H is the restriction of the linear operator
T to the subspace XQ(L), and

LT = I - P-

Proof. First, take any element XGXZ(L). Then there exists ye€S such
that Ly = x. Letting z = y-Qy, we have Qz = Q, Wz = O, and Lz =
Ly = x. Thus,

Hx Hlz = z-Qz

1}

]

T(I4W)z



Next, take any xeS. Since PxeP(S), there exists ZG}Q(L) such that
Bz = Px. We have

T(I+W)z

N
I

TBQz

1

TPx,

n

SO
ITx = LT(x-Px) + LIPx
= IH(x-Px) + Lz

= x-Px.
Q.E.D.

Iet us reexamine Equation (l) under two new sets of hypotheses for
the operator L. We shall divide the discussion into two parts. In
the first part we shall use the hypothesis of Bartle, establishing
the relationship between Bartle and Nirenberg; in the second part we
shall use the hypothesis of Cronin, establishing the relationship be-
tween Cronin and Nirenberg.

I. Consider Equation (1) when the linear operator L satisfies
the following hypothesis: the range A(L) is a closed subspace in §,
the null space 2&1& is finite-dimensional, the null space ﬁ%jl#) for
the adjoint operator I¥ ig finite-dimensional in the dual space S*,
and

aim (1) = ainfJ(I*) = p <o

We aggert that the linear operator L also satisfies the hypothesis of
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Nirenberg's Method 3. In order to see this let ul,...,up be elements
in S which form a base for ;i(L), and let fl,...,fp be functionals in
S¥ which form a base for ;&(L*). Then there exist functionals g1,.e.,

&p in S* and elements Z1seeesZp in S such that

g (uy) 813 » T1(zy) = Bij.

Define projection operators P and Q by

p
Px = Zfi(x)zi , XE€S, (6)
i=1
and
P
Qx = Z g; (x)u; , xes, (7)
i=1

and let p be the projection operator I - P. Clearly ?&(L) admits Q
as a projection operator. Also, we can show that pxeﬂ?(L) for all xeS,
and that S is the direct sum of the subspace %&L) and the subspace
<zl,...,zp>. It follows that ZékL) admits p as a projection operator,
and

dim?Z(L) = codim %(L) = p <,
Hence, Nirenberg's Method 3 is applicable when the linear operator L
satisfies the above hypothesis. Suppose we determine the particular
form that Method 3 takes when P and Q are given by (6) and (7), re-
spectively, and the linear operator B: ;Q(L)———j)P(S) is defined by

Blu;) = =23 for 1 = 1l,eee,po (8)
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The operator W = BQ is just
1Y

_:E: gi(x)zi for all xeS, (9)
i=1

Wx

and the operator Ip, = L + W is

1Y
Lix = Ix -:{:gi(x)zi for all xeS . (10)
i=1

Again we obtain the inverse operator T = (L+W)—l, the auxiliary Equa-
tion (M), and the bifurcation Equation (5). Now the bifurcation equa~
tion can be rewritten in a different form. Iet x = x(y,x*) be a solu-
tion to Equation (4), i.e.,
x + TF(x,y) = x¥e ;Q(L).
Applying the operator L and using the lemma, we get
Ix + F(x,y) = PF(x,y).
On the otherhand we observed in Method 3 that
Ix + F(x,y) = W(x*-x),
and hence,
PF(x(y,x*),y) = W(x*-x(y,x*)). (11)
Thus, the bifurcation Equation (5) can also be written as
PF(x(y,x*),y) = O. (57)
The existence theory which we have developed in part I using
Nirenberg's Method 3 is identical to the existence theory which Bartle
developes in [2]. The hypothesis for the linear operator L is the

same as his hypothesis for L; the operators P, Q, Lj, and T are the
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same as the operators Z, U, L', and R, respectively, which he con-
structs in his theory; and Equations (4) and (5') are the auxiliary
and bifurcation equations which he uses.

II. Consider Equation (1) when the linear operator L and the
function F(x,y) gatisfy the following hypothesis: the operator L
is of the form L = I+C where C is a completely continuous linear
operator in S, and the function F(x,y) is of the form F(x,y) = R(x) - y
where R is g function which maps a neighborhood of the origin in S
into S with R(O) = O and yeY = S. Equation (1) takes on the special
form

(I +C)x +R(x) = vy. (")
For such a linear operator L it is well known that the range 7{%L)
is a closed subspace in S, the null spaces ;%(L) and.?%l#) are finite-
dimensional, and
dim ?L(L) = dim ?Z(L*) = p <o,

Thue, we can proceed to apply Method 3 exactly as we did in part I.
As before we choose the elements ul,...,up, Z1yeess2p in S and the
functionals fy,...,fp, B1se o0 8p in S*, and define the projection
operators P and Q by means of Equations (6) and (7), respectively.
Instead of defining the operator B by means of Equation (8), we de-

fine B: 71(L)———$P(S) by
B(u;) = 23 fori=1,...,p. (8')

For this choice of B the operators W = BQ and Lij = L + W are given by
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D
Wx = :{: gi(x)zi for all xeS, (9")
i=1
and
iy
Inx = Ix +?gi(x)zi for all xeS, (101)
- |
i=

-

and again the inverse operator T = (IﬁW) ' exists.

Up to this point the theory described in part IT ig identical to
the existence theory of Cronin [7]. She studies Equation (1") under
the same hypothesis that we used in part II, and she constructs the
same operators P, Q, L, and T. However, at this point she proceeds
to derive a different pair of auxiliary and bifurcation equations.
Note that if xe€S is a solution to Equation (1"), then applying T we
have

T(I + C)x + TR(x)

Ty,
or

x-Qx + TR(x) = Ty.
Letting x* = QXEZ%(L) and 2z = x-x*, this last equation can be
written as

z + TR(x*+z) = Ty;
applying the operator I-Q we obtain the eguation

z + (I - Q)TR(x*+z) = (I - Q)Ty. (12)

Equation (12) gserves as the auxiliary equation in Cronin's theory;

it is to be solved for z = z(y,x*) with x*ej%(L), yeS. Observe that
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if z = z(y,x¥) is a solution to Equation (12), then Qz = 0, (I - Q)z =

z, and

T[L{x*+z) + R(x*+z) - y]

(x*+z) - Q(x*+z) + TR(x¥*+z) - Ty

z + TR(x*+z) - Ty

(1 -Q) [z + TR(x*+z) - Ty]

+ Q[z + TR(x¥*+z) - Ty]

I

QTR(x*+z) - QTy.
Since T is 1-1, it follows that x = x*+z is a solution to Equation
(1") iff QTR(x*+z) - QTy = 0, or

QTR(x* + z(y,x*)) - QTy = O. (13)

Equation (13) is the bifurcation equation used by Cronin. For fixed
y one only needs to determine a solution x*e;%(L) to Equation (13) in

order to obtain a solution x = x* + z(y,x*) to Equation (1").
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