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Abstract

The analysis of multi-resolution edge detectors is facilitated in scale space.
This report presents some mathematical results for understanding behavior of
linear edges in scale space. A rigorous analysis of linear edges at different scales
in images was performed to study the influence of other edges. Our analysis iden-
tifies precisely at what scale neighboring edges start influencing the response of
an edge detector. Dislocation of edges, false edges, and merging of edges in scale
space is studied to formulate rules for reasoning in scale space. The theorems,
corollaries, and assertions presented in this report can be used to recover edges,
and related features, in complex images. Our analysis is supported by several
experiments. The future work for reasoning in the scale space is outlined. In
addition, a related literature review is included in this report. This literature
review allows us to learn from the experiencé of other people’s work in edge
detection, multiresolution problem and the scale space exploration. It also verifies
that our research direction has not been investigated, and the results we have

achieved are novel in the literature.
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1. Introduction

In computer vision, the term ”edge” usually refers to the point between two
regions. Edges may represent the boundaries of objects, shadow lines, and so on.
Edge detection usually forms the first stage of computation in a large number of
vision modules. The success of high level computer vision processes relies heavily
on good output from the edge detector. The importance of edge detection in com-
puter vision has led to extensive work on this topic.

In a gray level image, an edge point is a point where an intensity change is
taking place; however, not all intensity changes are edge points. Many edge
detectors start by detecting intensity changes in the image, and then apply some
criteria to delete irrelevant information in order to extract true edges. Gradient-
type operators are used to detect intensity changes. The gradient-type operators
include the directional first and second differences and the rotationally symmetric
Laplacian [12, 37, 42, 35, 3, 43, 40]. Other edge detectors fit a function to inten-
sity values to detect edges. These edge operators view the image intensity func-
tion as a surface which is approximated by a set of basis functions. The edge
detector parameters are estimated from the modeled image surface. Prewitt [38]
was the first to suggest the fitting idea. Hueckel [23], Brooks (7], Haralick (18, 19],

Haralick and Watson [20], all use this type of technique in detecting edges.

Frequently, changes in light intensity reflect many spatial scales at which
visible edges are formed. Changes of intensity take place at many spatial scales,

depending on their physical origin. The presence of edges at many scales in an
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image makes the selection of a threshold for marking edges very difficult. More-
over, the scale at which interesting edges occur in an image is seldom known. As
suggested by Marr & Hildreth [30] and Rosenfeld & Thurston [44], by applying
different sizes of edge operators on an image, we can get a description of the sig-
nal change at different scales. In general, for a small scale operator, we get fine
details of the intensity changes and the operator is more noise sensitive; for a
large scale operator, we get coarse intensity change information. It seems that
multiscale analysis, for tracking the behavior of some features of the signal across
varying scales, can reveal precious information about the nature of the underlying
physical process. The problem is not so much to eliminate fine-scale noise, as to
separate events at different scales arising from distinct physical processes. It is

apparent that for many tasks no one scale of description is categorically correct.

With the introduction of the scale-dependent operator, there comes an ambi-
guity problem. Every setting of the scale parameter yields a different description;
new extremal points may appear, and existing ones may be in a different location
or may completely disappear. The recognition of this problem with a varying
scale has spawned considerable interest in multiresolution descriptions of signals.
Rosenfeld [44] was among the first in the computer vision field to explicitly pro-
pose an edge detection scheme based on multiscale analysis performed with filters
of different sizes. Rosenfeld believed that the relative orientation of the neighbor-
hoods determines the detected direction of the edges, and the size of the neigh-
borhoods determines the detected width of the edges. Marr and Hildreth [30]

proposed an important edge detector, the Laplacian of Gaussian operator, which
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strongly advocated the use of different sizes of the operator.

Many researchers have applied various schemes of combining information
from multiple scales to solve problems such as reconstructing visual surfaces
(39, 9, 45]. However, these multiscale techniques all have a fundamental
shortcoming: they provide no means for relating the descriptions at different
scales to one another, or of deciding which scale to use under what conditions.
The ambiguity introduced by multiple scale is inherent and inescapable. Thus,
the goal of scale dependent descriptions is not to eliminate this ambiguity, but
rather to manage it effectively and reduce it where possible. The multiresolution

problem involves two aspects:
(1) how to select the scales of operators for an image, and

(2) how to combine effectively the edge information recovered at different

scales.

Both problems remain open. Our research work is motivated by these two
problems. Since there are no general principles for selecting proper scales for an
image, we believe the scale space originally proposed by Witkin [51], is a good
starting point to describe the signal. The second problem is strongly domain and
knowledge dependent. Different tasks require different information from an
image. Knowledge based reasoning in scale space is an effective approach for
recovering useful features [8]. Our long-term research goal is to compute impor-

tant features using a top-down reasoning approach in scale space.
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Reasoning in scale space to recover goal-oriented information necessitates a
good understanding of the behavior of different types of edges in scale space.
Simple heuristics like the presence of edges in two adjacent channels will work
only in simple cases. To build a good knowledge base for reasoning, analysis of
edge behavior in many realistic image situations is necessary. Our aim in this
report is to present results of our efforts to build such a knowledge base by
rigorously analyzing edge behavior in.scale space. We start our work by probing
the behavior of linear edges at various scales in two dimensional images and
establishing a mathematical base which describes the feature of zero crossings in

scale space.

The Laplacian of Gaussian operator, proposed by Marr and Hildreth in 1980
[30], is the edge operator we use. Our motivation for selecting this operator is
the ease with which the behavior of this operator can be analyzed at different
scales. We will use the contraction, L-G, to represent the Laplacian of Gaussian
operator. In vision literature, there are several descriptions of the analytic form
of the L-G operator, which differ only in an overall multiplicative constant that
does not change the shape of the operator. We adopt the following form of the

L-G operator [17]. In two dimensions,

Fid &
2 _ (9 .
v (632 + ayz)’
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where ¢ is the standard deviation. The standard deviation controls the size of
the operator, so it is also called a scale parameter. The L-G operator has many
good properties and is the best one for scale experiments. However, it faces three

main problems when the scale changes:
(1) dislocation of edges,
(2) missing edges, and

(3) false edges.

These problems cause: distortion of an edge curve shape and region area;
omission of an edge curve and region; and detection of a false edge curve and
region. Our aim in this report is to analyze the behavior of the L-G operator at
different scales under different conditions, and relate this behavior to the
observed edges and intensity changes. The problems studied in this report

include the following:
(1) causes of edge dislocation,
(2) conditions for generating false edges,
(3) conditions which cause omission of an edge curve, and

(4) behavior of the zero crossings under various conditions when ¢ increases.

This reports includes three main parts:

(1) Literature Review. The review covers various edge detectors including
the L-G operator, the multiscale problem and the scale space description

approach.
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(2) Our research results. We present our research results in one lemma,
three theorems, a number of corollaries and four assertions. The rigorous
mathematical proofs for the theorems and corollaries are presented. These
theorems and corollaries are further applied to more general situations, the
results are summarized in four assertions. A qualitative description as well as

some experimental results are presented for each assertion.

(3) Future research direction. Further work for reasoning in scale space is

outlined.
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2. A Survey of Related Research Work

This literature review includes: (1) a review on edge detectors; (2) important

properties of the L-G operator; (3) multiresolution computation.

2.1. A Review on Edge Detectors

Edge detection is important and difficult, and much research has been
devoted to it. As a consequence, the literature related to this problem is enor-
mous. We do not intend to give a complete review on edge detection, instead, we
will confine ourselves to a few of the more important and pertinent edge detec-
tion techniques. If the reader is interested in more deta.ilgd information, many

edge detection surveys can be found in the literature{12, 37, 42, 35, 3, 43].

We will consider only two dimensional digital images. We classify edge
detection techniques into two categories: (1) Gradient-type operators, which will
include first and second order spatial derivative operators, and Laplacian type

operators; (2) surface fitting functions.

2.1.1 Gradient-type technique

Most édge detectors in this category begin by applying small differential
operators to an image, followed by a detection operation to locate small edge seg-
ments. The idea behind the edge operator in this category is that intensity
changes rapidly on the boundary of two regions. A sharp change in intensity will
give rise to a peak in the output of a first derivative, or zero-crossings in the out-

put of the second derivative operator. Generally, the initial differentiation is
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followed by a peak detection, or zero-crossing detection, thresholding and thin-
ning operations are applied to localized boundaries, and edge segments that arise
from noise in the image process are removed. A range of differential operators
have been explored. Directional first and second differences and the rotationally
symmetric Laplacian operation are frequently used. Examples of the first and

second derivative operators are Roberts, Sobel operators [40, 37].

The difference between Roberts’ operator and Sobel’s operator is that the
latter one does local averaging computing which tends to reduce the effect of
noise. Sobel's operator is less sensitive to noise and surface irregularities than

Roberts’ operator, and it is still farely simple in computation.

The Laplacian operator has also been used as an edge operator [43, 37, 33].
The Laplacian operator is given by

vzf =-a-i[ +.§2_[

9z% = 9y?

This is an orientation independent derivative operator. Its discrete form is given

by:

v (i,)) = [(i+1,) + I(i-1,5) + I(i,j+1) + I(i,j-1)] - 4I(i,}).

The Laplacian operator does respond to edges, but it responds even more
strongly to corners, lines, line ends and isolated points. Thus in a noisy image,
the noise will produce higher Laplacian values than the edges, unless it has much
lower contrast. Many edge detectors utilize the Laplacian operator as the dif-

ferential operation. The L-G operator is one of such operators, We will discuss it
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in the next section.

2.1.2. Surface Fitting techniques

The edge operators in this category view the image intensity function as a
surface which is approximated by a set of basis functions. The edge parameters
are estimated from the modelled image surface. These methods allow more direct
estimates of edge properties such as position and orientation, but since the basis
functions are usually not complete, the properties apply only to a projection of
the actual image surface onto the subspace spanned by the basis functions. How-
ever, the basis functions are a major factor in operator performance, especially
their ability to localize edges. Examples of this technique include the work of

Hueckel and Haralick [23, 19].

Hueckel’s edge operator is based on a set of requirements which should be
met by an edge detection scheme. The algorithm he proposed was an local non-
linear operator which is optimum solution to meet these requirements. Let D be
a disk shape subimage of I, with intensity function E(x,y). The set of require-

ments are :

(1) Nullifying rounding errors on the periphery of the disk D = { (x,y) |
22+ y?< 1}

(2) The weight of the input data decreases towards the disk’s periphery.

(3) An operator which locates edges need not be sensitvie to noise of high

spatial frequencies.

Behavior 10



RSD-TR-2-87

(4) An operator which locates edges is by its nature sensitive to noise of low

spatial frequencies.

(5) The computing time should be minimal.

From the above requirements, a set of functional equations are generated.
The task of the operator is to best approximate E(x,y) by an ideal edge element
F. He has given the approach for constructing an edge operator for the ideal step
edge function. Hueckel provides no analytical model for the relationship between

the noise process and the noise and the performance of the operator.

Haralick used a facet model to accomplish step edge detection. He regarded
the digital picture function I as a sampling of the underlying continuous function
t. F was called the underlying gray tone intensity surface. He assumed that each

neighborhood of the image, f, took the form:

f(r,c) = ky + kor + ksC + kor® + kgre + koc® + kor® + kgr®c + kore® + kyoc®

where r and ¢ are the row and column coordinates. By using the discrete orthogo-
nal polynomials over a two-dimensional neighborhood, least square coefficients

fitting, he was able to determine k,, kg, ky, ky, kg, ko, k7, kg, ko, ko

A pixel was marked as an edge pixel if in the pixel’s immediate area there is
a zero crossing of the second directional derivative taken in the direction of the
gradient and the slope of the zero crossing is negative. The directional derivative

was taken on f. Haralick also provided the statistical analysis of his technique,
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illustrating how to determine confidence intervals for the direction of the gra-
dient and how this interval determines a confidence interval for the placement of
the zero crossing. To support the proposed scheme, Haralick evaluated its perfor-
mance, under a variety of criteria, against several other edge detection operators,
most notably, the Prewitt gradient operator and the L-G operator. The evaluta-
tion led to the conclusion that, under these criteria, Haralick’s method performed
the best. Haralick has shown that the error of the fit has a chi squared distribu-
tion with n degrees of freedom, where n is the size of a square neighborhood used
in the fit. This means that we are able to decrease the noise by increasing the
neighborhood size. He suggested using a larger neighborhood size than 3x3. But
there are no guidelines for selecting the optimum neighborhood size to estimate
the unknown coefficients. Also, by increasing the operator size, there is a possi-
blity that more than one edge comes into the field of the operator, which will

result in the wrong estimate of the f function.

Canny (9, 10] has proposed an edge detector which is the sum of four com-
plex exponentials and can be approximated by the first derivative of a Gaussian.
The edge detection is performed by convolving the image with a function f(x) and
then marking edges at the maxima in the 6utput of this convolution. He gave

three performance criteria on the output of the edge operator. They are

(1) Low probability of error at each point. The probability of failing to mark
real edge points, and falsely marking an edge point should be low.

(2) Good localization. The points marked as edges by the operator should be
as close as possible to the center of the true edge.
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(3) Only one response to a single edge.

The variational techniques are used to find the function f(x) that maximizes
the first two criteria. Then Canny uses the third criterion to eliminate the multi-
ple responses. He reduced the probability of marking multiple edges by con-
straining the distance between adjacent maxima in the response of the operator

to noise.

2.2 L-G Operator

The Laplacian-Gaussian(L-G) operator was proposed by Marr and Hildreth
[30]. The L-G operator, ¥*G, has two components, v* and G, where ¢? is the
Laplacian operation and G is the Gaussian distribution. The derivative part of
the filter, ¢?, is economical in computation, since ¢ is the lowest order isotropic

differential operator.

The use of the Laplacian operator raises the following question: Will the
zero-crossings in the output of the Laplacian correctly capture the intensity
changes that we want to detect? Hildreth [22] has proved that ¢ can be used to
detect intensity changes provided the image satisfies some quite weak require-
ment. The requirement is that the variation of intensity along the orientation of
the intensity change is at most linear. If an image satisfies this condition, the
zeros of the Laplacian coincide with the zeros of the second directional derivative.
Fortunately, this condition is satisfied in most natural images. If the intensity
variation along an intensity change is highly nonlinear, the positions of the zero-

crossings in the Laplacian will deviate from those of the second directional
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derivatives.
The Gaussian filter has some important properties, they are listed as follows:

1. It is capable of being turned to act at any desired scale, sc different sizes

of filters can be used to detect different events in the image.

2. Gaussian is symmetric and strictly decreasing about the mean. Therefore
in the convolution operation, the weight assigned to signal values decreases

smoothly with distance.

3. Gaussian distribution is the unique distribution that it is simultaneously
and optimally localized in both the spatial and frequency domains. If a blurring
operator is very smooth in both the spatial and frequency domain, it is least

likely to introduce any changes that were not present in the original image.

4. Gaussian distribution behaves well near the limit of the scale parameter o,
approaching the signal’s mean for large o, while approaching the unsmoothed sig-

nal for small o.
5. Gaussian is differentiable and integrable.

Combining the Gaussian and Laplacian into a single operator, the L-G
operator, one can now detect intensity changes occurring at a particular scale by

locating the zero-crossings in the output of ¥*G(x,y).

<*G has strong support from neurophysiological studies of the early process-
ing in the human vision system. The psychophysical studies on vision system also

reveal many facts supporting v°G operator. We sense image at quite a high reso-
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lution. Viewing from a distance of three feet, one square inch covers an array of
about 200x200=40,000 photoreceptors in the central fovea of the eye. Several
layers of cells in the retina process the detected light intensity. These cells cul-
minate with the output of the retinal ganglion cells whose axons form the optic
nerve fibers that carry information to the visual contex. The receptive fields of
retinal ganglion cells are organized as shown in Fig. 1 [26, 41, 21]. Light striking
the center of the receptive field excites the activity of the cell, while light striking
the surrounding area inhibits it. The shape of the sensitivity distribution can be
distributed mathematically as the difference of two concentric Gaussian distribu-

tions:

G1( G 1 r? 1 r2
rial) b 2(1’,02) — '2';;1 exp[-z;zl - '%_02 exp[' '5;2]

where r is the radius from the center, and o, and o, are the spatial scale factors of
the excitatory and inhibitory distributions respectively. This operator is called

Difference-Of-Gaussians(DOG).

The v°G operator approximates a band-pass filter with a bandwidth at half
power of 1.25 octaves [32], and is intimately related to the DOG profile measured
in biological experiments. The shape of the DOG pattern becomes identical to
that of v°G when the spatial scales of the two Gaussian profiles are close, as they

are in the biological case. Marr & Hildreth have shown [30]:

(a) ¥°G is the limit of the DOG function as -;—' , the ratio of the inhibitory

¢

to excitatory space constant, tends to unity; and
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(b) that if an approximation to ¢*G is to be constructed out of the difference

of two Gaussian distributions, one excitatory and the other inhibitory, then the

optimal choice on engineering grounds for ;—' is about 1.6.

.

2.3. Multiresolution Problem and Scale Space

The importance of the idea of multiresolution problem has been realized and
has drawn a lot of attention in the computer vision area. Rosenfeld was among
the first in the computer vision field to explicitly propose an edge detection
scheme based on multiscale analysis performed with filters of different sizes.
Rosenfeld believed that the relative orientation of the neighborhoods determines
the direction of the edges that will be detected, and the size of the neighborhoods
determines the width of the edges that will be detected. To detect microedges,
small neighborhoods must be used, but detecting edges between textured regions
requires neighborhoods large enough for gross averaging over the detail in the
textures. Thus he suggested that a complete edge detection system should
employ, at each point, pairs of neighborhoods of various sizes and at various
orientations; the largest of these should have the size comparable to that of the
entire picture. Edge detectors of various sizes and orientations were obtained by
shifting and pointwise subtracting blurred versions of a picture from themselves.
He demonstrated using a class of edge detectors of various sizes to detect texture
edges, such as ”spots”, and "streaks” in digitized pictures. He has shown that, by

comparing the outputs of the operations corresponding to edges of different sizes,
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one can construct a composite output in which edges between differently textured
regions are detected and isolated objects are also detected, but the objects com-

posing the textures are ignored.

From the study of the vision system, Marr suggestéd the multiscale idea in
1976 [31]. Along with the L-G operator, Marr has strongly advocated the use of
different sizes of the operator with the goal of detecting changes in intensity at
different scales [32]. Later, Marr and Hildreth [30] proposed some heuristic rules
to combine information from different channels. Marr’s idea of using the multis-
cale of the L-G operator has drawn a lot of research attention. But how to com-
bine the results at different scale is a very difficult problem. People have used the
multiresolution of the L-G operator to solve various problems, and tried various
methods to deal with the problem of integrating information from different chan-
nels [‘14, 25, 4, 30, 27, 15, 16, 28, 29, 50, 24, 48, 53]. Canny’s approach to edge
detection as we discussed above also involves the idea of multiple scales of opera-
tors.

As indicated earlier, there are no principles for selecting scales for an input
image. Thus people explored other ways of describing signals. A new method of
describing zero-crossings across scale was suggested by Witkin [51]. Witkin’s
scale space description is for the 1-D signal. The 1-D signal is smoothed with the

Gaussian distribution,

F(x,0) = Gl
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The standard deviation, ¢, and the location of signal, x, form the scale space,
x-o plane; F is called the scale space image. For any x, such that a_’péﬂ) =0,
. z

x is called a zero crossing. When o increases, the locations of the zero-crossings
form the zero-crossing contours in the x-o¢ plane. The zero-crossing contours in
the 2-D scale space have some nice features which enable Witkin to classify and
label zero-crossings thereby achieving an effective description of a signal for pur-
pose of recognition and registration. After Witkin’s scale space description, Yuille
and Poggio, Babaud & et al,, and Shah have achieved further results on 2-D scale
space. Asada & Brady, Mkhtarian & Mackworth have applied the scale space
theory on the problem of recognition of planar curves and two dimensional curves
[52, 2, 47, 34, 1]. Based on these people’s work, we summarize all the property of

2-D scale space and 3-D scale space as follows.

2.3.1 The Property of the 2-D Scale Space

When 7 is one dimension, the scale space is a two dimensional plane (x,0),
the zero-crossings in E(x,0)={(x)*<*G(x,s) form the zero-crossings contours in the
(x,0) plane. A typical scaling behavior of zero-crossings in the two dimensional
scale space observed by Witkin is shown in Fig. 2.

Babaud et af[2] and Yuille & Poggio [52] have independently obtained the

following striking result:

In the one dimension signal, if the filter is Gaussian, when o

incresses, the zero-crossings are never created.
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They have further proved that in the one dimension signal, with the second
derivative, Gaussian is the only filter which never creates zero-crossing when o
increases. It means when ¢ increases, zero-crossings may dissappear but can never

be created. This property of the Gaussian is important for two reasons:

(1) it allows coarse-to-fine tracking of zero-crossings in scale space, such as

Witkin did by using a tree structure [51].

(2) it ensures that the scale space diagram contains, in some sense, a
minimal number of zero-crossings (for ¢ = 0, the number of zero-crossing is
determined by the signal). From empirical observation, Yuille & Poggio [52]
said that the generic zero-crossings generated by the Gaussian filter will never
behave like the contours shown in Fig. 3. They also claimed that "true” zero-
crossings can only disappear in pairs in the x-¢ plane. Only trivial zeros that do
not cross zero can disappear by theméelva, and these are not considered as true

zZero-crossings.

Shah [47] studied of the behavior of the zero-crossing contours of step edge,
pulse edge and staircase edge models in the 1-D signal and achieved some

interesting results.

Let

if 2<0

0
U(x) = {1 it z2>0°

The step edge function is defined as: f(x) =cU(x); then

E(x,o)={()+9°G = -¢( Jexp|- 23]
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The zero-crossing contour of the step edge is a straight line, it is illustrated in

Fig. 4.

The pulse edge model is defined as: f(x) = U{x-wl) - pU(x-w2)

E(X,a) =f(X)*V2G = -LL?_D exp[- (: ;:21)2] +p (z ':"2) exp[_ !z ;522)2 ],

by plotting the (x,0) points which satisfies E{(x,0) = 0, the zero-crossing contours

of the pulse edge in the scale space are illustrated in Fig. 5.

The staircase edge model is defined as f(x) = U(x-wl) + pU(x-w2)

F(x,0) = {(x)*v*G(x,0) = -

(z—:z l)exp[- (Z;Z;Hzl p (z;g;Z) expl- 1:;;2!’]

The zero-crossing contours for p=1 and 2 plotted from the above function by

Shah are shown in Fig. 6 and Fig. 7.

2.3.2 The 3-D Scale Space

When z has two dimensions, 7 =(x,y), then the scale space is three dimen-
sions. The behavior of the zero (or level) crossings is much more complicated

than in the two dimensional scale space.

Yuille & Poggio [52] proved the following important theorem for the three

dimensional scale space:

Behavior 20



RSD-TR-2-87

In the two dimensional signal case, If the filter is L-G, sero-crossings
are never created when o increases. And with the Laplacian operator,

Gaussian is the only filter having this property.

They proved the property by showing that the zero-crossing surface in the
three dimensional scale space doesn't have a minima, i.e. the extrema of these

zero-crossings are either maxima or saddle points.

Even though the zero-crossings can never be created when ¢ increases, the
zero-crossing surface in the three dimensional scale space are free to split and
merge, and the regions bounded by zero-crossings surfaces are free to split and
merge, so that the number of zero-crossing surfaces is not monotonic with o.

Thus it is very hard to describe their behavior.
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3. Definitions

An edge curve is called D-isolated, if for any point on the curve, we can
draw a disc centered at that point with radius D, and that disc will intersect no

edges except those on this edge curve .

When D --> oo, the image does not have any-other edges except those on

this edge curve. In this situation, we simply call it an isolated edge curve.

n edge curves are D-isolated n edge curves, if for every point on any one
of the curves, we can draw a disc centered at that edge point with radius D, and

that disc will intersect no edges except those on these n edge curves.

An edge curve C(x,y) = 0 is shape invariant under ¢ if its corresponding
zero crossing curve from channel o, C,(u,v)=0, can be obtained from C(x,y)=0

through rotation or translation of the axes.

C(x,5)=0 is shape invariant if C,(u,v) is shape invariant under all os.

A linear edge curve is tangent invariant under o if its corresponding zero
crossing curve from channel ¢ is linear and has the same tangent value as the
edge line.

If a linear edge curve is tangent invariant under all o3, it is tangent invari-

ant.
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If a line function is y=ax+b, its location is-b; if the line function is x=c¢,

its location 1is c.

If an edge line has the same location as its corresponding zero crossing line

from channel o, then the edge line is locational invariant under o.

An edge line is locational invariant if it is locational invariant under all

Let Cl{x,y) = 0 and C2(x,y) = 0 be two edge curves. Then the distance

between two edge curves is:

dist = min { distance between (x1,y1) and (x2,y2) | C1(x1,y1) = 0 and C2(x2,y2) =0 }.
We will use the following two symbols in this report:

2 .2
g(x,y) = exp['j—z.:z—y ])

Glxy) = Pglxy) = (-5 + T2 Jexp- ZEI)

(4
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4. The Scaling Properties of Edge Curves

In computer vision, edge curves in a digital image are one of the most impor-
tant features. A quantitative study on the scaling behavior of edge curves under
the L-G operator is very important, and the results are the basis for reasoning in
scale space. The two dimensional L-G operator is rotationally symmetric. The

shape of the operator is shown in Fig. 8.

The operator is a disk with radius, R --> +co. The small bright disk in the
center indicates the positive values in the operator, and the negative values form
a wreath around the disk. The scale parameter, o, determines the size of the posi-
tive disk. The sum of the values on the operator disk is 0. An important pro-
perty of the Gaussian function is that the weight at a point decreases monotoni-
cally with the distance from the central point. When the radius R is large
enough, the wreath outside of the operator disk becomes very insignificant. R is
the size of the operator and is determined by 0. An edge curve under different
sizes of the L-G operator can behave differently. Different edge curves behave
differently under the same size of the operator. If there is only one edge curve
within the operator disk, then only the edges on that curve can influence each
other. Once there are more than one edge curves within the operator disk, the
edge curves will affect each other. The results of our study on the behavior of
the edge curves are presented in one lemma, three theorems and a number of

corollaries. The lemma, the theorems and corollaries imply the following facts:
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1. A D-isolated edge curve has a corresponding zero crossing curve from the
L-G operator with size o, such that ¢ < L(D), where L(D) is a monotonically
increasing function of D, and its existence is proved in the Lemma 1.

An isolated edge curve has a corresponding zero crossing curve from every
size of the L-G operator.

2. A D-isolated edge line is tangent and locational invariant in all channels o,
such that ¢ < T(D), where T(D) is a monotonically increasing function of D, and

its existence is proved in Theorem 1.

An isolated edge line is tangent and location invariant in all channels.

3. The dislocation of an edge line occurs only when there are more than one
edge lines in the small neighborhood.

4. When two edge lines are pulse edge model, two corresponding zero cross-
ing lines exist beyond the region bounded by the two edge lines. When ¢

increases, the distance between the two zero crossing lines increases.

5. When two edge lines are staircase edge model, the corresponding zero
crossing lines can only possibly exist within the region bounded by the two edge
lines.

6. When two edge lines are staircase edge model at some small channels, we
have a false zero crossing line.

7. When the two edge lines are staircase edge model at some large channels,

we have only one zero crossing line.
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8. Zero crossing lines disappear in pairs.

In the following sections, we present the theorems and corollaries along with

the mathematical proofs .

4.1 D-isolated edge curve

In our efforts to understand the behavior of edges, we consider D-isolated
linear edge curves. Our aim is to identify conditions under which a linear edge in
an image will give rise to zero crossing, and to determine when neighboring edges

will start to influence the location of zero crossings.

Lemma 1. For a D-isolated edge curve, there exists a function L(D), such that
for every 0 < L(D), there is a corresponding zero crossing curve in channel o,

where L is a monotonically increasing function with variable D.

The proof is given in Appendix A.

Theorem 1. For a D-isolated linear edge curve, there exists a monotonically
increasing function, T1(D), such that for all ¢ < T1(D), the linear edge curve is

tangent and locational invariant under o.

The function T1(D) is given by,

T1(D) = ‘i -
3in ( x

)

Behavior 26



RSD-TR-2-87

where H is an upper bound constant of the gray level function, e is a positive real

number in the range 0<e<4Hv27 and e approximates zero.

In computer vision applications, H < 255, choosing ¢>0.048, T1 can be

further simplified to

T1(D) = 15’.

The proof is given in Appendix B.

4.2 Pulse edges.

It is common to find an object against a background. In such cases, the
edges can be considered to be of pulse edge type [48]. Theorem 2 is concerned
with the behavior of pulse edges. We also present four corollaries related to

behavior of pulse edges-in scale space.

Theorem 2. For D-isolated two parallel edge lines that can be considered pulse
lines (i.e. for 11 and 12, let gl indicate the gray level of the region next to 11, g3
indicate the gray level of the region next to 12 and g2 indicate the gray level of
the region between them, such that either g2 > gl and g2 > g3, or g2 < gl and
g2 < g3) then there exists a monotonically increasing function, T2(D), such that

when ¢ < T2(D),

1. we have two corresponding zero crossing lines for every o, and no other zero

crossings are generated.

2. Each of the zero crossing lines has the property of tangent invariance.
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The function T2(D) is:

T2(D) = min {

D W }
aH V2, H
\/3111( vir) \/3ln(-()j -1
where H is an upper bound constant of the gray level function, W is the distance

between the two edge lines and e is a small positive number in the range

0<e<0.1, which approximates zero.

In computer vision applications, H<255, choosing e=0.048, we can get

. ,D W
T2(D) = min —5,—3-}.

The proof is given in Appendix C.

The following corollaries are true under the same conditions as theorem 2,
and all the symbols used in the following corollaries have the same meaning as

stated in theorem 2.

Corollary 2.1 There are no zero crossings in the region B2 < y < Bl. For every
o value, the corresponding zero crossing lines, y=B,,, y=B,,, are located as:

y=By 2 Bl, y=By < B2.
Proof. This is well indicated in Part 1 of Appendix C.

Corollary 2.2 When o increases, the distance between the two zero crossing

lines, y=By,, Y=B,, increases, i.e. distance = B,-B, increases.

Proof. In the proof of theorem 2, we indicated that
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IsG(x,y) < 0, when B2 < y < BI;
I*G(x,y) > 0, when y = Bl+o;

I*G(x,y) > 0, when y = B2-o;

When o increases, the two positive regions of M(x,y) shift away from y=Bl1
and y=B2. Hence, the zero crossing lines y=B, and y=B,, are moving away
from each other, consequently the distance between the two zero crossing lines

increases.

Corollary 2.3 In pulse edge situation, when g3=gl, i.e. g2-g3=g2-gl, then at
each o value, the two zero crossing lines have the same amount of dislocation

value, i.e. B2 - B, = B, - Bl.

Proof.

Following (1.b.1) of the proof of theorem 2, at B1 < y < Bl + ¢,

vilsg) = Ixv*(g) = l(x,y)*G(x,y) = M(x)y) + E2;

at B2-0 <y < B2,

vil*g) = Ixo*(g) = I(x,y)*G(x,y) = M(x,y) + EL;

where

M(x,y)=(g?rg2)1”—3—21—— exp[wH (g2-g1) MU exp|- iil’2]

2y - -B2+D )
El(xy) = -g3¥2lu=E2+D) expl- =B2ED )]
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E2(xy) = g1 Y2UBID) ol W-BLD Y

Let g2-g3=g2-g1=G, d=B,, - Bl, and we know

exp Z2Y) 4 (g2

I+G(x,Bn) =~ M(x, By) + E2 = (g3-g2) (801-32)\/2—7’.

By-B1)V2 By-B1)? vV2r(Bo-B 1-D By-B1-D
gl)( 0 a) r exp[-( 1 )]+gl Ola )exp[_( )2]
__ ~(Ba-B2)Vx (Boa-B2)? d V27 d? Var(d-D
= G2 expl | 4 G e t) 4 g BUD) o
(d-D)*y _
7 1= 0

We want to show y=B2-d is a zero crossing line too, i.e. I*G(x,B2-d) = 0.

[+G(xB2-d) ~ M(xB2-d) + ElxB2d) = 36T expb L] + (g2-01)

g

(B2-d-B1)V2r _(B2-d-B1f*y _ _.V21(B2-d-B2+D) - (B2-d-B2+D)?
- expl-——r—"] - 83 - exp| ol

dV2r d? (Bo-B 2)V2x (B2-Bq)? v2r(d-D)
G - exp[—;}] -G —— exp[————2;2—] + gl——" expl-

(d-D)*y _ —_
= ] = M(x,B,) = 0.

So y=B2-d is a zero crossing line too. By theorem 2, we know there are only two
zero crossing lines in the region B2-¢ < y < Bl+o, so we have B, = B2-d.

Thus the two zero crossing lines have the same dislocation value, d.
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Corollary 2.4 In the scale space image of the two pulse edge curves, when

g3=gl, the zero crossings form two symmetric contours(surfaces).

Proof. This is a direct conclusion from corollary 2.3.

4.3 Staircase edges.

A ramp edge usually becomes a staircase in discrete space. Since in many
real images, it is common to find ramp edges, we study the behavior of staircase
intensity functions. This section presents one theorem and some corollaries

related to staircase intensity functions.

Theorem 3. For D-isolated two parallel edge lines that can be considered stair-
case lines (i.e. for 11 and 12, let gl indicate the gray level of the region next to 11,
g3 indicate the gray level of the region next to 12 and g2 indicate the gray level of
the region between 11 and 12 such that either g3>g2>gl or g3<g2<¢gl), there
exists a monotonically increasing function T3(D), such that when ¢ < T3(D), we

have the following results:

1. when ¢ is very small in comparison with W, the distance between 11 and 12,
then we have two zero crossing lines, each of them is tangent and locational

invariant to its corresponding edge line;

2. when ¢ increases, such that it is no longer small in comparison with W, we

have three parallel zero crossing lines.
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3. when ¢ is large, two of the three zero crossing lines will disappear together,

and the third one will remain in all channels.
The function T3(D) is:

T3(D) = D

3111(4 c27r

)

where H is an upper bound constant of the gray level function and e is a small
positive real number which approximates zero.

In computer vision applications, H<255, if we choose e=0.048, T3(D) = € .

The proof is given in Appendix D.

The following corollaries are true under the same condition as in theorem 3.
The symbols used in the following corollaries, have the same definition as stated

in theorem 3.

Corollary 3.1. For two isolated staircase edge lines, there are no zero crossings

in the regions: y >B1 or y<B2, in any channel.
Proof. This has been proved in (5.3) of the proof of theorem 3.

Corollary 3.2. For two D-isolated staircase edge lines, if |g3-g2| = |g2-gl1],

when ¢ is not too small in comparison with W (o should be at least greater than

W

2H V2r
e

, then
24 / 3In(

)
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(1) y= 812-82 is a zero crossing line for every ¢, ¢ < T3(D);

B1+B?2
2

(2) y=B¢, and y=B,, are two zero crossing lines, where B2 < By, < <

By < Bl; when ¢ becomes large, they will disappear together.

Proof. These results are shown in the part 2 and part 3 of the proof of theorem

3.

Corollary 3.3. For two D-isolated staircase edge lines, when |g3-g2| > |g2-g1],

for every o, ¢<T3(D) and ¢ is not too small in comparison with W (¢ should be

L4

24 / 3in 2H E 27y

(1) there is a zero crossing line y=B,, where B2 < By, <

at least greater than , then

B1+B2

T for every o,

B1+B2

(2) we have two more zero crossing lines, y=B,, y=B, where >

< Bg <

B, < BI; when ¢ increases to a large value, the two will disappear together.

When |g3-g2| < |g2-g1|, we have the symmetric facts:

B1+B2
2

(3) there is a zero crossing line y=B,,, where < By < B1, for every o,

(4) we have two more zero crossing lines, y=B, y=B, where B2 < By, < B,

B1+B2

< ; when ¢ increases to a large value, the two will disappear together.

Proof.
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We only need to prove (1) and (2), and without losing generality, we assume g3-
g2 > g2-gl. As we have shown in the proof of theorem 3, for B2<y<Bl],

I*G(x,y) = M(x,y).

B1-B2 B1-B2 B2-B1
EEvE  (BEEy (B2 vm
Mx, ZHE?) = (g3g2)—2— expl—2—] + (g281) —2-
B2-B1
( 2
eXP['T] >0

and for all B'<B2,

M(x,B) = (g3—g2)ig_-3722.[2_; “P['@—Q;‘,ﬂlz] + () EBWE oo

2
ﬂ_j__ll]<0,

B1+B2
2

so there exists a zero crossing line y=B,, where B2 < B < . This zero

crossing line is independent of ¢, i.e. y=B, exists at all channels.

From the proof of theorem 3, when o is relatively small, we have three zero

B1+B2

7 <

crossing lines, so there are two more zero crossing lines in the region,

y < Bl. When ¢ is large, there is only one zero crossing line, so these two zero

B1+B2

7 <Y < B1, will disappear together eventually.

crossing lines in
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Corollary 3.4. For the two staircase edge lines, when ¢ is increasing, the dis-
tance between By, and B, is decreasing, and if there is a zero crossing line,
y=B03, in the middle, By will move towards By, if |g3-g2| > |g2-gl|; towards

By, if |g3-g2| < |g2-gl|. Eventually, By, disappears with the closer one.

Proof.

(1) At g3-g2=g2-gl. From (3.1) of the proof of the theorem 3, we know B2 <
By <B2 + 0; B1-0 < By < B1. When ¢ increases, the distance between y=B,,

and y=B,,, is decreasing, where the distance = B1-B2 - 2¢

(2) At g3-g2 > g2-gl >O0. (In the case, g1>g2>g3, and (gl-g2) > (g2-g3) >0,

has the same proof method.)

We have shown in (3.2) the proof of theorem 3, there is a zero crossing line

B1+B2

y=Bg such that B2 < Be < —;

. Further, we have M(x, B2+¢) > 0 and

M(x,B2) < 0, so B2 < By, < B2 + . We have also shown that the zero crossing
lines, y=B, and y=B03, lie in the region, Bl - ¢ < By < Bl. When ¢
increases, B, moves more and more towards y=Bg, so the distance between
these two zero crossing lines decreases, and the distance between y=B03 and
y=B,, decreases too. We have also shown in the proof of theorem 3 that y=B,

disappears with By,.

For the case that g3-g2<g2-gl, from (3.3) of the proof of theorem 3, we can

get the same result.
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4.4. Theorems and experiments

The lemma indicates the existence of a corresponding zero crossing curve for
an isolated edge curve. In the proof of the lemma, we indicated the existence of
the upper bound function L(D), and showed that it is a monotonically increasing
function of D. According to this lemma, a very fine isolated edge curve has its

corresponding zero crossing curve in every channel. Fig. 9 is such an example.

Theorem 1 ensures that the linear edge curve is tangent and locational
invariant. The condition "linear” is not only sufficient but necessary. Only the
linear edge curves have these strong features under the L-G operator. When the
edge curve is non-linear, the positions of some individual zero crossing points may
not be the same as the corresponding edge points. The positions of some indivi-
dual zero crossings change with the o value. Thus the shape of the entire curve
changes shape as seen in Fig. 10. Fig. 10 shows an example of non-linear edge
curve. As ¢ increases, the shape and the size of the sine curve is obviously chang-
ing.

The upper bound function in theorem 1, T1(D), can also be used to measure

the influence of the edge curves. Let D be the distance of two edge lines, when ¢

< ’1'5) , the two corresponding zero crossing lines from channel ¢ should not be

effected by each other. —? is a least upper bound functions. Our experiments

show that in some situations, the upper bound function could be 14) . Reader may

want to refer to all the experimental results shown in this repoft and the paper
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by M. Piech [36].

Theorem 2 and theorem 3 refer to more than one edge line situation. The
two theorems have shown that two parallel linear edge curves, if they have
corresponding zero crossing curves, the zero crossing curves are also linear and
have the same tangent value. In the pulse edge model, the two zero crossing lines
will never disappear, because the zero crossing lines, y=B, and y=B,, exist in
the region, B1<B,<Bl+o, B2-a<Bo,<B2.r But the locations of the zero cross-
ing lines are different when ¢ changes. As we have shown in corollary 2.2, when ¢
increases, dislocation value of the zero crossing line increases too. It brings up
the dislocation problem. The dislocation problem occurs when there is more than

one edge curve within the neighborhood.

The condition in theorem 3 is different from theorem 2 in ome aspect,
nanﬁely, the gray levels form a staircase. This gray level condition causes the
false zero crossing line at the smaller value of o and one real zero crossing curve
missing at the larger scale. Therefore, we call this gray level condition as the

false edge condition or missing edge condition. When ¢ is very small in com-

w
2 /3ln( 2H 3'2;7 )

two zero crossing lines, y=B, and y=B¢,, where B,=B2 and B,,=Bl1. It means

parison with W, in fact we have shown that when o< , we have

the zero crossing lines have the same location as the edge lines. When ¢ is not
too small, we have shown that we have three zero crossing lines, but we have
only two edge curves in the original picture. The question is which one is false?

If we register the edge line with the zero crossing line with minimum dislocation,
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then the one in the middle, i.e. y=Bg,, Where By < By < By, is the false zero
crossing line. Corollary 3.2 indicates that it is not necessary that the false one

will disappear with a real one. When |g3-g2| = |g2-gl], y = is always a

B1+B2
2

zero crossing line for every ¢ when it is not too small. This zero crossing line is a
false one according to the above definition, it exists in all channels and never

disappears.

We have performed some experiments on various images. They are shown in
Fig. 11 - Fig. 19. Since the input images contain the vertical edge lines in Fig.
13, Fig. 14, Fig. 16, Fig. 17, Fig. 18 and Fig. 19, we generated the zero crossing
contours in a two dimensional scale space image in each case to assist the study.
The horizontal dimension indicates the vertical position of the edge (zero cross-

ing) line, i.e the x direction; the vertical dimension indicates the scale o.

Fig. 13 and Fig. 15 verify Corollary 2.3 and 2.4. In the input image of Fig.
15, gl=g3=100, we see that the two zero crossing lines move away evenly. In
the input image of Fig. 13, gl=g3=255, the zero crossing contours in the scale
space image are two symmetric lines. If |g2 - g3| < |g2 - gl|, the zero crossing
line between g2 and g3 moves away faster than the one between g2 and gl, and
vice versa. For example in Fig. 14, | g3 - g2 | < | gl - g3 |, the zero crossing line,
corresponding to e2, shifts further away from its actual position. From Fig. 13 -
Fig. 15, we can see that there are no zero crossings between the two original edge
lines, and the distance between two zero crossing lines increases when o increases,

so they have verified theorem 2, corollary 2.1 and corollary 2.2.
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Some of the experimental results for the staircase edge model are shown in
Fig. 17, 18, 19. Fig. 17, Fig. 18 and Fig. 19 have verified Theorem 3 and Corol-
lary 3.1 - 3.4. Especially in regards to Corollary 3.4, the results indicate that the
false zero crossing curve always disappears with the real that has the smaller
difference of gray levels on both sides. In Fig. 17, | g3-g2 | < | g2 - gl |, the
false zero crossing curve disappeared with z2; in Fig. 18, | g2-gl | < | g3 - g2 |,

the false zero crossing curve disappeared with z1. Fig. 19 verifies that the false

B1+B2

R exists for all ¢ provided that ¢>2. All these exper-

zero crossing line, y=

imental results have supported theorem 3 and its corollaries.
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5. Properties of Regions in Scale Space

By applying the above theorems and corollaries to the more general situa-
tion, we come to the assertions listed below. A qualitative verification is
presented for each assertion. These assertions are also supported by experimental

results.

Assertion 1. For a non-linear isolated edge curve, its corresponding zero cross-
ing curve may change shape. For an isolated closed edge curve, the region which

is surrounded by the corresponding zero crossing curve expands as ¢ increases.

When the edge curve is non-linear, the edges on the same curve may effect
each other. The points which may change the locations are those on the sides of
a ridge or a valley on the curve.. The gray level condition on both sides of the
curve must follow those in the theorem 2. From theorem 2, the points on each
side of a ridge or valley repel each other. If we write the curve as y={(x), the
points are dislocated along the x axis. Thus, sharp parts of a curve will become
smoother when o increases. So the shape of the zero crossing curve may change

when o changes. The sine curve in Fig. 10 is a good example.

When the edge curve is closed(see Fig. 20), the gray level condition along the
edge curve must conform to theorem 2. From theorem 2, the edge points on the
opposite side of the curve repel each other. Consequently thg area surrounded by
the zero crossing curve is expanding when o increases. Furthermore, the gray

level condition on each side of the curve satisfies Corollary 2.3, hence, the expan-
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sion of the region is even at each side. In addition to Fig. 9, Fig. 21 and Fig. 22

are good examples of this phenomena.

Assertion 2. For two closed edge curves, let gl, g2 and g3 be the gray levels
distributed as in Fig. 23; if g2, gl and g3 satisfy the pulse edge condition, i.e.
gl>g2 and gl > g3 or gl<g2 and gl<g3, then the two corresponding closed
zero crossing curves will eventually merge into one closed zero crossing curve

when ¢ is large enough.

When g2, gl and g3 follow the pulse edge model, i.e. g1 > g2 and gl > g3,
then from Assertion 1, we know that each of the closed zero crossing curves is
expanding as o increases. When ¢ is large enough, they will eventually meet
together and merge into one large closed curve. In Fig. 24, there are two regions
nearby, and, when 0>6, the two closed zero crossing curves merge into one bigger

closed zero crossing curve.

Assertion 3. If a region R contains one subregion, let gl, g2 and g3 be the gray
levels within the regions(see Fig. 18), and if gl, g2 and g3 follow the staircase
edge model, i.e. g1<g2<g3 (or gl >g2>g3), then we will have a false closed zero
crossing curve in bétween the two real ones at the smaller . The false zero cross-
ing curve is also a closed one and it will merge and disappear with one of the real
zero crossing curves when ¢ becomes large. If |gl-g2| < |g2-g3|, then el will
disappear with the false one; if |gl-g2| > |g2-g3|, then e2 will disappear with the

false one.
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From theorem 3, we know we will get the false zero crossing curve in
between the two real edge curves. When o changes, the zero crossing curves go
through the following sequence. When ¢ is very small in comparison with the dis-
tance between el and e2, then the two zero crossing curves are the same as el
and e2; when o increases, a false zero crossing curve appears and the two real
zero crossing curves are all attracted to the false one, i.e they all move towards
it. When o increases to a large value, the false zero crossing curve merges with
one of the true zero crossing curves. They may split into several closed curves,
then eventually disappear together. The remaining closed zero crossing curve
then starts to expand in accordance with Assertion 1. Fig. 26 shows such an

example.

Assertion 4. If a region has an abrupt change in its width, then when o
increases its value, the closed zero crossing curve will split into two smaller closed
curves. If o keeps increasing, the two regions surrounded by the two new closed

curves will expand, eventually they will merge back to a big closed curve again.

The split point occurs at the abrupt narrowing area. The two new smaller
regions will follow the expanding, merging and expanding procedure. Such exam-
ples are shown in Fig. 27 and Fig. 28. In Fig. 27, the picture process has com-
pleted the split-expand-merge-expand procedure. In Fig. 28, the process has gone
through split-expand. If we keep applying larger o values, it will complete the

remaining procedure, culminating in merge-expand.
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The above theorem and assertions are generated for ideal images. The
natural image has much more complicated gray level changes. But, in general, the
zero crossing curves generated from the natural image will always behave in one

of the above manner, or a sequence thereof.
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6. Discussion
The most significant phenomena observed from the different channels of the L-G
operator are false edge curves, missing edge curves and edge dislocation. These
problems are caused by the influence of edges. The theorems given in this report
answered these problems. Another important proof is that for any isolated edge
curve, we will get corresponding zero crossing curves in all channels. This applies
even when the edge curve is very fine and the scale is very Iarge. In addition, the
theorems along with the corollaries give a good description of the behavior of the
zero crossings under various conditions. Most of the theorems and the corollaries
are proved for linear edge curves. But the results can be extended to the general
curve and region situations. The four assertions were generated in this way. The
assertions gave a good description on the behavior of the regions bounded by the
zero crossing curves. These theorems, corollaries and assertions are supported by
many experimental results. The theorems, corollaries and assertions are generated
in the ideal step edge, pulse edge and staircase edge models. In the real world
image, the behavior of the zero crossings are much more complicated. But they

usually follow the processes discussed in section 5.

For reasoning in scale space, we can follow the approach introduced by
Waltz [49]. Based on the theorems, corollaries, and assertions, we can construct a
knowledge base. This knowledge base will contain rules based on the behavior of
zero crossings in scale space for simple cases. The complex unpredictable interac-
tions of these simple cases is what makes real images so difficult to analyze. By

applying the rules from the knowledge base, it may be possible to better analyze
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the behavior of edges in real images and detect presence of desired features. A
simple example may help understand the feasibility of this approach. In Fig. 29,
we show an image containing a noisy square on a noisy background. The zero
crossings for this image are shown at different scales in the image. If we are
interested in detecting the square, the edge image at lower scales has proper
shape but with too many noisy edges. On higher scales, noise is reduced but
shape is distorted. A reasoning process may allow to focus on the closed contour
on higher scales and then track zero crossings corresponding to the closed contour
to lower scales to find the proper shape. Even for complex images such an

approach seems promising.
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Appendix A: The proof of Lemma 1

Here we only consider the open curve and the curve can be written as y=C(x).
We also assume C(x) is continuous, has the first order derivatives, has the inverse

function and they are all bounded. Let H be one of such upper bound constant.

fdz)  y<co(z)D

0 C(z)-D <y <C(z)
Ixy) =, C(2)2y <C(z)+D

fiz,y) ClE)HD<y

where gl#g2.

vilxg) = I+v(g) = I(x,y)*G(x,y)

+o0 Clx)
— =2, (z-uf+(y-v) (z-u )P+ (y-v)?
= glimf}_v[ = + = ] exp| 22 ]dvdu +

+oc  +oo 2 2 2
[ 15+ ETROT) op Eoal oo f) vau +

400 C(u }-D

R e e L e L

40 C(v)
z-u) + (y-v)? (z-u) + (y-v )
+ g2__£°c(uj [ — ] exp| o7 ]dvdu
Let
40 C(v) 2
Il=glf | [ + (z-u)® +(V ")2]exp[ (- ")20211 -v) Jdvdu
-ooC(u)—D
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T =2, EouPov)y o Eou P+ (y-v)?
= @C(!HDJ l(u,u)[;2 + = ] expl > ]dvdu
C(x)-D
m =T f fz(“,”)(‘;—z + (z-u)zt.:;(y-v)z] exp[ (z—u)::.z(y_v)z]dvdu
- FoCURD (z-u )+ (y-v)? (z-u P+ (y-v)?
IV = g2_£ C.(I;) l-a—_2 + ~ Jexp| o Jdvdu

(1) We want to show II and III are very insignificant when D is large and ¢ is

small in comparison with D.

T2 (z-uf + (y-v)’
M <] [ = fi(uv)exp o |dvdul

00 C(u 4D

400 4
1 f LB g (o v)expl bt 00 gygy|
-0 C(u 1D g 202

400 4@
+1] f (—y:f—)z f 1(u,v)exp| (2 )22:,(” 7 )2]dudv| =M1+12+13

-0 C(s #D 4

FUSEPS
2 (z-u)’+ (y-v)
01 = = f(u,v)ex dvdu
11,12 riavenp et B 0= gvay
400 4o
<H[ [ Zexpl-l “)2:2(”‘”’ Jdvdu
00 C'(u HD

T (z-u )+ (C(u)+D-y }
<M sy, ooh = Jdu
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When D is large, ¢ is small in comparison with D, IL.1 is very insignificant.

m2=(] | L2F / uyexpl- B A=) gyay

-0 C(u 4D

< HT T (z=u PV o 2mul + Wy
-0 C(u D - o 2
2

o oz-u)? (z-u)?+ (C(u)+D—y
<H| Curo-ne o 2% Idu

When D is large, ¢ is small in comparison with D, I1.2 is very insignificant.

+00 400
3 =|/ C(“fw—‘!’—;—f—f 1 suv)expl- =L =2 P vay

< HT,I-'z ?(C(u )+D -y ) expl- (Cu)+Dyf +(z-u) Jdu

20°
4o 4o
+ }g fc(f)_w exp| (z u)zz':._,(y*v) ]dvdu
4o
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+oo z-U 2 U - 2
+ 2H_‘L_—__C(u)LD-y exp[-( ) +(200£ HD-y) Jdu

When D is large, I1.3 is very insignificant. Hence when D is large, ¢ is small in

comparison with D, Il is very small and can be ignored in our discussion.
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expl- (z-u )+ (y-C(u)+D)? du

+ fy C(u)+D 25

Since IIL.1, IT1.2 and II1.3 are all very insignificant when D is large and ¢ is small,
III can be disregarded in our discussion. Further more, II and IIl are the decreas-

ing function of D, in fact Dlim (I1+111) = 0, and they are the increasing function

of 0. So for any real positive number e, there exists a monotonically increasing
function, L(D), such that when ¢ < L(D), |II + III| < e. When e is very small, it

implies that II+II can be ignored in our discussion.

2) We want to show that for every z,, there exists some y, such that (z,y,) is a
Lyl

zero crossing of I11+IV.

C(s) 2
11.2 = 7 [ (y-v) exp| ("")22:2(”"") Jdvdu

-0 C(s D

oo 2 2
= & [ (5-Clu)expl- L=Cle e oe Ty,

) %11' ? (y'C(u)+D)exP[. (y-C(u )+2Dalz + (z-u )2] da
Clu \
70(,(}_0 exp| (z-u) ;‘y-v)zldvdu

+oc Clu)
ha= 2] g oo oottt avay

In our discussion range, we either have ¢v) > ¢v+D) or ¢(v+D) > ¢c-Y(v).
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Without losing the generality, we assume C-}(v+D) > ¢-(v).

+eoC Yv+D)
11.3=— f [ (z-u)? exp| ("")22';2(”‘")2] dudv

o Ky
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Following the similar procedure, we get
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+o -1
v ZTe-c) eplleltlimlyy . BT odp) expl

l=

(z-C“(v--gaz))2 + (y—v)"']dv
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Obviously, I*G(x,y) is a continuous function of x and y. For any z,, if
114IV(z,,C(z,)) = 0, then (z,, C(z,)) is a zero point. If I1+IV(z,,C(z,)) # 0,

without losing the generality, we assume g1>g2 and I14+IV(z,,C(z,)) > 0, i.e.

I*G (2,,C(z,)) = I1+1V (2,,C(z))) = M' + E' > 0,

(Ol O + erma f g

where M! = {192 -?)(C(z }-C(u))exp|-
A 20°
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+ (g Z;g 1) ?(z,-C"(v )) expl- (2:-CYv ))22; (C(z1)-v )z]dv

(C(z1}-C(s+D ) + (21-u F

o2 ] du
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21T (Ofe-Cfu)+D)expt-

(C(z,)—C(u exp[ (C(zl)-c(u);apz)z"'(zl.u)z] du

q,l
g—1%

(2:-CHv+D)) + (C(z,)}v ) d

(s,-C7'(v +D)) exp|- 27 |

g1
T

]

Cv-D))* + (C(z))-v

)
o Jdv

- 22 +]m(: -C(v-D)) exp|- (e
P

Since |E'| is small in comparison with |M!|, it implies that M! > 0.
At y=C(z,) - P, where 0<P<D,
I*G(z,,C(z,)—P) ~ Il+IV(zl,C(z,)-P) =M + M} + M + E?

where

(C(z-C ()PP + (21- “)2]

Mi = LD (C(a 1 ClupPlecpl —

CHv)f* + (C(z,)-v-PF
o Jdv

o0 z,-
g =20 TG o)) expl-!
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o ] du
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(cmmu»;?)u(z,—u)’] i

".’,

= 227 (G2} Clu}D-Pespl-

(2:-C v +D))* + (C(z1)-v-P)

™ Jdv

-HD
+ f ~CY(v+D)) expl-

3l

o0 -CYv-D 2 Jv- 2
- _Z':—_L(IX_C—I(”-D)) exp[_ (31 ( ))2:;(0(2 )_ P) ]dv

When D is large enough, ¢ is small in comparison with D, E? is very small and

can be ignored.

Since P < D, M# < 0.

2 2 _ (91-92 (0(1’1)-0(“)—1’)24-(21—11 )2
M+ M} = = @(C(zl)‘C(u exp[-
z;-CYv))? z,}v-P)
+ 2200 | a-0iw)) expl- ErT W+ OG- PTg,

1P F gy €l Cle PP e E o
Once P is large enough, we will have M? + M7 + MJ < 0. It implies that there
exists some P < D, such that I*G(z,,C(z,)-P) = I1+1IV(z,,C(z,)-P) < 0.

Since for y = C(x) - P, where 0<P<D, I*G(x,y) is continuous for P, there
exists some yo. C(z,)-D < yo < C(z,), such that I¥G(z,,y0) = I(z,,40) = 0. So (z,,
vo) is a zero crossing. So for every x there exists a y, such that (x,y) is a zero

point. The existance of the zero-crossing does not depend on o, but the location
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of the zero-crossing is determined by ¢. So at any o value, as long as ¢ and D
together makes II(x,y) and II(x,y) insignificant enough, i.e. ¢ < L(D), where L is
a monotonically increasing function of D, then we always get a zero-crossing
curve corresponding to the edge curve. But we may get the zero-crossings at the
different locations from the edge points when ¢ changes. So we have proved the

Lemma.

QED.
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Appendix B: The proof of Theorem 1

Let the edge line be y=ax+b. We can rotate our coordinate system through

angle ¢ = arctan(a). Let the new coordinate system be (x',y’). The edge line

b
\/1+a!.

the situation that the edge line has the equations y = B. (For x = B, it has the

under the new coordinate system are y’ = So we only need to discuss

similar proving procedure.)

Ii=¥)  ysB4D

g1 B<y<B+D
Ixy)=},, B-D<y<B

fAzy) ¥<B-D

Let H be an upper bound constant of f,(z,y) and f |z,y).

vilxg) = Ixv{g) = I(x,y)*G(x,y) =

+o 4o 2 2 2 . 2
[ ] 1wy |5 + E2 LU0y ol eV 2 o0 Pigygy 4

“oB+D 20%

2] [|Z + P ool opp (P ool gy

+xB-D 2
f ffz(u,'-’){';—z + (z-u) ;(y-”)zl exp[ (z-u )2;2(y_v)2]dvdu

-C -

=N+0+0I+1IV
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where
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(z-uf+(y-v) T ) (z-u )+ (yv)?
o Jdvdu + @LB[DL;T)- exp| > Jdvdu

=11+ 102 + 1113

o 8 2 z-u ~v)?
m.2=g2_{°8_[b(z—;‘"—l]exp[ ( )”2:2(” ¥ 1dvdu

_—y % exp| LU Javan

+o B 2 —u)? o)
s ] 2 ol =l

2 400 B
= 2UB) /5 expl B | . g UBD) 5 o WBDF ) 4 g [ L1
- B-D

(2w )22;(1’ o) ]dvdu

o1 = 152) 5 g U2 @801 7 i 220

I(x,y)*G(x,y) = M(x,y) + E(x,y)
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where M(x,y) = - gliy_;?_) vV2r eXp[-ﬂ;Tle’] + g2 !V;B)\/f; exp[-jﬂ;aB2 )’]

Exy) = gt&=22) 3 exp[-Mz;;P—fl - gple=BiD) oy exp[-1"—'—32;;—"-22 |+ 11

+ IV

Now we want to show that at y = B, E(x,y) is very insignificant.

T2 (Eou P (y-v)y L (mou 4+ (v )
Mj<H [ [ l-;-z + = | exp| > ]dvdu

-0 B4D

Since at y=B, when 057D§ and v > B+D, —;—f + (z-u )2; (y-v)* > 0; so

nj <H ZID 1+ (z-u)’ ;(""’)’ ] exp[-2=v) ;(”'"P]dvdu

400 40 400 400
= H [ =2 exp| (z-u) + (y-v f]dvdu + Hf P'—:‘)-z
-co B 4D 02 2‘72 -0 B+D 4
en (Zu P+ (y-v P R V) N ) R (D & _
exp| Py |dvdu + H_‘LB_LD — exp| = Jdvdu =11.1 +
11.2+11.3
4 40 4o 4o
ne = HJf %f exp| (z‘")z;,(y-v)z]dvdu = [ Tﬁ
0B+D “oB+D

exp| (z-u )22';,(”'” 3 ]dvdu

+00 400 +o
11.3 = Hf f (y°:’ )2 exp{ (:"u )2 + (y_v )2]dvdu = f@exp[.wzldu +
oB¥D O 20% A 22
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O o P P
'-[w ~ exp| > ]dvdu

é'-~t

\/_rexp[-—- ] + f f 5 H expl (z'")zz';z(”'"r]—_dvdu

-coB+D

2
Aty =B, 1| < £ vzexp}- 2,

+coB -D

IVl < H f f I"2 + (z-")z;(”'"lzl exp| (z-u szz("'")z]dvdu

Since at y=B, when a< 2 and v < B-D, = 02 + (z-")z:(” v}’ > 0; so

V] <H78fpl o P2 o)) expl L2t 2 100 F gy
_ N (z-u) + (y-v)? T a-up
= H L__L = exp| o7 Jdvdu  + HL_{D ==

+00B-~-D

exp[- (z- ")2+(y v) ]dvdu + Hf f (y- ")2 exp| (z- “F;(”_”)z]dvdu =1Vl +

IV2 +1V.3

+4c0B-D

IV2—-Hf f ._?_“_l exp[ (z-u)’ +(”—vl]dvdu

+xB-D
_ T g (uP et (o)
___:L:L exp{ 202 ]dlel
B-D +o
V3 = H?f iy__v_ exp[ (2 u +(y V) ]dVd —_— f_laiz_exp[ (ilg)—:zj—l)—z]du +

Behavior 65



RSD-TR-2-87

[ f ;21-1 exp| ("“f;z(”'vfldvdu

+ooB-D

»/—exp[-—-]+ ]f exp| (2= ")2+(”'") Jdvdu

Aty =B, |IV]| < = f‘exp[-—]

D D? D D?
Soaty =B, [E(x,B)| < g1 var expl- | + g2 vaz expl- =] + 11| + [IV] <
= \/278xp[~—— | +gl- Nz exp[ ] +g2< Dz expl- 2 ] + 2P \/—exp[--— ]
4HD
Since gl < H and g2 < H, so E(x,B) < — J_exp[-— ]

D D D? D?
When =225, ;exp[-@,] < 0.88 < 1, so E(x,B)< 4HVv2x exp{—@].

For any real number e, 0<e<4HvZr, when ¢ < TI1(D) = min { -2—%,
D }, E(x,B) < e. In most cases, ——D-—Z D , so we take
4H V2r 2.5 4H V2x

3in ( ) 3in (25X

Ti(D) = D . Obviously, T1 is a monotonically increasing function

3ln(4H 2x)

of D. So we have proved that E(x,y) is very insignificant, M(x,y) is the dominant

part. Without losing the generality, let’s assume g2 > ¢l.

For y=B' < B, and B’ is very close to B, I{x,B')*G(x,B’) =~ M(x,B') = (g2-
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g)) & B exp[—%&zl <0.

a

For y=B" > B, and B’ is very close to B, I{x,B’)*G(x,B’') =~ M(x,B’) = (g2-

gl)LBLa;BL) exp[—g—Z—;gf] > 0.

Aty =B, I(x,y)*G(x,y) = M(x,y) + E(x,y} = M(x,B) = 0.

So y = B is a zero crossing line. It has the same tangent and location as the edge

line. Hence theorem 1 has been proved.

In the computer vision application, T1 can be further simplified. If we have
H<255, choosing e>0.46, T1(D) = .;”.5; choosing €20.12, T1(D) = = ; choosing

e>0.048, T1(D) =

oly

. In most cases, T1(D) = -g is sufficient.

QE.D.
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Appendix C: The proof of Theorem 2.

Let the two parallel lines be y=ax+b1l and y=ax+b2. We can rotate our coordi-

nate system through angle ¢ = arctan(a). Let the new coordinate system be

b1
\/1+a§

(x’,y’). The edge lines under the new coordinate system are y' = and y’

=22 Sowe only need to discuss the situation that the two edge lines have

Vi+a?
the equations y = Bl and y = B2, where B1 > B2.

fl(z:y) y)Bl+D

('3 Bi1<y<B1+D
I(x,y) = {g. B2<y<B1

fdzy) V<BZD

Let H be an upper bound constant of f ,(z,y) and s Jz,y).

vilxg) = rvfg) = Ix,y)*Glx,y) =

[ [ fiuw) {%‘z + (z—")z;(”'")z] exp| (z"")z;(y"")zldvdu +

4008 14D
4 2= u)+(v v)? (z-u)’+ (y-v )
g1f [ 1% =0 F) expf Lt P2t F Jgvau +

-0 Bl

40081

gg_{ogzl 2y L u)‘«’;(,,_v)zl eXP[‘(z—u)ZZg ]dvdu +

4o B2
~u)

g3 [ H—

-coBz—D

i * (”‘v)zl exp| -{Z=¢ )22:2(”'" f Jdvdu +
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+o00B 2-D

f sz(u ”)l—' + (1 u)’+(y 012] exp' (z u)‘+(y v)z]dlel

=N+04+0I+IV+V

where

1= f f f ou, v)[-— + (=-“)2;(v-v)’]exp[ (z-u)’;z(v—v)’]dvdu

Bt
= gIZ"Z"E‘g L (- )’;(y-v P expl 2= )’;u-v)’ ldvdu
= @Z‘z,-z (,_,,)z;(,-,,f] expl 12-'4)’2:2(:/-")’ |dvdu
W—-@Z,,Zuz 4 (z-uf +(v 0P} exp[ -2 ")2:2(0-11)’ ldvdu
Zl fduo)lZ3 + (z- “):‘” ")) expl- 2= "’2:2‘” *)] dvdu

Following the same proof of part Il and part Il in theorem 1,

- —B1-D )? - _ 2
=g B2) vz exp(-(”—%—;—p—l |- g2 v exp[-i‘ifzi) ]

m = g2 (y-fl) V37 expl- !y;le)"'] . g2(y—f2)\/2_ﬂ expl- (!/-2522)2]

-B?2 _B9)2 _ _ .
IV = 322 /7 expl- WB2 | g3 U=B2HD) g oy (4-B21D )

vi{l*g) = IxvHg) = I(x,y)*G(x,y) = M(x,y) + E(x,y)
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where
Bixy) = - g3lZWBRD) o WBUDP | 4qBLDNE o

40 B2-D

WBLDF) 4 [ [ rdwonS + Lt L)) xpp (o0 P00} ) dvgu +

f f [afu,v) [( + (I_“Y;(y‘-")z)exp[ iz-“f;z(y_”)z]]dvdu

-0 B 14D

= E1 + E2 + E3 + E4.

2
M(xy) = (g3-g2) LEEVE expl. LB o (ga.g1) (LBUVET opp (1B 1F)
By the definition, without losing generality, we assume g2 > g3, and g2 > gl.
Let W = B1-B2.

Part 1. To show that there are two zero crossing lines y=B, at y > Bl and

y=B, aty < B2.

(1.a) To show B2<y<B1 is a negative region.

When B2 < y < B1, then when ¢ < D,

2
B1| = g3 ZU=B2D) oxpp WBLDY | ¢ g3 212 el 2,
\ __ L (B1+D-y)WVor (y-B1-D)? D\/_ __12_2
[E2| = gl - expl-=——— Ml < g1 expl-—,

When B2<y<B1, v < B2-D and 057"5, then (y-v)?>D?>20% it implies that
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=2 (z-w)+(y-v)Py
(a3 + — ) > 0.

Hence

4B 2-D

B3l < Hf [ [+ Lntltlel) i e PA 0P ) gvgu

Following the proof of part I of theorem 1,

4o B2-D

|E3| < Hj' f [( -2 (z-u )’;(v-v)’) exp| (z-u )22:2(0"")2] | dvdu _<_-}{:D\/27rexp[-

When B2<y<BI1, v > B1+D and a<7. then (y-v)?>D?>20% it implies that

-2 (z-u P+ (y-v)?
(az + ~ ) > 0. Hence

|E4 | <Hf f [ + (z-u)? +(!I ”)2 ) exp[- (z-u)? +(y'v)2]]dvdu

xBi+4D ot 20°

Following the proof of part I of theorem 1,

Et | <af [ (2 + LoPrloPy o (zu)=+(y =P | dvdu

—0B14D o* g

HD D?
< —~ \/'2?8Xp[-2—;2]

D

Hence for a real number e, 0 < e < 4Hv2x, when ¢<T2(D )=

31n ( 2x

)
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[E| < [E1| + [E2| + [E3| + [E4] < 222 zrexp|- 2 ]< e.

It shows that E is very insignificant when B2 < y < Bl. When H<255, choosing

e>0.048, T2(D) = -? is sufficient.

So for B2 < y < B1, I*G(x,y) = M(x,y). For B2 <y < B1, (y-B2) > 0, (y-Bl)

< 0, (g3-g2)<0 and (g2-g1)>0, so M(x,y) < 0.

It indicates that there are no zero crossings within the region, B2<y<BlI, this is a

negative region.
(1.b) To show that there exists B’ > B1, such that M(x,B’) > 0

(1.b.1) When g2-gl > g2-g3, for y= Bl + o,

; W 2
[E1| = g3 LW 2etD) ol (WHodD ]

== D+W

For any real number e, 0<e<g3v2x, when ¢ < = =
g T

3ln( )

IEII = g3_\/2__7r._(l_V;-_|-giD_) exp[. 11‘,-’;:2_-{’“.2 ] < H@_‘g_tp_) exp[- (_VV2_:29_)2 ] < e.

D+W

I:H 2x < DH 2x < 3v2
ln(——=") (=) fam( f’)

For H<255, when 0<%, [E1| < 0.00006.

Note that T2(D) =
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40 B2-D

E3 = f f /v, t)l(— + (”"y;(”'")z)exp[ (z°")22:,(”"')2] | dvdu

For y = Bl + o, v £ B2-D, (y-v)) = ((B1-B2)+o+D)* > 2 & so

-2 (z-u )2

(= + ;(” "’lz) > 0. It implies that E3 is positive.

E4= f f als, ")[(_2 + (z'u)z;("'")z)exP{ @-u)’;(y-v)z] ] dvdu

-c0 B 14D

For y = Bl 4+ o, v > B1+4D, and a<—7. (y-v)? = (-D)* > 2 &, so

(3 4 Lzt 2 =08y > o, It implies that E4is positive.

When y=Bl+o,

E2 = gl————(”“B I;D Ve exp[-i——x"'z;p | = gli——"'pa)‘/y7r exp[-——l(o;fz 2] <0.
At y=Bl+o,

M(x,Bl-+o)=(g2-g1)vErexpl- ] - (g2-63) 22 Va7 expl- (L2}
g2-gl > g2-g3, and W+9) exp[—Mz] < exp[-—l], so M(x,B1+¢) > 0. For
o 20° 2

M(x,Bl+0) + E2(x,Bl1+4¢) = (gQ-g]_)\/z_zexp[._; ] - (g2-g3) _(_”%g) Vo exp[_(w;ay]

-gl == (D*’ exp|- 202)2]

?

let’s consider the worst case, g2 = H, gl = H-2 and g3 = H-1.
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M(xBl+0) + E2(xBl+0) = 2vZrexpl-3] - ¥ v exP[-l‘_szt‘:l’] (H-2)29)

expl- 192—})2 |

2
When ¢ < 2W, i—?exp[—%] - -(L:—a) Ver exp["(']%,§l ] >0

D (D-d) (D -o)?
When o<, “— exp| = |<o0.28.

D

144/ 3|n(”—8‘2)

3 1 .o (D -0) (Do) 3 mrexol 1] - : (D -a)
-é\/27rexp[-—2] - (H:2)— exp| -(—271] > 2\/2_exp[ 2] 0.28(H-2) exp] szl]

So when ¢ <

> 0.

When e 5-——2—21— T2(D) =

D D
2 < ’
(H-2)} +/3n( "HEQ’) 1+4/30(2)

For 0 < H < 3000, when choosing 0<e<l, T2(D) = D
4H V2x
3lin( -~ )
D
1+ 31n(1’-8-‘-2 )
So we have shown that when 0<e<1, ¢ < T2(D) = D and o
4H V2
(=)
< 2W,
IxG(x,Bl1+4) > 0.
74
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When H=255, 05.5, M(x,Bl+0) + E2(xBl+c) > 2/Zrexpl-3] - ""*"exp[

L__l“;:;”] - 2531-—-)”:’ > 31.563 > 0. exp[-i’-’z—az‘ﬂzl > 0.5 > 0.

So we have shown that for H<255, when ¢ < -15) , #*G(x,B14+0) > 0.

(1.b.2) For g2-g3 > g2-gl, to show I*G(x,B1+4) > 0.

At y=Bl+o, from the same analysis in (1.b.1), E1, E3 and E4 can be ignored in

our discussion, and E2 is negative.

, W 2
M(x,Bl+o)=(g2-gl)mexp[-—;] - (g2-g3)(—;:ﬂ) vor expl-”—%%‘Zl ]
Because g2-g3 > g2-gl, M(x,B1+40) is not always positive.

M(x,Bl+0) + E2(x,Bl140) = (g2-gl)v2x exp[--] (g2-g3) 1—"—'1)\/— exp[- L—-ﬂf ]

=glw%) exp[--(—';—;zﬂzl

Let’s consider the worst case, g2 = H, gl = H-1 and g3 = 0.

When o < D —, B2 = glﬂ’—a‘—") exp[-i%-;z‘ﬂzl < 1.25.
When ¢ < i , (g2-g3) W:a\/ﬂ exp[—i%?z] < 0.1, so M(x, Bl+od)

\/3m(0—f’;)-1

> 1.25, hence M(x, Bl+o) + E2 > 0. For H<1000, i

\ /31n(3-]';1 )-1
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Note that when e<——— , T2(D) =
(H- 13 3in(21V27) 3ln(-— )
For 0<e<0.1, when H<1000, T2(D) = =
4H V2x
3ln(——) 31“("1—:‘,-5 )
For H<255, when a<-5 and o -%V,
I*G(x,Bl4+s) =~ M(x,Bl+s) + E2(x,Bl+os) = (g?-gl)\/f;rexp[--;] - (g2-

) W20 exp[.le;ﬂ’ | -g129 exp[.102_;2':l’] > 1.5- 0.86-0.342 > 0.

Combining (1.b.1) and (1.b.2) we have shown that for 0 < e < —— , when ¢
(H- 1)a

< T2(D) = D , and o< W IxG(x,Bl+0) > 0.

/3 L 32’) B \ /31:;(6-1?1 )-1

For H<255, when a<—€ and a<-— , I¥G(x,B140) > 0.

(1.c) To show I¥G(x,B2-0) > 0

E2(x,B2-0s) = -gl \/QTY(W:H»D) expl- (W+200;+D )2 |

D+W

For any real number e, 0<e<g2v2r, when ¢ < =

3!("3 27)

[E2| = gl \/ﬂ(w:aw) expl- ngjp)? | < H\/z‘;(xrw) expl- gw;fy | <e.

Behavior 76



RSD-TR-2-87

Note that T2(D) = ——2 < D < __D+W
3ln(‘H Z aln (H 2x) 3ln(’3 o

)

For H<255, o<, [E2| < 0.00008.

When y=B2-0, aswpé, v<B2-d, (v-y *>(D-0)*>24% so

(5 + L2l 2ol 5 o 1t implies that

+B82-D

E3= [ [ fusn)[(F + P00 epl CtPAl0F) ) gugu > 0

At y=B2-0, when v >B1+D, (y-vf’>(W +0+D )*>25% hence at y=B2-0,

Ea=1 [ /i, ) (5 + bt o) ) exp (2 P2 G0F) ) dvdu

-0 B14D

is positive. So we only need to discuss about E1 and M(x,y).

(1.c.1) If g2-g3 > g2-¢1,

M(x,B2-0) =(g2-g3)v2r exp[-—; ] -(g2-g1) W:a exp[-p—‘;%a—)z] is positive.

E1(x,B2-0} = -gSﬁ;L-Da;o-) exp[-w—2;)-2] is negative.

2
M + E1 = (g2-g3)var exp[-—;l -(2-g1) W: 4 exp[-(—%ﬁ] -g3\/27ril%) exp[-

(D -0)2]
20°
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Considering the worst case, g2=H, g3=H-2 and gl=H-1, following the same

proving procedure in (1.b.1),

2% when ¢ < T2(D) < D , I+G(x,B2-0) ~ M(x,B2-0) +
(H-2)? 1+ /(22

E1(x,B2-¢) > 0.

for e<

When H<255, a<- , I*G(x,B2-0) =~ M(x,B2-¢) + E1(x,B2-¢) > 0.5 > 0.

(1.c.2) For g2-g1 > g2-g3.

Considering the worst case g2=H, g3=H-1 and gl=H-2. Following the same

proof procedure as in (1.b.2), we get

When o < D —, E1 > -1.25.
When ¢ < id , (g2-g3) W:” exp[-i%;i)z] < 0.1, so M(x, B2-0) >

/ H
3[!1(0—1 )— 1
1.25, hence M(x, B2-¢) + E1 > 0.

10

D
(H- 1)3 1 / 3ln( 44 2“ 1+ 4 /3ln(-l-%-5)

For H<255, when as-g, and aS—g’,

Note that when e< ———

1+G(x,B2-5) ~ M(x,B2-0) + E1(x,B2-0) > 0

Combining the results from (1.a), (1.b) and (l.c), we have shown that when
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0.00008<e<0.1, when ¢<T2(D) = ——l , #G(x,B1+0¢)>0, I+G(x,B2-0)

3ln( X )

> 0, I*G(x,B1) < 0 and I*G(x,B2) < 0. For y=B', BI<B'<bl+s, IxG(x,B’) is
a continuous function of B’, so there exists y=B, such that I*G(x,B,) = 0,
where Bl < B, < Bl4o. For the same reason, there exists y=B, such that

I+G((x,Bo;) = 0, where B2-¢ < B < B2.

(1.d) To show I*G(x,B’) < 0, for B1< B' < Bg; I*G(x,B’) > 0 for B, < B' <

Bl+o.

(1.d.1) For B < B' < Bo. 1#+G ~M + E1 + E2 + E3 + E4.

MixB) = (g3eE 20t gl Bt (g BBl o
Bor 2V} = M1 + M2,
— -3V /a5 Bor B2+D) xpl- (Bm-zjw )2]’
B2 — g1z 8o 31-1)) o (301-21;1-1) )2]‘
E3 = ?Bf oSS o B BortFy g e P Bore Py g
E4 = ZBZD (v.0) [(2 4 v :“B‘“‘"’z) expl- =) ;’UﬁB"“”’z] | dvdu

Obviously, M1 < 0, M2 > 0, E1 < 0 and E2 < 0, E3 > and E4 > 0(as shown
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in (1.b)) and we have (M2+E3+E4) + (M1+E1+E2) = 0.

B -B1l By-B1
P o

For B’, Bl < B' < By, since Bl < B,; < Bl +¢,0 < <

<l

2
And Z = Vexp[--%] is an increasing function when -1 < Z < 1, so

0<M2(x,B')<M2(x,B,;). Since ¢ < W = B1-B2, 1 < B ;32 < Bm;B2, func-

2
tion Z = Vexp[--Yé-] is a decreasing function when Z > 1, so

M1(x,B')<MI1(x,B)< 0. For the same reason, we have El(x, B') < El(x,Bq) <
0. When B’ changes from B, to Bl, E4 > 0 and decreases; E3 > 0 and
increases. But when D is large enough, E3 does not increase as faster as E4’s
decrease, i.e. E4(x,Bp)-E4(x,B’) > E3(x,B'}-E3(x,By;). Even though 0> E2(x,B’)

> E2(x,By), but when D is large enough,

E2(x,B') - E2(x,B,,) is very insignificant. So in general, the magnitude of the
negative part of I*G increases and the positive part decreases, so

I+G(x,B’) < I+G(x,By) = 0.
So there is no zero crossings in region Bl < y < By,.

(1.d.2) For y=B', Bu<B'<Bl+s. When B’ is changing from By to Bl+o,
-M1(x,B’) > 0 and is decreasing; -E1(x,B’) > 0 and is decreasing; M2(x,B’) > 0
and is increasing, i.e. M2(x,Bq)<M2(x,B’); E3(x,B’) > 0 and is decreasing,
E4(x,B’) > 0 and is increasing; -E2(x,B’) > 0 and is increasing. When D is large

enough, E4 is increasing faster than E3’s decreasing; and M2 is increasing faster
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than -E2's increasing. So in general, the magnitude of the negative part of IsG

decreases and the positive part increases, so

I+G(x,B") > I+G(x,Bo) = O.

BorBY BB

(1b.3) For B, < B' < B2, M(x,B,) = (g3-g2)v2r 7

] +

(g2-gl)var ] = M1 + M2.

B B 2
(Bm; l) exp[-( 022;31)

Bw-B2+D Be-B2+D Y
El = -g3\/_—(;.'2:_¢.’_i._) xp[-.(.;ﬂ_—;;z:_l]
E2 = glﬁ——-—-wor? 1-D) exp[—-—————-—(Bm—Z:-D)z]
4008 2-D
B3= 1 [ 1wl + ELEEeT) o el Dol ) o

E4 = j f falu,v) I( (z_u) :,(Bw_v) ) exp[- (z-uf ;ﬁBm_v)z] ] dvdu

-0 B 14D

Obviously, M1 > 0, M2 < 0, E1 < 0 and E2 < 0, E3 > 0 and E4 > Ofthis is

shown in (1.b))and we have (M1+E3+E4)+(M2+E1+E2)=0.

B 2—B' B2-By,

Since B2-¢ < B < B' < B2, 0 < < <10 < Mx B) <
M(x,B ).
Since 2382 BB o Mo(xBg) < [M2(xB)|, ie M2xB) <
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B1+D-Bg > B1+D-B
o o

Since > 1, |[E2(x,By)| < [E2(x,B’)|, i.e E2(x,B’) <

E2(x,B) < O.

E3 is decreasing and E4 is increasing, and when D is large enough, E3 is decreas-

ing faster than E4’s increasing.

Even though 0> E1(x,B’) > El(x,By), but when D is large enough, E1(x,B’) -
El(x,B,) is very insignificant. So in general, the magnitude of the negative part
of I*G increases and the positive part decreases, so

I*G(x,B') < I*G(x,Be) = 0.

(1.d.4) For B2-0<B <Bg When B’ is changing from Bg, to B2-¢, M1(x,B’') > 0
and is decreasing; -E1(x,B’) > 0 and is increasing; -M2(x,B’) > 0 and is decreas-
ing, i.e. M2(x,B,,)<M2(x,B’); E3(x,B’) > 0 and is increasing, E4(x,B’) > 0 and is
decreasing; -E2(x,B’) > 0 and is decreasing. When D is large enough, E3 is
increasing faster than E4’s decreasing; and -E1’s increasing very slowly. So in
general, the magnitude of the negative part of I*G decreases and the positive

part increases, so

I*G(X,B’) > I*G(X,BOI) = 0.

Combining the result from (1.b), (1.c) and (1.d), when 0.00006<e<0.1 and

D

4H V2«
e

gigma <T2(D) = , we have I*G(x,By) = I*G(x,B,;) = 0, where

3In( )

Bl1<Buy<Bl+os, B2-6<B»,<B2; for y=B', B1<B'<B,, I*G(x,B’) > 0, for

B, <B'<BIL, +G(x,B") < 0, for B2-0<B'<Bo; I+G(x,B’) > 0, for B,,<B'<B2,
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I*G(x,B') < 0; so y=B, and y=B, are zero crossing lines. Part 2. No other

Zero crossings.

Combining the results from (1.a) and (1.d), region B <y<Bl+c is a positive
region; region By, < y < By, is a negative region, region B2-¢<B’< B, is a posi-
tive region; so there is no zero crossing in these region. Hence y=B,, and y=B,,
are the only zero crossing lines in the region B2-0<y<Bl+o¢. So there is no false

zero crossings generated in our discussion region.

Part 3. The two zero crossing lines are tangent invariant.

As we have shown above that we have two zero crossing lines, y=B,,,
y=B s, for every ¢ < T2(D). Obviously, the zero crossings are linear and have
the same tangent value as the edge lines.

QED.
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Apperdix D: The Proof of Theorem 3.

Let the two parallel lines be y=ax+bl and y=axb52. We can rotate our coordi-

nate system through angle ¢ = arctan(a). Let the new coordinate system be

b1
\/l+a§

(x’,y’). The edge lines under the new coordinate system are y’ = and y’

= 22 . Sowe only need to discuss the situation that the two edge lines have

V1+a*
the equations y = Bl and y = B2, where B1 > B2.

fx(z,!l) y>B1+D

91 B1<y<B1+D
I(x,y) = {g. B2<y<B1
g3 B2-D<y<B?

foAz,y) V<BZD

Following the proof of theorem 2, we have

vlxg) = [xv’(g) = M(xy) + E(x,y)

where

M(xy) = (g&@)w expl-i”—;%?fl + (g2-g1) (L"%l)—@ exp[-(—”—;%fl
Let a1 = —-—-—-—-(”‘B:)"/—Q—’ exp[—i——l";f,‘,2 2], a2 = L—L"'Bal var exp[—i——”;?l)z]

M(x,y) = (g3 - g2)a; + (g2 - gl)a,

E(x,y) = - g3\/2_i(y_032+p) exp[- ll:Bz_jzﬂ ] + gl‘i‘.@%ﬂ_@ exp[.
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+0B82-D 2
.(1222;12:_0_22] + Li,z(u,,,)[(%z + (3‘“)2;(V‘”l)exp{ (3’“)22:2(V-")2”dvdu+

TT 1 o) (5 + (2o + W0 F') oxp| ("“V;‘”‘”F]]dvdu

-0 B 1+D d‘
= E1 + E2 + E3 + E4.
Part 1 To show that E is very insignificant when B2<y<BI.

When B2<y <BlI, following the proof of part (1.a) of theorem 2, we have the fol-

lowing result:

D
4H 2x

for a real number e, 0 < e < 4Hv2xr, when o< T3(D )=
31n(

)

[El < [E1] + [E2| + B3| + [B4] < 22 VZrexpl- 2] < e.

For H<255, choosing e > 0.048, T3(D) = -g is sufficient.

It shows that E is very insignificant when B2 < y < Bl. So M(x,y) is the dom-
inant part, the rest of the theorem will be proved on M(x,y). Without losing the

generality, we assume g3>g2>¢l.

M(xB1) = (g3-g2) EIEAVET expp B2 5

M(xB2) = (g2-g1) BZEIVIT opp MJ <0

Part 2. To show that when ¢ is very small in comparison with W, we have two
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zero crossing lines each of which is tangent and locational invariant to its

corresponding edge line.

(2.1) When o < 12" . B2 < B2+0 < Bl-o<Bl.

M(x,B2+0) = (g3-g2)exp[-.; | + (g2-g1) (B2-B :,+a)\/’$ expl- (B 2-;21.,.022]

= (g3-g2)expl-] - (g2-81) Lw—“;’l‘/—z—’ exp[-(lz;gf !

, W i (W-o)V2r _(W-o)?
When ¢ < ) \/ TR (g2-g1) - exp| — ] < e. When e
+ 3ln(——e—— )

approximates zero, this term can be regarded as zero. So M(x,B2+s) > 0. For

2
H<255, when ag—l‘g, (g2-g1) 1w—";l@ exp[-mz—;:l] < 1.48+10%. For y=B’, B2

< B < B2+s, when B’ changes from B2+0 to B2, M2(x,B’) = (g2-gl)

!BI—HU V2 expl- !B'.___z;zBl)z] decreases, so when ¢ <

w
, e
(H-1)v2z
l+\/3[n( . )
approximates zero and B1<B'<B2+0, we can disregard M2(x,B’). So M(x,B’) =
(g3-52) LE B2 exp[-gl—;;f—%f] > 0 and M(x,B2) = 0. For B' > B2 and B’

very close to B2, I*G(x,B’) ~ M(x,B’) < 0. So y = B2 is a zero crossing line.

(2.2) The same argument can be made for zero crossing line y = B1. For y=B’,

Bl-¢<B <B1, when ¢ < (x, B') < 0; and M(x,B1) = 0.

L M
1+ \/gln( (H —lj\/‘lz )

For y=B', B > Bl and B’ is very close to Bl, I+G(x,B’) = M(x,B’) > 0; Hence
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we have y=BI1 as a zero crossing line too.

(2.3) Now we want to show that when ¢ is small enough, there is no zero cross-

ings in the region B2 < y < Bl.

wmn“: w-2 . for all B', such that B-B2 > ¥=2 and BI-B' >

2
3ln( 2H 21r)

%ﬁ , M(x,B') < —; + -; = e. When e approximates zero, M(x, B') = 0

B1+B2-2 M

L (x,B") > 0, Bl-e < B' <

When g3-g2=g2-gl, B2+¢ < B’ <

B1, M(x,B’) < 0. So the region, B2<y<BI, there is a positive zone, zero zone

and negative zone, hence there is no zero crossings in this region.
When g3-g2#g2-gl, without losing generality, let’s assume g3-g2 > g2-gl.

For y=B', B2 < B’ < B2+ - Ml(x B') > 0 and |M2(x,B1)| < e, so M(x,B’)
> 0, so this is a positive zone. For y=B’, BI-¥? «B < B1, M1(x,B’) = (g3-

gg)\/—w -B2) expl- u ] is decreasing when B’ changes from Bl-—~ W 2 to

B1, so this term can be regarded as zero. M2(x,B’) = (g2-g1)\/2?-!-3—;3-1) exp[-

(—B——zif—lf] is decreasing when B’ changes, M2(x,B’) < 0 and -M2(x,B’) is increas-
ing when B’ changes from Bl-l‘%——2 to Bl. So M(x,B’) = M2(x,B’) will change

W-2

a

from zero to negative, when B’ changes from Bl-—— to Bl. Hence we have

shown that region, B2<y<BIl, has a positive zone, zero zone and negative zone,

hence there is no zero crossings in this region.
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W-2

24 / 3ln( 2L X2
NeEES

So we have shown that when o<

, there is no zero crossing in

the region B2 < y < Bl

For H<255, choosing e = 0.00023, as-‘—vm—iz is often sufficient.

w2
24/ 31n H ;eQ”)

lines, y=B1 and y=B2. These two zero crossing lines have the same tangent as

So we have shown that when o<

, we have two zero crossing

the edge lines and each of them has the same location as its corresponding edge

line.

Part 3. To show that when ¢ is not too small in comparison with W, we have

three paralle zero crossing lines.

(3.1) For g3-g2=g2-gl. At y=2 l-;—Bz’

M(x, Z2B2) = (g3.g2)BLPY 7 expl BLB2) . (g2.g1) (BLBY) 5 expy.

(B1-B2)?

) =

B1+B2
2

For B2 < B’ < , and ¢ is not too small in comparison with B’-B2, i.e.

(g3—g2)y ;B 2 exp[-lg—-é;zizf] cannot be regarded as zero, M(x,B’) < 0; for

B1+B2

5 < B’ < BI, and ¢ is not too small in comparison with B1-B’, i.e. (g2-

2
gl) B ;Bl exp[-%w ] cannot be regarded as zero, M(x,B’) > 0.
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So y= BI;B2 is a zero crossing line.
, -
When a<—2 =31232, 0 < B240 < BI;B2’

M(x,B2+2) = (g3-82)V27 expl-5] + (g2-1) B22EY) V7 expl- (BB 24Ny

. 2
Since u_a—_a?é 1, exp[——;] > 12—21?21-) exp[—i% ], so M(x,B2+0) > 0.

When ¢ is not too small, i.e. when (g2-g1)— exp[- ] cannot be regarded as

zero, we have M(x,B2) = -(g2-gl1)— exp[ ] < 0, M(x,B2+0) > 0 and B2 <
B1+B?2 : e

B2+0 < 5 15O there exists a zero crossing line,y= By, where B2 < By, <

B2+o.

When <12V_31;BQ’ BI+B2 < Bl-o < BI,

M(x,B1-0) = (g&g?)(il—f——-z—-g) ver eXP[‘%—zﬂzl - (g2-gl)var exp[——;]

2
Smce 741, M.:.”) xp[_(31—32—0)

o ] > exp[—-%], so M(x,B1-0) < 0.

2
When ¢ is not too small, i.e. -:-,V exp[-%z] cannot be regarded as zero, we have

d B1+B2

M(x, B1) > 0, M(x,B1-0) < 0 an >

<B1-0<Bl, so there exists a zero

crossing line, y=B,,, such that Bl-¢ < B, < Bl.
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So we have shown that there are three zero crossing lines in the region
B2<y<Bl.

(3.2) when g3-g2 # g2-gl, without losing the generality, we assume g3-g2 > g2-

gl > 0. When o is not too small, i.e. — exp[- ] cannot be regarded as zero,

we have

2
M1 = (g3-g2) Y2 BLE?expp. BLEA 5

M2 = (g2- 1)»/5?32 -B1, [_(31-32)2

2 B <o,

so M(x, _1&522 ) > 0. Since M(x,B2) < 0, so there always exists a zero crossing

B1+B2

line, y = B, such that B2 < By, < 5

W_B1-B2 B1+B2

For y=Bl-0, when o< — s =5 3 <B1-0<Bl.

M(x,B1-0) = (g3-g2)/ -0 va7 expl- | - (g2-g1)v27 expl-]

When o is not too small in comparison with W, 10_—6 is large, we will have

(Wa_a) W - o)"’] < (92-91) 06l9291) 3 implies that M(x,Bl1-0)

( :
=Pt | < ryg Pl = 058G

<0

More precisely, when -(—Edi) >2, le. oS-%V , (Wa-")

exp[-(u;;)z] < 1.03. So
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) exp 2} < 1.03expl- L)

When o< ud , M(x,B1-0)<0.

l+\/gln( g3-92 )

0.58(g 29 1)

Since M(x, 2 ‘;‘”) > 0, M(x,B1) > 0, M(x,Bl-¢) < 0 and B‘;’B 2 < Blo <

B1, there exist two zero crossing lines, y==B, and y=B03, such that B 1';32

<

B03 < Bl-¢e < Bg < B1.

(3.3) g2-g1 > g3-g2. By the same proof procedure above, it can be shown that we

have onme zero crossing line, y=B,, where BI;B 2 < B, < Bl. When

o< L , we have two more zero crossing lines, y=B03 and
1+J3[n(__2.2:gl_ )
0.58(9 3-g 2)

> B03 > B2+¢ > By, > B2.

y=B,, Where 31'532

Combining the results from (3.1), (3.2) and (3.3), we have shown that when ¢

is not too small and ¢ < , we have three parallel zero cross-

9392
H'\/'7?'11'(0 B(s291)

ing lines.

For 342 255, when a<lv, M(x,B1-0)<0.
g2-g1 5

4302 ¥ ;
For el 100, when o< 6’ M(x,B1-0)<0.

For £ l = 10, when o<o M(x B1-0)<0.

2—9
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t9

3-¢

W
5. 5, when o< =, M(x,B1-0)<0.

L=

—
—

For

[

For i’—3'—!-3'1’ = 2, when a<—g’, M(x,B1-4)<0.

92-g

Part 4. To show that when o is large, we have only one zero crossing line.

B -B2 (B_-B2)
~ expl- > ] and

When ¢ is not small, for any B’, B2<B’<B1, (g3-g2)

B1-B (BB F) ore significant and can’t be regarded as zero.

(g2-g1)—— exp

(4.1) For g3-g2=g2-gl.

As we have shown in (3.1), when ¢ is not too small and ¢ < T3(D), y

is always a zero crossing line.

For y=B', where B2<B'< B 1232,

el BY v expl-Z BY) . (g BIE ) m expf

M(xB') =
(B1-B )2]
202
where BI-B' > B-B2. When o> W, £ ;B 2 < B ‘;B' <1,

] < U 1;3' ) exP[‘igl;f;—f], so M(x,B’) < 0.

(B -B2) ___ (B -B2)
~ exp| 2

For y=B', where BI;BZ < B’ < B1,
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MxB) = () EE0vm expt &2 - (g2g)BE )z enpl

B1-B 2]
%7
where BI-B' < B-B2. When o>w, 222 < Z B2 o
B BY ol F =B 5 BLE Jop (BLE )
so M(x,B’) > 0.

Hence we have shown that when ¢ > W, for y=B’, B2<B'< Bl-;-B2’ M(x,B’) <

0; for BI;BQ<B’$BI, M(x,B’) > 0. So y=Bl';'B2 is the only zero crossing
line.
(4.2) For g3-g25#g2-gl, without losing the generality, let g3-g2 > g2-gl. As we

have shown in (3.2) that we have a zero crossing line, y=B,,, for every ¢ such

that ¢ < T3(D), where B2< Bop< 2 B2,

B1+B2

5 < B’ < Bl,

For every B’, such that

MxB) = (328205 eprZ 20 - (@) B ) g el

2°
(B1-B )2]
20°
When o> W, B1-B < B B2 < 1,
a g
(B -B2) . (B -B2fF, (B1-B )_. (B1-B }
=" exp| o5 | > —— exp| > ],
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B1+B2
2

so M(x,B’) > 0. It implies that there is no zero crossings in the region <

y < BI,

So we have shown that when ¢>W, we have only one zero crossing line,

y=B,, where B2 < By < 31332.

For g2-g1>g3-g2, it can be shown by the same proof procedure that when

B1+B2
2

o> W, y=B,,, where < By, < Bl, is the only zero crossing line.

Part 5. To show that there is no zero crossing in regions, Bl < y < Bl+4¢ and
B2 - 6 <y < B2. When D -—+o, there is no zero crossing in regions, y>B1 and

y<B2.

(5.1) As we have shown in Part 1, at y=B1 and y=B2, when ¢ < T3(D), |E| < e
for all small positive number. It means that E is very small and can be ignored.
We have also shown that I*G(x,B1) = M(x,B1) > 0 and I¥G(x,B2) = M(x,B2) <

0.

expl-=BY ;le)z |

E(xy) =El1+E2 +E3 + B4 =

+00B2-D

-2 (z-u )2"’ (y-v )2 (z-u )2+ (1,1—:1)2
i i [ouwll= + pr ) exp| o ]] dvdu +
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400 40 2
[ ] tisw) (3 + L2l o e 2 0Py ) gygy

-0 B 14D

(5.2) For Bl € y=B' < Bl+o.

We have M1(x,B’) > 0, M2(x,B’) > 0, E1(x,B’) < 0, E2(x,B’) < 0, E3(x,B’) > 0,

E4(x,B') > 0.

Since the increase of M2 faster-than -E2, so M2(x,B’)+E2(x,B’) > 0. When 0 <

T3(D), El is very insignificant. So I*G(x,B’) > 0.

(5.3) For B2-¢ < y=B' < B2.

We have M1(x,B’) < 0. M2(x,B) < 0, E1(x,B’) < 0, E2(x,B') < 0, E3(x,B’) > 0,

E4(x,B’) > 0.

When B’ changes from B2 to B2-0, E3 is increasing, but not as fast as -M1. When

o < T3(D), E4 is very insignificant. So I*G(x,B’) < 0.

Combining the results from (5.2) and (5.3), we have shown that when ¢ <
T3(D), there are no zero crossings in the regions Bl<y<Bl+od( this is a positive

region) and B2-0<y<B2(this is a negative region).

(5.3) When D -— +o0, I*G(x,y) = M(x,y). When y>Bl, I*G(x,y) = M(x,y) > 0.

When y<B2, I*G(x,y) = M(x,y) < 0.

So there is no zero crossing in regions y>B1 and y<B2.

QED.
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Fig. 1 The receptive fields of retinal ganglion cells.

Fig. 2 Typlcal sero crossing contours In a scale space image.

&ﬂmp.n NWM i (an

Fig. 3 Examples of the Non zero crossing contours of L-G.

(e@) (o) (c) (4}

V

Behavior 96



16 0 9

€ S0 4

RSD-TR-2-87

Fig. 4 The sero crossing contour of a step edge drawn by Shah.

(L B

s1gma

-ev 0 -8 0¢ 8 00 e+ 0

xX=-2x19

Fig. 5 The zero crossing contour of a pulse edge drawn by Shah.

11 0 1

e -ie -8 2 8 00

x=-3X | €
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Fig. 6 The sero crossing contour of a stalr edge drawn by Shah, P=1.

%]
50 -
DC ™ - = v T T
-ez 2 -2 0 -8 00 8 00 24 0 ue
XxX—axls
Fig. 7 The zero crossing contour of a stair edge drawn by Shah, P=2,
()
y
0 -24% 0 -8 0O¢C 8 00 oy 0 uo ¢

x-ax1s
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Fig. 8 Two dimensional L-G operator is shown using intensity to indicate
the value of the function at each point.

Fig. 9 The size of the zero crossing curve increases as o Increases.

INPUT IRAGE sigm=0.5  Slem=0.1 SIGMA = 0.9
%2 BOX
. . . °
siGma = | sighs = 1.2 signA = 1.§ SIGhA = 2
O

SIGNA = §

Behavior
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Fig. 10 An example of an Isolated non-linear edge curve.
When o changes, the shape of the zero crossing curve s changing too.

INPUT IMRGE Sigm =¢ sl = § sibm =6

VU

SIGMA = B SIGhA = 10 SIGMA = 12

Fig. 11 An example of a D-isolated linear edge curve, where D==10, When ¢<3< —g ,

we have linear sero crossing line; when 0>4> -g y the zero crossing curve Is not linear.
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Fig. 12 An example of a D-isolated linear edge curve, where D==20. When a$4<—f ’

we have linear zero crossing line; when ”26>'€ , the zero crossing curve is not linear.

Fig. 13 An example of two isolated pulse edge llnes with width=3. When 0<2, there

is no influence of edge lines, when 023>—§ y the zero erossing lines change the locations.
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Fig 14 An example of two pulse edge lines with width=10. When a_<_3<-3? y therels
no Influence of edge lines; when 024>£ » the sero crossing lines change the locations.

Fig. 156 An example of two pulse edge lines with width=10. When 0<3< -g y there is

no influence of edge lines; when 02>4> -g y the sero crossing lines change the locations.

INPUT IMAGE siehi = 2 siena =3 SIGh = %
100 255 100 v=10
SIGMA = § SIpNA = b
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Fig. 16 An example of two pulse edge lines with width=1.
The sero crossing contours In the scale space show the dislocation of edge lines.

Fig. 17 An example of two staircase edge lines. The false one disappears with 22 at 0>5.5.
The zero crossing contours In the scale space show the merging and disappearing of edge lines.

SI6M = 2 Sigh = 3 Sighn =V
T
%
L||iZy };
| H
S 16 A
H H E 5
s ¢
Slgm = SIGM = TERD CROSSING CONTOUR:

e et b e < BT Yk i
B
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Fig. 18 An example of two staircase edge lines. The false one disappears with 31 at 02>5.
Note the differences in Intensity levels.
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Fig. 19 An example of two stalrcase edge Lnes.
£1 and 52 move towards the false one evenly and disappear together at 02>7.5.
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Fig. 20 One closed region with gray levels g1 and g3.
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Fig. 21 An example of one Isolated corner with width=3.
The region expands with Increase In the value of 0.
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Fig. 22 An example of one lsolated corner with width=1.
The region expands with increase In the value of 0.
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Fig. 23 Two neighboring closed regions with gray levels g1, g2 and g3.
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Fig. 24 An example of the merging of two regions.
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Fig. 25 One region contalns a subregion with gray levels g1, g2 and g3.
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Fig. 26 An example of one false curve between two closed curves.
Note changes In sero crossings as o increases.

Fig. 27 An example of splitting, merging and expanding.
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Fig. 28 An example of expanding and splitting.
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Fig. 20 This image shows a nolsy square agzainst the nolsy background. To recover
the square, it may be required to reason In the scale space. For a large o, the
presenc= of square may be detected and low ¢ will give the location.
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