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ABSTRACT

The classical treatment of replacement problems is a widely known engineering
economy subject. The treatment simplifies the computations in a replacement
analysis significantly. Unfortunately, the simplifications mask subtly some
important theoretical issues about more general (non-classical) replacement
problems. This paper highlights several theoretical issues about replacement
economics that do not appear to be fully understood by some in practice and in the

literature because of the simplifications of the classical treatment.



SOME THEORETICAL ISSUES AND OBSERVATIONS ABOUT THE
CLASSICAL TREATMENT IN REPLACEMENT ECONOMICS
Introduction

The classical treatment of replacement problems, where current challengers (new
assets) are assumed to repeat identically to the infinite future, is a traditional
engineering economy subject [3][4][6][7]1(8][10][14]. Although the classical
treatment may not approximate well many practical replacement problems, and there
are many treatments that do not require these assumptioms [1][]2][4][5][9][11][13]
[15], it is nonetheless useful to learn and know. The classical treatment is a
convenient point of departure in an introductory study of replacement problems
because it simplifies the computations significantly, and understanding the classical
treatment facilitates understanding the treatment of other replacement problems when
the assumptions are relaxed; afterall, the classical treatment is simply a special
case. Unfortunately, the simplifications mask subtly several important theoretical
issues about replacement problems in general; and some of these issues do not appear
to be fully understood by some in practice and in the literature. For example, the
calculations typically performed in the classical treatment seem to lead some to the
impression that the ecomomic life of a current challenger is a function of only the
economic consequences attributable to the current challenger since the calculations
appear to involve only the cash flows that describe the current challenger, and
similarly for the defender (old existing asset). The economic life of an asset is a
function of not only the economic consequences attributable to the asset itself but
also to assets to be available in the future.

This paper highlights some theoretical issues that appear to be easily
misunderstood because of the computational simplifications of the classical
treatment. This paper will show more fully:

(1) why the equivalent uniform cash flow (EUCF) is the most common measure of worth

used in the classical treatment,



(2) why the economic lives of the defender and current challengers are not
necessarily the lives that maximize the EUCF for each asset in the classical
treatment,

(3) why the popular (commonly used) decision rule to select the current asset with
the maximum EUCF in the classical treatment is really an equivalent decision
rule (shortcut) to a more theoretically exact but computationally cumbersome
decision rule, and

(4) why the salvage value of the defender is typically treated as an initial
disbursement to the defender rather than as an initial receipt to the current
challenger in the classical treatment.

To illustrate these points it is important to digress briefly and begin with a
brief description of the nature of replacement problems in general. We will then

address the points above mathematically and with numerical examples.

The Nature of Replacement Problems

A replacement problem involves a situation where a service (or product) is to
be provided for a period of time (horizon time) and the assets that provide the
service are expected to wear out and/or become obsolete and therefore must be
replaced periodically. A replacement decision involves determining the sequence of
assets that promises to provide the most economical service from the decision time to
the horizon time. If the sign convention that disbursements are negative and
receipts are positive is used, then the most economical sequence is the onme that
maximizes the net present value (NPV) of the sequence. If the reverse sign
convention was used then the objective would be to minimize NPV. A sequence of
assets is determined when for each asset in the sequence the type of asset and its
installation (or replacement) time are specified.

If at the time the service was to first begin (startup), the decision maker

(1) knew completely the identity (existence) of all the current and future assets



that could provide the service, (2) knew with certainty the cash flows that
describe these assets, and (3) knew with certainty the horizon time, then a single
decision could be made to determine the most economical sequence of assets, except
when the horizon is infinite. An infinite sequence of assets of course could never
be identified completely, except in the special case where at some time in the
future assets eventually repeat [12]. However, it often can be partially
identified [2].

Few (if any) practitioners have such complete and certain knowledge.
Typically the existence of only some of the assets available both currently and in
the near future will be known at the startup time and the cash flows and horizon
time are generally uncertain. Consequently, the decision at the startup time is
based on incomplete and uncertain information and therefore the sequence of assets
determined would be most economical only if the forecasts proved to be complete and
accurate. Seldom (if ever) would this occur. In practice, sometime after the
startup time the asset currently in service (the defender) would be analyzed to
determine if it should be replaced (by a current challenger). This decision would
be based on revised but still incomplete and uncertain information and would
involve a choice among alternative sequences of assets from the current decision
time to the horizon time, namely, either the defender and its succession of future
challengers or one of the alternative current challengers and its succession of
future challengers. Although the decision implemented will be to either keep the
defender or replace it with a current challenger, the decision must take into
account the succession of future challengers because changes ip the productivity of
those challengers affects the economy of the defender and current challengers.
This sequential decision process would be repeated periodically until the horizon
. time is reached, if the horizon is finite. Thus, replacement problems in practice

typically involve a sequence of decisions where each decision 1is to determine the




most economical alternative sequence of assets from the time of the decision to the

horizon time.

Many presentations of replacement problems describe the situation of a single
replacement decision that is assumed to occur some time after the startup time but
before the horizon time. The decision presented typically involves a choice
between either a defender or one of several alternative current challengers. The
decision of course is only one in the unfolding sequence of decisions and the
choice is really between the defender and its sequence of future challengers and
one of the alternative current challengers and its sequence of future challengers.
Taking into account these future challengers, their changing productivity, and
their cash flows is what makes replacement problems difficult. It is precisely
this aspect that classical assumptions simplify and make the problem less difficult
to solve. Given this background we will now focus on some theoretical issues and

the classical treatment.

The Classical Treatment

Assume we have a choice between a defender, j = 0, and a current challenger,
j = 1. The relevant operation and maintenance expenses are summarized by a cash
flow matrix M in which the j-th column is the operation and maintenance cash flow

vector mj for asset j = 0,1, and the n-th row contains operation and maintenance the

cash flows m[j,n] after n = O,I,ZPH,Hj periods of service of the asset, as shown

below. Similarly, the salvage values are summarized in a matrix V in which the j-th

column is the salvage value vector Xj for asset j, and the n-th row contains the

salvage value v[j,n] after n periods of service of the asset.
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n m{0,n] m[1l,n] v[0,n] v(1l,n]
0 0 0 +45,000  +70,000
1 -24,250  -18,250  +22,500  +47,250
2 -24,625  -21,875  +11,250  +32,150
_ 3 -30,970 -28,980 0 +21,000
. =4 45,660  -40,000 0 +13,960

The figures for the defender represent n more periods of service and the
salvage value for the current challenger for n = 0 represents its first cost, i.e.,
FC = -v[1,0]. We assume both assets have physical lives of ;j = 4 periods. The
physical life is the time beyond which the asset does not provide satisfactory
service and either cannot be restored or cannot be restored without major repair
such that the rebuilt asset is for practical purposes a new asset with a new
physical life. Several alternative current challengers could be considered here,

j = 2,3,...,5, as well as many other cash flow consequences affected by the choice
(such as taxes); they would only increase the calculations and would not enhance
the illustration.

The classical treatment can be summarized as follows and as shown in
Table 1 [4][8][10][14]:

(1) Compute the net cash flows that describe each asset j for n = 1’2""’;j
periods of service. The net cash flows for n periods of service for each
current asset are summarized by a matrix S™ in which the j-th column is
the net cash flow vector g? for asset j, and the t'-th row contains the
cash flows at time t'. Time t' represents the relative time in the life
of asset j where t' = 0 is the time of installation and t' = n is the
time of replacement. An element (cash flow) in the matrix is sn[j,t'].

We assume sn[j,t‘] < 0 for net disbursements and sn[j,t'] > 0 for net

receipts. For this example:



s,[3,0] = -v[j,0] for t' =0 (1)
spolist'] = mlj,t'] for t' = 1,...,n-1 (2)
solirt']l = mlj,t'] + v[j,t'] for t' =n (3)

(2) Compute the equivalent uniform periodic cash flow EUCF(gg) for n =

1,2,.-.,nj periods of service for each asset j = 0,1. An asset's

economic life, n?, is often defined as equal to the life associated with

A
the asset's maximum EUCF value, nj. This definition is imprecise at best

and inaccurate at worst. A more precise and accurate definition would be

that it is the asset's service life in the most economical sequence of

. . . %* ” *
assets. Only under special circumstances will n; = nj. Let s? represent

~

. s s *
the cash flow vector associated with nj and gg represent the vector

associated with nj. In our example, 30 = 31 = 3 periods using a discount

rate of r = 0.10 per period as can be seen in Table 1.

(3) Keep the defender if EUCF(EB) > EUCF(E?), otherwise replace it with the
current challenger if EUCF(s}) » EUCF(sf). In this example, both assets

4

are equally economical because EUCF(E%) = EUCF(§8). The equal values of Ej

was unintentional; unequal values would not affect the comparison or the

decision.

Why Use EUCF? When Does n? Occur at the Maximum EUCF?

J

The EUCF is perhaps the most common measure of worth used in the classical
treatment because it requires the least amount of computation. Other equivalent
but computationally more cumbersome measures of worth could be uéed and they would
lead to the same decision if used correctly. The economic life of a current asset
will occur at the maximum EUCF with the assumptions of repeatability and an infinite
horizon time. Change either one or both of these assumptions and the economic life
of the current asset will not necessarily correspond to the maximum EUCF for the

current asset. These issues can be illustrated both mathematically and through our



example.

Recall, the monetary objective is to choose the sequence of assets that promises
to provide the most economical service, or equivalently, the sequence that maximizes
NPV. We now define the following additional notation.

AR is a matrix summarizing the net cash flows of infinite sequences of
assets in which the j-th column is the net cash flow vector 3? for an

infinite sequence beginning with current asset j placed in service n

nperiods, and the t-th row contains the cash flows at time t = 0,1,2,...,® .

NPV(E?) = 3?5 is the net present value of infinite sequence 3? where x is a
(row) vector of discount factors x[t] = 1/(1+r)t. We will let gg* denote
the sequence that maximizes NPV,
NPV(E?) = E?E is the net present value of current asset j for nj periods of service.
T=t-t' is the time an asset is installed, T=0, n:, 2n:y..ey® .

J

The NPV of an infinite sequence beginning with the current challenger placed in
service n; periods followed by repeating identical future challengers, g?, can be

written as follows.

NPV(a]) = alx (4)
= I EEE'X[T] (5)
T=0
= I NPV(sPx([T] (6)
T=0
n
-n -2n —on_ [(1+1) 1-1]
= NBV(sD[1+(1+r) L+(14r) Loa(1er) 1) (7
n
[(1+r) 1-1]
n -n -2n —(0-1)n
= NPV(E‘I’)[(U»:) Lije(1+r) Lei+r) L. +(1+1) 1 (8)
-n -2n -(»-1)n - on n
-1 =(1+r) L-(1+r) l...-(1+1) L+ Ly/(@+n) 1-1)



n —oon n
= NPV(sD[(1+r) 1-(1+r)  1)/[(+r) 1 - 1) (9)
n n -%®n
[(1+r) 1-1] [(1+r) 1-(1+r) 1]
= EUCF(s]) - . (10)
n n
[r(1+r) 1] [(1+r) 1-1]
= EUCF(s}])/r (11)

Equation (4) is the NPV of the infinite net cash flow series g? and (5)
expresses (4) as an infinite sequence of repeating challengers each described by
identical cash flows. Only cyclic sequences of challengers that repeat every n;
periods need to be considered when future challengers are assumed to be identical to
the current challenger because if n periods of service of the current challenger
proved to be the most economical then it would be the most economical period of
service for the future challengers too. The quantity in the brackets in (5) is
the NPV of the current challenger for n; periods of service as shown in (6).
Equations (7)-(11) are the result of algebraic manipulations. Equation (7) expands
the summation in (6) and multiplies by unity in the form [(1+r)n1-1]/[(1+r)n1-1].
The numerator of the unity term is multiplied through (7) to produce (8) which is
simplified to (9) because all except two terms in the bracketed numerator cancel.
The NPV is replaced in (9) with the equivalent term EUCF(g?)[(1+r)n1-1]/[r(1+r)n1]
in (10) where the formula in the brackets here is the well known interest equivalence
factor (P/A,r,np), i.e., EUCF(gT)(P/A,r,nl). Equation (10) is simplified to (11)

Iy
where (1l+r) "1 = 0.
It is apparent from equation (11) that the maximum value of EUCF(ET), namely,
EUCF(§§), also maximizes NPV(a},), namely, NPV(ET*). Consequently, the life
associated with the maximum EUCF value, 31, is also the economic life of the

current challenger, nT, because that life and its EUCF value identifies the most

economical infinite sequence of challengers. Thus, in general, whenever any




current asset j 1s also the asset used to form the infinite sequence of identical
repeating future assets then n? = %j is guaranteed. Consequently, a defender's
economic life ng 1s not necessarily equal to 80 because defenders are usually not
assumed to repeat identically in the future. Thus, when multiple alternative
current challengers are involved, j = 2,3,...,3, then n? = aj is guaranteed only for
the alternative current challenger that proves to be most economical but not for
the other less economical alternative current challengers since the current asset
used to form the infinite sequence of identical repeating future assets that follows
each current challenger should be the most economical current challenger. This can
be illustrated easily for the defender as follows.

The NPV for njy periods of service of the defender and its subsequent infinite

sequence of challengers can be computed as follows.

NPV(al) = alx (12)
= spx + afxex[ng] (13)
= NPV(sB) + NPV(al)x[ng] (14)
n
= EUCF(sB)(P/A,r,nq) + EUCF(s})/r(1+r) O (15)

A

Although EUCF(s}) would maximize the second term in (15), it is not necessarily

true that the maximum value EUCF(sf}) maximizes NPV(EB)' Further calculations would
be necessary to determine the EUCF value and economic life for the defender that
maximize NPV(QB). The calculations, however, are unnecessary if the decision maker

wishes to know only whether the defender or current challenger is more economical.

If EUCF(gB) > EUCF(ET , then without having to calculate any NPVs, it is apparent

that NPV(al®) » NPV(al®) because NPV(aB*) > NPV(a}) > NPV(a]™) = NPV(a]) and the

‘defender is the more economical asset. If EUCF(s]) > EUCF(sj), then NPV(a}) =

"~

NPV(QE*) > NPV(EB*) > NPV(af}) and the current challenger is the more economical

10



choice. That is, it is clear from equations (11) and (15) that if EUCF(gg) >
EUCF(§§), then NPV(ES*) > NPV(Q?*) and vice versa. The additional calculations
would be necessary if the decision maker wanted to know the defender's economic
life, or in the case of multiple alternative current challengers, the economic life
of any of the current challengers except the most economical challenger. These
calculations are illustrated in the next section.

Notice that the popular decision rule to select the current challenger when
EUCF(§§) > EUCF(gg) or the defender when EUCF(§§) > EUCF(§§), is really an
equivalent decision rule. It is equivalent to the more theoretically exact but
computationally cumbersome decision rule to select the current challenger when
NPV(ET*) > NPV(ES*) or the defender when NPV(ES*) > NPV(E?*). Other more
theoretically exact decision rules are also possible, such as select the current
challenger when EUCF(gl*) > EUCF(EB*). The measure of worth EUCF with its
equivalent decision rule is easier to use because (1) the net cash flows that
describe the alternative infinite sequences, EB and 3?, do not have to be computed
explicitly (eqs. (4) and (12)), they can be computed implicitly with the cash flows
that describe the defender and the current challenger (eqs. (5) and (13)), and (2)

only alternative sequences involving cyclic replacement need to be considered (egqs.

(6) and (14)).

.k
What 1is n; for Any Current Asset?

The economic life of a current asset, either the defender or an alternative

current challenger, can be determined from the incremental net cash flows é? that

describe the differences between the nj alternative infinite sequences of assets

. periods. For example,

that begin with current asset j in service n = l,2,3,...,nJ

the incremental net cash flow for keeping the defender in service 2 periods rather
than 1 is illustrated in Table 2. The top third of the table identifies the net

cash flows gé for 1 period of service of the defender and the middle third

11



identifies the net cash flows ég for 2 periods of service. The lower third shows

~ . 3 .
the incremental net cash flows 38 = 26 - 36. Notice, 1n general, the incremental

net cash flows é? can be viewed as comprised of two component incremental net cash
A A An% A . .
flows, 3? = g? + E? y where E? represents the incremental (marginal) cash flows of

A
. .. . . *
keeping the current asset j in service one more period from n-1 to n and 53

represents the incremental cash flows between most economical challenger repeating

identically (every n. periods) to the infinite future beginning at time n rather

1

than time n-1. Because NPV(Q%) = +5,268 > 0, keeping the defender in service

two periods is more economical than one. Similar computations for other service
lives for the defender yield, NPV(Q%) = -6,136, NPV(%O) = +868 and NPV(ES) = =792,
therefore, the economic life of the defender is 3 periods. Formally, then, the

longest life n for which NPV(E?) > 0 is the economic life ni = n for current asset ]

]

in the classical treatment,

Obviously, computing ;j—l incremental vectors a? to determine an asset's

economic life is rather cumbersome. One shortcut would be to use the nj vectors 3?

and compute NPV(E?) for each. The life n associated with the maximum NPV would be

. . * . .
the current asset's economic life, n:, and of course it would be the same life as

J
determined by the more theoretically exact but computationally cumbersome
incremental method because NPV(a ) = NPV(Q?) - NPV(ES-I).

Another and simpler shortcut is to compute the current asset's marginal

equivalent uniform cash flow [4][6][7]. This approach involves the incremental

component cash flows g? and E?*. The incremental NPV can be written as follows.
Nev(a}) = a%x (16)
= EJ + E‘fké (17)
= s0x + an*x-x[n] - an*x-x[n-l] (18)
22T a2 1=

{Sn[j,n-l]/x[l] + gn[j,n] + 3?* - Eg*ﬁ/x[ll} x[n] (19)

1]

{MEUCF(sn) - a? *xr}.x[n] (20)

{MEUCF(ETJ-‘) - EUCF(s™)}x[n] (21)

12



Equation (16) is the NPV of the incremental cash flows é? and (17) expresses §?

in terms of its incremental component cash flows. The second term in (17) is
expanded in (18) in the form of the difference in the NPV of the infinite sequence
of repeating challengers beginning at time n rather than n-1. The discount factor
x[n] is factored out of (18) in (19), and equation (19) also shows the two non-zero

A . .
Notice that the vector E@ will always consist of only

1
’ ]

cash flows that comprise EJ
two non-zero elements (cash flows), which summarize the marginal economy of keeping
the current asset j in service one more period from n-1 to n. The first two terms
in (19) compute marginal (incremental) equivalent uniform cash flow at time n,
MEUCF(Q?), for one more period of service of current asset j from n-1 to n as shown
in (20). The second term in (20) is a simplification of the last two terms in (19)
and can be replaced in (21) with EUCF(EQ*) because EUCF(E?*) = EUCF(EQ*) = gg*zr-
Clearly from equation (21), if MEUCF@‘J.‘) > EUCF(s?) then va@‘j’) > 0. Therefore,
an equivalent definition for a current asset's economic life would be that it is the
longest life such that the asset's marginal equivalent uniform cash flow is greater
than the maximum equivalent uniform cash flow of the most economical challenger.
That is, the current asset should be kept in service as long as the marginal economy
gained by keeping it in service one more period, MEUCF(E?), is greater than the
marginal economy foregone, EUCF(EQ*), by not implementing the most economical
sequence of future challengers one period sooner. This is the most computationally
convenient method to determine n? since only the net cash flows that describe each
current asset are needed. It is important to remember though that this is an
equivalent (shortcut) method to the more theoretically exact but computationally
cumbersome method to compute NPV(éE).

It can be shown for the most economical current challenger j' that

an n* an n* *
MEUCF(sjn) > EUCF(§i=j|) for ny < n¥ and MEUCF(Ej.)< EUCF(§i=j') for m; > nj.

* ~ ; . . .
<1 = n:i, the 1ife that maximizes 1its

Consequently, n?. will always occur at 6-., n 3

1 ]

13



EUCF. However, for the defender, j = 0, and other alternative current challengers,

*
] 3
It is noteworthy to mention that if EUCF(E?) > EUCF(E?f) then current asset j has an

j # j', the current asset's economic life n% will not necessarily be equal to a

A

economic life between Sj < ng < ;j’ and if EUCF(E?) < EUCF(gg?) then 1 < nj < 0.

In our example, the values of NPV(ﬁS), NPV(ES) and MEUCF(EB) for the

do
w
¢+ <

defender are as follows.

n NPV(al) NPV(a}) MEUCF (1)

1 -6,136 < 0 ~451,136 -51,250 < =44 ,500
2 45,268 > 0 ~445,868 ~38,125 » -4é,500
3+ 868> 0 ~445,000 ~43,345 > 44,500
L - 792 <0 -445,792 ~45,660 < 44,500

e
~

Thus, ny = 3. It is only a coincidence in our example that ny = nj.
0 y 0 0

What if the Horizon is Finite? What if Challengers Don't Repeat?

If either the horizon time, H, is finite or if challengers do not repeat, or
both, then alternative sequences of assets involving non-cyclic replacement must
also be considered and (1) the equivalent decision rule for the EUCF cannot be used
and (2) the economic life for any current asset does not necessarily occur at the
maximum EUCF value. However, there is one exception. If challengers repeat and
the economic life of the most econmomical current challenger nj. is a multiple of H
as well as H—ng and H-n? for j # j' then the solution will involve only cyclic
replacement and the equivalent decision rule can be used.

Consider first the effect of only a finite horizon where H = 4. Table 3
displays all 16 alternative sequences of assets, eight begin with the defender and

eight begin with the current challenger where we redefine EQ to gk as an alternative

J ]
net cash flow vector for a finite sequence k that begins with current asset j placed

in service for at least one period, and the t-th row contains the cash flow ak[j,t].

The most economical sequence beginning with the defender, Eé’ keeps the defender

14



4 periods and the most economical sequence beginning with the current challenger, i%’
keeps the current challenger 2 periods. Notice that the economic lives of the
defender and current challenger are now ng = 4 and ni = 2 respectively, whereas when
H = ® they were ng =3 and nt = 3.

Now assume the horizon is still H = 4 and that we expect changes in the
productivity of the future challengers. Assume the relevant operation and
maintenance expenses and salvage values for the future challengers j = 2, 3, 4

available at time T = 1,2,3 for n = O,Ip.”nj periods of service are as follows.

n m{2,n] m[3,n] m[4,n] v[2,n] v(3,n] v[4,n]
0 0 0 0 +60,000  +55,000 +50,000
1 -14,000  -11,500  -11,500  +36,000  +28,000  +23,000
2 -19,300 -20,000 -21,400 +17,000 +11,000 +9,500
_ 3 -29,000 -31,555 -33,360 +9,665 0 0
nj = 4 -42,854 -44,820 -46,141 +9,665 0 0

The net cash flows that describe these challengers g? are shown in Table 4, and
the 16 alternative sequences are shown in Table 5. The most economical sequence
beginning with the defender, 38, indicates the economic life of the defender has
changed again and is now né = 2 periods, and the most economical sequence beginning
with the current challenger, E%’ indicates its economic life has also changed and is
now ni =1 period.

In both examples above the most economical sequence could have been found using
dynamic programming thereby obviating the need to identify all the alternative
sequences explicitly [11]. All the alternative sequences were identified only for

the sake of illustration.

What About the Salvage Value of the Defender?

The salvage value of the defender can be treated as either an initial
disbursement to the defender (the conventional approach [3][4]) or as an initial

receipt to the current challenger (the cash flow approach [3][4]) provided the

15



subsequent economic analysis is performed correctly. Of course, to do both would

be incorrect because it would double count the defender's salvage value. The
classical treatment typically assumes the conventional approach, as was used in

Table 1 previously, because it is computationally easier and the equivalent

decision rule can be used. To illustrate the difference in the approaches, Table

6 is identical to Table 1 except that the cash floﬁ approach has been used. 1If the
equivalent decision rule was used it would suggest that the current challenger be
installed for 1 period and replaced identically every year thereafter because
EUCF(§§=1) > EUCF(§é=1). This would be incorrect because the comparison of EUCF
values has the subtle implication that the salvage value of the defender today

would be received each time a challenger is installed in the future. This of course
will not occur since if the defender is sold today the salvage value will be received
only today and never again in the future. This subtle implication can be seen easily
by refering back to either equations (11) and (15) or to Table 2 and replacing the

cash flows in shown by the cash flows in Table 6. With the cash flow approach,

J
additional calculations would be required to explicitly counteract this implicit

assumption. This can be avoided easily by simply using the computationally simplier

conventional approach.

Summary

This paper showed mathematically and by example that: (1) the EUCF is the
most common measure of worth used because it is the most convenient computationally
for the classical treatment, (2) the economic life of a defender or an altermative
current challenger is not necessarily the life that maximizes the asset's EUCF but
rather the life of the asset in the sequence of assets that maximizes the NPV of the
sequence, (3) the popular decision rule to select the current asset with the maximum
"EUCF 1is an equivalent decision rule to the more exact but cumbersome NPV decision

rule, (4) computing the MEUCF of a current asset is an equivalent method to

16



computing incremental NPV for the sequence to determine the asset's economic life,
and (5) the conventional approach to the salvage value of the defender is
computationally easier than the cash flow approach.

As mentioned previously, there are a variety of non-classical treatments that
deal with replacement problems involving non-repeating challengers for either finite
or infinite horizon problems. Although the classical assumptions occur infrequently
in practice, the classical treatment nonetheless will remain an important
methodology. The classical treatment is frequently the point of departure in an
introductory study of replacement problems and it can be viewed as the foundation
for non-classical treatments. Consequently, a thorough understanding of the
classical treatment and its subtlties is important to understanding non-classical

treatments and for developing new methodologies.
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Table 1:

Cash flows and EUCFs for the defender j = 0 and current challenger
j=1forn=1,2,3,4 periods of service.

s,00,0]
-45,000
-45,000
-45,000

-45,000

s.[1,0]

al
-70,000
-70,000
-70,000

-70,000

sn[O,l]

-1,750
-24,250
-24,250

-24,250

syl1,1]
+29,000
-18,250
-18,250

s,[0,2]

-13,375
-24,625

-24,625

s,l1,2]
+10,275

-21,875

—21’875

18

s,(0,3]

-30,970

-30,970

syl1,3]

-7,980

s,00,4]

-45,660

sn[1,4]

~26,040

EUCF(sg
-51,250
-45,000
-44,500

-44,750

EUCF(s])
-48,000
-45,000
~44,500

-45,500



)

R0

Table 2: Net cash flows and incremental (marginal) cash flows for 2 alternative
sequences involving the defender in service either 1 or 2 periods.
Cash Flows for 1 Period
0 1 2 3 4 5 6 7 8
s100,0] sy[0,1] sg(1,0] s3l1,1] s3[1,2] s3[1,3]
-45,000 -1,750 -70,000 -18,250 -21,875 -7,980
s3[1,0] 53[1,1] s3(1,2] 53[1,3] 33[1,0] s3[1,1]...
-70,000 -18,250 -21,875 -7,980 -70,000 -18,250...
a1[0,0] a;[0,1] ay[0,2] ay[0,3] ay[0,4] a;[0,5] a;[0,6] ay[0,7] a;[0,8]...
-45,000 -71,750 -18,250 -21,875 -77,980 -18,250 -21,875 -77,980 -18,250...
Cash Flows for 2 Periods
s,(0,0] s,[0,1] s,[0,2] 33[1,0] 53[1,1] s3[1,2] S3[1,3]...
-45,000 -24,250 -13,375 -70,000 -18,250 -21,875 -7,980
s3(0,1] s5[1,1] s3(1,2] s3(1,3] 53[1,0]...
-70,000 -18,250 -21,875 -7,980 -70,000...
ap[0,0] a,[0,1] a,[0,2] a,[0,3] a,[0,4] ay[0,5] ay[(0,6] a,[0,7] a2[0,8]...
-45,000 -24,250 -83,375 -18,250 -21,875 -77,980 -18,250 -21,875 -77,980...
Incremental Cash Flows
s900,0] s,[0,1] s,[0,2]
0 -22,500 -13,375
sq(1,1]1 s401,2] s3[1,3] s3[1,4] s3(1,5] s4[1,6] 33[1,7] 53[1,8]...
+70,000 -51,750 +3,625 +56,105 -59,730 +3,625 +56,105 -59,730...
a,(0,01 ay[0,1] a,[0,2] a,[0,3] a,[0,4] a,[0,5] a,[0,6] ay[0,7] a,[0,8]...
0 +47,500 -65,125 +3,625 +56,105 -59,730 +3,625 +56,105 -59,730...
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Table 3: 16 Alternative sequences when H = 4 and current challenger repeats.

Seq.
ko a (0,00 a0,1] 2 [0,2]  2[0,3] a[0,4]  NPV(af)
1 -45,000 -24,250 -24,625 -30,970 -45,660  ~-141,851
2 -45,000 -24,250 -24,625 -30,970
-70,000 +29,000 -143,450
3 -45,000 -24,250 ~-13,375
-70,000 -18,250 +10,275 -142,644
4 -45,000 -24,250 -13,375 -70,000 +29,000
-70,000 +29,000 -146,947
5 -45,000 -1,750
-70,000 -18,250 -21,875  -7,980  -147,195
6 -45,000 -1,750 -70,000 +29,000
-70,000 -18,250  +10,275 -150,375
7 -45,000 -1,750 -70,000 -18,250 +10,275
-70,000 +29,000 -150,805
8 -45,000 -1,750 -70,000 +29,000
-70,000 +29,000 -70,000 +29,000 -155,108
Seq.
kKo al1,0]  all,1] & l1,2] g [1,3]  a(1,4]  NeV(a¥)
1 -70,000 -18,250 -21,875 -28,980 -26,040 -144,228
2 -70,000 ~-18,250 -21,875  -7,980
-70,000  +29,000 143,450
3 -70,000 -18,250  +10,275
-70,000 -18,250 +10,275  ~-142,644
4 -70,000 -18,250 +10,275 -70,000 +29,000
-70,000  +29,000 -146,947
5 -70,000 +29,000
-70,000 -18,250 -21,875 -7,980 -144,241
6 -70,000 +29,000 -70,000 +29,000
-70,000 -18,250  +10,275 -147,420
7 -70,000 +29,000 =-70,000 ~-18,250 +10,275
~70,000  +29,000 -147,851
8  -70,000 +29,000 =-70,000  +29,000
-70,000 +29,000 -70,000 +29,000 -152,154
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Table &4:

s [2,0]

al
60,000
-60,000
-60,000

-60,000

sn[3,0]
-55,000
~55,000
-55,000

-55,000

s,[4,0]
-50,000
-50,000
-50,000

-50,000

Cash flows for future challengers j = 2,3,4
available at times T = 1,2,3, respectively.

sn[Z,l]
+22,000
-14,000
~14,000

14,000

sy[3,1]
-16,500
-11,500
-11,500

-11,500

spléy1]
+11,500
-11,500
~11,500

-11,500

sn[2,2]

-2,300
-19,300

-19,300

sq[3,2]

-9,000
-20,000

-20,000
spl4,2]
-11,900

-21,400

-21,400

21

sp02,3]

-19,335

-29,000

s,03,3]

-31,555

-31,555

syl4,3]

-33,360

33,360

sn[2,4]

-33,189

SH[B’A]

-42,820

sn[4,4]

-46,141



Table 5: 16 Alternative sequences when H=4 and current challenger does not repeat.

Seq.
K 2,00,0]  a.[0,1] a,.[0,2] a.[0,3] a,.[0,4] NPV (al)
1 -45,000 -24,250 -24,625 =30,970  -45,660 141,851
2 -45,000 -24,250 -24,625 -30,970
-50,000 +11,500 140,376
3 -45,000 -24,250 -13,375
-55,000 -11,500  =9,000 138,341
4 -45,000 -24,250 -13,375 =-50,000 +11,500
| -55,000  +16,500 -140,868
5 45,000  -1,750
-60,000 -14,000 -19,300 -19,335 140,413
6 -45,000  -1,750 -50,000 +11,500
-60,000 -14,000  -2,300 ~144,146
7 -45,000  -1,750 -55,000 -11,500  =9,000
-60,000  +22,000 -143,196
8 -45,000  -1,750 -55,000 +16,500
-60,000  +22,000 -50,000 +11,500 145,723
Seq.
k a,[1,0]  a [1,1]  a.[1,2] . [1,3] a[1,4] NPV (a¥)
1 -70,000 -18,250 -21,875 -28,980 =-26,040 ~144,228
2 -70,000 -18,250 -21,875  -7,980
-50,000 +11,500 -140,376
3 -70,000 -18,250 +10,275
-55,000 -11,500  =-9,000 -138,341
4 -70,000 -18,250 +10,275 -50,000 +11,500
55,000  +16,500 140,868
5 70,000  +29,000
-60,000 -14,000 -19,300 -19,335 -137,459
6 ~70,000  +29,000 -50,000 +11,500
7 ~70,000 +29,000 -55,000 -11,500  -9,000
-60,000  +22,000 -140,242
8 -70,000 +29,000 -55,000 +16,500
-60,000 +22,000 =-50,000 +11,500 -142,769
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Table 6: Cash flows and EUCFs for the defender j=0 and current challenger j=1
for n = 1,2,3,4 periods of service using the cash flow approach.

n s,[0,0] s [0,1] s [0,2] s [0,3] s,[0,4] EUCF(s()
1 0 -1,750 -1,750
2 0 -24,250  -13,375 -19,071
3 0 -24,250  -24,625  ~30,970 -26,405
4 0 -24,250  -24,625 -30,070  -45,660 -30, 554
n s,[1,0] s (1,11 s [1,2] s [1,3] s [1,4] EUCF(s])
1 -25,000  +29,000 | -1,500
2 -25,000 -18,250 +10,275 -19,071
3 -25,000 -18,250 -21,875  -7,980 -26,405
4 -25,000 -18,250 -21,875 -28,980  -26,040 -31,304
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