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CHAPTER I

Introduction

The importance of information sharing networks is gaining increasing attention

from research scientists. These networks play a crucial role in how we acquire infor-

mation, how we convey information to one another, and how we interact with other

people. Many information sharing networks can help normal users with various daily

activities, such as reading and recommending news, making or contacting friends and

online purchasing. All of those activities are actual electronic transactions and can

be recorded. Nowadays, such data are continuously growing and evolving, and are an

indispensable source of information for researchers to study the underlying human

dynamics that are reflected by its various patterns. Most of such data has either

explicit or implicit link patterns, and these links are potential paths for information

to spread over that entire online social environment.

Due to the wide usage of online social environments in daily lives and the availabil-

ity of the data, this type of data helps researchers investigate the behavioral patterns

of people foraging for information and interacting with each other in two ways [53].

First, as such networks are of unprecedented size and are evolving rapidly, they are

increasingly closer to the human activity dynamics of the real world. Second, infor-

mation sharing networks are prevalent and important in people’s daily activities so

1
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that human behavior is greatly affected by them. For example, networks of emails

or online social networks are two of the major ways that people communicate and

socialize with others. As these two ways converge, the research that analyzes and

studies information sharing networks reveals more truths about real-world human

behavior and their dynamic systems.

Most research work that has been done on information sharing networks can

be mainly classified into three categories. The first type of research is done by

defining networks from real online data and studying what properties the networks

have, either static or with temporal changes [81]. It is well known that, in spite of

the random dynamic changes of information systems, there are a number of strong

regularities both in the structural and temporal features of those networks, such as

the power-law of the degree distribution and the small world phenomenon of the

Web graph [2, 23]. The second is understanding why networks have those properties.

Many features of the networks are explained and simulated by some relatively simple

dynamical mechanisms or modeled by some simple rules in random graphs, such as

the preferential attachment mechanism [15] and the forest fire models [68]. These

models help the understanding of online networks and thus to predict their future

behavior. The third is utilizing the properties of real-world networks to achieve

some tasks, such as searching for information [86], summarizing the data [104] and

finding communities [87]. Such research helps the development of more powerful and

efficient algorithms and software for collecting and retrieving information, and it also

provides valuable insights for designing better systems for users. The research work

in this thesis, which is about the structural features of information networks and

their underlying relationship with information dynamics, is mainly in the first two

categories. However, many results also imply potential applications in information
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management, information retrieval, etc.

As this thesis focuses on uncovering the features of structure and dynamics of

information sharing networks, it studies the topological structures of these networks,

the relationship of the structures and information diffusion, and the influences of

information flows on network evolution. The first three pieces of work (Chapters II,

III and IV) aim to understand the structures of networks upon which information

flows, and the last two pieces (Chapters V and VI) are trying to answer the question

of how the network structure influences information diffusion and the relationship

between communities and information diffusion.

Before looking at the structural features of information sharing networks in de-

tail, we should be aware that such networks are massive and rapidly evolving, so that

their properties are difficult to trace. Thus, the first question we have is whether

the structure resulting from information sharing can be reliably measured in net-

works that are continually evolving. In Chapter II, we answer this question by

studying sampled data sets of blogosphere. The blogosphere serves as a medium

for self-expression, community formation and communication, and information diffu-

sion and aggregation. The rich structure of the blogosphere has proven to be fertile

ground for exploring research questions from a variety of fields. Some have focused

on the motivations behind blogging [21], the relationship between a person’s ten-

dency to keep blogging and their embeddedness in the online social network [63],

and explored the possibility of extending blog’s interactive nature for research and

commercial collaboration [20]. A few studies have specifically focused on the Live-

Journal blog network and found patterns of link distribution across geography [70],

factors contributing to link formation such as common interests and age [59], and

even the likelihood of a blogger joining a new LiveJournal interest group if many of
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their blogging friends have [13]. Others, closer to our current goals, have pursued

a systematic approach of analyzing the large scale network structure of the blogo-

sphere. Kumar et al. examined the structure of the blogosphere, both in terms of

the bursty nature of linking activity, the uneven distribution in the concentration

of such links, and the effect of time windowing on the appearance of that distribu-

tion [58, 59, 60]. Information diffusion studies have aimed to use the link structure

and other blog properties to infer the path of information flow [45, 4]. Moreover,

other studies have used the link structure to solve problems such as splog detection

[56] and community identification [117]. Splogs (also known as spam blogs) are blogs

whose sole purpose is to direct traffic and increase the search engine rankings of par-

ticular websites. In this work, by comparing two large blog datasets, we demonstrate

that samples from the blogosphere might differ significantly in their coverage but still

show consistency in their aggregate network properties. The results of the work also

show that properties such as degree distributions and clustering coefficients depend

on the time frame over which the network is aggregated [101].

While Chapter II shows that it is possible to get reliable metrics of real-world

networks based on comprehensive samples, we may still face challenges in obtaining

such samples, when, for example, the network is simply too massive. To address this

problem, in Chapter III, we observe that some vertices in many large information

sharing networks can play an important role in graph representation and information

diffusion. The numbers of such special vertices can be very small compared to the

size of the original networks. In this chapter, which deals with important vertices and

their graph synopses, we examine the properties of subgraphs of the most prestigious

vertices, i.e., vertices of the highest values using some well-established importance

measures, in several online networks, including those of blogs, websites in general, and
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instant messaging users. There are previous studies about compressing web graphs

for space-efficient data storage and transfer [116, 5], using a subgraph to represent

the original large graph (the graph sampling problem) [67, 62], mining a subgraph

for visualization of the original graph [39, 123], placing sensors to detect informa-

tion flow [65], constructing a synopsis by projecting queries [66], and quantifying the

extent to which important vertices hold online social networks together [76]. How-

ever, this work has focused on keeping or representing the properties of the original

networks; i.e., studying the entire networks. We study the more fundamental prop-

erties of the subgraphs induced by important vertices. Our principled and rigorous

study of the properties, construction and utilization of subsets of special vertices in

large online networks showed that vertex-importance graph synopses provide small,

relatively accurate portraits, independent of the importance measure [104].

In addition to revealing interesting characteristics of the vertices in information

sharing networks and their roles in information diffusion, further investigation about

a set of special edges, the strong ties, and their relationship with information diffusion

are studied in Chapter IV. Simple connectivity through arbitrary ties is sometimes

insufficient to transmit information, because ties may need to be of a given strength

in many real-world scenarios. For example, sensitive information or information

that may confer an advantage to those who have it, may only be shared between

individuals who know one another well [46]. This chapter analyzes the connectivity

and information transmission of strong ties. From some online social networks, we

show that strong ties occupy a large portion of the network and that removing all

other ties does not change the majority of the giant connected component and the

average shortest path of the online friendship networks. What is more, the cost of

forming transitive ties (which we take as the definition of strong ties) by modeling
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a random graph composed entirely of closed triads is evaluated. Both the empirical

study and random model point to the robustness of strong ties with respect to the

connectivity and small world properties of social networks. Thus, this work shows

that it is still possible, under the restriction of tie strength, for information to be

transmitted widely and rapidly in empirically observed social networks [102].

After examining the structural features of the networks in which the information

is possibly transmitted, this thesis further investigates how the structure influences

information diffusion and the relationship between network communities and infor-

mation diffusion. In Chapter V, we examine information diffusion between commu-

nities and its subsequent impact in information sharing networks by studying the

citation networks . Published scholarly work is a traditional social medium for the

exchange of scientific ideas and knowledge. The structure and growth of such citation

networks have been studied extensively to measure the impact of individual articles

and the evolution of entire fields [29, 31, 93, 17]. Applying bibliometrics to citation

networks to study the impact of fields, individuals, and particular papers has been

the purview of the field of scientometrics [31]. As early as in the 1960s, de Solla Price

first developed models to explain the heavy tailed distribution in the citations an in-

dividual paper receives [29]. Recently, the availability of large scale citation data and

computational power has enabled the visualization and quantification of the amount

of information flow between different areas in science [19, 16], in effect mapping hu-

man scientific knowledge. These visual maps leave open the question, however, of

the size, speed and impact of information flows across community boundaries. Prior

work has shown these flows to be relatively insignificant; omitting information flow

between communities when one models citation networks still provides realistic cita-

tion distributions and clustering coefficients [17, 97]. Not only are information flows
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across scholarly communities infrequent, they are also delayed: on average more time

elapses between the citing and cited articles for citations across disciplines than ones

within a discipline [93]. In this chapter, we view citation networks from the perspec-

tive of information diffusion. We study the structural features of the information

paths through the networks and analyze the impact of various citation choices on

the subsequent impact of the publication. The analysis shows that a publication’s

citing across disciplines is tied to its subsequent impact. In the case of patents and

natural science publications, those that are cited at least once are cited slightly more

when they draw on research outside of their area. In contrast, in the social sciences,

citing within one’s own field tends to be positively correlated with impact [100, 103].

In Chapter VI, we study the factors that could influence information diffusion

among online communities. We examine the diffusion curves and the likelihood that

a user will join a group based on the pattern of her interaction with other users

and the features of groups in online forums. As new ideas and controversial discus-

sions are always emerging and propagating among online forums, it is interesting

to study the process of information diffusion in this social medium. The human

behavior of gathering together and forming groups has been an important theme

in studying information diffusion, because people taking the same actions as their

neighbors is strong evidence that information flow has occurred [13]. Characterizing

user grouping behavior in online social environments does not only help researchers

to understand many of the sociological problems of human behavior, but also facil-

itates them to improve various applications in the online environment, such as the

recommendation systems [110]. In this chapter, patterns in user behavior in joining

groups and the feature factors associated with users or groups that influence such

behavior are studied. We show the diffusion patterns associated with features of
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users and groups, and we use Markov random graph models to help understand the

relationships of these features, as well as the differences in their impact in different

types of online forums [105].

At last, we will conclude the work in this thesis, and discuss future work in

perspective at Chapter VII.



CHAPTER II

Sampled Data of Blogosphere

2.1 Introduction

In this chapter we first address the question of how information sharing networks,

which are constantly evolving, can be captured and understood. Blogs are especially

well suited for this study, since they form a vast dynamic and growing network,

with new blogs continuously emerging, millions of existing blogs creating new con-

tent, while some lay abandoned as their authors start other blogs or activities. Of

particular interest are the direct citation patterns between the blogs, because they

indicate interaction and information diffusion—blogs linking to posts they read on

another blog while possibly writing additional content of their own. Tracking infor-

mation diffusion in the blogosphere is not just an intriguing research problem, but

is of interest to those tracking trends and sentiments. Several online services, such

as BlogPulse and Technorati, report the most actively discussed topics in the blogo-

sphere. A heavily blogged topic, even if it originates in the blogosphere, is likely to

make its way into the mainstream media. In fact, many mainstream media sources

now host blogs as an integral part of their websites, while some of the most popular

blogs rival most mainstream media online outlets in popularity [10].

In this chapter, we have two objectives. The first is to examine how robust the

9
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features of the blogosphere are when examined through the lenses of two different

samples. The second is to compare these features with previously studied Web and

social network datasets, in order to understand the blogosphere network structure

in the wider context of other social and technological networks. Our blog datasets

stem from two sources, BlogPulse and TREC (described in more detail below), both

intended for use by the research community to study different aspects of the blogo-

sphere. We compare these two sets of blogs directly, first in terms of their coverage

and overlap, then in terms of their network properties.

We find that although the datasets differ widely in size, cover different time du-

rations, and are set months apart, their properties show remarkable consistencies.

Unfortunately, a fair fraction of blogs are in fact spam blogs, automatically generated

blogs created with the intention of altering search engine results and directing traffic

to specific websites. These splogs account for a large fraction of the links in the

datasets. Consequently, we also study the effect of splog removal on the properties

of the networks. Furthermore, we examine the effect of aggregating the network over

time, similar to previous work by Kumar et al. [60], and find that the degree distri-

bution and other properties converge when the network is aggregated. Finally, we

contrast the linking patterns within and between different blog hosting sites, finding

that most large blog hosting sites tend to be “exporters” of links—with many of

those links going to blogs with their own domain names.

2.2 Description of data sets

We use two datasets in our study of the blogosphere. One is the WWW2006 We-

blog Workshop dataset from BlogPulse, which has 1,426,954 blog URLs in total, and

1,176,663 distinct blog-to-blog hyperlinks. This dataset covers 3 weeks of blogging
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activity, from July 4, 2005 to July 24, 2005. It contains hyperlinks that occur only

in the blog entries themselves, and exclude blogrolls or comments. Consequently,

the network is quite sparse—among the over 1.4 million blogs, only around 141,046

(10%) of them have links to other blogs in the dataset. If we only consider the

blogs having at least one in-link (receiving a citation from another blog) or out-link

(giving a citation to another blog) in the dataset, the average degree of this network

is 〈k〉 = 4.924. We omit from our analysis the additional 160,670 URLs, that were

identified by BlogPulse to be blogs with at least 1 citation, but whose entries were

not included in the dataset.

The TREC (Text REtrieval Conference) Blog-Track 2006 dataset is a crawl of

100,649 RSS and Atom feeds collected over 11 weeks, from December 6, 2005 to

February 21, 2006. In our experiments, we removed duplicate feeds and feeds with-

out a homepage or permalinks. We also removed over 300 Technorati tags (e.g.,

Technorati.com/tag/war on terror), which appear to be blogs, but are in fact au-

tomatically generated from tagged posts. Different from the BlogPulse data, the

TREC dataset contains hyperlinks of various forms, including blogrolls, comments,

trackbacks, etc. There are 198,141 blog-to-blog hyperlinks in total, and 33,385 blogs

having at least one such link. However, in order to do a fair comparison of the two

different blog datasets, we restrict the TREC data to only the 61,716 hyperlinks oc-

curring within entries. There are 16,432 making or receiving at least one such link,

giving us an average degree of 〈k〉 = 3.8. The work of [73] describes the creation of

the TREC data in more details, and reports some statistics about this dataset, such

as the degree distribution.

Aside from the differences in the sizes and time spans of the two blog datasets,

the nature of the two corpora and the way they are constructed are also different.
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The BlogPulse dataset is more like a complete snapshot, while the TREC dataset is

more biased and artificially sampled. Considering all these factors, one of the main

purposes of our work is to explore how these factors would affect the observations of

blogosphere.

Some previous work has identified a certain fraction of splogs in these two datasets.

In BlogPulse, according to the splog detection methodology presented in [56], the

percentage of splogs is 7.48%. And in TREC, the percentage of splogs is about 18%

[73], while after restricting the blogs to those have homepages, the percentage of

splogs detected was around 7% [71].

2.2.1 Dataset overlap

The BlogPulse and TREC datasets are two samples of the same blogosphere,

albeit of vastly different sizes, covering different time durations and about 5 months

apart. We are interested in comparing them in two respects in order to assess the

difficulty in obtaining a comprehensive sample of the blogosphere. First, we compare

the coverage of the two sets according to different blog hosting sites, as shown in

Figure 2.1. In the TREC dataset, a smaller fraction of the blogs is hosted by the

major blog hosting sites. The largest subset at 28% is hosted by LiveJournal, followed

by 6% hosted at TypePad. In contrast in the BlogPulse dataset , a full 48% is hosted

at LiveJournal, followed by 20% hosted at Xanga.

Second, we directly compare the overlap between the two blog datasets in terms

of the blogs commonly crawled by both. Figure 2.2(a) shows that of the 16,432

blogs whose entries were included in the TREC dataset, 7,225 (or 44%) are also in

the much larger BlogPulse dataset. Finally, we take this common set of blogs and

compare the overlap in the undirected edges in the two datasets. Specifically, if blog

A cites blog B (or vice versa) during the 3 week period covered by the BlogPulse
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data, we examine what percentage of the time we also observe blog A citing blog B

or vice versa in the 11 week period of the TREC crawl 5 months later. Somewhat

surprisingly, we find very little overlap. There were only 2823 pairs with edges in

both datasets, compared to 56,387 pairs with edges in the BlogPulse data and 57,091

in the TREC data. This means that the same blogs that might be mentioning one

another during one short period have only a 5% chance of doing so about half a year

later. The above shows us that two relatively large datasets representing “samples”

of the blogosphere actually have dramatically different coverage of blogs. Even where

the two network samples overlap in nodes, we find that the connectivity, namely the

links between the blogs, are likely to change substantially over time.

LiveJournal Xanga MSN Blogspot

BlogPulse
TREC

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.1: Proportion of blogs at 4 large blog hosting sites over the two datasets, demonstrating
that TREC is less concentrated at large hosting sites than BlogPulse
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TREC-only
blogs 

BlogPulse-only
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BlogPulse-only
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2,823
links

TREC-only
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BlogPulse-only
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TREC-only
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(a) (b)

Figure 2.2: Overlap in coverage between TREC and BlogPulse: (a) overlap in crawled blogs with
around 50% of the blogs covered in TREC being covered in the BlogPulse sample (b)
overlap in between-blog links in the TREC and BlogPulse datasets restricted to blogs
that occur in both

2.2.2 Other network datasets

To understand the properties of the blogosphere and how they differ from other

networks, we study similar features in the Web graph, which was presented in [8]

and [23]. The former dataset contains 325,729 documents and 1,469,680 links taken

from a 1999 crawl of the nd.edu domain. The latter crawl from 2000 contains 200

million web pages and 1.5 billion links.

2.3 Topological features and network comparisons

In this section, we study the properties and topological features of the blogosphere

by analyzing the two networks constructed from the BlogPulse and TREC datasets.

We first restrict our analysis to those links that are located within crawled entries

and cite blogs within the data set. We then include any additional hyperlinks, such

as blogrolls, comments, and trackbacks, that were included in the TREC dataset.

The networks are treated as directed but unweighted graphs where we are simply
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taking into account whether a blog cites another blog, and not how many times it

does so.

2.3.1 Degree distributions

In a directed graph, for a vertex v, we denote the in-degree din(v) as the number

of arcs to v and the out-degree dout(v) as the number of arcs from it. The distribution

of in-degree pkin is the fraction of vertices in the graph having in-degree k and pkout is

the fraction of vertices having out-degree k. If both the in-degree and out-degree of

a vertex are 0, then the vertex is isolated.

The average in-degree is:

(2.1) 〈k〉in =
1

|V |
∑
v∈V

din(v)

which is a global quantity but measured locally. The average out-degree 〈k〉out is

defined similarly.
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Figure 2.3: The degree distributions of the BlogPulse data with splogs (grey curves) and without
splogs (black curves)
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First, we observe that the degree distributions are greatly affected by the ex-

istence of splogs. Considering all the blogs in the BlogPulse data, both in-degree

and out-degree distributions have an unusually high number of blogs with degrees

ranging from 10 to 500. This results in irregular shapes for the cumulative degree

distributions, which represent the proportion of blogs having at least k in-links or

out-links. However, after removing splogs identified by Pranam et al. [56] for the

BlogPulse dataset, we replicate the result that the cumulative in-degree and out-

degree distributions show smoother curves, as shown in Figure 2.3.

After excluding splogs from the BlogPulse data, we compare the degree distribu-

tions of the blogosphere and the Web, using the Web degree distributions measured

by Broder et al. [23] for a 1999 Alta Vista crawl of 200M pages. This previous study,

along with a study of the nd.edu domain [8, 7], and a crawl in 2001 of 200M pages

by the WebBase project at Stanford [32] found that the indegree distribution of the

Web is scale free with a power law exponent α of 2.1. From Figure 2.4, we can

see that the in-degrees of the BlogPulse and TREC datasets show similar power-law

distributions to the Web graph. TREC exhibits a slightly shallower slope, while the

BlogPulse data presents a slightly steeper one. This is consistent with the previous

finding that sampling a power-law network can produce networks with steeper power

laws [115]. Since the BlogPulse data is of a shorter time duration than the TREC

data it may be more likely to resemble a subsample of the full network. Of course

it is difficult to directly compare a web page crawl which contains a single static

snapshot of a page, with an aggregation over 11 weeks of an RSS feed for a blog. Al-

though a single download of a blog would usually contain a limited number of entries

(with previous ones usually moved to an archive), the RSS feed would correspond to

a single long page where content is added over time, but not deleted. It is possible
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that this aggregation over a longer time period accounts for the similarity of slope

for the TREC data compared to the Web.

The Web outdegree distribution has been found either not to follow a power law

distribution at all, or to exhibit a steeper power law only in the tail. Broder et al.

measured the tail to have a power-law exponent of 2.7, Albert and Barabasi measured

it to be 2.45 [8, 7], while Donato et al. found it not to follow a power-law at all [32].

The out-degree distributions of TREC and BlogPulse, shown in Figure 2.5, drop off

much more rapidly than the Web graph. On the one hand, this may again be due to

sampling. For example, Pennock et al. [90] showed that when certain subcategories

of pages are sampled, what starts out as a power-law degree distribution can exhibit

sharp drop-offs. Certainly, blogs are only a subcategory of all web pages, and we are

furthermore only considering links among a sampled set of blogs. But, more likely,

the number of hyperlinks a blog can generate in a limited time period is bounded.

This constraint is also observed in many social networks, e.g., co-authorship networks

[79]. So while it is possible for one blog to gather much attention (inlinks) in a short

time period, it appears less likely for a single blog to lavish as much attention on as

many different blogs in the same time period. The same tends to hold true on the

web, where some webpages are linked to by thousands of others, but it is much less

likely for a single page to contain thousands of hyperlinks.

Our results also concur with previous measurements of the blogosphere, which have

revealed power-law distributions of in-degrees based on blogrolls and in-post cita-

tions [60, 70, 106]. Here we were interested in whether we would still observe the

power-laws when considering only the in-post citations.
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2.3.2 Small-world effect

The small world effect states that in the network, the average shortest path be-

tween every pair of reachable nodes is short compared to the total number of nodes

in the network[52].

The studies of Web graph have shown that the WWW has the small-world prop-

erty. Even as the number of web pages has grown exponentially, the average number

of hyperlinks that need to be traversed to get from one page to any other (provided

such a path exists) has remained relatively small. Albert et al. [8] give a formula to

compute the average shortest paths in Web graph if the number of web pages N is

known:

(2.2) 〈l〉 = 0.35 + 2.06 log(N)

The estimate for the average shortest path using this formula for a graph of 200

million nodes is 〈l〉 = 17.45, which is quite close to the measured value (〈l〉 = 16)

found by Broder et al. [23] for a data set of 200 million web pages.

Quite similar to the Web graph, our experiments show that even when considering

only entry-to-blog links, the blogosphere has the small-world property. Our two

datasets, although of different time durations and only partial overlapping in blogs

and links, have very consistent shortest paths considering their network sizes. For

the TREC dataset (16,432 blogs), it is 〈l〉 = 7.12, and for the BlogPulse dataset,

which is of 143,736 blogs, it is 〈l〉 = 9.27. If we let N = 16, 432 or N = 143, 736 in

Formula 2.2, then the 〈l〉s calculated for TREC and BlogPulse are 9.03 and 10.97

respectively, which are larger than what they have been in our experiments.

However, this does not necessarily mean that it is easy for information to diffuse
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widely in the blogosphere. This is because information diffusion is not only related

to the average shortest path, but also the connectivity of the graph. Since the

average shortest path is only computed between all reachable pairs, it doesn’t take

into account what proportion of pairs of blogs could not be reached one from the

other simply by following hyperlinks. Our experiments show that only 12.37% of the

pairs of blogs in TREC are reachable. For the BlogPulse data, only 6.13% of the

pairs of blogs are reachable. Even when we consider the network of TREC data with

all forms of hyperlinks contributing to its edges, the percentage of reachable pairs

is still only 22.11%. The low percentage of reachable pairs of nodes is also true in

the Web: over 75% of time there is no directed path from a random start node to a

random destination node [23]. If the connectivity is low in the network, as it is for

the TREC and BlogPulse data, it will yield a small average shortest path, but at the

same time produce many infinite paths that are not counted.

In the following section we examine the important question of connectivity in

more detail.

2.3.3 Connectivity

For a directed graph, there are two types of connected components: weakly con-

nected components (WCCs) and strongly connected components (SCCs). A strongly

(weakly) connected component is the maximal subgraph of a directed graph such

that for every pair of vertices in the subgraph, there is an directed (undirected) path

from vx to vy. Thus a weakly connected component is a larger subgraph than a

strongly connected component.

In the two blog datasets, within a weakly connected component one can follow

links within posts to reach either blog A from blog B or vice versa (but not neces-

sarily in both directions), for each pair of blogs A and B. In practice these paths



21

Network # of nodes Max WCC Max SCC Fraction of SCC in WCC
Web [8] 325,729 325,729 (100%) 53,968 (16.57%) 16.57%
Web [23] 203,549,046 186,771,290 (91.76%) 56,463,993 (27.74%) 30.23%
BlogPulse 143,736 107,916 (75.08%) 13,393 (9.32%) 12.41%

TREC 16,432 15,321 (93.24%) 2,327 (14.16%) 15.19%

Table 2.1: Connectivity comparison between the Web graph and blogosphere samples

may be hard to find because the link leading to the path to the second blog could

be in any one of the posts made over the 3 or 11 week period. Nevertheless, the

connected components give us a sense of the connectedness of the datasets. Our

experiments show that, in the TREC data, the largest weakly connected component

includes 15,321 nodes, and the largest strongly connected component is of size 2,327.

The sizes of largest weakly connected component and strongly connected component

of BlogPulse data are 107,916 and 13,393 respectively. We have a comprehensive

comparison of the connectivities of blogosphere and the Web in table 2.1. Similar to

the Web [33], the discrepancies in the size of connected components are most likely

due to the different ways the datasets are crawled, and the time periods in which

the networks form. In section 4, we will further discuss the temporal features of the

connectivity of blogosphere.

On the other hand, if we also consider other forms of hyperlinks in TREC, in-

cluding 33,385 blogs and 198,141 blog-to-blog hyperlinks, then the resulting network

has much better connectivity. The size of the largest weakly connected component is

88.93%, and the size of largest strongly connected component is 44.36%. This shows

that the blogosphere is glued together by blogrolls, even if over a limited time period

there is relatively little active citation.

Another interesting observation about the connectivity of the blogosphere is the

following: before cleaning the TREC data, there are 363 technorati.com tag URLs,

with 47,521 links either from or to these URLs. Our experiments show that the



22

existence of such extremely high in-degree or out-degree nodes does not affect the

overall connectivity of the blogosphere. Before removing the Technorati tag URLs

and their links, the size of largest weakly connected component is 30,180 (90.40% of

the whole network) and the size of largest strongly connected component is 15,176

(45.46%) - only slightly larger than the components with the tag URLs removed.

This observation is similar to the one made for the Web graph by Broder et al.

[23], showing that high degree nodes do not play the function of “junctions” in the

connectivity of the Web.

2.3.4 Clustering coefficient and reciprocity

The Clustering coefficient is a measurement of the percentage of closed triads in

a network. For every vertex vi, its clustering is defined as:

(2.3) Ci =
number of closed triads connected to vi

number of triples of vertices centered on vi

Then the clustering coefficient for the whole graph is averaged over all vertices i.

In an Erdös-Renyi random graph (a random graph in which every pair of vertices

are connected by probability p) [35] with n nodes and a constant average degree, the

clustering coefficient is O(n−1). However, in most real-world networks, the clustering

coefficient, O(1), is much higher, reflects the prevalence of closed triads [81]; i.e., if

vertex vx is connected to vertices vy and vz, then the probability for vy and vz

to be connected is higher than expected at random. For measuring the clustering

coefficient in a directed graph, we ignore the directions of arcs.

The clustering coefficients of TREC 0.0617 and BlogPulse 0.0632 (including splogs

in both datasets) are large compared with what they are in the corresponding Erdös-

Renyi random graphs. We see that for these values of clustering coefficients, the two
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datasets are showing nice consistency in spite of the differences in crawling and time

duration. These high values are also similar to measurements of the clustering for

the Web graph (C = 0.29 [81]) and co-authorship networks (C = 0.19 [79]).

Reciprocity is another measurement that shows a significant difference between

real-world networks and the Erdös-Renyi graph. The reciprocity values (how often,

when A links to B, B links to A) is another measure of cohesion, reflecting mutual

awareness at a minimum, and potentially online interaction and dialogue. In the

datasets, we actually observe very little reciprocity: in TREC, 4.98% edges are

reciprocal, and in BlogPulse 3.29% edges are reciprocal.

However, if we also consider other types of links in TREC, making the network

significantly denser, then the clustering coefficient of this graph is 0.13, and the

reciprocity is 20.06%, both of them are significantly larger than they are in the

blogosphere merely with entry-to-blog links as its edges. A possible explanation is

that people often create entry-to-blog links to cite information. Other types of links,

such as comments and trackbacks are by their nature interactive (and trackbacks

are by definition reciprocal). Even blog rolls may exhibit higher reciprocity, because

bloggers tend to list their friends’ blogs as well as other blogs they tend to read, and

friendship is often, though not always, reciprocal. Therefore the low reciprocity we

observe could be due to the nature of entry-to-blog links themselves and the short

time window of the samples, where we simply haven’t waited long enough to observe

a reciprocal link.

2.4 Temporal features

As we have described before, the time ranges of the two datasets are of different

lengths: the BlogPulse sample covers 3 weeks, while TREC is crawled over 11 weeks.
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In order to explore the effects of the crawling periods on the observations of the blog

datasets, we take the longer-period TREC dataset and study the properties of the

subgraphs in the TREC network over 4 different time windows.

We assign a timestamp for each entry-to-blog link as the time the entry is created,

where 74.72% of the entries have timestamp. Four overlapping time periods are

chosen corresponding to the first 10, 20, 30 and 40 days of the TREC crawl. The

10 days capture 5,793 blogs and 8,818 entry-to-blog links with an average degree of

〈k〉 = 1.5. The first 20 days capture 8,054 blogs, 16,206 links, bringing the average

degree up to 〈k〉 = 2.0. The first 30 days capture 9,085 blogs with 20,411 links and

〈k〉 = 2.2. The last subset of 40 days contains 10,433 blogs and 27,724 links with

〈k〉 = 2.657. This illustrates that as the time duration increases, the average degree

also increases.

2.4.1 Degree distributions

We plot the degree distributions of the four time-overlapping subnetworks (10

days, 20 days, 30 days, 40 days), as well as the entire network of 11 weeks with

link time stamps (denoted by “Links with TS”), and the entire network with or

without link time stamps (denoted by “All links”). From the in-degree and out-degree

distributions in Figures 2.6, it is apparent that different time windows yield very

similarly shaped curves for both the indegree and outdegree distributions. However,

as the time periods get shorter, the curves for both in-degrees and out-degrees are

steeper.

2.4.2 Connectivity

In section 3.3, we found that both the BlogPulse and TREC samples have large

weakly connected components, but relatively small strongly connected components,
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Figure 2.6: Temporal changes in the in-degree and out-degree distributions in TREC

Subset # of nodes Max WCC Max SCC Fraction of SCC in WCC
First 10 days 5,793 4,719 (81.46%) None (0%) 0%
First 20 days 8,054 7,162 (88.92%) 349 (4.33%) 4.87%
First 30 days 9,085 8,249 (90.80%) 471 (5.18%) 5.71%
First 40 days 10,433 9,662 (92.61%) 730 (7.00%) 7.55%

All blogs 16,432 15,321 (93.24%) 2,327 (14.16%) 15.19%

Table 2.2: Temporal changes in the connectivity in TREC

with the TREC sample showing better connectivity than BlogPulse, in spite of Blog-

Pulse having larger average degree. The dynamics in the connectivity of blog sub-

graphs over different time windows is shown in Table 2.2. As time goes on, both the

size of the largest weakly connected component and the size of the largest strongly

connected component grow larger, and thus the connectivity is increasing. It can

also be observed that the weakly connected component is formed earlier and grows

more rapidly. In contrast, it takes a much longer period for the strongly connected

component to form; however, after a certain period of time, the growth of the largest

weakly connected component is relatively stable near 100% of the network, while the

largest strongly connected component continues to grow.
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2.4.3 Clustering coefficient and reciprocity

Next we examine the temporal changes in reciprocity and the clustering coefficient.

Our experiments show that the values of reciprocity of the links from the first 10

days to the first 40 days are 2.88%, 3.85%, 3.84% and 4.12%. We can see that except

for the shortest time period, all the other values are bigger than in the 3-weeks of

BlogPulse (reciprocity of 3.29%) but smaller than in the entire 11-weeks of TREC

(reciprocity of 4.98%) . This indicates that reciprocity grows with time, because

blogs have a longer opportunity to reciprocate. It also demonstrates that reciprocal

links are still extremely sparse.

The clustering coefficients from the first 10 days to the first 40 days are 0.034,

0.043, 0.046 and 0.052. All of them are smaller than the clustering coefficient in both

BlogPulse (0.0632) and TREC over the full time period (0.0617). So we know that

although longer time would increase the clustering coefficient, it may depend more

on the density of the sample.

2.4.4 Densification law

Leskovec et al. [68] described the densification law prevalent in many networks:

the number of edges grows superlinearly in the number of nodes over time: e(t) ∝

n(t)α. For example, in the Internet, there are new routers appearing and at the

same time the number of connections per router is increasing, and the densification

exponent is α = 1.18. In patent networks, all the links are added from a patent

at the time it is inserted into the network. The densification exponent is α =

1.66. But in our network, probably most of the blogs already existed before the

beginning of the crawl (it would be interesting to repeat the analysis with new blogs

appearing). During the crawl, as more and more links are added into the network,
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originally isolated blogs start connecting to each other. The number of edges, shown

in Figure 2.7 is increasing nearly quadratically with the number of nodes (α = 1.928).

This relatively large value tells us that the densification of a crawled blogosphere with

a static set of blogs is a faster process than some other networks such as the Internet

and patent networks.
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Figure 2.7: The number of edges versus number of nodes in log-log scale for blogs crawled over
different time durations, which obeys the densification power law

2.5 Blogs in blog hosting sites

Another way of understanding the blogosphere is by analyzing it through different

blog hosting sites. Currently, the four largest blog hosting sites are LiveJournal,

BlogSpot, Xanga and MSN. They are also the largest four in the BlogPulse dataset,

as shown in Table 2.3. In the table, “all links” either originate from or terminate

at a blog at the specific blog hosting site; “in links” originate outside of the blog

hosting site, but terminate within it; “out links” point from within the hosting site
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to an outside blog; “internal links” lie between blogs within the hosting site. All

these links occur only within entries, and no links of other forms, such as blogrolls,

comments, etc. are included. The table also lists in italic the corresponding numbers

of blogs and links after removing splogs according to [56]. An immediate observation

we can make is that although splogs by number constitute only a small fraction of

the total blogosphere, they account for a substantial proportion of the links.

# Blogs All links Inlinks Outlinks Internal links
LJ

678,676 155,665 4,561 15,735 135,369(87.0%)
676,719 95,161 2,718 8,731 83,712(88.0%)
Xanga
284,693 58,741 2,354 3,067 53,320(90.8%)
283,952 8,454 437 1,534 6,483(76.7%)

MSN
170,108 58,811 44,180 1,528 13,103(22.3%)
162,147 1,271 90 699 482(37.9%)
BlogSpot
112,184 845,093 34,979 73,730 736,384(87.1%)
62,256 42,830 12,540 18,519 11,771(27.5%)

Table 2.3: Blogs in hosting sites in the BlogPulse dataset

From Table 2.3, we also notice that, for most of these large blog hosting sites, no

matter whether or not splogs are removed, the internal links usually occupy the

greatest portion of the all links. The percentage of internal links of MSN is relatively

small (22.3%). This is because in the BlogPulse dataset, there is a large portion of

links from blogs of BlogSpot to blogs of MSN, which are mostly splogs (over 43,000

links). Due to this fact, it lowers the percentage of internal links of MSN. This is

another aspect that tells us how splogs would affect our observations of blogosphere.

This suggests that blogs within one hosting site are more likely to form densely

connected communities, while it is less likely for blogs in different blog hosting sites

to be in a community. This pattern may be a result of bloggers preferring to use

the same hosting site as their friends, and different hosting sites being prevalent in



29

different countries. In the Table 2.4, we can see that links connecting two different

blog hosting sites are very sparse, both with and without splog links.

Src & dst Blogs LiveJournal Xanga MSN BlogSpot
LJ 135,369 873 160 4,215

83,712 159 10 1,714
Xanga 1,208 53,320 124 659

612 6,483 11 236
MSN 61 179 13,103 309

36 23 482 66
BlogSpot 1,109 832 43,113 736,384

707 151 17 11,771

Table 2.4: Links among blog hosting sites in the BlogPulse dataset

Another thing one observes from the Table 2.3 is that the numbers of out links always

exceed the numbers of in links for a blog hosting site, and most of those out links

point to blogs with their own domain names. Since it is easier and often free to create

blogs in the blog hosting sites, these kinds of blogs are more casual and personal; in

contrast, blogs with their own domain names are more likely to be maintained in a

more formal and professional way. And in this sense, it is natural for the self-hosting

blogs to have more in links from other blogs.

2.6 Conclusions

For analyzing the topology of a large network such as the blogosphere, it is impos-

sible for researchers to get all the data about it. Rather, one uses various sampling

methods to gather some data, typically a small fraction of the whole network, to an-

alyze. Thus, it is very important to examine how robust the topological features of

the blogosphere are when incorporating different time durations and ways in crawling

the data. This work shows that, for the two different samples of blogosphere, Blog-

Pulse and TREC, in spite of the low overlap in their coverage and time durations of

collecting, some topological features, such as the degree distributions, average short-

est paths, connectivity, clustering coefficient and reciprocity show great consistency.
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This work also shows that as the time duration of a crawl is extended, the features

start to converge. This tells us that by obtaining some fairly comprehensive samples

of the blogosphere, one can start to obtain good estimates of the topological features

of the whole space.

We also examined the effects of the existence of splogs in the blogosphere, and

found that splogs contribute a fair fraction of the total links volume in the blogo-

sphere, and consequently affect the degree distributions greatly. Moreover, by looking

at blogs in some large hosing sites, we find that blogs within the same hosting site

are more likely to be connected than blogs in different hosting sites. However, this

does not mean that there are few links outside of blog hosting sites. Rather many

of the links originating at large hosting cites point to blogs with their own domain

names.

For understanding the topological structure of the blogosphere, we further com-

pared the features with some other large networks, such as the Web graph and some

specific social networks. We find that they share some similarities, such as in-degree

distributions, the small-world effect, and overall connectivity. However, they differ

in other aspects, such as the out-degree distributions and level of clustering.

This chapter already shows that some vertices play a much more important role

in the network than others. A natural question that arises from this observation

is whether it is possible for us to get valuable information from a small subset of

‘important vertices’ in the network without knowing the entire of the network. We

examine this problem in the next chapter.



CHAPTER III

Important Vertices in Networks

3.1 Introduction

In the previous chapter, we raised the question of whether some vertices play a

more important role than others. In this chapter we examine whether one can create

“graph synopses” using subgraphs of important vertices. To study the flow of infor-

mation, to optimize engineering systems, to design efficient algorithms [22, 54, 55],

and to investigate social structure and interaction, we study the statistical and graph

properties of entire networks, including such features as degree distributions, con-

nectivity, diameter, clustering properties, and evolution of such networks [6, 23]. For

a variety of online networks, small subsets of vertices are relevant for efficient al-

gorithms and dominate various graph and statistical properties. Frequently, these

smaller subsets or graph synopses are easier to study and to understand. One might

be interested in whether relationships among web pages can be described without

crawling the whole web graph and might be inferred from a small set of vertices. We

might also study the “communication” among the most influential political blogs [3]

and determine whether information flows directly among them or through interme-

diate blogs. Despite these examples, there is little principled study of the properties,

the construction, and the utilization of subsets of special vertices or edges in large

31
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real networks. Such a study is challenging because it is hard to define precisely what

is meant by a small version of the graph. Also, it is difficult to evaluate the quality

of a compressed graph.

We would like a simple, principled approach to graph synopsis for a number of

reasons. First, there are a number of online networks in which a synopsis of the

graph is sufficient to capture the relevant information we seek. For example, rather

than continuously tracking millions of blogs, one may use occasional snapshots of

the blogosphere to construct a subgraph of the most “important blogs” according

to a desired measure, and crawl, query, and analyze this smaller synopsis. The syn-

opsis will allow us to capture predominant features of the much larger underlying

graph, but, due to its small size, can be stored much more efficiently and even dis-

tributed and replicated amongst a number of resource-constrained computers which

themselves can execute queries on the content and links.

To build a principled approach to graph synopsis, we start with the definition of

predominant vertices and define a precise construction of a graph synopsis from these.

Typically, the subset of vertices which capture the graph features are those which are

“important.” Furthermore, the importance of these vertices is highly skewed—only

few of them are of great importance and the majority are less important. These ver-

tices and subgraphs have been studied extensively in online networks [127, 27], but

not with the idea of using them for graph synopses. Following much of this work,

we choose four standard definitions of importance: degree, betweenness, closeness

and PageRank. We demonstrate empirically for a number of representative online

networks that these subsets of vertices do not depend highly on the choice of im-

portance measure. Next, we show that it is possible to glean accurate information

about the communication, relationship, and flow of information on the original graph
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and among the top vertices simply from a subgraph constructed from the important

vertices. Furthermore, these properties are consistent, regardless of the importance

measure we use, and are appropriate for efficient algorithm design and information

management.

We give a clear, precise definition of the algorithmic problem of vertex-importance

graph synopsis in Section 3.2 and discuss the computational hardness of this problem

in Section 3.4. We show in Sections 3.3 and 3.4 that most online networks are far

from the worst-case graph; they exhibit features (e.g., power-law degree distribution,

short average diameter, and high clustering) that allow us to efficiently compute a

graph synopsis. Moreover, we tie properties of the subgraphs to measures, such as

assortativity, of the original networks. Finally, in Section 3.5, we match the empirical

observations to analytical results.

3.2 Preliminaries

3.2.1 Importance measures

The definitions of importance or prominence on vertices vary significantly de-

pending on the specific network and application. Most such measures describe the

topological location of the vertices. We choose four of the most commonly used mea-

sures in various applications as our objects of study: degree, betweenness, closeness,

PageRank.

Let the graph G(V,E) have |V | = n vertices, the four importance values defined

on vertices vi are listed below:

1. Degree D(vi): previously defined in Chapter II, is a measure of how many

vertices in G are connected to vi directly. If G is a undirected graph, then D(vi)

is the number of undirected edges incident to vi; if G is a directed graph, then
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D(vi) is the sum of indegree and outdegree of vi, where indegree is a count of the

number of directed edges to the vertex, and outdegree is the number of directed

edges from that vertex to others. Degree reflects a local property of the vertices

in the graph.

2. Betweenness B(vi): a measure of how many pairs of vertices go through vi in

order to connect through shortest paths in G:

B(vi) =
∑
j<k

gjk(vi)/gjk

where gjk is the number of shortest paths linking vertices j and k; and gjk(vi) is

subset of those paths that contain vertex vi. For a directed graph G, the shortest

paths are directed shortest paths. Betweenness reflects a global property of the

vertices in the graph.

3. Closeness C(vi): a measure of the distances from all other vertices in G to

vertex vi:

C(vi) =

[∑
j 6=i

d(vi, vj)

]−1

where d(vi, vj) is the distance between vj and vi. Intuitively, closeness means

that vertices that are in the “middle” of the network are important. For a

directed graph G, the closeness of a vertex could be computed in three ways: all

directed paths to the vertex, all directed paths from the vertex, and all paths

regardless of direction. In our work we use this third version, effectively treating

the graph as undirected.

4. PageRank: a variant of the Eigenvector centrality measure and assigns greater

importance to vertices that are themselves neighbors of important vertices [86].
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3.2.2 Description of network datasets

We chose our network data sets to be representative of web and online social

network data for which one might be interested in examining the properties of im-

portant vertices and their graph synopsis. We complement three empirical data sets

with analysis of Erdös-Renyi (ER) random graphs, in order to discern interesting fea-

tures in real world graphs from patterns that may arise by chance. For directed and

undirected graphs, we measure the properties of the directed or undirected versions

respectively, restricting ourselves to the largest weakly connected component.

Table 3.1: The average shortest path (ASP) and other characteristics of the largest components of
the graphs.

Erdös-Renyi BuddyZoo TREC Web
Vertices 10,000 135,131 29,690 152,171
Edges 49,935 803,200 195,940 1,686,541
ASP 4.26 5.96 3.72 3.48
Directed False False True True

Erdös-Renyi random graph. An Erdös-Renyi random graph is a prototypical

random graph with each pair of vertices having an equal probability p of being

joined by an edge. In our model, we set the number of vertices |V | = 10000 and

choose p = 1
1000

, so the average degree is 〈d〉 = p× |V | = 10.

Budyzoo dataset. The first real-world network we consider is derived from the

website buddyzoo.com. The system, no longer active, allowed users to submit their

AOL Instant Messenger (AIM) buddy lists to compare with others.

By treating each registered user as a node and their Buddy List as a series of

edges to other nodes, a graph is formed. Our anonymized snapshot of the data from

2004 includes 140,181 registered users [47]. In this chapter, we keep only reciprocal

ties (74.7% of the total edges), producing an undirected graph.

TREC. The second real-world graph considered is a network of blog connections,



36

the TREC (Text REtrieval Conference) Blog-Track 2006 dataset [73]. It is a crawl

of 100,649 RSS and Atom feeds collected over 11 weeks, from December 6, 2005 to

February 21, 2006. In our experiments, we removed duplicate feeds and feeds without

a homepage or permalinks. We also removed over 300 Technorati tags, which appear

to be blogs, but are in fact automatically generated from tagged posts, and so are not

true indicators of social linking. The TREC dataset contains hyperlinks of various

forms, including blogrolls, comments, trackbacks, etc. There are 198,141 blog-to-blog

hyperlinks in total, and 33,385 blogs having at least one such link.

Web graph dataset. The web graph data set was collected in 1998 by Alexa1 and

has previously been analyzed as part of the “Web in a box” project at the Xerox

Palo Alto Research Center [2]. Since the snapshot was collected such a long time

ago, it contains only 50 million pages and 259,794 websites. This “small” size allows

us to comprehensively analyze the web graph. We construct a directed graph where

Site A has a directed edge to site B if any of the pages within A point to any page

within site B.

Due to the similarity of results for the recent blog datasets and the decade old

website-level data set, we expect our results to be applicable to larger, more current

webcrawls.

3.3 Important vertices

In this section, we examine the graph synopsis consisting of important vertices

in the network. First, we describe some properties of the entire networks. Second,

we analyze the subgraphs induced by important vertices. Finally, we compare some

properties of the important vertices in the subgraphs and the entire networks.

1www.alexa.com
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3.3.1 Network properties and important vertices

Degree distributions. We plot the cumulative degree distributions of three real

online networks in Figure 3.1. We treat the Web and TREC networks as directed

graphs and plot the distributions of their in-degrees and out-degrees and we treat

BuddyZoo as an undirected graph. By fitting the distributions of in-degree of Web

and TREC with power-law distributions, we get their power-law exponents, which

are 2.47 and 2.16 respectively. Moreover, we can see that the degree distribution

of BuddyZoo has a very sharp drop off at the tail, which is observed in many social

networks, e.g., co-authorship networks [79]. This places blog links, a form of social

linking, somewhere between navigational/informational general linking on the Web

and the reciprocal, communicative linking of a social network. The distributions

of out-degree of Web and TREC show mild deviations from power laws, consistent

with other web measurements [90] and might be due to the limitation of the data

sampling [101].

Correlation of importance values of different measures. Before examining

the important vertices in the networks, we look at the relationships of importance

measures in different networks. Table 3.2 shows that all of the importance measures

are positively correlated in all four networks. The two undirected graphs, Erdös-

Renyi and BuddyZoo, have more highly correlated importance measures. Perhaps

the directed edges of the other graphs add complexity to centrality measures. Fur-

thermore, we see that, for all of the networks, degree, betweenness and PageRank

have higher correlation than closeness. Thus, we see that there are various ways

of defining importance in the networks and the most central vertices according to

different centrality measures share overlap significantly.

Assortativity. The concept of assortativity or assortative mixing is defined as
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Figure 3.1: The degree distributions of online networks of BuddyZoo data, TREC blog data and Web
data.

Table 3.2: Spearman correlations between importance measures of vertices. All the p-values of the
correlations are < 0.0001.

Correlation Erdös-Renyi BuddyZoo TREC Web
Deg, Bet 0.9920 0.8137 0.7872 0.6178
Deg, Clo 0.9474 0.7849 0.3835 0.7869
Deg, PR 0.9952 0.9486 0.7058 0.5175
Bet, Clo 0.9673 0.7541 0.3120 0.4709
Bet, PR 0.9823 0.8439 0.7439 0.6757
Clo, PR 0.9154 0.6418 0.1086 0.3253

the preference of the vertices in a network to have edges with others that are sim-

ilar. Here, we will focus on similarity with regard to centrality. We choose to

measure the average value 〈k〉 of the neighbors of vertices of importance value k,

i.e. 〈k〉neigh(k) =
∑

k′ k
′P (k′|k), where k is determined by each of the four different

importance measures [89]. From the change of 〈k〉neigh(k) as k increases, we deduce

the network’s assortativity for this particular valuation. When the overall slope of

〈k〉neigh(k) is positive, the network is assortative; if the overall slope is negative, then

it is disassortative. Otherwise, the network is neutral (e.g., the assortativity of degree
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Figure 3.2: The slopes of the distributions of 〈k〉neigh show the assortativities.

of Erdös-Renyi random graphs).

In Figure 3.2, we can see that all four networks are consistently assortative with

the importance measure of closeness. This confirms our intuition—the neighbors of

the vertices with high closeness also have high closeness. The other three importance

measures consistently show that the Erdös-Renyi random graph is a neutral graph,

that BuddyZoo, similar to other social networks [77], is assortative, and that the Web

and TREC blog networks are mildly disassortative. We’ll see in Section 3.5 that this

result does not mean that important blogs avoid linking to other important blogs.

Rather, there is such a large skew in the linking behavior to important blogs, that
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one would expect at random for them to already be linking to one another very

frequently.

3.3.2 Important vertices in their subgraphs

In this section, we discuss important vertices and the subgraphs induced by these

vertices. Such analysis helps us to discover the information hidden behind the im-

portant vertices in the real online networks, and how we can utilize them for graph

synopsis. We do not fix a specific threshold for inclusion of important vertices in the

subgraph, as this may vary by application. Rather, in our study what occurs as we

allow the absolute number of important vertices m vary, as long as m� n, where n

is the number of vertices in the original network.

Figure 3.3 shows the subgraphs induced by the four importance measures in

BuddyZoo and the highest degree vertices in the other three networks. These sub-

graphs may be markedly different for different measures of importance, even within

the same graph, in spite of high correlation in importance measures among vertices.

They may also vary significantly between graphs, even for the same importance mea-

sure. There are several explanations of this behavior. Given the high assortativity of

the closeness measure, we are unsurprised to find that individuals of high closeness

are closely connected in the BuddyZoo graph. Buddyzoo also has individuals of high

degree, but there were limits imposed both by AOL and individuals’ own bandwidth,

and so the large connected component among high degree vertices does not contain

all such vertices. On the other hand, the highest degree vertices in both the blog

and web datasets have such high degree that they tend to form a single connected

component.

Connectivity. The first question we address is whether the connectivity of impor-

tant vertices depends on other, less important, vertices or whether they are already
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BZ - Deg BZ - Bet BZ - Clo BZ - PR

ER - Deg TREC - Deg Web - Deg

Figure 3.3: In the top row are subgraphs induced by the top 100 important vertices of BuddyZoo
for all four importance measures, while in the bottom row are subgraphs induced by
the 100 highest degree vertices in the other three networks.

well connected through one another. In the Erdös-Renyi random graph, the size of

the largest connected component is given by the solution x to the equation

x = 1− e−〈k〉x

where 〈k〉 is the average degree of the graph. The solution to this equation, shown as a

dotted red line in Figure 3.4(a), represents the change in size of the largest connected

component of the subgraphs induced by picking vertices randomly from the Erdös-

Renyi random graph. When we choose vertices according to importance instead,

the subgraphs have significantly better connectivities, with the largest connected

component occupying 96.5% of the subgraph once the subgraph contains over 15%
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of all vertices in the graph (i.e., 1,500 important vertices vs. 10,000 total vertices).
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(c) TREC blog network (d) Website network

Figure 3.4: The sizes of largest connected component of the sub-networks of important vertices in
Erdös-Renyi random graph and three real online networks.

Moreover, from Figure 3.4, we see that the important vertices are even more

highly connected in the real networks. No matter which network and which impor-

tance measure, all of the curves of the connectivity of important vertices are almost

monotonically increasing. For BuddyZoo, more than 95% of the important vertices

of highest degree, betweenness or closeness are in the largest connected component
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when they comprise just 1% percent of all vertices in the network (i.e., 1,500 impor-

tant vertices vs. 135,131 total vertices). In addition, more than 95% of the 10,000

highest PageRank vertices are in the largest connected component. For both of the

two directed networks, the TREC blog network and the network of websites, the most

important vertices are very well connected (> 99.5%) even when their numbers are

very small (< 0.05% of all the vertices in the networks). Note that this very high

level of connectivity is in spite of the dissortative nature of the TREC and website

networks with respect to degree, betweenness and PageRank, where important ver-

tices tend to connect to less central vertices. We can reconcile the two by observing

that the important vertices are already interconnected, so the negative assortativity

comes from highly connected vertices being connected to lower degree vertices simply

because they already have so many connections and there is only a small percentage

of vertices of similarly high degree [88].

Density. The previous observations tell us that the connectedness of important

vertices is high even when we omit all other vertices in the original graph and even

when they comprise a very small fraction of the entire network. Next, we examine just

how dense their connections are. In Figure 3.5, we show the relationships between

the number of edges incident on important vertices and the number of important

vertices.

Figure 3.5 (a) shows that for an Erdös-Renyi graph, the important vertices accord-

ing to all four measures have a higher average degree in the subgraph than randomly

chosen vertices (red dashed line), but this average degree is lower than the average

degree in the complete graph (black dashed line). The density of the graph reaches

a maximum when all of the vertices in the graph are included. Moreover, from the

direction of the curves, we can see that the number of edges e increases super-linearly
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(c) TREC blog network (d) Website network

Figure 3.5: The growth of numbers of edges between important vertices. The slope of the black
dash line in each plot is the ratio of the number of edges v.s. the number of vertices in
the entire network.

with the number of important vertices n, i.e. Θ(n) < e < Θ(n2).

However, Figures 3.5(c) and (d) reveal the opposite behavior for networks with

highly skewed degree distributions (TREC and Web). The curves of each network do

not overlap as much, and the average degree of the important vertices in the subgraph

is higher than the average degree in the original network. This indicates that rather

than being sparser, as was the case for the Erdös-Renyi subgraphs, the subgraphs
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of important vertices in real world online networks are actually denser. Finally, for

the BuddyZoo network (Figure 3.5 (b)), which is assortative, but not power-law

in degree, we see a mix of trends. Subgraphs of vertices with high betweenness

and PageRank tend to be a bit sparser than the complete network, but the most

important vertices according to degree and closeness are more densely connected

(this is also apparent in the visualizations in Figure 3.3).

In examining these real online networks, we see that although the densities of

connection among important vertices vary considerably in different networks with

different importance measures, in general, they are significantly denser than random

vertices in the Erdös-Renyi random graph.

3.3.3 Original vs. subgraph properties

Distance. In Section 3.3.2 we saw that even without any additional vertices from

the original graph, the subgraphs of important vertices in the three online networks

are already well connected. Next we examine the second property that we want to

preserve for our graph synopsis problem: the average shortest paths (ASP) between

reachable pairs of important vertices.

Figure 3.6 shows the comparison curves of ASPs of important vertices in their

induced subgraphs and in the original networks. In the Erdös-Renyi random graph,

the ASP between important vertices is on average shorter than the ASP for the entire

network (the dotted baseline). But in their induced subgraphs there are significantly

more hops between them on average, which indicates that important vertices in

random networks are not closely connected, and their shortest paths route through

non-important vertices. Nevertheless, subgraphs of important vertices in ER graphs

are somewhat better connected than subgraphs of randomly selected vertices.

In contrast to the Erdös-Renyi random graph, all three real online networks con-
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(c) TREC blog network (d) Website network

Figure 3.6: The ASP of: all vertices in the entire networks (black dashed line), important vertices
in the the subgraphs (solid points), important vertices in the entire networks (hollow
points).

sistently show that the ASPs between important vertices are much shorter than the

average shortest paths of the entire network; and almost all of them are increasing

as more important vertices are added in. What is more, by comparing the ASPs of

important vertices in the original graphs and in the subgraphs, we see that their val-

ues are extremely close in most cases, especially for the TREC and Web data, e.g., the

solid and hollow purple points (ASP of vertices of highest closeness) are almost ex-
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actly overlapped. This indicates that important blogs are most efficiently connected

through other important blogs.

Relative importance. In addition to the connectedness of important vertices, we

are also interested in their relative ranking: if we only keep the important vertices

and the edges among them, how would the vertices rank in the new subgraph with the

same importance measure? In order to answer this question, we generate subgraphs

of different sizes for all networks. We then compute the importance of the vertices

in the subgraphs according to the same importance measure used to select them.

Finally, we compute the Pearson correlation of the importance values of those vertices

in the original graph and in the subgraph.

Figure 3.7 shows that the correlations are all much higher for the real-world online

networks than the Erdös-Renyi random graph, and that this is especially true for the

Web and TREC data. The abnormality of closeness in TREC may be due to the blog

aggregators and splogs. There are one to two thousand blogs whose only incoming

link is from centrally positioned (in the network) blog aggregators. This boosts the

closeness score of the unimportant blogs, creating the abnormality in Figure 3.7.

The high correlations of the online networks tell us that the ranking of importance

in the subgraphs of important vertices is highly consistent with their ranking in the

original graphs. This suggests that, e.g., it may not be necessary to crawl all blogs

to get an accurate ranking of the most important blogs. Rather, the links among the

top blogs themselves may already provide fairly close approximate rankings.

3.3.4 Summary

After studying the important vertices and their induced subgraphs, we can make

two overall observations about the four networks: (i) Different importance measures

yield subgraphs of varying density and topology as is evident in Figure 3.3. (ii)
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Figure 3.7: Pearson correlations of importance values of vertices in subgraphs and original graphs.
The black dashed lines are the base lines starting from 0 when the number of vertices
is 0; and ending at 1 when all the vertices in the networks are included.

However, in spite of these differences, “important vertices” in the online networks

have some properties that agree with each other, which are essential for the graph

synopsis we are looking at: they connect to each other more directly than average;

their distances to each other are closer than between random pairs of vertices; and

their relative ranks are positively correlated to their importance ranks in the original

networks. Thus, we know that in the real online networks, in contrast to random
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graph model, the subgraphs induced by the important vertices tend to preserve

information about the relationships among important vertices, and we can use the

subgraphs to study the properties of important vertices in the original graphs.

3.4 Compression with guarantees

While retaining only the important vertices may be sufficient to capture most of

the relationships among them in real-world networks, in general we have no guarantee

that these induced subgraphs preserve any properties at all (whether of the important

vertices or of the original graph). We cannot even guarantee the most basic property

of connectivity of the important vertices. In this section, we rigorously define the

graph compression problem, analyze the computational complexity of two heuristic

algorithms, and discuss the trade-offs of these approaches.

3.4.1 Hardness of compression with guarantees

We define the Basic Graph Compression Problem as follows: In a connected

unweighted graph G(V,E), every vertex is assigned an importance value. Taking the

original graph G(V,E) and the set of vertices S with largest importance values as

inputs, find the minimal set of additional vertices ν, which form a connected subgraph

G′(V ′, E ′), where V ′ = S + ν and V ′ ⊆ V , E ′ ⊆ E.

We recall the Network Steiner Tree Problem which is NP-complete [38]. A

heuristic method, the Minimal Spanning Tree algorithm gives solutions to this prob-

lem with approximation ratio 2 [40]. One can show that Basic Graph Compres-

sion and the Network Steiner Tree Problem are polynomial-time reducible

to one another. Thus, Basic Graph Compression is an NP-complete problem.
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3.4.2 Heuristic algorithms

There are, however, several heuristic algorithms that guarantee the preservation of

some properties of the important vertices in the original graph. We detail the Keep-

One and the KeepAll algorithms [39] next, and note the similar web projection

method [66].

KeepOne. Let K1 be the set of important vertices, the goal is to find the minimal

set K2 such that there is a tree induced by K1 ∪K2. The approximation algorithm

is first to build a minimum spanning tree on the complete graph on K1 where an

edge (u, v) has weight equal to the length of a shortest path from u to v. The set K2

consists of any additional vertices along any “path” edge in the minimum spanning

tree. The result is the graph induced by the vertices K1 ∪K2.

The KeepOne algorithm guarantees the connectivity of the compressed graph,

has the same set of additional vertices as the projection method in [66], and only

introduces more edges, which means it may have better diameter preservation than

the projection method.

Unfortunately, retaining only connectivity may provide a distorted view of the

original graph. We see in Figure 3.8 an example of a graph on n vertices in which

the distance of the original vertices a and b is 3 but in the compressed graph built by

KeepOne, their distance is n−3. The ratio of the distances is n−3
3

which we can make

arbitrarily large by increasing the number of vertices n. That is, KeepOne retains

connectivity but may drastically distort the distance between some pairs of important

vertices. To ameliorate this problem, one can use the KeepAll algorithm [39] which

keeps vertices that lie along a shortest path between any two vertices in K1.



51

a

b

Figure 3.8: The distance of important vertices a and b in the original graph is 3 and n − 3 in
the compressed graph obtained by KeepOne. The ratio of distances can be made
arbitrarily large as limn→∞

n−3
3 =∞.

3.4.3 Empirical evaluation and trade-offs

While Figure 3.8 shows that the worst case distance preservation of KeepOne

may be arbitrarily bad, real-world networks are far from the worst case. Furthermore,

the KeepOne and KeepAll algorithms illustrate that there are some tradeoffs

we may make in compressing real-world graphs—we can maintain distances at the

cost of keeping a few additional vertices. To explore these empirical tradeoffs, we

apply both the KeepOne and KeepAll algorithms to three networks. Table 3.3

shows these results. Since the results with the Web data are very similar to TREC,

we do not list them here for conciseness. From the table, we can see that if we

insist on preserving the pairwise shortest paths of all important vertices, we must

include many more additional vertices (thus increasing the size of our synopsis).

Furthermore, we must do so even though the average pairwise shortest paths in the

subgraph of just the important vertices is already close to that of the original graph.

Note that we increase the size of the synopsis by fewer than 100 additional vertices

when we preserve connectivity (with KeepOne), but we need over 3000 additional
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Table 3.3: Comparison of the properties of subgraphs generated by different methods with im-
portant vertices in Erdös-Renyi random graph, BuddyZoo and TREC. Sub-Importance
Measure100 is the subgraph induced by top 100 important vertices only; KO- is the
subgraph generated by KeepOne; KA- is the subgraph generated by KeepAll. LC is
the fraction of important vertices in the large component of the subgraph. Avg PSP is
the average pairwise shortest path length in the subgraph.

Subgraph Add vts LC Avg PSP Subgraph Add vts LC Avg PSP Subgraph Add vts LC Avg PSP

Erdös-Renyi BuddyZoo TREC

Sub-Deg100 0 NA NA Sub-Deg100 0 0.58 NA Sub-Deg100 0 1 1.636

KO-Deg100 80 1 14.526 KO-Deg100 33 1 9.440 KO-Deg100 0 1 1.636

KA-Deg100 3222 1 3.649 KA-Deg100 2199 1 3.233 KA-Deg100 34 1 1.609

Sub-Bet100 0 NA NA Sub-Bet100 0 0.55 NA Sub-Bet100 0 1 2.085

KO-Bet100 68 1 15.497 KO-Bet100 35 1 16.087 KO-Bet100 0 1 2.085

KA-Bet100 3185 1 3.633 KA-Bet100 2376 1 3.171 KA-Bet100 216 1 1.994

Sub-Clo100 0 NA NA Sub-Clo100 0 0.99 2.599 Sub-Clo100 0 1 1.716

KO-Clo100 62 1 11.474 KO-Clo100 1 1 2.624 KO-Clo100 0 1 1.716

KA-Clo100 3000 1 3.604 KA-Clo100 531 1 2.324 KA-Clo100 0 1 1.716

Sub-PR100 0 NA NA Sub-PR100 0 0.12 NA Sub-PR100 0 1 1.298

KO-PR100 87 1 15.404 KO-PR100 75 1 11.517 KO-PR100 0 1 1.298

KA-PR100 3338 1 3.672 KA-PR100 3978 1 3.880 KA-PR100 36 1 1.294

vertices when we also insist on preserving distances. In short, while the problem of

preserving connectivity in graph compression is NP-complete, heuristic algorithms

such as KeepOne can preserve connectivity with a lower cost, while preserving the

distances demands quite more. In this sense, we can also see that the short pairwise

shortest paths of important vertices in their subgraphs and their original graphs is

a special and important property of the online networks we study.

3.5 Analytical discussions

In this section we present the expected density of subgraphs of random graphs

with varying degree distributions, in order to contrast these expected values with

the empirically observed measurements. We limit ourselves to vertex degree as the

sole importance measure and assume that the graphs are random aside from the

degree distribution, which we specify. We then obtain the density of the subgraph

by deriving the probability that an edge in the original graph lies between two vertices

in the subgraph.

First, we find the degree ki of the least important vertex among the set of top i
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most important vertices. We do so by calculating the expected number of vertices of

degree at least ki in a network with n = |V | vertices. Furthermore, we assume that

the expected number is actually equal to i so that

i = n · P (ki).

Because we are given the complementary cumulative distribution function P (k) ex-

plicitly for Erdös-Renyi and power law random graphs, we can solve the previous

equation for ki and, after doing so, we find the probability that an edge is incident

to a single important vertex, e→ Vi, given by

P(e→ Vi) =
1

|E|

∫ n

ki

k · p(k) dk

where p(k) is the pdf of the degree distribution. Using independence of the edges,

we find that the number of edges within the subgraph of important vertices is simply

|Ei| = |E| · P(e→ Vi)
2.

3.5.1 Erdös-Renyi graphs

In an Erdös-Renyi random graph, the degrees are distributed according a Poisson

distribution where the probability of a vertex having degree larger than the mean

decreases exponentially. As a result, even when selecting the highest degree nodes,

their degree will be within an order of magnitude of the average degree z = 〈k〉 of

the network.

In Figure 3.9, we show the number of edges in the subgraph of an Erdös-Renyi

graph, using the normal distribution with mean z and standard deviation σ =√
z/n(1− z/n), is

i =
1

2

(
1 + erf

(ki − z
σ
√

2

))
.

We see that when the number of important vertices is small, the degree within
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Figure 3.9: The number of edges between important vertices, where importance is measured by
degree, in three networks: 1) power law network with α = 2.2, n = 1000, 2) Erdös-
Renyi graph with the same average degree, and 3) power-law graph with the same
exponent but a cutoff at k = 100. Two dotted lines show what the number of edges
would be if the average degree in the subgraph were equal to the average degree in the
original network.

the subgraph is lower than the degree of the original graph. Using well known

properties of Erdös-Renyi graphs, we expect that when the average subgraph degree

is 1, a giant component will emerge in the subgraph, and further, when the average

degree is log(n), the subgraph will be path connected. This is consistent with the

set of connectivity and density measurements on simulated Erdös-Renyi graphs in

Section 3.3.2.

3.5.2 Power law graphs

We expect different behavior in power law graphs, where high degree vertices are

so well connected that they will naturally connect, not only to a large portion of

the network, but also to one another as well. For example, in a power-law graph
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with exponent α and no cutoff on the degree2, one vertex on average is expected to

have degree N1/(α−1) [81]. For α = 2, this means that one expects one node to be

connected to majority of the other nodes.

In selecting high degree nodes in a power law graph, we are selecting nodes that

are likely to be connected to each other by virtue of the fact that so many edges are

incident on them. The number of vertices with degree ki or greater is given by

i = n P (k ≥ ki) =
n

kα−1
i

Solving for ki, we have that the degree of the ith most important vertex is ki = (n
i
)

1
α−1 .

Next, we want to find out what proportion of the edges are incident on the i most

important vertices. For this we have

Pe(i) = P (e ∈ ei) =

∫ n
ki
kp(k)dk∫ n

1
kp(k)dk

(3.1)

=
k2−α
i − n2−α

1− n2−α =
(n
i
)

2−α
α−1 − n2−α

1− n2−α(3.2)

Figure 3.9 shows that the average degree in the subgraphs of important vertices

is actually higher than in the original graph. We repeat the analysis using a degree

distribution cutoff max(k) that is lower than the total number of nodes n. This cutoff

not only disallows very high degree vertices, but also lowers the average degree in

the original subgraph. When the cutoff is introduced, the subgraph still maintains a

higher average degree than the original graph, but the difference is less pronounced.

Note the similarity with Figure 3.5, showing the number of edges in the subgraph

for the TREC and Web data sets, both of which are power law in nature (although

directed). In both the analytical and empirical subgraphs, the average degree is

higher than it is for the entire graph. We should mention that for exponents α ∼ 2

and very small i, Equation 3.2 would yield a higher average degree than there are
2a cutoff may be imposed such that P (k) ∼ k−α for k < max(k) and 0 otherwise
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important vertices to connect to. This is in fact a known property of random power

law graphs, where simply fixing the degree of a vertex and allowing it to satisfy

this degree by forming edges at random would create a non-vanishing frequency of

multiple edges between highly connected vertices. If one disallows multiple edges, the

networks become mildly disassortative, consistent with our empirical observations.

3.6 Related work

In this section, we examine the graph sampling problem and the rich-club phe-

nomenon. Both of them have some similarities with our problem: the former also

studies how to get “good” subgraphs given large massive networks; and the later

focuses on the set of “important vertices”. However, they are still different from

our problem in various aspects. In graph sampling, one aims to devise a sampling

method, e.g., random vertex or edge selection, snowball sampling, the sketching-

based sampling [69] etc., in order to be able to infer the properties of the original

graph from the much smaller sampled graph [62, 67]. In contrast, our work constructs

subgraphs of predetermined important vertices, not for the purpose of deducing prop-

erties of the original graph, but in order to infer the underlying relationships amongst

the important vertices themselves.

In the “rich-club phenomenon”, vertices with high degree tend to connect together

tightly, which is true for many social and other types of real networks [127, 27]. While

previous work on the rich-club phenomenon has aimed to determine whether the

number of edges between high degree vertices based purely on degree is higher than

what one would expect at random, our study extends to other centrality measures,

and describes essential properties of the subgraphs themselves, such as connectivity,

shortest paths, and preserving rank orderings of importance. A related analysis of
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highly interconnected sub-structures in networks is that of k-cores, subgraphs of

vertices where each vertex has at least k connections within the subgraph [34]. An

interesting direction for future work would be to repeat our analysis of the properties

of the subgraph and original graph, using k-core membership as the importance

measure for vertex selection.

3.7 Conclusion

In this chapter, we propose a new approach to analyzing and studying large on-

line networks, vertex-importance graph synopsis. Given a set of important vertices,

we extract a much smaller subgraph from the original network, containing those

important vertices. We attempt to place this process on a rigorous footing and

show that even simple versions of the graph compression problem are hard (but that

there are reasonable heuristic algorithms). Unlike previous methods which evaluated

the fidelity of the “graph abstract”, this approach utilizes the subsets of important

vertices and edges and the information they could provide in large networks. We

argue that they can make information accesss and management more efficient in real

applications. These observations suggest future work in using graph synopses for

information retrieval and information flow detection.

From our empirical analysis of three real online networks, we find a number of

interesting properties. The important vertices are much more closely and densely

connected to each other. They also have significantly shorter pairwise paths, which

do not heavily depend on the rest of vertices in the networks, (i.e., their pairwise

shortest paths in the subgraphs induced by themselves are close to those in the

original graphs). Finally, their relative ranks are almost all highly correlated to their

ranks in the original networks. Although our experiments show that the properties of
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vertices of different importance measures in different networks do vary in some ways,

the observations stated above are consistent no matter the type of networks (either

social or technological), and regardless of the importance measure we choose. Thus,

we may use vertex-importance graph synopses as small but accurate representatives

of the important vertices in the larger graph (and, sometimes, of the larger graph

itself). Furthermore, the real online networks are relatively easy to compress while

preserving important graph properties (they do not exhibit the worst-case behavior

of our theoretical analysis).

In addition to empirical studies, we use analytical discussions to show how these

properties of important vertices in online networks differ from random graph models.

What is more, we also use heuristic algorithms to measure the complexities and

trade-offs of requiring some properties of the real networks to be guaranteed in the

compressed graphs.

In this and the previous chapters, we have analyzed some structural features asso-

ciated with vertices in information sharing networks. While it is important to know

whether two vertices are connected, directly or indirectly, in information sharing

networks the strength of the ties is also a key determinant in whether information

will flow. In the next chapter, we are going to see some features about the edges in

the information sharing networks.



CHAPTER IV

Strong Ties in Networks

4.1 Introduction

The strength of weak ties is the concept that individuals tend to be more success-

ful in acquiring information about job opportunities by contacting their weak ties:

the individuals that they do not see often [44]. The rationale behind this idea is

that close friends tend to have similar information because they share similar inter-

ests, profession, or geographical location. Weak ties on the other hand are between

individuals who don’t have much in common, including other contacts, and the infor-

mation they have access to will tend be different. In this sense, it has been assumed

that weak ties play a key role in transmitting information rapidly and widely in social

networks. Here, for the first time, we challenge this assumption through a structural

analysis of networks where the weak ties are removed.

Our motivation for considering networks without weak ties is that there are many

situations where one may wish to use only trusted contacts to gather or disseminate

information. For instance, one may be interested in assembling a team or otherwise

gathering information that is distributed in different parts of a social network using

only strong ties. In the case of the Madrid terrorist bombings on March 11th, 2003,

the individuals behind the attack were able to procure knowledge about making

59
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explosive devices, hashish to trade for explosive materials, and the explosive material

itself using their strong ties. Had they used weak ties which would have been less

reliable, their plot may have been exposed and their intentions thwarted. Sinister

plots are not the only example of a planning activity that can benefit from using

strong ties to maintain confidentiality. Scientists may wish to forge collaborations

requiring diverse expertise [46], and in doing so they may wish to keep a competitive

edge by not broadcasting their ideas over weak ties. Similar situations may arise

in the formation of business alliances, where companies seek to complement their

strengths through mergers, acquisitions, cross licensing of intellectual property, or

joint ventures, but do not wish to leak their next steps to competitors.

There are also processes which describe the contagion of new ideas and practices

in which the credibility of information or the willingness to adopt an innovation

requires independent confirmation from multiple sources. Unlike a ‘simple’ biological

contagious agent carrying a disease, which can be transferred through a single contact

between two individuals, ideas and opinions (‘complex’ agents) may need to be heard

from multiple contacts before being adopted [26]. The presence of closed triads in the

social network, consisting of three individuals who all know one another, enhances the

probability that complex contagion can spread on the network. As two neighboring

contacts are infected, they have a greater probability to infect their shared contacts

who will now be hearing about the news or product through from multiple sources.

Complex contagion may apply to processes ranging from teenagers adopting a new

brand of jeans to farmers starting to plant a new type of corn [98]. In these scenarios,

the decisive event may not be hearing about an innovation, but observing enough

people participating to be convinced that the innovation should be adopted [111].

Given that processes such as sharing of sensitive information and adoption of
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certain innovations may only occur via strong ties, we study the connectivity and

small-world property of social networks consisting entirely of strong ties. In different

contexts the strength of a tie may have different definitions and measures, such as

frequency or length of contact. For simplicity, in this chapter we consider only the

presence of closed triads as evidence of “strong ties”. This is based on the assumption

that good friends or close professional contacts will know at least some people in

common. Throughout this chapter, “weak ties” are taken to be those that are not

part of any closed triad and “strong ties” are the ones that share at least one other

contact in common.

Social networks tend to have a much higher probability of closed triads than

the equivalent random networks [122, 81]. An intuitive reason is given by structural

balance theory [25] which states that ties tend to be transitive: if a node is connected

to two other nodes (is a member of two diads), those two nodes are much more

likely on average to be connected than two randomly chosen nodes. Recently, it has

also been shown that many real world networks, including social networks, contain

overlapping k-cliques [87]. Within a k-clique, each of the k nodes is connected to

each of the other k − 1 nodes, forming a densely knit community containing
(
k
3

)
closed triads. Two cliques were considered overlapping if they shared k − 1 nodes,

and the question was posed whether these overlapping cliques themselves form a

network containing a fraction of the network (the network percolates). In contrast,

in this work, we are interested not in the overlap of cliques, but the strength of ties

between individuals. A message can be passed between two communities, even if

they share only one individual in common, as long as that individual has strong ties

within both communities. Therefore our condition of transitive edges between two

information sharing nodes is less restrictive than the requirement that the cliques
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themselves contain a very high degree of overlap.

Our results are as follows. Given the potential importance of closed triads both

in assembling varied expertise and in the diffusion of innovation, we first determine

how they are linked together in observed social networks. We find that transitive

ties are prevalent in social networks and removing non-transitive ties from these

social networks shrinks the giant component, but does not break it up. This result

indicates that social networks are composed of overlapping communities, with each

community providing strong ties, and the overlap providing a way to traverse the

network using strong ties. Besides measuring the properties of real world networks

with weak ties removed, and we also model random networks consisting entirely of

closed triads. This allows us to quantify the impact this local structural requirement

has on the global properties of a network, such as the connectivity of the network

and the small-world properties.

Previous work [78, 24, 48, 112, 11, 12] has modeled networks with varying degrees

of clustering. However, our very simple model is the first to explicitly address how

requiring all ties to be transitive affects network properties. To this end, we model a

random graph constructed entirely of closed triads and compare its properties to that

of an Erdös-Renyi graph with the same number of nodes and edges. We derive both

theoretically and numerically the result that the giant connected component occurs

at the same average connectivity (average degree 〈k〉 = 1), but that it does not grow

so quickly in the triad graph as the average connectivity increases further. Numerical

simulations reveal that the average shortest path is quite similar in both networks.

Essentially, requiring transitive closure allows fewer nodes to be connected (since

1/3 of the links must be redundant rather than reaching out to connect additional

nodes). However, the resulting connected component will have an average shortest
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path that scales logarithmically with the size of the graph, just as it would in an

Erdös-Renyi graph.

The remainder of this chapter is organized as follows. In Section 4.2 we present

an empirical analysis showing that social networks (online friendship networks in

this case) are not dependent on weak ties to stay connected through a short number

of hops. In Section 4.3 we compliment the empirical analysis with a random graph

model that preserves the connectivity and small world properties of an Erdös-Renyi

graph while satisfying the condition that each tie be transitive. This model demon-

strates that one need not sacrifice much in the way of connectivity within the network

in order to satisfy the requirement of transitivity.

4.2 Online social networks without weak ties

In order to study the connectedness of social networks without weak ties, we

analyzed two data sets. The first, and smaller data set is the social network of

the Club Nexus online community at Stanford in 2001 [1]. Much like many later

online social networking services, it allowed individuals to sign up and list their

friends on the site. The ‘buddy’ lists were aggregated into a single social network of

reciprocated links. Within a few months of its introduction, Club Nexus attracted

over 2,000 undergraduates and graduates, together comprising more than 10 percent

of the total student population. The Club Nexus network is only a biased subset of

the complete student social network because students had free choice of how many

friends to list. Nevertheless, the data does provide a proxy of the true social network,

from which one can derive interesting properties. For example, triangles are quite

prevalent in this network, with a clustering coefficient of 0.17, which is 40 times

greater than what it would be for an equivalent Erdös-Renyi random graph. The
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average distance between any two individuals is just 4 hops.

Adamic et al. [1] found that edges with high betweenness, where betweenness

reflects the number of shortest paths that traverse the edge, tended to connect people

with less similar profiles. These profiles included information about the student’s

year, field of study, personality, hobbies and other interests. The observation that

ties of high betweenness lie between dissimilar individuals supports the hypothesis

that weak ties bridge different communities. Edges with high betweenness also tend

not to be part of closed triads, because each edge in the triad provides a possible

alternate path. In fact, a recently-devised clustering algorithm relies on identifying

communities by removing edges that participate in fewest closed triads and longer

loops [91]. It is therefore a concern that removing non-transitive ties from a network

would tend to break it apart into disconnected communities. This would mean that

diverse expertise may not be reachable and new innovations may not flow throughout

the network.

In the case of the Club Nexus network, we can dismiss the concern, because the

network is robust with respect to the removal of weak links, which account for 19% of

all links. Rather than breaking up into many disconnected communities, the network

sheds some nodes and shrinks modestly. Most obviously, the 239 leaf nodes cannot

be part of triangles because they link to just one other node. They each become

a disconnected component with the removal of weak ties, which is justified in this

context because they are peripheral actors. Table 4.1 shows the distribution in size

of the connected components for the original network and the network with weak

links removed.

Note that both networks have a giant component containing the majority of the

nodes. The removal of weak ties does not separate communities of large size—the
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component size Club Nexus Club Nexus
without weak ties

2246 1 0
1763 0 1
6 0 1
5 1 1
4 1 2
3 2 4
2 8 0
1 227 710

Table 4.1: Distribution of connected components in online communities.

largest one is composed of just 6 nodes. The removal of weak ties does cause a

slight increase in the the average shortest path between reachable pairs. Although

the fraction of reachable pairs drops from 72% to 51%, the average shortest path

increases from 3.9 hops to 4.1.

The next network we consider is the network of AOL Instant Messenger (AIM)

links submitted to the website buddyzoo.com. The system uses Buddy Lists to show

users which buddies they have in common with their friends, to visualize their Buddy

List, to compute shortest paths between screennames, and to show each user’s pres-

tige based on the PageRank [86] measure applied to the network. Our anonymized

snapshot of the data is from 2004 and includes 140,181 users who submitted their

buddy lists to the BuddyZoo service, as well as 7,518,816 users who did not explicitly

register with BuddyZoo but were found on the registered users’ Buddy Lists. This

is therefore a rather large social network. It was previously studied to determine

whether direct links can be concealed in the network, for example to manipulate an

online reputation mechanism [47]. In the context on BuddyZoo, this would mean

that two people would remove each other from their Buddy Lists in an attempt to

hide their connection. But unless they share no other ‘buddies’ in common, they

would still be linked as ’friends of friends’ and arguably would have a more difficult

time denying acquaintance. Nine percent of the users have only a single connection,
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Figure 4.1: The distribution of the strength of ties, measured as the number of triads each tie
participates in.

and would disconnect themselves from the network if they were to remove it. Of

the remaining pairs of users, only 19% could remove their direct link and be at least

distance 3 from each other, while all others would remain friends of friends. This is

equivalent to asking what percentage of the edges are parts of triangles, which is the

question we are currently interested in.

In order to determine the presence of strong ties, we consider only users who ex-

plicitly registered with BuddyZoo, but we allow an edge to be considered transitive if

it is part of a closed triad that includes an unregistered user. This is because we know

that two people share a contact, even if that contact did not register. We exclude 9

shared contacts that have indegree greater than 1000, because those could be AIM

bots (automated response programs). Even disregarding the 23 contacts that have

an indegree greater than 300 (corresponding to the average size of a typical person’s

offline network [74]), does not affect the results significantly. We do not include
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Figure 4.2: The largest component of the reduction of the BuddyZoo network where each tie par-
ticipates in at least 47 triads. The triads themselves are not all shown — only the ties
that share a threshold number of them.

unregistered contacts in the network itself because their Buddy List information is

incomplete. The degree distribution is highly skewed and there are many isolates in

the network. On average, each user is connected via a reciprocated tie to 6.83 other

registered BuddyZoo users. We require a tie to be reciprocated, since it is possible

for one AIM user to add someone to their buddy list without that person adding

them in turn.

As in the case of the Club Nexus social network, we find that removing weak

ties does not have a dramatic effect on the BuddyZoo network. Although several

communities containing a couple of dozen nodes do split off, the giant component

shrinks modestly, from occupying 88.9% of the graph to occupying 87.5% of it. The

average shortest path increases by a fraction of a hop from 7.1 to 7.3. Usually any

lengthening in the path decreases the probability of a successful transmission if the

probability that the message is transferred at each step is less than 1 [121]. How-
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component size BuddyZoo BuddyZoo
without weak ties

124672 1 0
122066 0 1
21-40 0 1
11-20 11 14
10 4 6
9 5 5
8 7 9
7 7 10
6 15 16
5 37 36
4 64 73
3 126 168
2 591 685
1 7279 9413

Table 4.2: Distribution of connected components in the BuddyZoo AOL instant messenger commu-
nity. A tie is considered weak if two users who list each other on their buddy lists do
not list a third person in common.

ever, we do not observe considerable lengthening of the average shortest path until

we impose a higher threshold on tie strength. In order to consider more restrictive

requirements on tie strength, we vary the strength threshold as follows: rather con-

sidering any tie in a single closed triad to be strong, we require that it be part of

at least j closed triads. Figure 4.1 shows the distribution of tie strengths, where

the mean number of shared ties is 17.4 and the median is 13. Figure 4.2 shows the

largest component of nodes where each tie participates in at least 47 triads. There

are several dense cliques, but the largest component is quite small—only 233 nodes.

To investigate how rapidly the giant component shrinks and how much the average

shortest distance changes, we consider reduced networks where only ties of above

threshold strength, measured by the number of triads the tie participates in, are

kept. Figure 4.3 shows the giant component size and average shortest path between

all connected pairs as the threshold is increased from zero to 35 triads. We observe

that the giant component shrinks gradually, indicating that a substantial portion

of the network is spanned by ties of moderate strength. This would indicate that
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Figure 4.3: The size of the giant component as only ties of a minimum strength (measured in the
number of triads it is a part of) are kept in the network. The inset shows the growth
of the average shortest path between connected pairs.

the network is composed of overlapping communities rather than separate commu-

nities that are bridged by weak ties. What is more, removing weak ties does not

separate large communities from one another. Rather, a few smaller communities

and many isolates are spun off as the tie strength threshold is increased. Removing

weak ties has an additional cost beyond isolating some individual nodes and smaller

communities—it increases the average shortest path between reachable pairs. So

even though the giant component is shrinking, we are removing the shortcuts that

span it. The average shortest path more than doubles as we increase the threshold

from 1 to 25.

The strong tie robustness of the Club Nexus and BuddyZoo networks is encour-

aging, especially in comparison to what one might expect in a Watts-Strogatz (WS)

type small world model [122] or an Erdös-Renyi graph. In the WS model, the net-

work is constructed from a lattice where each node is connected to k neighbors on

each side. For k > 1, this means that each node participates in local closed triads. In
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the model, a fraction p of the links are rewired with one endpoint placed randomly

among the nodes. It is the presence of these random links that gives the WS model

a shortest path that scales logarithmically with the size of the graph. Such a link is

unlikely to be part of triangle however, since the probability of any two nodes linking

randomly is proportional to 1/N in such a graph. Therefore, removing weak links

in a WS model removes the shortcuts, leaving an average shortest path that scales

linearly with the size of the graph. Assuming that nodes close together on the lattice

share similar information, one would need to make many hops in order to find novel

information. In Section 4.3.3, we will show that the occurrence of strong ties in an

Erdös-Renyi graph is unlikely unless the average degree increases with the number

of nodes in the network. Therefore, removing all edges that are not part of a triangle

will isolate most of the nodes in random graphs where the average degree is constant

or nearly constant with respect to the number of nodes.

4.3 Random graphs composed of strong ties

Given the empirical results of the previous section, where we see a very high

prevalence of transitive ties and a robustness of the network with respect to removal

of weak ties, we seek to answer the basic question of what the cost is of requiring all

ties to be transitive. We measure this cost in terms of the connectivity and average

shortest path of a network where every edge between two nodes is part of at least one

closed triad and compare to the equivalent Erdös-Renyi graph, where no transitivity

constraint is imposed.

To this end, we construct the simplest random graph composed entirely of tri-

angles, and we model this kind of graph by assigning links simultaneously among

any three randomly chosen nodes in the graph. Strictly speaking, for a graph with
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|V | = N nodes, there are
(
N
3

)
possible combinations of nodes that can form a trian-

gle. Each triangle forms with probability b, so that on average we randomly choose

M = b ×
(
N
3

)
triplets of nodes and link them with three edges. Our method of

constructing transitive graphs is similar to a particular instance of the Newman [78]

model for constructing highly clustered graphs. In the Newman clustered network

model, one takes a bipartite network of individuals and groups. One then constructs

a one-mode projection of the random graph by adding, with a given probability p,

edges directly between individuals who belong to the same group. However, unlike

[78], in our model the probability for nodes to connect to each other in the same

group is 1, and the number of members in each group is constant at 3.

4.3.1 Degree distribution

We consider the degree distribution of the graph starting from the distribution of

a node belonging to k closed triads.

For each node u, there is a total of R =
(
N−1

2

)
possible triangles which have u as

one of the vertices. And, for each triple of vertices, the probability of being selected

to have links in the graph is b. Let rm be the probability for a node belong to m

chosen triples. Then

(4.1) rm =

(
R

m

)
bm(1− b)R−m.

On the other hand, we will now show that it is unlikely that our fixed node u is

part of two triangles with an edge in common. Our node u has degree k if, for some

m, node u is in m chosen triples on a total of k distinct nodes aside from u. It is

straightforward to show that k/2 ≤ m ≤
(
k
2

)
. In fact, for even k � N , most of the

probability is in the case m = k/2. For even k, the probability that u has degree
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k is the probability that u is in exactly k/2 chosen triples, adjusted for collisions of

edges. Collisions affect the probability of degree k in two ways—u may be in exactly

m = k/2 triples but a collision reduces the contribution to the probability of degree

k, or u may be in m > k/2 chosen triples but collisions increase the contribution to

the probability that the degree is k.

We consider a node u belonging to m triples involving j neighbors and consider

the probability of a collision occurring. Conditioned on u falling in exactly m chosen

triples, all sets of m triples are equally likely. There are
(
R
m

)
= Θ

(
N2m

2mm!

)
possible sets

of m triples. Next, we want to count the number of sets of m triples involving exactly

j neighbors of u, for j ≤ 2m. We can pick the j neighbors as a set in
(
N−1
j

)
ways,

but then we need to assign roles to the j neighbors based on collision multiplicity.

For example, suppose 4 triples among five neighbors A,B,C,D,E of u might be

{u,A,B}, {u,A,C}, {u,A,D}, {u,B,E}. We can choose A,B,C,D,E as a set; pick

an element for the role of A (that appears three times) in 5 ways; given that, pick an

element for the role of B in 4 ways; then E in 3 ways, and the remaining elements

take the interchangeable roles of C and D, for a total of 5 · 4 · 3 ≤ 5! orderings).

For us, a crude bound for the orderings of roles will suffice. There are at most

2m − j collisions counting multiplicities, and so at most 2m − j neighbors of u

that can be in more than one triple—and can play a non-trivial role. There are at

most 2m − j roles. So the number of ways to assign non-trivial roles is at most

(2m− j)2m−j. So the number of sets of m triples involving exactly j neighbors of u

is at most
(
N−1
j

)
(2m − j)2m−j. Thus the ratio of these to the number of sets of m
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disjoint triples is(
N−1
j

)
(2m− j)2m−j(

R
m

) ≤ O

(
N j(2m− j)2m−j2mm!

j!N2m

)
≤ O

(
((2m− j)/N)2m−j2mm!

j!

)
.

We are intereseted in the case 2m − j ≥ 1. If m and j are constants, then we can

ignore 2mm!/j!, and we get(
N−1
j

)
(2m− j)2m−j(

R
m

) ≤ O

(
((2m− j)/N)2m−j2mm!

j!

)
≤ O (1/N) .

By choosing the appropriately small probability b of choosing a triple, we may

assume that m and j are much smaller than N . But we cannot necessarily assume

m and j are constants; for example, we may have m! comparable to N . We now

consider the case where j or m grows (slowly) with N , and where N is sufficiently

large. If m ≤ j, then 2mm!/j! ≤
(
j
m

)−1 ≤ 1. It follows that(
N−1
j

)
(2m− j)2m−j(

R
m

) ≤ O

(
((2m− j)/N)2m−j2mm!

j!

)
≤ O

(
((2m− j)/N)2m−j)

≤ O(N−1).

On the other hand, if m > j, then 2m− j > m, so(
N−1
j

)
(2m− j)2m−j(

R
m

) ≤ O

(
((2m− j)/N)2m−j2mm!

j!

)
≤ O

(
((2m− j)/N)2m−j(2m)m

)
≤ O

(
(2m(2m− j)/N)2m−j) .

If 2m − j = 1, this is O(2m/N) ≤ N−1+o(1). If 2m − j > 1, then, since we may
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assume that 2m�
√
N , we have(

N−1
j

)
(2m− j)2m−j(

R
m

) ≤ O
(
(2m(2m− j)/N)2m−j)

≤ O
(

((2m− j)/
√
N)2m−j

)
≤ O

(
((2m− j)2/N)(2m−j)/2) .

This is O ((2m− j)2/N) ≤ N−1+o(1). Thus we have obtained bounds on the proba-

bility that two triangles incident on a node share an edge.

Given that the effect of collisions is small, we get the probability of u having

degree k is

(4.2) pk =


(
R
k
2

)
b
k
2 (1− b)R− k2 ±N−1+o(1) if k is even

N−1+o(1), if k is odd

After ignoring the additive amount ±N−1+o(1), the corresponding generating func-

tion is given by

(4.3) G0(z) =
R∑
k=0

(
R

k

)
bk(1− b)R−kz2k = [bz2 + 1− b]R

The average degree 〈k〉 is then given by:

(4.4) 〈k〉 = G′0(1) = b(N − 1)(N − 2)

And thus, we have the relationship between average degree 〈k〉 and the probability

of any three nodes being connected by a triangle b:

(4.5) b =
〈k〉

(N − 1)(N − 2)

When 〈k〉 = O(1), b = O
(

1
N2

)
.
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4.3.2 Accidental triangles and the clustering coefficient

We should notice that in our model, the expected number of triangles in the

network is not exactly b ×
(
N
3

)
. There is the possibility of forming an “accidental”

triangle, which can occur when the pairs of nodes a and b, b and c, and a and c are

linked, but the triangle a, b, c was not among the b ×
(
N
3

)
initially chosen triangles.

The probability b′ of this occurring is the probability 1 − b that no triangle was

intentionally formed between the a, b, and c: 1 − b times the probability that each

of the three edges does occur in a triangle other than a, b, c.

(4.6) b′ = (1− b)[1− (1− b)(N−3)]3

In this way, we know that the total expected number of triangles in this graph is

a×
(
N
3

)
, where a = b+ b′.

Thus, the ratio between the actual number of triangles in the graph and the

designed number of triangles is:

(4.7) ∆ =
a

b
= 1 +

(1− b)[1− (1− b)(N−3)]3

b

However, b′ is very small compared with b, when the average degree of a node

in the graph is a constant independent of the growth of the total number of nodes

N . Since we have shown that b = O( 1
N2 ), then it is not hard to see that the ratio

of the probability for any three nodes to be part of an accidental triangle and the

probability for them to be a triangle that is constructed by randomly choosing groups

is:

(4.8)
b′

b
=

(1− b)[1− (1− b)(N−3)]3

b
= O

(
1

N

)



76

Thus, we can see that when N is large, and the average degree 〈k〉 is independent

of N , then the chance of forming an accidental triangle is quite small compared to the

triangles randomly drawn in constructing the model. Figure 4.4 shows the relation

between b′ and average degree 〈k〉.

102 103 104 105
10−4

10−3

10−2

10−1

100

N

b!
/b
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<k> = 10

Figure 4.4: The ratio of the number of accidentally formed triangles to the number randomly chosen
by the model. For fixed average degree and increasing number of nodes, the ratio of
accidentally formed triangles drops as 1/N .

In Figure 4.5 we show three instances of a randomly generated graph of triangles.

Each graph has 1, 000 nodes, but we form different numbers of triangles. Even though

a giant component exists for each graph, it is only once the number of triangles equals

the number of nodes that we observe a few random triangles forming. Therefore the

formation of accidental triangles does not have a substantial effect on the derivations

below.

The clustering coefficient C is a measure of the prevalence of closed triads in a

network [122, 81]. The expectation of the total number of connected triples of nodes

(open and closed triads) in the graph is Ntriple = N ×
∑

k

(
k
2

)
pk, and the number of
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(a) N = 1000, M = 200 (b) N = 1000, M = 300 (c) N = 1000, M = 500

Figure 4.5: Examples of triangle graphs with 1000 nodes with varying numbers of triangles M .
Accidental triangles are marked with bold lines.

closed triads is N∆ ≈ b × N
(
N
3

)
since the number of accidental triangles is small.

Thus the clustering coefficient is:

C =
3N∆

Ntriple

≈
3b
(
N
3

)
N ×

∑
k

(
k
2

)
pk

=
1

〈k〉+ 1

= O(1)

We can see that when N is large, the clustering coefficient of our graph is:

(4.9) C = O(1)

which is significantly larger than the O(N−1) clustering coefficient in an Erdös-Renyi

Random graph. For many types of real world networks, it has been shown that

C = O(1) [81], so it is of interest to see how removing weak ties in real networks

changes the clustering coefficients.
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4.3.3 Phase transition and the giant component

For the derivation of the phase transition and size of giant component, we loosely

follow the generating function methods for clustered graphs in [81]. The phase tran-

sition is also known as the percolation threshold—the average degree at which a finite

fraction of the network is connected, forming a giant component. In Part A, we have

given rm, the probability for a node belong to m triangles. Thus, averaging over all

individuals and triangles, we have the mean number of triangles a node belongs to:

µ =
∑

mmrm.

The probability of having two edges within the triangle is 1, and the probability

of having any other number is 0. Therefore, the generating function of the number

of edges for each node within a triangle is

(4.10) h(z) = z2

Furthermore, for a node A in the graph, the total number of other nodes in the

whole graph that it is connected to by virtue of belonging to triangles is generated

by:

(4.11) G0(z) =
∞∑
m=0

rm(h(z))m

where rm is the probability for a node to belong to m groups as we defined before.

This is also the generating function of the distribution of the number of nodes one

step away from node A.

The generating function of the distribution of the number of nodes two steps away

from A is G0(G1(z)), where G1(z) is the generating function for the distribution of

the number of neighbors of a node arrived at by following an edge (excluding the

edge that was used to arrive at the node):



79

(4.12) G1(z) = µ−1

∞∑
m=0

mrm(h(z))m−1

The necessary and sufficient condition for a giant component to exist, is when,

averaging over all the nodes in the graph, the number of nodes two steps away exceeds

the number of nodes one step away [82], which can be expressed as:

(4.13) [∂z(G0(G1(z))−G0(z))]z=1 > 0

Thus, we get the condition for the existence of a giant component in this graph:

((µ−1

∞∑
m=0

m(m− 1)rmz
m−2) · h′(z))|z=1 > 1

2µ−1

∞∑
m=0

m(m− 1)rm > 1

R(R− 1)b

Rb
>

1

2

After simplifying the above equation, the condition is:

(4.14) b >
1

N2 − 3N

Since we will compare this graph with an Erdös-Renyi random graph with the

same average degree 〈k〉, we express the condition for the existence of giant compo-

nent in terms of the average degree given by Equation 4.4:

(4.15) 〈k〉 > 1 +
2

N2 − 3N

As N → ∞, the condition is 〈k〉 > 1. An interesting point is that this is ex-

actly where the phase transition occurs in an Erdös-Renyi graph. Therefore, the
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requirement that all edges be transitive does not delay the appearance of the giant

component. It does however have a tempering effect on the rate of growth of the

giant component as we will see below.

When a giant component exists in the graph and the probability for a node to

whom A is connected to not belong to it is s, the size of the giant component is given

by:

S = 1−G0(s0)(4.16)

= 1−
∞∑
m=0

rm(s2
0)m(4.17)

= 1− (bs2
0 + 1− b)R(4.18)

where s0 is the solution of the function:

s = G1(s)(4.19)

= µ−1

∞∑
m=0

mrm(s2)m−1(4.20)

= (bs2 + 1− b)R−1(4.21)

As we have assumed S > 0, we know that s must be some value larger than 0 and

smaller than 1, and thus s = 1 is a trivial solution of the function.

We compare the solution s0 to numerical simulations of networks of random tri-

angles. Each network contains N = 10, 000 nodes, and we select M random triangles

to connect from the N nodes. For each value of M we generate 50 random networks

and average the size of the giant component. The results, shown in Figure 4.6 show

excellent agreement between the analytical prediction and the numerical simulation.

For comparison, we show both the numerical prediction and analytical result for the

size of the giant component in an Erdös-Renyi random graph with the same number

of nodes and edges. The size of the giant component in the Erdös-Renyi graph is
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Figure 4.6: Comparison of numerical simulations with analytical solutions for the fraction of the
network occupied by the giant component of a 10,000 node triangle graph and the
corresponding Erdös-Renyi graph

given by the solution s to the equation s = 1 − exp(−〈k〉s). From the figure, we

can see that as average degree grows, the phase transitions of the transitive graph

and the random graph occur at the same time, while the size of giant component of

the Erdös-Renyi graph grows more quickly as we increase the average degree. An

intuitive explanation is that in an Erdös-Renyi graph one need not expend a ‘closure’

edge to close a triad. Rather, that edge can be used to connect a disconnected node

or small component to the giant component.

The fact that the phase transition occurs at the same average degree for both

the Erdös-Renyi and transitive network shows that the requirement of transitivity

does not result in a need for increased average connectivity in order for the giant

component to form. Note that the phase transition in our model, where all edges are

the result of the addition of triangles, is quite different from what it is in a graph

that would result from taking a simple Erdös-Renyi graph and removing all edges
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that do not fall within a triangle. In the Erdös-Renyi graph with non-transitive edge

removal the percolation threshold occurs at a degree that scales as N
1
3 .

This condition for the giant component in an Erdös-Renyi graph with weak ties

removed can be derived as follows. A giant component of strong tries forms when,

after arriving at an arbitrary triangle T , the expected value of the number other

adjacent triangles that one could“move to” is equal to 1. The probability that there

is a triangle T ′ adjacent to T that is not the triangle from which we reached T is

given by 2
(
N−5

2

)
p3. There are

(
N−5

2

)
choices for the vertices in T ′ not shared with

T , and two choices of the vertex shared by T and T ′ (excluding the vertex of T

that is shared with the triangle we arrived from). The expression p = 〈k〉/N is the

probability that any two vertices in an Erdös-Renyi graph share an edge. Thus when

N is large, the average degree at the phase transition is 〈k〉 = N1/3. In several real

world networks the average degree was found to vary as Nβ where 0 ≤ β ≤ 0.3 [68].

But in a random network, this density falls short of the N1/3 necessary to make the

accidental occurrence of closed triads (and therefore strong ties) high enough for the

network to percolate.

If one further requires that the triangles overlap not just in one node but in two,

as in the percolation of k-cliques [30], the phase transition occurs at a critical average

degree that grows as N
k−2
k−1 , with k = 3. This means that the average degree has to

grow in linear proportion to N in order for a giant component to form. Together,

these two results show that the Erdös-Renyi random graph typically does not contain

sufficiently numerous strong ties to percolate. But as we have shown in Section 4.2,

real world social networks do contain many strong ties that percolate. This can

be intuitively explained by the observation that new social ties typically form in the

context of geographical and sociocultural settings [121]. In these contexts it is natural
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that the ties tend to form closed triads rather than being added independently, as

they are in Erdös-Renyi random graphs.

4.4 Average shortest paths of networks of strong ties

Exact results for the average shortest path are difficult to derive even for a random

graph. We therefore used numerical simulations to measure the average shortest path

between all reachable nodes as we increase the size of the network. We selected a

value of the average node degree where the giant component existed, but did not

take up all of the graph. At our chosen value, M = 0.5N , there are twice as many

triangles as nodes. This constant proportion of triangles to nodes means that b, the

probability of any triple of nodes being connected, falls as 1/N2.
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Figure 4.7: Numerical comparison of the average shortest path in triangle graphs and Erdös-Renyi
graphs with the same number of nodes and edges. The inset shows the average shortest
path as a function of the size of the giant component rather than the total number of
nodes.

At M = 0.5N , the giant component occupies 76% of the nodes, while in the

equivalent random graph it takes up 94% of the nodes. This makes it difficult
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to directly compare the two networks, since the average shortest path is measured

between reachable pairs, and the Erdös-Renyi graph has more of them. Figure 4.7

shows that the average shortest path is actually shorter in the triangle graph. This

may be explained by the fact that there are fewer nodes in the giant component but

a greater density of links. Once we consider the average shortest path relative to the

size of the giant component, the curves become nearly identical for both networks.

This shows that the requirement of triadic closure does not negatively impact the

average shortest path for reachable pairs, but those pairs are fewer in number.

4.5 Conclusions

In this chapter we study the connectivity of strong ties in networks, where strong

ties are defined as belonging to closed triads. We find that two real world social

networks are robust with respect to removal of weak links, in the sense that there

remains a giant component that is smaller but still occupies a majority of the graph.

We also find empirically that the removal of weak links lengthens the average shortest

path modestly. In comparison, the removal of weak links in an WS small world

network or an Erdös-Renyi graph would isolate the vast majority of nodes. It is the

high clustering of social networks that allows them to transmit or gather information

via strong ties.

Subsequent to the original publication of this work, Kossinets, Watts and Klein-

berg examined information backbones in communication networks [57]. They found

that the information backbone is a sparse graph with a concentration of both strong

and weak ties. This finding sheds further light on the relationship between tie

strength, connectivity and information diffusion in social networks.
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In the work of [85], from large-scale networks based on phone calls it is observed

that there is a coupling between interaction strengths and the network’s local struc-

ture. Their analysis also shows the removal of strong ties has little impact on the

network’s overall integrity, while this is not the case for weak ties.

We also pose a basic question, which is the cost paid for the requirement of

transitive ties in terms of the size of the giant component and the length of the average

shortest path. We consider the simplest random graph model consisting entirely of

closed triads and compare it to a network where the links are randomly rewired. We

find that the giant component occurs at the same point—when the average node

degree equals 1. However, past the phase transition, the giant component in the

graph of closed triads grows more slowly than it does in the random network. We

further examine the dependence of the average shortest path with the size of the

network and find it to be almost identical for reachable pairs in both the triangle

graph and the equivalent random network.



CHAPTER V

Information Diffusion in Citation Networks

5.1 Introduction

In the previous three chapters, some important structural features of the infor-

mation sharing networks was studied. How these features impact the diffusion of

information was analyzed. In this chapter, we present work about more direct and

explicit relationships of information diffusion and network structures in paper cita-

tion networks and patent citation networks.

Information diffusion is the communication of knowledge over time among mem-

bers of a social system. In order to analyze information diffusion, one needs to study

the overall information flow and individual information cascades in the networks.

Although much recent attention has been focused on new forms of collective con-

tent generation and filtering, such as blogs, wikis, and collaborative tagging systems,

there is a well established social medium for aggregating and generating knowledge—

published scholarly work. As researchers innovate, they not only publish new results,

but also cite previous results and related work that their own innovations are based

on. This creates a social ecology of knowledge—where information is shared and

flows along co-authorship and citation ties.

Through their specialized organizations, activities, and publication venues, dis-

86
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ciplines facilitate the frequent and timely dissemination of information. Within-

discipline communication allows individuals to be exposed to research that is closest

and most relevant to their own. Yet, there is a belief, reflected in many cross-

disciplinary initiatives, both at the university and government levels, that knowl-

edge flows between disciplines are not only beneficial, but are more likely to lead to

innovative and groundbreaking research.

There is some evidence that interdisciplinary collaborations do lead to higher im-

pact work. A study of scholarly articles in the UK found that papers whose coauthors

are in different departments at the same university receive more citations than those

authored in a single department, and those authored by individuals across different

universities yield even more citations on average [51]. Multi-university collabora-

tions that include a top tier-university were found to produce the highest impact

papers [49]. Similarly, in the area of nanotechnology authors who have a diverse

set of collaborators tend to write articles that have higher impact [92]. Interdisci-

plinarity aside, new collaborations between experienced authors are more likely to

result in a publication in a high impact journal than new collaborations with an

unseasoned author or repeat collaborations between the same two authors [46] . The

argument is that merging ideas and expertise in a novel way will produce higher im-

pact work. It has also been demonstrated that scholarly work in a range of fields and

patents generated by larger teams of coauthors tends to have greater impact over

time [124]. However, in the above studies examining author collaborations, there

may be confounding factors. For example, successful authors may consequently have

more opportunity to collaborate across departments and universities due to higher

motivation or visibility.

In this chapter we aim to measure the impact of information flows from one field to



88

another more directly by tracing citations. Citations often, but not always, indicate

that knowledge from one publication is being incorporated in another. Authors of

the citing paper have found the other paper relevant, and more importantly, have

usually, though not always [107], read it. Sometimes authors cite others where social

norm or strategic positioning may encourage citation. Such behavior, if successful,

would tend to reward citations within the same community or discipline, where one

is targeting a publication. In the context of patents, inventors cite inventions that

their own patent depends on or may be a substitute for.

We use as an indication of quality and impact of the work the number of citations

a paper or patent receives normalized by the average number of citations received

by all papers or patents in the same area and year [118]. This measure allows us to

make a fair comparison between articles that may not have finished accumulating

citations due to their recency, and to account for differences in size and publication

cycle for different disciplines [114]. We take each individual citation as evidence of

information flow, whether within a field or between fields.

The question we ask is simple: given the proximity in subject area between a

citing publication (paper or patent) and cited publication, what is the impact of the

citing publication? If cross-disciplinary information flows result in greater impact,

one would see a negative correlation between proximity and impact. On the other

hand, if it is within-discipline contributions that are most easily recognized and

rewarded, one would observe a positive correlation.

5.2 Description of data sets

Our analysis uses two large data sets. The first, provided by JSTOR (Journal

Store), has 1.98 million research articles in 1108 journals, classified into 47 disciplines,
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roughly corresponding to 3 sets: arts and humanities, social sciences, and the natural

sciences. Of those, there are 655,213 research articles citing 722,152 other articles

within the dataset, for a total of 5,598,657 citations. These citations, limited to the

cases where both the citing and cited articles are in the dataset, are a subset of the

23,451,235 citations made by the articles in total. Similarly, when measuring impact,

we only count the number of citations from within the dataset. Although this could

skew the observed raw citation counts toward disciplines that are better represented

within the dataset, the normalization by discipline eliminates such biases. The patent

data set contains all 5,529,055 patents filed between 1976 and 2006, and 2348 different

categories with at least 1000 patents. There are 3,643,520 patents citing 2,382,334

others, for a total of 44,556,087 citations. We measure a patent’s impact according

to the number of other patents that cite it, normalized by the average number of

citations for patents in the same year and class(es). The citation impact information

is complete, since the dataset contains all subsequent patents.

5.3 Discipline proximity

Our analysis proceeds by examining each individual citation, the proximity of

the disciplines of the citing and cited article for that citation, and the impact of

the citing article. Intuitively, any individual citation will at most have a very weak

impact on the success of a citing paper. It will only be one of possibly dozens of

references made in an article or patent. Other factors, such as the publication venue

and the reputation of the authors are more likely to contribute to the impact of

the article than any individual citation the authors include. We nevertheless see a

significant relationship between the interdisciplinarity of citations and the impact of

the publication.
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We assign disciplines to an article according to the JSTOR classification of the

journal; approximately half of the journals are assigned to just one discipline, while

the rest have multiple assigned disciplines. Each patent is assigned by a USPTO

patent examiner to one or more categories according to the USPTO classification

system. We quantify the proximity between disciplines by comparing the number

of citations between any pair of disciplines relative to the rate of citation we would

expect if the volume of inbound and outbound citations were the same, but the

citations were allocated at random. If a citing or cited journal is classified into more

than one discipline, a fractional citation is attributed to each discipline. We let nij be

the actual number of citations from i to j, ni be the number of outbound citations

from discipline i, n j be the number of inbound citations to discipline j, and nT

be the total number of citations. Then the expected number of citations, assuming

indifference to one’s own field and others, from field i to field j is E[nij] = ni ·n j/nT .

We define the directed proximity as a Z-score that tells us how many standard

deviations above or below expected nij is:

Zij =
nij − E[nij]√

E[nij]

Here we have used the observation that nT � ni and nT � n j, and approximated

the standard deviation by
√
E[nij].

A high proximity between areas i and j indicates a strong tendency for papers or

patents in area i to cite publications in area j. Figure 5.1 shows an information flow

matrix of proximities by pairs of disciplines in JSTOR. Unsurprisingly, a discipline is

most likely to cite itself. But one can also observe a tendency of the natural sciences

to cite one another, while the natural and social sciences have fewer cross-citations.

Furthermore, although the proximity from area i to area j is highly correlated with
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Figure 5.1: Information flow matrix for journals in the JSTOR database. The direction of infor-
mation flow is from the column discipline to the row discipline, with Zij , the Z-score,
corresponding to the ith row and jth column. Each entry is shaded according to a
normalized Z-score representing whether the number of citations between disciplines is
higher or lower than expected at random. Darker shading represents higher Z-scores.
The diagonal represents citations within the same discipline.

proximity from j to i (with a Pearson correlation of 0.9675), the measure also captures

any underlying asymmetry in citation patterns. Typically the more applied fields cite

the more basic ones. Note that our measure is an aggregate over the entire lifetime of

the journals included, and that previous time resolved measurements of information

flow in chemisty-related fields have detected changes in flow as fields evolve [18].

In our aggregate sample, Finance cites Economics more often than Economics

cites Finance. Statistics is more often cited by other fields than it cites them, with

the exception of Mathematics. The areas of Zoology and Botany and Plant Sciences
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cite the Biological Sciences more often than the Biological Sciences cite them. These

asymmetries also reflect how unusual a citation is. A Biology paper citing a Statistics

paper would be unusual, and might indicate the incorporation of a non-standard

method. A Statistics paper citing a Biology paper would be even slightly more

unusual, and might signal a motivation for the development of a novel method.

Figure 5.2 shows the information flow matrix for patents. For purposes of visu-

alization, we have aggregated all citations according to 468 top level classifications

(e.g., 029 corresponds to “metal working” while 901 corresponds to “robots”). We

similarly observe a tendency of patents within the same subject classification to cite

one another (patents are typically classified into several classes). Once more the

proximity measure reveals asymmetries in information flow. For example, patents

in category 623 “Prosthesis”, which includes pacemakers for the heart, cite category

433 “Horology” more often than vice versa. Category 277, having to do with seals for

a “joint or juncture” is more often cited by the categories corresponding to pumps

and wells than it cites them. In general, those categories representing basic compo-

nents and methods have a net surplus of citations, and include e.g., machine elements

of mechanisms, gas separation, adhesives, stock material, and cryptography, among

others. However, sometimes a category corresponding to a complex apparatus or

process, such as 358 “Facsimile and static presentation processing” also has a net

surplus of citations. This may occur when an invention matures and precedes other

related inventions. The facsimile category is cited many times by other categories

that developed later: television, computers, computer graphics, and interactive video.

In order to test the sensitivity of our results to our particular choice of proximity

measure, in addition to the simple ratio of observed to expected citations, we also

use the Jaccard coefficient for the sets of authors publishing in two areas. We select



93

Figure 5.2: Information flow matrix for patents, with several related areas labeled.
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the latter measure because it is very different from citation-based metrics, while still

capturing proximity. An author could much more easily cite an unrelated area than

they could directly contribute to it by publishing in that area’s journals. In further

contrast to the Z-score metric, the Jaccard coefficient is an undirected measure. Yet

we still find our results, reported in Section 5.5, to be quantitatively and qualitatively

consistent.

5.4 Impact of information flows

For every citing relationship, we measure the Spearman correlation between ci-

tation proximity and the impact of the citing publication. Citation proximity is

simply Zij, where i is the area of the citing publication, and j is the area of the cited

publication. If a paper or patent belongs to more than one area, the proximities are

averaged. We sought to measure impact consistently across the diverse areas repre-

sented by our data sets. To that end, we measured impact (γ) as the the number of

citations received by the citing publication, normalized by dividing by the average

citation count of a publication in the same year and area(s).

We find that for the entire patent data set the correlation is positive (ρ = 0.062
***

1). The corresponding correlation for natural science papers in JSTOR is slightly

negative with ρ = −0.027
***

. However, one can also focus on publications with at

least a given level of success. First, we omit the 40.03% of patents and 34.46% of nat-

ural science papers that were never cited within our datasets. After removing these

zero-impact publications, the tendency of within-community citations to be rewarded

is more significantly negative for both the natural science papers and patents: for

patents, this correlation is −0.047
***

and for natural science papers, the correlation

is −0.072
***

. This result suggests that a publication citing within its discipline is

1***, **, and * denote significance at the < 0.001, < 0.01 and < 0.05 levels respectively.
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more difficult to ignore altogether. However, given that a natural science publication

or patent attracts at least some attention, there is a slight tendency for those that

cite outside of their area to have higher impact.

To demonstrate that the result is not dependent simply on removing papers with

no citations, we also slice the data according to percentile of impact, e.g., taking the

bottom 30% and top 30%, and calculating correlations between citation proximity

and impact separately for the top and bottom group. As Figure 5.3 shows, we

consistently observe a negative correlation between citation proximity and impact

for the higher impact group.

Figure 5.4 helps to explain why removing zero and low impact publications leaves

a negative correlation between citation proximity and impact. By plotting mean

proximity as a function of impact, we observe that both very low and very high

impact papers tend on average to cite outside of their area more often. Since very low

impact publications include many publications that cited outside of their discipline

but failed to attract notice, we are left with the portion of cited publications where

citing outside of ones discipline is positively correlated with impact. These results

suggest that citing outside one’s discipline is a gamble. While risking not being cited

at all, publications that incorporate work from other disciplines tend to make more

significant contributions.

Interestingly, the correlation between the interdisciplinarity of citations and the

impact of a publication in the social sciences and humanities remains positive to

neutral regardless of whether one includes or excludes zero citation publications.

In the social sciences the correlation is 0.033
***

when zero impact publications are

included, and 0.040
***

if they are excluded. The correlation for the entire set of

humanity papers is 0.044
***

, and −0.011 (not sig.) after removing papers with zero
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Figure 5.3: Correlations between proximity Z and impact γ, partitioned by percentile of impact.
For example, at the 20% percentile, we show ρ(Z, γ) for the bottom 20% of publications
by their impact γ, and for the top 20% by γ. No correlations are shown for the bottom
10-20% of publications because they received no citations.

impact. That citing outside of one’s discipline has different implications depending

on whether one is a natural or social scientist is an interesting observation for further

study.

In the above analysis, the correlation values are obtained individually by correlat-

ing the citation proximity and the impact of the citing publication for each citation

pair. One can, however, also consider the average community proximity between

a given publication and all of the publications it cites. Note that these averages

are not always representative because many cited publications fall outside of our
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datasets. Nevertheless, the correlation is 0.081
***

for the entire set of patents, and

−0.015
***

for the set of patents having non-zero impact. For JSTOR, the correlations

are −0.017
***

and −0.028
***

respectively for the set of natural science publications.

These correlations are weaker, though consistent with the correlations obtained for

individual citation pairs.

In order to interpret this result we should consider two scenarios for why an inter-

community edge would appear. The first is that an author publishes in a venue

outside their usual area, but cites work from their home area. It may be expected

that their impact in the venue is diminished, possibly because the publication is

of peripheral interest, or the Matthew effect [75] is absent, since the author has

not already built up a reputation at that venue, and her work is less likely to be

noticed. A second possibility is that an author who usually publishes in a given
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Figure 5.5: Correlations between citation proximity and impact, for patents published between
2000 and 2006, separated by whether the citation was added by an inventor or patent
examiner.

venue draws upon another field in their work, sometimes by co-authoring directly

with someone from another discipline [92]. One may expect such work to have

potentially higher impact, since it is bringing in knowledge that could have greater

novelty. Unlike journal publications where one may expect that impact will depend

on both a suitably chosen venue and the innovativeness of the work, for patents there

is only a single venue, the US patent office. Nevertheless, a patent’s classification,

determined by the patent office, affects its likelihood of being found by examiners

and inventors searching the patent database.

Another way in which patents differ from journal articles is in the origin of the

citations. As many as two thirds of all patent citations are added not by the inven-

tors, but by the patent examiners, and it is therefore unlikely that such citations

represent true knowledge flows [9]. Fortunately, since 2000, examiner-added cita-

tions are delineated from inventor-added ones. Already in the choice of patents to

cite we find that examiners are more specialized in their citations than inventors; the

average proximity for citations added by examiners is 213.471, compared to 155.572

for those added by inventors. Figure 5.5 shows that, unlike inventor added citations,

examiner-added citations show a neutral to positive correlation for citing patents in

proximate categories. This suggests that patent examiners may not only be biasing
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citations to fall within categories, but when they do, the patent is more likely to

receive citations.

Finally, we combine proximity with other variables which may influence the impact

of the publication or patent. We include network properties of the citing and cited

publications in the citation graph as well as the time of publication for both. We

exclude variables such as publication venue and author since these themselves may be

correlated with the likelihood of cross-disciplinary information flows. Table 5.1 gives

the coefficients of the variables of the regression models. The dependent variables in

these models are the impact of the citing paper of each citation pair after applying

a Box-Cox transformation with an appropriate λ, i.e:

y′ =


yλ−1
λ
, λ 6= 0

log (y), λ = 0

Because of the extremely skewed distribution of the values of community proximity,

we use their ranks instead of their normalized Z-score values. From Table 5.1, we see,

consistent with results in Figure 5.3, that even controlling for other variables, cross-

disciplinary citations correlate with higher impact for non-zero impact publications.

Furthermore, citing well-cited publications corresponds to receiving more cita-

tions, as does citing more recent publications. This is interesting in light of the

recent finding that electronic access tends to make it easier to cite more recent and

more influential papers [36]. Finally, citing many other publications positively cor-

relates with receiving more citations. One might speculate that a publication that

carefully acknowledges and builds upon a substantial body of previous work will itself

be relevant to a wider range of future work.

Given the higher impact of information flows spanning disciplines, an important

question one might ask is whether interdisciplinary citations have increased in recent
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Table 5.1: Citing behavior and subsequent citations earned.
US Patents Natural science papers in JSTOR

variable all (λ = 0.35) > 0 cites (λ = 0) all (λ = 0) > 0 cites (λ = −0.069)

log(# citedciting + 1) 1.816e-01*** 1.543e-01*** 7.605e-01*** 3.577e-01 ***

log(# citationscited + 1) 1.470e-01*** 1.047e-01*** 2.635e-01*** 9.971e-02***

citing year -1.096e-02*** 5.195e-05 -1.019e-02*** -7.828e-03***

year difference -1.697e-02*** -1.092e-02*** -1.962e-02*** -7.209e-03***

proximity -5.873e-10*** -1.586e-08*** -1.743e-09*** -1.735e-08***

R2 0.0672 0.0534 0.1570 0.1018
citation pairs 2,841,279 2,683,726 2,110,965 1,729,298

p < 0.05(*), p < 0.01 (**), p < 0.001 (***)

years. Figure 5.6 shows the evolution of average community proximity over time for

patents and for papers in JSTOR. We observe that the frequency of citations crossing

communities among scholarly work has remained approximately constant over the

past 100 years. For patents, we observe a mild increase in interdisciplinary citations

from 1975 to 1990 and a sharper increase thereafter. This indicates that even though

the amount of knowledge has been accumulating within each area, patent inventors

and examiners are increasingly identifying and building upon relevant inventions

in other areas. Note that our measures of proximity are based on the cumulative

citation counts for the entire period of the datasets, which does not take into ac-

count variations in proximity between pairs of disciplines over time. Because of this,

some pioneering papers that bring together disciplines before such cross-disciplinary

research becomes common, may not be recognized in our analysis.

In summary, we quantified through a bibliometric analysis the effect of interdis-

ciplinary information flows. We found that among patent inventions and natural

science papers receiving one or more citations, those who cite across disciplines tend

to garner more citations, indicating that cross-fertilization of ideas does often lead

to significant impact.
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Figure 5.6: Average community proximity between communities over time.

5.5 Alternate definitions of proximity between communities

In addition to defining proximity in terms of citation frequency between ar-

eas/categories, one can also define it in terms of the author Jaccard coefficient pij

that measures the ratio of the number of authors who publish in both areas to the

number of authors who publish in either. Using the Jaccard coefficient has the fea-

ture of being 1 for all within community citations, and 0 for two areas that share

no authors. In contrast, the community proximity measure has different weights for

within-community citations because the Z-score measures how many more within-

community citations than expected one observes, which varies by area. Therefore

the Jaccard coefficient is able to treat all within-community citations equally.

We find generally good agreement between the two measures when correlated
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against impact. For patents overall, the correlation drops to slightly negative using

author overlap (ρ = −0.008∗∗∗), but is again significantly negative once the zero

impact patents are removed (ρ = −0.034∗∗∗). Similarly for natural science articles

in JSTOR, the non-zero impact articles have more significantly negative correlation

(ρ = −0.080∗∗∗) compared with the overall correlation (ρ = −0.037∗∗∗). Once again,

we have the result that inventions and natural science publications citing outside of

their area tend to have slightly higher impact. For the humanities and social sciences,

the correlations remain significantly positive both before and after excluding zero

impact publications. Finally, the average pij for citations among patents and papers

in JSTOR, shown in Figure 5.7 , is decreasing to constant, as was the case for the

community proximity shown in Figure 5.6.
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Figure 5.7: Average pij between communities over time.
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5.6 Conclusions

In this chapter, we analyzed a very old, regimented, and established social medium

for knowledge sharing in order to discover patterns of information flow with respect

to community structure. There are interesting factors, relating to the citation graph,

that correlate with the popularity a given publication will enjoy. Our particular

interest is on the impact of a particular citation on the success of the citing work.

Through intensive study of two large data sets, one spanning over a century of

scholarly work in the natural sciences, social sciences and humanities, and one of a

quarter century of United States patents, we find that for the most influential group

of work, citations that occur crossing communities lead to a slightly higher number

of direct citations. This is the evidence that the ideas across communities can lead

to higher impact work.

We also examined citation patterns within a single discipline of scholarly publi-

cations, that of computer science publications. The datasets we study are two large

digital libraries encompassing comprehensive scholarly articles primarily in computer

science—the ACM2 data set and the CiteSeer 3 data set [41]. The effects are less ob-

vious, but still leave open the possibility that citation between disciplines could lead

to high impact work.

2http://portal.acm.org
3http://citeseer.ist.psu.edu



CHAPTER VI

Information Diffusion in Online Forums

6.1 Introduction

In the previous chapter, we discussed the relationship between information flows

and their subsequent impact in citation networks. In this chapter, we focus on the

information diffusion patterns in online communities, i.e., the user grouping behavior

in online forums. Online forums provide a unique type of social environment that

enables people to share and access information freely. Users can either start new

topics or leave comments in the threads of existing topics. Usually, an online forum

has tens or hundreds of distinct boards or communities. These boards or communities

group hundreds to thousands of threads of similar related topics together. Because

of the huge numbers of users and the high dynamics of online forums, this type of

environment has a rich complexity [43].

In this chapter, we focus mainly on three central questions:

1. What are the factors in online forums that potentially influence people’s behav-

ior in joining communities and how do they impact?

2. What are the relationships among these factors, i.e., which ones are more effec-

tive in predicting the user joining behavior, and which ones carry supplementary

information?

104



105

3. What are the similarities and differences of user grouping behavior in forums of

different types (such as news forums versus technology forums)?

By a user joining a community in a online forum, we mean the user posts at

least once in the community. In this sense, “communities” are explicitly pre-defined,

but the joining behavior is temporary and requires little effort. In the previous

studies of information diffusion in other social environments, such as LiveJournal

and DBLP [13], or a recommendation referral program run by a large retailer [67],

the relationships between people are explicit and the actions taken require more

commitment. However, the relationships or links in most forum networks are hidden

and implicit—there are no well-defined links such as friendship or affiliations [43].

The most obvious relationship among users in online forums is the reply relationship

between users. Instead of reflecting strong friendship, the reasons people are linked

together by online replies may be because of common interests or different opinions

[126, 42, 43].

In order to answer the first question, we analyze several features that can usually

be obtained from a forum dataset. Our first discovery is that, despite the relative

randomness and arbitrariness, the diffusion curve of influence from users of reply

relationships has diffusion patterns similar to those in [13], although the reasons that

people are linked together are very different. We also investigate the influence of the

features associated with communities, which include the size of communities and

the authority or the interestingness of the information in the communities. We find

that their corresponding information diffusion curves show some strong regularities

of user joining behavior as well, and these curves are very different from those of

reply relationships. Furthermore, we analyze the effects of similarity of users on the

communities they join, and find two users who communicate more frequently or have
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more common friends are more likely to be in the same set of communities.

In order to answer the second question, we construct a bipartite graph, whose

two sets of nodes are users and communities, to encompass all the features and their

relationships in this problem. Based on the bipartite graph, we build a bipartite

Markov Random Field (BiMRF) model to quantitatively evaluate how much each

feature affects the grouping behavior in online forums, as well as their relationships

with each other. BiMRF is a Markov random graph [37, 119] with edges and two-stars

as its configuration, and incorporates the node-level features we have described as

in a social selection model [94]. The most significant advantage of using the BiMRF

model is that it can explicitly incorporate the dependency between different users’

joining behavior, i.e., how a user’s joining behavior is affected by her friends’ joining

behavior. In contrast, the decision trees as used in [13] cannot directly model such

dependency. The results of this quantitative analysis shows that different features

have different effectiveness in prediction in news forums versus technology forums.

Together with results from the qualitative analysis, we are able to answer the third

question. Our work also suggest that BiMRF models can be applied to analyze

bipartite networks that are used to represent people and the common membership

they belong to in general.

The findings discovered in this chapter are useful for improving and designing

social network systems. Basically there are two important social functions in a

social network system. One is how to recommend similar users, and the other one

is how to recommend communities to users. The study of user grouping behavior

reveals important features that have great impacts on how users join communities,

and therefore provides valuable insights for social system owners to improve user

experience. For example, a forum website can provide more social intelligence by
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recommending top rated posts or large communities to users. It can also remind a

user to pay more attention to other users who share similar interests with him. The

findings related to the differences between news forums and technology forums also

suggest that social systems should be designed with more considerations of diversified

user intentions.

The rest of this chapter is structured as follows. Section 6.2 discusses some related

work. Section 6.3 describes the datasets and network analysis results. Section 6.4

investigates dynamic features related to community-joining behavior. Section 6.5

presents the BiMRF model with quantitative analysis. Section 6.6 concludes this

chapter.

6.2 Related work

The relationship between the user behavior and their social environment is the

focus of a large body of work recently, such as [28, 43, 108]. The behavior of grouping

is particularly interesting in social networks because it is closely related to the topic

of information diffusion or epidemics [111].

The work in [13] also studies the human behavior of group formation. However,

our work differs from it in the following aspects. First, the forum data, which have

loose structures and hidden relationships, are different from the two social networks

studied in [13]. The relationships between two users and between a user and a com-

munity in LiveJournal and DBLP require high commitment. For example, related

neighbors have to be real friends in LiveJournal or co-authors in DBLP. In contrast,

both user-user and user-community relationships in forums are much weaker because

users do not have to exert much effort to have reply relationships with other users

or participate in communities online. Second, in addition to the diffusion curves of
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numbers of related users, our work also studies the diffusion curves of other forum

features, the relationships between these features, and how the user behavior differs

in news versus technology forums. Finally, instead of using decision trees [13], we use

exponential random graph models, which can evaluate more complicated dependency

features.

Another work studying user participation behavior is [64]. Instead of considering

the relationship between users and communities, their target is to investigate the

motivations of user participation on a social media site. The work [14] focuses on

users who are heavily engaged in the group, and the behavioral differences between

those users and ordinary users. They use a bipartite model to represent the user-

group relationship; however, their model is to predict the “long-core” membership.

Users that do not participate publicly in online communities, i.e., people who lurk

without posting, may be also interested in those communities. However, they are

less positive in both activity and influence[83].

Exponential random graphs [95], which include the simplest Bernoulli random

graph or Erdös-Renyi random graph model, Markov random graph [37, 119] and

the recent developments [109, 96], have been extensively studied for social network

analysis. Traditional use of random graph models is to discover structural statistics of

networks, such as triangles and stars. Our work is an application of the homogeneous

Markov random graph models [37, 119] with consideration of node-level attributes

to give quantitative analysis of the forum data. BiMRF is a social selection model

[94], in which individual users may change their joining behavior on the basis of the

attributes of others.
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6.3 Overview of the networks

In this section, we present an overview of the datasets and the bipartite networks

of user-community relationships, as well as some structral features of these bipartite

networks.

6.3.1 Datasets description

The datasets we study are from four online forums or online discussion platforms:

Digg1, Apple Discussions2, Google Earth Community3, and Honda-tech4.

Digg is a news aggregator website, where users can submit news, videos, and

pictures. In addition to that, users are able to lead discussions about the content

that they are passionate about. All posted items, including news, images, videos

and discussion comments can be rated by users by “digging” them. It is a platform

on which people can provide content from anywhere on the web, and collectively

determine the value of the information. The data we have crawled from Digg is from

Oct., 2007 to Jul., 2008. It has 50 communities with topics of a great diversity. More

than 200,000 users were active (i.e., posted at least once), and about 48,000 threads

were built during that time period.

Unlike Digg, the other three forums focus on topics related to a specific product

or technology. Apple Discussion is a platform mainly for Apple users seeking help,

answering others’ questions or exchanging opinions about Apple products. In our

dataset, there are about 350,000 users and about the same number of threads in

331 different communities. The time window of this data ranges from 2001 to 2008.

The forum of Google Earth holds discussions about the technology of Google Earth.

1http://digg.com
2http://discussions.apple.com
3http://bbs.keyhole.com/ubb/ubbthreads.php/Cat/0
4http://www.honda-tech.com
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Our dataset has about 700,000 threads in 54 different communities, and 230,000 users

were active from May, 2003 to June, 2008. A fraction of the posts in the Google Earth

forum had ratings with them. Finally, Honda-tech is a forum for Honda customers

to provide and exchange information and resources. It had 86,000 threads and about

45,000 users from 2001 to 2008. There were 63 communities in this forum. All of

the four forums have explicit reply relationships in the datasets we have crawled.

6.3.2 User-community bipartite network

In social networks, bipartite networks or affiliation networks are bipartite graphs

that are used to represent the people and the common memberships they belong to,

such as the author-scientific article network, the actor-movie network [80]. In our

problem, we define the user-community relationship as a bipartite graph: there is

an edge between a user u and a community c, if and only if u has ever posted an

article or a comment in c. Because little effort or commitment is required to post in

online forums, the relationship between users and communities is not as strong as

many other bipartite networks of user-membership. However, from the analysis of

the bipartite networks, we are able to see some regularities of user joining patterns.

Table 6.1: Statistics about the bipartite networks.
Forum Digg Apple Google Earth Honda

User 212,635 349,066 231,976 45,718
Commu. 50 331 54 63

Edge 1,185,167 451,338 345,038 122,946
〈ku〉 5.57 1.29 1.49 2.69
〈kc〉 23703.34 1367.69 6389.59 1951.52
r -0.2169 -0.0888 -0.2271 -0.0578

Table 6.1 gives a basic description of the user-community bipartite networks con-

structed from our forum datasets. 〈ku〉 is the average number of communities a user

joins, while 〈kc〉 is the average number of users a community has. From the values

of 〈ku〉 and 〈kc〉, we see the bipartite graph of Digg is much denser than the other
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three. This shows that in news forums such as Digg, users are more likely to join

multiple communities than in technology forums. We let r denote the value of as-

sortativity, whose concept is defined as the preference of the nodes in a network to

have edges with others that are similar under certain measurement [81]. Here we

measure similarity with regard to degrees of nodes in the bipartite graph, and get

the Pearson correlation coefficient between the degree of the users and the degree

of the communities. We see that all four bipartite networks show negative values

of r, which implies that in forums, less active users are more likely to join popular

communities, while less popular communities are mostly occupied by active users.

We then examine the growth of edges versus the growth of users in the bipartite

networks of forums, by looking at whether their α of e(t) ∝ n(t)α follow the densifi-

cation law [68]. In our bipartite networks, we assume that all communities existed

since the beginning of our data availability, and that users start to join since the

time they had their first post. From Figure 6.1, we see that the growth of edges is

almost linear with respect to the numbers of nodes in the bipartite graphs of the

four datasets. Being consistent with their low average degrees of users 〈ku〉, this tells

us that most users in the technology forums have much more focused interests and

mostly stay in single communities. However, this is not the case for the forum of

Digg, whose α is 1.5. In fact, we find that there are quite a few users who join almost

all of the communities in this forum site.

6.4 Community membership

In the previous section, we analyzed some structural features of the online forum

networks. In this section, we study the process of community joining behavior di-

rectly. In order to see the dynamics of user behavior, we divide the datasets into 30
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Figure 6.1: The growth of edges versus the growth of users in the bipartite networks.

time snapshots. The diffusion curves we examine are the relationships between user

joining behavior at time t and the related features at the previous time snapshot

t− 1. These curves show the change of joining probabilities as functions of different

features associated with either users or communities. Moreover, we also study the

correlations of user similarities and the communities they join.
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6.4.1 Friends of reply relationship

We use this feature to describe how users are influenced by the numbers of neigh-

bors with whom they have ever had any reply relationship. Although the reply

relationship is not exactly the same as a real friendship, this is usually the most com-

mon and explicit user-user relationship that can be extracted from a forum dataset.

In addition, as we will show, the reply relationship exhibits similar patterns in its

diffusion curves as those of stronger relationships in other social networks, such as

friendship or co-authorship in [13].

For every tuple (u, c, t) of user-community relationship at time t, we look at the

reply friends of u who were active in c at the previous time snapshot t−1. We denote

the number of such reply friends as k. By observing all the cases of whether u joins

c with k reply friends at the previous time snapshot, we get the joining probability

as a function of k. From Figure 6.2, we see that all four curves exhibit the law of

diminishing returns. That is, the curves increase fast at the beginning, but more

and more slowly towards the end. This is highly consistent with the observations

of information diffusion in some other social networks [13, 67]. Moreover, the “S-

shaped” behavior at k = 0, 1, 2 described in [13] is also observed in the three large

datasets, Digg, Apple and Google Earth. The absence of this behavior in Honda

may be because of the significantly smaller size of this dataset.

An alternative way to connect users is to let users in the same thread form a

clique or a complete subgraph. However, this is a looser relationship than the reply

relationship because users in the same thread may be interested in different aspects

of the thread topic [126]. In fact, we also observe similar diffusion curves when

considering the users in the same threads as ‘friends’, although the probability values

are much lower. This is interesting since it suggests that, in many social networks,
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Figure 6.2: The probability of a user joining a community in the forum as a function of the number
of reply friend k who are active in that community at the previous time snapshot.

despite the diversity of ‘friendships’, their diffusion curves may have very similar

patterns.

6.4.2 Community sizes

It is intuitive to expect that more popular information diffuses through the net-

work at a faster pace. We examine this hypothesis in this part. We use community

size as the measurement to quantify the ‘popularity’ of information.
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By the community size at a time snapshot, we mean the number of users who

have posted at least one article or comment in that community during that time

snapshot. We call these users active users. The total sizes of all the communities

at different time snapshots vary a lot, which may be because of both the limitation

of the datasets and the effect of exponential growth of social communities. So we

further normalize the community size over the sum of the sizes of all communities at

that time snapshot.

Similar to the diffusion curves of the reply relationship, for every user-community

tuple at each time snapshot t, we look at the normalized size of the community at

time t − 1, and get the user joining probability as a function of it. The curves are

shown in Figure 6.3. The insets are the diffusion curves of absolute community size.

From the figure, we can see that all the curves can be fitted by straight lines in the

log-log scale. That is, if we use p and s to denote the probability of joining and

normalized community size respectively, we have p ∝ sα. We find that α is less than

1 in three of the figures, and larger but close to 1 in Google Earth. This tells us

that the growth of the joining probability is sub-linear or linear with respect to the

normalized community size.

6.4.3 Average ratings of top posts

Aside from the popularity of information, we are also interested in how the au-

thority or interestingness of information impacts user behavior. Usually, in a social

environment such as forums, the evaluation of the authority or interestingness of in-

formation is the result of the wisdom of crowds, since the ratings are the cumulative

results of the users. In our datasets, Digg and Google Earth have rating systems,

but their rating systems have some differences. First of all, the range of the ratings

in Google Earth is from 0 to 5, while there is no upper bound of the ratings in Digg
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Figure 6.3: The probability of a user joining a community in the forum as a function of the nor-
malized community size at the previous time snapshot. The insets show the probability
before normalization.

since those ratings are just the number of times a post has been “dug” by the users

who like it. So the influence from the ratings in Digg may be confounded with the

influence of community size, while Google Earth does not. Moreover, Digg allows

ratings on starting posts as well as replies; while Google Earth only allows ratings

on starting posts.

Users usually only see the ratings of starting posts before reading more of a thread.
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So we only consider the ratings of starting posts as evidence for the authority of

information. What is more, the data shows that in a community, the distribution

of the ratings of starting posts is highly skewed, with most starting posts having

very low scores and only a small fraction of them having high scores. Based on this

fact, we choose the posts with top 10% ratings in each community at every time

snapshot, and get the average of the ratings. Similar to the analysis of the previous

two features, we plot the probability for users joining a community at a time snapshot

as a function of the average rating of the top 10% posts in the community at the

previous time snapshot. Figure 6.4 shows the resulting curves.
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Figure 6.4: The probability of a user joining a community as a function of the average rating of the
top 10% high rating posts in the community at the previous time snapshot.

It is interesting to see that there is a smoothly increasing curve for Digg, and the

curve grows much faster after the average rating reaching a point around 2000. This

curve shows a pattern that is called critical mass. On the other hand, the curve for

Google Earth does not consistently increase as the one of Digg does. But still, the

probability is much higher when the average rating is at 3, 4 or 5 than that of when
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the average rating is at 0, 1, or 2. This difference between Digg and Google Earth

might be due to people’s different purposes in the two types of forums. In Google

Earth, people are mainly seeking answers to their particular questions that may

be only related to the topics in limited communities, so although the scores of the

posts in the community matter, they do not have much difference after a threshold.

However, the purposes people have for joining communities in Digg are more diverse.

In addition, the front page of Digg enables users to read interesting topics without

being aware of the communities they are in [64]. So increasing interestingness of the

posts may be able to attract more users.

6.4.4 Similarities of users

In the previous part of this section, we have studied how certain features affect the

probability of users joining communities. Those features are associated with either

a single user or a single community. In this subsection, we analyze the features with

dependency: if two users are ‘similar’ in a certain way, what is the correlation of the

sets of communities they join?

To define the ‘similarities’ of users, two criteria are used. The first one is the

number of times two users reply to each other’s posts, normalized over the total

number of articles or comments the two users have posted. The second one is the

number of common friends that the two users have in the reply network, normalized

over a half of the sum of the numbers of friends the two users have in total. For easy

reference, we will name these two types of user similarity frequency-user-similarity

and triad-user-similarity respectively. Each similarity measures takes values between

0 and 1. In order to get rid of noise introduced by trivial behavior, all users who

only post once are ignored.

In order to know whether more similar users are more likely to join the same
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communities, we compare their similarities versus the overlaps of communities they

have joined. For two users u1 and u2, let the sets of the communities they have joined

be S1 and S2, and the absolute overlap of their communities be S1 ∩ S2. However,

we need to account for the fact that some users may have little ‘similarity’ but

large community overlap because they participate in almost all of the communities

in a forum. So we normalize the absolute overlap by the expected overlap. The

expected overlap can be obtained as Oe = (|S1| · |S2|)/(|S|), where S is the set of

all communities in the forum. Then the normalized overlap On can be got by the

equation: On = (|S1∩S2|−Oe)
Oe

.

Figure 6.5 shows the relationships between user similarities and the normalized

community overlaps. The correlation is positive for all forums and similarity mea-

sures, which means that more similar users are more likely to be in the same com-

munities. We have to note that Figure 6.5 only shows the static correlations of user

similarities and their community overlaps. This is different from the dynamic diffu-

sion curves that we see in Figure 6.2 - 6.4. In fact, by computing the correlations

between the user similarity at time t− 1 and their community overlap at time t, we

find they are neutrally correlated. This means two users either communicating more

frequently or having more common reply friends at certain time are not more likely

to join the same new communities in the following time snapshot. We will use a

statistical model to further investigate this problem in Section 6.5.

6.4.5 Summary

In this section, we have shown how the community joining behavior is influenced

by features associated with users and communities. The empirical diffusion curves

show that these features are affecting human behavior in various ways. It is partic-

ularly interesting to see that the feature of reply friend has similar diffusion curves
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Figure 6.5: The user similarities versus the community overlaps. The main plots use the commu-
nication frequency between users as the user similarity, and the insets use the number
of common friends.

as those of real friend relationships in other types of social networks.

Moreover, we have analyzed the features of dependency. User-user similarities

defined by their frequencies of communications and numbers of common friends are

both positively correlated with the overlaps of the communities that the users have

joined. However, there is no correlation between the user similarity and the sets of

communities the users are going to join.
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So far, we have examined the features separately. We will now consider them

together to answer such questions as which feature best predicts user behavior and

what correlations can be made with multiple features. We use a bipartite Markov

random field model to study these problems.

6.5 Statistical user grouping model

In this section, we present a bipartite MRF (BiMRF) model, also known as a

social selection random graph [94], to examine the quantitative effects of different

features on the user grouping behavior in online forums. In addition to predicting

user behavior based on the features observed, these models help reveal relationships

between the features. Based on these relationships, we observe that the features

have different effects in information diffusion in news and technology forums. As we

shall see in Section 6.5.2, the advantage of using BiMRF models in our problem is

that they can explicitly incorporate the dependency between related users’ joining

behavior, i.e., how a user’s joining behavior affects her friends’ joining behavior. The

decision tree as used in [13] cannot explicitly model such dependency.

6.5.1 Bipartite markov random fields

In social network analysis, exponential random graph (p?) models have been ex-

tensively studied, including the simplest Bernolli random graph or the Erdös-Renyi

model and the Markov random graph [37, 119] and its new specifications [109, 96]. In

machine learning society, a Markov random graph is a Markov random field (MRF)

with edges represented as random variables. In the sequel, we will obey this conven-

tion and point its connection to random graph models.

Based on the bipartite networks we have described in Section 6.3.2, we define the

bipartite MRF (BiMRF) as follows. BiMRF is a bipartite graph and the vertices at
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Figure 6.6: A bipartite MRF model with N communities and M users at time t. {et} is an instance
of the connections between users and communities at time t. The dashed edges are
observed evidence.

one side are associated with the variables U = {Ui}Mi=1 which represent users, and the

vertices at the other side are associated with variables C = {Cj}Nj=1 which represent

communities. In the same spirit as the previous analysis, given the observed fea-

tures, we treat the joining behavior at different time snapshots independently in the

BiMRF model. Figure 6.6 shows the model’s graph at time t. We will use the tuple

(u, c, t) to denote the user-community relationship at time t. In our model, each user

is a d-dimensional feature vector ui = [ui1, . . . , uid]
>, of which the feature values can

change over the time t as we have discussed in previous sections. Different users

can be connected together, for example, if their similarity (by some measurement)

is above some threshold. Each community cj can have its features (e.g., community

sizes) and can also connect to other communities if we have similarity defined be-

tween them, and their similarity is large enough. We will use O to denote all the

observations, including users and their features, communities and their features, and

connection structure of users and of communities. We introduce a set of random

variables E =
{
Et
ij : 1 ≤ i ≤ N , 1 ≤ j ≤ M and 1 ≤ t ≤ T

}
, and each r.v. is an



123

Table 6.2: The two representative feature functions in BiMRF. cs denotes the features of normalized
community-size and us denotes the two types of user similarity who are the same in
defining feature functions.

Categories Features Feature functions

Singleton community-size fcsk (etij = 1, ci, uj , t) =


1 if b−k ≤ CommuSize(ci, t) ≤ b−k+1

0 otherwise

Dependency
user similarity

(frequency or triad)
fusk (etij = 1, eil = 1, ci, uj , ul, t) =


1 if b−k ≤ UserSim(uj , ul, t) ≤ b−k+1

0 otherwise

indicator: etij = 1 if the user ui joins the community cj at time t; otherwise, it is 0.

Let {e} denote an instance of the random variables E. By the basic theory of ran-

dom fields [61], given the observations O, BiMRF defines a conditional distribution

as follows:

p({e}|O) =
1

Z(w)
exp

( K∑
k=1

wkfk({e}, O)
)

where fk are feature functions, which can be real or binary (here we assume they

are binary, i.e., true or false), and wk are their weights, which will be learned from

a given training dataset. As we have mentioned, BiMRF treats the joining behav-

ior at different time snapshots independently given the observed features. Thus,

p({e}|O) =
∏T

t=1 p({et}|O).

Since the dashed edges in Figure 6.6 are fixed and the probability p({e}|O) is

defined on the connections between nodes on different sides, we call the model as a

Bipartite MRF. A dashed edge is added if the similarity of the two users or the two

communities at either side is above some threshold.

6.5.2 Feature function definition

We now define the feature functions for modeling user-community behavior. The

features we use in BiMRF include three singleton features and two types of user sim-

ilarity. The singleton features are those either associated with users or communities.
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They are reply-friend, normalized-community-size and top-post-rating in our models,

and will be denoted as rf , cs, tp respectively. The two dependency features are the

two types of user similarity, i.e., frequency-user-similarity and triad-user-similarity,

and we use usf and ust to denote them. We use the same bins as those used in the

analysis of Section 6.4, i.e., we take linear-bin to define the feature function of top-

post-rating, and the log-bin to define the other feature functions. Suppose the basis

of the logarithm is b (e.g., 2 in our model). Two representative feature functions are

defined in Table 6.2. Since f csk are defined on an individual (u, c, t) tuple (i.e., a single

joining event), we call these feature functions singleton feature functions; while fusk

are defined on more than one joining events, thus we call these feature functions de-

pendency feature functions. These dependency feature functions explicitly model the

dependency between different users’ joining behavior. In decision trees [13], however,

such dependency cannot be directly modeled.

To avoid functions which appear sparsely in the datasets, we set an upper bound

(e.g., 512) for the reply-friend feature and a lower bound (e.g., 2−19) for the other

four features. The features that are beyond this bound are defined in one feature

function and will be treated the same in BiMRF.

These feature functions have a close connection to the configurations in Markov

random graph [37, 119]. The singleton feature functions correspond to the dyad

configuration and the dependency functions correspond to two-star configurations.

In each type of configuration, we consider node-level attributes as in a social selection

model [94].

6.5.3 Model fitting and testing

Model fitting is to learn the parameters from a given dataset. In this case, the

data set is a pairing of observations and edges, i.e., D = {〈{e}, O〉}. The best model
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to fit the data is the one with the maximum conditional likelihood: L = log p({e}|O).

The optimization problem can be done with gradient ascent methods, such as the L-

BFGS [72]. Since the probability is an exponential family distribution, the gradient

is: ∂L
∂wk

= Ep̂[fk] − Ep[fk], where Ep[.] is the expectation with respect to the model

distribution p({e}|O), and Ep̂[.] is the expectation with respect to the empirical

distribution on the given data corpus.

Without dependency feature functions, the Bipartite MRF models reduce to logis-

tic regression models, also known as Bernoulli graphs in the social network literature.

In this case, the model distribution, or the marginal probabilities as required in the

objective function and its gradients, can be easily computed for each (u, c, t) inde-

pendently.

With dependency feature functions, the BiMRF model is a homogeneous Markov

random graph [37, 119] with two-star configurations. In each configuration, we con-

sider node-level attributes as in a social selection model [94]. In a Markov random

graph, the marginal probabilities on different edges, i.e., different (u, c, t) tuples, are

coupled together. In other words, the event that a user joins a community at a par-

ticular time depends on the joining events of the related users or the communities

at that time. Thus, we cannot compute the marginal probabilities of different edges

independently.

For Markov random graphs, various estimation methods have been studied in so-

cial networks, such as the pseudo-likelihood method [113] and the Monte Carlo max-

imum likelihood estimation [120]. In this chapter, we use variational methods [50],

which are among the most popular inference methods in the graphical model liter-

ature. The mean field approximation bears the form of pseudo-likelihood function

[113]. But unlike the pseudo-likelihood method, mean field marginal probabilities
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are computed iteratively using the coupled mean filed equations given initial values.

Mean field inference

To illustrate how mean field inference works in BiMRF, we use the user similarity

feature as an example. The following derivations can be easily extended to other

BiMRF models. The BiMRF model defines the following joint distribution:

p({e}|O) ∝ exp

{ ∑Kus

k=1 w
us
k

∑
ijlt f

us
k (etij, e

t
il, ci, uj, ul, t)

}

We define the factorized variational distribution q({e}|O) =
∏

ijt q(e
t
ij|O) as an

approximation to the joint distribution. To find the best approximation q?, we min-

imize the KL-divergence: KL(q({e}|O)||p({e}|O)). The optimization problem can

be solved by an alternating minimization method. Specifically, at each step we solve

the problem with respect to only one marginal distribution q(etij) and keep all others

fixed. Then, we can get the following coupled mean field equations by using qtij to

denote q(etij = 1|O):

qtij ∝ exp
( Kus∑
k=1

wusk
∑
l

qtilf
us
k (etij = 1, etil = 1, ci, uj, ul, t)

)

These coupled mean field equations reflect our intuition that the event that user j

joins community i at time t is dependent on whether other connected users l join

the community at that particular time. We iteratively solve the coupled equations

to get a fixed point solution, which gives the (approximate) marginal probabilities.
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Table 6.3: Distributions of the number of related users on different datasets for frequency-user-
similarity.

#Related Users Digg Google Earth Apple Honda
≤ 20 63.93 97.03 96.81 69.80
≤ 40 75.89 98.80 98.51 81.05
≤ 60 82.30 99.29 98.98 86.30
≤ 100 88.40 99.59 99.34 91.48

Table 6.4: Evaluation results of different BiMRF models on the four datasets.
BiMRF Digg Google Earth Apple Honda
Models ROCA AP ROCA AP ROCA AP ROCA AP
{cs} 0.700 0.00536 0.860 0.00697 0.912 0.00296 0.833 0.00542
{rf} 0.718 0.00922 0.520 0.00128 0.522 0.00025 0.640 0.00743
{cs, rf} 0.800 0.01295 0.862 0.00738 0.913 0.00310 0.853 0.01257
{usf} 0.442 0.00271 0.477 0.00188 0.473 0.00014 0.467 0.00147
{ust} 0.474 0.00911 0.467 0.00235 0.467 0.00018 0.483 0.00179
{usf , cs} 0.699 0.00540 0.861 0.00734 0.912 0.00296 0.831 0.00542
{ust, cs} 0.705 0.00551 0.860 0.00698 0.912 0.00296 0.832 0.00536
{usf , rf} 0.570 0.00362 0.545 0.00122 0.532 0.00015 0.561 0.00162
{ust, rf} 0.703 0.00708 0.526 0.00117 0.531 0.00015 0.588 0.00179
{usf , cs, rf} 0.796 0.01276 0.861 0.00744 0.899 0.00295 0.851 0.01248
{ust, cs, rf} 0.800 0.01301 0.862 0.00724 0.906 0.00307 0.853 0.01177

Prediction

Given a learned model, we can do prediction on unseen (uj, ci, t) tuples and get

the marginal probability that an edge exists p(etij = 1|O). This is the probability

that the user uj joins the community ci at time t. Since joining events are rare, the

probabilities p(etij = 1|O) are much smaller than 0.5. We cannot use a threshold

(e.g., 0.5) to decide whether a user joins a community. Instead, we use the ordering

metrics ROC Area (ROCA) and Average Precision (AP) to evaluate the goodness

of the models. We evaluate the results of the features individually as well as with

different combinations. In each experiment, we randomly sample 70 percent of the

(u, c, t) tuples as training data and predict on the rest in each dataset.

An issue with regard to the models with user-similarity features is that we need

to take care of the large number of related users as defined by user-similarity. For
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example, for the frequency-user-similarity, the maximum number of related users

on Digg is 43,269, 15,205 on Apple, 3740 on Google Earth, and 2236 on Honda.

These large numbers will destabilize the computation when performing mean field

inference. Fortunately, as shown in Table 6.3, for frequency-user-similarity, most of

the users have small numbers of related users. The case of the triad-user-similarity

is similar. Thus, we can use a pruning method to remove those rare users who have

a large number of related users. In this experiment, we apply a simple strategy. We

remove a user’s user-similarity features if the number of her related users is larger

than K, which is a pre-specified parameter. We set K at 20 in our experiments. We

tried other parameters (e.g., 40 or 60), and the results do not change much.

6.5.4 Observations

Singleton features. In Section 6.4 we have seen the diffusion curves related to

reply friends and community sizes, however, we cannot compare their effectiveness

in predicting the user joining behavior from those curves. The BiMRF models help

us do this. From the first two rows of Table 6.4, we see that for Google Earth, Apple,

and Honda, the community-size feature predicts user joining behavior much better

than reply-friend does. In particular, reply-friend has very little effect in Google

Earth and Apple (their ROCA values are around 0.5). In contrast, reply-friend

performs slightly better than community-size in Digg. Furthermore, by comparing

the first three rows of Table 6.5, we see that although top-post-rating performs worse

than community-size in Digg and Google Earth, it is better than reply-friend in

Google Earth while worse than reply-friend in Digg.

These observations suggest that in the three technology forums, users’ joining

behavior correlates more closely with the features associated with communities, such

as community sizes and average ratings of the top posts in the communities, rather
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than the number of reply friends of users. On the other hand, in a news forum such

as Digg, the user behavior has a stronger correlation with the number of their reply

friends. The possible reasons for this difference are as follows. First, in both Google

Earth and Apple, about 53% - 54% of users have only one post, while there are about

27% such users in Honda and 33% such users in Digg. This may explain the relatively

poor performance of reply-friend in Google Earth and Apple, since there are large

fractions of users who do not have any reply friends before joining any community,

and they do not have any further activity after getting some reply friends. Second,

from the low average degrees of users and the almost linear growth of edges versus

the users in Section 6.3, we know that most users in the three technology forums

like to stay in one community from the time they joined, i.e., they do not tend to

switch their focus or expand their interests to different communities. In this way, the

properties of the communities are more essential for users to decide which community

to join at the very beginning, because no matter how many reply friends they gain,

it is not likely for them to follow their reply friend to other communities. However,

users do not have such focused interests in Digg, so their interests are more likely to

change to other communities as their reply friends do.

Table 6.4 and 6.5 list the main results of the models using different features.

Table 6.5 shows the results related to top-post-rating, which appears only in Digg

and Google Earth. From the quantitative measures in these two tables, we make

several observations regarding the features.

Dependency features. The results (the fourth and fifth rows of Table 6.4) of

BiMRF models using two user similarities tell us that these dependency features

perform poorly in predicting, e.g., their ROCA scores are all below 0.5. Note that

although Figure 6.5 shows that there are positive correlations between the similarities
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Table 6.5: Evaluation results of the top-post-rating, and user-similarity on Digg and Google Earth.
BiMRF Digg Google Earth
Models ROCA AP ROCA AP
{tp} 0.639 0.00404 0.760 0.00229
{cs} 0.700 0.00536 0.860 0.00697
{rf} 0.718 0.00922 0.520 0.00128
{tp, cs} 0.708 0.00568 0.882 0.01040
{tp, rf} 0.774 0.01155 0.765 0.00250
{tp, cs, rf} 0.804 0.01371 0.884 0.01080
{tp, usf} 0.642 0.00418 0.765 0.00236
{tp, ust} 0.647 0.00454 0.761 0.00230
{tp, cs, rf, usf} 0.802 0.01378 0.885 0.01044
{tp, cs, rf, ust} 0.804 0.01375 0.883 0.01075

of users and the overlaps of the communities they belong to, those correlations are

static and do not reflect the dynamic relationship of the users’ similarities and their

future joining behavior. And our analysis in Section 6.4 gets the neutral correlations

between the user similarities in a time snapshot and the overlaps of communities

they are going to join in the next time snapshot.

By a close examination of the joining probabilities predicted by the BiMRF mod-

els, we see that many (u, c, t) tuples have a probability larger than 0.1, which is

much larger than the average joining probability in the datasets. This means that

the BiMRF models with only the dependency features, which correspond to two-star

configurations in Markov random graphs, are inadequate for the online forum data.

But these models can be improved by incorporating node-level attributes, as shown

by the results of BiMRF models with both dependency and singleton features in

Table 6.4 and 6.5. This suggests that user-similarity has a weak effect on joining

behavior in online forums, and thus adding the dependency features of user similarity

does not help improve the performance. Finally, we must point out that the näıve

mean field we are using in BiMRF makes a very strong independence assumption

about the variational distribution q. This may give a poor approximation to the true
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distribution. Extending to the generalized mean field [125], which incorporates more

structural dependency in q, could be helpful to get a better approximation.

Feature combinations. By combining all the singleton features (as in the third row

of Table 6.4 and the sixth row of Table 6.5), we see that the results are significantly

better. This is especially true for Digg. Thus we can conclude that all these three

singleton features carry supplementary information with each other, although in the

three technology forums, community-size outperforms other two significantly.

6.6 Conclusions

In this chapter, we investigated the user participation behavior in diverse online

forums. Our study of the structural features of their user-community bipartite net-

works suggest that, compared with news forums, users’ interests in technology forums

are more focused in single communities instead of crossing communities. Moreover,

the diffusion curves show how the features of reply friends and some attributes as-

sociated with the communities have influence on community joining. Although a

reply friendship is a much looser relationship [43], it has similar diffusion curves of

diminishing returns as real friendship and co-authorship in [13]. Furthermore, the

statistical BiMRF models present some interesting relationships among these fea-

tures. In particular, reply friend and community attributes have about the same

effectiveness in prediction in the news forum, while in the other three technology

forums, features associated with communities are more effective in prediction. These

features also provide supplementary information in our model. Finally, our analysis

of two-star dependency social selection models suggests that the weak user-similarity

features cannot fit the forum data well by themselves and adding node-level features

can improve the fit.
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As our analysis shows that user preference of information is tied with their re-

lated users in the past, and different types of information attract users in different

ways, our work provides suggestions on building social systems, such as personalized

recommendation systems [84]. Moreover, using the methodology presented in this

chapter, more detailed studies can be conducted to evaluate other features that may

affect users’ social behaviors. For example, the user interactions in our study is based

on their explicit reply information. In fact, similar analysis can be done based on

more hidden behaivors such as browsing, which is known to website owners. They

can then use the insights gained from such data to inform their recommendations

to users who lurk without posting. Utilizing textual analysis in forum data, and

investigating user behavior related to diffusion of discussion topics is also a future

direction.



CHAPTER VII

Summary and Conclusions

7.1 Conclusions

This thesis shows that, in spite of the high complexity of information dynamics in

various information sharing networks, the relationship of the structural features of the

networks and the information diffusion among them have some strong regularities.

Moreover, utilizing these regularities would help with further information search and

management [86, 84].

We start with a very important and fundamental question—how much our obser-

vations are affected by the incompleteness or limited time windows of datasets we

are studying. Usually information sharing networks are formed by a huge number of

nodes, and these numbers are exponentially increasing. Thus, it is mostly impossible

to get all the data to analyze the global properties of those large dynamic infor-

mation sharing networks. Usually people use various sampling methods to collect a

small fraction of the data to analyze the whole network. Then researchers face the

question about the robustness of those analysis regarding the global features when

incorporating different time durations and means in crawling the data. The work in

Chapter II mainly focuses on answering this question in blogosphere. It shows that

for the two different samples of blogosphere, BlogPulse and TREC, in spite of the
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low overlap in their coverage and time durations of data collection, some topological

features, both local and global, show great consistency. The chapter also shows that,

as for the dynamic nature of the blogosphere, when the time duration of a crawl is

extended, the features start to converge. This tells us that by having some fairly

comprehensive samples of the blogosphere, one can start to obtain good estimates

of the topological features of the whole space. We even consider the existence of

noise in such networks, for example, the effects of the existence of splogs (i.e., spams

of blogs) in the blogosphere. We found that splogs contribute a fair fraction of the

total link volume in the blogosphere, and consequently affect the degree distributions

greatly.

In addition to the analysis on the sets of vertices obtained from different time

windows and different crawling methods, we study a special set of vertices in online

information sharing networks in Chapter III—the important vertices, which are of

the highest values under certain importance measures so long as they are far fewer

in number than the vertices in the original networks. We find that the subgraphs

induced by the important vertices are good approximations of the original networks

in terms of the information transmission and communication among the important

vertices. The empirical analysis of three real-world online networks shows that the

important vertices are much more closely and densely connected to each other. They

have significantly shorter pairwise paths, and their relative ranks are almost all highly

correlated to their ranks in the original networks. This observation gives us the strong

evidence that subgraphs induced by important vertices are effective for information

transmission and communication in large networks, and are good representatives

of the original networks in many aspects. The experimental results with different

networks (either social or technological) and importance measures are consistent.
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After exploring the regularities of the structures related to vertices of the informa-

tion sharing networks in Chapters II and III, in Chapter IV, we study a special edge

structure in online friendship networks—the strong ties, which are defined as edges

belonging to closed triads. From the experimental study of two real-world social

networks, we find that these online friendship networks are robust with respect to

the removal of weak ties. There remains a giant component that is smaller but still

occupies a majority of the graph, and the average shortest path changes modestly,

which means strong ties are capable of transmitting or gathering information widely

and effectively over the whole network. In addition, we consider a simple random

graph model consisting entirely of closed triads and compare it to the corresponding

Erdös-Renyi random graph. The theoretical random graph model also shows a low

cost in terms of connectivity and diameters of the networks of strong ties.

In Chapter V and Chapter VI, we are interested in the relationship between

information flows and the community structures of various networks as social media.

We have analyzed two large data sets of citation networks in Chapter V—one is of

research articles provided by JSTOR, and the other is of United States patents. We

find that many publications went mostly unnoticed, while some garnered considerable

attention. In the citation graph, there are interesting factors that are predictive of the

popularity a given publication will enjoy. We find evidence that citations that occur

across communities lead to slightly larger subsequent impact in citation networks of

publications of natural sciences and patents.

In Chapter VI, we study the information diffusion patterns in communities of

online forums. The diffusion patterns of user behavior in joining various commu-

nities and the feature factors associated with users or communities that influence

such behavior are studied. Furthermore, we built Bipartite Markov Random Field
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(BiMRF) models to help understand the relationships of these features, as well as

the differences in their impact in different types of online forums.

7.2 Work in Perspective

This thesis is centered around the study of information diffusion in networks,

and the associated network properties that can possibly affect it, such as network

topology, community structure and temporal features. For the future, such study

can be extended in the following two directions.

Online information search and related human behavior analysis. The

famous set of experiments of the social psychologist Milgram revealed two important

underlying mechanisms of human behavior in social networks of the 1960s: people

were just a few steps apart in the global social network, and were able to propagate

messages or do decentralized search efficiently by using local information available to

them. It is interesting to investigate what mechanisms would be revealed if such a set

of experiments were performed in this era, when various online social media such as

Facebook, LinkedIn, Wikipedia are creating new social structures and ways in which

people acquire and consume information. One would expect that the answer may

be very different and much more complicated than 40 years ago, and reveal more

interesting and surprising social phenomena as well. To explore the relationships

between network structures and information search and propagation in these new

forms of social media may be an expansion of the work in this thesis: whether these

networks are evolving towards structural patterns that are effective in forwarding

and processing information, and why the underlying regularities exist and how they

operate.

Moreover, we have to be aware that nowadays, many kinds of collaborative online
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media are rapidly emerging, and behaviors such as online search, posting questions

online, etc. have been among the most popular and easiest ways for people to look

for information. Thus, these information networks not only allow for information

propagation, but can also serve as tools for people to find information and get ques-

tions answered more directly than ever before. Topics related to human behavior

patterns with regard specific types of information provided by these social media,

such as how people react to gossip information in online forums, how people seek for

answers in expertise networks, the patterns of user interests in YouTube, etc. would

be another interesting direction to extend the work in this thesis.

Combining research in other areas, such as databases, information retrieval, etc.,

with research in this direction would help build online systems that are more effective

for people to retrieve information from and get answers that they desire. For example,

understanding the user behavioral patterns related to information search in social

content networks would help design systems that are able to return search results

that present a good tradeoff between relevance and diversity.

Understanding the predictability of social systems and the individuals.

Another interesting extension is to understand the predictability of social systems,

as well as of the individuals and their immediate neighborhoods. Problems here

include the evolution of the network structures, the formation of communities, the

participation of people in activities, the prediction of new links, the popularity of new

ideas or products over time, and so on. While many studies show that some social

systems are evolving according to certain laws (such as the mechanisms of preferential

attachment and shrinking diameters of networks), recent work by Salganik, Dodds

and Watts raised the possibility that the outcomes of certain types of social systems

may be inherently unpredictable [99]. Thus, it is intriguing to ask which social
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processes are predictable based on the observations of their early stages, and which

ones are inherently unpredictable.

In order to advance in this direction, first of all, we may investigate the effective-

ness of various known techniques, such as those of random graph modeling, machine

learning and statistical analysis, in predicting some specific problems in social sys-

tems. These specific problems can be the formation of friendship networks, the

diversification of online communities, and the distributions of popularity of videos

or music on YouTube. Second, it is also interesting to further investigate the pre-

dictability of local actions and interactions based on the global properties of the

social systems that the individuals reside in. Finally, it is also interesting to investi-

gate the factors, such as advertisements, peer influence, or infusion of information,

that may increase or decrease the predictability of a system.

From the perspective of social science, this research direction would help people

understand the social environments that they are in; from the perspective of systems

and engineering, it would help construct more productive and successful online social

environments. A deep understanding of social networks needs to draw on a number of

different disciplines, including psychology, sociology, economics, information science,

and areas such as data mining and machine learning in computer science. These

areas offer complimentary approaches and techniques to study problems in social

networks.
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