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The exploration of nanoscale materials during the past decade has
led to great advances in both sciences and technology. Recent
developments in the field of nanoionics is offering new
possibilities and challenges for the much required future
energy-storage and conversion devices.[1,2] When particle sizes
approach the nanoscale, the influence of surfaces and interfaces
can no longer be neglected in the rationalization and prediction of
a material thermodynamic and kinetic properties.[3,4] Recent
observations in crystalline battery materials[5–9] and hydrogen-
storage materials[10–14] that undergo a first-order phase transition
upon ionic insertion indicate that a reduction in particle size
causes a change of the equilibrium compositions, leading to a
decrease or a shift of the miscibility gap. Surprisingly, such
nanoscale effects already set in at particle sizes as large as 100 to
150 nm. This has direct consequences for the voltage profile
during battery charging or the equilibrium pressure during
hydrogen loading,[6,9,15,16] which for large particles are constant
during a two-phase reaction. Generally, a reduced voltage or
increased pressure plateau is observed in a two-phase reaction
within nanoparticles, indicating a lower stability of the Li/H rich
phase.[10,13–16]

Changes in thermodynamic properties at the nanoscale can
also impact kinetic behavior. It has for example been proposed
that increases in vacancy concentration due to altered equilibrium
compositions at the nanoscale enhances ionic mobilities to
render reversibility of hydrogen loading possible in metal
hydrides[10,11] and to enable Li-insertion in otherwise inactive
electrode materials.[8,15] Nanoscaling has also been identified as
playing an important role in enhancing (dis)charge rates in
LixFePO4, as it seems to increase equilibrium compositions and
thereby reduce the lattice mismatch between coexisting phases,
which is responsible for large energy barriers to two-phase
decomposition due to coherency strains.[9]

In this paper, we derive general equilibrium criteria for
two-phase coexistence within insertion compound nanocrystal-
lites, explicitly accounting for surface and interface free-energy
contributions. For typical values of surface and interface energies
estimated from first principles for LixFePO4,

[17] we find that
interface contributions in particular can have a pronounced effect
on equilibrium compositions for two-phase coexistence in
nanocrystallites. Not only do the solubility limits and equilibrium
compositions depend on the particle size, they appear surpris-
ingly sensitive to the particle shape, rationalizing recent
inconsistent observations of solubility limits in nanosized
LiFePO4. The derived equilibrium criteria for two-phase coex-
istence in nanocrystallites also shows that the equilibrium
compositions are not constant, but depend on the overall
concentration of the particle. This prediction implies that
equilibrium compositions measured electrochemically (based
on concentrations coinciding with the onset of two-phase
coexistence) will not necessary produce the same values as those
measured using diffraction techniques (such as neutron
diffraction). We also provide simple graphical construction
methods to assess the role of surface and interface free energies
on two-phase coexistence within insertion compound crystallites.

We consider crystalline host materials that undergo a
first-order phase transformation upon insertion of interstitial
Li ions from a Li poor phase (a) to a Li rich phase (b). We denote
the bulk Gibbs free energies at constant temperature (T) and
pressure (P) of the a and b phases by ga(xa) and gb(xb),defined per
interstitial site. The concentrations xa and xb refer to the fraction
of filled interstitial sites in the a and b phases. For small
crystallites, surface and interfacial free energies, s and gab,
become important. If the crystallite consists of a single phase, its
free energy can be written as

G xð Þ ¼ V

V
g" xð Þ þ

Xsurf
i

Sis
i
" (1)

where e refers to either a or b and V and V correspond to the
particle volume and volume per Li site, respectively (hence V/V is
equal to the total number of interstitial sites). The Si are the
surface areas for each surface i having surface energy si, and x
corresponds to the fraction of occupied interstitial sites of the
homogeneous crystallite.

If a single crystallite consists of the two coexisting phases, a
and b, the free energy of the crystallite will contain extra terms
arising from the interface separating a and b

G ¼ V
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(2)

where gk
ab is the interface free energy between a and b for

interface k, having area Ak
ab. fa and fb are the fraction of
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interstitial sites belonging to the a and b phases, respectively, with
faþfb¼ 1 (phase fractions of a and b). The surface and interface
areas, Sia, S

j
b, and A

k
ab as well as the volume per interstitial site,V,

are defined relative to the dimensions of the crystallite within a
convenient reference state (the host without Li). Within this
convention, the surface and interface free energies si

a, s
j
b, and g

k
ab

are per unit area within the reference state. The summations run
over all surfaces and interfaces of the crystallite withPaSurf

i
Sia þ

PbSurf
j

Sjb ¼ S, where S is the total surface area of the

crystallite within the reference state and is therefore constant. In

Equation 2, we have neglected strain-energy contributions that arise

in coherent equilibrium when a and b have different equilibrium

lattice parameters.

Equilibrium in a crystallite having concentration x is
determined by the state (a, b, or aþb) having the lowest free
energy. If at concentration x, Equation 2 is lower than Equation 1
(for e¼a or b) the crystallite will present two coexisting phases. It
is common to define the composition above (below) which the
a(b) phase becomes metastable relative to aþ b two-phase
coexistence as a solubility limit. We will denote the solubility
limits by xa* and xb*. For nanosized crystallites where interface
and surface free energies are important, it is also necessary to
define a second set of concentrations, xa and xb, corresponding to
the equilibrium concentrations in the a and b phases when they
coexist within the same crystallite. While in the large crystallite
limit, these two sets of concentrations are equal to each other; we
will show below that at the nanoscale the solubility limits xa* and
xb* are not equal to the concentrations xa and xb of a and b

coexisting in the same crystallite.
To derive equilibrium criteria that determine the equilibrium

concentrations within coexisting a and b phases, we proceed as
follows. At constant T, P, and N (total amount of Li-ions in the
system), a crystallite consisting of two coexisting phases a and b

will have two independent internal degrees of freedom that are
not controlled by external boundary conditions (we assume a fixed
geometry for the interface separating a from b). These are the
number of Li ions residing in the a phase, Na¼N�Nb, and the
fraction of the crystallite that is in the a phase, fa¼ 1� fb
(alternatively, we could have chosen Nb and fb as independent
variables). In two-phase equilibrium at constant T, P, and N, the
crystallite will choose values forNa and fa that minimize the total
free energy in Equation 2. A necessary condition for this
minimum in total free energy G is that its partial derivatives with
respect to Na and fa are zero,

@G

@Na

� �
’a

¼ 0;
@G

@’a

� �
Na

¼ 0 (3)

The dependence of Equation 2 on Na can be made explicit by
expressing the fraction of occupied interstitial sites xa and xb as

xa ¼ VNa

faV
; xb ¼ VðN �NaÞ

ð1� faÞV

The partial derivatives (Eq. 3) then yield two equilibrium
criteria for two-phase coexistence in a small crystallite,
� 2009 WILEY-VCH Verlag Gmb
ma ¼ mb (4)
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In Equation 4,m’s correspond to Li chemical potentials and are
the slopes of g with respect to x: m ¼ @g=@x (in contrast to a
substitutional compound LixK1–x, where the chemical potential
corresponds to the intercept of the common tangent with the
composition axis). In Equation 5, Ds¼ sa� sb. The derivation of
the equilibrium criteria Equations 4 and 5 assumes that the
surface and interface free energies are independent of Li
concentration. Furthermore, Equations 4 and 5 also rely on the
assumption that the surface and interface excess Li concentra-
tions and the surface and interface excess stresses are zero.
Surface excess concentrations, for example, will modify the
measured voltage profile for single-phase nanocrystallites
compared with that of large crystallites. Surface excess stresses
tend to increase the pressure within the crystallite in excess of the
ambient pressure, even for particles with large flat surfaces.

For crystallites of macroscopic dimensions, 1/V approaches
zero and the contribution from surfaces and interfaces in
Equation 5 becomes negligible. In that limit, Equations 4 and 5
reduce to the familiar equilibrium criteria of two-phase
coexistence within a crystalline host having a mobile interstitial
component. The first criteria, Equation 4, requires that
the chemical potentials of the interstitial component are equal in
the coexisting phases, while Equation 5 with surface and interface
terms neglected reduces to the equality of grand canonical
potentials F¼ g� xm of the coexisting phases a and b. In a
g(x) versus x diagram, Equations 4 and 5 in the large-crystallite
limit is a mathematical formulation of the common tangent
construction to graphically estimate the equilibrium composi-
tions of the coexisting phases, xa and xb.

[18] Indeed, Equation 4
requires that the tangents to ga and gb at xa and xb, respectively,
have the same slope, while Equation 5 in the large-particle limit
requires that the intercept of the tangents to ga and gb at xa and xb
with the x¼ 0 axis,Fa¼ ga� xama andFb¼ gb� xbmb, be equal.
As is well known, the equilibrium compositions, xa and xb, in the
large-crystallite limit are independent of the phase fraction.

The terms involving surface and interface free energies can no
longer be neglected in Equation 5 when crystallite dimensions
approach the nanoscale. As the crystallite size decreases, the
interface free energy penalty will become more important. The
solubility limits xa* (xb*) should therefore increase (decrease) as
crystallite dimensions are reduced. In this limit, the equilibrium
compositions of the coexisting phases, xa and xb, become size
and shape dependent. Furthermore, the differential changes in
surface and interface area with phase fraction, wa, will in general
depend on the phase fraction. Hence, the equilibrium composi-
tions xa and xb are no longer necessarily constant, but can change
with the overall Li composition of the crystallite.

Here we study the three basic particle geometries shown in
Figure 1: a rectangular crystallite, a spherical crystallite, and a
diamond-shaped crystallite. It will be assumed that Lx¼ Lz¼ Lxz
H & Co. KGaA, Weinheim Adv. Mater. 2009, 21, 2703–2709



C
O
M

M
U
N
IC

A
T
IO

N

www.advmat.de

Figure 1. Particle geometries studied, where the gray surface indicates the
orientation of the interface between the two phases a and b. La determines
the position of the interface.
(see Fig. 1), rendering the rectangle equivalent to the diamond,
differing only in the relative orientation of the interface. It is
illustrative to work out condition (Eq. 5) for these three
geometries yielding:

rectangular crystallite

Fa �Fb þ
2V

Ly
Dsy þ

2V

Lz
Dsz ¼ 0 (6)

spherical crystallite with radius R

Fa �Fb þ
2VR

2RLa � L2a
Ds þ 2V R� Lað Þ

2RLa � L2a
gab ¼ 0 (7)

diamond crystallite

Fa �Fb þ
2V

Ly
Dsy þ

ffiffiffi
2

p
V

La
Dsxz þ

V

La
gab ¼ 0

for La <
1

2

ffiffiffiffiffiffiffiffiffi
2Lxz

p (8)

Fa �Fb þ
2V

Ly
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ffiffiffi
2

p
Vffiffiffi

2
p

Lxz � La
Dsxz

þ Vffiffiffi
2

p
Lxz � La

gab ¼ 0 for La >
1

2

ffiffiffi
2

p
Lxz

In these expressions, La represents the location of the interface
between the two coexisting phases as illustrated in Figure 1, and
can serve as a metric that plays the same role as the phase fraction
of the a phase. Dsi for the rectangular and diamond crystallites is
the difference in surface energy between a and b for the surfaces
Adv. Mater. 2009, 21, 2703–2709 � 2009 WILEY-VCH Verlag G
perpendicular to the side with length Li. The dimensions, R, La,
Ly, Lz, and Lxz, are all in terms of the reference crystal, while V

corresponds to the volume per interstitial site within the
reference crystal (expressing dimensions relative to a reference
crystal means they will be unaffected by any volumetric changes
of the actual crystallite that may occur as Li is added to the host).
These expressions must be solved together with the equality of
chemical potentials condition (Eq. 4).

For the rectangular crystallite, the interface free energy gab
does not appear in the equilibrium criterion (Eq. 6), and therefore
does not affect the equilibrium concentrations xa and xb during
two-phase coexistence. This occurs since the interface area in the
rectangular crystallite is independent of the phase fraction.
Furthermore, the surface area of the a (b) phase varies linearly
with phase fraction (or equivalently La for this geometry),
rendering the differential change in surface area with La a
constant. As a result, equilibrium criterion (Eq. 6) is also
independent of the phase fraction. The equilibrium concentra-
tions xa and xb of the coexisting phases, while modified from
their values in large crystallites by surface energy differences
between a and b, are therefore independent of the overall Li
concentration within the nanocrystallite. The concentrations xa
and xb in the spherical and diamond crystallites, in contrast, do
depend explicitly on the interface free energy gab as well as the
phase fraction. This arises from the fact that the interface area
between a and b as well as the surface areas in these geometries
depend in a nonlinear way on the phase fraction. As a result, the
concentrations of coexisting phases, xa and xb, are no longer
constant, but depend on the overall Li concentration within the
crystallite.

We assess both the absolute and relative importance of surface
and interface free energies on equilibrium compositions by
considering LixFePO4. While bulk free energies can be obtained
by integrating voltage curves for large crystallites, surface and
interface free energies are more difficult to measure experimen-
tally. To this end, we use first-principles electronic-structure
methods to provide estimates of surface and interface free
energies in LixFePO4.

i) TEM observations of Chen et al. indicate that the a/b
interface is mainly perpendicular to the a direction of the
orthorhombic LixFePO4 unit cell.[19] Ab initio DFT GGAþU
calculations were used to calculate the excess energy associated
with a coherent interface in the bc-plane in supercells containing
periodic regions of LiFePO4 separated by regions of FePO4.
Similar values were obtained when fixing the lattice parameters
along the b and c directions to their equilibrium values in LiFePO4

and in FePO4, yielding an average of gab
yz¼ 0.96 J m�2 (the

supercells were allowed to relax in the a-direction).
ii) Surface energies of the Li-poor heterosite phase (a) and

Li-rich triphylite phase (b) have been calculated by Wang et al.[17]

Here, we use values for the surfaces that dominate the LiFePO4

Wulff shape; the [010] surface in vacuum for which GGAþU
calculations predict values of sa¼ 0.24, sb¼ 0.64 J m�2, and the
[201] surface in vacuum for which the same calculations predict
sa¼ 0.77, sb¼ 0.52 J m�2. For the spherical crystallite, we use an
average value of the diamond and rectangle surface energies. The
diamond and rectangular crystallites can be viewed as simple
approximations to the Wulff shape.[17] Particles obtained by
hydrothermal synthesis appear to have aspect ratios Ly/Lxz
mbH & Co. KGaA, Weinheim 2705
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Figure 2. Calculations for two phase coexistence within one particle for non-zero calculated
interface energy and zero surface energy, where for the rectangular and diamond shape Ly/Lxz¼
1/3. a) Schematic bulk Gibbs free energy due to the interface energy for the diamond shape,
leading to a smaller miscibility gap. b) Schematic bulk Gibbs free energy and common tangent
construction for a nanosized diamond-shaped particle to obtain the equilibrium compositions
(black: for a-phase fraction less than 0.5, light grey: for a-phase fraction greater than 0.5). The
Gibbs energy is scaled such that the common tangent to the bulk Gibbs energy is horizontal.
c) Solubility as a function of particle volume for different particle shapes due to the interface
energy. The dotted line indicates the equilibrium compositions in the large particle limit. d)
Equilibrium compositions for constant particle volume, 20� 103 nm3, as a function of phase
fraction for different particle shapes. e) Equilibrium compositions for constant particle volume,
20� 103 nm3, as a function of the angle u of the diamond shape. f) Voltage curve for a
diamond-shaped particle, volume 20� 103 nm3, controlling the overall Li concentration.

2706
ranging from 1/3 to 1/10.[19–21] Here, we
consider aspect ratios that are fixed (Ly/
Lxz¼ 1/3) and variable.

iii) At room temperature, LixFePO4 exhibits
a miscibility gap between crystallographically
isomorphic host structures with different Li
compositions. To accurately parameterize the
bulk-free energy of LixFePO4 as a function of
Li concentration x, we use a Riedlich–Kister
polynomial expansion together with an ideal-
solution configurational entropy term (for
both Li-vacancy disorder and localized electron
disorder). The coefficients of the expansion
were fit to reproduce measured open-circuit
cell-voltage curves of Meethong et al.[9]

Although LixFePO4 exhibits strong deviations
from thermodynamic ideality asmanifested by
its composition–temperature phase dia-
gram,[22,23] the ideal solution entropy accounts
for the logarithmic dependence of the free
energy on Li composition, while the use of the
Riedlich–Kister polynomial up to order five
enables us to parameterize the deviations of
the entropy and enthalpy from ideal solution
behavior with high accuracy.

In the following, we investigate the effect of
interface free energy and surface free energy
on the equilibrium compositions individually.

Figure 2a schematically illustrates how the
interface energy penalty leads to a change of
the solubility limits. The energy penalty due to
the interface energy leads to a reduction of the
miscibility gap. Using our first-principles
estimate for gab between LiFePO4 and FePO4,
and setting all Dsi¼ 0, the solubility limits are
calculated and shown in Figure 2c. The large
interface-to-bulk ratio in the sphere leads to
the smaller miscibility gap at the same volume
compared to the other particle shapes. The
impact of particle shape on the equilibrium
compositions is further illustrated in
Figure 2e, where the angle u effectively
controls the interface to volume ratio in the
diamond shape.

Within these solubility limits, we analyze
the equilibrium criteria Equations 4 and 5 (for
the rectangle, sphere, and diamond crystal-
lites, respectively). Note that these equilibrium

criteria neglect contributions from coherency strains due to
differences in lattice parameters between a and b. Our current
analysis only seeks to assess the importance of purely interfacial
free-energy terms on equilibrium compositions. The role of
coherency strains on equilibrium compositions has been
discussed previously,[6,9] while a rigorous derivation of coherency
strain equilibrium criteria for LixFePO4 will be published
elsewhere. Figure 2b schematically illustrates the equilibrium
criteria Equations 4 and 8 for the diamond crystallite when
considering only interface-free-energy contributions. Equation 8
requires that the intercepts of the tangents to ga and gb at xa and
� 2009 WILEY-VCH Verlag Gmb
xb with the x¼ 0 axis, Fa¼ ga� xama and Fb¼ gb� xbmb, must
differ by�Vgab/Lawhen the phase fraction of the a-phase is less
that 0.5. For phase fractions of a greater than 0.5, the difference of
the intercepts Fa¼ ga� xama and Fb¼ gb� xbmb with the x¼ 0
axis change sign, and must equal to Vgab=ð

ffiffiffi
2

p
Lxz � LaÞ.

Figure 2d shows the calculated equilibrium compositions as a
function of overall composition. Lithiation of FePO4 and
delithiation of LiFePO4 initially leads to a solid solution, which
is extended due to energy penalty arising from the interface,
leading to the reduction of the miscibility gap as shown in
Figure 2c. When the two phases coexist, the equilibrium
H & Co. KGaA, Weinheim Adv. Mater. 2009, 21, 2703–2709
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Figure 3. Calculations for two-phase coexistence within one particle assuming zero interface
energy and non-zero calculated [17] surface energies, where for the rectangular and diamond
shapes Ly/Lxz¼ 1/3. a) Schematic bulk Gibbs free energy and common tangent construction for
nanosized diamond-shaped particles to obtain the equilibrium compositions. The Gibbs energy is
scaled such that the common tangent to the bulk Gibbs energy is horizontal. b) Equilibrium
compositions as a function of particle volume for different particle shapes at phase fraction
wa¼ 0.5 (in which case the rectangle and diamond shape lead to equivalent results). c) Equilibrium
compositions for constant particle volume, 20� 103 nm3, as a function of the Ly/Lxz ratio of the
diamond shape. d) Voltage plateau for constant particle volume, 20� 103 nm3, for different particle
shapes.
compositions xa and xb, as determined by
Equations 7 and 8 for the spherical and the
diamond crystallites, depend on the overall
composition of the crystallite (as a result of
the explicit dependence of Eqs. 7 and 8 on La).
This implies that the composition of both
coexisting phases changes during the Li-ion
insertion of the electrode material. In con-
trast, the interface area of the rectangle is
independent of the phase fraction, and hence
the equilibrium compositions are constant.
More generally, this demonstrates that when
the size of the interface does not change upon
lithiation, the equilibrium compositions are
not affected by interface effects. This is clearly
an idealized situation, as in reality nucleation
of a phase will at least initially lead to a
changing interface area.

In Figure 2f, the voltage curve of a
diamond-shaped particle, volume 20� 103nm3,
is calculated by externally controlling the overall
Li concentration, equivalent to a slow (dis)-
charging experiment. During charging of the
electrode (Li insertion) the voltage has to be
sufficiently reduced to overcome the energy
penalty due to the interface needed for the
formation of the two-phase coexistence.
Similarly, discharging the electrode will lead
to an excess voltage. Because the nucleation
barrier will be relatively larger for smaller
particles, leading to a smaller miscibility gap
in Figure 2c, the excess voltage in Figure 2f
will also be larger. A voltage excess is indeed

observed, albeit much smaller, in detailed voltage curves where
strain energy is claimed to be the origin.[9] Most likely, strain and
interface energy have a similar impact. In the present
calculations, the excess voltage is most likely strongly over-
estimated due to the fixed geometry of the interface; in reality, it
will depend on detailed nucleation conditions. Because the
equilibrium condition (Eq. 8) depends on the overall composi-
tion, the single-particle voltage during two-phase coexistence will
also depend on the composition. In practice, the electrodes
consist of many particles, also having a particle-size distribution
leading to a distribution of voltages,[24] averaging out this single
particle effect. Note that the discontinuity in Figure 2d (and in 2f)
near x¼ 0.5 is due to the shape of the Gibbs free energy in
Figure 2a.

We now investigate the role of differences in surface energies
on the characteristics of the two-phase equilibrium within
nanocrystallities. As an illustration, we consider two-phase
equilibrium within a rectangular crystallite as determined by
equilibrium criteria Equations 4 and 6. Equation 4 dictates that
the slopes of the tangents to ga and gb at xa and xb, respectively,
are equal, while working out Equation 6 stipulates that the
intercepts of these tangents with the x¼ 0 axis, Fa¼ ga� xama

andFb¼ gb� xbmb, must differ by �ð2VDsy=Ly þ 2VDsxz=LxzÞ.
This is schematically illustrated in Figure 3a. For small particle
sizes, the difference in surface energy between the two phases can
cause a sizable shift in the equilibrium compositions, xa and xb.
Adv. Mater. 2009, 21, 2703–2709 � 2009 WILEY-VCH Verlag G
The effect of surface-free-energy contributions is to shift the
equilibrium compositions in the same direction relative to those
for the bulk. This is illustrated in Figure 3b, showing the impact
of particle size on the equilibrium compositions at a phase
fraction wa¼ 0.5. Figure 3b also illustrates the importance of
particle shape. Having a minimal surface-to-bulk ratio, the
spherical particle shape leads to the smallest shift in equilibrium
compositions in Figure 3b. Because the diamond and rectangular
shape have the same surface areas at wa¼ 0.5, the results are
equivalent. The shifts in equilibrium concentrations due to the
surface energy are relatively small compared to that due to the
interfacial energy (note that in Fig. 2b the scale continues to
smaller particle volumes compared to Fig. 3c). It should be noted
that the relative magnitude of the surface energies determines
whether both xa and xb increase (sa< sb) or decrease (sa> sb).
The shape dependence of the equilibrium compositions also
becomes apparent in Figure 3c, where the aspect ratio of the
diamond shape is varied. Effectively, this changes the surface-
to-volume ratio and with it the difference in the average surface
energy between both phases (Ds¼ sa� sb). At an aspect ratio Ly/
Lxz¼ 1.3, the effective surface energies for the (010) and (201)
planes are equal and cancel out, hence the equilibrium
compositions remain equal to the bulk values.

A direct consequence of the surface energy entering
equilibrium conditions (Eqs. 6–8) is that both the equilibrium
conditions and the chemical potential (slope in Fig. 3a) depend on
mbH & Co. KGaA, Weinheim 2707
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the overall composition (for both the spherical and diamond
crystallites as a result of the explicit dependence of Equations 6
and 7 on La, not shown) and the size (all shapes). As a result, the
voltage for both the spherical and diamond crystallites depends
on the overall composition, as shown in Figure 3d. The excess
voltage for the various shapes is due to the larger surface energy of
the nucleating phase, which depends strongly on particle shape
and orientation of the interface. Note that for the spherical
particles an average surface energy is used, where sa< sb, which
rationalizes that only excess voltage is required when the b phase
nucleates in the a phase.

Figure 3a also indicates that a reduced particle size, using the
calculated surface energies[17] in vacuum that imply sa< sb using
Ly/Lxz¼ 1/3, leads to a larger chemical potential, hence a smaller
voltage. In reality, the voltage plateau of LiFePO4 appears to
increase with decreasing particle size,[9] indicating effectively
sa> sb. Figure 3c indicates that particle shape may be
responsible for this; moreover, the practical surface energies
may differ from the calculated values due to the presence of the
electrolyte or a surface coating. Recently, we reported[24] in detail
on the particle-size-depend voltage, and showed that a distribu-
tion of nanoparticle sizes (which is practically always present)
leads to a sloped voltage curve consistent with general findings for
two-phase nanoinsertion materials.[6,15,16,25]

A remarkable finding of the derived equilibrium criteria for
phase coexistence within a nanocrystallite is the predicted
dependence of the equilibrium compositions on the overall Li
composition of the particle. Consequently, the equilibrium
compositions observed by direct structural probes, such as
diffraction (xa and xb) and as observed indirectly by electro-
chemical methods (xa* and xb*), will in general be different.
Assuming a slow constant (dis)charge rate, it is well known that
the electrochemical potential varies outside the miscibility gap
xa* and xb*. During (dis)charge, the equilibrium compositions
are determined at an overall composition that approaches the
equilibrium compositions itself. In contrast, direct structural
probes such as diffraction can be used to determine the
equilibrium compositions xa and xb at any overall composition.
In the large crystallite limit, where surface and interface
contributions are negligible, any variation of the overall Li
composition only changes the relative amount of the coexisting
phases, not the compositions within each of the coexisting
phases. This picture changes at the nanoscale, where the large
contributions from surface and interface free energies to the total
free energy renders the Li concentrations within each coexisting
phase dependent on the overall Li composition of the crystallite.

Figures 2c and 3b show that solubility limits xa* and xb* and
equilibrium compositions xa and xb change with decreasing particle
size, a consequence of the increasing contribution of the interface
and surface energy in smaller particles. Recently, a decreased
miscibility gap in nanosized LixFePO4 has been reported, in most
cases based on (dis)charge experiments and changing lattice
parameters of the coexisting phases.[5,6] Figure 2b indicates that the
interface energy may be responsible for such a decreasedmiscibility
gap. Based on open-circuit cell voltages, Meethong et al.[6] report for
spherical particles with an average diameter of 34nm (volume
�20 � 103nm3) equilibrium compositions at room temperature of
xa� 0.12 and xb� 0.81. Inspection of Figure 2c leads, for this
particle size, to xa� 0.18 and xb� 0.75, indicating that the interface
� 2009 WILEY-VCH Verlag Gmb
energy alone, as calculated at present, could explain the observations.
Meethong et al.[9] suggest that strain arising from the coherent
coexistence between the Li rich and Li poor phase is responsible for
the change in solubilities, which was formally studied by Cahn
et al.[26] While in the present analysis, we have neglected coherency
strains, our results indicates that interface free energy plays at least a
significant role in affecting the solubility limits in nanosized
insertion compounds.

The shift in equilibrium compositions due to the surface
energy as seen in Figure 3b is remarkably similar to what has
been observed in lithiated anatase TiO2 using neutron diffraction.
The diffraction results imply that for particle sizes of 40 nm each
particle has a single phase, either the Li-poor (anatase) or the
Li-rich (Li-titanate) phase, suggesting that for these sizes the
interface energy penalty is too large for two-phase coexistence to
occur within the same crystallite. Therefore, the surface energy
may be considered as responsible for the experimentally observed
increase in equilibrium compositions. Although the calculated
shift in Figure 3b (for LixFePO4) due to the surface energy is in
qualitative agreement with the observed shift in lithiated anatase
TiO2, the shift reported for the latter is significantly larger
(xa� 0.2 at a volume of about 180 nm3), indicating that surface
energies have a significant impact on the equilibrium composi-
tions in nanosized anatase LixTiO2.

Figure 2e indicates that in addition to particle size, also the
particle shape can have a significant impact on the solubility
limits for small particle sizes. This is a direct consequence of the
changing interface/volume ratio. The miscibility gap decreases
for the diamond particle as the angle Q is varied to increase the
interface/volume ratio. Hence, the present calculations predict
differences in equilibrium compositions for similar particle sizes
having different shapes. It is noteworthy that the role of surface
energy on equilibrium compositions also depends strongly on the
particle shape, as illustrated by Figure 3c, where the aspect ratio
can even be chosen to yield equilibrium compositions identical to
those for the large-crystallite limit.

Our current thermodynamic analysis predicts dependencies of
equilibrium compositions on crystallite size and shape that are in
qualitative agreement with experimental observations. This
indicates that interface and surface energies are significant, if
not dominant factors in the description of nanoscale insertion
materials. However, in the current description we have neglected
several important factors that are also likely to affect equilibrium
compositions. Among these is coherency strain energy due to
lattice misfit between the coexisting phases. Coherency strain
energy is known to narrow the two-phase coexistence regions in a
temperature–composition phase diagram.[27] Also the assump-
tion of a fixed interface orientation may lead to an overestimation
of the change in solubility limits, because a real system may
minimize its interfacial energy by locally changing the interface
plane and softening concentration gradients. We have also
neglected the increased pressure, DP, within the crystallite
arising from the surface stress, f, equal to the derivative of
the surface free energy s with respect to surface strain. The
surface stress counters elastic stretching of the surface without
creating new surface sites.[28] Other features that become
important at the nanoscale include the occurrence of space-
charge effects, which offer additional degrees of freedom for
lowering the free energy by releasing the constraint on the local
H & Co. KGaA, Weinheim Adv. Mater. 2009, 21, 2703–2709
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charge neutrality near interfaces, while maintaining overall
charge neutrality.[1]

In our thermodynamic analysis, we first considered two-phase
coexistence within a single crystallite, which allowed us to study
the impact of the interface energy. However, electrodes contain-
ing many particles that can freely exchange Li offer additional
degrees of freedom to minimize the overall free energy, whereby
two-phase coexistence can also be realized by having a subset of
crystallites in the a phase and the remainder in the b phase,
thereby avoiding the need to introduce costly interfaces between a

and b within the same crystallite. The transition from intra- to
intercrystallite phase coexistence appears to be responsible for the
slow voltage relaxation (>10 h) in nanosized LixFePO4,

[29] and in
Li4Ti5O12.

[30] Such slow relaxation would imply that the
intracrystallite approach is in fact a metastable situation in a
packed, well-connected nanoparticle electrode. Interestingly, the
present results suggest that such a morphological change should
have considerable effect on the solubility limits.

Remaining challenges include further refinement of the
open-circuit cell potentials of nanomaterials. A number of
relevant aspects are currently missing within our free energy
model (Eq. 2). First principles calculations by Wang et al.,[17]

for example, showed that the surface redox potential varies with
surface orientation leading to a distribution of potentials. For
small particles, a larger fraction of Li-ions will be stored at
such surface sites, which will be reflected in the open-circuit
cell voltage. This effect can be captured thermodynamically
by incorporating surface excess-Li concentrations within the
surface free-energy description. The occurrence of space-charge
effects at the surface is also likely to affect the local
redox-potential.

An analysis of equilibrium criteria derived for two-phase
coexistence within a nanocrystallite indicates that surface and
interface energies can significantly modify the solubility limits
and equilibrium compositions from their values in the bulk.
Solubility limits depend strongly on the particle size, but
remarkably also the equilibrium compositions depend on the
overall composition and particle shape. Such knowledge is vital
as it largely determines the functional characteristics when
these materials are applied in H-storage devices and Li-ion
batteries, for instance. The present calculations for LiFePO4

rationalize recent experimental observations for different particle
sizes and shapes.
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