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NOTATION

1. Abbreviations

• RH refers to the Riemann Hypothesis, the conjecture that ζ(s) has no
zeros in the region Re s > 1

2
.

• GRH refers to the Generalized Riemann Hypothesis, the conjecture that
L(s, χ) has no zeros in the region Re s > 1

2
.

2. Indices

•
∑
n≤N

should always be interpreted as
N∑
n=1

.

• When p appears as an index (e.g.
∑
p≤y

or
∏
p

) this means the sum or

product runs over only the primes in the given range.

3. Sets

• µN :=

{
e
( n
N

)}
n≤N

‘the complex N th roots of unity’.

• S(y) := {n ∈ N : p ≤ y for every prime p | n} ‘the y-smooth numbers’

• U := {z ∈ C : |z| ≤ 1} ‘the complex unit disc’

• F := {f : Z→ U such that f(mn) = f(m)f(n) for all m,n}.
• supp(f) denotes the support of f , i.e. the closure of the set {x : f(x) 6= 0}.

4. Functions

• µ(n) is the Möbius function, which is defined:

µ(n) =


1 if n = 1

(−1)k if n = p1p2 · · · pk where the pi are distinct primes

0 otherwise

viii



One particularly nice property we will use is

∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.

• e(x) := e2πix

• [x] denotes the largest integer n satisfying n ≤ x (the floor function).

• {x} is the fractional part of x: {x} = x− [x].

• d(n) denotes the number of integer divisors of n (the divisor function).

• rad(n) denotes the radical of n, which is defined rad(n) =
∏
p|n

p.

• P(n) denotes the largest prime factor of n.

• Sχ(t) is the character sum
∑
n≤t

χ(n), where χ is a Dirichlet character.

• fy denotes the y-smoothed version of a function f , i.e.

fy(n) :=

{
f(n) if n ∈ S(y)

0 otherwise.

5. Relations

We often want to compare the behavior of a complicated function f to that of
a simpler function g. We will use several notations to this end:

• f = O(g) means that there exists some positive constant C such that
|f | ≤ Cg at all arguments. Here, g is assumed to be a non-negative
function, and the implicit constant C is absolute, i.e. independent not
only of the argument, but also of any external parameters. If C is allowed
to depend on some parameter k, we write it in the subscript: f = Ok(g).

• f � g means precisely the same thing as f = O(g). As above, the im-
plicit constant should be assumed to be independent of any parameters
not appearing as a subscript to the �.

• f � g means that both f � g and g � f . Note that the implicit constants
may be different.
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CHAPTER I

Introduction

This thesis is concerned with some properties of Dirichlet characters, classical

objects which have been central to number theory research for over two centuries.

Despite brilliant contributions by many celebrated mathematicians, much about their

behavior remains conjectural at best. In this chapter we give a brief introduction to

the subject, including an attempt to motivate the theorems presented in subsequent

chapters. A more careful development of the theory can be found in Appendix A.

1.1 History, pre-20th century

The use of analysis to study the integers may be traced back to the 1730’s. The

young Swiss mathematician Leonhard Euler was being celebrated for solving the Basel

problem, which had stymied all previous efforts by the best mathematicians of the day:

determine a closed form expression for
∞∑
n=1

1

n2
. Euler gave several brilliant proofs that

the series sums to π2

6
.1 As was often the case with his work, his proofs are not rigorous

by today’s standards, because they predated the development of the necessary theory

by more than a century – indeed, one of his proofs of this result anticipates the

fundamental Weierstrass and Hadamard factorization theorems in complex analysis.

1Euler later popularized the notation π for the ratio of the circumference to the diameter; at the
time this paper appeared there was no standard notation for the ratio, and Euler described it in
words.
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Inspired by this problem, Euler studied a more general series, which Riemann later

called the zeta function:

ζ(s) :=
∞∑
n=1

1

ns
.

This series is absolutely convergent and smooth for real s > 1, and thus can be studied

by analytic methods. In addition to evaluating ζ(2n) for all positive integers n, Euler

discovered the formula

ζ(s) =
∏
p

(
1− 1

ps

)−1

.

By taking the natural logarithm of both sides and expanding into a power series the

terms log(1−p−s) which appear on the right side, and then taking the limit of ζ(s) as

s→ 1+, Euler deduced that
∑
p

1

p
diverges – a surprising result since the conventional

wisdom of the time held that the harmonic series was the “smallest” infinity.2 Euler

had used continuous methods (taking the limit of a function) to study discrete objects

(the primes), and analytic number theory was born.

Many years later (in 1785), Euler wrote a paper in which he asserts that both

(1.1)
∑

p≡1 (mod 4)

1

p
and

∑
p≡−1 (mod 4)

1

p

diverge, and that moreover any such sum should diverge, citing
∑

p≡1 (mod 100)

1

p
as an

example. He then proceeds to use Leibniz’s famous alternating series3 for π/4 to

2Euler writes that
∑

p

1
p

= log log(+∞), indicating that he understood the asymptotic behavior

of
∑
p≤x

1
p

.

3The formula, along with the beginnings of calculus, had been discovered centuries earlier by
Madhava and his followers at the Kerala school.
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calculate to several decimals the sum

(1.2)
∑
p

χ(p)

p
where χ(n) =


1 for n ≡ 1 (mod 4)

−1 for n ≡ −1 (mod 4)

0 otherwise.

It is almost certain that Euler could prove that the sums (1.1) diverge – his earlier

method combined with Leibniz’s series proves that (1.2) converges, and the result

immediately follows – but his second assertion, that the sum of 1
p

over just those

primes congruent to 1 (mod 100) diverges, is a significantly harder question. This

type of assertion was not resolved until the brilliant work of Dirichlet, who in the late

1830’s published a proof of the following:

Theorem 1.1. If (a, q) = 1, then
∑

p≡a (mod q)

1

p
is a divergent series.

Inspired by Euler, Dirichlet looked at generalizations of ζ(s),

(1.3) L(s, χ) :=
∞∑
n=1

χ(n)

ns
.

To follow Euler’s proof we wish to rewrite this sum as a product over the primes; a

straightforward way to accomplish this is to require that χ be completely multiplica-

tive, i.e. that χ(ab) = χ(a)χ(b) for all integers a, b. This condition implies that for

all values of s for which L(s, χ) converges, we have an ‘Euler product’

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

After taking logarithms and expanding log

(
1− χ(p)

ps

)
as a power series, we obtain

what we hope is a main term
∑
p

χ(p)

ps
. The next step is to identify primes in some

arithmetic progression, whose common difference is q, say. To distinguish between

3



different arithmetic progressions, we assign a different weight to each progression

a (mod q) by requiring χ to be periodic with period q. Finally, since there are only

finitely many primes in any arithmetic progression a (mod q) with (a, q) > 1, we can

ignore these progressions by requiring χ(n) = 0 whenever (n, q) > 1. Any function

χ : Z −→ C satisfying these three properties (complete multiplicativity, periodicity

with period q, supp(χ) a subset of the integers relatively prime to q) is called a Dirich-

let character, and denoted χ (mod q); the corresponding function L(s, χ) is called a

Dirichlet L-function. Although it is not immediately obvious from this definition

that any non-trivial Dirichlet characters exist, we will shortly see that they are in

plentiful supply and enjoy many interesting properties. Perhaps the oldest example

is the Legendre symbol
(
a
p

)
, whose study was initiated by Euler and Legendre, and

was brought to the forefront of number theory by Gauss; it is a Dirichlet character

(mod p).

Before discussing the Dirichlet characters further, we make a simple observation:

that the third property of Dirichlet characters (χ(n) = 0 whenever (n, q) > 1) is

in some sense a notational convenience. We justify this statement briefly. Call any

function f : Z −→ C which is completely multiplicative and periodic with period Q a

pseudocharacter (mod Q). The trivial pseudocharacter is the function which outputs

1 for all inputs, and the zero pseudocharacter outputs 0 for all inputs. Note that if f

is non-zero then f(1) = 1, and if f is non-trivial then f(0) = 0.

Proposition 1.2. Any non-zero, non-trivial pseudocharacter χ (mod Q) is a Dirichlet

character (mod q) for some q | Q.

Proof. Let d be the largest factor of Q such that χ(d) 6= 0 (such a d exists since

χ(1) = 1). If d = 1, then χ is a Dirichlet character (mod Q), and we conclude. Thus

we can assume d > 1. For any integers k, r we have

χ(d)χ

(
Q

d
k + r

)
= χ

(
d

(
Q

d
k + r

))
= χ(dr) = χ(d)χ(r).

4



Since χ(d) 6= 0 we conclude that χ is a pseudocharacter (mod Q/d), and Q/d is a

proper divisor of Q. Iterating this argument, we see that it must terminate, since Q

only has a finite number of proper divisors.

We next describe some of the nice properties satisfied by the Dirichlet characters.

The reader should note that the following is a sketchy and unintuitive development

of the theory, and is meant purely as an expedient approach to the main work of this

thesis. For a more natural development, see Appendix A.

Because of the three defining properties of a Dirichlet character χ (mod q), one

can restrict its range and view it as a homomorphism from (Z/qZ)∗ to C. We shall

abuse notation and refer to this restricted map as χ, as well.4 A first observation

is that every element of (Z/qZ)∗ is a ϕ(q)th root of unity, whence the range of the

restricted χ is contained in µϕ(q), the complex ϕ(q)th roots of unity. Thus for any

χ (mod q) and any integer n we have |χ(n)| = 0 or 1, and it is 1 iff (n, q) = 1. After

a few definitions, we tabulate some of the nicer features of Dirichlet characters.

Definition 1.3.

1. The trivial or principal character modulo q, denoted χ0 (mod q), is defined by

χ0(n) = 1 for all n relatively prime to q.

2. A character ψ (mod d) is said to induce χ (mod q) if χ = ψ ·χ0, where χ0 is the

principal character (mod q).

3. A non-principal χ (mod q) is primitive if the only character inducing it is itself.

Proposition 1.4. (See Appendix A for proofs of these statements.)

1. Any Dirichlet character χ satisfies χ(−1) = +1 or −1. In the former case χ is

said to be even; in the latter, odd.

4In many ways it is more natural, though also more abstract, to develop the theory in reverse,
i.e. defining a Dirichlet character to be any homomorphism from (Z/qZ)∗ to C∗ and extending it to
a function from Z to C. This is the approach taken in Appendix A.
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2. If ψ (mod d) induces χ (mod q) then d | q.

3. Every nonprincipal Dirichlet character is induced by a unique primitive charac-

ter.

4. The set of characters (mod q) forms an abelian group under multiplication, with

χ0 (mod q) as the identity and χ (the complex conjugate) as the inverse of χ.

The order of the group is ϕ(q).

5. For any χ (mod q) and any integer k ≥ 1,

1

ϕ(q)

∑
n≤q

χ(n)k =


1 if ord(χ) | k

0 otherwise

6. For any integer n,

1

ϕ(q)

∑
χ (mod q)

χ(n) =


1 if n ≡ 1 (mod q)

0 otherwise

Properties 5 (with k = 1) and 6 are jointly known as the orthogonality relations,

and are both very useful. From 5 we deduce that for any nonprincipal χ (mod q) the

associated character sum Sχ(t) :=
∑
n≤t

χ(n) is periodic with period q; since |χ(n)| ≤ 1

for all n, we see that |Sχ(t)| ≤ min(t, q). This is called the trivial bound on Sχ(t),

and will play an important role in bounding L(s, χ). From Property 6, one sees that

1

ϕ(q)

∑
χ (mod q)

χ(a) ·χ is an indicator function for the arithmetic progression a (mod q).

We are now in a position to sketch Dirichlet’s argument. This will be a highly

non-rigorous outline; for the details, see the lovely account given in [9]. Following

6



Euler’s approach, we find that for s > 1 and χ (mod q)

logL(s, χ) =
∑
p

χ(p)

ps
+O(1)

whence for any a relatively prime to q we find

1

ϕ(q)

∑
χ (mod q)

χ(a) logL(s, χ) =
1

ϕ(q)

∑
χ (mod q)

χ(a)

(∑
p

χ(p)

ps

)
+O(1)

=
∑
p

1

ps

 1

ϕ(q)

∑
χ (mod q)

χ(a)χ(p)

+O(1)

=
∑

p≡a (mod q)

1

ps
+O(1).

On the other hand, from the Euler product it can be seen that

1

ϕ(q)
logL(s, χ0) =

1

ϕ(q)
log ζ(s) +O(1)

which implies that

1

ϕ(q)

∑
χ (mod q)

χ(a) logL(s, χ) =
1

ϕ(q)
log ζ(s)+

1

ϕ(q)

∑
χ 6=χ0 (mod q)

χ(a) logL(s, χ)+O(1).

Thus if we can prove that logL(s, χ) is bounded for all nonprincipal characters

(mod q) as s→ 1+, we would deduce that

∑
p≡a (mod q)

1

ps
=

1

ϕ(q)
log ζ(s) +O(1);

taking s→ 1+ yields Dirichlet’s theorem.

It remains to prove that for any nonprincipal χ (mod q), L(s, χ) � 1 (where all

implicit constants are allowed to depend on q). To find an upper bound we use partial

7



summation: for s > 1, we have

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∞∫
1−

1

ts
dSχ(t)(1.4)

=
Sχ(t)

ts

∣∣∣∣∞
1−

+ s

∞∫
1

Sχ(t)

ts+1
dt

= s

∞∫
1

Sχ(t)

ts+1
dt

Using the trivial estimate |Sχ(t)| ≤ q yields that |L(s, χ)| ≤ q for all s > 1. Moreover,∣∣∣∣∣∣s
∞∫

1

Sχ(t)

ts+1
dt

∣∣∣∣∣∣ ≤ q for all s > 0; thus this ‘integral representation’ of L(s, χ) gives

an alternative definition of the function which has the advantage of a wider range

of convergence. To prove Dirichlet’s theorem it now suffices to prove that |L(s, χ)|

is bounded away from 0 as s → 1+. This is a much more delicate problem, and

the deepest aspect of Dirichlet’s proof; to accomplish it, he developed his celebrated

class number formula, a fundamental result in its own right. Although we now have

significantly simpler proofs that L(1, χ) 6= 0, Dirichlet’s difficulties in surmounting

this problem foreshadowed those to come in showing that L(s, χ) 6= 0 for values of s

just slightly smaller than 1; this remains a major open question.

The next major development after Dirichlet was in 1859, with the appearance

of Riemann’s eight-page masterpiece Über die Anzahl der Primzahlen unter einer

gegebenen Gröβe, a work which would define the direction number theory would take

through the present day. Where Euler and Dirichlet had considered the L-functions

only for real arguments, Riemann realized that allowing s to be complex led to much

more powerful consequences in the study of primes. After meromorphically continuing

the ζ function to the entire complex plane with only a simple pole of residue 1 at

s = 1, Riemann proved the functional equation for ζ(s) (a relation which shows that

the function has a certain symmetry with respect to the vertical line Re s = 1
2
). He

8



also sketches proofs that ζ(s) admits a product representation (a remarkable insight,

predating Weierstrass’ factorization theorem by 20 years), that the number of zeros

of ζ(s) in the ‘critical strip’ 0 ≤ Re s ≤ 1 with imaginary part between 0 and T

should be asymptotic to T
2π

log T
2π
− T

2π
+O(log T ), and that the number of primes less

than or equal to x, denoted π(x), should be related to the logarithmic integral li(x)

via an explicit formula in terms of the zeros of ζ(s). Finally, Riemann conjectured

what has since become known as the Riemann Hypothesis: that all of the zeros of

ζ(s) in the critical strip must lie on the line Re s = 1
2
. With the exception of this

last conjecture, all of the other statements were justified over the course of the next

40 years, principally through the efforts of Hurwitz, von Mangoldt, Hadamard, and

de la Vallée Poussin.

Analogues of all of these results hold (or are expected to hold) for all Dirichlet

L-functions; in particular, the Generalized Riemann Hypothesis is the conjecture that

all zeros in the critical strip of any Dirichlet L-function must lie on the line Re s = 1
2
.

One of the major distinctions between ζ(s) and L(s, χ) for χ (mod q) nonprincipal,

is that the former has a pole at s = 1 while the latter is holomorphic there; this

follows immediately from the integral representation we derived in (1.4). Thus while

ζ(s) cannot have zeros in a neighborhood of s = 1, a Dirichlet L-function might.

Disproving the existence of these ‘Landau-Siegel’ zeros remains one of the largest

open problems in number theory. Of course, this is a much weaker conjecture than

the Generalized Riemann Hypothesis (GRH), which is also believed to be true.

The above survey is woefully incomplete, but gives some picture of the rise of

analytic number theory from a curious observation of Euler’s through the proof of

the prime number theorem in the last few years of the 19th century. As our discussion

enters the developments of the 20th century, we narrow our gaze and focus on the

main subject of this thesis – character sums.

9



1.2 The development of the theory of character sums

Recall from (1.4) that for a given nonprincipal Dirichlet character χ (mod q), we

have an integral representation of the associated L-function in terms of the character

sum Sχ(t):

L(s, χ) = s

∞∫
1

Sχ(t)

ts+1
dt.

This formula shows that L(s, χ) can be extended to a holomorphic function in the

region Re s > 0; in fact, following Riemann, one can extend L(s, χ) analytically to the

entire complex plane. Analogous to Riemann’s work on the ζ function, for primitive

characters χ (mod q) there is a ‘functional equation’ relating the value of L(1−s, χ) to

L(s, χ) in an explicit way (originally proved by Hurwitz in 1882, and subsequently by

de la Vallée Poussin in 1896 using a different method). Since L(s, χ) is well-behaved

for Re s > 1 – in this region the function can be described by the Dirichlet series

(1.3) – the functional equation guarantees tame behavior in the region Re s < 0 also,

leaving the critical strip 0 ≤ Re s ≤ 1 as the only region of the complex plane in which

the behavior of L(s, χ) is mysterious. (Actually, again by the symmetry provided by

the functional equation, it suffices to study L(s, χ) in the region 1
2
≤ Re s ≤ 1.)

This highlights the importance of the integral representation, which provides a fairly

straightforward formula in this region in terms of Sχ(t). We are thus naturally led to

investigating the character sum function Sχ(t).

We mentioned above that Sχ(q) = 0 and that χ(n) is a ϕ(q)th root of unity for

every n relatively prime to q, and deduced that Sχ(t) is periodic with period q and

can be bounded ‘trivially’ by min(t, q). From this we can already obtain an upper

bound on the magnitude of L(1, χ) which, up to a constant, remains the strongest

10



known upper bound to date:

|L(1, χ)| ≤

∣∣∣∣∣∣
q∫

1

Sχ(t)

t2
dt

∣∣∣∣∣∣+

∣∣∣∣∣∣
∞∫
q

Sχ(t)

t2
dt

∣∣∣∣∣∣ ≤ log q + 1.

One consequence of GRH (due to Littlewood) is that L(1, χ) is well approximated

by a ‘short’ Euler product: a truncated version of the regular Euler product which

runs over only those primes less than log2 q. From this it immediately follows that

L(1, χ) � log log q, an indicator that perhaps the trivial bound on Sχ(t) can be

improved. Indeed, on the assumption of GRH one can show that5

(1.5) Sχ(t)�ε

√
t · qε.

However, even unconditionally some serious improvements of the trivial estimate can

be made.

Before describing these improvements, we briefly discuss the Gauss sum, a quantity

which is closely related to Sχ(t) and which will appear in many of the calculations

below. The Gauss sum associated to a character χ (mod q) is

τ(χ) :=
∑
n≤q

χ(n) e
(n
q

)
,

where e(x) := e2πix. Observe that for all integers a coprime to q, we have the identity

(1.6) χ(a)τ(χ) =
∑
n≤q

χ(n) e
(an
q

)
.

It can be shown (see Appendix A) that if χ is primitive, the above relation holds for

every a, not just those coprime to q. Taking the absolute value of each side of (1.6),

5Here and throughout we will use Vinogradov’s useful notation f � g interchangeably with
f = O(g); the implicit constant should be assumed to depend only on subscripts appearing on the
� symbol.
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squaring, summing over all a (mod q), expanding and simplifying, one finds that for

χ primitive, |τ(χ)| =
√
q. This fact is crucial for obtaining non-trivial bounds on

Sχ(t).

In 1918 George Pólya [28], then a young mathematician at ETH Zürich, realized

that since Sχ(qt) is a periodic function with period 1, one can expand it in a Fourier

series, say

Sχ(qt) ∼
∑
n∈Z

an e(nt).

A straightforward calculation shows that if χ (mod q) is primitive,

a0 = −1

q

∑
k≤q

k χ(k)

an =
χ(−1) τ(χ)

2πi
· χ(n)

n
for n 6= 0.

Since Sχ(qt) is of bounded variation, its Fourier series converges to the value of the

function everywhere except at points of discontinuity. With some more work (see

[24]), Pólya obtained the following quantitative form of the Fourier expansion, which

holds for all t: for any N ,

(1.7) Sχ(t) =
τ(χ)

2πi

∑
1≤|n|≤N

χ(n)

n

(
1− e

(
−nt
q

))
+O

(
1 +

q log q

N

)
.

Taking N of size q and estimating trivially we find

|Sχ(t)| � √
q

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)

n

(
1− e

(
−nt
q

))∣∣∣∣∣∣+ log q

� √
q log q.(1.8)

Very shortly after Pólya’s result became known, Issai Schur [29] gave a very short

proof of the above inequality; however, Schur’s proof yields only an upper bound for

12



Sχ(t), rather than the asymptotic (1.7) produced by Pólya.

Simultaneously and entirely independently, Ivan Matveevich Vinogradov6, a young

docent at the State University of Perm in eastern Russia, discovered both of these

proofs, in reverse order [31], [32]. The upper bound is now named after the two

original discoverers:

Theorem 1.5 (The Pólya-Vinogradov Inequality).

max
t
|Sχ(t)| � √q log q for every nonprincipal χ (mod q).

where the implied constant is absolute.

Note that the theorem is stated for all nonprincipal χ (mod q), while the sketch of

the proof we gave depended on the primitivity of χ. We briefly justify this extension

of the result to imprimitive characters by using a trick described by Montgomery and

Vaughan in [23]. Suppose ψ (mod r) is the primitive character inducing χ (mod q).

Then r | q, and

∑
n≤t

χ(n) =
∑
n≤t

(n,q)=1

ψ(n) =
∑
n≤t

(n,q/r)=1

ψ(n)

=
∑
n≤t

ψ(n)
∑

d|(n,q/r)

µ(d)

=
∑
d| q
r

µ(d)ψ(d)
∑
m≤t/d

ψ(m).

Applying the Pólya-Vinogradov inequality to the primitive character ψ we see that

|Sχ(t)| ≤ d

(
q

r

)√
r log r � √q log q ;

here d(n) is the number of divisors of n, and is well-known to be Oε(n
ε).

6Not to be confused with A. I. Vinogradov of the (Barban-)Bombieri-Vinogradov theorem.
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It should be noted that for t of size q, (1.8) is very strong, comparable to the general

bound (1.5) implied by GRH. On the other hand, for sums shorter than
√
q, the Pólya-

Vinogradov bound is weaker than the trivial estimate. For many applications it is

important to estimate Sχ(t) non-trivially for t as small as possible, and in a series of

fundamental papers [2]-[8] Burgess did precisely this, obtaining a non-trivial bound

for all t > q1/4+o(1). Hildebrand [19] was able ‘interpolate’ this result, extending the

range of t on which Burgess’ estimate is non-trivial to all t > q1/4−o(1). In general this

is the strongest such result, but in certain special cases improvements are known. In

1974 H. Iwaniec (building on work of P. X. Gallagher and A. G. Postnikov) proved an

important theorem, one consequence of which is a non-trivial bound for Sχ(t) in the

range t > qε for primitive χ (mod q) with q sufficiently powerful (i.e. the radical of q

is small). This set the stage for another fantastic theorem, published in 1990 by S.W.

Graham and C. J. Ringrose, bounding Sχ(t) in terms of t, q, and the largest prime

factor of q; for numbers which are suitably smooth (i.e. all of whose prime factors are

small), their bound gives a non-trivial estimate for t > qε. We will describe both of

these results in more detail in Chapter III. Finding estimates which are non-trivial in

ranges shorter than those handled by Burgess’ work remains an important problem.

For t > q5/8+o(1) Burgess’ results are weaker than the Pólya-Vinogradov inequality,

which remains the strongest known bound in this range for the general character sum.

Moreover, it is quite close to being a best-possible bound over the whole range t ≤ q:

applying partial summation to τ(χ) immediately produces the lower bound

max
t≤q
|Sχ(t)| ≥ 1

2π

√
q

for any primitive χ (mod q). Furthermore, in 1932 Paley constructed an infinite class

P of quadratic characters such that max
t≤q
|Sχ(t)| � √q log log q over all χ (mod q)

in P. Thus it was an important step when in 1977 Montgomery and Vaughan [23]

14



proved, on the assumption of GRH, that

(1.9) Sχ(t)� √q log log q.

Actually, they prove something rather more general, which will play a key role in our

work in Chapters II and III; we briefly discuss their results.

Recall that to deduce the Pólya-Vinogradov inequality from Pólya’s Fourier ex-

pansion (1.7), we estimated the sum

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)

n

(
1− e

(
−nt
q

))∣∣∣∣∣∣ trivially by log q.

Of course, one expects the actual magnitude of the sum to be a good deal smaller.

More generally, let F denote the family of all completely multiplicative functions

f : Z→ U, where U = {|z| ≤ 1} is the complex unit disc; for any f ∈ F consider

(1.10)
∑

1≤|n|≤N

f(n)

n
e(nα).

As before, one can estimate the sum trivially by logN , but this is expected to be

far from the truth unless f(n) ≈ 1 almost everywhere and α is very small. Indeed,

for the sum to accumulate there would have to exist some constant θ such that

f(n) ≈ e(θ) e(−nα) for many small n – an unlikely scenario, since f is a completely

multiplicative function while e(−nα) is an additive one. It has been surprisingly

difficult to quantify this heuristic.

In [23] Montgomery and Vaughan succeeded in obtaining (unconditionally) non-

trivial cancelation in the sum
∑
n≤N

f(n) e(nα) for an important class of real numbers

α which we will discuss after stating their theorem. One of the remarkable features of

their bound is its uniformity with respect to F . The statement below does not appear

explicitly in their paper, but is easily obtained from their work by partial summation

– this particular formulation is due to Granville and Soundararajan and appears as

Lemma 4.2 in [15]:

15



Theorem 1.6 (Montgomery-Vaughan). Suppose α is any real number and b
r

is any

reduced fraction satisfying
∣∣α− b

r

∣∣ ≤ 1
r2

. Then for any R ∈ [2, r], any N ≥ rR, and

every f ∈ F ,

∑
rR≤n≤N

f(n)

n
e(nα)� log logN +

(logR)3/2

√
R

logN

where the implicit constant is absolute.

Note that taking large values of r in the Theorem 1.6 gives strong results, so the

theorem is particularly useful for those α which are approximable by fractions with

large denominator. Let us be a little more precise. Recall Dirichlet’s theorem of

Diophantine approximation: for any M ≥ 1 and any real number α there exists a

reduced fraction b
r

such that

(1.11)

∣∣∣∣α− b

r

∣∣∣∣ ≤ 1

rM
and 1 ≤ r ≤M.

If such an approximation exists with r large (where the meaning of ‘large’ depends

on the context), then α is said to lie in a minor arc; otherwise (if all rational ap-

proximations satisfying (1.11) have small denominator), α lies in a major arc. In

this language, Theorem 1.6 improves the trivial estimate on (1.10) for α in a minor

arc. This part of [23] is unconditional; to conclude the proof of (1.9) Montgomery

and Vaughan demonstrated that on the assumption of GRH,
∑

1≤|n|≤q

χ(n)

n
e(nα) can

be well-approximated by restricting the sum to run over only smooth numbers (i.e.

numbers all of whose prime factors are small). This is closely related to Littlewood’s

result on the size of L(1, χ) mentioned earlier, and was further explored by Granville

and Soundararajan in [14].
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1.3 Recent advances: the work of Granville-Soundararajan

Inspired by Montgomery and Vaughan’s paper, Granville and Soundararajan de-

veloped a method of quantifying to what extent the trivial estimate of (1.10) can

be improved for α in a major arc. The first step towards this is the following iden-

tity, a precursor of which can be found in equation (29) of [23], and whose proof is

elementary: for b 6= 0 and (b, r) = 1,

∑
1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
=
∑
d|r

χ(d)

d
· 1

ϕ (r/d)

∑
ψ (mod r

d)
ψ(−1)=−χ(−1)

τ
(
ψ
)
ψ(b)

 ∑
a≤N/d

χψ(a)

a

 .

From this relation it is clear that if r is small, then the only situation in which∑
1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
can have large magnitude is if there exists some ψ a character of

small conductor and parity opposite to that of χ, such that

 ∑
a≤N/d

χψ(a)

a

 is large.

One way this can happen is if χ(a) ≈ ψ(a) for many small values of a. Since the

values of a character are determined by its values at the primes, it suffices to check

to what extent χ and ψ agree at the small primes. To accomplish this, Granville and

Soundararajan introduced a pseudometric on F , defined for f, g ∈ F and y > 1 by

D(f, g; y) :=

(∑
p≤y

1− Re f(p)g(p)

p

)1/2

.

We will discuss this pseudometric extensively in Chapters II and III. With this no-

tion in hand, Granville and Soundararajan proved the following remarkable theorems

(Theorems 2.1 and 2.4 of [15]):

Theorem 1.7. Let χ (mod q) be a primitive character. Of all primitive characters

with conductor below (log q)1/3 let ξ (mod m) denote a character for which D(χ, ξ; q)
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is a minimum. Then

max
t
|Sχ(t)| �

(
1− χξ(−1)

) √m
ϕ(m)

(
√
q log q) exp

(
−1

2
D(χ, ξ; q)2

)
+
√
q (log q)6/7.

Theorem 1.8. Assume GRH, and let χ (mod q) be a primitive character. Of all prim-

itive characters with conductor below (log log q)1/3 let ξ (mod m) denote a character

for which D(χ, ξ; log q) is a minimum. Then

max
t
|Sχ(t)| �

(
1−χξ(−1)

) √m
ϕ(m)

(
√
q log log q) exp

(
−1

2
D(χ, ξ; log q)2

)
+
√
q (log log q)6/7.

Thus, Granville and Soundararajan simultaneously improve Pólya-Vinogradov

(unconditionally) and Montgomery-Vaughan (on GRH), unless there exists a charac-

ter of small conductor and opposite parity to χ, which is very close to χ with respect

to the Granville-Soundararajan pseudometric.

From the methods developed in [15], Granville and Soundararajan are able to

deduce many interesting consequences. In particular, by finding lower bounds on the

distance between a character of odd order and one of even order and small conduc-

tor, they deduce an improvement of Pólya-Vinogradov for characters of odd order.

Suppose χ (mod q) is a primitive character of odd order g, and set δg := 1− g
π

sin π
g
.

Theorems 1 and 4 of [15] assert that |Sχ(t)| �g
√
q (logQ)1− δg

2
+o(1), where Q is q or

log q depending on whether GRH is being assumed, o(1) → 0 as q → ∞, and the

implicit constant depends only upon g. In their paper the authors remark that on

GRH, one can construct an infinite class of characters of a fixed odd order g, whose

sums get as large (up to a constant) as
√
q (log log q)1−δg+o(1). This leads them to

make the following

Conjecture 1.9. For any primitive Dirichlet character χ (mod q) of odd order g,

Sχ(t)�g
√
q (log log q)1−δg+o(1)
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where the implicit constant depends only on g and o(1) → 0 as q → ∞. Moreover,

this bound is best-possible.

1.4 Results of this thesis

After stating Granville and Soundararajan’s identity at the start of the sec-

tion, we observed that if r is small, the only way that the left side of the identity,∑
1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
, can have large magnitude is if there exists some character ψ of

opposite parity and small conductor such that
∑
a≤N

χψ(a)

a
has large magnitude. One

way this can occur is for χ to mimic such a ψ at many small arguments, and Granville

and Soundararajan’s theorems bound Sχ(t) in terms of such mimicry. However, there

is another scenario in which
∑
a≤N

χψ(a)

a
has large magnitude: if χ(n) mimics the func-

tion ψ(n) ·nit for some real t. Moreover, this is essentially characterizes the situations

in which the sum can be large, as was shown by Halász in his seminal work on mean

values of multiplicative functions in the late 1960’s and early 1970’s.

In Chapter II, we refine Granville and Soundararajan’s methods by introducing

Halász’s results into their arguments; this will allow us to give an unconditional proof

of the following:

Theorem 2.1. Given χ (mod q) a primitive character of odd order g. Then

Sχ(t)�g
√
q (log q)1−δg+o(1)

where δg = 1 − g
π

sin π
g
, the implicit constant depends only on g, and o(1) → 0 as

q →∞.

It is expected that the methods presented in Chapter II can be adapted to prove

Conjecture 1.9 conditionally on GRH, but this project is not yet completed. Also
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in progress is an unconditional construction à la Paley of an infinite class of cubic

characters whose sums get as large as
√
q (log log q)1−δg+o(1).

For the improvements of Pólya-Vinogradov for odd-order characters, both [15]

and [11] relied on the geometry of the range of Dirichlet characters to derive lower

bounds on the mimicry metric D. In Chapter III we take a different approach to

studying the metric. We first find a relation between D(χ, 1; y) and the value of

L(s, χ) at s slightly larger than 1; the relation allows us to translate upper bounds

on L(s, χ) into lower bounds on D(χ, 1; y), which in turn (via the results of [15]) lead

to improvements of the Pólya-Vinogradov inequality. In Chapter III we illustrate

this method by improving bounds on Sχ(t) for χ a character of smooth or powerful

conductor. In addition to the theorems of Granville and Soundararajan, we will

require results of Iwaniec-Gallagher-Postnikov and Graham-Ringrose on characters

to smooth and powerful moduli. We prove the following two theorems:

Theorem 1. Given χ (mod q) primitive, with q squarefree. Then

|Sχ(x)| � √q (log q)

(
(log log log q)2

log log q
+

(log log log q)2 logP(q)

log q

) 1
4

where P(q) is the largest prime factor of q and the implied constant is absolute.

Theorem 2. Given χ (mod q) a primitive Dirichlet character with q large and

rad(q) ≤ exp
(

(log q)3/4
)
,

where the radical of q is defined

rad(q) :=
∏
p|q

p.

Then

|Sχ(x)| �ε
√
q (log q)7/8+ε.
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To illustrate these results, we give two concrete infinite classes of characters for

which we can improve the Pólya-Vinogradov inequality.

Example 1.10. Let qk denote the product of the first k primes. Consider the set G

of all characters (mod qk) ranging over all positive integers k. Then for all primitive

χ (mod q) in G,

Sχ(t)�
√
q log q

(log log q)1/4−o(1)

Example 1.11. Consider the set G ′ of characters (mod pk) ranging over all primes

p and integers k ≥ (log p)1/3. Then for all primitive χ (mod q) in G ′,

Sχ(t)�ε
√
q (log q)7/8+ε
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CHAPTER II

Odd order character sums

In the introduction to this thesis we discussed a classical bound on character sums,

proved independently by Pólya and Vinogradov in 1918. Their inequality remained

the strongest known upper bound for Sχ(t) in the full range t ≤ q for almost ninety

years, until the work of Granville and Soundararajan [15] showed that, at least for

some infinite classes of characters, it can be improved. For easy reference, we restate

the Pólya-Vinogradov theorem here: for any non-principal character χ (mod q),

(2.1) |Sχ(t)| � √q log q

where the implicit constant is absolute (i.e. independent of χ, q, and t).

The aim of this chapter is to refine the methods of Granville and Soundararajan

in [15], which (loosely speaking) we will do by expanding the set of multiplicative

functions considered from just the Dirichlet characters to all functions of the form

χ(n)·nit, where χ is a Dirichlet character and t is real. This is not a new idea. Indeed,

it can be said to stem from the work of Riemann, which inspired number theorists

to study functions of the form
∑
n

χ(n) · nit

nσ
(where σ, t are real) rather than the

restricted family
∑
n

χ(n)

nσ
considered by Dirichlet. More recently, Balog, Granville,

and Soundararajan [1] used a similar aproach in their study of the distribution of

22



values of multiplicative functions. One of the concrete advantages of studying this

wider class of arithmetic functions is the possibility of using powerful results of Halász

on mean values of multiplicative functions, which will allow us to improve Granville

and Soundararajan’s bound on odd order character sums (Theorem 1 of [15]) by a

power of log q; we shall prove

Theorem 2.1. Given χ (mod q) a primitive character of odd order g. Then

Sχ(t)�g
√
q (log q)1−δg+o(1)

where δg = 1 − g
π

sin π
g
, the implicit constant depends only on g, and o(1) → 0 as

q →∞.

For example for cubic characters χ (mod q) the theorem asserts that

Sχ(t)� √q (log q)
3
√

3
2π

+o(1).

Note that 3
√

3
2π
≈ 0.827 < 5/6.

It is expected that the methods presented here can be adapted to give an analogous

improvement of Theorem 4 of [15], thus giving a conditional proof of Conjecture 1.9 on

the assumption of GRH; this would be a best possible result (again on the assumption

of GRH). However, this work is still in progress.

2.1 Introduction

For χ (mod q) a primitive character, Pólya noted [28] that Sχ(t) is periodic with

period q, and thus can be expanded in a formal Fourier series whose coefficients are

easily computed. With some more work (see [24]), he obtained a quantitative version
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of the formal expansion:

(2.2) Sχ(t) =
τ(χ)

2πi

∑
1≤|n|≤N

χ(n)

n

(
1− e

(
−nt
q

))
+O

(
1 +

q log q

N

)

where N is any positive integer and τ(χ) =
∑
n≤q

χ(n) e

(
n

q

)
is the Gauss sum. Since

χ is primitive, |τ(χ)| = √q, so it remains to understand the behavior of sums of the

form

(2.3)
∑

1≤|n|≤N

χ(n)

n
e(nα).

This sum is trivially � logN by the triangle inequality, and this proves sufficient to

deduce the Pólya-Vinogradov inequality.

In this chapter we will obtain a non-trivial bound on (2.3) for primitive characters

χ (mod q) of odd order, improving previous results of Granville and Soundararajan

[15]. Before stating our bound, observe that for a character χ of odd order, χ(−1) = 1

(recall that such a character is called even). This implies that

∑
1≤|n|≤N

χ(n)

n
= 0

which, upon substitution into (2.2), shows that to improve the Pólya-Vinogradov

inequality for odd order characters it suffices to non-trivially bound (2.3) for nonzero

α. We will prove:

Theorem 2.2. Given χ (mod q) a primitive character of odd order g. For any real

α 6= 0, ∑
1≤|n|≤q

χ(n)

n
e(nα)�g (log q)1−δg+o(1)

where the implicit constant depends only on g, and o(1)→ 0 as q →∞.
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Applying this to estimate the sum in Pólya’s Fourier expansion immediately yields

Theorem 2.1.

The proof of Theorem 2.2 follows very closely the ideas in Granville and Soundarara-

jan’s original paper on the subject, [15]. At the heart of their work is their insight that

a character sum Sχ(t) cannot attain large magnitudes unless χ mimics the behavior

of a character ξ of opposite parity and very small conductor; this idea seems to have

been originally enunciated by Hildebrand [20]. Granville and Soundararajan’s real

success in [15] was to make this precise, by formulating a notion of distance between

multiplicative functions and determining an upper bound on Sχ(t) in terms of the dis-

tance from χ to the nearest character ξ among all those of opposite parity and small

conductor. In some special cases (e.g. for characters of odd order) one can find lower

bounds on the distance between χ and every Dirichlet character of opposite parity and

small conductor, leading to concrete improvements of the Pólya-Vinogradov inequal-

ity. The main contribution in our work is to determine a bound on Sχ(t) in terms of

the distance from χ to the nearest multiplicative function of the form ψ(n)nit, where

ψ is a Dirichlet character of opposite parity and small conductor and t is real. Using

this larger family of multiplicative functions allows us to employ powerful theorems

of Halász on mean values of multiplicative functions, and gives a more refined version

of Granville and Soundararajan’s bound on Sχ(t). As will be demonstrated below

(in Theorem 2.14), one can find a lower bound on the distance from a character χ

of odd order to the elements of our larger class of multiplicative functions, which is

comparable to the lower bound obtained by Granville and Soundararajan. Using this

lower bound in our refined bound on Sχ(t) yields an improvement of Theorem 1 of

[15].

We briefly mention here that the functions f(n) = n−it have some properties

highly reminiscent of Dirichlet characters. Clearly these functions are completely

multiplicative and have magnitude 1; less obvious is that they satisfy an analogue of
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the Pólya-Vinogradov inequality: for all t ≥ 2,

∑
n≤N

n−it � N

t
+
√
t log t.

On the other hand, these functions are not periodic, and are therefore not Dirichlet

characters. Moreover, for any fixed t bounded away from 0, the values nit are dense

on the complex unit circle. By contrast, the values of any Dirichlet character χ(n)

form a discrete subset of C (namely, µg∪{0}, where g is the order of χ and µg denotes

the gth roots of unity).

As discussed in the introduction to this thesis, we prove Theorem 2.2 by handling

separately the cases when α lies in a major or minor arc. More concretely, set M =

e
√

log q. Dirichlet’s theorem on Diophantine approximation implies that there exists a

reduced fraction b
r

such that

(2.4)

∣∣∣∣α− b

r

∣∣∣∣ ≤ 1

rM
and r ≤M.

Lemma 2.10 below (a variant of Lemma 6.2 of [15]) will allow us to replace α by its

rational approximation in the exponential sum, at the cost of possibly shortening the

range of summation slightly and adding a negligible error. In our context, it asserts

the existence of an N ≤ q such that

(2.5)
∑
n≤q

χ(n)

n
e(nα) =

∑
n≤N

χ(n)

n
e

(
b

r
n

)
+O(log log q).

Note that N depends on α, but the implicit constant in the error term is absolute.

Following [15] we consider two cases. If there exists an approximation satisfying

(2.4) with r > (log q)2δg we say α belongs to a minor arc; if no such approximation

exists, α is said to be in a major arc. Typically, the minor arcs require more technically

demanding estimates; the problem considered here is curious in that the minor arc
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calculations were completed long before the major arc ones.

Corollary 2.8 (a slight generalization of Lemma 4.2 of [15], which in turn was built

on the work of Montgomery and Vaughan [23]) will imply that

(2.6)
∑
n≤q

χ(n)

n
e(nα)� log r +

1 + (log r)5/2

√
r

log q + log log q.

In particular, for α in a minor arc, we conclude that the left hand side is �g

(log q)1−δg+o(1), thus proving Theorem 2.2 for such α (since if α belongs to a minor

arc, so does −α, and all implicit constants are independent of α).

For those α belonging to a major arc the calculations are slightly more involved.

Roughly speaking, the argument goes like this. In [15], Granville and Soundararajan

discovered a simple but enlightening formula for the exponential sum (2.3) in terms

of Gauss sums and characters of small modulus and opposite parity relative to χ. In

our context (see Proposition 2.12) their identity says that for b, r positive coprime

integers,

(2.7)
∑

1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
=
∑
d|r

χ(d)

d
· 1

ϕ (r/d)

∑
ψ (mod r

d)
ψ(−1)=−χ(−1)

τ
(
ψ
)
ψ(b)

 ∑
a≤N/d

χψ(a)

a

 .

For α in a major arc, r is small, whence everything on the right hand side of the above

formula is small with the possible exception of the sum
∑
a≤N/d

χψ(a)

a
. One expects a

fair amount of cancellation in this sum; the largest the sum can be is if χψ(a) points

in the same direction for many small a – in other words, if χ mimics ψ. Thus, the

exponential sum on the left side of this formula can be large only if χ mimics some

character ψ of small conductor and opposite parity. A good measure of the extent

to which one character mimics another was formally introduced by Granville and

Soundararajan in [15]:
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Definition 2.3. For any positive y and any two Dirichlet characters χ and ψ, let

D(χ, ψ; y) :=

(∑
p≤y

1− Re χψ(p)

p

)1/2

.

It is easy to verify that D is symmetric, that D ≥ 0, and that D(χ, ψ; y) = 0

implies χ(p) = ψ(p) for all p ≤ y. Less obvious but still true is that D satisfies the

triangle inequality: D(χ, ψ; y) + D(ψ, ξ; y) ≥ D(χ, ξ; y) for any three characters. It

should be noted that all these properties hold not just for characters, but for arbitrary

completely multiplicative functions from Z to U, the complex unit disc. Since this

family of functions will appear quite frequently, we give it a name:

Definition 2.4. F shall henceforth denote the set of all completely multiplicative

functions f : Z→ U.

We note that the only obstacle to D being a true metric is that it is possible for

the distance from χ to itself to be non-zero (if χ(p) = 0 for some p ≤ y). This is not

much of an obstacle – one could simply restrict the sum in the definition of D to run

over all primes p ≤ y at which χ(p)ψ(p) 6= 0. In any event, D is pseudometric, and

its definition can easily be tweaked to render it a true metric.

In [15], Granville and Soundararajan prove many interesting and useful properties

of this mimicry measure. In particular, they prove two fundamental theorems relating

the magnitude of a character sum to the distance between the character and that

character of opposite parity and small conductor which the original most closely

mimics. (See Theorems 2.1 and 2.2 of [15]; also, Theorems 2.4 and 2.5 for conditional

versions.) Combining these theorems with upper and lower bounds on the distance

between characters has led to improvements of the Pólya-Vinogradov inequality in

some special cases: Theorems 1 and 4 of [15] improved Pólya-Vinogradov for primitive

characters of odd order, and Theorems 1 and 2 of [11] (reproduced in Chapter III of

this thesis) improved Pólya-Vinogradov for primitive characters to smooth or powerful
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conductor.

Even though they were the first to formalize the mimicry measure D and make

an in-depth study of its properties, Granville and Soundararajan were not the first to

phrase results in terms of this measure. Almost four decades previously, Gábor Halász

[17] had realized that the existence of the mean value of any f ∈ F is closely related

to whether f mimics the function niβ for some real β. Moreover, if the mean value

of f tends to 0, Halász quantified how quickly it does so in terms of the distance

from f(n) to the nearest function of the form niβ; here, distance means precisely

Granville and Soundararajan’s mimicry measure D. In [22], Montgomery refined and

simplified some of Halász’s arguments, leading Tenenbaum to deduce the following

elegant theorem (see page 343 of [30]):

Theorem 2.5 (Halász-Montgomery-Tenenbaum). Suppose f ∈ F . Then for any

x ≥ 3 and T ≥ 1,

1

x

∑
n≤x

f(n)� (1 +M)e−M +
1√
T

where M := min
|β|≤T

D
(
f(n), niβ;x

)2
and the implicit constant is absolute.

Applying partial summation to the right hand side of the Granville-Soundararajan

identity (2.7), and subsequently Halász’s theorem, one can establish an upper bound

on the exponential sum in terms of lower bounds on the distance between χ and

the closest function of the form ψ(n)niβ, where ψ has small conductor and opposite

parity to χ. In Theorem 2.14, we find a lower bound on the distance between such

functions; this generalizes Lemma 3.2 of [15].

Finally we will conclude that for α in a major arc, if b
r

approximates α, then for

any N ∑
1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
�g

1√
r

(logN)1−δg+o(1) + (log q)3δg

where o(1)→ 0 as q →∞. By Lemma 2.10 mentioned above, we have that for some
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N ≤ q

∑
1≤|n|≤q

χ(n)

n
e(nα) =

∑
1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
+O(log log q)

� 1√
r

(logN)1−δg+o(1) + (log q)3δg + log log q

� (log q)1−δg+o(1)

where the last inequality follows from the fact that 3δg ≤ 1− δg for all g ≥ 3. (This

is easily seen from a computation: for all g ≥ 3, δg ≤ δ3 ≈ 0.173.)

Thus for any nonzero α, we obtain the corresponding non-trivial bound on the

exponential sum (2.3), which immediately proves Theorem 2.1. See section 2.5 for a

more precise overview of the whole argument.

2.2 Background and tools

In this section we begin by demonstrating that those α in minor arcs can be

controlled via Granville and Soundararajan’s adaptation of the Montgomery-Vaughan

bound (2.6). After this we prove a lemma which will allow us to pass between α and

its rational approximation. Finally, we state and prove the Granville-Soundararajan

identity (2.7), which is the starting point of the major arc calculation.

2.2.1 The minor arc case

Lemma 2.6. For y ≥ 10 and N ≥ 2,

∑
p≤y

1

p1− 1
logN

= log log y +O

exp
(

log y
logN

)
1 + log y

logN



In particular, for N ≥ exp

(
log y

log3 y

)
we have

∑
p≤y

1

p1− 1
logN

=
(

1 + o(1)
)

log log y.
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Proof. Write
∑
p≤t

log p

p
= log t+ R(t). It is a classical fact (see the proof of Mertens’

inequality, for example) that R(t)� 1. Applying partial summation we have

∑
p≤y

1

p1− 1
logN

=

y∫
2−

t
1

logN

log t
d
∑
p≤t

log p

p

=

y∫
2

dt

t1−
1

logN log t
+
R(t)

log t
t

1
logN

∣∣∣∣y
2−

+

+

y∫
2

R(t)

t1−
1

logN log2 t
dt− 1

logN

y∫
2

R(t)

t1−
1

logN log t
dt

We consider these terms individually. Making the substitution t 7→ log t

logN
gives

y∫
2

dt

t1−
1

logN log t
=

log y
logN∫

log 2
logN

et
dt

t

= log log y +

log y
logN∫

log 2
logN

(
et − 1

) dt
t

+O(1)

Note that
x∫

0

(
et − 1

) dt
t
≤ 4ex

1 + x

for all positive x (the inequality is easily verified for 0 ≤ x ≤ 1, and for x > 1 the

right side grows more quickly than the left). Thus we conclude that

(2.8)

y∫
2

dt

t1−
1

logN log t
= log log y +O

(
e

log y
logN

1 + log y
logN

)
.
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From this we immediately deduce

1

logN

y∫
2

R(t)

t1−
1

logN log t
dt� log log y

logN
+

1

logN
· e

log y
logN

1 + log y
logN

.

Since

(
1 +

log y

logN

)
log log y

logN
≤ log y

logN
+

log log y

log y

(
log y

logN

)2

≤ exp

(
log y

logN

)

for y ≥ 10, we have
log log y

logN
≤ e

log y
logN

1 + log y
logN

, whence

(2.9)
1

logN

y∫
2

R(t)

t1−
1

logN log t
dt� e

log y
logN

1 + log y
logN

.

Using the same change of variables as above and integrating by parts we find

y∫
2

R(t)

t1−
1

logN log2 t
dt � 1

logN

log y
logN∫

log 2
logN

et
dt

t2

=
1

logN

log y
logN∫

log 2
logN

et
dt

t
+O

(
1 +

e
log y
logN

log y

)

=
log log y

logN
+O

(
e

log y
logN

logN + log y
+ 1 +

e
log y
logN

log y

)

� e
log y
logN

1 + log y
logN

(2.10)

from our work above and elementary estimates. Finally,

(2.11)
R(t)

log t
t

1
logN

∣∣∣∣y
2−
� e

log y
logN

1 + log y
logN

.
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Combining equations (2.8) – (2.11), we deduce the lemma.

Theorem 2.7 (Montgomery-Vaughan). Suppose f ∈ F and |α − b/r| ≤ 1
r2

with

(b, r) = 1. Then for every R ∈ [2, r] and any N ≥ Rr we have

∑
Rr≤n≤N

f(n)

n
e(nα)� log logN +

(logR)3/2

√
R

logN

where the implicit constant is absolute.

Proof. This follows immediately from Corollary 1 of [23] by partial summation; our

formulation of this theorem is lifted from Lemma 4.2 of [15].

Montgomery and Vaughan’s proof of the above theorem required both ingenuity

and hard analysis, as might be expected in a minor arc estimate. With their result

in hand, we can deduce the following corollary (which is closely modeled on Lemma

6.1 of [15]) without much exertion. We will use the notation S(y) to denote the set

of all y-smooth numbers, i.e. the set of all positive integers n with the property that

none of the prime factors of n exceeds y.

Corollary 2.8. Given any f ∈ F and any nonzero α and a reduced fraction b
r

such

that

∣∣∣∣α− b

r

∣∣∣∣ ≤ 1

r2
. Then for x ≥ 2 and y ≥ 10,

∑
n≤x
n∈S(y)

f(n)

n
e(nα)� log r +

1 + (log r)5/2

√
r

log y + log log y

where the implicit constant is absolute.

Remark 2.9. Taking f = χ and x = y = q yields the version (2.6) found in the

introduction.

Prior to proving this, we introduce one more piece of notation. Given f : Z→ C
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and any positive number y, we define the y-smoothed function fy:

fy(n) =


f(n) if n ∈ S(y)

0 otherwise.

Note that if f ∈ F , then fy ∈ F as well.

Proof. The bound is trivially true for x ≤ r2, so we assume x > r2.

If x ≤ ylog r we apply Theorem 2.7 to fy:

∑
n≤x
n∈S(y)

f(n)

n
e(nα) =

∑
n≤x

fy(n)

n
e(nα)

=
∑
n<r2

fy(n)

n
e(nα) +

∑
r2≤n≤x

fy(n)

n
e(nα)

� log r +
(log r)3/2

√
r

log x+ log log x

� log r +
(log r)5/2

√
r

log y + log log y

thus proving the claim in this case.

In the case that x ≥ ylog r we use the above to deduce:

∑
n≤x
n∈S(y)

f(n)

n
e(nα) =

∑
n≤ylog r
n∈S(y)

f(n)

n
e(nα) +

∑
ylog r<n≤x
n∈S(y)

f(n)

n
e(nα)

� log r +
(log r)5/2

√
r

log y + log log y +
∑

ylog r<n≤x
n∈S(y)

f(n)

n
e(nα)(2.12)

It remains only to bound the sum on the right hand side of (2.12). Note that
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n > ylog r if and only if n > r · n1− 1
log y . Therefore,

∑
ylog r<n≤x
n∈S(y)

f(n)

n
e(nα) � 1

r

∑
ylog r<n≤x
n∈S(y)

1

n1− 1
log y

≤ 1

r

∏
p≤y

(
1− 1

p1− 1
log y

)−1

We now apply Lemma 2.6 with N = y to bound the product:

log
∏
p≤y

(
1− 1

p1− 1
log y

)−1

=
∑
p≤y

1

p1− 1
log y

+O(1)

= log log y +O(1)

Thus, ∑
ylog r<n≤x
n∈S(y)

f(n)

n
e(nα)� 1

r
log y.

Combining this with (2.12) we conclude.

2.2.2 Passing from α to its rational approximation

Lemma 2.10. Given f ∈ F . Suppose y and M are large, α is a given real num-

ber, and the reduced fraction b
r

with r ≤ M is a Dirichlet approximation to α (i.e.∣∣∣∣α− b

r

∣∣∣∣ ≤ 1

rM
). Set N = min

{
x, 1
|rα−b|

}
. Then for all R ∈

[
2, N

2

]
,

∑
n≤x
n∈S(y)

f(n)

n
e(nα) =

∑
n≤N
n∈S(y)

f(n)

n
e

(
b

r
n

)
+O

(
1 + logR +

(logR)3/2

√
R

(log y)2 + log log y

)

where the implied constant in the error term is absolute.

Moreover, if M ≥ 2(log y)4 log log y, the error term above can be replaced by

O(log log y).
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Remark 2.11. As above, taking f = χ, x = y = q, and M = e
√

log q yields the version

given in (2.5) in the introduction.

Proof. If N = x then

∣∣∣∣α− b

r

∣∣∣∣ ≤ 1

rx
whence

∑
n≤x
n∈S(y)

f(n)

n

(
e(nα)− e

(
b

r
n

))
�

∑
n≤x
n∈S(y)

1

n
· n
∣∣∣∣α− b

r

∣∣∣∣� 1

We therefore assume that N = 1
|rα−b| < x. Note that this immediately implies

that N ≥M and that ∣∣∣∣α− b

r

∣∣∣∣ =
1

rN
.

By Dirichlet’s theorem, there is a reduced fraction b1
r1

with r1 ≤ 2N such that

∣∣∣∣α− b1
r1

∣∣∣∣ ≤ 1

2r1N

Note that b
r
6= b1

r1
, since

∣∣∣α− b1
r1

∣∣∣ < 1
r1N

. Thus,

1

rr1
≤
∣∣∣∣ br − b1

r1

∣∣∣∣ ≤ 1

2r1N
+

1

rN

whence r1 ≥ N − r
2
. Since r ≤M ≤ N , we see that

N

2
≤ r1 ≤ 2N

so we can trivially bound the (possibly empty) sum

∑
N<n≤Rr1
n∈S(y)

f(n)

n
e(nα)� log

Rr1
N

= logR +O(1).

Once again applying Montgomery-Vaughan’s Theorem 2.7 to fy (which we can do
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since R ≤ N
2
≤ r1) we see that

∑
Rr1<n≤e(log y)2

n∈S(y)

f(n)

n
e(nα) =

∑
Rr1<n≤e(log y)2

fy(n)

n
e(nα)

� log log y +
(logR)3/2

√
R

(log y)2

Finally, similarly to the proof of the lemma above, we see that

∑
e(log y)

2
<n≤x

n∈S(y)

f(n)

n
e(nα)�

∑
e(log y)

2
<n≤x

n∈S(y)

1

n
� 1

y

∑
n∈S(y)

1

n1− 1
log y

� 1.

Combining these three bounds, we deduce

∑
n≤x
n∈S(y)

f(n)

n
e(nα) =

∑
n≤N
n∈S(y)

f(n)

n
e(nα)+O

(
1 + logR +

(logR)3/2

√
R

(log y)2 + log log y

)
.

Just as at the start of the proof, we have

∑
n≤N
n∈S(y)

f(n)

n
e(nα) =

∑
n≤N
n∈S(y)

f(n)

n
e

(
b

r
n

)
+O(1)

and we conclude the proof of the first part of the theorem.

For the second claim, if M ≥ 2(log y)4 log log y, then

r1 ≥ N − r

2
≥M − M

2
≥ (log y)4 log log y.

Taking R = (log y)4 log log y renders the error O(log log y).
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2.2.3 The Granville-Soundararajan Identity

For α in a major arc (i.e. it is well-approximated by b
r

with r ≤ (log q)2δg), the sit-

uation is more complicated. The following identity, due to Granville and Soundarara-

jan, is elementary but indicates an approach to the major arcs.

Proposition 2.12. Given a primitive Dirichlet character χ (mod q) and positive co-

prime integers b and r,

∑
1≤|n|≤N
n∈S(y)

χ(n)

n
e

(
b

r
n

)
=
∑
d|r

d∈S(y)

χ(d)

d
· 1

ϕ (r/d)

∑
ψ (mod r

d)
ψ(−1)=−χ(−1)

τ
(
ψ
)
ψ(b)

 ∑
a≤N/d
a∈S(y)

χψ(a)

a

 .

Thus for small r,
∑

1≤|n|≤N
n∈S(y)

χ(n)

n
e

(
b

r
n

)
can be large only if

∑
a≤N/d
a∈S(y)

χψ(a)

a
is large for

some ψ of small conductor and opposite parity to χ. But this sum can only be large

if χ(a) = ψ(a) for many small (and y-smooth) a, i.e. if χ mimics ψ. One of Granville

and Soundararajan’s major contributions in [15] was to write down a pseudometric on

the space of multiplicative functions, which is a useful tool in studying multiplicative

mimicry. We will recall the definition and basic properties of this pseudometric after

proving the proposition.

Proof of Proposition 2.12. First, observe that

(2.13)
∑

1≤|n|≤N
n∈S(y)

χ(n)

n
e

(
b

r
n

)
=
∑
n≤N
n∈S(y)

χ(n)

n
e

(
b

r
n

)
− χ(−1)

∑
n≤N
n∈S(y)

χ(n)

n
e

(
−b
r
n

)
.

We examine the first sum on the right hand side. Summing over all possible greatest
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common divisors d of n and r, and setting a = n/d we find

(2.14)
∑
n≤N
n∈S(y)

χ(n)

n
e

(
b

r
n

)
=
∑
d|r

d∈S(y)

χ(d)

d

∑
a≤N

d

(a, rd)=1

a∈S(y)

χ(a)

a
e

(
ab

r/d

)
.

Now,

e

(
ab

r/d

)
=

∑
k (mod r

d)

e

(
k

r/d

)
δab(k)

where δx is the indicator function of x. By orthogonality of characters, we can express

the indicator function in terms of characters:

δab(k) =
1

ϕ
(
r
d

) ∑
ψ (mod r

d)

ψ(k)ψ(ab)

whence, switching the order of summation,

e

(
ab

r/d

)
=

1

ϕ
(
r
d

) ∑
ψ (mod r

d)

τ
(
ψ
)
ψ(ab).

Plugging this back into (2.14) and once again switching order of summation yields

∑
n≤N
n∈S(y)

χ(n)

n
e

(
b

r
n

)
=
∑
d|r

d∈S(y)

χ(d)

d
· 1

ϕ (r/d)

∑
ψ (mod r

d)

τ
(
ψ
)
ψ(b)

 ∑
a≤N/d
a∈S(y)

χψ(a)

a

 .

Using this identity to evaluate the second sum on the right hand side of (2.13) (with

b replaced by −b) and combining the two sums, we conclude.
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2.3 A Lower Bound on D(χ(n), ξ(n)niβ; y)

We begin by making a concrete choice of parameters in Halász’s Theorem (Theo-

rem 2.5).

Theorem 2.13. For all x ≥ 3, for all f ∈ F ,

1

x

∑
n≤x

f(n)�
(
log log x

)
e−M(x,f) +

1

log x

where

M(x, f) = min
|β|≤log2 x

D
(
f(n), niβ;x

)2
and the implicit constant is absolute.

In Lemma 3.2 of [15], Granville and Soundararajan proved that for any primitive

character χ (mod q) of odd order g, and any primitive character ξ of opposite parity

and conductor smaller than a power of log y,

(2.15) D(χ, ξ; y)2 ≥
(
δg + o(1)

)
log log y.

Our goal in this section is to prove a generalization of this:

Theorem 2.14. Given y ≥ 2, χ (mod q) a primitive character of odd order g, and

any odd character ξ (mod m) with m < (log y)A. Then for all β satisfying |β| ≤ log2 y,

D
(
χ(n), ξ(n)niβ; y

)2 ≥ (δg + o(1)
)

log log y

where o(1)→ 0 as y →∞ for any fixed values of g and A.

Our plan of attack is as follows. We partition the interval [2, y] into many small

intervals of the form (x, (1+δ)x], where δ is of size (log y)−3. For p in such an interval,

we approximate p−iβ by x−iβ. This reduces our problem to estimating sums of the
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form ∑
` (mod k)

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p

(
1− Re χ(p) e

(
− `
k

)
x−iβ

)
.

Following Granville and Soundararajan’s proof of (2.15), we ignore the arithmetic

properties of χ and view it simply as a gth root of unity. Thus, it suffices to find a

lower bound on

∑
` (mod k)

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p
min

z∈µg∪{0}

(
1− Re z e

(
− `
k

)
x−iβ

)
.

Using Siegel-Walfisz, we will easily deduce a lower bound of

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p

which is independent of `; the sum

∑
` (mod k)

min
z∈µg∪{0}

(
1− Re z e

(
− `
k

)
x−iβ

)

can then be evaluated by arguments inspired by those of [15]. Summing over all the

small intervals will yield the desired lower bound in Theorem 2.14.

Before proceeding to the calculation, we observe that we may assume that β is
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not too small. Indeed, for those β which are o
(

log log y
log y

)
we have

D
(
χ(n), ξ(n)niβ; y

)2
=

∑
p≤y

1

p

(
1− Re χξ(p)e−iβ log p

)
=

∑
p≤y

1

p

(
1− Re χξ(p) (1 +O (|β| log p))

)
= D (χ, ξ; y)2 +O

(
|β|
∑
p≤y

log p

p

)
= D (χ, ξ; y)2 + o (log log y)

and thus for such β, the bound of Theorem 2.14 follows from (2.15).

2.3.1 The contribution from short intervals

Our first goal is to obtain a lower bound on the sum over a short interval

(2.16)
∑

x<p≤(1+δ)x

1

p

(
1− Re χξ(p) p−iβ

)

where

δ � 1

log3 y
.

Note that for any prime p ∈
(
x, (1 + δ)x

]
, we may approximate piβ by xiβ: we have

0 ≤ log p− log x ≤ log
(
(1 + δ)x

)
− log x = log(1 + δ) ≤ δ, whence

∣∣p−iβ − x−iβ∣∣ =
∣∣1− eiβ(log p−log x)

∣∣
= 2

∣∣∣∣sin(β2 (log p− log x)

)∣∣∣∣
≤

∣∣β(log p− log x)
∣∣

≤ δ|β|.
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Therefore,

∑
x<p≤(1+δ)x

1

p

(
1− Re χξ(p)p−iβ

)
=

∑
x<p≤(1+δ)x

1

p

(
1− Re χξ(p)x−iβ

)
+O

δ|β| ∑
x<p≤(1+δ)x

1

p


=

∑
x<p≤(1+δ)x

1

p

(
1− Re χξ(p)x−iβ

)
+O

(
δ2|β|
log x

)

=
∑

x<p≤(1+δ)x

1

p

(
1− Re χξ(p)e(θx)

)
+O

(
δ2 log2 y

log x

)
(2.17)

where θx = − β
2π

log x. We bound the sum from below in terms of the orders of χ and

ξ:

∑
x<p≤(1+δ)x

1

p

(
1− Re χξ(p) e(θx)

)
=

∑
` (mod k)

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p

(
1− Re χ(p) e

(
− `
k

)
e(θx)

)

≥
∑

` (mod k)

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p
min

z∈µg∪{0}

(
1− Re z · e

(
θx −

`

k

))

A straightforward application of the Siegel-Walfisz theorem will give the following:

Lemma 2.15. Fix ε > 0, y ≥ 2, and χ and ξ as in the statement of Theorem 2.14.

Then for all x ≥ exp
(
(log y)ε

)
,

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p
=

δ

k log x

(
1 + o(1)

)

where o(1)→ 0 as y →∞ and depends only on y and ε.

Note that this estimate is independent of `. Thus, the following general result,

combined with Lemma 2.15, will furnish a lower bound on the sum (2.16):
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Lemma 2.16. Given g ≥ 3 odd, k ≥ 2 even, and θ ∈
(
−1

2
, 1

2

]
. Set k∗ = k

(g,k)
. Then

(2.18)
1

k

∑
` (mod k)

min
z∈µg∪{0}

(
1− Re z · e

(
θ − `

k

))
= 1−

sin π
g

k∗ tan π
gk∗

Fgk∗(−gk∗θ)

where

FN(ω) = cos
2π{ω}
N

+
(

tan
π

N

)
sin

2π{ω}
N

.

To make sense of this lemma, we examine some properties of FN(ω). First, since

FN(ω) = FN({ω}) we may assume that ω ∈ [0, 1). Second, since k∗ must be even,

gk∗ ≥ 6, and we can therefore assume that N ≥ 6. Under these assumptions, one

easily checks that

• FN(0) = 1 and FN(0.5) = 1
cos π

N
,

• FN(ω) is concave down everywhere on [0, 1),

• On the unit interval, FN is symmetric about ω = 1
2
, and

• The average value of FN over the unit interval is N
π

tan π
N

.

Thus, for the ‘typical’ θ we expect the right side of (2.18) to be δg. It is appre-

ciably larger than δg when gk∗θ is close to an integer, and somewhat smaller than

δg when gk∗θ is close to a half-integer. In the context of [15], θ = 0, which allowed

Granville and Soundararajan to bound (2.18) from below by δg quite easily. Although

our arguments are also not difficult, the computations are naturally somewhat more

involved; we will isolate the proof in a separate subsection.

Before proving the two lemmata, we deduce from them a lower bound on (2.16).
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The main term of (2.17) can be bounded from below as follows, for all x ≥ exp
(
(log y)ε

)
:

∑
x<p≤(1+δ)x

1

p

(
1− Re χξ(p)e(θx)

)
≥
∑

` (mod k)


∑

x<p≤(1+δ)x

ξ(p)=e( `k)

1

p

 min
z∈µg∪{0}

(
1− Re z · e

(
θx −

`

k

))

=
δ
(
1 + o(1)

)
log x

(
1−

sin π
g

k∗ tan π
gk∗

Fgk∗(−gk∗θx)

)

Let

G(t) = 1−
sin π

g

k∗ tan π
gk∗

Fgk∗

(
βgk∗

2π
t

)
.

Note that G is minimized at values of t for which Fgk∗ is maximized, whence G(t) ≥

1 − sin π
g

k∗ sin π
gk∗

. It is a calculus exercise to show that 1 − sin π
g

x sin π
gx

> 0 for all x ≥ 2,

from which we conclude that as a function of t, G(t) is bounded away from 0. This

combined with our choice of δ of size (log y)−3 shows that we can write (2.17) in the

form

∑
x<p≤(1+δ)x

1

p

(
1− Re χξ(p)p−iβ

)
≥

(
1 + o(1)

)
δ

log x
G(log x) +O

(
δ2 log2 y

log x

)

=

(
1 + o(1)

)
δ

log x
G(log x)(2.19)

where the o(1) term in (2.19) tends to 0 as y →∞ and depends only on y, ε, g, and

k.

We now go back and prove the two lemmata.

Proof of Lemma 2.15. A consequence of the Siegel-Walfisz Theorem says that for any

fixed ε > 0 and A > 0, for all X ≥ exp (mε),

θ(X;m, a) :=
∑
p≤X

p≡ a (mod m)

log p =
X

ϕ(m)

(
1 +O

(
1

(logX)A

))
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where the constant implicit in the O-term depends only upon A and ε. In particular,

for all X ≥ exp
(
(log y)ε

)
,

(2.20) θ(X;m, a) =
X

ϕ(m)

(
1 +Oε

(
1

(logX)4/ε

))

where the implicit constant only depends on ε.

To apply Siegel-Walfisz, we must first express the sum in question as a sum over

primes in arithmetic progressions:

∑
x<p≤(1+δ)x

ξ(p)=e( `k)

1

p
=

∑
a (mod m)

ξ(a)=e( `k)

∑
x<p≤(1+δ)x

p≡ a (mod m)

1

p
.

Next, we rewrite the inner sum so that we are weighing the primes by log p, rather

than 1
p
. Observe that the condition x < p ≤ (1 + δ)x is equivalent to 1

1+δ
p ≤ x < p,

so we have

x log x

p log p
=
x

p
· log x

log p
=
(
1 +O(δ)

)
·

(
1 +O

(
δ

log p

))
= 1 +O(δ).

Thus,

∑
x<p≤(1+δ)x

p≡ a (mod m)

1

p
=

1 +O(δ)

x log x

∑
x<p≤(1+δ)x

p≡ a (mod m)

log p

=
1 +O(δ)

x log x

(
θ
(

(1 + δ)x;m, a
)
− θ
(
x;m, a

))
=

δ

ϕ(m) log x
+O

(
δ2

ϕ(m) log x

)
+Oε

(
1

ϕ(m) (log x)1+4/ε

)

upon applying (2.20) to each θ term separately.
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By assumption, log x ≥ (log y)ε and δ is of size (log y)−3, so

(2.21)
∑

x<p≤(1+δ)x

p≡ a (mod m)

1

p
=

δ

ϕ(m) log x

(
1 +Oε

(
1

log y

))
.

Since this estimate is independent of a, to prove the lemma it remains only to show

that

(2.22)
∑

a (mod m)

ξ(a)= e( `k)

1 =
ϕ(m)

k
.

This is well-known, but the proof is short so we include it. Clearly,

∑
a (mod m)

ξ(a)= e( `k)

1 =
∑

a∈ (Z/mZ)∗

ξ(a)= e( `k)

1

For brevity, denote (Z/mZ)∗ by G. Since ξ has order k, there is some b ∈ G such

that 1, ξ(b), ξ(b)2, . . . , ξ(b)k−1 are all distinct; on the other hand, all these must be kth

roots of unity. In particular, there exists some g ∈ G such that ξ(g) = e
(

1
k

)
.

Let H be the kernel of ξ, i.e. H = {a ∈ G : ξ(a) = 1}. This is a normal subgroup

of G, and g`H =
{
a ∈ G : ξ(a) = e

(
`
k

)}
. G can therefore be decomposed as a disjoint

union of the k cosets g`H with 0 ≤ ` ≤ k − 1. Since
∣∣g`H∣∣ = |H|, (2.22) must hold.

Combining this with (2.21) yields the lemma.

2.3.1.1 Proof of Lemma 2.16

Recall that g ≥ 3 is odd, k ≥ 2 is even, and θ ∈
(
−1

2
, 1

2

]
. Let d = (g, k) and set

k∗ = k
d

and g∗ = g
d
.
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To prove (2.18), it suffices to show

(2.23)
∑

` (mod k)

max
z∈µg∪{0}

Re z · e
(
θ − `

k

)
= d ·

sin π
g

tan π
gk∗
· Fgk∗(−gk∗θ)

Let A0 =
{
e(β) : − 1

2g
< β ≤ 1

2g

}
and set An = e

(
n
g

)
A0 ; note that the disjoint union

of An as n runs over any complete set of residues of Z/gZ is the complex unit circle.

In particular, for any ` ∈ Z there is a unique n
`
∈
(
−g

2
, g

2

]
such that e

(
θ − `

k

)
∈ An

`
.

By definition, this means that e
(
−n

`

g

)
e
(
θ − `

k

)
∈ A0 . Since for all other n ∈

(
−g

2
, g

2

]
we have e

(
−n
g

)
e
(
θ − `

k

)
6∈ A0 , we deduce that

max
z∈µg∪{0}

Re z · e
(
θ − `

k

)
= Re e

(
−n`
g

)
e

(
θ − `

k

)
= Re e(θ) e

(
f(`)

gk

)

where f : Z → Z is defined f(`) = −(g ` + k n
`
). This allows us to rewrite the left

hand side of the inequality (2.23):

(2.24)
∑

` (mod k)

max
z∈µg∪{0}

Re z · e
(
θ − `

k

)
= Re e(θ)

∑
` (mod k)

e

(
f(`)

gk

)
.

Our aim is rewrite the sum on the right side of (2.24) in terms of geometric series.

It is not hard to see that if `1 ≡ `2 (mod k) then f(`1) ≡ f(`2) (mod gk). However,

more is true:

Lemma 2.17. `1 ≡ `2 (mod k∗) =⇒ f(`1) ≡ f(`2) (mod gk)

Proof. Given `1 ≡ `2 (mod k∗). Then k | g (`2 − `1), since g(`2 − `1) = g∗k `2−`1
k∗

.

Equivalently, there existsm ∈ Z such that− `1
k

= − `2
k

+m
g

. Therefore, by the definition

of n
`
, we find that both e

(
m−n

`1

g

)
and e

(
−
n
`2

g

)
belong to the set e

(
`2
k
− θ
)
A0 . But
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this implies that n
`1
≡ m+ n

`2
(mod g), whence

e

(
f(`1)

gk

)
= e

(
f(`2)

gk

)

and we conclude.

Thus, we can restrict the sum on the right side of (2.24) to Z/k∗Z:

(2.25)
∑

` (mod k)

e

(
f(`)

gk

)
= d ·

∑
`∗ (mod k∗)

e

(
f(`∗)

gk

)
.

We now prove a weaker form of Lemma 2.17, which has the advantage of a con-

verse.

Lemma 2.18. `1 ≡ `2 (mod k∗)⇐⇒ f(`1) ≡ f(`2) (mod k)

Proof.

f(`1) ≡ f(`2) (mod k) =⇒ k | g(`2 − `1)

=⇒ k∗ | g∗(`2 − `1)

=⇒ `1 ≡ `2 (mod k∗)

since (g∗, k∗) = 1. On the other hand,

`1 ≡ `2 (mod k∗) =⇒ k | d(`2 − `1)

whence

f(`1)− f(`2) = g(`2 − `1) + k(n`1 − n`2)

= g∗d(`2 − `1) + k(n`1 − n`2)

≡ 0 (mod k).
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Proposition 2.19. The map f restricted to
[
−k∗

2
+ k∗θ, k

∗

2
+ k∗θ

)
∩Z is an injection

into
(
−k

2
− gkθ, k

2
− gkθ

]
∩ Z.

Proof. Injectivity follows immediately from Lemma 2.18, so it suffices to show that

the image of
[
−k∗

2
+ k∗θ, k

∗

2
+ k∗θ

)
∩ Z under f lands in the claimed target. In

fact, we will show a slightly stronger statement. Observe that because |θ| ≤ 1
2
,[

−k∗

2
+ k∗θ, k

∗

2
+ k∗θ

)
⊆
[
−k

2
+ kθ, k

2
+ kθ

)
; we claim that the image under f of the

larger set lands inside the claimed target.

Fix any ` ∈
[
−k

2
+ kθ, k

2
+ kθ

)
; this is equivalent to requiring θ− `

k
∈
(
−1

2
, 1

2

]
. By

definition of n
`

we have e
(
θ − `

k

)
∈ An

`
, from which we deduce that for some integer

N , θ − `
k
∈
(
N +

2n
`
−1

2g
, N +

2n
`
+1

2g

]
. By our restriction on `, N must equal 0 (recall

that −g−1
2
≤ n

`
≤ g−1

2
). It follows that f(`) ∈

(
−k

2
− gkθ, k

2
− gkθ

]
.

Note that d | f(`) for all `. Combining this fact with Proposition 2.19 we conclude

that {
f(`∗) : −k

∗

2
+ k∗θ ≤ `∗ <

k∗

2
+ k∗θ

}
is a set of k∗ distinct multiples of d, all contained in

(
−k

2
− gkθ, k

2
− gkθ

]
. But this

set contains precisely k∗ multiples of d. Therefore:

∑
`∗ (mod k∗)

e

(
f(`∗)

gk

)
=

∑
− k∗

2
+k∗θ≤`∗< k∗

2
+k∗θ

e

(
f(`∗)

gk

)

=
∑

1
d(−

k
2
−gkθ)<m≤ 1

d(
k
2
−gkθ)

e

(
md

gk

)

=
∑

− k∗
2
−gk∗θ<m≤ k∗

2
−gk∗θ

e

(
m

gk∗

)
(2.26)

This is a k∗-term geometric series with first term e
(

1
gk∗

[
k∗

2
− gk∗θ

])
and ratio e

(
− 1
gk∗

)
.
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Summing the series and performing standard algebraic manipulations, one finds

∑
− k∗

2
−gk∗θ<m≤ k∗

2
−gk∗θ

e

(
m

gk∗

)
= e

(
−θ +

1− 2c

2gk∗

)
sin π

g

sin π
gk∗

where c = {−gk∗θ} ∈ [0, 1). Tracing back through equations (2.24)-(2.26) and sim-

plifying, we see that

∑
` (mod k)

max
z∈µg∪{0}

Re z · e
(
θ − `

k

)
= d ·

sin π
g

sin π
gk∗
· cos

(
π

gk∗
(1− 2c)

)

= d ·
sin π

g

tan π
gk∗
· Fgk∗

(
−gk∗θ

)
proving (2.23), and thus the lemma. �

2.3.2 Completing the proof of Theorem 2.14

Let x0 = exp
(
(log y)ε

)
and set xr = x0(1 + δ)r. Then from (2.19) we deduce

D(χ(n), ξ(n)niβ; y)2 =
∑
p≤y

1

p

(
1− Re χξ(p)p−iβ

)
≥

∑
x0<p≤y

1

p

(
1− Re χξ(p)p−iβ

)
≥

∑
r≥0

xr+1≤y

∑
xr<p≤xr+1

1

p

(
1− Re χξ(p)p−iβ

)

≥
∑
r≥0

xr+1≤y

(
1 + o(1)

)
δ

log xr
G(log xr)

≥
(
1 + o(1)

)
log(1 + δ)

∑
r≥0

xr+1≤y

G(log xr)

log xr
(2.27)

We recognize the sum above as the left Riemann sum – with subintervals of length

log(1 + δ) – for the integral

log xm∫
log x0

G(t)

t
dt, where m is the integer such that xm ≤ y <
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xm+1. We recall that

G(t) = 1−
sin π

g

k∗ tan π
gk∗

Fgk∗

(
βgk∗

2π
t

)

where FN(ω) = cos 2π{ω}
N

+
(
tan π

N

)
sin 2π{ω}

N
; various properties of FN are listed on

page 44.

In general, if L is a left Riemann sum of a continuously differentiable function f ,

then ∣∣∣∣∣∣
b∫

a

f(x) dx− L

∣∣∣∣∣∣ ≤ (b− a)

2
·∆ ·max

[a,b]
|f ′(x)|

where ∆ is the size of the longest subinterval. In our case, G(t)
t

is not everywhere

differentiable – it has cusps at integer values of t – but one can circumvent this issue

by choosing δ so that 1 is an integer multiple of log(1+δ), and perturbing x0 to make

log x0 an integer. We have

∣∣∣∣ ddt
(
G(t)

t

)∣∣∣∣ ≤ ∣∣∣∣G′(t)t
∣∣∣∣+

∣∣∣∣G(t)

t2

∣∣∣∣
≤

sin π
g

k∗ tan π
gk∗

F ′gk∗(0)

log x0

+
2

(log x0)2

� 1

for all t ≥ log x0, whence

∣∣∣∣∣∣∣∣log(1 + δ)
∑
r≥0

xr+1≤y

G(log xr)

log xr
−

log y∫
log x0

G(t)

t
dt

∣∣∣∣∣∣∣∣ � (log y) · log(1 + δ) +

∣∣∣∣∣∣
log y∫

log xm

G(t)

t
dt

∣∣∣∣∣∣
� 1

log2 y
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Therefore, continuing our calculation from where we left it in (2.27),

(2.28) D(χ(n), ξ(n)niβ; y)2 ≥
(
1 + o(1)

) log y∫
log x0

G(t)

t
dt+O(1)

where

G(t) = 1−
sin π

g

k∗ tan π
gk∗

Fgk∗

(
βgk∗

2π
t

)
.

To prove Theorem 2.14 it remains only to bound the integral on the right side of (2.28)

from below by
(
δg + o(1)

)
log log y. Recall that FN(t) is concave down everywhere on

the unit interval and symmetric about t = 1
2
, with minima at the endpoints of the

interval. Further, FN , the mean value of FN on the unit interval, is N
π

tan π
N

. Observe

that it suffices to prove

b(y)∫
a(y)

1

t
FN(t) dt ≤

(
FN + o(1)

)
log log y

where a(y) = Nβ
2π

(log y)ε, b(y) = Nβ
2π

log y, and
log log y

log y
� |β| ≤ log2 y.

Given any x ≥ 1 we find

x∫
1

1

t
FN(t) dt = FN · log x+O(1),

by splitting the integral into unit intervals (with at most one exception) and on each

interval bounding 1
t

from above and below trivially. Thus if a(y) ≥ 1, we immediately

find

b(y)∫
a(y)

1

t
FN(t) dt = FN · log

b(y)

a(y)
+O(1)

≤
(
FN + o(1)

)
log log y.
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Now we consider the case when a(y) < 1. We have

b(y)∫
a(y)

1

t
FN(t) dt =

1∫
a(y)

1

t
FN(t) dt+

b(y)∫
1

1

t
FN(t) dt

=

1
a(y)∫
1

1

t
FN

(
1

t

)
dt+ FN · log b(y) +O(1)

Therefore, it suffices to show that

(2.29)

x∫
1

1

t
FN

(
1

t

)
dt ≤ FN · log x+O(1).

For all sufficiently large x, FN(x) ≤ FN , whence

d

dx

( x∫
1

1

t
FN

(
1

t

)
dt

)
≤ d

dx

(
FN · log x

)

for all large x. This implies (2.29), and Theorem 2.14 is proved. �

2.4 The major arc case

Given χ (mod q) of odd order g. Recall that we wish to bound
∑

1≤|n|≤N

χ(n)

n
e(nα)

non-trivially. In § 2.2.1 we proved Theorem 2.2 for the case that α belongs to a minor

arc, i.e. when there exists a diophantine approximation to α, b
r
, with (log q)2δg < r ≤

M = e
√

log q. The goal of this section is to complete the proof of Theorem 2.2, by

showing that the same bound holds for α in a major arc.

For a character χ (mod q) of odd order the Granville-Soundararajan identity

54



(Proposition 2.12) asserts that for positive coprime integers b and r,

(2.30)
∑

1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
=
∑
d|r

χ(d)

d
· 1

ϕ (r/d)

∑o

ψ (mod r
d)

τ
(
ψ
)
ψ(b)

 ∑
a≤N/d

χψ(a)

a


where

∑o indicates that the sum runs over odd characters. As remarked previously,

the only way the left hand side can be large is if the sum
∑
a≤N/d

χψ(a)

a
is large for some

primitive odd character ψ whose conductor divides r. We will deduce a nontrivial

bound on this quantity by combining Halász’ theorem with results of Balog, Granville,

and Soundararajan on the mimicry metric.

For the rest of this section, let Tχ(N, r) :=
∑

1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
.

By triangle inequality and partial summation we have

Tχ(N, r) ≤
∑
d|r

1

d
· 1

ϕ (r/d)

∑o

ψ (mod r
d)

√
r

d

∣∣∣∣∣∣
∑
a≤N/d

χψ(a)

a

∣∣∣∣∣∣
≤
√
r
∑
d|r

(
1

d

) 3
2 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)


∣∣∣∣∣∣ 1

N/d

∑
n≤N

d

χψ(n)

∣∣∣∣∣∣+

N
d∫

1

1

t

∣∣∣∣∣1t∑
n≤t

χψ(n)

∣∣∣∣∣ dt


We have the trivial estimate

∣∣∣∣∣∣ 1

N/d

∑
n≤N

d

χψ(n)

∣∣∣∣∣∣ � 1, so the contribution from this

term to the total is �
√
r which in turn is � (log q)δg , i.e.

Tχ(N, r)�
√
r
∑
d|r

(
1

d

) 3
2 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

N
d∫

1

1

t

∣∣∣∣∣1t∑
n≤t

χψ(n)

∣∣∣∣∣ dt+O
(
(log q)δg

)

Next, we show that the part of the integral with 1 ≤ t ≤ er is not too large: making
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the trivial estimate
∣∣1
t

∑
n≤t χψ(n)

∣∣� 1 we deduce

√
r
∑
d|r

(
1

d

) 3
2 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

er∫
1

1

t

∣∣∣∣∣1t∑
n≤t

χψ(n)

∣∣∣∣∣ dt� r3/2

whence

Tχ(N, r)�
√
r
∑
d|r

(
1

d

) 3
2 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

N
d∫

er

1

t

∣∣∣∣∣1t∑
n≤t

χψ(n)

∣∣∣∣∣ dt+ (log q)3δg .

Applying Halász’s Theorem 2.13 we find

Tχ(N, r)�
√
r
∑
d|r

(
1

d

) 3
2 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

N
d∫

er

((
log log t

)
e−M(t,χψ)+

1

log t

)
dt

t
+(log q)3δg .

The 1
log t

term contributes �
√
r log logN , which is negligible compared to the error

term. So, we have

Tχ(N, r) �
√
r
∑
d|r

(
1

d

) 3
2 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

N
d∫

er

(
log log t

)
e−M(t,χψ) dt

t
+ (log q)3δg

=
√
r
∑
d|r

(
1

d

) 3
2

N
d∫

er

(
log log t

) 1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

e−M(t,χψ)

 dt

t
+ (log q)3δg

From the work of Balog-Granville-Soundararajan [1], we know that for all but at most
√

log log t of the characters
(
mod r

d

)
we have

M(t, χψ) ≥
(
1 + o(1)

)
log log t.

Moreover, for all but at most one possible exceptional character
(
mod r

d

)
, Lemma 3.3
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of [1] asserts that

M(t, χψ) ≥
(

1

3
+ o(1)

)
log log t.

Finally, for the possible exceptional character ξd
(
mod r

d

)
, our Theorem 2.14 guaran-

tees that

M(t, χξd) ≥
(
δg + o(1)

)
log log t.

Putting all this together, we see that

1

ϕ
(
r
d

) ∑o

ψ (mod r
d)

e−M(t,χψ) ≤ 1

(log t)1+o(1)
+

1

ϕ
(
r
d

) √
log log t

(log t)1/3+o(1)
+

1

ϕ
(
r
d

) 1

(log t)δg+o(1)

� 1

(log t)1+o(1)
+

1

ϕ
(
r
d

) 1

(log t)δg+o(1)
(2.31)

The contribution to Tχ(N, r) from the first term of (2.31) is

�
√
r
∑
d|r

(
1

d

) 3
2

N
d∫

er

1

(log t)1+o(1)

dt

t
� (logN)2δg .

The second term of (2.31) makes a potentially larger contribution to Tχ(N, r): it adds

�
√
r
∑
d|r

(
1

d

) 3
2

N
d∫

er

1

ϕ
(
r
d

) 1

(log t)δg+o(1)

dt

t

�g
1

r

∑
d|r

d3/2

ϕ(d)
(logN)1−δg+o(1)

�g
1√
r

(logN)1−δg+o(1).

Thus we have proved the following bound:

(2.32) Tχ(N, r)�g
1√
r

(logN)1−δg+o(1) + (log q)3δg .
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2.5 Concluding the proof of Theorem 2.1

Suppose χ (mod q) is a primitive character of odd order g. From Pólya’s Fourier

expansion (2.2) we deduce that

Sχ(t) = −τ(χ)

2πi

∑
1≤|n|≤q

χ(n)

n
e

(
−nt
q

)
+O(log q)

� √
q

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)

n
e

(
−nt
q

)∣∣∣∣∣∣+ log q(2.33)

We may assume that 0 < t
q
< 1. Set α = − t

q
and let M = e

√
log q. By Dirichlet’s

theorem on diophantine approximation, there exists a reduced fraction b
r

with r ≤M

such that ∣∣∣∣α− b

r

∣∣∣∣ ≤ 1

rM
.

If α belongs to a minor arc, i.e. if (log q)2δg < r ≤ M , then from (2.6), which is a

special case of Corollary 2.8, we deduce that

∑
1≤|n|≤q

χ(n)

n
e(nα) � log r +

1 + (log r)5/2

√
r

log q + log log q

�
√

log q +
log q

r1/2−o(1)

�g (log q)1−δg+o(1).(2.34)

Now suppose instead that α belongs to a major arc, i.e. r ≤ (log q)2δg and no minor

arc approximation exists. By (2.5), which is a special case of Lemma 2.10, we conclude

that there exists an N ≤ q such that

(2.35)
∑
n≤q

χ(n)

n
e(nα) =

∑
n≤N

χ(n)

n
e

(
b

r
n

)
+O(log log q).
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From (2.32) we know

∑
1≤|n|≤N

χ(n)

n
e

(
b

r
n

)
�g

1√
r

(logN)1−δg+o(1) + (log q)3δg

whence from (2.35) we conclude

∑
1≤|n|≤q

χ(n)

n
e(nα) �g

1√
r

(logN)1−δg+o(1) + (log q)3δg + log log q

�g (log q)1−δg+o(1).(2.36)

Combining (2.34) and (2.36), we see that for any nonzero α,

∑
1≤|n|≤q

χ(n)

n
e(nα)�g (log q)1−δg+o(1)

which is Theorem 2.2. Plugging this bound into (2.33) we deduce the bound

Sχ(t)�g
√
q (log q)1−δg+o(1)

as claimed in Theorem 2.1.
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CHAPTER III

Characters to smooth moduli

3.1 Introduction

Introduced by Dirichlet to prove his celebrated theorem on primes in arithmetic

progressions (see [9]), Dirichlet characters have proved to be a fundamental tool in

number theory. In particular, character sums of the form

Sχ(x) :=
∑
n≤x

χ(n)

(where χ (mod q) is a Dirichlet character) arise naturally in many classical problems

of analytic number theory, from estimating the least quadratic nonresidue (mod p)

to bounding L-functions. Recall that for any character χ (mod q), |Sχ(x)| is trivially

bounded above by ϕ(q). A folklore conjecture (which is a consequence of the Gener-

alized Riemann Hypothesis) predicts that for non-principal characters the true bound

should look like1

|Sχ(x)| �ε

√
x · qε.

1Here and throughout we use Vinogradov’s notation f � g to mean f = O(g), with variables in
subscript to indicate dependence of the implicit constant.

AMS subject classification: 11L40, 11M06.
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Although we are currently very far from being able to prove such a statement, there

have been some significant improvements over the trivial estimate. The first such is

due (independently) to Pólya and Vinogradov: they proved that

|Sχ(x)| � √q log q

(see [9], pages 135-137). Almost 60 years later, Montgomery and Vaughan [23] showed

that conditionally on the Generalized Riemann Hypothesis (GRH) one can improve

Pólya-Vinogradov to

|Sχ(x)| � √q log log q.

This is a best possible result, since in 1932 Paley [26] had given an unconditional

construction of an infinite class of quadratic characters for which the magnitude of

the character sum could be made � √q log log q.

In their recent work [15], Granville and Soundararajan give a characterization of

when a character sum can be large; from this they are able to deduce a number of

new results, including an improvement of Pólya-Vinogradov (unconditionally) and of

Montgomery-Vaughan (on GRH) for characters of small odd order. In the present

paper we explore a different application of their characterization. Recall that a pos-

itive integer N is said to be smooth if its prime factors are all small relative to N ;

if in addition the product of all its prime factors is small, N is powerful. Building

on the work of Granville-Soundararajan and using a striking estimate developed by

Graham and Ringrose, we will obtain (in Section 3.5) the following improvement of

Pólya-Vinogradov for characters of smooth conductor:

Theorem 1. Given χ (mod q) a primitive character, with q squarefree. For any
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integer n, denote its largest prime factor by P(n). Then

|Sχ(x)| � √q (log q)

( log log log q

log log q

) 1
2

+

(
(log log log q)2 log

(
P(q) d(q)

)
log q

)1/4


where d(q) is the number of divisors of q, and the implied constant is absolute.

From the well-known upper bound log d(q) < log q
log log q

(see, for example, Ex. 1.3.3

of [25]), we immediately deduce the following weaker but more palatable bound:

Corollary. Given χ (mod q) primitive, with q squarefree. Then

|Sχ(x)| � √q (log q)

(
(log log log q)2

log log q
+

(log log log q)2 logP(q)

log q

) 1
4

where the implied constant is absolute.

For characters with powerful conductor, we can do better by appealing to work

of Iwaniec [21]. We prove:

Theorem 2. Given χ (mod q) a primitive Dirichlet character with q large and

rad(q) ≤ exp
(

(log q)3/4
)
,

where the radical of q is defined

rad(q) :=
∏
p|q

p.

Then

|Sχ(x)| �ε
√
q (log q)7/8+ε.

The key ingredient in the proofs of Theorems 1 and 2 is also at the heart of [15].

In that paper, Granville and Soundararajan introduce a notion of ‘distance’ on the
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set of characters, and then show that |Sχ(x)| is large if and only if χ is close (with

respect to their distance) to a primitive character of small conductor and opposite

parity (ideas along these lines had been earlier approached by Hildebrand in [20], and

- in the context of mean values of arithmetic functions - by Halász in [17, 18]). More

precisely, given characters χ, ψ, let

D(χ, ψ; y) :=

(∑
p≤y

1− Re χ(p)ψ(p)

p

) 1
2

.

Although one can easily furnish characters χ 6= ψ and a y for which D(χ, ψ; y) = 0,

all the other properties of a distance function are satisfied; in particular, a triangle

inequality holds:

D(χ1, ψ1; y) + D(χ2, ψ2; y) ≥ D(χ1χ2, ψ1ψ2; y)

(see [16] for a more general form of this ‘distance’ and its role in number theory).

Granville and Soundararajan’s characterization of large character sums comes in the

form of the following two theorems:

Theorem A ([15], Theorem 2.1). Given χ (mod q) primitive, let ξ (mod m) be any

primitive character of conductor less than (log q)
1
3 which minimizes the quantity

D(χ, ξ; q). Then

|Sχ(x)| � (1− χ(−1)ξ(−1))

√
m

ϕ(m)

√
q log q exp

(
−1

2
D(χ, ξ; q)2

)
+
√
q (log q)

6
7 .

Theorem B ([15], Theorem 2.2). Given χ (mod q) a primitive character, let ξ (mod m)
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be any primitive character of opposite parity. Then

max
x
|Sχ(x)|+

√
m

ϕ(m)

√
q log log q �

√
m

ϕ(m)

√
q log q exp

(
−D(χ, ξ; q)2

)
.

Roughly, the first theorem says that |Sχ(x)| is small (i.e. � √q (log q)6/7) unless

there exists a primitive character ξ of small conductor and opposite parity, whose

distance from χ is small (i.e. D(χ, ξ; q)2 ≤ 2
7

log log q); the second theorem says that if

there exists a primitive character ξ (mod m) of small conductor and of opposite parity,

whose distance from χ is small, then |Sχ(x)| gets large. In particular, to improve

Pólya-Vinogradov for a primitive character χ (mod q) it suffices (by Theorem A) to

find a lower bound on the distance from χ to primitive characters of small conductor

and opposite parity. For example, if one can find a positive constant δ, independent

of q, for which

(3.1) D(χ, ξ; q)2 ≥ (δ + o(1)) log log q

then Theorem A would immediately yield an improvement of Pólya-Vinogradov:

max
x
|Sχ(x)| � √q (log q)1− δ

2
+o(1) .

As it turns out (see Lemma 3.2 of [15]), it is not too difficult to show (3.1) holds for

χ a character of odd order g, with δ = δg = 1− g
π

sin π
g
.

Thus, to derive bounds on character sums from Theorem A, one must understand

the magnitude of D(χ, ξ; q); this is the problem we take up in Section 3.2. Since

D(χ, ξ; q) = D(χ ξ, 1; q), we are naturally led to study lower bounds on distances of

the form D(χ, 1; y), for χ a primitive character and y a parameter with some flexibility.
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By definition,

D(χ, 1; y)2 =
∑
p≤y

1

p
− Re

∑
p≤y

χ(p)

p
.

The first sum on the right hand side is well-approximated by log log y (a classical

estimate due to Mertens, see pages 56-57 of [9]); we will show that the second sum is

comparable to |L(sy, χ)|, where

sy := 1 +
1

log y
.

To be precise, in Section 3.2 we prove:

Lemma 3. For all y ≥ 2,

D(χ, 1; y)2 = log

∣∣∣∣ log y

L(sy, χ)

∣∣∣∣+O(1).

Our problem is now reduced to finding upper bounds on |L(s, χ)| for s slightly

larger than 1. This is a classical subject, and many bounds are available. Thanks

to the remarkable work of Graham and Ringrose [13] on short character sums, a

particularly strong upper bound on L-functions is known when the character has

smooth modulus; from a slight generalization of their result we will deduce (in Section

3.3) the following:

Lemma 4. Given a primitive character χ (mod Q), let r be any positive number such

that for all p ≥ r, ordpQ ≤ 1. Let

q′ = q′r :=
∏
p<r

pordpQ

and denote by P(Q) the largest prime factor of Q. Then for all y > 3,

|L(sy, χ)| � log q′ +
logQ

log logQ
+
√

(logQ)
(

logP(Q) + log d(Q)
)

65



where the implied constant is absolute.

Using the bound log d(q) < log q
log log q

one deduces the friendlier but weaker bound

|L(sy, χ)| � log q′ +
logQ

(log logQ)1/2
+
√

(logQ)
(

logP(Q)
)
.

Lemma 4 will enable us to prove Theorem 1. For the proof of Theorem 2, we need

a corresponding bound for L(sy, χ) when the conductor of χ is powerful. In Section

3.4, using a potent estimate of Iwaniec [21] we will prove:

Lemma 5. Given χ (mod Q) a primitive Dirichlet character with Q large and

rad(Q) ≤ exp
(

2 (logQ)3/4
)
.

Then for all y > 3,

|L(sy, χ)| �ε (logQ)3/4+ε .

In the final section of the paper, we synthesize our results and prove Theorems 1

and 2.

Acknowledgements: I am indebted to Professor Soundararajan for suggesting the

problem in the first place, for encouraging me throughout, and for making innumer-

able improvements to my exposition. I am also grateful to the referee for meticulously

reading the manuscript and catching an important error in the proofs of Theorems

1 and 2, to Denis Trotabas and Bob Hough for some helpful discussions, and to the

Stanford Mathematics Department, where the bulk of this project was completed.

3.2 The size of D(χ, 1; y)

How large should one expect D(χ, 1; y) to be? Before proving Lemma 3 we gain

intuition by exploring what can be deduced from GRH.
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Proposition 3.1. Assume GRH. For any non-principal character χ (mod Q) we have

D(χ, 1; y)2 = log log y +O(log log logQ).

Proof. Since ∑
p≤y

1

p
= log log y +O(1)

by Mertens’ well-known estimate, we need only show that

∑
p≤y

χ(p)

p
= O (log log logQ) .

We may assume that y > (logQ)6, else the estimate is trivial. Recall that on GRH,

for all x > (logQ)6 we have:

θ(x, χ) :=
∑
p≤x

χ(p) log p�
√
x (logQx)2 � x5/6

(such a bound may be deduced from the first formula appearing on page 125 of [9]).

Partial summation now gives

∑
(logQ)6<p≤y

χ(p)

p
=

y∫
(logQ)6

1

t log t
dθ(t, χ)� 1

logQ
� 1

and the proposition follows.

We now return to unconditional results. Recall that the prime number theorem

gives θ(x) :=
∑

p≤x log p ∼ x.

67



Proof of Lemma 3: As before, by Mertens’ estimate it suffices to show that

(3.2) Re
∑
p≤y

χ(p)

p
= log |L(sy, χ)|+O(1)

where sy := 1 + (log y)−1. From the Euler product we know

log |L(sy, χ)| = Re
∑
p

∞∑
k=1

χ(p)k

k pksy
= Re

∑
p

χ(p)

psy
+O(1)

so that (3.2) would follow from

∑
p≤y

(
1

p
− 1

psy

)
+
∑
p>y

1

psy
� 1.

The first term above is

∑
p≤y

(
1

p
− 1

psy

)
=
∑
p≤y

1− exp
(
− log p

log y

)
p

≤ 1

log y

∑
p≤y

log p

p
=

1

log y

y∫
1

1

t
dθ(t)� 1

by partial summation and the prime number theorem. A second application of partial

summation and the prime number theorem yields

∑
p>y

1

psy
=

∞∫
y

1

tsy log t
dθ(t)� 1.

The lemma follows.

For a clearer picture of where we are heading, we work out a simple consequence

of this result. Let χ (mod q) and ξ (mod m) be as in Theorem A. By Lemma 3,

D(χ, ξ; q)2 = D(χξ, 1; q)2 = log

∣∣∣∣ log q

L(sq, χ ξ)

∣∣∣∣+O(1) ,

and Theorem A immediately yields:
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Proposition 3.2. Let χ (mod q) be a primitive character, and ξ a character as in

Theorem A. Then

|Sχ(x)| � √q
√

(log q)
∣∣L(sq, χ ξ)

∣∣+
√
q (log q)6/7.

Thus to improve Pólya-Vinogradov it suffices to prove

L(sq, χ ξ) = o(log q).

This is the problem we explore in the next two sections.

3.3 Proof of Lemma 4

We ultimately wish to bound |L(sq, χ ξ)|; in this section we explore the more gen-

eral quantity |L(sy, χ)|, where throughout y will be assumed to be at least 3, and Q

will denote the conductor of χ.

By partial summation (see (8) on page 33 of [9]),

L(sy, χ) = sy

∞∫
1

1

tsy+1

(∑
n≤t

χ(n)

)
dt.

When t > Q, the character sum is trivially bounded by Q, so that this portion of

the integral contributes an amount � 1. For t ≤ T (a suitable parameter to be

chosen later), we may bound our character sum by t, and therefore this portion of

the integral contributes an amount � log T . Thus,

(3.3) |L(sy, χ)| �

∣∣∣∣∣∣
Q∫
T

1

t2

(∑
n≤t

χ(n)

)
dt

∣∣∣∣∣∣+ 1 + log T.
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To bound the character sum in this range, we invoke a powerful estimate of Graham

and Ringrose [13]. For technical reasons, we need a slight generalization of their

theorem:

Theorem 3.3 (compare to Lemma 5.4 of [13]). Given a primitive character χ (mod

Q), with q′ and P(Q) defined as in Lemma 4. Then for any k ∈ N, writing K := 2k,

we have

∣∣∣∣∣ ∑
M<n≤M+N

χ(n)

∣∣∣∣∣� N1− k+3
8K−2 P(Q)

k2+3k+4
32K−8 Q

1
8K−2 (q′)

k+1
4K−1 d(Q)

3k2+11k+8
16K−4 (logQ)

k+3
8K−2

where d(Q) is the number of divisors of Q, and the implicit constant is absolute.

Our proof of this is a straightforward extension of the arguments given in [13].

For the sake of completeness, we write out all the necessary modifications explicitly

in the appendix.

Armed with Theorem 3.3, we deduce Lemma 4 in short order. Set

T := P(Q)3kQ
1
k (q′)2 d(Q)3k (logQ)

16K
k .

If T ≤ Q, then for all t ≥ T Theorem 3.3 implies

∣∣∣∣∣∑
n≤t

χ(n)

∣∣∣∣∣� t

logQ

whence ∣∣∣∣∣∣
Q∫
T

1

t2

(∑
n≤t

χ(n)

)
dt

∣∣∣∣∣∣� 1.

From the bound (3.3) we deduce that for T ≤ Q, |L(sy, χ)| � log T . But for T > Q
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such a bound holds trivially (irrespective of our choice of T ). Therefore

|L(sy, χ)| � log T � k logP(Q) +
1

k
logQ+ log q′ + k log d(Q) +

K

k
log logQ.

It remains to choose k appropriately. Let

k′ := min

{
1

10
log logQ,

√
logQ

logP(Q) + log d(Q)

}
,

and set k = [k′] + 1. Writing K ′ = 2k
′

we have

k′ logP(Q) + k′ log d(Q)�
√

(logQ)
(

logP(Q) + log d(Q)
)
� 1

k′
logQ

and

K ′

k′
log logQ� (logQ)

log 2
10 (log logQ)� (logQ)

1
10 � 1

k′
logQ

Finally, since K � K ′ and k � k′ (i.e. k � k′ � k) for all Q sufficiently large, we

deduce:

|L(sy, χ)| � log q′ +
1

k
logQ� log q′ +

logQ

log logQ
+
√

(logQ)
(

logP(Q) + log d(Q)
)
.

The proof of Lemma 4 is now complete.

3.4 Proof of Lemma 5

Iwaniec, inspired by work of Postnikov [27] and Gallagher [10], proved the follow-

ing:

Theorem 3.4 (See Lemma 6 of [21]). Given χ (mod Q) a primitive Dirichlet char-

71



acter. Then for all N,N ′ satisfying (rad Q)100 < N < 9Q2 and N < N ′ < 2N ,

∣∣∣∣∣ ∑
N≤n≤N ′

χ(n)

∣∣∣∣∣ < γ
N
N1−ε

N

where

γx := exp(C1zx log2C2zx) εx :=
1

C3z2
x logC4zx

zx :=
log 3Q

log x

and the Ci are effective positive constants independent of Q.

In fact, Lemma 6 of [21] is more general (bounding sums of χ(n)nit), and provides

explicit choices of the constants Ci.

Proof of Lemma 5:

Recall the bound (3.3):

|L(sy, χ)| �

∣∣∣∣∣∣
Q∫
T

1

t2

(∑
n≤t

χ(n)

)
dt

∣∣∣∣∣∣+ 1 + log T.

Writing ∣∣∣∣∣∑
n≤t

χ(n)

∣∣∣∣∣ ≤ √t+

∣∣∣∣∣∣
∑
√
t<n≤t

χ(n)

∣∣∣∣∣∣ ,
partitioning the latter sum into dyadic intervals, and applying Iwaniec’s result to each

of these, we deduce that so long as
√
t > (rad Q)100,

∣∣∣∣∣∑
n≤t

χ(n)

∣∣∣∣∣� (log t) γt t
1−εt

with C1 = 400, C2 = 2400, C3 = 4 · 18002, C4 = 7200 in the definitions of γt and εt.

Choosing T = exp((logQ)α) for some α ∈ (0, 1) to be determined later, and assuming
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that T > (rad Q)200, our bound becomes

(3.4) |L(sy, χ)| � (logQ)α +

Q∫
exp((logQ)α)

log t

t2
γt t

1−εt dt

Denote by
∫

the integral in (3.4), and set δ
Q

= log 3
logQ

. Making the substitution

z = log 3Q
log t

and simplifying, one finds

∫
= (log2 3Q)

(1+δ
Q

)(logQ)1−α∫
1+δ

Q

1

z3
exp

(
C1z log2C2z −

log 3Q

C3z3 logC4z

)
dz

� exp

(
2 log log 3Q+ C1(logQ)1−α(log logQ)2 − (logQ)3α−2

C3 log logQ

) (1+δ
Q

)(logQ)1−α∫
1+δ

Q

dz

z3

� 1

upon choosing α = 3
4

+ ε. Plugging this back into (3.4) we conclude.

It is plausible that with a more refined upper bound on the integral in (3.4) one

could take a smaller value of α, thus improving the exponents in both Lemma 5 and

Theorem 2.

3.5 Upper bounds on character sums

Given χ (mod q) a primitive character, recall from Proposition 3.2 the bound

|Sχ(x)| � √q
√

(log q)
∣∣L(sq, χ ξ)

∣∣+
√
q (log q)6/7

where ξ (mod m) is the primitive character with m < (log q)1/3 which χ is closest to,

and sq := 1 + 1
log q

.
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To prove Theorems 1 and 2, we would like to apply Lemmas 4 and 5 (respec-

tively) to derive a bound on |L(sq, χξ)|. An immediate difficulty is that both lemmas

require the character to be primitive, which is not necessarily true of χξ. Instead,

we will apply the lemmas to the primitive character which induces χξ; thus, we must

understand the size of the conductor of χξ. This is the goal of the following simple

lemma, which is surely well-known to the experts but which the author could not find

in the literature. We write [a, b] to denote the least common multiple of a and b, and

cond(ψ) to denote the conductor of a character ψ.

Lemma 3.5. For any non-principal Dirichlet characters χ1 (mod q1) and χ2 (mod q2),

cond(χ1χ2)
∣∣∣ [cond(χ1), cond(χ2)

]
Proof. First, observe that χ1χ2 is a character modulo [q1, q2]: one needs only check

that it is completely multiplicative, periodic with period [q1, q2], and that χ1χ2(n) = 0

if and only if (n, [q1, q2]) > 1. Since the conductor of a character divides its modulus,

the lemma is proved in the case that both χ1 and χ2 are primitive.

Now suppose that χ1 and χ2 are not necessarily primitive; denote by χ̃i (mod q̃i)

the primitive character which induces χi. By the argument above, we know that

(3.5) cond(χ̃1χ̃2)
∣∣∣ [q̃1, q̃2].

Next we note that the character χ̃1χ̃2, while not necessarily primitive, does induce

χ1χ2 (i.e. χ1χ2 = χ̃1χ̃2χ0 for χ0 the trivial character modulo [q1, q2]), whence

cond(χ̃1χ̃2) = cond(χ1χ2). Plugging this into (3.5) we immediately deduce the

lemma.

Given χ (mod q) and ξ (mod m) as at the start of the section, denote by ψ (mod Q)
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the primitive character inducing χξ. Taking χ1 = χ and χ2 = ξ in Lemma 3.5, we

see that Q | [q,m]; in particular, Q ≤ qm. On the other hand, making the choice

χ1 = χξ and χ2 = ξ yields q | [Q,m], so q ≤ Qm. Combining these two estimates, we

conclude that

(3.6)
q

m
≤ Q ≤ qm

Since we will be working with both L(s, χξ) and L(s, ψ), the following estimate

will be useful:

Lemma 3.6. Given χ (mod q) and ξ (mod m) primitive characters, let ψ (mod Q) be

the primitive character which induces χξ. Then for all s with Re(s) > 1,

∣∣∣∣L(s, χξ)

L(s, ψ)

∣∣∣∣� 1 + log logm.

Proof. For Re(s) > 1 we have

L(s, χξ)

L(s, ψ)
=
∏
p|[q,m]

p-Q

(
1− ψ(p)

ps

)

whence ∣∣∣∣L(s, χξ)

L(s, ψ)

∣∣∣∣ ≤ ∏
p|[q,m]

p-Q

(
1 +

1

p

)
.

From Lemma 3.5 we know q | [Q,m]; it follows that if p | [q,m] and p - Q then p must

divide m. Thus, ∏
p|[q,m]

p-Q

(
1 +

1

p

)
≤
∏
p|m

(
1 +

1

p

)
.

Since

log
∏
p|m

(
1 +

1

p

)
=
∑
p|m

log

(
1 +

1

p

)
≤
∑
p|m

1

p
,
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to prove the lemma it suffices to show that for all m sufficiently large,

(3.7)
∑
p|m

1

p
≤ log log logm+O(1).

Let P = P (m) denote the largest prime such that
∏

p≤P p ≤ m. Then ω(m) ≤ π(P )

(otherwise we would have m ≥ rad(m) >
∏

p≤P p, contradicting the maximality of

P ); therefore, ∑
p|m

1

p
≤
∑
p≤P

1

p
= log logP +O(1).

Finally from the prime number theorem we know that for all m sufficiently large,

θ(P ) ≥ 1
2
P , whence P ≤ 2 logm and the bound (3.7) follows.

With these lemmas in hand we can now prove Theorems 1 and 2 without too

much difficulty.

Proof of Theorem 1: Given χ (mod q) primitive with q squarefree, define the char-

acter ξ (mod m) as in Theorem A, and let ψ (mod Q) be the primitive character

inducing χξ. Recall that we denote the largest prime factor of n by P(n).

From Proposition 3.2 we have

(3.8) |Sχ(x)| � √q
√

(log q)
∣∣L(sq, χ ξ)

∣∣+
√
q (log q)6/7,

and Lemma 3.6 yields the bound

(3.9)
∣∣L(sq, χ ξ)

∣∣� |L(sq, ψ)| log log log q.

Lemma 3.5 tells us that Q | [q,m], whence for all primes p > m we have

ordpQ ≤ max(ordp q, ordpm) = ordp q ≤ 1
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since q is squarefree. Therefore we may apply Lemma 4 to the character ψ, taking

y = q and

q′ =
∏
p≤m

pordpQ ;

this gives the bound

|L(sq, ψ)| � log q′ +
logQ

log logQ
+
√

(logQ) log
(
P(Q)d(Q)

)
.

It remains only to bound the right hand side in terms of q, which we do term by term.

The first term is small:

log q′ =
∑
p≤m

(ordpQ) log p

≤
∑
p≤m

(ordp q) log p+
∑
p≤m

(ordpm) log p

≤ θ(m) + logm

� (log q)
1
3 .

From (3.6) we deduce

logQ

log logQ
� log q

log log q
.

For the last term, Lemma 3.5 yields

d(Q) ≤ d(qm) ≤ d(q)d(m) ≤ d(q)(log q)
1
3

and

P(Q) ≤ max
(
P(q),P(m)

)
≤ P(q)P(m) ≤ P(q)(log q)

1
3 ,

while (3.6) gives logQ� log q. Putting this all together, we find

|L(sq, ψ)| � log q

log log q
+
√

(log q) log
(
P(q)d(q)

)
;
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plugging this into (3.9) and (3.8) we deduce the theorem.

Proof of Theorem 2: Given χ (mod q) with q large and rad(q) ≤ exp
(

(log q)
3
4

)
, let

ξ (mod m) be defined as in Theorem A, and let ψ (mod Q) denote the primitive

character which induces χξ. We have rad(m) ≤ exp
(
θ(m)

)
, whence by the prime

number theorem ∃C > 0 with

rad(Q) ≤ rad(q) rad(m)

≤ exp
(
(log q)3/4 + C (log q)1/3

)
≤ exp

(
4

3
(log q)3/4

)

for all q sufficiently large. From (3.6) we deduce

(
logQ

log q

) 3
4

≥
(

log q
m

log q

) 3
4

≥
(

1− log log q

log q

)
≥ 2

3

for q sufficiently large, whence

rad(Q) ≤ exp
(
2 (logQ)3/4

)
.

Combining Lemma 5 with (3.9) and (3.6) we obtain

∣∣L(sq, χ ξ)
∣∣�ε (log log log q)(logQ)3/4+ε ≤ (log log log q)(log qm)3/4+ε �ε (log q)3/4+ε.

Plugging this into Proposition 3.2 yields Theorem 2.
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APPENDIX A

Properties of Dirichlet characters

In the sequel, we use the convention that (Z/1Z)∗ := {1}.

Definition 1.1. Some terminology:

• A Dirichlet character, written χ (mod q), is any group homomorphism

χ : (Z/qZ)∗ −→ C∗

• The principal or trivial character modulo q, denoted χ0 (mod q), is the trivial

homomorphism whose kernel is the entire group (Z/qZ)∗.

• Given χ (mod q), we say d ∈ N is an induced modulus if the projection map

π : (Z/qZ)∗ −→ (Z/dZ)∗

x+ qZ 7−→ x+ dZ

is well-defined and χ factors through (Z/dZ)∗ via the map π, i.e. there exists a

function (not necessarily a homomorphism) χ′ : (Z/dZ)∗ −→ C∗ which makes
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the following diagram commute:

(A.1) (Z/qZ)∗

π

��

χ
// C∗

(Z/dZ)∗
χ′

;;w
w

w
w

w

• The conductor of χ (mod q) is its smallest induced modulus.

• χ (mod q) is primitive if its conductor is q.

Any Dirichlet character χ (mod q) can be extended to a completely multiplicative,

periodic function

fχ : Z −→ C(A.2)

n 7−→


χ(n+ qZ) if (n, q) = 1

0 otherwise

Conversely, if f is any function from Z to C which is (1) completely multiplicative,

(2) periodic with period q, and (3) non-zero iff the argument is relatively prime to q,

then f
∣∣∣
(Z/qZ)∗

is a character χ (mod q), and f = fχ. Thus, although they are different

functions, χ and fχ carry precisely the same data. Following convention, we will

abuse notation and refer to the extended function fχ simply as χ.

If d is an induced modulus of χ (mod q), then by definition π must be well-defined,

i.e.

1. if x ∈ (Z/qZ)∗ then π(x) ∈ (Z/dZ)∗; and

2. if x ≡ y (mod q) and (x, q) = 1 then π(x) = π(y).

The second condition is equivalent to requiring that x + q ≡ x (mod d) whenever

(x, q) = 1. Since (Z/qZ)∗ is non-empty, we have proved:
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Proposition 1.2. If d is an induced modulus of χ (mod q), then d|q.

Remark 1.3. Condition 2 implies condition 1 above: if condition 2 holds, then d|q,

and writing q = kd we have (x, q) = 1 =⇒ (x, kd) = 1 =⇒ (x, d) = 1. Thus we have

actually proved that π is well-defined iff d|q.

Next, we wish to show that when d is an induced modulus of χ (mod q), the

projection map π : (Z/qZ)∗ −→ (Z/dZ)∗ is a surjective homomorphism.

Proposition 1.4. Given arbitrary n, d, q ∈ N such that (n, d) = 1. Then ∃N ≡ n

(mod d) such that (N, q) = 1.

Proof. For all primes p set Ap := {k ∈ Z : p|n + kd}. We will first show that all the

elements of Ap are congruent to each other (mod p). An application of the Chinese

Remainder Theorem will then furnish a suitable lift N of n.

Suppose ∃m, ` ∈ Ap such that m 6≡ ` (mod p). Then p|n+md and p|n+`d whence

p|(m − `)d. This would imply that p|d, whence p|md, whence p|n. But this would

mean p|(n, d), which is impossible since (n, d) = 1.

Thus as claimed, all elements of Ap are congruent to each other (mod p); let ap

denote the residue class to which they all belong (mod p). Since there are only a

finite number of distinct prime factors of q, the Chinese Remainder Theorem yields

an integer b which simultaneously satisfies b ≡ ap+1 (mod p) for all p|q. In particular,

b 6≡ ap (mod p) for every p|q, whence b 6∈ Ap for every p|q. But this means q shares

no prime factors with N := n+ bd. So (N, q) = 1, and clearly N ≡ n (mod d).

It immediately follows that the projection map π is surjective; it is also clearly a

homomorphism. As a corollary, we can now prove the following basic but important

result:

Proposition 1.5. For any induced modulus d of χ (mod q), the function χ′ appearing

in the commutative diagram (A.1) is a character (mod d), and is unique.
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Proof. The surjectivity of π guarantees the uniqueness of χ′, so it suffices to show that

for any a, b ∈ (Z/dZ)∗, χ′(a)χ′(b) = χ′(ab). Given any n ∈ (Z/dZ)∗, the surjectivity of

π guarantees the existence of an ñ ∈ (Z/qZ)∗ such that π(ñ) = n. If ñ1, ñ2 ∈ π−1(n)

are any two lifts of n, then from the commutativity of the diagram (A.1) and the

hypothesis that χ′ is a function we deduce that

χ(ñ1) = χ′
(
π(ñ1)

)
= χ′(n) = χ′

(
π(ñ2)

)
= χ(ñ2)

i.e. χ is independent of the choice of lift. Therefore if ã, b̃ ∈ (Z/qZ)∗ are lifts of

a, b ∈ (Z/dZ)∗, we have

χ′(a)χ′(b) = χ(ã)χ
(
b̃
)

= χ
(
ãb̃
)

= χ′
(
π
(
ãb̃
))

= χ′
(
π(ã)π

(
b̃
))

= χ′(ab)

Conversely, given a character χ′ (mod d) and q any multiple of d, we know (see

Remark 1.3) that the projection π : (Z/qZ)∗ −→ (Z/dZ)∗ is a well-defined (surjective)

homomorphism, whence χ′ induces a unique character χ (mod q): χ = χ′ ◦ π. In

particular, every character χ (mod q) is induced by precisely one primitive character.

If we now think of a character as having domain Z, we can recast some of the

properties above in a more concrete form. For example, if χ (mod q) induces / is

induced by the character χ′ (mod d), then χ = χ′χ0, where χ0 is the trivial character

mod q. This implies that χ (mod q) is primitive iff there is no character χ′ (mod d),

d < q, which agrees with χ whenever χ 6= 0.
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Proposition 1.6. Given χ (mod q) and q̃ | q such that

(A.3) χ(n1) = χ(n2) whenever n1 ≡ n2 (mod q̃) and (n1, q) = 1 = (n2, q).

Then ∃ χ̃ (mod q̃) inducing χ.

Proof. For n ∈ Z with (n, q̃) = 1 we define

ñ =


n if (n, q) = 1

n+R(q, n) · q̃ otherwise

where

R(q, n) =
rad q

rad n
=
∏
p|q
p-n

p.

We make a series of observations, which we prove immediately following:

(n, q̃) = 1 =⇒ (ñ, q) = 1(A.4)

(n, q̃) = 1 =⇒ n ≡ ñ (mod q̃)(A.5)

n1 ≡ n2 (mod q̃) and (n1, q̃) = 1 = (n2, q̃) =⇒ ñ1 ≡ ñ2 (mod q̃)(A.6)

(n1, q̃) = 1 = (n2, q̃) =⇒ ñ1n2 ≡ ñ1ñ2 (mod q̃)(A.7)

We prove these in order. If (n, q) = 1 then (A.4) holds by definition of ñ, so we

may assume (n, q) 6= 1. It suffices to show that for every prime factor ` of q, ` divides

exactly one of the two numbers {n, R(q, n) · q̃} (because then it would not divide

their sum).

• If ` | n then ` - q̃ by hypothesis and ` - R(q, n) by definition.

• If ` | R(q, n) then ` - n by definition.

• If ` | q̃ then ` - n by hypothesis.

84



This completes the proof of (A.4). The statement (A.5) is clear, and immediately

implies both (A.6) and (A.7).

For (n, q̃) = 1, define χ̃(n) = χ(ñ). Then χ̃ is a character (mod q̃):

• χ̃(n) = χ(ñ) 6= 0 for (n, q̃) = 1, by (A.4).

• Given n1 ≡ n2 (mod q̃) such that (n1, q̃) = 1 = (n2, q̃), we have

χ̃(n1) = χ(ñ1) = χ(ñ2) by (A.6) and (A.3)

= χ̃(n2)

• Given n1, n2 ∈ (Z/qZ)∗, we have

χ̃(n1n2) = χ(ñ1n2) = χ(ñ1ñ2) by (A.7) and (A.3)

= χ(ñ1)χ(ñ2)

= χ̃(n1)χ̃(n2)

Finally, by definition, for (n, q) = 1 we have χ̃(n) = χ(ñ) = χ(n), whence χ̃ induces

χ.

Denote the Gauss sum for χ (mod q) by τ(χ) =
∑

n≤q χ(n) e
(
n
q

)
.

Proposition 1.7. Given χ (mod q) primitive,

(A.8) χ(a)τ(χ) =
∑
n≤q

χ(n) e

(
an

q

)
∀a ∈ Z

Proof. If (a, q) = 1, (A.8) holds for any χ (mod q), independent of the primitivity of

χ. Thus, it suffices to prove that when (a, q) > 1,

∑
n≤q

χ(n) e

(
an

q

)
= 0.
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Write a
q

= a1

q1
with (a1, q1) = 1. Then it suffices to prove

(A.9)
∑
n≤q

χ(n) e

(
a1n

q1

)
= 0 for q1 | q, q1 6= q, and (a1, q1) = 1.

(A.9) holds trivially if q1 = 1, so we may assume 1 < q1 < q. Write q = q1q2. Then

we have

∑
n≤q

χ(n) e

(
a1n

q1

)
=

∑
r (mod q1)

∑
n≤q

n≡r (mod q1)

χ(n) e

(
a1r

q1

)

=
∑

r (mod q1)

S(r) e

(
a1r

q1

)
(A.10)

where

S(r) =
∑
n≤q

n≡r (mod q1)

χ(n) .

To prove (A.9), and thence the proposition, it suffices to prove S(r) = 0 for every r.

Suppose this is not the case for some r. Note that for any m ≡ 1 (mod q1) relatively

prime to q we have

χ(m)S(r) =
∑
n≤q

n≡r (mod q1)

χ(mn) =
∑
k≤q

k≡r (mod q1)

χ(k) = S(r)

upon setting k = mn. Since we’re assuming S(r) 6= 0, we must have

(A.11) χ(m) = 1 ∀m ≡ 1 (mod q1) such that (m, q) = 1.

But then for any n1 ≡ n2 (mod q1) with (n1, q) = 1 = (n2, q) we would have χ(n1 n2) =

1 (where n2 denotes the multiplicative inverse of n2 modulo q), whence χ(n1) =

χ(n2). By Proposition 1.6, χ must be induced by some χ1 (mod q1), contradicting

our hypothesis that χ (mod q) is primitive.
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Note that we’ve implicitly proved a variant of Proposition 1.6:

Corollary 1.8. Given χ (mod q) and q̃ | q such that χ(n) = 1 for all n ≡ 1 (mod q̃)

which are relatively prime to q. Then ∃ χ̃ (mod q̃) inducing χ.

We’ve also proved that primitive characters behave nicely on arithmetic progres-

sions whose constant difference is a proper divisor of q:

Corollary 1.9. Given χ (mod q) primitive and q̃ | q such that q̃ 6= q. Then ∀ r ∈ Z,

∑
n≤q

n≡r (mod q̃)

χ(n) = 0.

To conclude this brief survey, we prove the orthogonality relations. Fix any integer

q ≥ 2, and set G = (Z/qZ)∗ and Ĝ = {χ (mod q)}. The fundamental theorem of finite

abelian groups implies that G ' Ĝ.

Proposition 1.10.

1

|G|
∑
n∈G

χ(n)k =


1 if ord(χ) | k

0 otherwise

Proof. For any a coprime to q and for any positive integer k,

χ(a)k
∑
n∈G

χ(n)k =
∑
n∈G

χ(an)k =
∑
ninG

χ(n)k.

This implies that either χ(a)k = 1 for all a coprime to q, or that
∑

n≤q χ(n)k = 0;

this concludes the proof.

Proposition 1.11.

1

|Ĝ|

∑
χ∈Ĝ

χ(n) =


1 if n ≡ 1 (mod q)

0 otherwise
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Proof.

1

|G|
∑
n∈G

∣∣∣∣∣∣
∑
χ∈Ĝ

χ(n)

∣∣∣∣∣∣
2

=
1

|G|
∑
n∈G

∑
χ,ψ∈Ĝ

χψ(n)

=
∑
χ,ψ∈Ĝ

1

|G|
∑
n∈G

χψ(n)

= |Ĝ|

by the previous proposition, with k = 1.

Since

1

|G|
∑
n∈G

∣∣∣∣∣∣
∑
χ∈Ĝ

χ(1)

∣∣∣∣∣∣
2

= |Ĝ|,

we have

1

|G|
∑
n∈G
n6=1

∣∣∣∣∣∣
∑
χ∈Ĝ

χ(n)

∣∣∣∣∣∣
2

= 0

whence each term of the sum is 0, proving the proposition.
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APPENDIX B

Proof of Theorem 3.3

We follow the original proof of Graham and Ringrose very closely; indeed, we will

only explicitly write down those parts of their arguments which must be modified to

obtain our version of the result. We refer the reader to sections 3 - 5 of [13]. Set

S :=
∑

M<n≤M+N χ(n).

We begin by restating Lemma 3.1 of [13], but skimming off some of the unnecessary

hypotheses given there:

Lemma 2.1 (Compare to Lemma 3.1 of [13]). Let k ≥ 0 be an integer, and set

K := 2k. Let q0, . . . , qk be arbitrary positive integers, and let Hi := N/qi for all i.

Then

(B.1) |S|2K ≤ 82K−1

(
max
0≤j≤k

(
N2K−K/J q

K/J
j

)
+

N2K−1

H0 · · ·Hk

∑
h0≤H0

· · ·
∑
hk≤Hk

|Sk(h)|

)

where J = 2j and Sk(h) satisfies the bound given below.

A bound on Sk(h) is given by (3.4) of [13]:

(B.2) |Sk(h)| � N Q−1 |S(Q; χ, fk, gk, 0)|+
∑

0<|s|≤Q/2

1

|s|
|S(Q; χ, fk, gk, s)| .

89



See pages 279-280 of [13] for the definitions of fk, gk, and S(Q;χ, fk, gk, s).

Let q := Q/q′. We have (q, q′) = 1, whence from Lemma 4.1 of [13] we deduce

S(Q;χ, fk, gk, s) = S(q′;χ′, fk, gk, sq)S(q; η, fk, gk, sq′)

for some primitive characters χ′ (mod q′) and η (mod q), where qq ≡ 1 (mod q′) and

q′q′ ≡ 1 (mod q). By construction, q is squarefree, so Lemmas 4.1-4.3 of [13] apply

to give ∣∣S(q; η, fk, gk, sq′)
∣∣ ≤ d(q)k+1

(
q

(q,Qk)

)1/2

(q,Qk, |sq′|)

whereQk :=
∏

i≤k hiqi. Combining this with the trivial estimate |S(q′;χ′, fk, gk, sq)| ≤

q′ yields:

Lemma 2.2 (Compare with Lemma 4.4 of [13]). Keep the notation as above. Then

for any positive integers q1, . . . , qk,

|S(Q; χ, fk, gk, s)| ≤ q′ d(q)k+1

(
q

(q,Qk)

)1/2

(q,Qk, |sq′|).

We shall need the following simple lemma (versions of which appear implicitly in

[13]):

Lemma 2.3. Given q, q′ be as above; let x and H be arbitrary. Then

1.
∑

0<|s|≤x

(q, |sq′|)
|s|

� d(q) log x(B.3)

2.
∑
h≤H

(q, h)
1
2 ≤ d(q)H(B.4)

Proof.
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1. Since (q, q′) = 1, we have (q, q′) = 1, whence

∑
0<|s|≤x

(q, |sq′|)
|s|

= 2
∑

1≤s≤x

(q, sq′)

s
= 2

∑
1≤s≤x

(q, s)

s
= 2

∑
n≥1

an
n

where an := #{s ≤ x : n = s
(q, s)
}. Note that an = 0 for all n > x, and that

an = #{s ≤ x : s = (q, s)n} ≤ #{s ≤ x : s = dn, d | q} ≤ d(q).

Therefore

∑
0<|s|≤x

(q, |sq′|)
|s|

�
∑
n≥1

an
n
≤ d(q)

∑
n≤x

1

n
� d(q) log x.

2. Write ∑
h≤H

(q, h)
1
2 =

∑
n≥1

an
√
n

where an := #{h ≤ H : n = (q, h)}. It is clear that an = 0 whenever n - q.

Also, if (q, h) = n then n | h, whence

an ≤ #{h ≤ H : n | h} ≤ H

n
.

Therefore ∑
h≤H

(q, h)
1
2 =

∑
n≥1

an
√
n ≤

∑
n|q

H√
n
≤ d(q)H.

Lemma 2.4 (Compare to Lemma 4.5 of [13]). Keep the notation from above. For

any real number A0 ≥ 1,

|S|4K � 84K−2
(
AA2K

0 +BA−2K+1
0 (q′)2 + C A2K−1

0 (q′)2
)

91



where

A = N2K

B = N6K−k−4 P k+1Qd(Q)2k+4 log2Q

C = N2K+k+2Q−1 d(Q)4k+4

and the implied constant is independent of k.

(Note that in the original paper, there is a persistent typo of writing M rather

than N .)

Proof. Following the proof of Lemma 4.5 in [13] and applying (B.3) with x = Q/2

yields the following analogue of equation (4.5) from that paper:

(B.5)
∑
hk≤Hk

∑
0<|s|≤Q/2

1

|s|
|S(Q; χ, fk, gk, s)| � q′

√
q d(q)k+2Hk R

− 1
2

k logQ.

Setting Sj := h0 · · ·hj, one deduces the following analogue of equation (4.6) of [13]:

N Q−1
∑
hk≤Hk

|S(Q; χ, fk, gk, 0)| ≤ N q′
√
q Rk

Q
d(Q)k+2Hk

√
(q, Sk−1).

From (B.4) and the bound (q, Sj) ≤ (q, Sj−1) (q, hj) one sees that

(B.6)
∑
h0≤H0

· · ·
∑

hk−1≤Hk−1

√
(q, Sk−1) ≤ d(q)kH0 · · ·Hk−1.

Plugging (B.2) into (B.1) and applying (B.5) and (B.6), one obtains:

|S|2K � 82K−1 max
0≤j≤k

(
N2K−K/J q

K/J
j

)
+

82K−1 q′N2K−1 d(q)k+2 (logQ)

√
q

Rk

+

82K−1 q′N2K d(q)2k+2

√
q

Q

√
Rk.
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Since q | Q, we have that q ≤ Q and d(q) ≤ d(Q). Therefore from the above we

deduce the following analogue of (4.7) in [13]:

|S|2K � 82K−1 max
0≤j≤k

(
N2K−K/J q

K/J
j

)
+

82K−1 q′N2K−1 d(Q)k+2 (logQ)

√
Q

Rk

+

82K−1 q′N2K d(Q)2k+2

√
Rk

Q
.

The rest of the proof given in [13] can now be copied exactly to yield our claim.

Chasing through the arguments in [13] gives this analogue of Lemma 5.3, which

we record for reference:

Lemma 2.5 (Compare to Lemma 5.3 of [13]).

|S| � N1− k+3
8K−2 P

k+1
8K−2 Q

1
8K−2 d(Q)

k+2
4K−1 (logQ)

1
4K−1 (q′)

1
4K−1 +

N1− 1
4K P

k+1
8K d(Q)

3k+4
4K (logQ)

1
4K (q′)

1
2K .

Finally, we arrive at:

Proof of Theorem 3.3. Let Ek be the right hand side of the bound claimed in the

statement of the theorem. The rest of the proof given in [13] now goes through

almost verbatim.

This concludes the proof of Theorem 3.3. Note that one can extend this to a

bound on all non-principal characters by following the argument given directly after

Lemma 5.4 in [13]; however, for our applications the narrower result suffices.
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[28] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger

nachrichten (1918), 21-29.

[29] I. Schur, Einige Bemerkungen zu der vorstehenden Arbeit des Herrn G.
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