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Abstract

Design optimization models often contain variables that must take only discrete
values, such as standard sizes. Nonlinear optimization problems with a mixture
of discrete and continuous variables are very difficult, and existing algorithms are
either computationally intensive or applicable to models with special structure.
A new approach for solving nonlinear mixed-discrete problems with no particular
structure is presented here, motivated by its efficiency for models with extensive
monotonicities of the problem's objective and constraint functions with respect
to the design variables. It involves solving a sequence of mixed-discrete linear
approximations of the original nonlinear model. In this article, a review of
previous approaches is followed by description of the resulting algorithm, its
convergence properties and limitations. Several illustrative examples are given.
A sequel article presents a detailed algorithmic implementation and extensive
computational results
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Introduction
A general mathematical model for engineering design optimization is the nonlinear
programming (NLP) formulation

minimize f(x)
subject to hj(x) =0 j=1..,k
gi(x)<0 j = (k+D),..., m (1)

li<xi<u; i1i=1,..,n

where f, hj and g; are scalar objective, equality, and inequality constraint functions
respectively, and uj and I are upper and lower bounds, respectively, for the design
variables x (see Table of Notation and Abbreviations). The objective and constraint
functions may be given explicitly by algebraic functions or implicitly by iterative
computational procedures, such as finite element analysis. In NLP formulations, the
variables are usually assumed to take real continuous values. However, variables that can
take only integer or discrete values occur naturally and frequently in engineering design
models. Examples are the number of teeth in a gear, the number of bars in a truss, and the
size of components available only in standard sizes. A variable that can take only integer
values is called an integer variable, while one that can take its value only from a set of
discrete values is called a discrete variable. Since integer variables are also discrete, the
term "discrete variables" will refer to both integer and discrete variables, and "integer
variables" to integer variables only. When some variables are discrete and some are
continuous, the problem is a mixed-discrete one. The presence of discrete variables makes
solution of NLP problems substantially more difficult.

Equality constraints cannot be usually satisfied when the variables are discrete, or if
satisfied, they can be eliminated by a variable reduction and elimination procedure, at least
theoretically. For example, the equation x12x3 + x23 - 21 =0 has no solution when x; and
x2 must be integers. Hence, research has focused mostly on problems with only inequality
constraints, and the term Mixed-Discrete Nonlinear Programming (MDNLP) problems is
used here for mathematical models stated as

minimize f(x)

subject to gi(x) <0 j=1,.,m (2)

li<xij<u; 1i=1,.,n

x € X ¢ pixg®d

f:X—>R gi: X—>RK
In the above model, x is a design point in a n-dimensional design space and consists of d
discrete variables and (n-d) continuous variables. D denotes a discrete set for each of the
discrete variables and X _is the real continuous space.



TABLE OF NOTATION AND ABBREVIATIONS

Notation

S - script uppercase denotes a set or vector space

A - bold uppercase denotes a matrix

X - bold lowercase denotes a point or a vector

X1 - bold lowercase with bold subscript refers to a particular point (or vector)
Xj - bold lowercase with normal subscript refers to a component of a vector
X1 - normal lowercase with or without subscript refers to a variable
Abbreviations

LP - linear programming

NLP - nonlinear programming

MDLP - mixed-discrete linear programming
MDNLP- mixed-discrete nonlinear programming
QP - quadratic programming

RMDLP- restricted mixed-discrete linear program
SLP - sequential linear programming

SQP - sequential quadratic programming

We shall define now global and local minimizers for a MDNLP model.

Definition 1. A point X1 is said to be feasible for the MDNLP problem, if g(x1) < 0 and

X1 belongs to the set X.

Definition 2. The value f(x*) is said to be the global minimum, and the point x* the global
minimizer, for the MDNLP problem, if x* is feasible for the problem and f(x*) < f(x) for

all feasible x.

Definition 3. The discrete neighborhood of a point x is defined as the set of all points y,
whose discrete components differ +1, 0 or -1 discrete units from the corresponding
components of x, and whose continuous components are within a distance o of the

corresponding components of x, x itself being excluded from its own discrete

neighborhood. Formally, this set is then defined as

DN(x) = {y : lyi - xil =1 or O discrete units, i=1,...,, d;
ly; - X1 <9, j =d+1,..,n; y # x}




Definition 4. The point x; is said to be a local minimizer for problem MDNLP, if x; is
feasible for problem MDNLP and f(x}) < f(y) for all feasible y contained in DN(x)).

There are several reasons why MDNLP problems are more difficult to solve than
their continuous counterparts. We briefly describe them below.

Since mixed-discrete problems have many local minimizers, it may be meaningless
to find a local minimizer, unless the minimum found is within a certain (acceptable)
distance from a known bound on the global one. Proliferation of local minima occurs even
when the underlying continuous problem (obtained by relaxing the discreteness

requirement) is convex.

Examplel. Consider the model

minimize f=-x1-18x7 X1, X2 integer

subject to g1:x12 +(xp+6)2-85 <0
g2 1-x12 <0 4)
g3:-x2 <0

The continuous problem is convex and has only one global (and local) minimizer at (4.477,
2.059)T. The discrete problem however has three local minimizers at (2, 3)7, (4, 2)T and
(6, DT. See Figure 1.
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Figure 1. A convex continuous problem with three discrete minimizers (Example 1).

Derivation of optimality criteria for a global minimizer has not yet evolved beyond
Definition 2, which really entails comparing all feasible discrete solutions. Unlike its



continuous counterpart, optimality criteria such as the sufficiency of the Karush-Kuhn -
Tucker conditions for convex problems do not exist. This means that after a
computational procedure terminates, it is difficult to guarantee that the point found is a
global minimizer unless an explicit or implicit enumeration of all other points has been
considered.

Further, MDNLP problems are NP-complete (Papadimitriou & Steiglitz, 1982),
meaning that it is not possible to guarantee finding the solution in polynomial time. NP-
complete problems are inherently hard to solve and in practice one has to be satisfied with
procedures that find just a good feasible solution.

Finally, the global minimizer of a MDNLP problem may be far from that of the
corresponding continuous problem, obtained when the discreteness requirement is relaxed.
Procedures that solve the relaxed problem and search for a discrete solution in the
neighborhood of the continuous solution, often will either find only a local discrete
minimizer or fail to find a discrete solution at all. Furthermore, numerical techniques that
tackle the continuous problem usually guarantee to find only a local continuous minimizer
and not a global one. Hence, it becomes even less likely that techniques which simply
couple continuous optimization with a local search strategy will find the global discrete
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Figure 2. The discrete minimizer is not in the discrete neighborhood of the
continuous minimizer (Example 2).



Example 2. The problem
minimize f= (x1-3)2+(xp-4)2 X1, X7 integer
subject to g1:X1+3x2-7.5 <0
g2:x1-3 <0 (b)
g3:-x1 £0 (5)
g4:-x3 <0
has the continuous minimizer at (2.251, 1.750)T while the global discrete minimizer is at
(1, 2)T. A local neighborhood search near the continuous minimizer will produce the local
discrete minimizer at (3, 1)7. However, f(1, 2) = 8, while f(3, 1) = 9; see Figure 2. D

These difficulties imply that solution techniques are generally computationally
expensive. Some techniques (e.g., dynamic programming, outer-approximation) are not
so expensive but require special model structure, while others (e.g., Lagrangian relaxation,
discrete descent) find only an approximate solution and not necessarily the global one even
when the corresponding continuous model is convex. Techniques such as branch and
bound, that apply to more general models and guarantee finding the global minimum,
generally require a large number of function evaluations, and tend to be impractical for
moderate- to large-size problems with computationally expensive function evaluations.

The present article investigates a strategy for solving MDNLP problems with no
explicit special structure, but exploiting a specific model property, i.e., presence of
monotonicities in the model functions. The approach is to solve a sequence of mixed-
discrete linear approximations to the nonlinear problem. Total ordering of the discrete
variable values is assumed, and the method seeks the global solution rather than an
approximate one. Theoretical convergence arguments are given for MDNLP problems with
convex objectives and constraints. Extensions to non-convex problems are heuristic, but
effective in practice. The approach is motivated by the fact that, for the class of problems
where the objective and constraint functions exhibit monotonicities with respect to the
design variables (such as sizing problems in structural design), strategies based on
sequential linearizations can be very effective (e.g., see Tzannetakis & Papalambros,
1987). For at least this class of problems, the proposed mixed-discrete strategy is
particularly effective (Loh & Papalambros, 1989; Bremicker, Loh, and Papalambros,
1989).

In the remainder of this article, after a review of Mixed-Discrete Linear
Programming (MDLP) and MDNLP solution strategies, we describe the sequential
minimization approach, resulting basic algorithms and convergence properties. We also
examine briefly how concepts in monotonicity analysis (Papalambros & Wilde, 1988) are



affected by the presence of discrete variables. In a sequel article (Loh & Papalambros,
1989), a detailed algorithmic implementation and extensive numerical results are presented.
Both these articles are based on the dissertation by Loh (1989). Application of the
algorithm to optimal structural design problems in described in Bremicker, Loh, and
Papalambros (1989). H

Previous Efforts for Solving Mixed-Discrete Problems

Many strategies for MDNLP problems derive their basic ideas from solving MDLP
problems, which in general being also NP-complete are still difficult but more tractable. A
classification of algorithms is made by the type of variables they can handle. The variable
disticions we use here are: binary (zero-one) versus non-binary; purely discrete versus
mixed-discrete; and integer versus arbitrarily discrete.

Several methods cover more than one classification either directly or indirectly
through model transformation, but some methods can be applied strictly only to a specific
model type. Model transformations are used to exploit one solution technique for different
models, but such transformations may bring new difficulties. For example, a purely
discrete linear model with non-binary variables that takes a long time to be solved by a
cutting plane method can be transformed into a purely 0-1 discrete linear model that can be
solved efficiently by Balas' additive algorithm. However, this will usually result in a large
increase in the number of variables.

Methods for linear problems will be reviewed first, as the subsequently proposed
SLP approach uses solutions of mixed-discrete linear subproblems.

MIXED-INTEGER LINEAR PROGRAMMING (MDLP)

An obvious way to try to solve a MDLP problem is by rounding the continuous
optimizers to nearby discrete values. When the number of discrete choices in each discrete
set is large and the feasible domain is also large, such an approach works to the extent that
the answer obtained is optimal or near-optimal. However, it is well documented (Hillier &
Lieberman, 1974; Glover & Sommers, 1975) that an optimal or even a feasible solution
may not be produced, because there may not exist any feasible discrete solution in the
neighborhood of the continuous optimizer. More elaborate methods, briefly reviewed here,
are branch and bound, cutting plane, dynamic programming, implicit enumeration, and
Lagrangian relaxation.

Branch and bound is most commonly used for purely discrete and MDLP problems
without special structure. Its first use for MDLP is attributed to Land & Doig (1960),
whose algorithm was subsequently modified by Dakin (1965). In branch and bound



procedures, subproblems are created by partitioning the feasible domain to force the integer
variables to take integer values. The partitioning is done perpendicular to the axis of the
integer variable chosen for the branching. In cutting plane algorithms, the feasible domain
stays in one continuous piece, while trimming away corners of the domain that are
solutions to the continuous linear program but violate the integer requirement. This is done
by adding a linear constraint, called a cuz, to the continuous problem, cuts not being
perpendicular to any axis in general. The method is readily applicable to both purely integer
and mixed-integer LP problems. The first cutting plane algorithm is attributed to Gomory
(1958), with many variations following (Salkin, 1975). Though these algorithms
generated much theoretical interest, they are not generally used in practice even for linear
problems of moderate size. One difficulty is that as cuts are added they tend to become
more parallel, leading to numerical difficulties. Another difficuity is that a large number of
cuts is required to produce an integer or mixed-integer solution, even for small problems.
An implementation of Dakin's algorithm for MDLP is used in the SLP algorithm proposed
in the present article.

Certain multistage problems can be solved by dynamic programming, leading to
extremely efficient methods for mixed-discrete models. For example, in the multiple-choice
knapsack problem, dynamic programming (Bean, 1987) is orders of magnitude faster than
branch and bound (Sinha & Zoltners, 1979). Difficulties exist also. Casting problems into
a dynamic programming model requires existence of monotonicity and separability (Mitten,
1964). Further, dynamic programming works well when the number of constraints is
small compared to the number of variables, making it easy to find minimal values that are
also feasible for intermediate stages. In most mechanical engineering design optimization
problems, the converse is true; there is usually a small number of variables and a relatively
large number of constraints. Finally, dynamic programming is usually memory intensive
due to storage of values for the intermediate stages.

In implicit enumeration methods, one may enumerate a partial tree and claim that
non-enumerated nodes are infeasible or have objective function values worse than those
enumerated. Branch and bound and dynamic programming are implicit enumeration
methods, but because of their distinctive features they are often considered separately. The
most well-known implicit enumeration is Balas' Additive Algorithm (Balas, 1965) used to
solve 0-1 integer LPs. Lemke & Spielberg (1967) extended Balas' algorithm to handle
continuous variables as well. At each node where the integer variables have been fixed, a
LP-subproblem is solved to obtain the continuous variables.

The Lagrangian relaxation method by Geoffrion (1974) has its roots in the
surrogate constraints concept of Glover (1968). It takes advantage of the fact that often a



difficult integer programming problem is an easy one complicated by a small number of
troublesome constraints. Adding a scaled vector of these complicating constraints to the
objective function and removing ("relaxing") these constraints from the constraint set yields
an easier problem. The optimal objective function value for the relaxed problem is a lower
bound to the original problem, but to obtain a tight bound, the dual of the relaxed problem
must be solved. This dual is C! discontinuous and its solution requires methods for non-
smooth optimization. Lagrangian relaxation is best used in conjunction with branch and
bound. Unfortunately, the minimizer found for the dual of the relaxation can be very
different from the true multipliers of the original problem, without even primal feasibility.
This makes relaxation unsuitable for an SLP method. In addition, the selection of
constraints to be considered as "easy" and "complicated" is subjective, and the choice
greatly affects the effectiveness of the method. As there is no theory about which
constraints to relax (except perhaps monotonicity analysis - if applicable), use of relaxation
in a SLP approach with automatic generation of a MDLP subproblem appears difficult.

MIXED-INTEGER NONLINEAR PROGRAMMING (MDNLP)

Reiter & Rice (1966) proposed a modified discrete gradient method for quadratic
mixed-discrete problems, similar to the gradient method for continuous problems. A
distribution of results from different starting points gives an estimate of the global solution.
Numerical tests indicated that a reasonable solution may be reached. The method can be
modified for mixed-discrete and non-convex problems. However, only an approximate
solution is produced and a global one is not guaranteed.

Another approach is to treat discrete requirements as explicit constraints and
construct an objective function penalizing deviations from discrete values. Davydov &
Sigal (1972) devised a number of penalty functions for 0-1 problems and convex problems
with regularly spaced discrete intervals. Gisvold & Moe (1972) offered a similar method
for discrete variables with arbitrarily spaced intervals. A recovery step is used to proceed, if
the penalty method does not terminate near a discrete point. The algorithm was applied to
two nonlinear structural problems with results comparable to those from branch and bound.
There are two main difficulties that arise in employing this method, both hard to overcome.
As in the continuous penalty method, penalty parameters are difficult to set a priori, with
different parameters leading to different results. Unless one has some knowledge about the
discrete solution, it is difficult to decide whether the result obtained is optimal or the
parameters need adjustment to continue iterating. The more serious difficulty is that adding
a penalty for moving away from a discrete point creates a local optimum for each discrete
point. This makes finding global optima with a continuous method even more difficult.



Cooper & Cooper (1975) developed a search procedure for purely integer nonlinear
problems, which uses dynamic programming as an intermediate step. The problems must
have objectives that are separable, monotonic in every variable, and also integer functions
themselves. The approach is simple and elegant, the algorithm terminates after a-finite
number of steps, and no storage of intermediate results is required. However, the obvious
model limitations do not allow general utility. Cooper & Cooper showed very attractive
computational times, but their examples were created by an automatic generation process
and did not correspond to real-world problems.

The only application of Lagrangian relaxation to discrete nonlinear problems that
the authors have found, was by Schmit & Fleury (1980). A structural optimization
problem is solved by a sequence of convex and separable approximation subproblems.
Each subproblem is solved by Lagrangian relaxation and the dual objective function is
maximized using a subgradient method combined with explicit enumeration. This method
was applied by Ringertz (1988) to solve six structural optimization problems, and the
results were compared with those using branch and bound. Similar to applying Lagrangian
relaxation to MDLP problems, minima obtained for these nonlinear structural problems are
very close or equal to those given by branch and bound, but the minimizers obtained are
different.

Fox & Liebman (1981) used the "complex" algorithm (Nelder & Mead, 1965; Box
1965) for continuous NLP problems, modified for discrete and mixed-discrete variables.
Numerical tests on fifteen problems gave better results than both a discrete penalty
algorithm and an algorithm using rounding off the continuous optimizer.

Gupta & Ravindran (1983) applied Dakin's method to nonlinear mixed-integer
problems, using a generalized reduced gradient method to solve the nonlinear continuous
subproblem at each node, and published results for 24 test problems. Computational effort
is affected by rules for selecting nodes for expansion and variables for branching. Gupta
(1980) considered three choices for node expansion: depth-first search, best-first search
based on the objecﬁve function, and best-first search based on an estimation function
combining the objective and weighted fractional parts of the variables. Three choices were
also considered for branching variables: the most fractional part, the lowest-indexed-first,
and a "pseudo-cost" index estimating deterioration of the objective per fractional change in
each integer variable. No single choice appeared to offer a definite advantage. Gupta used
a statistical method to compare speed of convergence using different combinations of these
choices. Overall, he found that for selecting a branching variable, the best strategy is to
branch from the variable with the most fractional part. For selecting the expansion node,

the best strategy is either to use the node with the lowest objective function or use an
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estimation function criterion. Sandgren (1988) used basically the same approach as Gupta,
but included cases with equality constraints having 0-1 variables. He also included some
heuristics in monitoring expansion of nodes and the solution process of subproblems.

The main advantage of branch and bound is that a proper fathoming rule guarantees
finding the global minimum. The bounding process assumes that at a discrete minimizer
the objective function value is a lower bound on the discrete minimum of any other node in
the tree, an assumption valid for objectives that are at least pseudoconvex and constraints
that are convex. For non-convex problems, branch and bound cannot guarantee finding
the global minimizer since it may end up fathoming nodes that should not have been
fathomed. However, branch and bound usually finds a good solution for these cases. The
main disadvantage is that a large number of nodes and corresponding nonlinear
subproblems is generated. Except for small problems, branch and bound is not a realistic
alternative when solution of subproblems is computationally intensive.

For mixed-discrete problems, Cha & Mayne (1987) suggested coupling a
sequential quadratic programming (SQP) method with a local search strategy. A
continuous SQP algorithm moves the search quickly in the vicinity of the optimizer, and a
local search based on gradient information of the objective finds the best discrete solution in
this neighborhood. The local search uses first the projected gradient direction; if this fails
to find an improved discrete point, the search is carried out along coordinate directions in
order of decreasing value of gradient components. If this also fails, a heuristic "two
variables at a time" search is made in a selected quadrant of the discrete neighborhood. The
two phases, QP approximation and local discrete search, are applied in turn until no
improved discrete points can be formed. Cha & Mayne (1988) showed that, instead of the
popular rank two update formula for the Hessian matrix, a symmetric rank one update
must be used that does not require quasi-Newton directions to have an accurate estimate of
the Hessian. This is important, since due to the discrete nature of the variables, the update
vectors cannot take quasi-Newton directions.

The algorithm handles discretization at regular and irregular intervals. Results for
25 test problems showed a low number of objective and constraint function evaluations.
However, there is no guarantee for finding the global minimum, particularly when the
discrete optimizer is at least a few discrete steps away from the continuous one. The
algorithm brings the search to a neighborhood of the continuous optimizer, and settles on
the local discrete minimizer in this neighborhood. Furthermore, as the local search depends
on the direction of the gradient vector of the objective, when the objective function is not

pseudoconvex the downhill gradient vector can point in the wrong direction for the local
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search. For example, for the non-pseudoconvex objective shown in Figure 3, at x = 3,
the downhill gradient vector suggests that, to decrease the objective, the search should be
carried out in the positive x direction. Since f(4) > f(3), the local search stops at x = 3,
whereas a better discrete optimizer is at x = 2.

1A

Figure 3. A non-pseudoconvex function

The method is not likely to fail if the interval of discretization is relatively small so that the
discrete optimizer lies near the continuous one and the downhill gradient vector is unlikely
to point in the wrong direction. For several of the test problems reported by Cha & Mayne
(1987), the interval of variable discretization was 0.001, making the problems behave
almost like continuous ones. Such criticisms not withstanding, this SQP approach appears
useful for solving mixed-discrete nonlinear problems.

Lu (1988) solved purely discrete nonlinear optimization problems by Boolean
algebra techniques. The objective and constraints are converted into equivalent 0-1
polynomial functions. Each Boolean polynomial is equivalent to the union of all its prime
implicants (Hammer, 1974). Some Boolean variables are determined by contradiction,
fixation and implication, and others by a heuristic search that decreases the objective
function. When the objective cannot be reduced further, the point is taken as optimal. The
main advantage of this method is that it is very fast. Some disadvantages are: (1)
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Conversion to a 0-1 model causes a large increase in the number of variables. For
complicated constraints, conversion is difficult and prone to error, though symbolic
manipulators can be used. The prime implicants are also hard to generate; if the constraints
come, say, from finite element analysis, the task may be impossible. (2) Reduction of the
objective uses heuristics that may lead to a local optimizer. (3) No extension to the mixed-
discrete case seems possible.

Duran & Grossmann (1986) proposed a linearization algorithm for mixed-integer
NLP, when integer variables appear only in linear functions and the nonlinear functions
involving continuous variables are convex. Separability of integer and continuous variables
allows the feasible domains to be independently characterized. The nonlinear constraints
are linearized to create a mixed-integer linear approximating "master” problem. This is
solved to obtain values of integer variables. With integer values fixed, a continuous
nonlinear subproblem is solved to get a new iterate. A new linearization is then taken and
added to the master problem. Thus, the supporting half spaces, whose intersection confines
the convex feasible region, are obtained. The algorithm consists then of solving an
alternating sequence of nonlinear subproblems and a mixed-integer linear master problem.
By the convexity assumption, the continuous subproblem provides an upper bound to the
MDLP problem while the master problem provides a lower bound. When the two bounds
meet or cross over, the process terminates. The method is similar to the generalized
Bender's decomposition (Geoffrion, 1972). A detailed discussion of the relationship
between the two is given in Duran's dissertation (1984).

Duran & Grossmann (op.cit.) reported results on four test problems with 0-1
variables. An extension by Kocis & Grossmann (1987) included nonlinear equality
constraints with only continuous variables and linear equality constraints with only integer
variables. Satisfactory results were reported for design optimization of chemical process
flowsheets. Viswanathan & Grossmann (1989) further extended the algorithm for
nonconvex constraints by augmenting objective and constraints in the mixed-integer linear
master problem with penalty functions. Computational results on eighteen test problems
show that the proposed extension has high reliability for finding the minimizers in these
nonconvex problems.

Finally, an SLP method for purely discrete NLP problems in truss design was
reported by John, Ramakrishnan, and Sharma (1988), with truss sizing examples.

In conclusion, no single method appears superior in all three criteria of general
applicability, robustness, and efficiency. These desired characteristics must be traded off,
and any special structure in the model should be exploited.
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A Basic Sequential Linearization Algorithm
We now outline a primitive SLP algorithm for MDNLP problems, and in the next section
we refine it in order to overcome convergence difficulties. First, let us define some terms.

Definition 5. Given a MDNLP model of the form
minimize f(x)
subject to gx)<0 (6)
x € X € pixged
the mixed-discrete linearized model (MDLP) about a point xg, MDLP(x), is:
minimize Vfxp)T (x - x¢)
subject to g(xg) + Vgx)T(x -x9)<0 (7)
x € X< pix g0-d

Definition 6. A point xj is said to be MDNLP-feasible, if g(x1) < 0 and xj satisfies all
discreteness requirements of X.

Definition 7. A point X1 is said to be MDLP-feasible with respect to model MDLP(xg), if
g(xg) + V g(xg)T(x - x¢) < 0 and x1 satisfies all discreteness requirements of X,

The basic SLP algorithm (SLP1) is given as follows:

Algorithm SLP1
1. Given xg, 6 (8 > 0). Setk = 0.

2. Construct MDLP(xk).

3. Solve xk+1 = arg min (MDLP(xk)) using a LP solver and Dakin's
branch and bound rule.

4. If Il xk41 - Xk Il < 8, stop. Else set k =k + 1 and go to step 2.

Definition 8. The SLP1 solution to MDNLP is defined as the point obtained at the
termination of algorithm SLP1.

Example 3. (Gupta, 1980; Test Problem 3.) Consider the problem
minimize f=(x1-8)2+ (x7-2)2 X1, X2 integer
subject to gr: 0.1x12-x2<0
g2 3X1+X - 4550 )



The minimizer of the continuous problem is at (5.245, 2.75)T. Round it to (5, 3)T and note
that this point is infeasible. Linearize the model in Eq.(8) at point (5, 3)T and solve the
integer problem:

minimize -6x1 + 2x2 X1, X2 integer
subject to X1-%x2-25<0
%x1+ X2 -45<0 )

The solution (4, 2)T is feasible with f(4, 2) = 16. Linearize again at (4, 2)T to get the
problem:

minimize -8x1 X1, X2 integer
subject to 0.8x1-x2-1.6<0
%X1+ X2 -45<0 (10)

Again (4, 2)T is the minimizer and the linearization process terminates. (This is the same
discrete solution obtained by Gupta.) It will be shown in Theorem 4 of the next section that
this point must be the global discrete minimizer for the nonlinear problem. Graphically, the
process is depicted in Figure 4. D

Convergence and Refinement
We now derive some theoretical results and show how a modified SLP algorithm may

converge to the discrete optimizer for convex problems.

Definition 9. (Ponstein, 1967.) Let S be a nonempty set in R". Let a function f: §—> R
be differentiable on S. The function f is said to be (strictly) pseudoconvex, if and only if
for every x1, X2 € S,

(VExDT(x2-x1) 2 0 ==> f(x2) > f(x1)) (11a)

VExDT(x2-x1) 2 0 ==> f(x2) > f(x1) (12a)
or equivalently

(f(x2) < f(x1) ==> V f(x1)T(x2-x1) < 0) (11b)

f(x2) < f(x1) ==> Vf(x1)T(x2-x1) <0 (12b)
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Figure 4. The linearization process for Example 3. (a) Nonlinear problem.
(b) LP approximation at (5, 3)L. (c) LP approximation at (4, 2) .



LINEAR CONSTRAINTS CASE
Theorem 1. Let f: R® —> R_ be a pseudoconvex function and gi R™ —> R be linear

functions for all i,1 = 1,..., m. If the SLP1 solution of the problem
minimize f(x) x € X
subject to gi(x)<0 i=1,..,m (13)

converges to a point X1, then X1 is the global discrete minimizer.

Proof: (By contradiction.) Since gj is linear, its linearization is gj itself. Hence, any
feasible point x in any of the linear approximation programs is also feasible for the
nonlinear problem in Eq.(13). Assume the algorithm has terminated at point x1. Then x;

is also the minimizer of the LP problem

minimize VxT x
subject to gix) <0 (14)
x € X

Assume further there exists a point x3 such that

f(x2) < f(x1) (15)
with X1, X3 both feasible. Since xj is the minimizer of LP problem (14), we have

VixpTxy < V)T xz ==> 0< VExT(x2-x1) (16)
From the definition of pseudoconvexity in Eq.(12a), this implies f(x2) > f(x1) which
contradicts the assumption in Eq.(15). D

So far we proved is that if the algorithm converges, then it has to converge to the
global minimizer. We have not yet shown that the algorithm is a descent one, and that it
will not cycle or oscillate between two fixed points.

Example 4. In one-dimension, for the model

minimize f=(x-3)2 x integer
subject to x<4 (17)
X>2
Algorithm SLP1 will cycle between points x =2 and x = 4. D

To have descent and to avoid cycling, we need two addditional steps in the
algorithm:

1. In generating the successive linear programs, move to another point x3 from x1

only if there is a strict improvement in the nonlinear objective, i.e., only if f(x2) <

f(x1).
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2. Incorporate decreasing step bounds (Palacios-Gomez, 1980), i.e., linearize the

MDNLP model in the form
minimize V f(x¢)Tx
subject to Vg(xg)T(x-xq) + g(x0) <0 (18)
-to <x-x0 <t
x € X

and decrease tg as the algorithm progresses.

Definition 10. Model (18) is called the restricted mixed-discrete linearized program
(RMDLP).
An improved SLP algorithm (SLP2) is as follows:

Algorithm SLP2

1. Given xq, tg, 1y, 0 (ry> 0). Set k = 0.

2. Construct RMDLP(xk).

3. Solve z = arg min (RMDLP(xk)) by using a LP solver and Dakin's branch and
bound rule.

4. Ifll z - xk Il < J, stop.

5. If f(z) < f(xk), set k=k+1, xk =z, go to step 2. Else set tg = to/ry, go to step 2.

Example 5. Consider the problem
minimize f=7x32 + 6x22 + 8x32 - 6x9x3 + 4x9x3 - 15.8x] - 93.2x2 - 63x3 + 500
subjectto gy : 142x1 + 172x9 + 118x3< 1992
g2: 98x1+ 114x9+ 44x3< 1162 (19)
g3: 40x1+ 72x9+ 34x3<703
with x1, X2, X3 integer. Linearize initially at (3, 6, 3)] and impose a step bound of tg; = 5:
minimize 8.221x1 - 9.164x, - 8.976x3
subject to g1 142x1 + 172x9 + 118x3 < 1992
g2 98xp+ 114xp+ 44x3<1162 (20)
g3: 40x1+ T2x9+ 34x3<703
-5<x1-3 <5
S5<x2-6<5
-5<x3-3<5
X1, X2, X3 integer
Point (3, 6, 3) is MDNLP-feasible and f(3, 6, 3) = 83.4. The solution to the LP
subproblem in Eq.(20) is (1, 5, 8)T with a nonlinear objective value of f(1, 5, 8) = 296.8.



Since this is worse than the incumbent, we reject it and decrease the step bounds by some
ratio, say 2, from tgj = 5 to tg; = 2.5. Solving again, we get point (1, 7, 4)T. Since (1, 7,
4) =96.8 is worse than the incumbent, we reduce tg to 1.25 and try again. This time we
obtain the point (2, 7, 3)T with (2,7, 3)= 69.0. Since this improves the nonlinear
objective, we accept (2, 7, 3)T as a better point to replace the incumbent and linearize
again, restoring the original step bounds. The new subproblem is

minimize - 5.786x1 + 2.842x5 + 1.024x3
subject to g1: 142x7 + 172x9 + 118x3 < 1992
g2: 98xy+ 114x9 + 44x3< 1162 (21)
g3: 40x1 + 72x2+ 34x3<703
S5<x1-2<5
5<x9-7<5
-5<x3-3 <5

X1, X2, X3 integer
The solution to this LP is (7, 2, 1)7, with £(7, 2, 1) = 421. We reject it, decrease tg to 2.5,
and solve again. We now get point (4, 5, 1)T> with f(4, 5, 1) = 173.2, and rejecting it we
reduce tg to 1.25. The new solution is (3, 6, 2)T, with (3, 6, 2) = 90.4. We reject it and
reduce tg to 0.75. Finally, we get (2, 7, 3)T and the algorithm has converged. D

Theorem 2. Algorithm SLP2 is a descent algorithm and will terminate.

Proof: Assume the linearization is done at a discrete point X1 (the current incumbent). The

LP subproblem is
minimize V f(x1)Tx
subject to Vg(x-x1) + g(x1) <0 (22)

x € X
Let x5 be the solution to this LP, and assume that f(x3) > f(x1), so that descent does not
occur naturally without imposition of some step bounds. Let tg' be half the length of the
side of the smallest hypercube with x1 as center that includes x», i.e., | x1j-x2; | = to;' (see
Figure 5). Then xj is the global minimizer of the problem

minimize Vf(x1)Tx
subject to Veg(x-x1) + g(x1)<0 (23)
x € X

-to' < x-x1 < tp'
Since f(x3) > f(x1), exactly one of the following three cases must happen:
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Figure 5. The smallest hypercube centered at x1 which includes x2.

Case 1: xj is the global minimizer of the mixed-discrete nonlinear program.

Case 2: There exists a point x3 such that Ix3 - x1l < ty', x3 is MDNLP-feasible,
and f(x3) < f(x1).

Case 3: There does not exist a point x3 such that Ix3 - x1l < t¢', x3 is MDNLP-
feasible, and f(x3) < f(x1), but there exists a point x4 such that Ix4 - x1/ >
to', x4 is MDNLP-feasible, and f(x4) < f(x1).

In Case 1, when we progressively shrink the hypercube from its initial value of
to', we find that any discrete feasible points in the resulting problem must have objective
function values greater than f(x1), and so they are rejected. The hypercube is eventually
reduced to a size smaller than the discretization interval, and thus we conclude that x1 is the
global minimizer. In Case 2, if the hypercube is decreased from to' by a small amount,
point X3 is rejected as infeasible. The next feasible discrete point will either have f(x) >
f(x1) or f(x) < f(x1). In the latter case, we will have achieved descent of the objective
function. In the former case, this point is rejected and the hypercube is shrunk further,
until eventually a point x3 is reached, x3 being MDNLP-feasible with f(x3) < f(x1). In
Case 3, we will reject any intermediate points found as we shrink the hypercube to a size
smaller than the discretization interval. We will conclude erroneously that x1 is the global
minimizer when there exists a point x4 such that x4 is MDNLP-feasible with f(x4) <
f(x1). In all three cases, Algorithm SLP2 will terminate. In Case 1, the algorithm
terminates at the global discrete minimizer. In Case 2, the algorithm descends and
terminates when the best discrete minimizer in the hypercube is found. In Case 3, the
algorithm terminates but not at the global discrete minimizer. D
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Case 3 is much less likely to occur than Case 1 or Case 2. For pseudoconvex f,
the graph of f along x1x2 must be as shown in Figure 6 with f(x1) < f(x2), and the
objective in the neighborhood of x1 is decreasing in the direction x1x3, (See Theorem 3
below.) The graph of f along x1x4 must be as shown in Figure 7a or 7b with f(x1) >
f(x4), and the objective in the neighborhood of x1 is also decreasing in the direction
X1X4. (See Theorem 3.) Since in both directions x1x2 and x1x4 the objective function is
decreasing, it is unlikely that all intermediate discrete points found in the hypercube have
f(x) > f(x1), such that there does not exist a point x3 within the hypercube that is
MDNLP-feasible with f(x3) < f(x1), and yet have a point x4 such that f(x4) < f(x1), Ix4 -
x1/ > t¢'. This can happen only if the interval of discretization is relatively large and the
level sets of £ are ellipsoids of high eccentricity, aligned in such a way that level sets lower
than f(x1) avoid all discrete points in the cone spanned by vectors x1X3 and X1X4.

Furthermore, if Case 3 occurs for a quadratic objective, the difference of the
objective function value of a point like x4 and the objective function value of the
continuous minimizer is bounded from below. The bound depends on the smallest
discretization interval and the maximum and minimum eigenvalues of the Hessian. (The
exact formula for this bound is currently under investigation.) This implies that, if the
difference of the objective function value of a point found within the hypercube from that of
the continuous minimizer is smaller than this bound, we can guarantee that Case 3 does not

occur.

£ A

Rmm - - — = =

Figure 6. The graph of f along x1x2.
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Figure 7. The two possible graphs of f along x1x4.

Theorem 3. Let Xi, X2, X4 be defined as in the proof of Theorem 2. Then in the
neighborhood of x1 the following are true:

(a) the objective function is decreasing in the x1x2 direction;

(b) the objective function is decreasing in the x1x4 direction.

Proof: (a) Since X3 is minimizer of V f(x1)T x, we have
VixT(xz) < VExpDT(x1) ==> V{xT(xz-x1) <0
(b) Since f(x4) < f(x1), then from the definition of pseudoconvexity
V £(x1)T(x4-x1) < 0. ]

CONVEX CONSTRAINTS CASE
Let us now extend the above results to nonlinear g, specifically to g that are convex.

Theorem 4. Let f: R™ —> R be a pseudoconvex function and g;: R" —> R_be convex

functions for all i,i = 1,..., m. If the SLP1 solution of the problem

minimize f(x)
subject to gi(x)<0 i=1,...,m 24)
X € X

converges to a MDNLP-feasible point x1, then X7 is the global discrete minimizer.

Proof: The proof follows that for Theorem 1. Since g is convex, its linearization g(x1) +
Vg(x1) (x - x1)<0is an outer-linearization, i.e., the LP approximation overestimates
the NLP feasible domain. Therefore, any x feasible for the MDNLP problem in Eq.(24) is

22



feasible for its LP approximation. By the same contradiction as in Theorem 1, it can be
shown that if x1 is feasible for the MDNLP problem, then it must be the global discrete
minimizer. D

Extension of this result to Algorithm SLP2 requires use of decreasing step bounds.
Note that although any x feasible for the NLP problem is also feasible for its LP
approximation, the converse is not true. To deal with this difficulty we introduce the
concept of &-feasibility, similar to that introduced by Palacios-Gomez (1980) for NLP

problems, but applied to mixed-discrete points.

Definition 11. The sum of infeasibilities (SUMINF) of a point x1 is defined as
SUMINF(xy) = Zgj(xl), gj> 0. A point Xy is said to be &-feasible for a MDNLP
model, if x; satisfies the discreteness requirement and SUMINF(x1) < €.

The parameter € essentially enlarges the feasible domain of a NLP model by an
amount € for each constraint. For a given €, we accept a new point Xpew as better than the
incumbent xg]d under one of two conditions:

(1) SUMINF(xpew) < SUMINF(x¢ld), if Xold is €-infeasible, or

(2) f(xnew) < f(xold), if Xold is €-feasible and xpew is €-feasible. (25)
This acceptance rule mandates that for a given €, a new point is accepted if it improves &-
feasibility of an e-infeasible incumbent, or if it strictly improves the objective without
sacrificing €-feasibility. For each € value, there is only a finite number of discrete points
that yield successively better objective function values. As € is progressively tightened
(e—>0), points are forced to be feasible for the MDNLP model and those intermediate
points that are LP-feasible but MDNLP-infeasible are rejected. For each € value, the
algorithm descends by virtue of the linearization process with decreasing step bounds, and
if we tighten € gradually, we ensure we will not miss intermediate points that may be part

of a new linearization. Thus we have shown

Theorem 5. The results of Theorem 4 apply to Algorithm SLP2, modified by the €-
feasibility acceptance rules of Eq.(24).

Incorporation of e-feasibility into Algorithm SLP2 and other implementation details
are further described in the sequel article (Loh & Papalambros, 1989) where an algorithm
called MINSLIP is described.
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Pitfalls of the SLP Approach
In the present section we consider some situations where the SLP approach will fail to
converge to the global minimizer.

NON-PSEUDOCONVEX OBJECTIVE

When f is not pseudoconvex, the algorithm can converge to a point X1 whereby
- V{(xq) points in a direction opposite to where the optimizer x4 may be.

[
N S S g
| ! | i
!

0.0000L---L_-- _ .._1__-_1_-__1___.1___4]

0.0000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.00

CONTQUR PLOT OF F=X1~4/18-X1220X2/243/42X1~2+X2~2-X1-20X2+6

Figure 8. A nonconvex f with the downhill gradient pointing away from the global
discrete minimizer

Example 6: Consider the problem (see Figure 8)

minimize f=0.0625x1% - 0.5x12x7 + 0.75x12 +x92 - X1 - 2x2 + 6 (26)
The gradient of the objective is given by

V£=(025x13 - x1x2 + 1.5x1 + x22 - 1, - 0.5x12 + 2x9 - 2)T
At (3, 5T, V£ =(-425,3.5)7. Linearizing at (3, 5)T, the linear subproblem is
{min -4.25x1 + 3.5x7}. A search along the — V f direction will not find the optimizer (2,
2)T as the vector — V f is pointing in the wrong direction. The algorithm will wrongly
conclude that the function cannot be improved further from point (3, 5)7. D
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NONCONVEX CONSTRAINTS
When a constraint is not convex, its linearization is not an outer approximation and
part of the NLP feasible region can be cut off by the linearization. See Figure 9.

X2
feasible region that gets cut off

81 o \. . ./. ./.
/

X

Figure 9. Cutting off feasible regions when g is not convex.

NONLINEAR EQUALITY CONSTRAINTS

The inclusion of nonlinear equality constraints in general turns the problem into a
nonconvex one. In principle, equality constraints can be eliminated by variable elimination
and substitution but in practise this may be hard to do. The requirement that the variables
take only discrete values makes it even harder to solve for any nonlinear equality. In a SLP
approach, the linearization may lead to a situation where there is no hope of finding any

other discrete answer, as in Figure 10.

X2‘

its linearization

equality
constraint

X1

Figure 10. A nonlinear equality constraint and its linearization.



Monotonicity and Mixed-Discrete Variables

In this section we will consider some techniques that may assist in identifying a global
minimizer or prove that a point cannot be a global minimizer. We will consider optimality
conditions for discrete and mixed-discrete variables for problems that have objective and
constraint functions displaying monotonicity properties. Such monotonicity analysis has
been developed for problems with continuous variables (see, €.g., Papalambros & Wilde,
1988). We shall briefly examine the extension of monotonicity principles to purely discrete
and mixed-discrete problems.

We start with some definitions.

Definition 12. A (differentiable) function f is said to be monotonically increasing
(decreasing) with respect to a continuous variable x;, if ( f/0x; ) > 0 ( < 0) for the range of

X; applicable (Papalambros & Wilde, 1988).

Definition 13. A function f is said to be monotonically increasing (decreasing) with respect
to a discrete variable x; , if given points X' = (X1,..., Xi-1, Xi'» Xj+1»----Xp)] and x" =
(X105 Xio1> Xi'"' Xig1eesXn)! for each x;, x;" € D(x;), we have

Xi > %" ==>f(x")>(<) f(x") 27)
Strictly monotonic functions are defined with strict inequality.

Definition 14. An inequality constraint is said to be active (binding) at the optimizer, if
removing it from the model changes the optimum of the relaxed problem ("relaxed" here
meaning that the constraint is omitted [Papalambros & Wilde, 1988]).

Definition 15. An inequality constraint is said to be tight at a point, if it is satisfied as an
equality at that point.

For continuous problems, constraints that are active are also tight at the optimum
and constraints that are tight at the optimum are also active, if there is no redundant or
degenerate constraint at the optimum. For discrete problems, the situation is more
complicated. Inequalities are generally not satisfied as equalities at the optimizer. There
may be more than one constraint acting on each discrete variable. For example, in Figure
11a, either constraint 1 or constraint 2 can be removed without changing the discrete
optimizer, but not both. This situation does not occur in the case of the continuous

problem, Figure 11b. If constraint 1 is removed, the optimizer will move from x3 to X3.

26



le

-

decreasing objective

g3

23

X2

(@) (b)

Figure 11. The occurrence of multiple active constraints for discrete problems.
(a) discrete domain; (b) continuous domain.

We will adopt the following definition for a "binding" constraint in the case of
discrete variables:

Definition 16. A constraint g; is binding with respect to a variable x; at point X, if
f(x+Ax;) < f(x) and gj(x+Ax;) > 0, and g; dominates all other constraints in the positive x;
direction, or f(x-Ax;) < f(x) and gj(x-Ax;) > 0 and g; dominates all other constraints in

the negative x; direction.

(For discussion on constraint dominance see Papalambros & Wilde, op. cit.) The first
monotonicity principle (MP1) now states that in a well-bounded problem, every increasing
(decreasing) variable in the objective must be bounded below (above) by at least one
binding constraint. The second monotonicity principle (MP2) states that every monotonic
variable not occurring in the objective function of a well-bounded problem is either (a)
irrelevant and can be deleted from the problem with all constraints in which it occurs; or (b)
relevant and bounded by two binding constraints, one from above and one from below.
With the change in the definition of a binding constraint, MP1 and MP2 remain as
necessary optimality criteria for monotonic functions whether the variables are discrete or

continuous.

Though these principles hold for continuous as well as discrete variables, they are
more powerful for continuous variables than for discrete. variables. In the case of

continuous variables, inequality constraints are satisfied as exact equalities at the optimizer

27



allowing problem reduction. For constraint-bound problems identifying all active
constraints leads to solving only a system of nonlinear constraints. For purely discrete
problems, the active constraints are not equalities at the optimizer but only pass through the
discrete neighborhood of the optimizer. This means that the active constraint cannot be
used to solve for the optimizer directly, but only to confirm the solution found by some
other means.

For mixed-discrete problems, MP1 and MP2 must hold for the continuous
variables. In this case, constraints binding for such variables must also be tight. We would
expect then that, in an algorithm such as SLP2, an active set strategy may be used where
constraints identified as active for the LP subproblem are taken as (locally) active for the
NLP problem, even when the variables are non-monotonic. This is borne out numerically
from a study of the test problems in Gupta (1980) and Cha (1987) that are mixed-discrete.
The implication is that a local-global acive set strategy can be set up, similar to that in (Li,
1985).

Example 7. (Gupta, 1980; Test Problem 8) Consider the problem

minimize f=(x1-3)2+(x2-2)2+ (x3 +4)2 X1, X7 integer
subject to g1: 10-x7-x92-x305<0
X2 X3
827166 %2 3921 3=V (28)

g3: 4x1-x22-x333 -12<0
Linearize at (3, 3, 0.527)T obtaining the LP subproblem

minimize 2x2 +9.054x3 X1, X2 integer
subject to - X1 - 2x2 - 0.6888x3 < -9.637
- 1.44x1 + x2 - 0.2550x3 < 0.8375 (29)

4x1 - 6x7 - 62.506x3 < -39.352
The solution to this LP is (4, 3, 0.598)T . Only the third constraint is tight in this solution.
With the discrete value of (4, 3)T and g3 binding, we solve the continous problem
obtaining (4, 3, 0.631)7, which is the same minimizer given in the cited reference. D

Conclusion

The sequential linearization approach overcomes one of the main shortcomings of
branch and bounb, namely the large number of node evaluations. This is confirmed by the
numerical results reported in the sequel article. Here it was shown that if a sequence of
mixed-discrete solutions, generated by successive linear approximations of the MDNLP
problem, converge to a MDNLP-feasible point, then this point is the global discrete
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minimizer. Introducing decreasing step bounds forces the linearization to find interior
solutions. Algorithm SLP2 that incorporates this idea was shown to converge to the global
discrete minimizer for problems having pseudoconvex objective functions and linear
constraints, except in rare cases (Case 3 in Theorem 2). Introducing further the idea of e-
feasibility of a MDNLP problem, it was shown that progressively reducing the e-
feasibility, and rejecting points that exceed the allowable e-feasibility, solutions generated
by successive linearizations will likely converge for pseudoconvex objectives and convex
constraints. Finally, the monotonicity principles were extended for problems with mixed-
discrete variables, suggesting a correspondence between active constraints in a MDNLP
model and active constraints in its linear approximations.
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