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SUMMARY

Multicomponent interventions composed of behavioral, delivery, or implementation factors in addition to
medications are becoming increasingly common in health sciences. A natural experimental approach to
developing and refining such multicomponent interventions is to start with a large number of potential
components and screen out the least active ones. Factorial designs can be used efficiently in this endeavor.
We address common criticisms and misconceptions regarding the use of factorial designs in these screening
studies. We also provide an operationalization of screening studies. As an example, we consider the use
of a screening study in the development of a multicomponent smoking cessation intervention. Simulation
results are provided to support the discussions. Copyright q 2009 John Wiley & Sons, Ltd.

KEY WORDS: multicomponent intervention; experimental design; fractional factorial design; screening;
follow-up studies

1. INTRODUCTION

Multicomponent or complex interventions are increasingly being used in many health domains, e.g.
AIDS [1], cardiovascular diseases [2], depression [3], diabetes [4], drug abuse [5], gerontology [6],
obesity [7], and smoking cessation [8]. While some components may involve a medication, many
components are behavioral, implementation, or delivery factors [2, 3, 8]. As has been recognized
in the literature [6, 9–12], development and evaluation of these multicomponent interventions pose
additional design challenges over those of single-component interventions, and these challenges
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tend to be addressed poorly by the standard two-group randomized controlled trial. In particular
one important challenge is to whittle down a large list of potential components, by screening out
the least active components. Factorial designs are ideally suited to this endeavor [13].

The primary goal of this paper is to consider the use of full and fractional factorial designs
(FFDs) in screening out inactive components so as to aid in the development of high-quality
multicomponent interventions. We discuss how many of the criticisms prevalent in the literature
concerning the use of full and FFDs no longer hold or are of lesser importance in screening‡ trials.
A secondary goal is to provide an operationalization of screening trials using full and FFDs.

The present work is motivated by our participation in the design of a web-based smoking
cessation study called Project Quit [8] that utilized FFDs. For illustrative purposes, we present
a slightly modified version of Project Quit, following [14]. The investigators decided to study
six components: Depth of outcome expectations, Depth of efficacy expectations, Depth of success
stories, Personalization of message source, Mode of message framing, and Exposure schedule
(depth refers to the degree to which the communication was tailored to the background information
on each individual). Since varying all six components across all possible levels in a single study
was logistically prohibitive, the investigators decided to move forward in phases, where results of
the research conducted in the first phase would inform the second, and so on [14, 15]. The goal
of the first phase was to identify the active components and screen out inactive components. Each
component was varied at two levels as is common in screening studies. In addition all individuals
were provided a 10-week free supply of nicotine patches. The investigators decided to use a 16-cell
FFD (see Section 3 for details). The primary outcome was self-reported 7-day point-prevalence
abstinence at the 6-month follow-up from the date of randomization. More information on this
study can be found in [8, 14].

The remainder of the paper is organized as follows. Section 2 addresses common criticisms
against the use of full and FFDs for developing multicomponent interventions. We provide an
operationalization of the screening trials in Section 3. Examples of possible follow-up studies are
given in Section 4. We conclude with an overall discussion in Section 5. Technical review material
on FFDs appears in the appendix.

2. FACTORIAL DESIGNS FOR SCREENING STUDIES

Factorial designs were originally developed in the context of agricultural experiments [16, 17] and
are now used in other areas including engineering [13, 18] and marketing research [19]. Their use
in the medical and behavioral fields has been limited; however, there have been a number of papers
discussing the usefulness of these designs in medication and intervention trials [12, 20–24].

Prior to discussing common criticisms and concerns, we provide a brief review of both the design
and analysis of screening studies. In screening, two-level factorial designs, where all components
are studied at two levels (these levels can be either present vs absent, or two ethically acceptable
doses of the component), are usually used since the goal is to identify important components
rather than identify the optimal level of each component. If a two-level factorial design involves k
components, then the total number of treatment combinations studied is 2k . Each of the 2k cells
in the design corresponds to a group of subjects assigned to a particular treatment combination.

‡Here the term screening refers to screening of intervention components, not screening of study participants.
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In screening experiments, k is often large, rendering a full factorial design with 2k cells infeasible.
In such cases, FFDs [25] offer a nice alternative since they use fewer cells (see below for more
discussion). For example, in the Project Quit study, a full factorial design with six components
would need 26=64 cells. But by using an FFD, it was possible to restrict the study to only 16 cells,
and still be able to estimate all the main effects and some two-way interactions under reasonable
assumptions.

In case of a continuous outcome, the analysis of a 2k full factorial design (or a 2k−p FFD) with
total sample size n can be done using a linear regression model. One can use a model of the form
Y=X�+�, where Y represents the n×1 vector of observations on the outcome, X is the n×m
design matrix, � is a m×1 vector of unknown parameters (m=2k for full factorial and m=2k−p

for FFD, with more parameters if baseline variables are included in the analysis model), and � is
the n×1 vector of errors. It is assumed that E(ε)=0 and Cov(ε)=�2I. The design matrix consists
of an intercept column, plus columns corresponding to each component and their interactions of
different order coded in −1/1 (i.e. different factorial effects). The least-squares estimator for �
along with its covariance matrix is given by

�̂=(XTX)−1XTY, Cov(�̂)=�2(XTX)−1

Note that the estimates of usual ANOVA quantities of interest like the main effect of a component or
the interaction between two or more components are directly related to the least-squares regression
estimates �̂, provided the design matrix is coded in −1/1. As discussed in [26], the main effect
of a component A1 is estimated by 2�̂A1

, A1A2 interaction is estimated by 4�̂A1A2
, and so on. In

general, a p-component (1�p�k) interaction, say Ai1 . . . Aip (with 1�i1, . . . , i p�k), is estimated

by 2p�̂Ai1 ...Aip
. If variance heterogeneity across different cells is anticipated in a study, one can

use a robust estimator, e.g. sandwich estimator [27] of the covariance matrix given by

(XTX)−1XT(diag(Y−X�̂))2X(XTX)−1

in the linear regression model. But sample sizes should not be too small for this estimator to work
well. Wu and Hamada [18] provide alternative methods to deal with variance heterogeneity. As
discussed by Montgomery et al. [28], the regression approach can be used for unbalanced§ data,
and can estimate the factorial effects controlling for baseline or stratification variables. In case of
binary (more generally, categorical) outcomes, the regression approach can be generalized via a
generalized linear model. For example, if the outcome is binary, a logistic regression model can
be used to analyze the data from a factorial design [18, Chapter 13]. See [8, 14] for examples of
such analyses.

2.1. Criticisms against factorial designs

Within the biostatistics literature, factorial designs were assessed primarily in the context of medi-
cation trials; the objective was to evaluate the usefulness of a combined medication over a single
medication. In contrast, our objective is to screen out inactive components of a multicomponent
intervention and thus full and FFDs play a different role from that of evaluation. In this context,

§Balance means that each level of each component appears in same number of cells and is assigned to the same
number of subjects.
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many of the common concerns re cost, feasibility, ethics, toxicity of combination drugs, interpre-
tation of main effects in presence of active interactions, and concern about power for detecting
interactions become moot or of lesser importance. Indeed many different complaints against facto-
rial designs stem from a few fundamental issues and hence can be categorized as follows:

1. There are attractive alternatives to FFD.
2. It is not feasible to simultaneously implement multiple multicomponent interventions.
3. Some components cannot be crossed due to toxicity or ethical considerations.
4. The interpretation of main effects when interactions exist is complicated.
5. Power is low or alternately the required sample size is high.

In the following, we address these broad classes of criticisms against factorial designs in the present
context of screening studies for developing multicomponent interventions.

2.2. Attractive alternatives to FFD

The traditional approach of empirically developing multicomponent interventions, sometimes called
the treatment package strategy [12, 23, 29], is to formulate a ‘likely best’ intervention based on
existing literature, theory, and clinical experience. Additionally investigators may use information
from limited experimentation with some of the components either in stand-alone trials or in trials
in which one component is varied at a time while the remaining components are set at fixed
levels. Implicitly, one often assumes that more treatment is always better so the ‘likely best’
intervention includes many components. An additional implicit assumption is that any ill effects
due to including inactive components are minor. The developed multicomponent intervention is
then evaluated in a standard two-arm randomized trial. These two-arm trials are confirmatory
in that they are designed to provide high-quality information on whether the multicomponent
intervention performs better than the standard; they are not designed to provide direct information
on which components are active, whether they have been set at optimal levels, and whether there
is any interaction between the components [11]. To address the latter questions, investigators may
use observational analyses, such as a dose-response with the level of subject adherence to the
treatment as the dose [5, 6, 30, 31], or theory-based mediational analysis [12, 32]. The intervention
is often refined based on the findings of these analyses, and then the refined version is tested in
another two-arm randomized trial. Sometimes several such iterations are performed to refine the
multicomponent intervention.

The main problem with this approach is that it depends heavily on the non-experimental, obser-
vational analyses. As is well-known [33–35], findings that are not based on randomization are
hard to replicate due to the likely presence of unknown confounders¶ (e.g. the variables that affect
both the receipt of a component and the outcome). As a consequence, the effects of individual
components and interactions may be misinterpreted resulting in a suboptimal intervention. Collins
et al. [36] provided a head-to-head comparison between the above approach and an experimental
procedure using FFDs in an extensive simulation study. This comparison was based on a simulated
model involving five components, varying levels of adherence to each component, an unknown

¶ In the literature on FFDs, the term confounding often refers to aliasing of effects. Here we use confounding to
mean mixing of treatment effects with effects of other variables that affect both the receipt of treatment and the
outcome, and thus keep confounding distinct from aliasing.
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confounder, and a continuous outcome. In addition, the model included an antagonistic interaction
between two components. The simulation results showed that the FFD-based experimental approach
outperformed the traditional approach (two-arm randomized trial followed by observational anal-
yses) in terms of various criteria, e.g. optimizing the mean outcome of the final intervention and
identifying the best multicomponent intervention. Of course the relative merit of the FFD-based
experimental approach depends on the degree of confounding; using observational analyses to
investigate the interactions might work well when the unknown confounder is only weakly related
to the receipt of the components or the outcome.

Another alternative to FFDs is to conduct a series of dismantling or subtractive trials [12] where
a ‘more complete’ version of the multicomponent intervention is compared with a reduced version
with one or more components eliminated. A close variant of this is known as the constructive
strategy [12] or treatment augmentation design [37], where a base intervention is compared with
an augmented version in which one or more components are added to the base intervention.
Yet another alternative is known as the comparative treatment strategy [12], where several
versions of the intervention are directly compared. For example, if there are k components under
consideration, a comparative strategy would compare (k+1) experimental arms: k arms, each
setting a single component at the high level and the rest at the low level, plus a control arm
where all components are set at the low level. The above three approaches (i.e. dismantling,
constructive, and comparative strategies) sometimes come under the umbrella term of single-factor
designs [24], whenever the experimental arms under comparison differ by manipulating a single
factor.

Note that there are several problems with using a series of single-factor experimental designs to
construct a multicomponent intervention. First, as discussed by Box et al. [13, pp. 510–513], the
use of single-factor designs often tacitly assumes that the effect of one component is independent of
the levels of other components. This is not true in general, e.g. when there is a sizeable (qualitative)
interaction between the components. Thus adopting a single-factor design often implicitly assumes
that there is no interaction. Because of this limitation, using a series of single-factor designs to
construct a multicomponent intervention may fail to achieve the best intervention.

The second problem regarding single-factor designs arises in designing the trials, e.g. deciding
which factor to add (in constructive strategy) or subtract (in dismantling strategy), or which two
versions of the multicomponent interventions to compare (in comparative strategy). These decisions
are often driven by theory, cost, burden, or the results of observational analyses. To the extent that
the results are driven by observational dose-response analyses of the amount of treatment received,
they are vulnerable to confounding bias. As a consequence, in the sequence of single-factor trials
conducted to find the best multicomponent intervention, active components may be accidentally
eliminated in a dismantling strategy, and less active components may be erroneously added earlier
than more active components in a constructive strategy.

A third problem with single-factor designs is that they often require many more subjects than
comparable factorial designs to achieve similar power [24], rendering factorial designs a more
efficient choice.

To summarize, in contrast to the treatment package strategy or the single-factor designs, inference
about individual components in FFDs is strictly based on randomization, and hence less vulnerable
to confounding bias. Furthermore, single-factor experiments are not equipped to take care of
interactions, and often have higher sample size requirement. Although some aliasing of effects
happens in FFDs, the investigator can control this based on prior substantive knowledge (see below
for more discussion on aliasing). Thus by using FFDs, one often trades uncontrolled confounding
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for controlled aliasing. Thus, full and fractional factorial experimental designs offer a gold standard
for developing multicomponent interventions. In the following, we will discuss feasibility.

2.3. Feasibility of the design

When the number of components (k) is moderately large, full factorial designs may be impractical
due to cost of designing and implementing too many cells, i.e. making each treatment combination
work together and ensuring implementation fidelity by staff [12]. This criticism has been the main
motivation behind the development of FFDs. It is possible to select an FFD with substantially fewer
cells, but still estimate the main effects (and sometimes important two-way interactions) without
bias and with the same precision as in a full factorial design under plausible assumptions. A full
factorial design allows the estimation of every individual factorial effect, including all higher-
order interactions. However, in the absence of compelling prior theory or evidence to the contrary,
third- and higher-order interactions are likely negligible in size in most of the multicomponent
interventions [13, 14]. FFDs sacrifice the ability to estimate some of these higher-order interactions,
and, in return, enable the study to have fewer cells. The choice of interactions to be sacrificed is
informed by scientific theory, past studies, and investigator’s experience. The practical price paid
to buy the economy offered by an FFD is that the effects of interest, such as the main effects and
two-way interactions, are aliased with some higher-order interactions. When two or more effects
are aliased, one can estimate only the sum of the aliased effects. To overcome this problem, ideally
an FFD is chosen in which each ‘aliased bundle’ includes only one effect that is a priori believed
to be active, with any other effects included in the bundle likely negligible in size. If this is not
possible, follow-up experiments [15, 18, 38] can be conducted to settle any ambiguity about which
effects are most important in the aliased bundle of effects. The above ideas were used by both
Project Quit [8] and Guide to Decide [14] to design FFD trials. A technical review of aliasing and
FFDs is provided in Appendix A.

The strong use of theory and investigators’ experience in determining which interactions to
alias in an FFD is often initially disconcerting to scientists. Note, however, that in a two-arm
randomized trial of a multicomponent intervention vs control, the multicomponent intervention
must be determined completely by theory and investigator’s experience, and furthermore in these
two-arm trials every factorial effect (main effects and interactions) is aliased with every other
effect. Thus all analyses concerning individual components hinge on the use of a correct model;
if the model is too simple, then finding out what each effect is estimating is often difficult or even
impossible. In this regard, FFDs offer a clearly better option in that the entire aliasing pattern
is under the investigator’s control, and there are principled ways (e.g. follow-up experiments)
to disentangle any aliased effect. Moreover in non-experimental studies (that often follows the
two-group comparisons) in which often the receipt of treatment depends on adherence to or
availability of certain components, staff decisions as to who to offer what treatment, etc., the
resulting confounding is uncontrolled.

Often concerns about feasibility are intertwined with a perceived need to include many subjects
in each cell of the design; this may occur because investigators erroneously think that comparisons
between individual cells will be required. This, however, is not the case; see below for a discussion
of this along with power considerations. Nonetheless there are some situations in which investigators
are unable to hire sufficient staff so as to implement multiple multicomponent interventions or are
unable to train the staff to implement multiple multicomponent interventions simultaneously. In
these settings FFDs are not feasible.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2687–2708
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2.4. Inability to cross some components

To use factorial designs, one must be able to cross the components without changing dose (i.e.
all combinations should be implementable). This has been a fundamental concern regarding the
use of factorial designs in medication trials. In medication trials, toxicity often precludes the
combined use of multiple components (e.g. drugs) unless the dosage is altered [20, 39]. That is,
the combination of drug A and drug B uses lower doses of both A and B, compared with the case
when either drug A or drug B is used alone. So a high level of drug A in presence (high level) of
drug B does not mean the same thing as a high level of drug A in absence (low level) of drug B.
In such cases, the components lose their meanings and factorial designs become inappropriate.
Here we consider only those components that when crossed, retain their meaning. This includes
most behavioral, delivery, or implementation components, as well as multiple medications as long
as they use different biological pathways.

When some components cannot be crossed, the clinical trials literature provides some
approaches. Byar et al. [26] discussed incomplete factorial designs along with analysis strategies
to take care of such cases. These designs are full or fractional factorial designs, minus some
unpermitted combinations. Although these designs are not balanced (see the second footnote for
a definition of balance), one can still estimate many of the relevant factorial effects.

2.5. Interpretation of main effects

It is well known that the definition of the main effect, in the presence of sizeable interactions
[20, 39], differs from the investigators’ conceptual definition of the effect of a component. To
address this criticism, here we provide precise definitions of main effects and simple effects
that commonly arise in various designs for multicomponent interventions, and establish their
interrelationship.

For simplicity, consider a 2×2 factorial design with two components, say A1 and A2, and
continuous outcome Y . The presence and absence (or, high and low level) of each component
is coded +1 and −1, respectively. Let �(−,−), �(−,+), �(+,−), and �(+,+) be the mean outcomes
corresponding to the absent–absent, absent–present, present–absent, and present–present cells of
the design, respectively. At the population level, the main effect of the component A1 is defined
by 1

2 (E1+E2), where E1=(�(+,+)−�(−,+)) and E2=(�(+,−)−�(−,−)) are two simple effects,
denoting the effect of A1 when A2 is fixed at high and low level, respectively. Thus the main
effect of A1 is defined as the average of the two simple effects E1 and E2, and hence can
be interpreted as the effect of A1 when half the subjects in the population are exposed to (the
high level of ) A2 and the remaining half are not. On the other hand, when conceptualizing the
treatment effect of A1, an investigator usually thinks of the simple effect denoting ‘the effect
of A1 in absence of A2’ [39, p. 506], i.e. E2. In absence of interaction between the compo-
nents, this mismatch does not cause a problem since the two simple effects are equal. However,
the main effect could be very different from the simple effect of A1 in presence of a sizeable
interaction.

If a dismantling strategy is followed (dismantling A1 from the full package involving both A1 and
A2), then the effect estimated is simply (�(+,+)−�(−,+))=E1. This effect could also be estimated
if the constructive strategy is followed (augmenting A1 to the base intervention consisting of A2
only). Thus these alternative designs estimate simple effects rather than main effects. Finally one
can imagine a treatment package effect, e.g. (�(+,+)−�(−,−)), which is estimated when the ‘likely
best’ package consisting of the present or high level of all the components is compared with a

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2687–2708
DOI: 10.1002/sim



2694 B. CHAKRABORTY ET AL.

control consisting of the absent or low levels of all the components. This does not correspond to
any of the simple effects.

For three two-level components, the main effect of a component A1 is defined as 1
4 (E1+

E2+E3+E4), where E1=(�+,+,+)−�(−,+,+)), E2=(�(+,+,−)−�(−,+,−)), E3=(�(+,−,+)−
�(−,−,+)), and E4=(�(+,−,−)−�(−,−,−)) are the four simple effects (and also can be interpreted
as the effects resulting from different dismantling or constructive trials). The most common simple
effect is E4, i.e. ‘effect of A1 in absence of other components’, and is often conceptualized as the
treatment effect of A1. In general, for a setting involving k two-level components, there are 2k−1

simple effects that can be interpreted as effects resulting from different constructive or dismantling
trials. The main effect is simply the average of these 2k−1 simple effects.

To more clearly understand the alternate definitions and how they differ in the presence of an
interaction, consider a regression formulation. Suppose that the true data-generating model, where
A1, A2 are coded in 0/1, is given by

Y =b0+b1A1+b2A2+b12A1A2+ε (1)

If we use a regression analysis with the −1/1 coding, e.g. we fit �0+�1A1+�2A2+�12A1A2,
then we estimate the following transformed model (now A1, A2 are coded in −1/1):

Y =
(
b0+ b1+b2

2
+ b12

4

)
+

(
b1
2

+ b12
4

)
A1+

(
b2
2

+ b12
4

)
A2+

(
b12
4

)
A1A2+ε (2)

The main effect of A1 is 2�̂1, which estimates the population quantity 2(b1/2+b12/4)=b1+b12/2
(this main effect continues to be the average effect of A1 on Y over the levels of A2). In contrast,
the two simple effects of A1 are b1 (effect of A1 when A2 is absent) and b1+b12 (effect of A1
when A2 is present). The main effect and the effect commonly conceptualized as the treatment
effect of A1, i.e. b1, differ by the quantity 1

2b12 in presence of an active interaction (b12 �=0). If we
apply the reasoning of the Hierarchical Ordering Principle‖ [18] to this setting, then in general
we expect that b12, if nonzero, is likely to be of smaller size than b1 and b2.

To summarize, when there is an interaction, the main effect has the interpretation of the average
effect of A1 on Y over the levels of other components. This is quite different from what is often
conceptualized as the treatment effect of A1, e.g. the simple effect of A1 on Y setting other
components to lower level. However the crucial point is that in screening studies, the goal is to
screen components efficiently, and not to estimate either the simple effect or the main effect of
a component per se. The important issue for screening is whether this difference in definition
impinges on our ability to screen components. So in this context, the concern about the definition
of main effects is actually a concern about power to screen components. We address this concern
below in great detail (see the third issue below under the Power heading).

2.6. Power

Several issues lead to concerns about power when factorial designs are considered. First, investiga-
tors sometimes use factorial designs to evaluate or compare a few multicomponent interventions,

‖The Hierarchical Ordering Principle is an assumption commonly made in design of experiments in the absence
of substantive theory or prior results suggesting otherwise. It states that lower-order effects are more likely to be
important than higher-order effects, and effects of the same order are equally likely to be important.
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e.g. compare one cell against another cell [40], or otherwise assess simple effects. This naturally
leads to a large sample size requirement since each cell (group of subjects) must be large. However
to screen components, we primarily focus on main effects and sometimes also a few anticipated
two-way interactions. The focus on main effects and lower-order interactions for the purpose
of screening can be partially justified by the Hierarchical Ordering Principle [18], which says
that main effects and lower-order interactions are likely to be more important than higher-order
interactions. Recall that the main effect of a factor is an average of all the 2k−1 simple effects.
Thus even though several components are studied, the total sample size required for assessing the
significance of a main effect is the same as that for a two-group trial (for example in a linear
model, the estimator of the main effect is proportional to the difference between the means of two
groups of cells; all cells in the FFD belong to one or the other group). Furthermore, in the multi-
phase approach to intervention development [14, 15], ascertaining the best treatment combination
is done through follow-up studies, in which one usually focuses on only a few combinations of
components while holding the levels of the remaining components constant. See Section 4 for a
discussion of follow-up studies.

Second, there is concern about the loss of balance and subsequent loss of power due to study
dropout. In most intervention studies, patient dropout is inevitable, thus resulting in unequal cell
sizes. As discussed by Montgomery et al. [28], this is an issue for all clinical trials rather than a
criticism of factorial designs; modern-day missing data techniques will be needed in the analysis
as is the case with any randomized clinical trial.

A third issue related to power is how one should formulate the test statistics to detect the effects
of treatment components in a screening study. Note that in a screening study the goal is to screen
out inactive components, and not to estimate either a simple effect or a main effect per se. Below
we show that even when the data are generated using non-zero simple effects, often the power to
detect the resulting main effect is higher than the power to detect the original simple effect. Hence
in a screening study, formulating the test statistics based on main effects is in general better than
formulating test statistics based on simple effects. To discuss this consider again the 2×2 factorial
design with two components, say A1 and A2, r subjects per cell, and the continuous outcome Y .
The true data-generating model is specified in terms of simple effects, which is consistent with an
investigator’s conceptualization. Thus, the true data-generating model is given by (1) in which the
components A1, A2 are coded in 0/1. In the following, we show that by basing the test statistic
on main effects, we can in general screen non-zero simple effects with greater power.

For simplicity, assume Var(ε)=�2 is known (and homogeneous across cells). If a linear regres-
sion model with 0/1 coding is used as in Piantadosi [39, pp. 508–509], then the following model
is fit:

�0+�1A1+�2A2+�12A1A2 (3)

In 0/1 coding, �1, the coefficient of A1, is a simple effect representing the comparison of the (1,0)
cell with the (0,0) cell, i.e. �1=�(1,0)−�(0,0) =b1, where �(1,0) is the population mean of Y in

the (1,0) cell, and so on. Now �1 is estimated by �̂1= Ȳ(1,0)− Ȳ(0,0), where Ȳ(1,0) is the sample
mean of Y in the (1,0) cell, and so on. Clearly, E(�̂1)=b1 and

Var(�̂1)=Var(Ȳ(1,0))+Var(Ȳ(0,0))= �2

r
+ �2

r
= 2�2

r

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2687–2708
DOI: 10.1002/sim



2696 B. CHAKRABORTY ET AL.

So the signal-to-noise ratio (SNR) governing the power to screen A1 with 0/1 coding in the
analysis model (i.e. basing the test statistics on simple effects) is

SNR[0/1] = |E(�̂1)|√
Var(�̂1)

= |b1|√r√
2�

On the other hand, if we use the analysis model (3) with −1/1 coding, it follows that

�1 = 1
4 [(�(+,+)−�(−,+))+(�(+,−)−�(−,−))]

= 1
2 ×(the main effect of A1)

= 1
2 ×(the average of two simple effects)

and is estimated by the sample version �̂1 (where � is replaced by Ȳ ). Then,

E(�̂1) = �1=
(
b1
2

+ b12
4

)

Var(�̂1) = 1

4
× 1

2
×(variance of an estimated simple effect)= 1

4
× 1

2
× 2�2

r
= �2

4r

So the SNR governing the power to screen A1 with −1/1 coding in the analysis model (i.e. basing
the test statistics on main effects) is

SNR[−1/1] = |E(�̂1)|√
Var(�̂1)

=
∣∣∣∣b1+ b12

2

∣∣∣∣
√
r

�

A measure of relative efficiency of the two coding schemes (equivalently, two ways of forming
the test statistics) in screening A1 is given by

�= SNR[−1/1]
SNR[0/1]

= √
2

∣∣∣∣b1+ b12
2

∣∣∣∣
/

|b1|=
√
2

∣∣∣∣1+ b12
2b1

∣∣∣∣
In absence of an interaction (i.e. b12=0), �=√

2>1, and hence the −1/1 coding gives higher
power for screening components. In case of synergistic interaction (i.e. b1 and b12 are of same
sign), � is even larger, so the −1/1 coding gives higher power. Even in the case of antagonistic
interaction (i.e. b1 and b12 are of opposite sign), the −1/1 coding gives higher power in screening
components (i.e. �>1) if b1<0 and 0<b12<−(2+√

2)b1, or if b1>0 and 0>b12>−(2−√
2)b1.

If we have k(�2) components in a factorial experiment, and there may be a two-way but no
higher-order interaction in the true data-generating model, then the relative efficiency of the two
coding schemes (measured by �) increases with k. A verification of this appears in Appendix B.

To illustrate the power implications of basing the test statistics on main effects rather than simple
effects in a regression analysis, we consider a small simulation study with the data-generating
model Y |A1, A2∼N(�=b0+b1A1+b2A2+b12A1A2,�=1), where A1, A2 are coded in 0/1. That
is, the data-generating model is specified in terms of simple effects (as is usually conceptualized
by an investigator). The coefficients b1, b2 are set according to Cohen’s [41] small or medium
effect size (i.e. b1=b2=0.2,0.5). The coefficient b12 of the interaction term is varied: b12=b1,
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Table I. Power to screen A1 in absence and presence of an interaction.

b1=0.2 b1=0.5

Interaction Interaction Analysis model Analysis model Analysis model Analysis model
n size (b12) type in 0/1 coding in −1/1 coding in 0/1 coding in −1/1 coding

100 Same (=b1) Synergistic 0.1030 0.2910 0.4150 0.9550

Half (= b1
2 ) Synergistic 0.1030 0.2290 0.4150 0.8730

Absent (=0) None 0.1030 0.1720 0.4150 0.6830

Half (=− b1
2 ) Antagonistic 0.1030 0.1110 0.4150 0.4420

Same (=−b1) Antagonistic 0.1030 0.0820 0.4150 0.2290

200 Same (=b1) Synergistic 0.1690 0.5440 0.6920 1.0000

Half (= b1
2 ) Synergistic 0.1690 0.3940 0.6920 0.9870

Absent (=0) None 0.1690 0.2840 0.6920 0.9430

Half (=− b1
2 ) Antagonistic 0.1690 0.1720 0.6920 0.7510

Same (=−b1) Antagonistic 0.1690 0.1040 0.6920 0.3940

500 Same (=b1) Synergistic 0.3460 0.9210 0.9740 1.0000

Half (= b1
2 ) Synergistic 0.3460 0.8040 0.9740 1.0000

Absent (=0) None 0.3460 0.6050 0.9740 1.0000

Half (=− b1
2 ) Antagonistic 0.3460 0.3730 0.9740 0.9870

Same (=−b1) Antagonistic 0.3460 0.1890 0.9740 0.8040

b1/2, 0, −b1/2, −b1 (i.e. same size and sign as b1, half the size of and same sign as b1, absent,
half the size of b1 but of opposite sign, same size as b1 but of opposite sign). A 0.05 level of
significance is used throughout, while varying the sample size: n=100,200,500. The goal of this
simulation is to illustrate that even when the data-generating model is specified in terms of simple
effects, basing the test statistics on main effects (using −1/1 coding) leads to higher power in
most settings than basing the test statistics on simple effects (using 0/1 coding). Note that the
SNRs of the coding schemes govern the corresponding powers. In the following, we consider the
power to screen A1 both in presence and absence of an interaction term A1A2 (synergistic as well
as antagonistic). Table I contains a Monte Carlo estimate (using 1000 iterations) of the power for
screening A1 under different scenarios.

Note that in Table I, the power to screen A1 is higher in general when the analysis model is
coded in −1/1 compared with when the analysis model is coded in 0/1 (e.g. comparing the 4th
vs 5th column, and comparing the 6th vs 7th column), except when the interaction is of same size
and opposite in sign as the simple effect of A1 (as expected from the above discussion). However
according to the Hierarchical Ordering Principle [18], interactions are usually of smaller order of
magnitude than the main effects (absent strong scientific theory to the contrary), and hence this is
a fairly unlikely scenario. A secondary point to note is that when the data-analysis model uses the
−1/1 coding, there is a decrease in power to screen A1 as the interaction term b12 decreases from
highly synergistic to highly antagonistic (moving down the 5th and 7th columns). However, when
the data-analysis model uses the 0/1 coding, the power for screening A1 is independent of the size
of the interaction term b12 (moving down the 4th and 6th columns). But the decrease in power
in the 5th and 7th columns due to interaction often does not pose a serious threat (as compared
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with the loss of power from using 0/1 coding) if the goal is to screen components, since in most
settings −1/1 coding gives better power anyway.

A fourth issue related to power is the power to detect interactions. Factorial designs are often
criticized on the ground that the power to detect an interaction is much lower than the power
to detect a main effect of the same size [28, 39]. However, it is also recognized that facto-
rial designs are the only experimental designs that can systematically investigate interactions.
To overcome the low power for detecting interactions in a confirmatory (not screening) trial, the
general recommendation in the literature [20] is that if an interaction is strongly anticipated based
on the investigator’s prior knowledge, the study should be powered with a larger sample size. When
criticizing factorial designs on the ground of low power for interactions in the present context of
screening trials for developing multicomponent interventions, it is useful to consider the pros and
cons of the possible alternatives. The natural alternative is to conduct non-experimental analyses
using treatment adherence or other post-randomization outcomes as doses or factor levels from a
randomized trial or to use observational data sets. As discussed previously, the relative merit of
FFDs over the above strategy depends on the degree of confounding in the data. The crux is that
the low power to detect interactions in a factorial design can be offset by its ability to perform valid
estimation and inference, and its ability to control (by design) aliasing in a principled manner, in
comparison with observational analyses.

3. OPERATIONALIZATION OF SCREENING TRIALS

This section provides an example of how screening trials can be operationalized using FFDs. The
choice of an appropriate FFD is often governed by prior knowledge regarding the intervention to be
developed. To move forward, two definitions are useful. An FFD is completely characterized by its
defining relation [18], a rule from which the aliasing pattern of the FFD can be obtained. Moreover,
FFDs are sometimes categorized by their resolution. Loosely speaking, the higher the resolution,
the better the design. Resolution IV and resolution V designs are considered here. In particular,
in a resolution V design, main effects are aliased with 4-way (or higher order) interactions, and
2-way interactions are aliased with 3-way (or higher order) interactions. Likewise in a resolution IV
design, main effects are aliased with 3-way (or higher order) interactions, and 2-way interactions
are aliased with other 2-ways (or higher order). Typically resolution V designs are better than
resolution IV designs, but resolution V designs require more cells. Hence, sometimes investigators
have to use resolution IV designs due to cost and feasibility constraints. Further review of the
defining relation and resolution are given in the Appendix A. In the following, we first discuss the
screening design used in the Project Quit study. Next, we discuss a general approach to construct
screening designs (e.g. appropriate FFDs).

3.1. Screening design in the project quit study

Denote the six components of the Project Quit study, e.g. depth of outcome expectations, depth
of efficacy expectations, depth of success stories, personalization of message source, mode of
message framing, and exposure schedule by A1, A2, A3, A4, A5, and A6, respectively. In this
study, prior knowledge suggested that the interactions between outcome expectations and efficacy
expectations (A1A2), outcome expectations and success stories (A1A3), outcome expectations and
message framing (A1A5), and efficacy expectations and message framing (A2A5) were likely active

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2687–2708
DOI: 10.1002/sim



DEVELOPING MULTICOMPONENT INTERVENTIONS USING FFDS 2699

(let us call them anticipated interactions), and that all other interactions should be negligibly small
in size. So a design was constructed such that one could estimate the A1A2, A1A3, A1A5, and
A2A5 interactions, assuming all others to be small. Owing to cost constraints, 16 cells were used
in the design. So the design used was a 16-cell FFD with the defining relation

I = A1A2A4A5= A1A3A4A6= A2A3A5A6 (4)

This is a resolution IV design where some of the 2-way interactions are aliased with other 2-way
interactions. The anticipated 2-way interactions are listed on the left-hand side of the following
aliasing equations (obtained from the defining relation (4)):

A1A2 = A4A5

A1A3 = A4A6

A1A5 = A2A4

A2A5 = A1A4

Note that the anticipated interactions were aliased with other 2-way interactions that were consid-
ered negligible, and hence were estimable without bias. The defining relation I = A1A2A3A5=
A1A3A4A6= A2A4A5A6 was ‘cleverly’ chosen to accomplish this goal. Of course, the investi-
gator’s assumption about the interactions could be wrong. But one can verify any critical working
assumptions made in the screening study using follow-up studies [15].

3.2. Screening design construction in general

As a starting point we assume that regardless of the number of components studied, the number
of cells used can be at most 16 (equal to the number of cells used in the Project Quit study).
Of course this number can vary from one setting to another. If four or fewer components are to be
studied, a full factorial design can be used. If five components, say A1, . . . , A5, are to be studied,
then one should use the resolution V FFD with the defining relation I = A1A2A3A4A5 (this is
the case in the Guide to Decide project described in [14]). If six components, say A1, . . . , A6, are
to be studied, resolution IV designs are generally recommended. If prior knowledge suggests a
few anticipated 2-way interactions, an FFD can be chosen carefully so that the anticipated 2-way
interactions are not aliased with each other (this consideration often drives the construction of the
design). Assuming the unanticipated interactions to be negligible, this ensures that each anticipated
interaction can be estimated without bias. When there is only one anticipated interaction, any 16-
cell resolution IV FFD can be used. However, for two or more anticipated interactions, choices are
limited. Software (e.g. SAS PROC FACTEX, JMP, Minitab) can be used to generate the designs
in such cases (they provide one possible design that satisfies the constraints of resolution and/or
anticipated interactions, instead of giving the complete list of possible designs). For two or three
anticipated interactions, the complete set of recommended designs are given in Table II.

3.3. Power and sample size in screening trials

In a screening trial using a factorial design, the power calculation used to size the trial focuses
on main effects of each component. Thus, the power calculation is similar to that of a two-
arm randomized trial in that the two levels of a single component (averaged over the levels of
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Table II. Recommended resolution IV FFDs under varying anticipated interactions.

Anticipated interactions Recommended designs
Case of the form (defining relations)

1 A1A2, A3A4 I = A1A2A3A5= A1A3A4A6= A2A4A5A6
(no component shared) I = A1A2A3A5= A2A3A4A6= A1A4A5A6

I = A1A2A4A5= A1A3A4A6= A2A3A5A6
I = A1A2A4A5= A2A3A4A6= A1A3A5A6
I = A1A2A3A6= A1A3A4A5= A2A4A5A6
I = A1A2A3A6= A2A3A4A5= A1A4A5A6
I = A1A2A4A6= A1A3A4A5= A2A3A5A6
I = A1A2A4A6= A2A3A4A5= A1A3A5A6

2 A1A2, A1A3 I = A1A2A4A5= A1A3A4A6= A2A3A5A6
(one component shared) I = A1A2A4A6= A1A3A4A5= A2A3A5A6

I = A1A2A4A5= A1A3A5A6= A2A3A4A6
I = A1A2A5A6= A1A3A4A5= A2A3A4A6
I = A1A2A4A6= A1A3A5A6= A2A3A4A5
I = A1A2A5A6= A1A3A4A6= A2A3A4A5

3 A1A2, A3A4, A5A6 Same as case 1

4 A1A2, A1A3, A4A5 I = A1A2A5A6= A1A3A4A6= A2A3A4A5
I = A1A2A4A6= A1A3A5A6= A2A3A4A5

5 A1A2, A1A3, A2A4 I = A1A2A5A6= A1A3A4A5= A2A3A4A6
I = A1A2A5A6= A1A3A4A6= A2A3A4A5

6 A1A2, A1A3, A1A4 I = A1A2A5A6= A1A3A4A5= A2A3A4A6

7 A1A2, A1A3, A2A3 Same as case 2

all other components) serve as the two arms. Below we provide the power calculation for the
Project Quit study as an example. For Project Quit, the planned initial recruitment size was 2000;
this number was chosen to achieve a total sample size of 1500 for the analysis, anticipating
a 75 per cent response rate at the 6-month follow-up. Assuming no differential attrition across
cells, this meant roughly 750 subjects per level of each intervention component. The primary
outcome was binary, e.g. 7-day point-prevalence smoking cessation at the 6-month follow-up.
So the power analysis involved binomial calculations (using a normal approximation) assuming
a baseline average cessation rate of 10 per cent found in a previous study [42]. For each main
effect, the sample size of 750 per level provides approximately 80 per cent power for detecting a
4.5 per cent difference in cessation rates. The same power characteristics exist for each of the six
components. Note that to achieve the same power to detect the same difference in cessation rates,
one would need the same sample size in a usual two-arm study (so the sample size requirement is
not increased by using a factorial design). The formula for calculating power in the present set-up is
given by

�

⎛
⎜⎜⎝

√
n

2
|�|−z�/2

√
2p(1− p)

√
p(1− p)+(p+�)(1− p−�)

⎞
⎟⎟⎠
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where n is the total sample size, p is the baseline cessation rate, � is the change in cessation rate
to be detected, � is the Type I error, z�/2 is the upper 100(�/2) per cent cutoff point of a standard
normal distribution, and � is the standard normal distribution function.

3.4. Additional practical considerations regarding study duration and cost

A primary advantage of using factorial designs in a screening study lies in its efficiency, i.e.
its ability to answer several screening questions (regarding multiple intervention components)
quickly from a single study. The use of an FFD-based approach in Project Quit was motivated by
the concern that advances in communication technologies were moving well beyond the under-
standing of message content, presentation, and delivery principles in the field of smoking cessation.
Investigators of this study realized that research using the field’s most widely used designs (e.g.
randomized trials with a small number of groups) [42–45] would take years to assess even a
few basic questions. By the time these findings would be disseminated, the technology and target
populations would likely be changed (e.g. become more sophisticated in their understanding of a
communications channel), and consequently the field would continue to lag behind. Thus in the
context of this concern, the FFD-based multiphase approach provided a huge benefit by offering a
shorter total study duration to answer so many questions compared with the alternative designs.

There are two kinds of cost associated with designing multicomponent intervention trials, e.g.
(1) cost associated with sample size requirement and (2) cost of designing and implementing
different cells. We have already discussed that the sample size requirement does not go up by
using an FFD. The only additional cost of designing an FFD over a two-group trial is the cost of
designing and delivering too many versions of the intervention that might limit the applicability of
FFDs in certain settings. In case of Project Quit, the intervention was delivered entirely through the
Internet. So the delivery of 16 versions of the multicomponent intervention did not cost additional
staff time and training over and above the cost of software programming to generate the different
versions, which turned out to be manageable. See Collins et al. [24] for a detailed comparison of
FFDs with single-factor designs (dismantling, constructive and comparative trials) from a resource
management perspective.

3.5. Screening analysis

The screening analysis uses a linear model (in case of continuous outcome) or a generalized linear
model (in case of binary or categorical outcome). A few considerations to be made during the
analysis are:

1. The level of significance � for testing the effects in the screening study might be set higher
than 0.05 to achieve greater power for detecting effects. � can be viewed as a tuning parameter
of the procedure. One possible choice is to use �=0.1 for the main effects and anticipated
two-way interactions, and a Bonferroni-corrected 0.1 level for the unanticipated interactions.

2. As an alternative (or augmentation) to performing significance tests at the screening study,
one can rank-order the absolute values of the test statistic corresponding to the factorial
effects (or equivalently p-values) and move to follow-up studies with the largest m. Then
this m becomes a tuning parameter of the procedure. This approach should work better in
case all individual effects are small, but together they produce some effect (significance test
often accepts the null hypothesis of no effect in such cases, and hence performs poorly).
To be resistant to the noise in the data, one may choose to rank-order only the main effects
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and anticipated interactions. This strategy with m=3 was followed in the simulation study
described in [36].

Examples of the screening analysis in the Guide to Decide and Project Quit studies can be found in
[8, 14]. Based on the screening analysis of the Project Quit study, the investigators decided to move
to the follow-up study with the components having the highest two p-values (e.g. success stories
and message source). Furthermore, since three of the components (outcome expectations, efficacy
expectations, and success stories) were set at levels corresponding to high depth of tailoring vs
low depth of tailoring, the investigators considered a regression of overall depth of tailoring (over
all components) and found that as the depth of tailoring increased, the smoking cessation rate
increased. Hence the investigators decided to use a high depth of tailoring in the follow-up study.

4. FOLLOW-UP STUDIES

In the process of developing a multicomponent intervention, an investigator often conducts follow-
up studies involving the significant∗∗ factorial effects from the screening study to fine-tune the
results, e.g. finding the best level (or dose) of a significant component, which is either continuous
or has more than two levels by a dose-response experiment (where the subjects are randomized
to ethically acceptable doses of the component), or de-aliasing significant aliased interactions by
a smaller factorial experiment. In this section, first we provide a few hypothetical examples (of
varying level of complexity) of follow-up studies to provide some general intuition, and then briefly
describe the follow-up phase of the Project Quit study.

4.1. Hypothetical examples

In the following examples, for simplicity, we assume that there are six components in the study,
e.g. A1, . . . , A6, out of which only A1 is a 3-level component (say, high, medium, low levels—only
high and low levels are studied at the screening trial) and the rest are binary (high and low). High
values of the outcome are preferred. A 16-cell resolution IV FFD is used as the screening design
(see Section 3 for details). We assume throughout that three-way (or higher-order) interactions are
negligible in size compared with the noise in the data; hence, even though main effects are aliased
with three-way interactions, we assign the estimated effect to the main effect.

Example 1
Suppose the significant effects along with their signs based on screening analysis are

A1(+), A2(+), A3(−), A5(−), A2A3= A4A5(−)

where the aliased interaction A2A3 is unanticipated, but A4A5 is anticipated. So the investigator
may dismiss A2A3 as a possible effect and assign the observed effect entirely to A4A5. Since the
main effect of A4 is insignificant, the main effect of A5 is negative, and the A4A5 interaction is
negative; it is reasonable to set A4 at its high level and A5 at its low level to maximize the mean
outcome. In addition, from the signs of the estimated main effects of A2 and A3 (and ignoring the
unanticipated A2A3 interaction), A2 and A3 should be set at their high and low levels, respectively.

∗∗Throughout this section, we use the term significant loosely to mean any effects that come out important according
to the screening analysis strategy outlined in Section 3.
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Since A6 is insignificant, it should be set at low level. Hence the follow-up study might be a
2-group trial varying A1 at its medium and high levels (since its main effect is positive), setting
A2, A3, A4, A5, and A6 at high, low, high, low, and low level, respectively. If A4 is an expensive or
particularly burdensome component, then it may be worthwhile to affirm that A4 is not significant
yet its interaction with A5 is. In that case, the follow-up study can be a 8-group trial where the
two levels of A1 (high/medium) are crossed with two levels of A4 and A5 each. In all the groups,
A2, A3, and A6 should be set at high, low, and low level, respectively.

Example 2
Suppose the significant effects along with their signs based on screening analysis are

A1(+), A3(+), A1A3= A2A6(−)

where aliased interaction A1A3 is anticipated, but A2A6 is unanticipated. As before, we dismiss
A2A6 based on prior considerations and assign the observed effect to A1A3. The follow-up study
could be a 6-group trial crossing three levels of A1 with two levels of A3. In all the groups, the
levels of A2, A4, A5, and A6 should be set at the low level.

Example 3
Suppose the significant effects along with their signs based on screening analysis are

A1(+), A2(+), A3(+), A5(−), A2A3= A4A5(−)

where both the interactions A2A3 and A4A5 involved in the aliased bundle are unanticipated. Since
the main effect of A4 is insignificant, the main effect of A5 is negative, and the aliased A4A5
interaction is negative (even though we are not sure if the observed effect is really due to A4A5);
one reasonable step would be to set A4 at its high level (provided the high level of A4 is not
very expensive or burdensome) and A5 at its low level (note that our decision about the optimum
levels of A4 and A5 would be the same when A4A5 effect is really negative as when A4A5 is
null). In addition, we would set A6 to the low level. If there is a concern about the potential A2A3
interaction, then the follow-up study could be a 8-group trial, where medium and high levels of
A1 are crossed with the two levels of A2 and A3 each to form the 8 groups (setting A4, A5, and
A6 at high, low, and low levels, respectively).

4.2. Follow-up study design of Project Quit

An alternative to the follow-up studies outlined above is provided by Project Quit study, in
which all components were two-level (hence a dose-response experiment was unnecessary) and no
(unanticipated) aliased interaction were found to be significant (hence no de-aliasing experiment
was necessary). The investigators decided to study different aspects (not studied in the screening
trial) of the two important components (e.g. success stories and message source). The decision
was to vary message source at two levels (high/low) of additional personalization, and to vary
success stories in terms of the archetype (language and picture) of the hypothetical character
in the story at three levels (e.g. a rebel, care-giver, or self-made character). Two new two-level
components, e.g. order (of appearance on the web site: success stories first vs health advice first)
and email quit status request (yes/no) were added to the follow-up study. Subjects randomized to
the ‘yes’ level of email quit status request were contacted by the study staff at regular intervals
about their quit status. The follow-up study consisted of 25 groups in total: 24 groups from the
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2×3×2×2 factorial structure of the above four components, plus a control group. In all groups, the
original components from the screening trial not studied in the follow-up study were set as follows:
deeply-tailored efficacy expectation and outcome expectation messages, gain framing, and multiple
exposures. All three levels of the success stories were also deeply tailored. The control group
received the best intervention according to the results of screening study (e.g. highly personalized
source at the first session only, deeply tailored story with fixed archetype as in the screening study,
deeply tailored efficacy expectation and outcome expectation messages, gain framing, and multiple
exposures)—they did not receive any email about their quit status.

5. DISCUSSION

Multicomponent interventions are becoming increasingly common in health sciences. In this
paper, we have addressed the criticisms and misconceptions regarding the use of full and
FFDs (e.g. attractive alternatives to and feasibility of such designs, inability to cross compo-
nents, interpretation of main effects, and concerns about power) in the context of screening
studies to develop multicomponent interventions. Other issues regarding the use of factorial
designs, as discussed by Couper et al. [46], are slower recruitment rate (since subjects need
to meet the inclusion criteria for all the components) and potential lower compliance (due
to a more complicated treatment protocol) than single-component trials. However, these are
common to any studies of multicomponent interventions, and not problems specific to factorial
designs.

We provided some examples of follow-up studies that often need to be conducted (e.g. to de-alias
significant aliased interactions) after the completion of the screening study. Further strategies for
conducting follow-up studies can be found, for example, in [18, 38]. In addition, in case there is
at least one component with more than two levels (e.g. a continuous component), dose-response
experiments [47, 48] where subjects are randomized to ethical doses should be used to find the
optimal dose of these components. Operationalizing a wider variety of follow-up studies needs
more targeted future research.

In our discussion of FFDs, we assumed that third- and higher-order interactions are negligible
[13, 14]. This is not a binding constraint. Suppose prior knowledge suggests that interactions up
to order 3 involving a certain component are likely important, whereas even two-way interactions
involving some other components are negligible. One can still use a carefully chosen FFD [18].

One setting in which factorial designs are not well suited is when the main effects of all the
individual components are weak, but there are some high-order interactions in the data-generating
model that produce a strong effect on the outcome (i.e. a setting where the Hierarchical Ordering
Principle is violated). Another important caveat regarding the use of factorial designs for developing
multicomponent interventions is the presence of nested components (e.g. levels of component B are
nested within the levels of component A). Generalization of the usual factorial designs called nested
factorials [49, 50] can incorporate nested components. Analysis of such designs can employ mixed-
effects models [51]. A somewhat similar issue is when some intervention components are applied
most naturally in a grouped setting. For example, some intervention components are provided to
all patients at a clinic [52] or to all children in a classroom or school [53]. Development of an
experimental framework tailored to such settings is an avenue for future research. To conclude,
FFDs provide a powerful tool for conducting screening studies to aid in the development of
multicomponent interventions.
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APPENDIX A: DEFINING RELATION AND RESOLUTION OF AN FFD

The defining relation of an FFD specifies the aliasing. Suppose a study involving five components,
say A1, . . . , A5, is restricted to 16 cells (as in the Guide to Decide study described in [14]). Then
a 1

2 fraction of the 25 full factorial design should be used. With 16 cells, one can construct a full
factorial with four components, say with A1, . . . , A4. The strategy is to alias the fifth component,
say A5, with the 4-way interaction A1A2A3A4. This means, the column (in the design matrix)
of A5 is identical to that of the element-wise product of the columns of A1, A2, A3, and A4,
i.e. A5= A1A2A3A4. Note that all the elements in any of the columns are either +1 or −1. So
element-wise product of any column with itself leads to the identity column, say I (with all its
entries +1). In particular, A5A5= I . Multiplying both sides of the equation A5= A1A2A3A4 by
A5 gives

I = A1A2A3A4A5 (A1)

The condition (A1) completely specifies the aliasing pattern of the 25−1 FFD under consideration,
and hence called its defining relation. The alias of any factorial effect can be found by multiplying
both sides of (A1) by that effect and then using the facts that Aj I = Aj and Aj Aj = I for all j .
The word A1A2A3A4A5 is called the defining word. The length (i.e. number of elements) of the
defining word is called the resolution of the design. So the design specified by (A1) is a resolution
V design. In a resolution V design, the main effects are aliased with 4-way interactions and the
2-way interactions are aliased with 3-way interactions. In a setting where the third- or higher-order
interactions are negligible, resolution V FFDs are almost as good as the full factorials in that the
main effects and 2-way interactions are estimable without bias.

However due to cost and feasibility constraints, one often has to use smaller (than 1
2 ) fraction

of full factorial designs, leading to lower resolution. The Project Quit study described before
used a resolution IV FFD. In the following, we illustrate resolution IV designs with an example.
Suppose there are six components, say A1, . . . , A6, in a study that is restricted to 16 cells (as in
Project Quit). This means constructing a 1

4 fraction of the 26 (=64 cells) full factorial design.
With 16 cells, one can construct a full factorial with four components, say with A1, . . . , A4. Now,
the strategy is to make the columns of the remaining two components A5 and A6 identical to some
higher-order interactions. One such choice is to set A5= A1A3A4 and A6= A2A3A4. Using the
same rules as before, one gets I = A1A3A4A5 from the first aliasing relation, and I = A2A3A4A6
from the second aliasing relation. Multiplying these two, a third equation I = A1A2A5A6 follows.
Thus the defining relation of this FFD is

I = A1A3A4A5= A2A3A4A6= A1A2A5A6 (A2)

By definition, (A2) is a resolution IV design, since the length of each defining word is 4. In a
resolution IV design, the main effects are aliased with 3-way or higher-order interactions, but the
2-way interactions are aliased with other 2-ways.

APPENDIX B: RELATIVE EFFICIENCY OF CODING SCHEMES

Here we show that if there are k(�2) components in a factorial experiment, and there may be
a two-way but no higher-order interaction in the true data-generating model, then the relative
efficiency of the two coding schemes (measured by �) increases with k.
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Note that in 0/1 coding, regardless of the total number of components (k), �1, the coefficient of
A1, is a simple effect given by �(1,0,...,0)−�(0,...,0); the corresponding estimator is �̂1= Ȳ(1,0,...,0)−
Ȳ(0,...,0), where Ȳ(1,0,...,0) is the sample mean of Y in the (1,0, . . . ,0) cell, and so on. It follows
that E(�̂1)=b1 and Var(�̂1)=2�2/r (since �̂1 is a comparison of two cells each of size r ). So
with 0/1 coding, the SNR governing the power to detect A1 in the 2k design is same as that in a
2×2 design considered before, e.g.

SNR[0/1] = |E(�̂1)|√
Var(�̂1)

= |b1|√r√
2�

In −1/1 coding, �1= 1
2 ×(the main effect of A1)= 1

2 ×(the average of 2k−1 simple effects), which

is estimated by its sample version �̂1 where all the �’s in the expression of simple effects are
replaced by the corresponding Ȳ ’s. In case there is a two-way interaction (b12) but no higher-order
interaction in the true data-generating model, E(�̂1)=�1=(b1/2+b12/4),

Var(�̂1)=
1

4
× 1

2k−1
×(variance of an estimated simple effect)= 1

4
× 1

2k−1
× 2�2

r
= �2

2kr

and

SNR[−1/1] = |E(�̂1)|√
Var(�̂1)

=2(k/2−1)
∣∣∣∣b1+ b12

2

∣∣∣∣
√
r

�

Thus,

�= SNR[−1/1]
SNR[0/1]

=2(k−1)/2
∣∣∣∣1+ b12

2b1

∣∣∣∣
is an increasing function of k.
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