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ABSTRACT

John von Neumann and Oskar Morgenstern (Theory of Games and Economic Be-
havior, Princeton University Press, 194%) formulated a theory of n-person
games in terms of a characteristic function which is defined on the set of
all subsets of the set of players. Since then several reformulations of the
theory have appeared. Among the more recent developments in this direction
is a presentation by R. M. Thrall ("Generalized characteristic functions for
n-person games,' Proceedings of the Princeton University Conference on game
theory, October 4-6, 1961, pp. 157-160) of a theory of n-person cooperative
games with side payments in terms of a partition function which is defined
on the set of all partitions of the set of players. This formulation as-
signs a real numbered outcome to each coalition in each partition of the set
of players. For each such partition, the sum of the outcomes of its coali-
tions then determines an imputation simplex. The concepts of dominance and

solution are similar to those in the von Neumann-Morgenstern theory, except
that an imputation can dominate via a certain coalition only if it is on an
imputation simplex realized by a partition containing that coalition. This
approach reduces to the von Neumann-Morgenstern approach when all the impu-
tation simplices are the same.

The object of this thesis i1s to present solutions (stable sets) for
games in partition function form as defined by Thrall. Chapter 1 summarizes
the formulation of the theory of these games, and gives the solutions for
the 2-person games and the n-person games in which the largest payoff goes
to the partition made up of the single coalition containing all of the
players. All solutions for all 3-person games are discussed in Chapter 2.
Chapter % gives a polyhedral solution for each 4-person game in which dis-
tinct partitions give rise to distinct imputation simplices. Partial re-
sults for n-person games in which only partitions of type (n), (n-1,1) and
(1,...,1) have large outcomes are presented in Chapter 4. The final chap-
ter lists some of the unsolved problems in the theory.

In comparison with the von Neumann-Morgenstern games, the Thrall the-
ory gives more cases to consider and usually more imputations in a solution.
But there are fewer solutions in the latter theory as the number of impu-
tation simplices increases. The discriminatory solutions and the bargain-
ing curves in the von Neumann-Morgenstern theory do not seem To appear in
the Thrall games unless some of the imputation simplices coilncide.
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CHAPTER 1

n-PERSON GAMES IN PARTITION FUNCTION FORM

1. INTRODUCTION

In 1944, von Neumann and Morgenstern [8] formulated a theory of
n-person games in terms of a characteristic function which is defined
on the set of all subsets of the set of players. This formulation was
followed by much criticism of it, and several reformulations of the
theory have appeared. An excellent survey of this work, through 1957,
is given in the book by Luce and Raiffa [2]. A complete bibliography
of all of game theory up to 1958 is contained in [7]. Among the more
recent developments in this direction is a formulation by R. M. Thrall
[6] of a theory of n-person cooperative games with side payments in
terms of a partition function which is defined on the set of all par-
t9ilons of the set of players. Thrall's formulation assigns a real
numbered outcome to each coalition (coset) in each partition of the set
of players. For each partition, the sum of the outcomes of its coali-
tions then determines an imputation simplex. The concepts of domi-
nance and solution are similar to those in the von Neumann-
Morgenstern theory, except that an imputation can dominate via a cer-
tain coalition only if it is on an imputation simplex realized by a

partition containing that coalition. This approach reduces to the



von Neumann-Morgenstern approach when all the imputation simplices are
the same. R. J. Aumann, Morton Davis, Michael Maschler and Bezalel
Peleg (see references in [3]) are also working on a more local theory
of bargaining sets for n-person games which makes use of partitions of
the set of players. It is safe to say that none of the models for
n-person games proposed to date is completely satisfactory and no such
single model is likely to appear. But the various models do give some
insight into the problems of bargaining and conflict resolution.

The object of this thesis is to present solutions (stable sets)
for games in partition function form as defined by Thrall. Chapter 1
summarizes the formulation of the theory of these games, and gives the
solutions for the 2-person games and the n-person games in which the
largest payoff goes to the partition made up of the single coalition
containing all of the players. Much of this material was presented by
Thrall in [6]. All solutions for all 3-person games are discussed in
Chapter 2. Chapter 3 gives a polyhedral solution for all L-person
games in which distinct partitions give rise to distinct imputation
simplices whenever their payoffs are greater or equal to the payoff to
the partition containing the single coalition of all players. Partial
results for n-person games in which only partitions of type (n),
(n-1,1) and (1,...,1) are significant are presented in Chapter 4. The

final chapter lists some of the outstanding problems in the theory.



2. A GAME AND THE VALUE OF A COALITION
We prodeed to define an n-person game in partition function form
and the value of a coalition in such a game.

Let

N = (1,...,n)

be a set of n players who are represented by 1,...,n. Let

be an arbitrary partition of N into coalitions P ,...,Pr. The set of

all partitions of N is denoted by

T = (P}

Denote the real numbers by‘Rl, Then for each partition P assume there

is an outcome function

. 1
Fp ¢ PR

which assigns the real numbered outcome FP(P4) to the coalition Pi when

the partition P forms. The function
Fo H+[FP}

which assigns to each partition its outcome function is called the pay-

off function or partition function for the game. Finally the ordered




pair

r = (N,F)

is called an n-person game in partition function form.

For each non-empty subset M of N define the value of M as

(1) v(M) = min Fp(M)
(P|MeP}

and define v(¢) = 0. Iet v((i}) = v; for each ieN. This minimum is
over all partitions P which contain M as a coset and not the partitions
in which M is a union of more than one coset. That is, secret coali=-

N 1
tions are prohibited. This function v:2 »R need not satisfy the

superaddi tivity condition
V(M U Mg ) >v (M, )+v (M)

whenever Mlﬂ M, = ¢. In fact, there exist games for any choice of the
values v(M). If we were to take the above minimum over all P that have
M as a union of cosets of P, we would obtain a superadditive function
as in the von Neumann-Morgenstern theory. This was proved by

D. B. Gillies on p. 68 in [T].

3. IMPUTATION, DOMINATION, AND SOLUTION
For a given game, the concepts of imputation, domination, and
solution can now be introduced in a manner similar to that in the

von Neumann-Morgenstern theory.



is called an imputation if

A vector a = (al,.e.,an)

(@) a3 2 V4 1=1...,n
and
(3) z aj = Z FP(PJ') for some Pel.
icN P.eP
i 3€

Let R = the set of all imputations

of a game. Conditions (2) and (%) are called individual rationality

and realizability respectively. An imputation a is a possible set of

payoffs to the individual players, amount a; to player i, at the end
of a game. (2) states that no player need accept a payoff less than
what he is assured of if he forms a coalition by himself. And (3)
states that the total payoff to all of the players equals the sum of
the coalition outcomes for some partition. This definition of an
imputation allows for side payments between coalitions. Replacing
the equality in (3) by "less than or equals' would allow for a dis-
posal of wealth, and does not appear to change the following theory
significantly.

If a and b are imputations and M is a non empty subset of N,

then a dominates b via M, denoted a dom b, means that
M

(4) as > by for all ieM,



ieM

and

(6) }; ai = }: FP(PJ) for some Pell with McP.
ieN PJEP

These conditions are called, respectively, M-preferable, M-effective,

and M-realizable. Condition (4) says that each player in M prefers

his payoff in a to that in b. (5) states that M can be assured of
getting at least what they get in a no matter what N - M does, and

(6) states that a could arise when M is actually acting as a coalition,
This last restriction does not appear in the von Neumann-Morgenstern

theory. a is called exactly M-effective if the equality holds in (5),

and strictly M-effective if the inequality holds. If (5) fails, then

we call a M-ineffective. We say a dominates b, denoted a dom b, if

there exists such an M such that a dom b. The relation "dom" is
M

neither transitive nor antisymmetric. Also, if ACR, let dom A =
M

{beR|a dom b for some acA}, and dom A = H_Jeng dom b for some achA}.
M

Clearly, dom (Al B) = dom AU dom B and dom (NWB)Q;_dom,A(Wdom B.

A set of imputations K is a solution if

(7) KNdom K = ¢



and

(8) KUdom X = R.

These two conditions are equivalent to the one condition

R ~-domK = K.

In words, these two equations say that

(7') if a and b are in K, then neither dominates the other,

and

(8') if c is not in K, then there exists an a in K which dominates c.
If B is some subset of R, we will also say that a subset K of B is a

solution for B if K\ dom K = ¢ and KU dom K DB.

A set that is more stable than a solution set is the core defined

by

that is, the undominated imputations in R. For games in partition
function form the core is similar to this concept in the classical
theory as discussed by Gillies on p. 71 of [7]. Since C = ¢ for many

games, we will proceed to find solutions.

4, S-EQUIVALENCE
let " and T'' be two n-person games (in partition function form).

I' and T'' are called S-equivalent if there exists constants




c >0, ay,...,a, and a permutation o of N such that

JeP;
for all P;€P and all Pell. Intuitively, o relabels the players, c
changes the unit of wealth, and aj is an ante or subsidy that player
j makes before the play of the game. T is in normal form if v5 =0

for all ieN. T is in strict normal form if I is in normal form and

max ZEJ FP(Pi) = 1.
Pern PieP

It is easy to prove the following facts about S-equivalence. BS-
equivalence is an equivalence relation. Each equivalence class con-

tains a game in normal form. If T has some Pel for which

-
ji) FP(Pi) > 0, then there exists I'' in strict normal form such that

P.cP
1

' is S-equivalent to I Two games in strict normal form are S-
equivalent if and only if they are identical up to some permutation
g of N. Two S-equivalent games T and I'' are isomorphic, that is,
there is a one to one correspondence between R and R' that preserves

the relation "dom" for all MCN, and thus preserves solutions.
M

In what follows, we assume that all games are in normal form but

not necessarily strict normal form. Thus equation (2) now becomes



For a partition P in a game T let

Also, for any constant b let

Alb) = {gi j{: a, = b and a; >0}.

ieN
Then for each Pell conditions (2') and (3) give an imputation simplex

A( |P| ) which we will also denote by A(P).

5. 2-PERSON GAMES

For a 2-person game, N = (1,2} and | = [PO,Pl} where
1
P = (N}and P = ({1}, (2}]}.

({4}) =0 for i = 1,2. Then

And

R = A(c)U ((0,0)].

Clearly, if ¢ > O then the unique solution is K = A(c), and if ¢ <O
then the unique solution is K = R = {(0,0)}. That is, the two players
must agree on some way to split the amount ¢ >0 or else both get

nothing.
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6. THE PARTITION (N} AND GAMES WITH LARGE v(N).

Define a > b to mean ay > bi for all ieM. Similarly define >

>
M M

and =.
M

Lemma 1. If a dom b and b > ¢ where MC SCN, then a dom c.
M S M

Proof. Since a dom b, a is M-effective and M-realizable. And
M

clearly a; > cqy for all 1eM.

i

Corollary. If bﬁd%? A and ACKUdom K, then bedom K.

The following theorem states that no part of a solution can be
below the imputation simplex A(c) realized by the partition (N}. That
is, no imputation in a solution can be on an imputation simplex A(a)
with a < ¢. And Theorem 2 then shows that this partition (N} causes
no trouble in finding . solutions.

Theorem 1. If K is any solution and a < ¢ = v(N), then

KNA(a) = 4.

Proof. Let beA(a) and define a by a; = bj+d where nd = c;E: by > 0.
ieN

Then @gA(c) and a dom b. If aeK then bedom K. If g%K, then acdom K
N N M

for some MCN and so bedom K by Lemma 1. In either case EﬁKu
M

Theorem 2. If K is a solution for T = UA(P) where this union is
over all Pl with |P| >c = v(N) and P # (N}, then K' = KU (A(c)-dom K)

is a solution for all of R.
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Proof. If A(c)CT then A(c)C KUdom K by hypothesis and K' = K.
If A(c)NVT = ¢ then clearly A(c)CK'U dom KCK'U dom X'. In either

case, if beR-A(c)-T then beA(a) for some a < ¢ and so bedom A(c)
N

as was shown in the proof of Theorem 1. So bedom A(c)CK'Udom K'
N

and then the above Corollary gives bedom K'. Thus K'Udom K' = R.
If A(c)CT then K'Ndom XK' = KNdom K = ¢. If A(c)NT = ¢ then
K'Ndom K' = [KU(A(c)-dom K)]N dom[KU (A(c)-dom K)] = [KNdom K]U
[(A(c)-dom K)(Ndom K]U [KNdom (A(c)-dom K) ]l [(A(c)-dom K)N dom

(A(c)-dom X) ]CGUPU [KNdom Ac)JU[A(c)N dom A(c)]. But

v
e}

—
bedom A(c) implies ZZJ b; < c, and aeK or aeA(c) implies a

ieN ieN
So (KUA(c))Ndom A(c) = ¢. Thus K'Ndom K' = ¢f. Therefore, K' is a
solution for R.
We will now give the solution for n-person games in which the
outcome to the partition (N} is greater than the sum of the outcomes
for any other partition.

Theorem 3. For an n-person game with F (N) = v(N) =¢c >

}j FP(Pj) for all partitions P different from (N}, the unique

PjeP

solution is K = A(c).
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! —
Proof. Note that ¢ > 0 since v(N) > 24 FP([i}) > 2; v; =0
ielN ieN

where P = ((1},...,(n}}. Let K = ¢ in Theorem 2 and then X' = A(c).
So A(c) is a solution. It is the unique solution by Theorem 1.

For many games of the type in Theorem 3, the solution A(c) seems
to contain too many imputations, but if all the players in N are
actually acting as a coalition, then any imputation in A(c) seems
reasonable, at least as reasonable as the discriminatory solutions in
the classical theory. In general, a solution for a game in partition
function form has at least as many imputations as a similar solution
in the classical theory. However, Thrall games usually have fewer
soluticns than the corresponding von Neumanr-Morgenstern games as the
number of distinct imputation simplices A(P) (P£(N} nor ((1},...,(r}))
increases. It i1s also clear from Theorem 3 that the intersection of
all solutions need not be the core for Thrall games, because Alc) is
the unique solution but an imputatiorn below A(c) may dominate some

imputations on A(c).

7. THE PARTITION ({1}, ...,(nj}.

We will now show that the partition ((1},...,(n}} causes no
trouble in finding solutions.

Lemma 2. Domination via one element subsets (i} is impossible.

;1 2 by 20 which is impossible.

Proof. a dom b implies O = vy 2> a
(1}

Theorem 4. If K is a solution for V = UA(P) where the union is
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over all Pel except P = P' = (f1},...,(n}}, then XK' = KU (A(g) - dom K)

is a solution for all of R where g = |P!| = E; FP,([i})°

ieN

Proof. If A(g)g;V then R = V and X' K and K' is a solution

for R. So assume A(g)NV = ¢. Then K'Udom K' = [KU(A(g)-dom XK) JU
dom [KU (A(g)-dom K)] = [KUdom K]y [KUdom (A(g)-dom K) U

[(A(g)-dom K)|Jdom K] (j[(A(g)-dom K)U dom (A(g)-dom K)]D

(KUdom K)UA(g) = R. And K')dom K' = [KU (A(g)-dom X) I

dom [KU (A(g)-dom K)] C[KNdom K]U [(A(g)-dom K)(] dom K]
(IKL}(A(g)—dom'K)](]dom A(gi) = ¢, because dom A(g) = ¢ since the only
coalitions realizable for,geA(g) are one element coalitions and
domination by these is impossible by Lemma 2. Therefore, K' is a
solution for R.

As a result of Theorems 2 and 4, only the imputation simplices
that are at least as "high" as A(c) where ¢ = v(N) and that are real-
ized by the non trivial partitions will be considered in finding
solutions. So the appropriate points on A(c) and A(g) must be

appended to the solutions that are described in what follows in order

to get a complete solution for all of R.



CHAPTER 2

THE 3%-PERSON GAMES

1. INTRODUCTION
In this chapter, we will discuss the 3-person games in partition

function form. The set of players is

N = [1;2;5}

and the set I = (PP} of partitions of N consists of

P = ()
PL = ((1},(J,k}) i=1,2,3
Y- ((1),(2),(3))

where in this chapter i,j,k always stand for distinct elements of N.

We denote the values of the outcome functions by

FPo(N) = c
Foi((1}) = d, Foi((dk}) = e, i=1,2,3
th([i}) = g5 i=12,53

Then the values of the coalitions of N are

v(g) = 0
14
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vi = min{di,g;) i=1,2,3
v({d,k}) = e i=1,2,3%
v(N) = ¢

and so one of di or gi = O and the other is non negative, and also

e: < c: where we define

1 1

The set R of all imputations consists of the vectors a = (ai,az,as)

with ag > 0 which satisfy one of the equations

a1 taz +tag = ¢C
ay taz t+ag = dl + €4y = 0C4 1= 1)2,5
ay taz tag = g tg *tg3 = g

These five imputation simplices are realized by the partitions PO, Pi,

I

P" and are written as A(c), A(cy), A(g), respectively.

If a and b are imputations and NOM # @, then a dom b means

M

a; > b; for ieM ,
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E: a; < v(M), and

ieM

a is on an imputation simplex realized by a partition that con-
tains M.

But domination via M = (i} is impossible by Lemma 2. And a dom b means
N

gﬁA(c) and b is an imputation in the open octant below a. By Theorem 1,
such b are never in a solution, so we do not have to worry about dom-
ination via N. Finally, a dom b means

(J,k)

&3 > bj,ak > by

So a dominates all imputations b that are in the open wedge {E‘Xj < a3y

xg < ax}. This wedge meets the imputation simplices A(P) with

‘Pl > a3 + ap in congruent parallelogram shaped regions similar to the
regions in the von Neumann-Morgenstern theory, for example, see Figure
72 on p. 408 of [8]. On the A(P) with IPl <a; + a, these parallel-

ograms are truncated by xj + X = fP‘ (or x; =0).

2. SOLUTIONS
The nature of the solutions for the 3-person games depends upon the

number of the simplices A(ci) that have ci > c. ©So for the purpose of
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discussing solutions, four genera will be considered.

Genus 0. ¢ >cy >co >cg

Genus 1. c1 > c¢c >ca 2> c3

Genus 2. cy > c2 >c > cCga

Genus 3. cy > cz2 > c3 > C.
We assume that c¢; > cz: > cgz since the other possibilities can be ob-
tained from these by symmetry. The solutions in some genera also de-

pend upon the distribution of equalities in the above relations. Genera

2 and 3 are thus subdivided into species.

Genus 2. ©Species A. c1 > co
Species B, ¢y = c¢2

Genus 3. Species A. c1 > co > ca

Species B. c1 = co > cs
Species C. cy > ce = cg
Species D. c¢c1 =ca = cCa

From Theorem 4, the simplex A(g) need not be considered in deter-
mining solutions. Except for describing genera, the simplex A(c) also
need not be considered in determining solutions (Theorem 2). And by
Theorem 1, no part of a solution is below A(c). Therefore, only the
parts of the solutions on the simplices A(c;) with ¢ > c will be de-
scribed in the following. For complete solutions, we must add the

appropriate parts on A(g) and A(c). So we now proceed to discuss the
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solutions for each of the above cases. The verification that these
are solutions is fairly evident from the geometry of Figures 1-6. The
technical proofs are long but easy and will be omitted. The verification
of the uniqueness of these solutions (except for Genus O) will be dis-
cussed in the following section.

Our discussion of solutions is followed by corresponding figures
in which the solutions K consist of the closed regions bounded by the
heavy lines. In these figures, those imputation simplices A(ci) that
are at least as high as A(c) appear as if they were viewed from a dis-
tance in the (l,l,l) direction, that is, in barycentric coordinates.
Points on the same 120°, 60°, 0° lines have the same first, second, third
coordinates respectively. The figures show the cases whereci > O for
there are no imputations in A(cj) to consider if c; <0.

Genus 0. The unique solution is A(c). This was proved in Theorem
% for the case of arbitrary n.

Genus 1. The unique solution is
Aey) - (x|x2 + x3 < e}

where recall that e; = v((2,3}) < c;.

Genus 2, Species A. The unique soluton is

2
LJA(CP) - {§}X2 +x3<ep} - [(x{x3 <dy - b12,x1 + x3 < ez}
p=1

where qu cp—cq° The last term could also be written as

2
U [§§A(cp)ael + bp2 < Xg + Xz, X1 + X3 < e2).
p=l
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Genus 2, Species B. The solution is
Afcy) - [ﬁ‘xz + x3 <ep} - [§|Xl + Xz < e2)UKy

where Ky is a continuous curve on A(cy) from the point (di,ds,ci-di-ds)
to the edge (x3 = 0} whose x; and xo coordinates are non decreasing as
X3 decreages. Ki is the same as the curves in the von Neumann-Morgen-

stern 3-person games, for example, see Figure 82 on p. 412 of [8]. This

solution is unique up to the choice of KX;.

Genus 3, Species A. The unique solution is

3
U.A(Cp) - [ElXZ +x3 <ey} - (x|x3 <di - A12,x3 + x3 < ez}
p=1

-(x|x1 < d1 - Ma,xe < dz - deag,xp t x2 < ezl
Genus 3, Species B. The solution is

3
UA(cp) - [x]x2 + x3 <e1) - (x|x1 + x5 < e2)
p=l '

—(_}_{_EX]_ <dy - byg,xe < ds - l2a,X1 t X < e3}UKl

where K; is the same curve as in Genus 2, Species B. This solution is
also unique up to the choice of K;.
Genus 3%, Species C. The solution is
3
U A(Cp) - [&’Xz + xg <eip}- (x|x1 <dr - big,x1 + X3 < ez}
p=1

| |
-(§’X1 <dy - big,x + x2 < es)UKe UKs

where two cases need to be considered.
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(0’0901)
Aey)
12 -+~ x3 = 91 ‘
(cl,0,0) (0331,0)
Figure 1. Genus 1.
A(cl) A(cz)
xl 4 13 = 82
Xp4 X3=€;

Figure 2. Genus 2, Species A.
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A(cl) = A(cz)

Figure 3. Genus 2, Species B.

A(cl) A(cz) A(03)

Figure 4. Genus 3, Species A,
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Aley) = Alcy) Mc,)

Figure 5. Genus 3, Species B.

Aley) Alcy) = Ale,)
p=¢ -d) - d3

Figure 6. Genus 3, Species C, Case ci1 > dy + dz + da.
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(1) If cy; < d;+do+ds, then Ko is a curve on A(cz) from the point
(c2-d2-dz,dz2,ds) to the edge (x; = 0} and is analogous to Ky above and
Ks is a curved bar on A(cy) of width JEAlg whose sides are the same
shape as Ko and whose ends are determined by x3 >0, and xo > do,

X3 > d3q

(1i) If o > dy+dptds, then Ko is a similar curve on A(cz) from
the point (co+do+ds-2e1, c1-dy-ds, cip-d;-ds) to the edge (x; = 0), and
Ks 1is a similar bar on A(cy) whose ends are determined by x; > 0 and

Xp > cy-di-ds, X3 > cy-d;-do. Case (ii) is the one shown in Figure 6.

Genus 3, Species D. The solutions (still not counting A(g) and
A(c)) in this case are the same as those in the von Neumann-Morgenstern

H-person games. Agalin, Two cases need TO e considered.

(1) Tf ¢y < dy*+dptda, Then the solutions are the tyge pictured

in Figure 86 on p. 415 of [8].

(i1) If ci > di+do+ds, then the solutions are the type pictured

in Figure 82 or Figure 83 on p. 412 of [8].

In comparison with the von Neumann-Morgenstern %-person games, the
Thrall games give more cases to consider and usually more points in a
solution, but fewer solutions in most cases. In the cases where the
A(ci) are distinct, a unique solution exists and it is polyhedral with

boundaries parallel to the edges of the imputation simplices A(ci)n
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When some c; are equal and as large as c¢, then an infinity of solutions
(the K, parts) exist; and often one of these solutions is the limit of
the distinct simplex case. However, this is not true when in Genus 3,
Species C is considered as the limiting case of Species A. Note that

the union of all solutions for some games of the type in Genus 3, Species
C need not meet the A(ci) in a connected set. Also, if ¢ > d;+d>+da,
then the core of the games in Genus O is empty, and since A(c) is the
unique solution and need not be empty, we have an example where the

intersection of all solutions is not the core.

%3, UNIQUENESS
The following theorems will be used to prove the uniqueness asserted
in the above discussion of solutions.

Theorem 5. If ciy >cz > cg, c1 > c and K is any solution, then

il
.

KN Gzl + % < e1)

Proof. If ey = c1-d; <0, then xx+x3 < e < 0 implies x¢RDOK and
the theorem is true. But always di >0 or ey <ci. SO we can assume

0<e; <c; Let B" = [§§A(cl)‘X2 + x3 < dn} where 4= = min{e1, nlis}

and again qu = Cp=Cq-

The idea of our proof is to show that there exists a neighborhood

B* of the vertex (c1,0,0) on A(cy) that is contained in KUdom K ard is
(2,3)

(2,%) effective. Then the neighborhood ({xeA(a)| xatxa < dt} of the vertex



25

(2,0,0) on each A(a) 1s in dom K and thus does not meet K. Using these

(2,3
facts, we can continue to enlarge our neighborhood B' to BZ, BS,.,auntil
it includes all of [zﬁA(c1)|X2+x3 <ey =v((2,3})}. Then each region

{§§A(a)(x2+x3 < e1} is in dom K and thus does not meet K.

(2,3])
First, we will show that B;E;KLJdom K. Since K is a solution,
2,3}
B'CKUdom K. But BN dom K = ¢ for all M # (2,3}. Because domination
M

via one player coalitions is impossible; and since c; > c, A(cy)ndom R = ¢.
N
And because Blﬂ{%omwK = ¢, for if not then there exists acA(cs) (J £1
i
b4 J

1
nor i) and beB such that a dom b which implies by < a; < aj+tagtas = 3
(1,1}
and betbs = c1-by > cy1-cs = Alj > Mo > min{ey1,A12)} = dl, which contra-

J

dicts EﬁBlo Therefore, B CKUdom K. Next, it is then clear that
(2,3)

[§‘XQ+X3 < dl}gzdom [EﬁA(Cl))X2+X3 = dl}ggdom Blg;dom (KUdom K) = dom K.
(2,3) 2,35} (2,3} (2,3} (2,3}

So(§|x2+x3 < dl}[TK =¢. If d* = e1, then the proof is complete.
If 4" < ey, then d" = Ayp and (x[xe*xs < ba2)NK = §. So if
gﬁK(\A(ci) (1 =2 or 3), then astag > Ao and a1 < ci-812. Now, we can

show that B2£;KLJdom X. Because Bgﬂ dom K = ¢, for if not, then there
(2,%) (1,1)

exists §§A(cj)—{§lx2+x3 < Ao} and EsBZ such that a dom b, which implies
(1,1}

agtag = b2 and by < ap = cj-ag—a3§_cj-A12, and s0 betbs = ci1-by > cl—cj

+h1p = by s+hip > 2M1p, which contradicts beB~. Therefore, B2CK U dom K.
(2,3}
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Next, it is then clear that (x|xo+xs < 4%} Cdom {§§A(cl)\x2+x3 = dg}E;;

(2,3}

dom B°C dom (KU dom K) = dom K. So[§Xgm3<<f}ﬂK:¢n
(2,3} (2,3} (2,3} (2,3}

If d® = ey, then the proof is complete.

If 42 < e1, then we continue as above to get BmE;KlJ dom K for

(2,3]

m = B,M,O,Q,mo where finally dmo =e1. Then (X|xo+xg < dmo =e1)]C

m
dom [§§A(cl)’xz+x3 =e;} C dom B Og;;dom (KU dom K) = dom K. So
(2,3} (2,3) (2,3} (2,3) (2,3)

[§Jx2+x3 <ei;}NK = ¢9 and this completes the proof of the theorem.

The following two theorems can be proved in a manner similar to
Theorem 5 and so their proofs will be omitted. By starting with a neigh-
borhood of the vertex (0,c2,0) on A(ce) and staying where (2,3) is inef-
fective, we can enlarge this neighborhood to get Theorem 6. And by
starting with a neighborhood of the vertex (0,0,c3) on A(cs) and staying
where (2,3} and (1,3} are ineffective, we can enlarge this neighborhood
to get Theorem 7.

Theorem 6. If co > cg, co > ¢ and K is any solution, then

KN

X1+Xg < €z, X1 < di - b1z} = @

where qu = cp~cqo

Theorem 7. If cz3>c and K is any solution, then

Kf][§¥X1+X2 <es, x1 <dy - 13, Xe < d2 - b2z} = .
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Theorem 8. If c; > cz > cg and K is any solution, then
(xlg1 > d1 - A1z Or X2 >do - Bpg)}) dom K = (.
(1,2}
Proof. Iet D =-{§§A(c3)\xl > d1-0A15 Oor Xo > do-Asg). We will
first show that DK = ¢. For let acd, so a; > ds-L443 and asta; < e;

J

for i = 1 or 2. Then define b by bj = aj+€, b = a te, by = ai+Ai3—2€

where 3¢ = min (ej-aj-ax, A8iz} > 0. And then b > a and b dom a, because
N (J,k)}

¢ and Aig-2¢ > O, bty = B ytey t2e <y = v((j,k}), and b1+bo+bg = ai+as

tag+thiz = ¢y so beA(c;). But beKUdom K. If beK, then ae dom b Cdom K,
(J,k]}

If be dom K, then clearly ae dom K (Lemma 1). In either case gﬁKu
Therefore, DNK = . That is, if acA(cs)NK, then a; < di-415 and

az < dzp-Azs5., So if EG dom K then bi < di-833 and bz < do-L253. This
(1,2}

completes the proof.

The uniqueness of the solutions in Genera 1, 2A and %A now follows
immediately, because Theorems 5, 6 and 7 show that exactly those points
on an A(c,.) that are not in the described solutions cannot be in any

b

3 .
solution. But extending a solution from UJ A(cp) to all of R, that is,
p=1

adding appropriate parts on A(c) and A(g), does not destroy the unique-

ness. Theorem 8 is used in Genera 2B and 3B to show that although some
I

imputations in [geA(cl)'x2+x3 < ej and X1+Xg < ez} may have x1+Xz < €3

= v({1,2}), there is still only domination via (2,3} and {1,3} to be con-
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sidered in this region. Then the uniqueness of the solutions in Genera
2B, 3B and 3C, up to the Ki parts, also follows from the above theorems
and the characterization of the K; curves in [8]. It is also shown in
[8] that the solutions discussed in Genus 3D are all possible ones.
Consequently, Section 2 lists all possible solutions for all 3-person

games.



CHAPTER 3

THE 4-PERSON GAMES WITH DISTINCT IMPUTATION SIMPLICES

1. INTRODUCTION

For the L-person games, the set of players is N = (1,2,3,4}. 1In
this chapter h,k,p,q will represent a permutation of 1,2,3%,4. There
are 15 partitions P = [Pl,o,,,Pr}Cﬁ‘N:[N},[{l},[E},[5},{M}}, four of
type [((h}, (k,p,q}), three of type ('h,k},(p,q}} and six of type ((h,k]},
(p},(q}}. The 15 outcome functions FP are specified when the 37 real
numbers FP(Pi) are given. For MCN equation (1) then gives the value

of the coalition M as v(M) = min FP(M)O Assuming the games in normal
MeP

form gives v((h}) = v, = 0, and hence FP([h}) >0 for all P containing
{(h}. The set R of all imputations then consists of up to 15 imputation
simplices in the first orthant of four dimensional space.

Domination via one player coalitions {(h} is impossible by Lemma 2,

and domination via N is discussed in Theorems 1, 2 and 5. If a dom b
M

and M = (h,k}, then equations (4), (5), and (6) gives &, > b, and

8, > b, j{i aj < v(M), and a is on an imputation simplex realized by

JeM

the partition ((h,k}, (p,q}}or {(h,k}, (p}, (a}}. For such an M, dom a
M

meets the imputation simplex containing a in an open region shown in

29
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broken lines in Figure 7. (The tetrahedra in the figures of this chap-
ter picture the imputation simplices A(P) in barycentric coordinates. )

The domination cone dom & meets the other imputation simplices in a sim-
M N\

ilar manner. If a dom b and M = [h,k,p}, then ay > by, 8y > by, and

ey > D 24 a, < v(M), and a is on the imputation simplex A({(h,k,p},
JeM

{q)}). For such an M, Figure 8 shows dom a intersected with the impu-
M

tation simplex containing a.
In this chapter, we will consider the L-person games that have dis-
tinct simplices. This hypothesis means that for the different partitions

Pcll the numbers

are distinct. We will give a solution for each L-person game that sat-
isfies (10). The nature of this solution depends upon the manner in
which the 15 numbers JPlare ordered for the given P, the relative magni-
tudes of these numbers, and values viM) of the 10 non trivial coalitions
M of N. Thus, the general method of this chapter applies to a great
number of L-person games (over ten billion). The many solutions so
obtained are a valuable source of examples to test additonal conjec-

tures on solution theory. It will further be clear that our solution is
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X
A(Z a
Xp+ X = V({h,k}) ‘ (j‘N j)
— ——_‘_‘ - ‘,
~ o e — ——.:'—_ - \
Xhz ah 7"' N
\
/ o
X / —_—T
q _’__,_-—""_-
*n

Figure 7. dom a via (h,k}.

=V {h k
xh+ xk+ xp ( ) :P})

Figure 8. dom a via (h,k,p}.
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also valid for many gemes in which some of the numbers given by (10) are
not distinct, 1In addition, for those remaining games in which the impu-
tation simplices are not all distinct, it appears that solutions can
always be found by combining the methods of this chapter on the distinct
imputation simplices with the known solutions for the von Neumann-Morgen-
stern b-person games on the simplices realized by more than one partition.

But ro such general existence theorem has yet been proved for all L-per-

son Thrall games.

Let

1

{
be: a partition in I and we assume that the numbers \P {are ordered by

! Ti+l
i o N i+l
._ = < . > 1+ P. = 1+
7| Z Foy (P)) FLi+l(P,) = [P
J=1 J=1
for i = 1,2,...,1%. Then let
AY = A(PY)
Also define
M
i N 1oy
EX = Jx ZZJ X3 > v(M) for all Mec U PJ .
X Z Ponl
jeM o

C’learlyEi(\AJ is a compact convex polyhedron.

To find a solution K for a L-perscn game that satisfies condition
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(10) we proceed as follows. First, K* = E'NA~ is a solution for
AlLJ(R-El) where all domination is via coalitions MeP?, Second, take

the elements G° in El(}A2 that are maxiaml with respect to dom for all
M

MeP®. Then K® = GZ(K*-dom G®) is a solution for A*UAZU(R-EZ). We

. "_l i
continue this way. Take the elements Gl in El NA that are maximal

i i, i
with respect to dom for all MeP . Then G UK
M

i
-dom G is usually a

1 i i
solution for A tJ...kJA LJ(R-E ). There is only one case that may cause
i
trouble in this process. If M = (h,q}¢P , and (h,p} and (h,k} occurred

n ] i
in earlier partitions P and P where s <n < i, then dom G may dom-

M
i- i i-
inate away too much from the previous solution K Then G UK
i 1 i i
- dom G may leave some imputations in A U... Ua lJ(R—E ) undominated.

But if we repeat the above process of taking successive maximal elements,

but now only in a region J(h) that contains the undominated imputations,

i

i i-1
then we obtain a solution Kl(h) for J(h) which can be added to G UK

i i 1 i i
- dom G to get the solution K for A U...UA U(R-E ). After this

i 1
digression to obtain Kl(h), we continue the above process until RCA U..

f f f
UA [J(R-E ) and then K = K is the desired solution for the given game.

We will discuss this solution K in more detail after we give some pre-

liminary lemmas in the next section.

2. SOME IEMMAS
In order to start our induction process to find K, we must have the
following lemma.

Lemma 3. Elf]Al £ 4.
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Proof. First, note that R # ¢, since if g ((1),(2),(3}), (4},

L
then j{j Fpg([j}) > 0, and thus R;QA(Pg) #@. Thus ;Pl

> Pg\ >0
=1

and Al # ¢o Next, consider the partition Q made up of the PﬁePl with

V(Pg) >0 and all other cosets containing just one element. Using (10)

and F(13)) 20, we get [P = ) Fpa(p)) > Z Rlay) 2 ) FglPh) >
1.pl 1
PJCP QjeQ PjeQ

}: m%n FP(P3)

= i;j V(P3)u So there exists xeAl,

I
[~
=
g
l_l

Pteq Peq Plept
J J
v(Pt) >0
J —
that is /> Xy = }PlL and xj>,O, such that j;7 X5 > V(Pﬁ) for all P%ePla
[ ! - / E 5
JeN jePi

That is, E'N A" # ¢.
If a and b are imputations, NOM % @, and a is M-realizable and

M~effective, then a dom b is equivalent to a > b, The existence of the

M M
maxiamal elements G-l in our induction follows from Zorn's Lemma. The
nature of these sets of maximal elements is given in the following
lemma. For additional results of this type, see Stearns [5].

Lemma 4. If E is a compact convex polyhedron and G is the set of
elements in BE that are maximal with respect to %@ then G is a union of
closed faces of E.

Proof. Assume ceG. If c is a vertex of E, then c is a closed

face. So let c be in a closed face H of E of dimension > 0. We can
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assume ¢ is in the relative interior of H or otherwise, it is in a closed
face of less dimension. Then we must show that HCG. Assume to the con-

trary that a is in H-G. Then there exists beG such that b >a. By the
M

convexity of H, the line segment L(g)g)g;H. Since ¢ is interior to H,
L(a,c) can be extended slightly beyond ¢ to c¢' such that ceL(a,c')CH.

Then ¢ = Aa+(1-A)c’ for 0 < A < 1. Since b >a andc' =c', b' =Ab
M

+(1-A)c' > c. But b'eE by the convexity of E. Thus b' > c which con-
M M

tradicts ceG. Therefore, HCG.

The two previous lemmas hold for n-person games with arbitrary n,
whereas the following one holds only for n < T

Lemma 5. In a 4-person game which satisfies condition (10), any
a€R can be strictly effective and realizable for at most one MCN.

Proof. Since the imputation simplices are distinct, a can be real-
ized by only one partition P. But no imputation is strictly effective
for a one element coalition. And the only partitions P with more than
one M with more than one element are of the type Q = ({h,k}, (p,q}}.

But acA(Q) implies Z ay = Fo((h,k})+Fo((p,a}) > v((h,k))+v((p,q}).
jeN
So if ay+a, < v([(h,k}), then aptag > v({p,a)}), that is, if a is (h,k}-

strictly effective then a is. (p,q}-ineffective.

3, SOLUTION

In this section, we give a detailed discussion of the solution K



described in the first section of this chapter. First, we will prove
!

—
that K* = EYN AL = [y;Al\ ZJ 84 > v(M) for all MeP') is a solution for
JeM

A*U(R-EY). If P' = (N} then E'NA* = A* is a solution for all of R by

Theorem 3. Thus assume p* £ (N}, so MeP* implies N-M # ¢. To show

_
that K*U dom X* = A*U(R-E"), let ac[A™U (R-BY) ]-K™, ThenZ'aj < [Pl!
i |

JeN
— ) | T .
and aj < V(M) for some MeP™. Iet ¢ = V(M)nL aJ. >0 and B =} P ]
JeM JeM l ‘
- z aj > 0. Also let M\ = the number of elements in M. Then define
JeN |
b by
b, = a, + u/;Mx for jeM
J J S
b. = . - B. jeN -
3 aJ SJ for JjeN-M

where L ESJ. = €-5 and a; > 5j for jeN-M. Such SJ- exist, because

JeN-M
T T \ ) sl
Z aj = P - Z a;-b = P —v(M)+v(M)- Z a5-5 = | P -v(M)+c- > c-5
| -
JeN-M JeM JeM
|
since Pl\-v(M) > ‘Q ‘-V(M) > Fq(M)-v(M)EO where Q is the partition com-
! ] 9 l .
posed of M and one element sets. Then beA™, Z by = v(M) and b > a,

JeM M

1 1 1
and thus b dom a. And beK =E NA 1is clear from the proof of Lemma 5.
M

(The separation property in Lemma 5 is only valid for n < L, but with

1.1
some extra restrictions on the Bj above we could get bek A  and thus
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Kl would still be a solution for AlLJ(R-El) for the case of arbitrary
n.) This proves that K Udom k' D A*U(REY). Clearly E'ndom (EAY)
= ¢, and so the inclusion is an equality. Finally, Klf]dom Kl =
(E'NAY)Ndom(E'N AY)CE Ndom A* = ¢. This completes the proof that
K = Elm\JL is a solution for A U (R-El)u k' for P = ((h}, (k,p,q})}
and ((h,k},(p,q}} is shown by heavy lines in Figures 9 and 10 respec-
tively. Next, we can descend to A% and the part on A% that is not dom-

1 1 1. 2
inated by K = El()A is E'() A, which is a compact convex polyhedron

—
bounded by X >0 and zzJ Xy > v(M) for all MeP',
JeM

i-1
Now, proceed to the induction step. Assume that K  where i > 2
h} i-1 i-1 i-1 1 i-1
is a solution for A U...UA" TURE"") with K CAU...UA "~ and
i-1 Jc i-2 0 J
K NA_E (A", This condition holds for i = 2 since from above

-
K' =E'NA" is a solution for A" J(R-E") and it trivially has K  —A*

1 jC_J-1 J Y i
and K (\AJ__E 1A (where let E =R). We then need to find a K

1 i i iC i
that is a solution on A"U...UA U (R-E" ) with K —A*U...UA and

i jC_j-1 j
K aY )T naY.
i-1
Since imputations in E are not strictly effective for any

i-1_4 i-1CC 1 i-1  _i-1 i-1
Me ,UlPJ and since K A U...UA , B dom XK = =¢ and
J:

i-21 i 15 i-
E NA U...UA") is the part in R below A that remains undom-
i-1 1 i-1.,1 i-1 i
inated by K . On A” this part is B© "NA". If E- " NA- = ¢, then
uC .-
A'TR-ETTH

and so K- = K™ is a solution for AU ... Ua* U (R-E) with

i-
the desired properties. 1In fact K * is then a solution for all of R.

i-1 i i-1 i
So assume that E NA #£¢. Clearly, B NA 1is a compact convex

polyhedron.
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x, + 3 = v({p,q})

xy + x. = v({h,k})

Figure 10. E NA" for P* = ((h,k},(p,q})-
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For each MeP™ let G (M) be the elements in E 1-1nal that are max-

Z x> ().

JeM

. . i i-1 i
imal with respect to dom. Then G (M)DE "NA N(x
M

But B TNAYN (x

E{i %5 < v(M)} is a compacet convex polyhedron of

JeM

i
dimension < 3 in which dom is equivalent to >. So by Lemma L, ¢ (M)
M M

meets this latter set in a union of closed faces that clearly are con-

. 1
— . .
tained in {XEAli Z{: X5 = v(8) for some S e(,éPJ)" Next, let o =
J:

i i i i
N.G (M). Then G DOE NA and
MePi -

¢t ndom 6T = 4.
And using lemma 5,
¢*U dom ¢t oET " Nal,

Also

dom 6D (AU UM NETT - B,

Because if a is in this set, then 21; aj < \Pl\, 2{: aj > v(s) for all

JeN Jjes

i-1 . .
Segv)PJ, and zg: 8 < v(M) for some MeP'. So pick ggAl such that b ﬁ a

JeM

_ i-1 . C s
and Z b; < v(M), and then Z by > v(8) for all SeUlPJ so beE" AT,
< = b
JeM

JES

i i :
Then b dom a and beG Udom G which implies ae dom G,
M M
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Finally, we define

i
1

i-1

(11) - (GiUK -domGi)UK

i
where Kl = ¢ unless we are in one of the four exceptional cases where
1 X R 145 S
(h,q}eP , and (h,p} and (h,k} occurred in partitions P and P respec-
i i-1
tively with 1 > n > s > 1, and G dominates away too much from K .
i i-1 i i i-1 i
(Since G U (K “-dom G7) = (G UK:L ) -dom Gl, no such parenthesis appear
in (11).) These exceptional cases will be discussed in Section 5. When
5 ic . . (i .
K =¢, it is clear that K —A*U ... Ua" and K NAY"E ™2 naY. S0 in
1
j_ .
this case when K = ¢, it only remains to prove that Kl is a solution
1

for AYU ... Uty (R-EY). But [A%U ... Uat (R-Ei)] - [AtU... Uat y

(R-E+-1)] = [Ei-lrWAi]Lﬂ(Ai+lLJoeolJAlS)fW(Ei-l—El)], and from above

3 i i i-1 i i i-1
¢ dom G contains this set. And dom G- —K ~(dom G*. So if ¢ UK
i . i-1 i
-dom G~ dominates as much as K did, then K is a sclution for
i i
ATU...UA U (R-E ). By considering cases in the next section, we will

show that this is true. So completion of the next two sections will

finish the induction step of the proof.

L., CASES
We will now show, except for the exceptional case handled in the

next section, that

._ . '—l i
(12) dmnKllgjom(G1UKl - dom G ).

i-1 i-1_3
let aekK be S-effective and S-realizable where Segv&PJo Then

J:
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= - - -
a; < v(5) and aeA*U...UA" ™", Consider an arbitrary beG  which is
jes
M-effective for MeP'. Then > b, < v(M), | P = b, < a., and
/8= J J
JeM JelN JelN

' i-1_]
Z b > v(T) for all Te UlPJ° To prove (12), it is sufficient to show
J:

JeT

that either (1) b cannot dominate a via M, or (ii) if b dom a then
M

dom b Ddom a, or (iii) if b dom a then there exists g\._'eKl-l such that
M S M

no E’eGl can dominate a' via M and dom a'Ddom a. We proceed to congider
S S

all non trivial cases of M and S.

(i) M= {h,k,p}, S = {k;p)q}v Then y bj ZV<S> 2 Z aj;

jes Jjes

y bj < z aj, and so ay > by, - Thus b dom a is impossible.
e

' M
JjeN JeN

(ii) M = (h,k,p}, S = (p,q)}. Then zgi'bj > v(s) > ZE; 8, and

Jeds JES
Z bj < z aj, which implies that Z bj < z ajv Since N-SCM,
JelN JeN JeN-5 JeN-5

b dom a is impossible.
M

(iii) M = (h,k}, S = (h,k,p}. If b dom a then dom b Ddom a by
M M S

Lemma 1.

(iv) M = [(h,k)}, S = {k,p,q). Then ‘;1 by >v(s) > 3;1 a; and
Lo -

Jes jes
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a
Z b, < /Y aj, which implies that bh < ah., Thus b dom a is impossible.

J -
jeN jeN M

(v) M= {h,k}, S = (p,q}. Then y by > v(sS) > Z a; and
J€es

N | \
N op, < y a., which implies b.< VN a. since M = N-S. Thus
lood L [, 9 [ 9

JjeN JeN JeM JeM

b dom a is impossible.

i
= (h,k,p}, S = (h,k}. Assume b dom a where beG and
M

o
e
=
|

_a_eKl-l., let B {gc_eGl\§ dom a} and let z = lub [xp\geB}, Define

M

1t

a’fsA(L aj) by ay = ap, 8 = 8, aI‘) =z, and a! = a

q
JeN

X +(xh-a1,'1)+(xk-a1'§)-(z—xp)+A > 0 for any xeB where A = Za'- - ZX..
JeN JeN

Clearly dom a = dom &' and no p_‘e(}l can dominate &' via M. So if
S S

i- i i-
a'eK * then g'¢K . We then need to show that a'eK '. Pick b'eB

i-1
such that z-b! < A and assume Te 4 PY. If qgeT, then al >
P J=1 J

jeT

y bl > v(T), and thus &' is T-ineffective. If q¢T, then a' > &,
T

i-1 i-1
and so if ¢ d%m a', then ¢ d%m a. BSo if _@_'9_’1{ , then gg’K which

i-1
is a contradiction. Therefore, a'cK

i-1
. J
(vii a) M= (h,q}, S = (h,k}, and assume that (h,p]¢jL=JlP .
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let B

(_)§€G1]§ dom a) and let z = lub (x_|xeB). Define a'eA( Y\— a.)
M q'= - [, 9
JelN

by 8 = &y, 8 = 8, 8y = 2, ap = ap-(ac‘l-aq). Clearly dom &' = dom a

S S
and no g'e(}l can dominate a' via M. We need to show that g_'eKl-l. That
) i i
is, we need to show that a'¢ dom K*™' for all Te UP'. So we now con-
T J=1

sider all non trivial cases for various T. We assumed that T % (h,p}.

S S
If T = (p,q), then al+a; = a e, > [P -y -2 > [P [-v({n,k]) > v((p,q))

by Lemma 5 where TePS, and so g' is not (p,ql-strictly effective. If

T = (k,p}, (k,p,q} or {(h,k,p}, then there exists p_eBQGl such that

! T~
z bjte > aj where € < A :Eﬁ aj- y bi, which implies > a} >
/ a— fa— |

JeN-T 3eN-T jeN jeN e

Z b > v(T), and so &' is T-ineffective. If T = (k,q} or (h,k,q},
JeT

then a' > a so a'e dom K'"' implies ae dom K™%, a contradiction. Fi-

a' 2
T T T

nally, if T = (h,p,q}, then either TePY for j < s where SeP® and Z aj

jeT

= V 2 > v(T) so &' is not strictly effective for T, or TepP? for
/. Z

JeT

i >J > s and byth, > v({h,k)}) > apta, so ‘bp+bq < ap+a,q which says b
cannot dominate a via T. This proves that g._‘§f dom K*™% for all T when
T

i-1 3
[h,p}g‘.UlP . This completes case (vii a).
J:

i-1 .
(vii b) M = (h,q}, S = (h,k}, and assume that {h,p}e_UlPJ. In
J:
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this case, Ki may not be ¢. S0 this case i1s treated separately in the
next section.

Therefore, except for this exceptional case (vii b) which will be
treated in the next section, we have verified equation (12) and thus

completed our induction step.

5. THE EXCEPTIONAL CASES
In this section, we consider the more difficult case (vii b), that
is, we assume M = (h,q} EPi, S = {h,k) €P® and (h,p} €P® where s < n < 1i.

-1 -
As shown in (vii a) above, dom G% cannot contain the zﬁGs—jgggl dom GY
(h,p}

with large values of xp (small values of x.), and the dominion via (h,k]}

q

of all such X equals dom G°. But dom G may contain some such X but not
(h,k} (h,q}

the corresponding dom X. So some imputations that were previously in
(h,k)

. . . _— .
dom K * or dom K* * may now be left undominated by G UK " -dom G .
(h.k) (h,p)

The result may be that
dom K1=* daom (GUK-? - aom 61)

in which case we must find the X # ¢ in equation (11). This situation
1
for a given h is shown in Figures 11, 12, and 13, which picture AS, An,
and AT respectively. In these figures, the heavy lines show the region
. . . i i-1 i
that contains (but is not necessarily equal to) G-UK “-dom G, the

light broken lines show the region J(h) that contains the undominated

i
imputations, and the heavy broken lines show the additional part K (h)
1



L5

X+ X = v({h,p})

Xy + Xg = v({h,q})

Xyt Xy = v({h,k})

Figure 11. Exceptional Case on AS,
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J(k)n AR

xy + x5, = v{{b,p))
K(h)n AR

A
\\
\
\

8
L ARAN
7\
/
7
// \ !k
~ £ l‘\ \
~ S L-l
\\‘

- / "
p < s0800008 /
h S \ /
£ \
\\\ \ /7
~J .\'/

X+ Xy = v({h,q})

Xh + Xy = V((h,k})

n
Figure 12, Exceptional Case on A .
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xy + X, = v({h,p))

Figure 13. Exceptional Case on Al.
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of the solution for the given h. J(h) and Kil(h) will meet the other
simplices Aj(j # s,n, nor i) in similar regions. Then the union of all
such Ki(h) that occur at the ith step of our induction gives the Ki in
equation (11).

In order to describe J(h) analytically, we introduce the following

notation. On each AY there is the line segment

L‘j = {_}EE-:AJ.IXK X, = v ( [k;h)) ;X‘p TXy o= v {p,h})jLe

And let

i
x¥ = max x |xeG  and x + x <\({q,h})}n
Q- qQ h~ ,

q
On each AY consider the point where Xq = Xé meets LY. These points have
coordinates
Xg = |pd| - xg - v((k,h})
xj = x¥
a
xd = |PJ| - x* - v h
Xy = xt +v((p,h]) +v((oh)) - [P

i
Note that x¥ < |P" |-v((p,h}), that is where Xptxp = v({p,h}) meets xp

=0 on A*. Assume xg exists, because Ei'lffAﬁﬁ<{%lxqth < v([q,h}i} is

closed and if it is empty, then dom G= = ¢ and so J(h) = ¢. Also assume
(a,h)

i
x* >0 for if not, then dom G* = ¢ and we are again back in the case
2 (
q,h)
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(vii a) of the last section. And we can assume that the points §J are

on AY. TFor if Xq = xz does not meet L- on Al, then either v({k,h}) or

v({p,h}) is negative and the corresponding domination does not enter
and so we are in case (vii a), or v((k,h}) > IPSI or v((p,h}) > ]Pnl
which is impossible for v((J,h}) < Fp((k,h})+Fp((p})+ Fpl(a)) < |P%|

where P = [(p}, (q}, {k,h}}, or XS is too small for dom ¢~ to contain

(q,h}
5 n-1 J
the (k,h}-effective imputations in G - | J dom G° which have xp+x >
J=s+1

v((p,h}) and large values of xq and again J(h) = ¢ as in (vii a) above.
The undominated imputations for the case we are considering are

contained in the region J(h) which is bounded as follows. If xeJ(h),

then
x > x"
P~ P
x >x¥ = xJ for all J
a— 4q a
(13)
n
Xy 2 X, and

s
X > X when X + ¥, < v({k,h}).

Because if ap < x; then let S = {p,h} and M = {g,h)} in the argument in
(vii a) and then the coalition (k,h} causes no trouble in finding the

a' in (vii a). See the Figures. And, if a < xﬁ and ay+ay > v((k,h})
then let S = (p,h} and M = {q,h) in (vii a) and then the coalition (k,h)

causes no trouble in finding the a' in (vii a). Also, if a, < x§(> xﬁ)
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and a, ta, < v(({k,h}), then the coalition (q,h} causes no trouble in

finding &' in (vii a). To show Xq 2 xé assume that x +x < v({p,h})

or x +x < ((k,h)) for if not then x¢ dom ¢° U dom G" so that X is not
(k,h) (p,h}

in the undominated area mentioned in the first paragraph of this sec-

tion. So if xj+x;< v((j,h}) for j = p or k and xq < x¥ = xé, then

1l

1 i . .
= %, (where m=n if j

x, < v((j,h))- x5 < v({j,n))- X' v(({p,h})-x Xy,

p

i .
and m = s if j = k), and so x€ dom x C dom Glo Thus x is not an undom-
{q,h) {q,h}

inated imputation.
Before describing the additional part Ki(h) that needs to be added
in J(h) in order to have a solution in this part, we will discuss which

coalitions M satisfy the conditions

M is in a partition P with |[P| > |P']|, and

(14)

M is effective in some part of J(h).

For the other coalitions will not have to be considered in finding

i i-2 1
Kl(h)° Note that if E NA = ¢, then we already have a solution for

i- i
all of R before the ith step in the induction, so assume E NA £4¢.
Clearly, N¢P if |P| > |P'| and E- "NA" # ¢. Also, if (p,q} or (q,k)

are in a P with |P| > [Pi] and Ei-l(\Al # ¢, then v((p,q))+v((k,h}) <

[Pi‘ or v({q,k})+v((p,h}) < !P |.  (See Lemma 5.) It x¢J(h), then
x> xond = [Pl = [P |-v((k,n)) = [BY] - v((eR)) > (P

n i
-v((k,h}) > v((p,q}) where b, = P |-|P |, and so x is (p,q}- ineffec-

n, n n
tive. If xeJ(h), then x +xk > xr+xk |P I—xp—xh = ]P |-v(({p,h}) >
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i
|P” |-v((p,h}) > v((q,k})), and so x is [q,k)-ineffective. Next, note

that if (p,k)eP with |[P| > |P |, then ac E - *Nal nas L a = 2t

JeN

1 i i
and ap+ak > v((p,k}). Then x has xp+xk > v((p,k}). So if xeJ(h), we

+x. > xDax > xiaxdl > i -1 i
get Xp X 2 xp+xk Xp X 2 v({p,k}), and so x is (p,k}-ineffective,

. o . -
Also, if (p,q,k)eP with [P| > |P'|, then acE "NA" has > ay = |p

—

i
JeN
and a_+a +a. > v((p,a,k}). Then xi has Xi+xi+ i v({p.,q,k}). So if

p g k-~ = p g k=
xeJ(h), then XX+ > x§+xg+x§ > x%+xé+x% > v({p,q,k}), and so x is
(p,q,k}-ineffective. In summary, if N, (p,q}, (a,k}, (p,k} or (p,q,k}
are in a P with |P| > |P'|, then they are ineffective in J(h). The Ki(h)
that we will describe in the next paragraph will have Ki(h)fWAj = ¢ for
all j > n. So in determining Ki(h), only domination via {k,h}, (p,h},
(q,k,h}, (p,k,h) and {p,q,h)} need be considered.

We now describe how to get the additional part Ki(h) of the solu-
tion in J(h). We proceed toc take maximal elements in successive
AJ{WJ(h) as we did before in the Aj where j = 1,2,... . The verifica-
tion then of the following assertions is similar to the corresponding
results done in Sections 3% and 4. First, Kl(h) = Gl(h) = ElfWAl()J(h)
is a solution on (J(h)NAY) U(J(h)-E'). Second, let GZ(h) be the ele-
ments in ETNA®N J(h) that are maximal with respect to dﬁg where Mfis
the coalition in P° that can be effective in J(h). Therewis only one

. 2 :
such M by the preceeding paragraph. Then K?(h) =G (h)LJKl(h)—dom Gg(h)

J
is a solution for [J(h) ﬂ(AlUAg)]U[J(h)~E2]D Continuing, let G (h) be
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.1 .
the elements in EJ fWAJﬂ J(h) that are maximal with respect to dom where
MJ

MIePd may be effective in J(h). Then K0(h) = 69 (h) UK’ 1 (h)-dom ¢9(n)

is a solution for [J(h)f](AlkJ,..LJAj)]LJ[J(h)éEJ]. Pick the first t
such that J(h)g;(Al U,.,LﬁAt)LJ(J(h)-Et), Then Ki(h) = Kt(h) is a solu-

tion in J(h). The above process terminates for some t < n. Because if

J, . _ pd ! n
xeA® NJ(h) for j > n, then j{j x, = |P7] < [P7] and X Xy > xpHxl, and
uelN
so X, +x, < ]Pj-xn-xn<an]-xn—xn = v({k,h}). But such x are in dom Kw(h)
LT RS P g P q 2T 2
for some w < s. Since t < n < i, the exceptional case (vii b) that we

i

are discussing in this section will never occur in finding K (h). The

1

1 s n i
heavy broken lines in Figures 11, 12 and 13 show Ki(h) onA , A and A
for the case where domination via {q,k,h}, (p,k,h} and {p,q,h} do not
i
enter in determining Ky (h), for example, if they are all in a P with
n
[P] < [P |.
i i
The K| in equation (11) is the union of all such Ki(h) that may

come in at the ith step of our induction, that is,

K - U @)
1T

i 1

S n i i-
where (h,q} €P , (h,k} €P and (h,p} €P for s <n < i. Since G UK
i
-dom G~ was the desired solution for all but part of the J(h) regions

i
and the Kl(h) are solutions in these regions, it follows that

i 1
K Udom X = R.
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To prove that
5 .
K () dom K = g

it is sufficient to prove that

1

(15)  Ki(n)Ndom (G'UK™ - domct) = g,

i

(16)  (GTUK ™ - dom Gi>()dom K

(n)

It
RS

and

1 it
(17) K (h)ndom X (n') = ¢

1 1
for.the four possible non empty J(h) and J(h') regions. We can prove
these equations by again considering several cases described in the
following.

First, to prove (15), we need to show that

1

(15°) K (a)ndom (6 UK -aonc) - ¢

M
i
for all M in a P with |P| > [P |. From (14) above if M = N, (q,k},
(p,k)}, (p,q} or (p,q,k) and MeP with |P| > ]Pl] then M is ineffective
in J(h) so (15') is true for such M. From the definition of x*, (15')
q

holds for M = (gq,h}. (15') holds for M = (p,h} and (g,h} because J(h)
was determined by the elements not in dﬁm ¢y Kl-l-dom,Gl) for M

t+ ' i-1 1
= {p,h} and (q,h}. If M = (p,k,h} €P” for some t < i, then x € E A

i 1
has X, Pt > v(({p,k,h}) and so xa < [P |-v({p,k,h})< |P"|-v({p,k,h}),
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and so if a is M-effective and realizable, then aq > X In this case,

g

t t=-1 t
the set G (h) of maximal elements in B ~NA N J(h) with respect to

dom is contained in the previously obtained set Gt of maximal elements
(p,k,h)}

t-1 _t t ottt i-4

inE T NA  and dom G- O(K° UE NR“U...Ua*™)]) = ¢d. Since K

ittt t
-dom G CK UE n& U...Ur™)) and dom X (nh) = dom G (h), we have
(p,k,h} {(p,k,h}

(15') for M = {p,k,h}. If M = (p,q,h} ¢PY and j < i, then consider the
two cases j<nand j>n. If j<n define the points gquj which sat-

isfy the equations x +x, = v((k,h}), X txy = v({p,h}), XXX

v({p,q,h}) and‘Z\)—J Xy = }PJIO Then it is easy to show that, if 2"
q

ueN

n
x*, then we are in a case similar to (vii a), and if 2 < x¥, we are
in a case similar to M = {p,k,h} that is done just above. In the case

S o ed . ; ‘
j » n, if xeG” and x is M-effective, then xp+xh > v((p,h}) or xq+xk <

n J [

J . n n
|P” |-v({p,h)), and if aeJ(h), then agtax 2> Xgt¥y > [P |-v({p,h}) > |P

-v({p,h}), and so x d%? a is impossible. This proves (15') for M
= {p,q,h}. Replace p by k in this last argument and we get (15") for
M = (q,k,h}. This proves equation (15).
Next,to prove (16), we need to show
(16') (G*UK ™'~ dom G*) Ndom K{(h) = ¢
M
for all MeP for j < n. By the paragraph containing equation (1k), we

i
then have dom Kl(h) =@ for M = N, (p,q}, (p,k}, (a,k} and (p,q,k)} since
M
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such M are ineffective in J(h). Also, dom Ki(h) = ¢ for (q,h} is
(a,h}
first realized on Ai and 1 > n. The remaining M that have to be con-
sidered all contain h and have their domination cones away from the
X, vertex and toward x, = 0. But it is easy to see that in taking the
successive maximal elements GC(h) (t < n) in Et'lfﬁAtf]J(h) in the proc-

ess of obtaining K%(h) that Gt(h) is contained in the previous maximal

elements Gt in Et'l

ﬂAt which were obtained in the process leading to
GllJKi_l~dom Gl, with the only possible exception being the last non

u i i- i t t t+1
empty G (h) (u < n). Since ¢ UK ‘-dom ¢ CK'U [E N(A ~ U...Ua™)],

t t i t t oAttt
dom G (h)Cdom G, do Ki(h) = dop G (n) and dom ¢ Mk YENA T U...

M Mt .
15 ; t i i-1 1 t
UAS))=¢, we get dom G"(n) N(G'UK ™"~ dom G) = ¢ for all G (n) but
the exceptional case Gu(h)u By considering cases of all the remaining

M, we can show that the elements in GY(h) are either in GY or are 'less

maximal' than those in GUY and so also dom GW(h) (1Y Ki-1-dom Gi) = ¢.
MU.

This proves (16).
Finally, to prove (17), we need
1 it
(17') K (h)Ndom X (0') = ¢
M
for all M. But the boundaries of the regions J(h) or J(h') are deter-
mined by equations like (13) which are related by the definitions of the

§J and LJ to the v(M) for certain two element coalitions M containing h

or h'. On the AY with A9 B £ ¢, that ie, on the a9 with A K £ 4,
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Iemma 5 separates the regions on At UL, UA‘j on which complimentary two
element coalitions can be effective, and using equation (13) thus sepa-
rates the regions J(h) and J(h'). And by considering cases of the few
remaining M that are effective in both J(h) and J(h'), it is easy to

see that J(h) and dom J(h') are also separated by certain of the X
M
i i
+x, = v({m,n}) planes, and so Kl(h) N dom KJ (h') = ¢. This proves (17)

and completes the discussion of the exceptional case (vii b).

6. REMARKS

Our process for finding K terminates at the first Kf where quAf+l
= ¢, for example if pf = (N} or if in+l] < 0. Also note that a two
player coalition M can be realized on the two possible Aj which are ob-
tained from the corresponding partitions of type (2,2) or (2,1,1). It
ig clear in our process of taking successive maximal elements that we
need only cornsider domination via M off the Aj with the higher IPJ[U
From these remarks, it is clear, that for our solution K obtained above
to hold, condition (10) about distinct imputation simplices Aj need not
be satisfied by all Ad, The simplices AJ need not be distinct for the
partitions PJ that have |P9| <0, [PV] < [PF| or |P9] < [F°] where P
= (N}, or even when these conditions are not true but A‘j is realized
only by some of the partitions ({p,a}, (k,h}}, {(p}, (g}, (k,h}} and
({p,a}, (k}, {h}}. Also, certain AJ need not bte distinct if the v(M)

for the M realizable on this AY are small enough so that the corre-

sponding M-strictly effective regions or A9 are disjoint.



Our method of obtaining the solution K is constructive. From
Lemma 4 and the fact that the dominion of a polyhedron is a polyhedron,
we get that K is polyhedral. It is also conjectured that K is the
unique solution but this has not been proved. In games in partition
function form with distinct imputation simplices, the solutions ob-
tained so far are not of the discriminatory nature and do not contain

the bargaining curves that appear in the von Neumann-Morgenstern theory



CHAPTER 4
n-PERSON GAMES WITH ONLY (n), (n-1,1) AND
(1,1,...,1) TYPE PARTITIONS

1. INTRODUCTION

In this chapter, we will give some solutions for the n-person games
where only partitions of the type (n), (n-1,1) and (1,1,...,1) enter in-
to the problem. These games are a direct generalization of the 3-person
games and thus the notation of this chapter will be similar to that of

Chapter 2. The set of players is

Congider the following partitions of N.

P - om
Pl = (N - (i}, (1)) i=1,2,...,n

P o a), @)y, @)

Q = (Qi,-..,Q} = any other partition of N.

Assume each partition P has an outcome function FP defined on it, and

let
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FPn+l ((1}) = g4 i=1,2,...,n.
Also let

c; = ey T4y i=1,2, ,n

g = g1 tg=+t + g

In this chapter, we wili consider games that have

T
(18) |q| > Fa(Qi) < max(0,c)
i=1

for all @ £ P (i = 0,1,2,..., or ntl). From assumption (18) and

Theorems 1, 2 and 4 in Chapter 1, we need only consider the partitions
i 0
P (i=0,1,2,...,n) in discussing solutions, and P 1is only used to

determine which PY(i = 1,...,n) have |[PY] > |BY]

= c. Assuming our

games in normal form under S-equivalence (Section 4 of Chapter 1) gives

gy 20,820

And by equation (1), the values of the coalitions used to find a solu-

tion K then are

v(N) = ¢
v(N - (1)) = ey
v((i}) = v; = 0
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For N-{i} to be effective means that EZ Xj < e, or equivalently that

-1
xi > di where we use -1 to mean that the sum is over all jeN-{i}. And

an imputation x is realized by N-{i} only if xeA(cj).

2. THE CONSTANT SUM CASE

Consider the case
(19) c1 = c2 = ... = ¢

First, if c; < c, then A(e)d [A(g)-dﬁm A(c)] is the unique solution by
Theorems % and 4, So we will assume that cy >c. Next, if ¢; <O or
¢y = O, then the unique solution is A(g) or A(g)U ((0,0,...,0)} respect-
tively. So we will further assume that c; > 0. Finally, a solution K
for A(cy) can then be extended to a solution for all of R by Theorems 2
and 4., Therefore, we will only consider solutions K for A(ci) where
cy > cand cy >0,

Theorem 9. A solution for the case given in (19) is

[n/2]

N

K = U U [§€A(cl)lxp_>_dp, p = i1, iz,...,1zr;
r=0 o0,
Xg < dgr @ = lar+i, lar+z,...,din;
XiS-l-djS-l = Xis-dis, s = 2,)-.L70 ,21‘]

where [n/2] is the greatest integer in n/2 and each inner union is taken

1

over the n! permutations o, = (i1, iz,..., in) of (1,2,...,n)
(n-2r)!r!ot

which give distinct terms.

In other words, acA(ci) is in K if and only if all ap-dp that are
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positive are equal to each other in pairs. Figures 14 and 15 show K for

1 N
n = 3 when le dj > c; and 211 dj < ci1, respectively. Figure 16 shows
JelN JelN

K for n = 4 and K;’ dy <ci. Forr =0, we get the term
L
JelN

C = [§EA(C1)]Xq <d,q = 1,2,...,n)

q)

which is the core. For r = [n/2], we get the term

Kl/fe) = %J[n/zJ@eA(cl”Xpidp’ p o= 11, iz, d2[n/2);
Xin < dln if n is odd;
X -d = X -d
1s-1 1s-1 1s lg’
s = 2,4,...,2[n/2]).
Let
Z = [§§A(cl)|xp >dp, P = 1,2,...,n},

Then KZ = K[n/E]r)Z is a "translation" of the solution to the (n,k)
simple majority games when k = n-1 which was given by Bott in [1]. So
o solution K is the natural generalization of Bott's solution when

k = n-1. Note that if y dy < cy, then C = ¢ and Z # ¢, and if
J—

JeN

y dj >c1, then C # ¢ and Z = ¢, and if y ds = cy, then C = Z =
j —

jgﬁ JelN
((d1, dz,...,dpn)}.

Geometrically, we have a simple game in the interior part Z of
A(cy) and n truncated pyramid games (sec page 81 of [7]) in the regions

Sh = [gﬁA(cl)lxh < dp} which extend off each of the faces of Z. A



(‘1’000) (0501:0)

Figure 14. Solution for n = 3 and C # ¢.

(01:0:0) (010100)

Figure 15. Solution for n = 3 and Z # ¢.
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(01011010)

n=4
(0,0,cl,O)

(0,0,0,01)

(01,0,0,0)

Figure 16. Solution for n = 4 and Z # (.
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trace, X = constant, in Sy glves an (n-1)-person game of the type being
considered and this trace of K is the corresponding solution for this
new game. In Z, the solution K is symmetric with respect to all permu-
tations of the xj-di. In Sy, the solution K is symmetric with respect
to all permutations of x;-d; with i # h. Note that if Z £ ¢, the dimen-
sion of K is smallest in the interior part Z of A(cq1) and the dimension

increases as one goes more toward the exterior parts, that is, as more

The following two lemmas are useful in the proof of the theorem.

Lemma 6. If
Xl X2 = X3 = XZJC-J. th = XQt-i—l Xgm = Xl
N Vv \Y v \V4 WV Vv \/
Y, = Y2 Y3 = Yot-1 = Yot Yot41 = = Yop

and Xom+j ~ Yem+j for j = 1,2,...,n-2m, then

iXi>§jYiu
i=1 i=1

Proof. Observe that

Xot > Yot t =1,2,...,n
Xot+1 = Xot > Yot = Yot-1 t =1,2,...,m-1
Xy = Xom > Yom = Yop-1

Xom+j > Yom+j j=1,2,...,n-2m.

Summing over all these gives the desired result.
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Lemma 7. If
0 <Xy X2 =1X3 = Xot-1 Kot = Xot+: = Xom+1
Y1 =Y Y3 = Yot-1 = Yot Yot+1 = Yom+1 < O

and X2m+l+j > Y2m+l+j for J = 1,2,. . ,,n—2m—l, then

n n
Ez X5 > Ez Y.
i= i=

Proof. Observe that

Xot, > Yot t =1,2,...,m
Xot+1 = Xot > Yot = Yot-2 t =1,2,...,m-1
X1 20 > Yop+a

Xom+1+j = Yom+1+] j=1,2,...,n-2m-1.

Summing over all these gives the desired result.
Proof of the theorem. First, we prove K(\dom K = ¢f. Since
KNdom K = [(K-C)UC] Ndom[(K-C) UC] = [(K-C) ndom(K-C) ] [(X-C) Ndom C]

U [cNdom K], it is sufficient to prove that

(20)  K[)dom C

I
AN

(21) ¢ (dom K ¢, and

(22)  (K-C)Ndom (K-C) = .
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If (20) fails, then there exists aeC and beK such a dom b for some
-k

keN. Since N-(k)} is effective, S;ﬂ aj = j;ﬂ bj and aj > bj for all i #k,
e

jeN en
we get dyx < ax< by which implies gﬁcq Since aeC, we also get by <a; <dy
for 1 % k. It follows that b has exactly one coordinate with bj > dj (3
= k) which then implies b¢K-C. Thus b¢K which is a contradiction.
If (21) fails, then there exists a€K and beC such that a dom b.

-k

Since ZJ ay = ZJ bj’ a; > b; for all i % k, and N-(k)} is effective

JelN JeN
we get by > ay > dp. This implies EﬁC, which is a contradiction.
Assume that (22) fails. Then there exists a,beK-C such that a
dom b. Since b¢C there exists an i such that bj-d; > 0. But beK-C im-
-k

plies that all b;-d; that are positive are equal to each other in pairs.

So after permuting the subscripts, we can assume b is of the form
bgoy - dg.y = bg -dg >0, s = 2,4,...,2r
b, < 4. J = 2r+l, 2r+2,...,n

where r > 1. a is N-(k} effective, so dk < ayp < by, which implies
ke(1,2,...,2r}. Thus we can take distinct k, iz, i3,..., lom+i€

{(1,2,...,2r} such that
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where eventually either

(i) dom+1 = k(in which case disregard the ™" in the last term)
)

or

In cases (i) and (ii), Lemmas 6 and 7, respectively, imply that

%L n n
n
Z;J (a{—di) > §;1 (bi-di) or 21] a; > ZE; b;, which is a contradiction
- !
1=1 i=1 i=1 i=1

and (22) follows. This completes the proof that K N\dom K = ¢.

It remains for us to prove that KUdom K = A(cy). Assume that
beA(c1)-K. Since bfCCK, there exists i such that by-d; > 0. Also,
there exists k such that 0 < by -dy # bj-dj for an odd number of j # k,
because if all such positive bj—dj could be set equal in pairs, then
beK-C. By permuting subscripts, we can assume that the components of

b-d are ordered as

- dy >y - dy J=1,2,...,n-1

b - dg > Prep - gt

>0 > b -d
q dq— g+l

o’
1

g+l

where k is odd and k < q. The following three cases will be considered.



g >3 is odd

(iii) q is even

In case (i) let

68

(n-l)e; = (bk-dk) - max(bk+l-dk+l,0) >0

(g=1)/
(b1-d1) - T}bzi-d2i> - (b2i+1'd21+l{]

i=1

- (n-1)e >0
Next define a by
a; -d; = O
agi - dzi = azi+1 - dai+t1
= bpi - dsi + € + B, i=1,2,...,(g-1)/2
aj = bj + € J=qtl, g+2,...,n.
Then a€A(cy), because ay = dy >0 and a;-d; > b;j-d; implies a; > by >0

for all i # 1, and because



_ (q-\l)/2 -
/. (aj-d;) = 0+2 ) (bai-dzi) + ) (bj-dj)
ieN i=1 J=q+1
+ (g-1)% + (n-l)e = Z (bi-di)
ieN
\ N . s
and so ; ai = Z;J bi = ci. And a€eK since the positive a;-di are equal
ieN ieN

in pairs. Also, a dom b, because ai'di > bi'di for all i % 1, and a3
-

.

=dy so N-{1} is effective. Thus be dom K. If one had to permute the
subscripts of the components of b-d to get it in form (25), then the
inverse permutation will get the corresponding a which is clearly still
in K. This completes the proof of (i).

Now, consider case (ii) where g = 1. Then define a by

a; -dy = 0

ag -dg = bp -dz + € + B2

ag - dg = Dbg - ds + € + B4

aj = by *e J=54%5,...,n

where € is the same as in case (i) and 82 and 85 are defined by

B2 + 83 (b1-d1) - (n-1)e >0, and

]

az - d2 as - dz if B2 + B3 > (bz-dz) - (bz-ds), or
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82 = 0 if Bz + 83 < (bz-dz2) - (bs-ds).

Then a€A(cy), because a3 = d; >0 and aj-d; > bs-d; implies 8, > bi >0

for all 1 % 1, and because

n
}: (a;-a;) = }T (b;-d3) + (n-1)e + (b1-da) - (n-1)e

ieN i=2
- Z (b, -4, ).
ieN

And acK since ap-ds and agz-ds are either equal or non positive and all

other ai_di < 0. Also a dom b, Thus be dom K.
' -1

In case (iii) where q is even, let

ner = (yd) - (B yy-d ) >0
o = (bq+l-dq+l) >0
¢ = min(ey, €2) >0
(g-1)/2
285 = (by-d1) - [(bei-dzi) - (bzi+i-dzi+1)]
L_d
i=1
-ne >0
And define a by
al-dl=aq-dq=bq-dq+€+8

azi - dgoi = agzi+1 - doi+:
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= bzi -dpi t€ i=1,2,...,(g-2)/2

o
1l
o
+
m
C
|

= g+l, g+2,...,n.

Then aeA(cy), because clearly a; > 0, and because

1
— 2 n
) (ag-dg) = 2 ) (bag-dai) + ) (bj-dy) +ne + 25
LeN =1 j=q+l
= Z (bi-ds).
ieN

And aeK since the positive a;-d; are equal in pairs. Also, a dom b,
-1

because a;-d; = a.-d

g% >0 so a is N-{1} effective and a;-d; > b;-d; for

all 1 % 1. So again bedom K, which proves (iii). This completes the

proof that KUdom K = A(cy). Thus the theorem is proved.

%, THE DISTINCT SIMPLICES CASE
We will now consider the case
cy >cz2 > ... >cy >c vwhere m <n, and

(2k)

C > Cpts

j for j=1,...,n-m if m < n.

In this case, the imputation simplices A(cj) (3 =1,2,...,m) are dis-

tinct and there is a unique solution K which is given in the following
theorem. As before, we will not describe the parts of the solution on
A(c) and A(g). Forn=3andm=1, 2 and 3, we get the solutions in

Genus 1, Genus 2A and Genus 3A, respectively, given in Section 2 of

Chapter 2.
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Theorem 10. The unique solution for any game satisfying (18) and

(24) is

m
Proof. First, we must show that K Udom K = LJA(C,)D But it is

easy to show, that except for one case, that VJ = xeA IQZJ X =€y

Xp < dp—Apj, p=21,...,J-1%1is contained in K and dom VJ:> xli;jxk < €
-J 'J

X, < d -A

D pj» P = 5d {} where j = 1,...,m. The exceptional case

occurs when J =m = n and K:1 . < ¢, because then V" = ¢. But in this
Z_J l n
ieN

n-1
case, V8 = (v){geA(cn)pr = dp-bpn; Xq < dg-Aqn, ¢ = 1,...,n-1} is con-
p=1

tained in K and dom VOD{; E{I X < ep; Xp < dp Apn: Pp=1,...,n-15%

Thus dom K will contain all those imputations that were subtracted from
gZaA(cj) to obtain K. In fact, we only need to dominate with those
imputations in K that are exactly effective except for the exceptional
case.

Next, we must prove that KNdom K = ¢c Let xcK be N-(j} effective
and realizable. Then xeKN §|§{: xk < ejLNA(cj), that is, x€K, xj > dj

-

and zii,xi = cj. From our definition of K, it is then clear that

icN

—
x. . <d.-A.. for p=1,..., and j-1, and Zlexk < e.. Such x can only

P —-"P PJ ! J
=J



13

dominate via N-{j} those z with z_ < dp—A forp=1,...,J-1, and

p DJ

—
ZJ Z) < €5 But from the definition of K, such g#K. This proves that
-J
KNdom K = ¢ for j =1,...,m, which is sufficient for K dom K = ¢.

=J
Therefore, K is a solution.

Finally, we will prove that K is the unique solution by showing
m
that an imputation in ~U1A(Ci>'K cannot be in any solution K'. Let
1=
ag §|>} % < e;L, that is, consider the term j = 1 in the equation
= |
above for K. The proof that a is not in any solution K' is similar to
the proof of Theorem 5 except that the set (2,3} is replaced by
(2,3,...,n} and so we omit it. But now we will give the proof for an

arbitrary Jj, that is, we will prove that if a is in

J .
D = §|T;l Xy < SE xp < dp'Apj: p=1,...,j-1
-J
then a cannot be in any solution K'. Assume that O < e{j < C5s for if

ej < 0, then there is nothing to prove, and define
BY = gc_eDJﬂA(cJ-)iZ xe < aF
-J

r .
where d = mln[ej, rAj,j-l] and qu = Ccp-Cq.

We will show that BlE;K‘deom K'. Since XK' is a solution,
-J

1
B CK' Udom K'. But from (18), (24) and Theorem 1, we get that

r
B* Ndom K' = ¢ unless M = N-(j} where j = 1,...,m. But B Ndom K' =
M -k



Th

ORI

. . r.J _
¢ when k < J because 1f aeB C D", then a; < dk—A.kj and SOZ 8y = Cj
-k

-3y > Cj’dk+Akj = cp -Gy =€ = v(N-{k)) and thus a is ineffective for

N-({k}. And B'Ndom K' = ¢ when m >k > j; because if aeB' and the
-k

intersection is non empty, then there exists be K' ﬂA(ck) such that

b dom a which implies that b, >b. >a, >c.-d" >c.-A, .

2 com 2 Which AP ) 175 7% T T 25T,

k .Z__.l
ielN

= Cj+l > Cy which says that b is not realized by N-({k} and thus con-

1 1
tradicts b dom a. Therefore B Ndom K' = ¢ when k 74 J, and B‘“SK'Udom K'.
-k -k -J

Then, it is clear that DJQ §| T X < d* Cdom B*Cdom K' and so
s s s
. J J
=d
J
N yz Xp < at NK' =¢@. If at = 52 then we have proved the unique-
-J

ness part of our theorem.

1 1 N ) Ag
If & <ej, then d” = A3 341 andJx] ) % < Aj,jﬂjm{ =¢. 5o
-J
if beK' NA(e, ), theny bi > 43 341 and by < cg-by s4q. Now we can

-J
show that BEEZ_K' Udom K'. Because B  Ndom K' = ¢ when k < §, since

- -k

J

if giB’E__C_D , then a is ireffective for N-(k} as proved in the para-

graph above. And because B® Ndom K' = ¢ when m >k > J, since if
-k

not then there exists acB® and beK' OA(CK) such that b dom a which
-k

implies that bj >aj = CJ-~Z a; 2 cjrd"' > ejz-EAj}jﬂand Z by

-3 -3
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= ck-bj < ck—cj+2A. = A, .+2A A

3,541 i ; 3,54 < which is a contradiction.
) ) -

JyJd+l
Therefore, B° CK'Udom K'. Next, it is then clear that Djr] §|j;1xk
-3 ;;
< 4 Cdom B2§Zdom K' and so D%ﬁ §|§;ka <&lnk =¢. Ifa® = €3,
- -] o

then we have proved the uniqueness part of our theorem.

T
If &° < ej, then we continue as above to get B g;K'leom K' for r

-J
. ro j | g

= 5,4,0..,ro where finally 4 ~ = €5 Then DJﬂ §‘§{;Xk <a?9-= ejw> -
-J

J

Dag;dom Brog;dom K'. BSo Dj(]K‘ = ¢, Since J =1,..., Or m, this proves
-3 -3

the uniquerness of the solution K, and completes the proof of Theorem 10.

L. A SEPARATION THEOREM

The following separation theorem will be used in the next section

to show that for each strict inequality cq > cg4y Incy > c2 > ... >
q - tqtl A1 Zt2 D e
m
Cy 2 ¢ we can partition LV)A(Ci) into three parts. The first part is
i=1 '

contained in every solution. In the second part, only domination via
N-(3} (j = 1,...,9) need be considered in finding any solutiorn. And in
the third part, only domination via N-{j} (j = gq+l,...,m) need be con-
sidered in finding any solution.

Theorem 11. If cy > ... > cq > Cq+1 > el 2 Ch >c > Cm+j for

j=1,...,n-m, and K is any solution for a game satisfying (18), then

(xly > ay - 0

i 3,q+17 J=1,..., or gjNdom K = g

=1
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for 1 = gq+1,...,m, and where again Akp = Ck~Cp-

Proof. Iet

:D:L = {éeA(Ci)lXj >dj - Aj;q+l fOI' j = 1,5"} or q}.

i
We will first show that D [\K = ¢ when i = g+1,..., and m. For let

asD , that is, ach(c;) and aj > dj-03 q+1 for j = 1,..., or g, and then

&g = Ci-aj < Cj_Aji-dj+Aj,q+l < ey = v(N-{j}). Then define b by by
=J
.
= ak+e for all k # j and bj = aj+Aj,q+l'(n'l)€ where ne = min ej‘gllak:
=J
By g+1 >>0. And then b >a and b dom &, because ¢ and Aj,q+l'(n'l>3
N =J
il _ - —
>0, Zii by = 21] gxt(n-l)e <ej = v(N-{]}), and 21; bp = QZJ apthy,qtl
-3 iy peN pelN

=cj. But bek Udom K. If beK, then ae dom bCdom K. If be dom K, then
-J

a¢ dom K by Lemma 1. In either case, g%K, and therefore Dl()K = ¢ when
i=q#l,..., and m. That is, if beAlc;)NK (i = q+l,..., or m), then

bj < dj'Aj,q+l for j = 1,..., and gq. So if xe doT K for i = g+1,..., or

m, then Xj < dj'Aj,q+l for § = 1,..., and q. This completes the proof

of the theorem.

5. INTERMEDIATE CASES
We will now summarize some partial results for those remainirg

~

games that are intermediate to the constant sum case of Section 2 and

the distinct simplices case of Section 3. Thus, in addition to (18)
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we will assume that

1 = = Cp ZCp g S = cp 7 ZCr 4
1 2 -1
= = C
fq
(25)
>c > er+j for J = l,.n.,n-rq.

We will let rq =mas in previous usage. The solutions obtained so far

for such games are closely related to those in Sections 2 and 3. As

usual, we will not discuss that part of the solutions on A(c) and A(g).
As a result of Theorem 11, we get that for each Cri > Cri+l in

m
(25) there is a partitioning of V = jglA(cj) into the polyhedrons

,(éevl ZZJ xy < € for j

Ty = = 1,000, OF T35y
|
N
Fi = erI zij X, > ej for j =1,..., and r;;
-J
Xy 2 dk - Ak,ri+l for k = 1,..., or ry
and
Ly = §§V| ZlJ X{ > e j for j =1,..., and ry;
-J
%, < dp - Ak,ri+l for k = 1,..., and ry

i

We also define FO to be those elements undominated via all N-(i},
Fq = (xeV]xj<dyforj = 1,..., and n},

that is, Fp is the core if the values of all coalitions with less than
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n-1 players are non positive. In Ti any imputation is N-(j} strictly

effective for j =1,..., or r;; and from Theorem 11, no imputation in

r-
i
N kJA(Cj) is in dom K for k = r;+l,...,m where K is any solution.
j=1 -k

It is also clear from Theorem 11 that Fi is contained in any K for

q
i=0,1,..., and q. (But in general F = | J Fj need not contain the
J=0

intersection of all solutions even when m = n.) And in Lj’ only dom-
ination via N-{k} for k = ri+l,...,m need be considered in finding K.

To find a solution K for a game satisfying (25), we consider K in
different parts of V. TFirst, we give a solution for T:JF. Consider
the solution given in Theorem 9 for the constant sum case when dk >c

k

(that is e < 0) for k=r, +l,..., and n. lLet K, be this solution inter-

k 0

sected with Ty. Then KOLJF will be a solution for Ty UF where in T_UF
we only consider domination off of KleF via N-{j} for j =1,..., and ry.
Second, let us assume that we can find a solution FLJKq_l in FULq_l for
all those games where the Tq-1 in the definition of Lq-l could be 1,2,
.,m-1. In doing this, the case where m < n follows easily from the
case where m = nand ¢, = Cp g = ... = C, by setting dpyp = o0 =4y
= ¢y. That is, we can assume that rq =m =n. Third, we can then get
a solution for the F U(Ti-Ti_l) by taking FlJ(qul(wTi—l) when i = g-1
and dk > Cye for k = rq_l+l,ch,n where only domination via N-{j} for

J =r;.1*tl,...,r need be considered. Therefore, the problem reduces

to finding a solution FLJKq_l in F ULq-l where rq-l =1,2,..., and n-1.
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The problem of finding a solution in FUL can be reduced some -

what as follows. If K is any solution in V, then Lq_lfﬁdom K = ¢ unless
-k

k = rq_l+l,e,u, or n. But the only imputations in L that are realiz-

q-1

able by N-{k} for k = r +1l,..., or n are on the imputation simplex
q-1

Ale +1) = ... = Aley). So a solution in (Fleq_l)(]A(cn) can be

I‘q_l

extended to one in all of FLJLq 1 by simply adding the undominated impu-

tations in (FUL 1)(7A(ci) for i = l,a.e,rq_l° And it can also be
n
shown that |J dom F contains exactly those elements in L NA(e )
q-1 n
k=r +1 -k
q-1

that are not in

W = [§§A(cn)()Lq_l|xj + % < dj + dx - Aj,rq where
J = l???f7rq_l} k = rq_l+l;°'-)n}

- l\J [§§A(cn)(jL )%k < dg for k = 1 _l+l,°°°;€,u.,,n}c
i=r +1 4 4
q-1

The subtracted terms in the definition of W are the imputations con-
tained in (Foleom FO)(](A(cn)LJLq_l)D Therefore, our problem of find-
ing a solution for games satisfying (25) reduced to finding a solution
in the region W for the cases rq-l =1,2,..., and n-1.

Solutions in region W have been found for a large number of games
for various values of n and rq_l, including all games with n < 4 and all
games with arbitrary n and r 1= n-2 and n-1. But few of the results

for small n seem to generalize without some modification. Work is con-

tinuing on these remaining problems.



CHAPTER 5

UNSOLVED PROBLEMS

There are many conjectures and open questions in the theory of n-
person games in partition function form. We will now list some of the
more immediate ones for which we are presently seeking answers.

In Chapter 3, we gave a solution for each L-person game that has
distinct imputation simplices. As mentioned there we conjecture that
this solution is unigque. This could probably be proved in a manner sim-
ilar to the uniqueness discussion for 3-person games given in Section 3
of Chapter 2. However, such an approach for the 4-person games would
involve a large number of cases each involving an inductive proof and
thus seems impractical. Hence, we are looking for a more direct or lo-
cal type proof for uniqueness in the 3-person and L-person games with
distinct imputation simplices. If successful, then we will try to gen-

eralize the treatment to handle rn-person games with distinct simplices.

™

Solutions have also been found for all 4-person games in which only
partitions of type (4), (%,1) and (1,1,1,1) can have large outcomes (in
the serse of equation (18)). Such games are covered in Chapter L when
n =4, By using the separation property in Lemma 5 and considering a
large number of cases, we can also give solutions for all L-person games
in which only partitions of type (4), (2,2), (2,1,1) and (1,1,1,1) can
have large outcomes. In addition solutions have been found for many

other L-person games in which both two and three player coalitions are

80
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used in the domination. But there are too many games of this latter
type to prove the general existence of solutions by Jjust considering
cases. Experience to date indicates that there is little difficulty in
finding a solution for any given L-person game by merely combining the
methods for the various cases discussed above, but this has not yet
been proved. Therefore, work is continuing on the proof of a general
existence theorem for all L-person games.

We would like to answer the question of existence of solutions for
all of the intermediate type games given in Section 5 of Chapter L.
Solutions in the region W (defined at the end of Chapter L4) are being
sought for 5- and 6-person games in hope that some of these solutions
will generalize. The solutions found so far in the region W are made
up of parts of the solutions given in Section 2 of Chapter 4 (the con-
stent sum case) along with certain maximal elements with respect to
domination via certain coalitions N - {i}. Furthermore, the games in
Chapter L are just a special case (k = 1) of those games in which only
partitions of type (n), (n-k,k) and (1,1,...,1) have large outcomes for
some given k = 1,2,..., or [n/2], where [n/2] again stands for the
greatest integer in n/2. We will attempt to find solutions for such
games when k > 1. If successful then we will try to combine the results
for various k values in order to get solutions for some games in which
partitions of type (n), (n-1,1), (n-2,2),...,(n-[n/2]{n/2]) are sig-
nificant. Theorem 9 generalizes the solutions given by Bott in [1]

when k = 1. Perhaps there are symmetric solutions for the constant sum



case when k > 1 which will also generalize the corresponding solutions
by Bott when k > 1.

The most outstanding problem in the theory is the proof of a gen-
eral existence theorem for solutions of all n-person games or the demon-
stration of a counter example. Since Thrall games are a generalization
of the von Neumann-Morgenstern games, the solution of this problem would
solve the classical case also. More modestly, we will attempt to prove
that there is a polyhedral solution (perhaps unique) for n-person games
wher the imputation simplices A(P) corresponding to different partitions
P of N are distinct. We hope to obtain the solution in a manner similar
to that in Chapter 3% where n = 4, That is, we will take maximal elements
with respect to "dom" on the successive simplices A(P) as the values of
|P| decrease; and whenever the maximal elements dominate away too much
from a previous solution for part of R, then we repeat the process of
taking successive maximal elements in the undominated parts. This proc-
ess should terminate in a finite number of steps. It is clear from
the large number of cases considered in Chapter 3% that a more direct
proof will need to be developed when n > 4, We have no example yet in
which this process of taking successive maximal elements has not led
to a solution for a particular game, but we note that when n > 5 then
Lemma 5 rails and wher1n£36then there can be three non-trivial coali-
tions in ore partition. However, if we are successful in our search for
a solution in the distinct simplex case, then the results should give

some insight into the other games where the simplices are not all dis-
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tinet. It is hoped that this would lead to some finite constructive
process for solving the more difficult problem. But the solutions for
the latter problem are not just a simple limiting situation of the dis-
tinct simplex case. We also remark that for the von Neumann-Morgenstern
games Shapley has conjectured that there exists a solution which is
contained 1n<{% j{J Xi > v( -) for all PJG;L where P is an arbitrary
partition of N. The corresponding conJé;ture for Thrall games would

be only for any P that has |P| = max (|Qaer}. Thkis is consistent with

our approach of taking successive maximal elements on the A(P), starting
with a largest |P|.
In Section 4 of Chapter 1 we stated that it is easy to prove that

A

”dﬁm” is preserved under S-equivalence, and thus "dom" and solution sets
are also preserved. Tt would be of interest to know if the converse is
true, that is, whether a one to one map of the imputation spaces of two
games which preserves ”dﬁm” is an S-equivalence.

Finally, we will Jjust menftion some less specific problems of pos-
sible interest. Several changes could be made in the basic definitions
and assumptions in the Thrall theory to see what effect they have on our
present results. The experimental work on n-person games could be re-
viewed in light of this approach, and possible new experiments designed.
Additional studies could also be made into the relationship of Thrall's

theory to some of the other recent approaches to n-person game theory

(for example, see [3]).
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