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ABSTRACT

Corrosion Effects on the Ductile Fracture, Strength and Reliability of Membranes, Plates and
Shells

by

Weiwei Yu

Chair: Dale G. Karr

Corrosion is a degradation of material properties and strength due to interactions

with the environment. This dissertation details the analyses of corrosion effects

on two failure modes: ductile fracture and bending strength of membranes, plates

and shells. Furthermore, corrosion induced stress or strain concentration effects are

incorporated in reliability studies.

Annular elastic membrane deformation is studied analytically. Large out-of-plane

ship hull deformation in ship grounding or collision is often analyzed by using mem-

brane theory. It has been found that older ships with corrosion are more susceptible

to fracture in grounding or collision. Therefore, corrosion effects on ductile fracture

initiation are studied next. Corrosion effects inducing strain localization are revealed

by a 3D model based on the finite element method. The relationship between local

and overall strain and model size effects are examined for a rectangular plate under

uniaxial and biaxial tension. The ductile fracture of corroded plates is also studied

under different pit intensities, distributions and loading conditions.

Corrosion also degrades the bending capacity of pipelines. Previous research fo-

cused mainly on burst capacity of corroded pipelines. Key points of finite element

analyses of corroded pipelines in bending are addressed in detail. An experimen-

tal testing program is fully reported and validates the finite element analysis results.



Bending strength reduction because of corrosion has been revealed. Secondary effects

in the experimental testing are also discussed.

Finally, corrosion induced high local stress and strain levels are evaluated by

means of stress and strain concentrations. Both analytical and numerical analyses are

performed including the use of Neuber’s stress concentration theory. Such studies are

further incorporated into the reliability analyses of corroded plates. Structural failure

probability and partial safety factors are calculated by considering the randomness of

corrosion geometry and of the applied nominal strain. A reliability study is applied

on a corroded bottom shell of a double bottom oil tanker in ship grounding.



CHAPTER 1

Introduction

Ships and offshore structures are subjected to numerous mechanisms which de-

grade their mechanical properties and threaten their integrity, safety and service life.

These include wear, stress cycles (fatigue), mechanical shock and impact, creep, rup-

ture, embrittlement and corrosion. Among them, corrosion is one of the most critical

degrading mechanisms of structural strength. Moreover, corrosion of most metals is

often an inevitable process. Corrosion compromises structural integrity by reducing

fracture elongation and strength, yield and ultimate strength, and fatigue life. When

localized or pit corrosion occurs, strength reduction can be difficult to establish be-

cause of the complicated effects of uneven surfaces and uneven material properties on

the stress fields and failure modes of the structure. In order to accurately estimate

hull structure life, it is important to understand and evaluate corrosion effects on

overall ductile fracture, bending capacity and the corresponding local strength.

Most ship structures are composed of thousands of plates of a variety of shapes. In

industry, it is routine to analyze stress and strain distributions, yielding, and fracture

in these structures. Classification rules from different shipping bureaus are used in

design applications. Finite element modeling is also a method to estimate local and

overall strength as well as to verify rule based designs. Depending on combined body,
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machinery, cargo, and wave loading, the failure mode of hull structures may vary and

be complex.

Many uncertain factors are presented in the above mentioned loading and envi-

ronmental conditions. Additionally, structural strength itself is affected by many

uncertain quantities. For example, the material defect geometry and its propaga-

tion process all should be quantified by random variables. The randomness of the

structure and from environmental conditions influence the structure failure analysis.

Therefore, probability based analysis is becoming more preferred over the determin-

istic analysis to predict structure failure.

One common example for ship hull structure study is in ship grounding or colli-

sion. When ship grounding or collision occurs, ship hull structures are very likely to

fracture. If groundings or collisions occur on oil tankers, such accidents will also lead

to severe environment pollution. Therefore, it is very necessary to prevent fracture

of ship hull structures when groundings or collisions happen.

As it is the large out-of-plane deformations that probably lead to fracture, we first

focus on such large deformation analysis. A very common assumption in the study

of such large out-of-plane deformation is that in-plane deformation is neglected; so

membrane theory can be applied. Membranes are defined as thin plates with a

thickness normally less than one twentieth of the characteristic dimension of the

plate. Due to its geometric features, a membrane cannot sustain significant bending

and its flexural rigidity is neglected. When large deformations occur in thin plates, in-

plane membrane stress will overcome the bending stress and become more important

for plate failure. Such membrane stress develops when ship hulls undergo severe

impact, grounding, collision or tearing. When membrane stresses dominate, hull

plantings may also undergo large plastic deformation.
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The structural idealizations involving elasto-plastic membrane deformation can

be highly simplified, for example as a circular membrane model subject to vertical

loadings. A first step in understanding the large membrane deformation is elastic

membrane analyses. The fundamental elastic membrane theories are the Föppl [32]

and Hencky [44] nonlinear membrane theories. Föppl’s theory laid the foundation

for nonlinear elastic membrane analyses under small deformation and small strains,

such that the linear elastic stress-strain relations are valid. Hencky was the first

person to apply Föppl’s theory to an important particular application. He provided

power series solutions for a flat circular membrane under uniform vertical pressure

in which the flexural rigidity is neglected. More circular membrane analyses will be

presented in Chapter 2. My research focuses on the analytical study of an annular

membrane, as it allows comparing annular membrane deformation to that of, for

example, a circular membrane with a corrosion pit in the center to examine the

strain distribution along the inner circumference of a membrane.

Membrane theory has been widely used in marine, mechanical, civil and biome-

chanical engineering applications. The thin plates on ships may be modeled as

membranes. Although these plates are sometimes not really “thin”, under ground-

ing, collision or dynamic loading conditions their behavior (large plastic out-of-plane

deformation) can be better approximated by membrane theory than by plate theory.

In mechanical engineering, one common application is the indentation problem [121].

Ponding pressures acting on a circular membrane as a result of the weight of a liquid

filling the space created by the deflection of a membrane is also important in civil

engineering design, for example in roofs [112]. Besides those applications, membrane

theory is employed in biomechanical engineering. Clinical interventions, for example

a rigid fixation during a surgery, result in distributed stress and strain fields with
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potentially strong gradients in tissues. To design better surgical procedures, mem-

brane analyses are applied to understand cellular responses to altered mechanical

stress [25].

In the study of ship hull deformation in grounding or collision, another finding is

that older ships are more susceptible to fracture than newer ships. One reason for this

is due to corrosion. Corrosion is a common phenomenon in aging ships, necessitating

a reasonable strength and service duration estimation. Usually, ships in service for

longer than 10−15 years require a full inspection. Corrosion degrades the structural

resistance to fracture, so efforts need to be put on the study of corrosion effects on

fracture, especially for ship hull or offshore structures.

Based on the severity and intensity of corrosion, the material loss can be converted

into an overall reduction in plate thickness and a corresponding decrease in the

strength of the structure. Although the concept of an overall thickness reduction is

simple to apply, it may be inaccurate as some important local phenomena may be

overlooked. Another phenomenon of pit corrosion is that it is susceptible to strain

localization. There has been no generally accepted method for establishing acceptable

levels of strain for corroded steel plates. The lack of relation between local strain

or stress tolerance, and global average strain or stress, motivates my research on

strength reduction and fracture initiation of pit corroded plates under various loading

conditions. In this sense, membrane analysis and fracture estimation are valuable

supplements to linear plate bending analyses. To fully understand and visualize

corrosion effects, one must understand plate deformation and fracture behavior both

with and without structural initial imperfections.

The effects of corrosion on aging hull plating has been examined to a limited

extent in the existing literature. Material defects are known to affect the strain-to-
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failure of ductile metals by notably increasing plastic localization and reducing the

ship hull’s buckling strength [71, 72], shear strength [74] and collapse strength [72].

Success lies in conducting experimental tests on corroded plates and verifying results

from finite element analyses. Nakai et al. [71, 72] conducted experimental testing on

tensile strength and ultimate collapse strength of pit-corroded plates. He compared

test results to those from finite element analyses with good agreement. He found that

“tensile strength decreases gradually while the elongation decreases dramatically in

pitted plates” [75]. Additionally, his work indicates that finite element analyses are

able to simulate the plate deformation with pit corrosion [75].

An empirical formula for strength reduction factor was found in the literature [82,

83]. However, the application of the formula is quite limited. A corroded plate

compressive ultimate strength reduction factor is introduced by taking the smallest

cross sectional area into consideration. Furthermore, from experimental and nu-

merical analyses, a plate under pit corrosion is converted to one with an equivalent

plate thickness under general corrosion with the same strength reduction [82]. This

conversion provides an alternate accounting for corrosion effects.

Offshore structures, for example, oil platform and oil/gas pipelines, are other

types of structures that are highly susceptible to corrosion. As the geometry features

of such in- and out-of-water structures, corrosion effects on shell structures are of

special interest in studying the corrosion effects on pipelines. For pipelines, internal

and external pressures, and bending moments are regarded as the most important

loading conditions. Pipelines sustain huge external pressures from water and soil,

internal pressures from transmitted oil or gas and bending moments due to thermal

expansion and curved lay-out. When these pipes are corroded from either external or

internal (or both), burst and bending capacities are decreased; thus, the structural
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integrity is significantly affected. Therefore, guidelines are needed for the estimation

and calculation of these reductions.

The American Society of Mechanical Engineering (ASME) B31G, modified ASME

B31G [8] and Det Norske Veritas (DNV) RP − F101 provide coded methods to

evaluate the structural integrity of corroded pipelines. The above methods are all

based on the analytical analyses of pipelines under internal and external pressures.

Besides these guidelines, Zheng et al. [125] and Kim et al. [53, 101] also proposed an

analytical formula for the burst capacity of corroded pipelines. Under similar loading

conditions, Roy et al. [94], Katsumasa et al. [68] and Shinji et al. [2] conducted

experimental tests of various size pipes. They analyzed corroded pipelines failure

modes and conducted parametric studies regarding the failure of corroded pipes.

These analyses provide a valuable database to compare to and verify the numerical

results.

However, the above mentioned analyses focused on the burst capacity of corroded

pipelines but not the bending capacity. Even though some literature does cover

bending capacities calculation, the calculations are applied for pipes in the chemical

refinery field, which have a very large diameter to wall thickness ratio (D/t ≈ 100).

The dimension of these pipes are quite different from those used in the oil/gas in-

dustry, where D/t is typically about 20.

Conventional deterministic analyses of corrosion effects on ductile fracture initi-

ation and bending capacity of ship and offshore structures are meaningful in that

they reflect the fundamental corrosion compromising effects on structure mechanical

response. The qualitative prediction of changes in the structural response caused by

corrosion helps to efficiently control and prevent fracture in ship grounding or col-

lision. However, corrosion distribution, geometry and propagation are random and
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affected by environment, loading conditions, material properties and other factors.

This randomness lead to another concern in the ship grounding or collision. That is,

how much more susceptible to fracture during grounding are older ships as compared

to newer ships? Hence, to answer this question and also approach actual scenarios

closer, uncertainties in structural strength, response and loading should be consid-

ered. Thus, a probability based reliability analysis is a logical extension beyond the

deterministic study.

Reliability analysis has been widely used in structural system design, test and

maintenance to estimate structure failure probability. The analysis is related to the

definition of a limit state. The limit state design was developed by the Comité

Européen du Béton and the Fédération Internationale de la Précontrainte [56]. Sta-

tistical methods are employed to reveal different uncertainty levels of these random

variables in the limit state design. The cumulative effect of these various uncertainty

levels affect the structure safety level. A limit state function is usually used to express

critical load-strength (resistance) effects. Through a limit state function, structural

integrity is quantified by a reliability safety index corresponding to the probability

of failure.

Based on the classification system of the Joint Committee on Structural Safety [46,

47], there are three different structure reliability analyses: Level 3, Level 2 and Level

1. A reliability safety index directly related to the failure probability is included

in both Level 2 and Level 1 studies. Moreover, partial safety factors quantifying

each individual random variable’s safety concern is provided in the Level 1 study.

General methods to execute the above reliability analyses are: the first-order reli-

ability method (FORM) method, the second-order reliability method (SORM) and

Monte Carlo (MC) method [12]. The first two are analytical methods, with the
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merits of simplicity for application and less cost of computational recourses. MC is

a simulation method, which generally yields a high level of accuracy, but is often

computationally expensive.

In the field of naval architecture and marine engineering, reliability analysis has

been given much attention, especially because of the stochastic nature of the marine

environment. For example, Dunbar et al. [5], Garbatov [105] and Guedes Soares [106]

presented time variant formulations to account for the effect of corrosion and fatigue

on the reliability of ship hulls. The degrading effect of general corrosion is reflected

in the decreased thickness of the plating, which in turn decreases the moment of

inertia of the ship cross section and thus induces higher stress levels for the same

applied bending moments. The formulation is able to accurately assess the degrad-

ing effects of both crack growth due to fatigue and corrosion on instantaneous and

time-dependent reliability. Parunov and Guedes Soares [86] further considered the

reinforcement of initial designed members and calculated ultimate failure probability

of both initial designed and reinforced ship hull. The calculation is performed sepa-

rately for two independent failure modes: sagging and hogging. Both sensitivity and

parametric studies are performed and the results show that the ultimate strength is

the most important random variable for the reliability calculation.

Corrosion affects the overall ship hull bending capacity by reducing plates thick-

ness. Corrosion can also decrease the structure capacity locally, which can directly

lead to failure. In ship grounding or collapse, large out-of-plane plastic deforma-

tion occurs. When corrosion appears on such highly deformed ship hull plates, high

strain localization may appear on the corroded plate, exceeding the fracture strain

and directly resulting in fracture. The reliability study of local failure considering

corrosion effects is also important, but has not been discussed a great deal in existing
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literature.
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Figure 1.1: Overall research structure; the ship grounding picture is from “Plate Tearing and Bot-
tom Damage in Ship Grounding” [124]

Regarding to three main concerns in ship hull grounding or collision, the overall

construction of this thesis is shown in Fig. 1.1. Here, we will first show the axisym-

metrical solutions for an edge-loaded annular membrane under elastic deformation.

The Föppl-Hencky nonlinear membrane theory is employed in Chapter 2 to study

the axisymmetric deformation of annular elastic membranes under the assumption

of small deflection. General solutions for displacements and stresses are established

for arbitrary edge boundary conditions. New exact solution results are developed for

central loading and edge forcing conditions. Both positive and negative radial stress

solutions are found. Comparisons are made for special cases to previously known

solutions with excellent agreement.
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Local strain concentration and fracture strain studies are included in Chapter 3

for plates subjected to axial loading with local geometric defects caused by corrosion.

A 3D model based on the finite element method is used for predicting the ductile

fracture of plating, which also validates the application of a 1D three-piece model

on the strain localization of pit-corroded plate. Results of the strain localization for

particular corrosion states are presented for common ship hull steel (A36 steel). The

strain to failure is shown to be dependent on the ratio of pit size to overall model

length. Fracture strain is also studied under different corrosion states and loading

conditions.

Chapter 4 presents the bending capacity of corroded pipelines. The corrosion

effect on bending moment capacity is studied numerically and experimentally. Finite

element (FE) analyses are preformed regarding various shapes of corrosion, meshing

refinement levels and meshing techniques. The performed experimental tests allow

deeper understanding of mechanical mechanism of corroded pipelines as well as the

validation of the FE analyses. Both studies tally nicely with each other. Some issues

revealed in the experimental testing need special attention: particularly the added

axial tension and the end-cap effect.

Details of corrosion on ductile fracture initiation and bending capacity are fully

studied in Chapters 3 and 4. Corrosion is one type of geometrical defect which causes

stress concentration. Local stress and strain rapidly increasing is a phenomenon of

stress/strain concentration. Therefore, in essence, the corrosion analysis can be

addressed via stress concentration study. In Chapter 5, stress concentration induced

by pit corrosion is first studied numerically. Neuber’s study of elastic and inelastic

formula is applied to the pit corrosion induced stress concentration factor calculation.

The FE method is then employed to model this problem numerically and to calculate
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the stress concentration factor for an semi-oblate spheroidal pit.

Furthermore, corrosion development is a process with many random factors such

as the geometry and the growth rate. A realistic reflection of the corrosion effects on

structure failure is to put it into the framework of reliability analysis. The reliability

procedure is demonstrated in an example of a highly deformed bottom shell panel

during ship grounding in Chapter 5. By knowing the analytical formula of stress

concentration factor, reliability analyses are conducted to calculate the reliability

safety index of the panel based on a strain control. Partial safety factors of two

random variables which describe pit corrosion geometry and the effective nominal

strain level are also calculated. The reliability safety index is directly related to the

structural failure probability. Recommendations for using partial safety factors are

provided.
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CHAPTER 2

Symmetrical Solutions for Edge-Loaded Annular Elastic
Membranes

The development of nonlinear elastic membrane theory began a century ago with

the work of Föppl [32]. Within this theory, strains are presumed to be small enough

that linear elastic stress-strain relationships are valid. The nonlinearity arises from

the effects of small rotations of membrane elements. This nonlinearity is also present

in the plate theory attributed to Von Karman [49] and Way [115], which coupled the

effects of bending and in-plane stretching. An important particular application of

Föppl’s theory is that by Hencky [44]. Hencky provided power series solutions for a

flat circular membrane under uniform vertical pressure in which the flexural rigidity

is neglected.

A more general theory applicable for axisymmetric deformation including large

rotations was developed by Reissner [91, 92]. The range of applicability of the Föppl-

Hencky theory and the Reissner theory for flat annular membrane problems was

provided by Weinitschke [116]. Dickey [27] derived an exact theory for a plane

circular membrane subjected to a vertical pressure, showing that the Föppl theory

corresponded to the first term expansion for the exact theory.

The solutions to the nonlinear elastic membrane problem vary according to the

methods applied. Dickey [26] employed a numerical integration scheme to find ax-

12



isymmetric solutions for a circular membrane under a vertical pressure. Weinitschke [117]

applied an iterative method to develop detailed analyses of an annular membrane un-

der surface and edge loads, in which existence and uniqueness of tensile and compres-

sive conditions were examined. Callegari and Reiss [20] applied a shooting method

to solve boundary value problems for axisymmetric deformation of a circular mem-

brane, like Weinitschke, examining existence and uniqueness. Kelkar, Elber and

Raju [50] used a finite difference technique to analyze a circular membrane with

fixed peripheral edges, and found displacement and stresses under three different

loading conditions. Grabmüllen and Novak [36] developed a refined integral equa-

tion solution technique, proving that tensile solutions may cease to exist when large

radial displacements are prescribed at the inner radius. As discussed in Section 2.2,

this phenomenon is consistent with our findings.

Most recently, Plaut studied the large deformation [88] and vibration [89] of linear

elastic annular and circular membranes under radial, transverse and torsional loading

conditions. He compared displacements, strains, stress resultants by considering

three different theories: Föppl theory, Reissner’s theory and a generalized Reissner’s

theory [88]. He discussed solutions by different boundary conditions according to

different industry applications and further addressed the membrane instability issues

under certain boundary conditions. Especially, he studied torsional deformation of

an annular membrane, which is not included in my work. Some of his conclusions

emphasized the annular membrane deformation and its dependency on Poisson’s

ratio. However, he mentioned available closed-form solutions only for Poisson’s ratio

ν = 1
3
. Closed-form solutions for all possible Poisson’s ratios are developed in this

thesis.

In this study, we develop new exact axisymmetric solutions for annular membranes
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subjected to edge forcing, applying the Föppl theory. We follow closely the approach

of Schwerin [96], who first presented some exact solutions for annular membrane

problems for loading and edge conditions. Of particular interest is Schwerin’s analysis

of the problem of an elastic membrane subjected to a vertical force acting at the

interior of the membrane. Analytical solutions were given with Poisson’s ratio less

than or equal to one third. Unlike Schwerin, we reduce the governing differential

equations to a single nonlinear ordinary differential equation in terms of a single

dependent variable. As a result of this reduction, in addition to positive stress,

negative radial stress solutions are found. Closed-form solutions for Poisson’s ratio

larger than 1
3

are also developed. These findings are also summarized in Yu and

Karr [123].

Such analyses of nonlinear elastic membranes have numerous applications. For ex-

ample, applications of circular membrane theory for indentation of tires were pointed

out by Yang and Hsu [121]. Chen and Chang [22] analyzed ponding pressures acting

on a large roof. The membrane deformation was initiated as a result of the weight

of a liquid. It filled the space created by the deflection of a membrane. If the mem-

brane’s self weight is negligible relative to the liquid pressure, an unloaded outer

circular region is thus developed. They developed an iterative technique to solve for

the displacements in both the loaded and unloaded portions of the membrane.

Similar indentation problems arise for marine, land and air vehicles, when thin

plates are subjected to impact load. A common hypothesis is that membrane stresses

predominate for large deformations [28]. Circular membrane analyses are a first-order

approximation of the geometry for impact experiments and analyses [50, 119].

Recent applications in clinical procedures [25, 69] include the analysis of circu-

lar holes in nonlinear circular membranes in an effort to characterize the effects of
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cavities and implanted rigid fixations introduced into thin tissue. Annular mem-

brane analysis is applied to quantify the stress and strain field change resulting from

fixations. Annular membrane models are also used in mechanical testing of soft

materials such as polymers, elastomers and bio-materials [97], and in the analysis

of electrostatic deflection on elastic membranes for micro-electromechanical actua-

tors [87]. Begley and Mackin [15] presented theoretical and experimental results for

spherical indentation of freestanding thin films; they also compare their results with

the classical Schwerin-type analyses.

2.1 Analysis

As mentioned, Schwerin [96] analyzed the problem of an elastic membrane with

radial and vertical displacements u and w, respectively, equal to zero at the outer

radius r = ra. The central region of the membrane 0 < r < ri consisted of a rigid

disc subjected to a vertical force resultant of magnitude P acting at the center of the

membrane. The annular region, ri < r < ra, was subjected to a uniformly distributed

vertical pressure p. Given those boundary conditions, he found deformation and

stress distribution on the membrane. However, his solutions were constrained to

ν ≤ 1
3
.

In the following, in a manner similar to that of Schwerin, we develop the general

axisymmetric solution to the governing differential equations of the elastic membrane

with p = 0, as shown in Fig. 2.1. Our analysis pertains to the annular region,

ri < r < ra with loading provided by the stresses or displacements prescribed at

the boundaries. Solutions for selected displacement boundary value problems are

presented. For the particular case with the boundary conditions u(ri) = u(ra) =

w(ra) = 0, our solutions are the same as those found by Schwerin provided ν ≤ 1
3
.

For these boundary conditions, we also find that solutions exist for ν > 1
3
, in contrast
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Figure 2.1: Geometry and notation for a center-loaded membrane. The inner portion provides a net
vertical force P . The resulting edge-loaded annular membrane ri < r < ra is analyzed.

to Schwerin’s conclusion that axisymmetric solutions exist only for ν ≤ 1
3
.

For axisymmetric plane stress conditions, the circumferential strain and radial

strain are related to the circumferential stress and radial stress by, respectively,

εθ =
1

E
(σθ − νσr) (2.1)

εr =
1

E
(σr − νσθ) (2.2)

The strain-displacement relationships are

εθ =
u

r
(2.3)

εr =
du

dr
+

1

2
(
dw

dr
)2 (2.4)

where u is the displacement in the radial direction and w is the displacement in the

z-direction. Substitution of the expressions for strain in Eq. 2.1 into Eq. 2.3 yields
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the displacement-stress relation,

u =
r

E
(σθ − νσr) (2.5)

Differentiating Eq. 2.5 and substituting this result, along with Eq. 2.2, into Eq. 2.4

yields

1

2
(
dw

dr
)2 =

1

E
[(1 + ν)(σr − σθ)− r(

dσθ

dr
− ν

dσr

dr
)] (2.6)

From the summation of forces in the radial direction, equilibrium of a differential

element yields

dσr

dr
+

1

r
(σr − σθ) = 0 (2.7)

Summation of forces in the vertical direction yields

σr
d2w

dr2
+

1

r
σθ

dw

dr
= 0 (2.8)

Equations 2.6, 2.7 and 2.8 involve three nonlinear differential equations of first order

in σr and σθ, and of second order in displacement w. Accordingly, in the applica-

tions that follow, the solutions involve four boundary conditions for axisymmetric

deformation of the membrane.

The system of equations can be further reduced in several ways. The approach

preferred most often is to introduce the stress function φ, from which we find,

σr =
1

r

dφ

dr
(2.9)

σθ =
d2φ

dr2
(2.10)

Then, Eq. 2.7 is satisfied identically and equations 2.6 and 2.8 may be rewritten as,

respectively,

E

2
(
dw

dr
)2 + r

d

dr
(
d2φ

dr2
+

1

r

dφ

dr
) = 0 (2.11)

17



and

d

dr
(
dφ

dr

dw

dr
) = 0 (2.12)

Equations 2.11 and 2.12 are special homogeneous cases of the nonlinear axisymmetric

membrane theory, corresponding to a zero pressure on the membrane.

The number of governing equations 2.6, 2.7 and 2.8 can also be reduced by solving

Eq. 2.7 first. It is not hard to observe from Eq. 2.7 that, σθ can be expressed in terms

of σr,

σθ =
d(rσr)

dr
(2.13)

Substituting this result (Eq. 2.13) into Eq. 2.6 yields

E

2
(
dw

dr
)2 + r

d

dr
[σr +

d(rσr)

dr
] = 0 (2.14)

Also, substituting Eq. 2.13 into 2.8 yields,

d

dr
[rσr

dw

dr
] = 0 (2.15)

Tuan [112] used equations of this form in an analysis of ponding of circular mem-

branes using a fourth-order Runge-Kutta method. From Eq. 2.15 and from equilib-

rium condition of the central disc, for the condition in which no pressure is applied

to the annular region, we find

rσr
dw

dr
+

P

2πh
= 0 (2.16)

Equations 2.14 and 2.16 now correspond to equations 5b and 4b, respectively, of

Schwerin’s article [96].

In order to further reduce the two governing equations to one, we introduce the

function

y ≡ r2σr

E
(2.17)
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and substituting it into Eq. 2.14 and 2.15 yields, respectively, two equations for y(r)

and w(r)

1

2
(
dw

dr
)2 +

d2y

dr2
− 1

r

dy

dr
= 0 (2.18)

and

d

dr
(
y

r

dw

dr
) = 0 (2.19)

Integrating Eq. 2.19 yields the solution for the product

y

r

dw

dr
= 2a1 (2.20)

where a1 is a constant of integration and the factor 2 is used to simplify expres-

sions that follow. Further simplification can be achieved by introducing the new

independent variable

x = r2 (2.21)

A single nonlinear ordinary differential equation for y is then found by substituting

the result, Eq. 2.20, into Eq. 2.18

y2 d2y

dx2
= −1

2
a2

1 (2.22)

The physical significance of the constant a1 can be interpreted by noting the net

vertical force of any circular region of the membrane is

P = −2πr
dw

dr
σrh (2.23)

Then from Eq. 2.17 and 2.20 we find,

a1 = − P

4πEh
(2.24)

Note that in the following we address only problems in which P , and hence a1,

are nonzero. This also implies, from Eq. 2.22, that d2y
dx2 < 0. By introducing the

nondimensional variable V ,

V ≡ −K1y (2.25)
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where K1 = 1
r2
a

3

√
2r2

a

a2
1

and the nondimensional independent variable ξ,

ξ ≡ x

r2
a

(2.26)

We can now reduce Eq. 2.22 to the equivalent form,

d2V

dξ2
=

1

V 2
(2.27)

By introducing

ρ ≡ dV

dξ
(2.28)

we find

ρdρ =
1

V 2
dV (2.29)

Integrating Eq. 2.29 yields

1

2
ρ2 = − 1

V
− a2

2
(2.30)

where a second constant of integration, a2, has been introduced. From Eq. 2.28

and 2.30, we also find

dξ = ± 1√
2

dV√
− 1

V
− a2

2

(2.31)

Integration of Eq. 2.31 yields, with the introduction of a third integration constant,

a3,

ξ + a3 = ± 1√
2

∫
dV√
− 1

V
− a2

2

(2.32)

The result of the integration of the right hand side of Eq. 2.32 depends upon

whether a2 is less than, greater than, or equal to zero. We introduce two parameters

ϕ and τ for conditions in which a2 is a nonzero variable. Both parameters help relate

ξ and V in Eq. 2.32:

ϕ ≡ 2 cot−1(
1
√

a2

√
− 2

V
− a2), a2 > 0 V < 0 (2.33)
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τ ≡ 2 tanh−1(
1√
−a2

√
− 2

V
− a2), a2 < 0 V > 0 (2.34)

τ ≡ 2 coth−1(
1√
−a2

√
− 2

V
− a2), a2 < 0 V < 0 (2.35)

Equation 2.32 yields, using Eq. 2.33, 2.34 and 2.35 respectively,

ξ + a3 = ±(
1

a2

)
3
2 (sin ϕ− ϕ), a2 > 0 V < 0 (2.36)

ξ + a3 = ±(
1

−a2

)
3
2 (sinh τ + τ), a2 < 0 V > 0 (2.37)

ξ + a3 = ∓(
1

−a2

)
3
2 (sinh τ − τ), a2 < 0 V < 0 (2.38)

A fourth solution exists when a2 = 0 in the form,

ξ + a3 = ∓
√

2

3
(−V )

3
2 , a2 = 0 V < 0 (2.39)

Expressions for V in terms of ϕ and τ are found from 2.33, 2.34 and 2.35 respectively,

V = − 1

a2

(1− cos ϕ), a2 > 0 V < 0 (2.40)

V = − 1

a2

(1 + cosh τ), a2 < 0 V > 0 (2.41)

V =
1

a2

(cosh τ − 1), a2 < 0 V < 0 (2.42)

Solutions for the vertical displacement are now determined from Eq. 2.20, which

can be rewritten as

dw

dξ
= − 1

V
3
√

2a1r2
a (2.43)

Integration of Eq. 2.43 upon substitution of either Eq. 2.39, 2.40, 2.41 or 2.42 as the

case may be, yields

w + a4 = ∓ 3
√

2a1r2
a

1
√

a2

ϕ, a2 > 0 V < 0 (2.44)

w + a4 = ∓ 3
√

2a1r2
a

1√
−a2

τ, a2 < 0 V > 0 (2.45)
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w + a4 = ∓ 3
√

2a1r2
a

1√
−a2

τ, a2 < 0 V < 0 (2.46)

w + a4 = ∓ 3
√

2a1r2
a

√
−2V , a2 = 0 V < 0 (2.47)

The constant of integration a4 represents a vertical rigid body translation. Solutions

for the horizontal displacement are now determined from Eq. 2.5, which can be

rewritten as

u =
1

K1ra

√
ξ[∓2

√
− 2

V
− a2 +

V

ξ
(1 + ν)] (2.48)

Substitution of either Eq. 2.39, 2.40, 2.41 or 2.42 yields the radial displacement

u =
1

K1ra

√
ξ[∓2

√
a2 cot

ϕ

2
− (1− cos ϕ)

ξa2

(1 + ν)], a2 > 0 V < 0 (2.49)

u =
1

K1ra

√
ξ[∓2

√
−a2 tanh

τ

2
− (1 + cosh τ)

ξa2

(1 + ν)], a2 < 0 V > 0 (2.50)

u =
1

K1ra

√
ξ[∓2

√
−a2 coth

τ

2
+

(cosh τ − 1)

ξa2

(1 + ν)], a2 < 0 V < 0 (2.51)

u =
1

K1ra

√
ξ[∓2

√
− 2

V
+

V

ξ
(1 + ν)], a2 = 0 V < 0 (2.52)

Note that from equations 2.17 and 2.25, V is of the opposite sign of the radial stress

σr. Positive values of V thus correspond to negative radial stress, changing the

stability state of the membrane [14, 21]. This is the first time so far, closed-form

solutions are available for an explicit relating to the negative radial stress, which

initiates the instability of membrane deformation.

2.2 Results and Discussion

The above equations will be solved simultaneously with regards to different values

of a2 combined with different boundary conditions. According to scenarios whether

the inner radius slides outward or not, friction and frictionless cases are discussed,

respectively. Furthermore, the results are compared to previous known literature

studies.
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2.2.1 Boundary Condition Application of Friction Case

In this section, a membrane with uniformly distributed load around an inner

circumference is studied. For all the calculations shown in the following figures, we

nondimensionalize the stresses σ̄ = σ
E

, vertical force P̄ = P
Ehra

, and displacements

ū = u
ra

and w̄ = w
ra

.

First, the relationships between vertical displacement w(r) and the net force P

applied uniformly around the inner circumference with various Poisson’s ratios are

examined. The boundary conditions of the problem are:

• w(ri) is prescribed

• w(ra) = 0

• u(ra) = 0

• u(ri) = 0

Force-displacement relations are shown for ri

ra
= 0.5 in Fig. 2.2. A system of

simultaneous equations must be solved to obtain these results. The system of equa-

tions depends on the signs of the constant a2 and variable V . One particular method

we found efficient is to first solve for a1 in terms of a given vertical force P using

Eq. 2.24. The solution of a1 also provides a value for K1. Evaluating ξ at the inner

and outer boundaries yields values of ξ1 = 0.25 and ξ2 = 1, respectively. Substituting

these values into Eq. 2.36 yields two expressions for φ1 and φ2 as follows (assuming

a2 > 0):

0.25 + a3 = ±(
1

a2

)
3
2 (sin ϕ1 − ϕ1), a2 > 0 (2.53)

1 + a3 = ±(
1

a2

)
3
2 (sin ϕ2 − ϕ2), a2 > 0 (2.54)
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Figure 2.2: Vertical force P , applied at the inner boundary versus vertical displacement at inner
boundary w(ri) for different Poisson’s ratios with prescribed w(ra) = u(ri) = u(ra) = 0,
and ri

ra
= 0.5

Two more equations arise from the boundary condition on the radial displacement

at the inner and outer edges. u(ra) = 0 and u(ri) = 0 being zero yield, from Eq. 2.49

0 =
1

K1

√
0.25[∓2

√
a2 cot

ϕ1

2
− (1− cos ϕ1)

0.25a2

(1 + ν)] (2.55)

0 =
1

K1

[∓2
√

a2 cot
ϕ2

2
− (1− cos ϕ2)

a2

(1 + ν)] (2.56)

The above system involves four equations 2.53, 2.54, 2.55 and 2.56 in four un-

knowns, φ1, φ2, a2 and a3. These equations are solved with the Matlab package [64].

The boundary condition for w(ra) = 0 yields, from Eq. 2.44,

a4 = ∓ 3
√

2a1
1
√

a2

ϕ2 (2.57)

Then, we applied Eq. 2.44 to determine the displacement at the inner boundary for

the given applied force, specifically:

w(ri) = ∓ 3
√

2a1(0.25)2
1
√

a2

ϕ1 − a4 (2.58)
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Note that our solutions for Poisson’s ratios υ ≤ 1
3

are in full agreement with

Schwerin’s [96]. However, we find that axisymmetric solutions for υ > 1
3

exist as per

equations 2.46 and 2.51. As indicated in Fig. 2.2, larger Poisson’s ratios increase

the stiffness of the membrane. Figure 2.3 shows the displacement u(r) for the same

boundary conditions with various Poisson’s ratios with w(ri) = 0.1. Note that only

for υ = 1
3

is u(r) = 0. One important result by performing the analysis in this

way demonstrates that maximum horizontal displacements are about three orders of

magnitude smaller than the maximum vertical displacement. A logical assumption

may be made that the radial displacement is zero. However, a positive radial dis-

placement is corresponding a membrane wrinkles, which is different fundamentally

different from a membrane with zero radial displacement.
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Figure 2.3: Horizontal displacement u(r) for different Poisson’s ratios with prescribed vertical dis-
placement w(ri) = 0.1, w(ra) = u(ri) = u(ra) = 0, and ri

ra
= 0.5

In order to establish the physical significance of the integration constant a2, we

studied the special case with ri

ra
= 0.5, the outer edge displacement zero, and the
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inner edge nondimensional vertical displacement fixed at 0.1. Figure 2.4 shows results

as the inner radial displacement is varied for three different Poisson’s ratios. Note

that even when membrane sustain contraction along the radial direction (positive

u values), the combined effects of positive vertical displacement and contraction

along the radial direction yield overall radial tension. These solutions are often

regarded as stable solutions. Moreover, the general trend is for the constant a2

to increase as the inner radial displacement increases. This trend implies that as

the radial membrane tensile strains increase, the constant a2 decreases for a given

inner vertical displacement. It is also noticeable that in general a2 equals zero is

not corresponding to zero radial displacement, except for Poisson’s ratio equal to 1
3
.

This behavior is reflected in Fig. 2.5 where Poisson’s ratio is held at 1
3

and the inner

vertical displacement is varied.
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Figure 2.4: Integration constant a2 versus horizontal displacement at inner boundary u(ri) with
prescribed vertical edge displacement w(ri) = 0.1, w(ra) = u(ra) = 0

In a wider region of a2, we note that there is a discontinuity in solutions with
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Figure 2.5: Integration constant a2 versus horizontal displacement at inner boundary u(ri) for var-
ious vertical displacements w(ri) with Poisson’s ratio ν = 1

3

a2 > 1 as shown in Fig. 2.6. These solutions involve large slopes dw
dr

, and are thus be-

yond the scope of the Föppl theory, which assumes that strains and rotations (slope)

are small. Also as seen from Fig. 2.6, multiple solutions exist. In addition to the

solution with V < 0 (tensile radial stress), two solutions can be found for a single

value of a2. Two particular solutions for V > 0, which corresponds to compressive

radial stresses, are labeled A and B in Fig. 2.6. These negative radial stress solu-

tions are often discussed in the membrane instability analysis, for example wrinkling

studies [61]. Point A corresponds to solutions from equations 2.45 and 2.51 using the

negative of the ∓ option, hence the “top” label in the figure. Point B corresponds

to solutions using the positive option. The solutions for vertical displacement versus

radial position are shown in Fig. 2.7. Note that positive radial displacements are

found at r = ri = 0.5. In these two cases, the positive radial displacement combined

with the positive vertical displacement results in compressive values of radial stress.
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The resulting radial and circumferential stresses are shown in Fig. 2.8.
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Figure 2.6: Integration constant a2 versus horizontal displacement at inner boundary u(ri), with
vertical displacement w(ri) = 0.1, poisson’s ratio ν = 1

3 and ri

ra
= 0.5
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Figure 2.7: Vertical displacements w(r) of points A and B of Figure 2.6 versus radial position
r + u(ri)
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Figure 2.8: Nondimensional radial and circumferential stresses of points A and B of Fig. 2.6 versus
radial position r

2.2.2 Comparison

Comparisons of our results are made to previous results of other researchers.

As shown in Table 2.1, nondimensionalized radial and circumferential stresses and

vertical displacement agree very well with Schwerin’s [96] results for u(ri) = u(ra) =

0, w(ra) = 0 and P = 12.57. We use the same nondimensionalized method that

Schwerin used: σr = σr

E
· 3

√
32π2E2h2r2

a

P 2 , σθ = σθ

E
· 3

√
32π2E2h2r2

a

P 2 , and w = w
ra
· 3

√
2πrahE

P
.

Also, Tuan’s [112] results of radial and circumferential stresses at the outer bound-

ary are compared in Table 2.2. Table 2.3 shows the membrane geometry and material

properties. Differences of only 1.37% and 1.70% in radial and circumferential stresses,

respectively, are found between the present results and Tuan’s. This is presumably

due to the differences in calculation accuracy between the analytical and numerical

methods.

For Tuan’s problem, finite element analysis is further conducted by using the
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Table 2.1: Comparison of results with Schwerin’s

ξ = ( ri

ra
)2 0.25 0.284 0.362 0.557 0.6755 0.8095 1.000

σr

Results 2.630 2.515 2.311 1.989 1.860 1.747 1.622

Schwerin’s 2.630 2.510 2.310 1.990 1.860 1.750 1.620

σθ

Results 0.789 0.759 0.702 0.606 0.565 0.528 0.487

Schwerin’s 0.790 0.760 0.700 0.610 0.565 0.530 0.490

w
Results 0.678 0.628 0.527 0.326 0.226 0.126 0.000

Schwerin’s 0.680 0.630 0.530 0.330 0.225 0.125 0.000

Table 2.2: Comparison of results with Tuan’s

σr at r = ra[MPa] σθ at r = ra[MPa]

Results 15.80 5.21

Tuan’s 16.02 5.30

Table 2.3: Membrane geometry and material properties in Tuan’s study

Name Data

Membrane material 304 stainless steel

Membrane outer radius, ra[m] 1.857

Membrane inner radius, ri[m] 0.9053

Membrane thickness, t[mm] 0.051

Young’s modulus, E[GPa] 208

Poisson’s ratio, ν 0.33

30



commercial software [3], ABAQUS. Quadratic shell elements with six degrees of

freedom at each node are used to capture the membrane deformation. The vertical

displacement w, radial displacement u and the membrane Von Mises stress σV onMises

in the finite element analysis are compared to the corresponding analytical solutions,

as shown in Fig. 2.9(a), (b) and (c), respectively. The Von Mises stress for this 2D

membrane problems is

σV onMises =
√

σ2
r + σ2

θ − σrσθ (2.59)

Excellent agreements are shown in both displacements and Von Mises stress com-

parisons.

2.2.3 Frictionless Case

We examine the frictionless indentation of a circular membrane. A rigid circular

indenter of radius ri is presumed to have no frictional stress between it and that

portion of the membrane in contact with the indenter. The flat membrane in contact

with the indenter is thus subjected to in-plane stresses and for a given indentation

state a point at the indentor edge, denoted r = rc, is defined by u(rc) + rc = ri.

For a given rc and ri, the radial stress in the contact portion of the radial mem-

brane is determined. This stress is then matched with the stresses on the inner por-

tion of the unloaded annular membrane. Varying the transition point (rc) enables

us to determine the resulting vertical force to provide the results shown in Fig. 2.10.

As a comparison of Fig. 2.10 and Fig. 2.2 shows, smaller pressure is needed for the

same displacement in the frictionless case, as expected.

2.3 Conclusion

The nonlinear axisymmetric elastic annular membrane problem is solved for pre-

scribed edge loading. Vertical and horizontal displacements and radial and circumfer-

ential stresses of the membrane are determined. Axisymmetric closed-form solutions
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Figure 2.9: Comparisons between the analytical solution and the finite element solution
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Figure 2.10: Vertical force P , applied with frictionless indenter at the inner boundary, versus ver-
tical displacement at inner loaded boundary w(rc) for different Poisson’s ratios with
u(rc) + rc = ri

for membrane displacements are derived for all possible Poisson’s ratios, especially

for Poisson’s ration larger than a third, which is not found from previous litera-

tures. Analytical solutions are provided with particular emphasis on solutions for

various values of the constant a2. Solutions show that a2 is an important con-

stant related to the membrane radial strain. Bifurcation of solutions occurs for

some cases in which a2 < 0. Also, the small slope assumption of the Föppl theory

corresponds to a certain range of the constant a2. Under certain boundary condi-

tions (u(ri) = u(ra) = w(ra) = 0), for Poisson’s ratio equal to 1
3
, zero membrane ra-

dial displacement is found. Under these boundary conditions, positive a2 corresponds

to positive radial displacement and negative a2 to negative radial displacement.

Both friction and frictionless indentor conditions are studied. By applying various

vertical displacements at the inner radius, the center load needed is calculated for

both cases for materials with different Poisson’s ratio. As expected, in the frictionless
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case, the center load needed is smaller than that in the friction case.

Furthermore, the comparisons are made to Schwerin’s [96] studies and Tuan’s [112]

ponding problem, respectively. Finite element analysis is employed to simulate

Tuan’s ponding problem for a comparison of membrane displacements and Von Mises

stress. Excellent agreements are achieved for these comparisons, which again vali-

dates the accuracy of the derived analytical solutions.

Based on the available closed-form solutions, membrane instability analysis is able

to be conducted. For a negative a2, two membrane deformation statuses are found,

both resulting in compressive radial stress. From Fig. 2.7, the membrane deformation

is different between the two. Detailed studied are suggested to seek the reasons for

the existence of both statuses corresponding to the same a2.
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CHAPTER 3

Pit Corrosion Effects on Ductile Fracture Initiation

Corrosion is a degradation of materials that results from interactions with their

environments [102]. Metal corrosion is an electrochemical process that is inevitable

in a marine environment unless the metal is well protected by methods like coating

or sacrificial anodes. Coating involves paint or some other non-conducting coating

on the metal surface to prevent the electrolytes from reaching the metal surface.

Using a sacrificial anode commonly involves attaching a metal more anodic than the

metal to be protected, forcing the structural metal to be cathodic and thus to be

spared from corrosion [102]. These methods are both common and generally effective.

However, in complex environmental conditions, for example when offshore structures

are subjected to waves, currents, tides, storms, winds or even ice, the above methods

may not be effective. Under these conditions, the time duration of these forms of

corrosion protection is quite limited. Understanding corrosion effects on structural

failure is important to enable the application of loading controls and the prediction

of failure when traditional corrosion protections are ineffective.

Classified according to different initiation mechanisms, corrosion in metals takes

various forms: “uniform, pit, crevice, impact, cavity bubble and galvanic couple

corrosion” [114]. The most common are uniform and pit corrosion. Uniform corrosion
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is caused by “complete metal surface exposure in corrosive media, and occurs at

about the same rate” [114] in all parts. Pit corrosion, on the other hand, is a highly

localized phenomenon. It occurs when the local breakdown starts on thin (nanometer

scale) oxide layers on the metal surfaces. Once the passive layers are impacted by

the attack initiated on an open surface [100], oxide layers form on the metal surface,

which reduces the rate of corrosion of the metal. When those layers are broken,

the resulting accelerated dissolution of the underlying metal form the pit corrosion

surface.

When uniform corrosion occurs, the structural strength calculation can be esti-

mated relatively easily by reducing the plate thickness or weight loss per unit area

from the original values. Several empirical formulae are available to obtain the

ultimate strength of plates under general corrosion (see for example [29, 84] and

references contained therein). However, the decrease in strength resulting from lo-

calized defects, such as pit corrosion, is more complicated than that which results

from general corrosion, and relatively less research has been published on this topic.

Nakai and Yamamoto analyzed the effect of pit corrosion occurring to hold frames

of bulk carriers on tensile strength [75], collapse strength [72], lateral-distortional

buckling strength [71, 72], local buckling [71, 72], shear strength of web plates [74]

and web crippling [73]. In Nakai and Yamamoto’s framework, numerical simula-

tion (finite element analyses) and experimental tests were conducted simultaneously.

The finite element analysis results were validated by experimental test results. They

conducted extensive experimental tests of pitted specimens taken from real ships and

produced by drilling artificial holes based on real pit corrosion dimensions. They

found that “specimens with regularly located artificial pits could simulate the actual

corroded plate deformation where the pit diameter varies and the pits are randomly
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distributed” [75]. Nakai and Yamamoto tested corroded plates of different pit di-

ameters and distributions. They pointed out that “overall tensile strength decreases

gradually while total elongation decreases drastically with increase in pit depth” [75];

and “tensile strengths of specimens with pit corrosion” [75] were reduced more than

those specimens subjected to average thickness reduction (uniform corrosion).

Similar conclusions were drawn by Sumi [107]. He used a CAD-CAM machining

system to replicate plates with pit corrosion. Specimens were pulled to fracture. He

found out that “considerably larger” elongation reduction occurs than that of tensile

strength for the pitted specimens. He also investigated the elongation reduction

dependency on plate width to thickness ratio. As he suggested, wider specimens

are used for further research to minimize the width ratio. Results shown by all

these researchers imply that pitted plates fail because of strain localization which is

enhanced by the presence of the pitted areas.

Paik et al. [82, 83] performed a series of experimental and numerical studies on a

pit-corroded steel plates under both axial compression and edge shear loads. They

found that “the ultimate strength under shear is governed by the degree of aver-

age pit corrosion intensity” [83], which is defined as the ratio of pitted surface area

to the total surface area in [75]. The ultimate strength under compression, on the

other hand, is “governed by the smallest cross sectional area” [82] of the plate, where

pit corrosion is. They introduced a simplified formula for ultimate strength reduc-

tion factor with various pit corrosion intensities, by employing the minimum cross

sectional area. Furthermore, they successfully established the relationship between

ultimate shear strength and average thickness loss by converting pit depth into uni-

form corrosion depth for engineering applications. However, they did not consider

the effects of different pit locations and pit dimensions.
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Dunbar et al. [30] applied the finite element method to study the effect of local

corrosion applied to stiffened panels which are typically found in ship structures.

The analyses focused on local corrosion loss and corrosion location affecting the

structure stability. They found that lower corrosion loss has little effect on the

ultimate collapse load of stiffened plates (plates with attached stiffeners to enhance

the strength), while higher levels of loss caused local buckling. For the same volume

of material loss, the global collapse and the ultimate strengths were influenced by

different corrosion locations. As the corrosion location became closer to the center

of the panel span, those strengths decreased. Their analysis results also showed

that initial residual stress in a corroded area affected the local buckling and plate

post-ultimate response.

Amlashi and Moan [6] presented an overview of recent studies and existing guide-

lines for strength assessment of pit-corroded stiffened plates. They conducted a series

of finite element analyses with different degrees of pit corrosion intensity, different pit

depths and different locations of the densest pitted zone for the study of the strength

reduction of pitted stiffened plates under biaxial compression loading. They found

that the ultimate strength of pitted stiffened plates is “governed not only by the

degree of pit corrosion intensity but also by the smallest cross sectional area and the

location of the densest pitted zone” [6].

OK et al. [81] performed over 200 finite element analyses of unstiffened plates un-

der uniaxial in-plane compression with different locations and sizes of pit corrosion.

They showed the pit corrosion length, breadth, depth and its transverse location, es-

pecially width and depth, degrade the ultimate strength level. The strength is weak-

ened the most when “corrosion spreading transversely on both parallel edges” [81] as

pointed by OK et al. In addition, they used the artificial neural network method to
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derive a formula to predict ultimate strength reduction resulting from pit corrosion.

All the above studies provide valuable analysis methods and present useful insights

regarding overall strength reduction prediction for corroded plates. Some of them

have practical applications in industry. However, research investigating effects of pit

corrosion on structure strength has not moved beyond a focus on showing deterio-

rative effects to the formulation of the guidelines to quantify the strength reduction

due to corrosion pitting. Moreover, the predictions of either maximum load or the

ultimate strength were derived simply from the geometry change of corroded plates.

Such results and predictions are valuable; but to make them useful for application,

work needs to be done on mechanical behavior of corroded plates. Specifically, we

need to quantify the relations between local strain or stress threshold and the cor-

responding global average strain and stress levels. This will enable the control and

the prediction of ductile fracture through the knowledge of only the global loading

conditions, without local detailed analyses. My work is thus directed towards re-

vealing the pit corrosion effects on global strain and stress change by employing a

specific failure criterion that includes local strain and stress information under dif-

ferent loading conditions. Pit dimension, pit intensity and other relevant parameters

are also considered for the prediction.

Finite element (FE) analysis is applied to fulfill these objectives. FE analyses are

often heavily relied on for modern marine structures’ fitness-for-service analyses. FE

analysis is also a useful tool in fracture simulation. As Li and Karr [59] stated, it

is common practice to “either remove elements or to allow elements separate when

a critical stress or strain state is reached”. For example, Simonsen and Törnqvist

removed elements at the crack tip to simulate fracture propagation which occurs in

ship grounding or collision in FE analysis [103].
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As indicated by Nakai and Yamamoto, pit-corroded plates are more inclined to fail

due to strain localization than stress concentration. One failure criterion in the pit-

corroded plate study is critical strain level. The critical strain level is affected by the

pit geometry, material properties and loading conditions. As marine structures are

often modeled at larger scales than would permit modeling of fine-scale pit geometry,

model size effect on the critical strain needs to be developed. Additionally, if failure

analyses allows the critical strain level determination at a larger model scale instead

of a fine scale of corrosion pits, it will facilitate the future failure decision made in the

global sense rather than going into the local pitted area. Therefore, it is important

to determine the critical strain to failure relationship between local and global. It is

also important to determine the size effect on critical strain to failure. This chapter

addresses these two issues by using a simplified localization model (as discussed

in Section 3.1), and results are compared to nonlinear finite element analyses (as

discussed in Section 3.2). Furthermore, under biaxial loading conditions, by applying

different failure criteria, the relationship between local and global stress and strain

levels of pit-corroded plates are revealed in Section 3.3. The pit intensity effect on

the relationship is also discussed in this Section.

3.1 Imperfect Plates under Uniaxial Tension

A one-dimensional imperfect plate model under uniaxial loading condition is first

presented. This is an idealized model developed to reveal fundamental physical and

geometrical features of the necking localization [35, 60, 58, 59] and used here to study

how strain localization is affected by pit corrosion. When necking occurs, plastic flow

dominates in the localized zone resulting in the strain localization. Fracture is thus

initiated by these large plastic deformation for pitted plates. Although the imperfect

plate model discretizes the strain distribution and cannot reflect the complex geom-
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etry of pit corrosion, it does provide the quantitative analytical solutions of overall

strain-to-failure. These results are compared to those from a nonlinear finite element

analysis, which is introduced in Section 3.2. The ductile fracture initiation modeling

is a key issue in applying analytical and numerical analyses and comparing these two

methods. As a result, the background of ductile fracture initiation modeling is first

introduced.

3.1.1 Ductile Fracture Modeling

Structural steels, like many engineering materials, obey Hooke’s law reasonably

well up to an elastic limit stress, or yielding stress. Nonlinear portions of the stress-

strain curve are attributed to plastic flow in the specimen for strains beyond yielding.

Also, beyond the yielding state, most steels at room temperature exhibit strain hard-

ening, in which increasing stress is required for increasing strains. At a larger strain

level, considerable changes in geometry of the cross section cannot be neglected; this

hardening behavior gives rise to the increase of the true stress (force divided by the

current cross sectional area) gradually above the nominal stress (force divided by

the original area). Eventually the decrease in cross sectional area causes the load to

reduce.

The above described ductility can be observed in uniaxial tensile tests, in which

necking is triggered. As discovered by Considère [23], necking precedes ductile frac-

ture and eventually leads to ductile fracture. On the other hand, to explain the

ductile fracture from the material science point of view at the microscale, McClin-

tock [65] found that “ductile fracture result from the growth of initially existing

microvoids and further nucleation and coalescence of the voids and flaws accompa-

nied by plastic flow of the matrix material” [59]. One widely accepted micro model

was postulated by Gurson [37]. Gurson developed the yielding criterion for porous
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material by using hydrostatic stress. This yielding criterion reveals fundamentals of

plastic deformation for compressible porous materials [37].

As a common observation in uniaxial tension, fundamental descriptions of necking

have been captured in an idealized three-piece model: homogeneous part-inhomogeneous

part-homogeneous part. Ghosh [35] corrected the error in Hart’s analysis[41], who

first developed this model. Ghosh applied the model to a strain rate sensitivity study.

This model was used more recently by Li et al. [60]. They used this model to study

the strain localization when necking occurs and predict the strain bifurcation depen-

dency on material imperfections. She also studied the meshing size effect on fracture.

This meshing size is on the order of the characteristic size of microvoids (about 1mm

or smaller). Additional details and summaries of findings can also be found in Li [58]

and Li et. al [59, 60].

We apply the three-piece model, building upon the work material above to study

the ductile fracture initiation due to pit corrosion. The results are further compared

to the finite element analysis of a pitted plate representing, for example, sections of a

large ship hull plating. The focus of the comparison is to reveal pit corrosion effects

on ductile fracture initiation by establishing “global” and “local” strain relationships

under uniaxial tension. These analyses are also summarized in Yu et al. [122]. The

focus here is on treating corrosion imperfections as a source of changes in geometry

and material properties in the three-piece model’s imperfection zone. The three-piece

model results for analyzing corrosion defects work well and in much the same fashion

as when applied to material defects at smaller scales. Length scales addressed here are

thus about one order of magnitude larger than those used previously for microscale

material defect analyses. The details of the model are first presented in Section 3.1.2

for completeness in theory introduction as well as for comparison of finite element

42



analyses results in Section 3.2.

3.1.2 Governing Equations of Static Equilibrium

As shown in Fig. 3.1, the model is discritized by the inhomogeneous part dominant

by a center corrosion pit and the outer homogeneous parts. Stress redistribution and

shear lag effects are neglected in the idealized one dimensional model. These effects

are, however, addressed in the finite element analyses in Section 3.2. Most of the

nomenclature used here is that used by Li [58].

 

 

 

 

 

  Imperfect part 

 ,   ,  ,   

Homogeneous part 

 ,   ,   ,   

Figure 3.1: Configuration of the three-piece model

The stress-strain relations in the homogeneous and inhomogeneous regions are

assumed to follow the power law plastic constitutive law with exponent n.

σh = Khε
n
h (3.1)

σi = Kiε
n
i (3.2)

Here σh and σi are denoted the true stresses in the homogeneous and inhomogeneous

region, respectively, and εh and εi are the true (logarithmic) strains for the homo-

geneous and inhomogeneous (pitted) zones, respectively. Kh and Ki are denoted to
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quantify the difference of material properties due to the presence of the corrosion.

We define a parameter r to represent area reduction and material variation caused

by the corrosion pit

r = 1− Ai0

Ah0

Ki

Kh

(3.3)

In Eq. 3.3, Ah0 and Ai0 are the initial cross sectional areas of the homogeneous and

inhomogeneous (pitted) zones, respectively. The subscript “0” represents the initial

unloaded unstrained state. In a similar fashion, we also denote Ah and Ai as the

current cross sectional areas of the homogeneous and inhomogeneous (pitted) zone,

respectively.

With the introduction of the logarithmic strain increment dε as the change of an

element length, dL, divided by the current length, L [62], we have

dεh =
dLh

Lh

(3.4)

dεi =
dLi

Li

(3.5)

The incompressibility requirement yields:

AhdLh + LhdAh = 0 (3.6)

AidLi + LidAi = 0 (3.7)

From the axial force equilibrium, it is well known that

σhAh = σiAi (3.8)

Strains within the homogeneous and inhomogeneous zones are thus able to be related

by substituting Eq. 3.1 to 3.7 into Eq. 3.8

εn
he

−εh = (1− r)εn
i e

−εi (3.9)
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This equation is nearly the same as that derived in previous work [58] with the imper-

fection parameter r being a function of changes in both area and material constants.

Li [58] showed that by using the Lamber W function, in the form of W (z)eW (z) = z,

Eq. 3.9 can be solved. The solution of the strain in the inhomogeneous zone is thus

εi = −nW{−εh

n
e−

εh
n

1

(1− r)
1
n

} (3.10)

Although, Eq. 3.10 is of the same form as that in Li’s work [58], the physical meaning

represented by these two equations are different. The imperfection ratio in [58] is

based on the assumption that the imperfection due to the existence of microvoids or

microflaws does not change the material properties. The imperfection ratio consid-

ered here includes the material property variance due to corrosion pitting.

Many similarities regarding the models’ response will be shared as discussed in

the following. For a special case, when ε∗i = n, the maximum stress occurs for r = 0,

as discussed by Malvern [62] and Li [58]. Normalized strain relations are plotted in

Fig. 3.2 for different imperfection ratios. For r = 0, as the model is stretched, both

strains in the homogeneous and inhomogeneous part increase until when the strain

in the inhomogeneous part reaches n. Then the strain in the homogeneous part

decreases, which is related to unloading. However, the strain in the inhomogeneous

part is still increasing, which is corresponding to strain localization in the pitted

area. For larger imperfection ratios, the strain in the inhomogeneous part is getting

more sensitive to the strain change in the homogeneous part.

If we assume ε∗i = n when fracture is first initiated by necking, from Eq. 3.10, the

strain to failure in the homogeneous portion using the Lambert W function can be

found:

ε∗h = −nW [−(1− r)
1
n

e
] (3.11)
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Figure 3.2: Relationship between normalized strains in the homogeneous and inhomogeneous parts
of different imperfection ratio r

Equation 3.11 implies that the critical strain to failure (i.e. the onset of fracture

initiation) for the homogeneous zone of the material requires only the exponent, n,

and the imperfection factor, r. Results for n = 0.20 and for n = 0.12 for varying

imperfection factors, r, are shown in Figure 3.3. When effects of area reduction

and material variation due to pit corrosion is getting larger (larger values of r),

the critical fracture strain in the homogeneous zone is much lower than that in the

inhomogeneous zone (ε∗i = n).

3.1.3 Strain to Failure: Three-Piece Model

By obtaining the relationship between εh and εi, Li [58] further developed the

overall strain ε of the model by introducing a length parameter x = Li0

L0
. x represents

“the length ratio of the inhomogeneous part to the original total model” [58].

eε = (1− x)eεh + xeεi (3.12)

where εh and εi represent strains affected by pit corrosion.
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Figure 3.3: Effects of imperfection ratio, r, on the fracture strains, ε∗h, for power law plastic material
with n = 0.12 and n = 0.20

Based on Eq. 3.12, Li [58] further derived the effective strain to failure in the form

εf = ln(Ax + B) (3.13)

where

A = (eεi
∗ − eεh

∗
) (3.14)

B = eεh
∗

(3.15)

Because they are based on pure geometrical relations, Equations 3.12 and 3.13 are

valid for any three-piece model with two distinct strain levels; they are independent

of the constitutive equations of the material.

We now take a Taylor series expansion of Eq. 3.13,

εf = A1 + B1x + C1x
2 (3.16)

By expansion about x = 1,

A1 = ln(A + B)− A

A + B
− A2

2(A + B)2
(3.17)
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B1 =
A

A + B
+

A2

(A + B)2
(3.18)

C1 = − A2

2(A + B)2
(3.19)

For the particular case with n = 0.2, r = 0.015, the failure strain in the inhomo-

geneous zone is assumed to be ε∗i = 0.25. This value is used for the comparison to

the finite element analysis results later on. By applying Eq. 3.10, ε∗h = 0.123. The

polynomial expansion, Eq. 3.16, takes the form

εf = 0.123 + 0.134x− 0.007x2 (3.20)

Neglecting higher order terms,

εf = 0.123 + 0.134x (3.21)

The first term of the equation approximates, to third digit accuracy, the limiting

value ε∗h, which is obtained for x = 0, i.e. L0

Li0
= ∞.
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Figure 3.4: Effects of imperfection size on the fracture strains for n = 0.20, r = 0.015 and ε∗i = 0.25
representative of A36 steel Taylor series expansion about x = 1
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Figure 3.4 shows the exact solution and polynomial approximation for the element

size (i.e. the element size on the order of the model size) effect on the strain to failure

for this case by using Eq. 3.13 and 3.20. The exact and approximate solutions to

Eq. 3.12 are indistinguishable at the scale of the figure. For larger ratios of overall

length to imperfection length, the overall average strain to failure occurs at ε∗h as

mentioned above. The solution approaches the value of ε∗i at x = 1.

3.1.4 Summary of One-dimensional Model

An important issue arising from the use of the 1D idealized model has tradi-

tionally been the establishment of Li0. This length, in theory the length of the

inhomogeneous zone, is also associated with the length of the necking area. In fact,

there is no generally accepted means for determining Li0, unless there is an obvious

dominant area of cross section reduction in a sample. This uncertainty is due to,

at least in part, the fact that the inhomogeneous zone length cannot be considered

independently from L0, the length scale of the elements in consideration. For ex-

ample, fracture analyses in microscale are concerned with the growth of pores and

voids. The necking of material between microvoids must be considered. Thus at

the microscale, impurities and even granular structure of the material must be ac-

counted for. This level of detail, with very high levels of strain to failure, is of course

impractical for many engineering applications for marine structure analysis.

Often, however, engineering analyses of, say, ship plate, or ship structural compo-

nents are concerned with the initiation of fracture employing plane stress elements of

sizes on the order of over 10 to 100 or 200mm or more. The strain-to-failure condition

is very sensitive to the model length. The length dependency can be analyzed by

fixing the inhomogeneous zone length while changing the overall element size similar

to Li’s size effect study in smaller scale [58]. In the present study, we associate Li0
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with the diameter of the corrosion pit because the dominant pit feature significantly

influences the local stress and strain distributions. Considerable discussion of these

issues at various scales can also be found in Ghosh [35], Kanvinde and Deierlein [48],

Li [58] and Li and Karr [59].

We address the length dependency of strain to failure using finite element analyses

of a corrosion pitted plate in further detail, and compare results with the idealized

1D model, in the following section.

3.2 Finite Element Analyses of an Idealized Pit Corroded Model

Many problems of structures and materials can be studied by finite element anal-

ysis. Here, we first assume that pitted area is smaller than the FE model size. The

benefit of the study in this section is to allow the analysis in the model size level;

rather than going into the finer scale.

At the element scale, imperfections such as corrosion pits may eventually domi-

nate. In this section, the way in which the size of the imperfection and the mesh

size influence the fracture strain is studied by a methodology similar to analyses of

the previous section. The approach is however somewhat different: we model the

geometry of a plate with a representative central corrosion pit. Fracture is initiated

when a critical effective strain is first reached at the center of the pit. We study the

effects of varying the overall size of the finite element model while keeping the geom-

etry of the corrosion pit unchanged. The average, overall strain is shown to depend

on the overall length, behavior much like that described in Section 3.1. The idea is

to thereby establish mesh size effects for strain failure for elements on the order of

the overall model length defined here. In this fashion, one can avoid the necessity of

including local pit geometry in the structural analyses at the larger scale (i.e. with

elements on the order of, say, 100mm or more).
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3.2.1 Modeling

The ABAQUS [3] computer package is applied to simulate the response of a cor-

roded plate. The initial length L0 of the model varies from 50mm to 350mm; width

is W0, 50mm, and the thickness t0, 20mm. A single pit is centered in the plate.

Its shape is a semi-oblate spheroid, with the initial diameter D0 of pit area 20mm,

depth h0 3mm. The reason for selecting this initial diameter and depth stems from

some representative field measurements of ship plate corrosion pits [75]. Because of

the symmetry in both length and width directions, only a quarter of the structure is

modeled in ABAQUS, see Fig. 3.5. Therefore, the quarter model length Lm varies

from 25mm to 175mm. The model material is A36 steel. The power law defini-

tion σ = Kεn is applied for plastic deformation constitutive relations, with n = 0.2

and K = 870MPa. The yielding stress is σY = 250MPa; the Young’s modulus is

E = 200GPa and the Poisson’s ratio is ν = 0.33. The element size of 0.25mm is

applied in the center of the pitted area after performing meshing sensitivity study.

Figure 3.5 also shows the typical meshing geometry of the model.

Symmetry boundary conditions are defined at two surfaces as shown in Fig. 3.5(b).

To prevent the rigid body motion along the thickness direction, a constraint is applied

at the bottom edge, which is also shown in Fig. 3.5(b). A linear varying (with

time) displacement is applied on the free surface to stretch the plate, with a peak

end displacement for the quarter-model of 25mm. Figure 3.6 show the Von Mises

stress and effective plastic strain distribution over the plate at different time steps.

The maximum end displacement corresponds to step time equal to 1.00. Over time,

necking starts to occur in the region associated with the location of the pit. Localized

strain concentration in the pit area increases dramatically compared to the non-pit

area. In fact, this behavior is very similar to the deformation characteristics described
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Figure 3.5: Finite element model (ABAQUS, V6.7-1)

52



by the 1D idealized model, which consists of two discrete regimes rather than the

highly detailed finite element description.

3.2.2 Results and Discussion

The growth of local effective strain with the increasing of plate overall average

effective strain with Lm of 125mm is shown in Fig. 3.7. The plate overall average

effective plastic strain is approximately defined as the plate length variation over

the current plate length. The local effective strain is defined as the plastic effective

strain magnitude at the center of the pit. The definition of the plastic effective strain

magnitude is shown in Eq. 3.22.

ε̄p =

∫ √
2

3
dεp

ijdεp
ij (3.22)

For overall average effective axial strains less than 0.18, the local effective plastic

strain at the pit increases in proportion to increasing average strain. However, beyond

a level of 0.18 for the overall average strain, the local effective strain at the pit

increases very rapidly with a highly disproportionate increase in local strain relative

to the overall average strain. Also shown in the figure are results for a plate without a

pit, with the name imperfect model; in this model a very small imperfection (0.5mm)

in thickness along one transverse edge is defined in the center of the plate to trigger

localization in the same area. This imperfect model is shown in Fig. 3.8. Local strain

at two points are labelled as top point and bottom point. The local strains (the lower

two curves in the Fig. 3.7) show some nonlinear increase, but compared to that in the

pit region (the upper curve), these values are much lower. The local strain caused

by the presence of the pit is nearly twice that of an uncorroded plate when the far

field strain is about 0.22. This demonstrates the fact that the regions of a corrosion

pit is much more susceptible to ductile fracture than uncorroded plates.
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Figure 3.6: Von Mises stress ([MPa]) and effective plastic strain distribution over the plate surface
with length 100mm at different time steps
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Figure 3.8: Imperfect model for a comparison to pit corroded model; model length Lm = 125mm
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By collecting simulation results for the corroded models for various lengths, we

plot the effective plastic strain at the center of the pit versus the model length as seen

in Fig. 3.9. With an increase of model length, especially when it exceeds 100mm, a

nonlinear relation develops between the model length and effective plastic strain in

the pitted area. This regime emerges as the strain state approaches that for a model

developing a “homogeneous” area akin to ε∗h, and a second region in the pit area akin

to ε∗i of the 1D model.
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Figure 3.9: Effective plastic strain at the center of pit and at the center of necking area respectively
versus model length of plate, when overall average effective strain is 0.22

Also in Fig. 3.9 present the results of the plate with imperfection as shown in

Fig. 3.8. The corroded plate results are compared with those of the non-corroded

plate under the same applied displacement. The corrosion induces a much higher

strain localization than normal plate necking. Thus, corrosion of plates can be seen

to cause, in this case, considerably higher local strains in the area of the pit and

thus high susceptibility to ductile fracture. This is fully consistent with previous
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conclusions [75].

Figure 3.10 shows the overall average effective strain versus model length of the

corroded plate, when the localized plastic strain at the center of the pit area reaches

0.25 and 0.30, respectively. Results are compared to the results of the previous

section for a critical strain of ε∗i = 0.25. Note also the similarity in form of Fig. 3.10

and Fig. 3.4, which further confirm the application of 1D model to the study of pit-

corroded plate. Clearly the 1D model offers a meaningful qualitative and quantitative

description of the influence of element size on strain to failure predictions. In both

instances, when the pit dimension is about the same order of the plate length a

higher overall average strain is required to reach a given local strain. This strain

approaches the value of the local critical strain when the overall length is the same

as the imperfection length (pit diameter). However, in the 3D finite element model,

the strain variation from pitted area to the far field is continuous. Whereas the,

strain distribution is discrete in the three-piece, 1D model. Additionally, complex

pit geometry is able to be modeled in finite element analysis. So the 3D finite element

model is more detailed and robust than the 1D model.

3.3 Pit-Corroded Plates with Various Pit Intensities under Biaxial Load-
ing

In the previous 1D and 3D model studies, both models are based on the ap-

plication of global axial deformation with transverse displacement unconstrained.

Another consideration, particularly more important for biaxial loading, would be to

refine the strain to failure criteria [13]. This is often considered when stress states

vary significantly from the uniaxial state. Additionally, although the idealized cen-

ter pitted model is able to reveal the fundamental strain localization mechanisms,

questions will arise regarding corroded plates of various pit intensities, as previous
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Figure 3.10: Overall average effective strain versus model length, when localized effective plastic
strain reached 0.25 and 0.30

research concluded that pit intensity is an important pit geometry parameter affect-

ing corroded plate strength and deformation (the ratio of pitted surface area to the

total surface area in [75]). However, pit intensity is still only one way to describe pit

distribution. The limitation in pit intensity is that pit depth is not described, which

is also an important geometrical parameter. The pit depth effect will be included in

the reliability study of pit-corroded plate in Chapter 5.

As a logical and important extension, the modeling approaches in Section 3.2 is

extended to pit-corroded plates with various pit intensities and distributions and

under more complicated constraint conditions. Furthermore, two failure criteria are

applied to reveal the strain level at the far field varied by the corrosion pits.

The ABAQUS [3] package is again applied to simulate the response of corroded

plating. The initial length of the model L0 is 220mm, width W0 100mm, and thick-

ness t0 20mm. Individual pit geometry and material properties are the same as

58



described in Section 3.2.1. Four different pit intensities are modeled: 4 pits (two

distributions), 12 pits and 21 pits, as shown in Figure 3.11. Numbers in the figure

are the pit intensities. The following calculations are limited to the condition that

the pit depth is 3mm even though pit intensity varies. Pitted areas are intensively

meshed, with the minimum element size 1.6mm while the average element size is

2.5mm in the area away from pits. For loading conditions, instead of applying a

load, linearly varying (with time) displacements are applied on two perpendicular

free surfaces to stretch or compress the plate, with a peak end displacement for the

model of u = 33mm along the transverse direction. Along the plate width, the peak

end displacement is u′ = γu, with γ = 0, ±0.25, ±0.50, ±0.75, and ±1.00. The other

two free surfaces are subject to simply supported constraints.

            

                                 ( a ) 4 pits closely distributed                                              ( b ) 4 pits widely distributed 

                    

                      ( c ) 12 pits evenly distributed                                         ( d ) 21 pits evenly distributed       

5.7%  5.7% 

17.1%  29.9% 

Figure 3.11: Finite element models

The Von Mises stress and effective plastic strain distributions are obtained over

the plate at different time steps. The maximum end displacement corresponds to
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step time t = 1.00. Under biaxial tension, when pits are closely distributed, they

effectively behave as one defect, the Von Mises stress and the effective strain distri-

butions show three distinct regions, as presented in Fig. 3.12. In fact this behavior is

very similar to the deformation characteristics described by the 1D idealized necking

model which consisted of three discrete regimes. When pits are widely distributed,

pits in the same cross section deforms similar, as distinct regions occur as shown in

Fig. 3.13.

    

                                                                                Von Mises Stress  

    

                                                                           Effective Plastic Strain 

Figure 3.12: Von Mises stress ([MPa]) and effective plastic strain distribution in the plate with 4
pits closely distributed, γ = 1.0

In the tension-compression case, for γ = −1.0, the pit area sustains high localized

strain as shown in Fig. 3.14. For 4 closely distributed pits, pits behave together

as one origin of defect. It is more likely that the plate wrinkles at the center as

extreme high strain localization arises in this area. However, for widely distributed

ones, pits induce high strain localization around the edges of the plate. The plate

is more susceptible to wrinkle along transverse edges. This is mainly due to the

pit distribution; and the plate edge constraint is another reason. For 12- and 21-
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                                                                                Von Mises Stress   

    

                                                                         Effective Plastic Strain 

Figure 3.13: Von Mises stress ([MPa]) and effective plastic strain distribution in the plate with 4
pits widely distributed, γ = 1.0

pit plates, relatively lower strains concentrate around center pits compared to that

around center pits in the 4 closely-spaced-pit model.

The strain distribution shows a uniform trend for those two models. The strain lo-

calization is released as the increasing of pit intensity. Under these tension-compression

loading conditions, it is obvious that the strain localization due to pits is very sensi-

tive to pit intensity and pit distribution. In actual ship structures, corrosion pits are

distributed randomly, and since the strain localization due to pits is very sensitive

to pit distribution and intensity, the random array of pits is recommended for the

consideration of these structural deformation analyses.

By collecting stress and strain data from all these finite element analyses, two

failure criteria are used to reveal how corrosion pits change the far field plate defor-

mation. Here, the far field quantities is corresponding to those in the homogeneous

zone in 1D model. As effective plastic strain is uniformly distributed in the area away

from corrosion pits, the uniform strain value taken from one representative node in
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Figure 3.14: Effective plastic strain distribution in plates, γ = −1.0
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this area is regarded as the far field effective plastic strain. The two failure criteria

are local effective plastic strain and local maximum shear stress, which are studied

and discussed by Wierzbicki et al. [118]. They conducted 15 sets of experiments for

a power-law hardening material under plane stress and compared 7 fracture criteria

to experimental results. They recommended the maximum shear stress criterion as

this criterion closely follows the trend of all tests except the round bar tensile tests,

which is also computationally effective.

Regarding the first failure criterion, Fig. 3.15 presents the effective plastic strain

at the far field when the local maximum effective plastic strain reaches 0.2. Generally

speaking, far field strain values at fracture do not vary greatly among 5 cases. Pit-

corroded plates are of lower far field strain levels under tension-tension than under

tension-compression. This suggests the future study of pitted plate under biaxial

compression. Under biaxial tension, the far field strain is about 0.095 on average,

which means that corrosion pits behave as a strain amplifier increasing stain from

far field to near field. The far field strain at fracture is not affected by biaxial tension

ratio, pit intensity and pit distribution. This conclusion may benefit engineering in

the similar study. However, under tension-compression, the far field strain levels at

fracture vary mainly with γ.

Regarding to the second failure criterion, Fig. 3.16 presents the effective plastic

strain at the far field when the local maximum shear stress reaches 670MPa. This

value is picked to ensure that such amount of maximum shear stress happens in all

loading conditions for all models. The far field effective plastic strain is plotted versus

different loading conditions as shown in Fig. 3.16. In general, one center pitted plate

sustains a lower far field strain level when fracture is initiated locally. Surprisingly,

21-pit plate also yields a lower far field strain level than that of 4- and 12-pit plates.
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Figure 3.15: Effective plastic strain at far field versus γ when local effective plastic strain reaches
0.2

We postulate that this is because the 21 pitted plate represents a more uniformly

corroded plate. With less strain localization of each pit, the total strain level is

lowered. This conclusion is consistent to what Nakai and Yamamoto found in the

experiments [75]. Comparing the strain level between 1 pit and 4 closely distributed

models, the latter induce a higher value of far field effective strain. This means that

for the same pit distribution, higher pit intensity induces higher strain localization.

Comparing between 4 closely and 4 widely models, the far field strain is lower for the

4 widely distributed pitted plate under tension-compression and higher for it under

tension-tension. This shows that the pit distribution is also a factor affecting the

plate deformation.

3.4 Conclusion

We have developed a theoretical model for predicting rupture strain for power

law plastic material with corrosion pit imperfections: a 3D model based on the finite

element method. The results are compared to those of a 1D model based on a single
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Figure 3.16: Effective plastic strain at far field versus γ when local shear stress reaches 670MPa

localization zone. Similar trends of the overall average strain dependency on model

length confirm the application of 1D model on the analysis of pit-corroded plate

ductile fracture initiation. The 3D model is more capable of accurately capturing

effects of general geometric imperfections including arbitrary corrosion pit shapes.

Both models provide quantitative relationships for size effects relating overall length

to strain-to-failure. This is valuable for the element size decision in the pit-corroded

plate modeling. Both models also indicate a strong reduction in fracture elongation

in the presence of imperfections caused by corrosion pits.

The pit corroded plate fracture initiation study is also extended to plates under

different biaxial loading conditions, with different pit intensities and pit distributions.

Under two fracture failure criteria, far field effective plastic strain level is calculated

according to various loading conditions.

• Using the local maximum effective strain criterion, the far field fracture strain is

not strongly dependent on pit intensity and distribution. Under biaxial tension
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conditions, corroded plates are less susceptible to fracture; a constant strain

amplification factor is found regardless of loading ratio under biaxial loading

conditions.

• Using the local maximum shear stress criterion, higher strain localization is

revealed again in the pit corroded plate than in the uniformly corroded plate.

Pit distribution is also a factor influencing corroded plate deformation.

• Pit distribution influences plate deformation differently under biaxial tension

and under tension-compression for a given failure criterion. Therefore, to con-

firm this point, plates under other loading conditions, such as biaxial compres-

sion or even bending, are suggested for study in the future.

• As the stress distribution at the far field is not uniform, difficulties occur to

quantify the far field or global fracture stress levels under displacement control.

How pit geometries and loading conditions affect the stress distribution is a

recommended topic for future study.

The above studies address important pit corrosion degrading effects on plate de-

formation under different loading conditions. Due to the definition of pit intensity,

the above conclusions are limited to the pit depth of 3mm. The pit depth effect will

be elaborated in the reliability of pit-corroded plate in Chapter 5.

In order to develop a methodology including pit geometry, intensity and loading

condition, a detailed database is needed, which may take years and tremendous effort.

Experimental tests and finite element methods are powerful tools to assist the study.

However, to quantify the time effect in corrosion in either method requires further

study.
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CHAPTER 4

Bending Capacity of Corroded Pipelines

Oil and gas pipeline/flowline structural integrity assessment under high temper-

ature is of great importance in industry. The integrity analysis can become sig-

nificantly complex when pipes simultaneously sustain pressure, axial loading and

bending, and corrosion. The proximity of an oil field to the sea, for example, may

create soil conditions that are conducive to corrosion. Thermal expansion and the

resulting bending moments generated form the basis of a limit state that is affected

by corrosion. Assessment for pipelines subjected to corrosion has been extensively

studied, but studies have been generally focused on the containment capacity limit

state. In this chapter, detailed three dimensional finite element analyses are per-

formed for the study of bending capacity of corroded pipelines focused on geometries

typical for high pressure (> 10ksi). The results are validated by experimental test

results to reveal key points in modeling this problem as well as the secondary effects

observed in the tests.

Research and analyses on corrosion reported in the literature mainly focus on the

burst limit state for pipes. Simplified methods to account for the loss of pressure con-

tainment capacity in operation have been developed with success. The ASME/B31G

standard [8] is the most widely accepted method for pressure containment assess-
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ment. However, it is generally applicable for evaluating corroded pipes under mostly

internal pressure. On one hand, since these procedures have been successfully ap-

plied in the industry for many years for burst containment, the method has been

validated. On the other hand, the application of such existing procedures for the

pressure containment limit state to the bending capacity limit state can possibly

“give nonconservative results” [94].

To date, few studies have been performed on corroded pipeline bending capacity.

Full size experimental work was done by Roy et al. [94], Katsumasa et al. [68] and

Shinji et al. [2]. Roy et al. performed both experiments and finite element analy-

ses to investigate failure mechanisms of corroded pipes under combined loading of

internal pressure, bending moment and axial force, with the emphasis on pressure.

He addressed three primary failure mechanisms: “rupture (pressure containment),

bending collapse and axial collapse”. Bending collapse (strength) is also regarded as

a failure mode in my analyses of corroded pipe under bending moment. Katsumasa

et al. [68] and Shinji [2] et al. conducted combined loading and monotonic bending

tests, respectively, to determine the pipe structure’s collapse moment capacity. Even

though they focused on monotonic bending tests, the test pipes had very large D/t

(diameter/thickness) ratios. These dimensions (D/t ≈ 100), although common for

gas transformation, are not common for high pressure pipes used in the oil and gas

industry (D/t ≈ 20).

Based on test data and finite element analysis results, some empirical formulas

are available to account for moment capacity reduction due to corrosion. A net-

section collapse criterion [8, 38] has been employed to analyze the failure of a locally

thinned pipe under bending but in some cases it is overly conservative. Zheng et

al. [125] modified the criterion by using the corroded thickness rather than the initial
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pipe thickness. The modified criterion gave a better prediction than the net-section

collapse criterion did for relatively long defects only. Kim et al. [53, 101] proposed

the reference stress-based approach to estimate the failure strength of a pipe with

local wall thinning. The local failure strength was expressed as a function of global

limit loads. Results showed that overall and defect geometries as well as material

properties do not affect the failure strength in this method. However, this method

is “based on a thin shell approximation, and thus no distinction is made between

internal and external cracks” [52]. Additionally, the formulas are derived on the basis

of “fracture mechanics for cracks in tension” [52]. Our analyses focus on the corrosion

on external surfaces. The corroded area in our analysis is subjected to compression

because corrosion in compression yields a lower bending moment capacity, compared

to tension.

Reviews show that experimental work incorporated with finite element analy-

ses is still required for the study of pipe deformation and failure. In this chapter,

I report experimental testing program results and validate finite element analysis

results. Secondary effects in the experimental testing are also discussed. The ex-

perimental testing program was funded by Chevron Energy Technology Company,

Houston during my summer internship in the Anchor, Mooring and Riser Team. I

gratefully highly acknowledge Chevron for their generous financial support for this

experimental work and for authorizing me to include test results in this thesis.

4.1 Finite Element Analysis

The critical scenario assumed in the analyses is that the pipe is hot and depres-

surized, so that only the bending moment is considered. Corrosion is represented as

a local thin area (LTA), located at the bottom, axial center of the pipe subject to

bending to yield a conservative analysis. The LTA is in compression as it yields a
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lower bending moment capacity than that in tension. Consequently, large plastic de-

formation, the local buckling and ovalization are induced in LTA area. However, the

failure mode I am interested in is the bending capacity of the corroded pipe, which is

quantified by the maximum bending moment a pipe is able to sustain. ABAQUS [3]

is applied for modeling and simulating the quasi-static response of corroded pipelines

under bending moment.
 

θ
 

tc

Figure 4.1: θ definition

As shown in Fig. 4.1, θ is defined as one half of total circumferential span of

thickness reduction and tc is the corrosion depth. As long as the products “θ ∗ tc”

are chosen to envelop the actual corrosion dimensions, the analyses are presumed

conservative. Two models with 15◦ and 60◦ for θ are studied. These two models

are assumed to be made of X − 60 steel. The stress-strain relationship is commonly

assumed to follow the Ramberg-Osgood relationship

ε =
σ

E
+ α

σ0

E
(
σ

σ0

)n (4.1)

with Young’s modulus E = 207GPa, yielding stress σ0 = 414.8MPa, α = 1.03,

n = 0.19, ultimate stress 619.4MPa and Poisson’s ratio 0.3. The LTA depth is 50%
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of that of the pipe (tc = 5.2mm).

Table 4.1: Principal Dimensions of 15◦ and 60◦ Models in the Finite Element Analyses

θ 15◦ 60◦

Solid section outer diameter, OD[mm] 657.3

Solid section thickness, [mm] 10.4

Solid section length, LAB [mm] 10.4

LTA shape oval rectangular

LTA thickness, [mm] 10.4

LTA axial length, [mm] 228.7 224.4

Shell section meridian diameter, [mm] 208.7

Shell section length, LBC [mm] 657.3

Details of the models dimensions are shown in Table 4.1. In the table, lengths

LAB and LBC are as shown in Fig. 4.2. As seen in Fig. 4.2, the section close to the

LTA (from Point A to Point B) is modeled by solid elements and those far away from

the LTA (from Point B to Point C) are modeled by shell elements. The shell-to-solid

coupling is defined at the intersection.
 

 

A

B

C 

Figure 4.2: Finite element model

In the preliminary study step, symmetry permits the analyses of only a quarter

pipe. Symmetry boundary conditions are enforced at the center cross section, A and
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along the bottom of the upper half, A to C of Fig. 4.2. Rotational displacement is

applied at point R to create a bending moment. This is a highly nonlinear problem.

The nonlinearity exists from both large geometrical deformations and stress-strain

relations with plasticity. The shapes of the LTA, however, are different for the two

models. For the 15◦ model, the LTA is an oval with an elliptically shaped bottom;

for the 60◦ model, it is of rectangular shape, with a flat bottom as shown in Fig. 4.3.

For the 15◦ model, the elliptical bottom surface is automatically merged into the pipe

outer surface by applying the “cut sweep” modeling function available in ABAQUS

CAE. While, for the 60◦ model, the flat bottom surface and pipe outer surface are

two independent surfaces. To connect them together, smooth round corners and

rigid corners are applied. Correspondingly, the LTA is modeled separately for round

and sharp corners, presented as rigid and smooth edges in Fig. 4.4, respectively.

Figure 4.4 also shows the bending moment capacity at the center of the LTA versus

applied rotational displacement at point R (Fig. 4.2)for the 60◦ model. For these two

different LTA types of modeling, the maximum bending moments are identical. Even

though the rectangular shape with round corners modeling is a more accurate LTA

representation, for a quick engineering calculation, the modeling with rectangular

area and sharp corners gives a good estimation, with only 4.5% difference in the

predicted post-buckling bending moment.

Significant numbers of simulations are done on different element types and mesh-

ing methods for the meshing sensitivity analyses to achieve bending moment con-

vergence. As I am interested in deformation and moment sustained in the LTA,

the further away from the center of LTA the part is, the coarser the meshing is.

Figure 4.5 shows the typical meshing geometry of the two models. Both quadratic

tetrahedron and brick elements are applied for meshing. Tetrahedron elements are
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(a) LTA in oval shape 

 

(b) LTA in rectangular shape 

Figure 4.3: Two finite element models: (a) 15◦ model and (b) 60◦ degree model
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Figure 4.4: Moment-rotation results for the 60◦ model with different LTA geometry
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preferred when complex geometry does not allow the application of brick elements,

as for θ = 15◦ model.

       
 

 

        
 

(a) 10-node quadratic tetrahedron element (C3D10M) meshing for 15◦ model       
 

 

        
 

(b) 20-node quadratic brick element (C3D20R) meshing for 60◦ model

Figure 4.5: Element types for meshing: (a) quadratic tetrahedron element for the 15◦ model mesh-
ing and (b) quadratic brick element for the 60◦ model meshing

Figure 4.6 presents that moment sustained at the cross section of the center of

the LTA (section A in Fig. 4.2) versus the rotation (applied at point R in Fig. 4.2)

by applying different types of elements. The rotation is applied so that the LTA is

in compression. The number in the parentheses in the legend represents the number

of element layers through the thickness of the LTA. It is noticeable that in terms of

the moment convergence, both tetrahedron and brick elements are adaptable within

a certain range of element size. Moment values converged well for both types. The
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light blue line in the figures corresponds to bending capacity of a virgin pipe. A large

LTA decreases the buckling moment much more significantly than a small LTA does.

This is a phenomenon also found in the experimental tests.
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Figure 4.6: Meshing sensitivity analyses by element types

Comparisons are also made between linear and quadratic meshing. As shown in

Fig. 4.7, both linear fully and reduced meshing are used on the 60◦ model. Here,

“fully” means to use the number of Gaussian integration points necessary and fully
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Figure 4.7: Meshing sensitivity analyses by linear meshing and quadratic meshing in the 60◦ case

integrate the entire element for the element stiffness matrix calculation; and “re-

duced” means to reduce the integration at a representative point within the element,

such as the centroid, for the element stiffness matrix calculation. Apparently, re-

duced meshing is more efficient on computational time but also prevents excessive

stiff behavior due to locking. Results are compared to those using the quadratic

reduced meshing from Fig. 4.6. Only results of highly refined linear meshing are

comparable to those of quadratic meshing. Although sometimes linear meshing gives

a quick answer, it is not recommended for this analysis. Based on the above mesh-

ing analyses, further considering the meshing convenience, computational accuracy

and cost, 20-node quadratic brick element was chosen for the rest of the analyses,

whenever the geometry necessitates the application of brick elements.
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4.2 Experimental Testing

This section focuses on the experimental testing program introduction and discus-

sion. The testing program and the finite element analysis validation are discussed in

detail in Section 4.2.1. During the FE validation, test induced tension, the end cap

effect and internal pressure effect occurring in the test were discovered. Section 4.2.2

to 4.2.4 will discuss these effect on test results, respectively.

4.2.1 Testing Program Introduction and Finite Element Analysis Validation

In total, 10 specimens were tested for achieving plastic collapse of center corroded

sections by applying the four-point bending method. The tests were conducted in

the laboratory of Stress Engineering Services Inc., Houston, Texas. Figure 4.8(a)

presents the actual setup; corresponding to the setup, Fig. 4.8(b) also shows the

highlighted configuration. As shown in Fig. 4.8(b), the bottom I-beam provides the

foundation. Two cylinders in yellow are pistons loaded from the pressure reservoirs.

Two blue braces constrain the motion of the specimen. Six red dots represent six

strain gages attached on the specimen. Three green arrows show the positions where

the displacement transducers are placed. As shown in Table 4.2, the global geometry

and material grade are identical for all specimens. For the material properties, the

Young’s modulus is E = 207GPa and the Poisson’s ratio is ν = 0.3. The engineering

stress-strain curve is obtained from a tensile test as seen in Fig. 4.9. This curve

is converted to a true-stress-plastic-strain curve for use in ABAQUS. Pipe bending

specimens are 20 feet in length so that the end effect won’t influence the local cor-

roded area and the bending moment is constant in that area. This provided nonlinear

geometric effects are neglected(see Section 4.2.3). The local corroded area is axially

centered on the specimen. When a bending moment is applied, this area is always

in compression.
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(a)
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(b)

Figure 4.8: Experimental test program setup

Table 4.2: Geometry of specimens

Outer Diameter, OD 8.625′′(219.1mm)

Thickness, t 0.5′′(12.7mm)

Axial Length, L 20 feet (6096mm)

Grade X − 52
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Figure 4.9: Stress strain curve from tensile test

Table 4.3: Details of specimens
Testing group Specimen No. LTA area (θ) LTA depth (tc) Loading

1

1 15◦

1
2 t bending moment

2 30◦

3 60◦

4 90◦

2
5

30◦
1
4 t

bending moment
6 3

4 t

3 7 virgin bending moment

4 8 30◦ 1
2 t

bending moment and
internal pressure

5
9

45◦
pit corrosion
dc = 1

4 t bending moment

10 pit corrosion
dc = 3

4 t
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To represent different physical and mechanical phenomena, 10 specimens are di-

vided into 5 testing groups, as shown in Table 4.3. For specimen 8, the applied

internal pressure is 24.94MPa, which provides 60% of the yielding stress in the hoop

direction. To provide internal pressure, water is pumped prior to tests and held con-

stant during tests. Besides these rectangular flat-bottomed LTAs, some simulated

pitting defects were also tested, as for specimen 9 and 10. Both LTA and the simu-

lated pitting defects are machined to the specified level as shown in Fig. 4.10. The

data acquisition system records internal pressure, displacement, load, and strain.

     

 

        

Specimen 4  Specimen 3 

Specimen 6  Specimen 9 and 10

(a) Specimen 3

     

 

        

Specimen 4  Specimen 3 

Specimen 6  Specimen 9 and 10

(b) Specimen 4
     

 

        

Specimen 4  Specimen 3 

Specimen 6  Specimen 9 and 10

(c) Specimen 6

     

 

        

Specimen 4  Specimen 3 

Specimen 6  Specimen 9 and 10

(d) Specimen 9 and 10

Figure 4.10: Defect of specimens

Representative specimens after tests are shown in Fig. 4.11. Specimens with small

LTA span or small LTA depth, for example specimen 1 and 5, did not buckle. How-
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Specimen 5

Specimen 6
(a) Specimen 5

   

   

Specimen 5

Specimen 6

(b) Specimen 6

      

 

         

Specimen 2 

Specimen 4 

(c) Specimen 2      

 

         

Specimen 2 

Specimen 4 

(d) Specimen 4

Figure 4.11: Specimens after tests
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ever, with large LTA, buckling was very obvious as for specimen 3 and 4. Meanwhile,

finite element analyses were performed based on the previous meshing sensitivity

analyses. For specimen 2 and 4, the buckling shape of finite element model is con-

sistent with what was found in the experiment tests as shown in the Fig 4.11(c)

and (d).

In FE analyses, detailed specimen geometry and material properties was discussed

earlier in this section. Meshing methods has been elaborated in Section 4.1. For

boundary condition, they are defined as follows:

• At the center of the cross section which contacts the brace, displacements in

X and Y directions are constrained. Coordinations are referred to Fig. 4.8(b).

These conditions are corresponding to the constraint effects of the braces.

• At the center of the cross section which contacts the piston, rotation (about

X axis) or displacement (along Y direction) are applied to bend the specimen.

As constant bending moment as well as curvature are expected in the specimen

portion between two pistons, specimen rotation can be calculated by knowing

displacement measurements at three positions as shown by three green arrows

in Fig. 4.8(b).

• Symmetry boundary conditions are applied at the center of a specimen so that

only a half specimen is modeled.

By collecting all available test results, Fig. 4.12(a) shows the bending moment

versus the rotation of each specimen. Two test results: 7 and 10, are not presented

because of some difficulties encountered early in the testing program. These two tests

were performed without putting saddles between pistons and specimen. The direct

contact between pistons and specimen lead to the generation of local buckling at the
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(a) Experimental testing results
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(b) Experimental testing results for rotation of 0.1 radian

Figure 4.12: Experimental test results
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piston-specimen contact rather than the buckling at the LTA. As a result, data from

those tests cannot reflect the integral failure of the specimen due to corrosion. So,

these results are not included in Fig. 4.12. Specimen 8 is also not included as it is

of the same LTA geometry of specimen 2 but under different loading conditions. In

Fig. 4.12(a), the bending capacity decreases from test specimen 1 to 4. Specimen

1 to 4 are of the same LTA depth but the LTA area increases from 1 to 4. By

comparing specimens among 5, 2 and 6, the bending moment decreases with the

increase of the LTA depth for these three specimens, which have the same LTA area.

At rotation equal 0.1 radian, the corrosion effect on pipes bending moment is shown

in Fig. 4.12(b). The conclusion is obvious that larger LTA area and deeper LTA

depth lower the bending capacity of corroded pipelines.

Figure 4.13 shows the comparison between experimental test and finite element

analysis of 8 specimens (excluding specimen 7 and 10). Figures characterize the

maximum moment capacity of all 8 test results. Note that axial tension forces are

included in all FE results as discussed in Section 4.2.2. The axial tension is applied

linearly by time step in ABAQUS. Additionally, due to safety concerns during testing,

I was not able to approach specimens, nor were video apparatus available. The

following failure mode discussion is based on my observations after each test.

For specimen 1, 2θ = 30◦ and LTA depth tc = 1
2
t, as the LTA depth and area

are small, it does not fail. But the specimen does go to the plastic deformation

corresponding to the slope change of the curve. For specimen 2, 2θ = 60◦ and

tc = 1
2
t, both local buckling and ovalization occurs in the LTA area. Lüder band

deformations in the form of 45◦ shear bands is very obvious close to the LTA area.

But the specimen still shows sufficient ductility. For specimen 3 and 4, the LTA area

is large and tc = 1
2
t; local buckling and ovalization occur. Comparing Fig. 4.11(c)
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Figure 4.13: Experimental test and finite element analysis results comparison
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and (d), the center of LTA is pointing outward for specimen 2, while it is wrinkling

inward for specimen 4. I am able to conclude that pipelines with smaller LTA is more

likely to fail by cross section ovalization; and those with large LTA are more likely

to fail by local buckling. Specimen 5 and 6 are of the same LTA area but different

LTA thickness. Specimen 5 ovalizes but does not buckle; specimen 6 buckles and

ovalizes, and the LTA deforms similarly to that of specimen 2. Comparing bending

moment capacity of specimen 2, 5 and 6, corrosion depth lowers the bending capacity

as expected. For specimen 8, it will be compared to specimen 2 and discussed in

detail in Section 4.2.4. For specimen 9, it does not fail as the overall material loss

because of pit corrosion is quite small.

For one representative specimen, specimen 4, I plot the Von Mises stress at the

center of LTA versus the rotation and compare it to the bending moment curve, as

shown in Fig. 4.14. The elastic deformation is presented clearly in stress till line

A; so is in the moment-rotation curve. Starting from where line A lies, the plastic

deformation begins. The bending moment of the specimen is growing nonlinearly

with the increase of the rotation. However, the stress increases more slowly. This

is mainly due to the Lüder band deformation that occurs to about 2% strain shown

in Fig. 4.9. Material in the LTA is straining harder, during which Lüder band is

forming. Meanwhile, the cross section starts to ovalize, which decreases the section

modulus. Between line B and C, the bending moment almost keeps constant while the

Von Mises stress increases dramatically. This resulted from the onset of buckling in

the LTA, which induces very high axial compression. Further bending the specimen

beyond the line C, the sustained bending moment drops, indicating the bending

collapse of the specimen. Note that beyond line C, the stress is larger than the

maximum true stress in the stress-strain curve (Fig 4.9), which is yet unresolved.

86



0 0.02 0.04 0.06 0.08 0.1 0.120

20

40

60

80

100

120

140

160

180

200

M
om

en
t [

kN
*m

]

0 0.02 0.04 0.06 0.08 0.1 0.120

200

400

600

800

1000

1200

Rotation [rad]

Vo
n 

M
is

es
 s

tr
es

s 
at

 th
e 

ce
nt

er
 o

f L
TA

 [M
Pa

]

 

 

A B C

Figure 4.14: Moment and the corresponding Von Mises stress at center of LTA versus rotation for
specimen 4

From elastic deformation until the maximum bending moment shown in the figure,

overall good match is achieved between test results and FE results. Therefore, the

finite element analysis results are validated by experiment test results. However, for

most of tests an obvious peak moment is not seen as expected from a pure bending

test. This is mainly due to the secondary effect found in the testing program, which

are discussed in Section 4.2.2. The study of secondary effects enable me to capture

most of the test results. The comparisons are improved between test results and FE

results after this study.

4.2.2 Secondary Effects-Axial Tension

Relative to the middle, horizontal plane of the pipe, unsymmetrical strain states

were found from test data for almost all tests. As an example, for specimen 4,

shown in the Fig. 4.15, the strain history of strain gages 1, 3, 4 and 6 are presented.

Symmetrical strain distribution is found between strain gage 1 and 3, 4 and 6 but
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anti-symmetrical strain is not found between strain gage 1 and 4, or 3 and 6. The

maximum tensile strain, represented by strain gages 4 and 6 is 0.2%; in contrast, the

maximum compressive strain, by strain gages 1 and 3 is 0.164%. The strain gage

history indicates that the amount of stretching on the upper portion of the specimen

is much larger than the amount of contraction of the lower portion.
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Figure 4.15: Strain gages
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Figure 4.16: Added axial tension in the finite element analysis of specimen 4

Averaging the axial strain history of strain gages 1, 3, 4 and 6, I find that a certain

amount of tension is induced in the specimen. The maximum tensile strain value

is about 0.2%, which represents the elastic deformation or just the onset of plastic

deformation. So, Eq. 4.2 is used to approximately evaluate the axial tension induced

by the non-zero average strain.

T = AEε̄ (4.2)

where A is the cross sectional area of the specimen; E is the Young’s modulus and

ε̄ is the average strain of strain gage 1, 3, 4 and 6 when maximum strain values were

obtained, which is 0.023%. Therefore, for this specimen, a roughly estimated (upper

bound) axial tension is 388KN , which is linearly applied in FE modeling. This axial

tension should be equivalent to the extra stretching of the specimen.

In the FE analysis, this tension is applied at the origin of the cross section,

whose outer surface is contacting the hydraulic cylinder. As shown in Fig. 4.16,

comparisons were made first between test result and finite element analysis without
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including tension for specimen 4. There is a significant drop of moment capacity in

the finite element analysis results without including axial tension. Such discrepancy

is evidently reduced by adding the axial tension in the finite element analysis. The

FE results which includes the axial tension agrees with the experiment test results

much better than ones excluding the tension. The axial tension should be applied

to all tests to catch the moment capacity in experimental test. Again, the moment-

rotation curve under pure bending should have had a peak. In this experiment test,

it is because of the generated axial tension that pure bending was not achieved so

that for some test specimens, no peak moment is obtained.

This amount of axial tension is induced by specimen stretching, the friction be-

tween saddles and the specimen, the friction between braces and the specimen and

the rotation of pistons as found during the tests. To accurately include these factors

for a better representation of the experimental test, a full model is further created

in the finite element analysis. The full model includes the specimen, the brace to

constrain the specimen axial motion and the saddle to provide a distributed lifting

force as shown in Fig. 4.17(a).

The saddle is modeled as a half piece of cylinder, with the outer diameter 273.1mm,

the thickness 12.7mm and the axial length 266.7mm. As shown in Fig. 4.17(b), point

Q centered on the outer surface couples to the saddle so that rigid body motion and

rotation of the whole saddle is attached to this point [3]. A displacement in the Y

direction equal to 131mm provided from the hydraulic cylinder is also applied at

point Q to simulate a distributed lifting force. This corresponds to the maximum

displacement of the hydraulic cylinder in the test. Contact is defined between the

saddle inner surface and the pipe outer surface as shown in Fig. 4.17(c) through a

“surface-to-surface contact definition” [3], in which the tangential friction ratio is
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Figure 4.17: Full model in the finite element analysis of specimen 4

91



defined 0.3.

The brace is 579.4mm in height, 45.7mm in length along pipe axial direction,

368.3mm in diameter of the inner arc surface and 558.8mm of the outer arc surface.

Contact with the same property as saddle is also defined between the brace inner

surface and the pipe outer surface as shown in Fig. 4.17(d). Displacements in X,

Y and Z directions are constrained at the bottom of the brace. The net axial ten-

sion generated in the simulation of the full model is about 41.3KN . This value is

the real axial tension induced in the FE analysis. Compared to the elastic estima-

tion (388KN), this value is quite different. However, without modeling the contact

between the specimen and the brace, and between the specimen and the saddle, the

previously estimated axial tension (see Eq.4.2) is able to quantify all factors. Thus,

by adding the estimated value in the FE analysis, good matching to the test result

is achieved. Again, the success in modeling the actual experimental setup proves the

induced axial tension as a secondary but important effect found in the tests.

4.2.3 End Cap Effect

Roy et al. [94] discussed the end cap effect in the finite element simulation for

pipe bending under combined loading conditions. They concluded that the end cap

effect is vital for the model under combined axial loading (compression) and internal

pressure. A similar conclusion is also drawn in the study of test 8, in which the

specimen is under the combined internal pressure and bending moment. During this

test, an internal pressure of 24.94MPa was applied prior to testing by pumping in

water. This internal pressure was held constant (±0.35MPa) during the test. The

end cap was initially not modeled in the FE simulation. Instead, an equivalent force

as a result of internal pressure was applied to the cross section at the end of the

specimen. The FE bending moment capacity result is lower than the experimental
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results as shown in Fig. 4.18.
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Figure 4.18: End cap effect of test 8

 Figure 4.19: Tie constraint between the end cap and the pipe

Therefore, an end cap is modeled, with the diameter 193.675mm and the thickness

15mm. A surface-based tie constraint is applied between the end cap and the pipe

as shown in Fig. 4.19. In the figure, the surface in red is the pipe inner surface and
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that in pink is the surface of the end cap. This tie constraint can be used to “make

the translational and rotational motion as well as all other active degrees of freedom

equal for the pair of surfaces defined in constraint” [3]. Including both the end cap

and the previous discussed axial tension, the comparison between the test bending

moment capacity and the FE result is improved, as shown in Fig. 4.18. This result

indicates that even though the end cap is placed far away from the center LTA, it

still constraints the pipe’s bending somewhat. Therefore, proper end cap modeling

is recommended for similar problems in the future.

4.2.4 Internal Pressure Effect

Specimens 2 and 8 are of the same geometry but under different load conditions.

Specimen 2 is only under bending moment while specimen 8 under combined internal

pressure and bending moment. The initial estimation was made for a lower bending

moment capacity of specimen 2. As for large D/t specimens where the compressive

buckling initiates elastically, internal pressure has the potential of increasing the

moment capacity. Additionally, in the work of Kim and Park [51] on the failure

study of carbon steel pipe with wall thinning, they conducted experimental tests

on pipes with wall thinning under bending moment and internal pressure. They

reported that internal pressure increases the load and deformation capacities of such

pipes. However, our experimental test challenged our initial guess by showing a lower

bending moment for specimen 8 than for specimen 2.

Results for both specimens are presented in Fig. 4.20. The results indicate that

the more critical scenario is for a pipeline under the combined internal pressure

and bending moment. This is because when pipes deform plastically, the internal

pressure increases the hoop stress; meanwhile, the applied bending moment increases

the axial stress. Both stresses lead to a higher Von Mises stress at the center LTA.
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Therefore, a lower bending moment is sustained in a pipe under combined loading.

As a conclusion, the most critical scenario in the pipes of D/t = 17.25 and of Grade

X − 52 steel is that the pipe sustains internal pressure under high temperature.
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Figure 4.20: Internal pressure effect

4.3 Conclusion

Major conclusions from this work are summarized as follows:

• Corrosion reduces pipes bending capacity.

• Finite element studies show that for the accurate computation of bending ca-

pacity of corroded pipelines:

– quadratic elements, brick or tetrahedral are recommended,

– accurate modeling of the edge smoothness of the LTA was not important,

and

– some examples of adequate refinement are given in the chapter.
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• Properly executed, the finite element approach recommended accurately pre-

dicts the maximum moment capacity of a corroded cross section, and the buck-

led shape.

• Significant secondary effects are apparent from the experimental measurements.

Due to experimental setup, a gross tensile loading develops in the specimen that

increases the test moment. Using a full-scale FEA model with test support con-

straints included, this tensile force was duplicated. Such test set-ups thus pro-

duce both moment ana a (stabilizing) axial force. Moment capacity prediction

may thus be unconservative.

• The end cap effect is also contributed to the moment capacity. Comparisons

show that the end cap modeling is needed for pipe bending under internal pres-

sure. The best approach is to carefully include both the end cap loading and

the gross tensile load that develops due to the test setup.

• For this D/t ratio and strength (i.e. D/t = 17.25, Grade X − 52 steel), the

application of an internal pressure reduced the LTA’s bending capacity. For

large D/t specimens where the compressive buckling initiates elastically, internal

pressure has the potential of increasing the moment capacity. Future work is

proposed to investigate the internal pressure effect on corroded pipes of various

dimensions and grades.

• Further work is proposed to use the finite element models for the assessment of

bending capacity for the generation of simplified closed form formulas similar

to B31G [8].
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CHAPTER 5

Stress Concentration Factors and Reliability of Pitted Plates

In deterministic failure analyses of corroded plates, the stress or strain relationship

between load and defect needs to be established. The analyses are then performed

according to certain failure criteria. Seeger and Heuler [98] pointed out that there

are mainly three existing methods to determine a stress or strain relationship be-

tween load and defect: “analytical study, experimental tests and finite element (FE)

analysis”.

For a structure, however, the real scenario is that uncertainties are involved in the

defect geometries, material properties and loading conditions. Hence, probabilistic

analyses are needed to include these uncertainties and to achieve a consistent safety

level. In reliability based safety analysis, probabilistic analyses are of primary impor-

tance. Reliability assessments are useful and powerful to help make decisions in safety

analysis, design study and tests, repair and maintenance strategy developments.

The initial focus of this chapter is on deterministic fracture initiation based on

load-defect stress or strain relationships. The attention focuses on a stress concentra-

tion factor (SCF) study in such relationships. Then considering the randomness in

the structural geometries and loading conditions, different levels of reliability studies

are performed on the structure fracture failure which includes the stress and strain
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concentration effect due to corrosion.

Stress concentration is a common topic in the field of mechanics, which has been

given tremendous attention for decades. Stress concentration is due to localized ge-

ometrical imperfections and shape changes. For example, holes, notches, grooves, or

their combination are phenomena inducing stress concentration in structures [77].

Stress concentrations can also result from certain material properties variations.

Stress concentration study is indispensable for structure design and failure analy-

ses including both structural elastic and plastic deformations. Since the study of

stress concentration started from the second half of the 19th century [77], a great

amount of both theoretical and numerical analyses have been done.

Neuber and Hahn [77] pointed out the importance of an early systematic stress

concentration study developed by Lehr [57] in 1934. The study was improved by

Neuber, who summarized the common stress concentration calculation and finished

the famous book “Kerbspannungslehre” [78]. Neuber was the first person to establish

procedures for fundamental stress concentration calculations. Most of the theoretical

solutions available in Neuber’s book were derived with the assistance of complex

stress functions, first developed by Kolosov [55]. As early as 1909, Kolosov used this

method to obtain the stress distribution of an infinite sheet with a center elliptic

hole under tension. Another significant contribution of this method is reflected in

the obtaining of approximate solutions [77].

Results of stress concentration mentioned in the previous paragraph are only

valid under the theory of elasticity, i.e. “homogeneous, isotropic material with linear

stress-strain relationships” [77]. In plasticity, the stress concentration factor is highly

dependent on load amplitude. The factor is far more difficult to obtain, even for the

practical important case of a circular hole in an infinite plate under uniaxial tension.
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Budiansky et al. [18] for the first time related the plastic stress concentration result to

the elastic part. They [17, 18] were able to approximate the plastic stress distribution

by employing the deformation theory. They used the Ramberg-Osgood equation for

the material constitutive law. Later on, Neuber [76] introduced a “leading function”,

through which the maximum stress, nominal stress and the elastic SCF are connected

for a notched prismatic body under transverse shear. This approach leads to the

result that the product of the stress and strain concentration factors equals the

square of the elastic stress concentration factor [77]. Neuber further extended the

application of this conclusion on a notched body under arbitrary loading conditions

for any stress-strain relationship; but effective (Von Mises) stress and effective strain

must be used for the stress and strain concentration factor calculation.

These researchers’ great contributions made the derivation of some analytical solu-

tions possible. Still, there have been very few analytical solutions available compared

to the broad need of such solutions. As mentioned by Panc [85],

“As the direct determination of the stress state corresponding to the given

nominal stress is extremely complicated, it will be necessary for the solution

of every special problem to investigate some possible stress states. There-

fore the suitable arrangement of the numerical solution is of the highest

importance.”

The representative method for numerical analysis of SCF is the finite element (FE)

method. FE analysis can be used to substantiate the newly derived analytical solu-

tions. Moreover, in many cases, without available analytical solutions of SCF, finite

element method is a powerful tool for the elastic-plastic, plastic or even dynamic

analyses of stress concentration problems. Previous work, for example Sørbø and

Härkeg̊ard [1] and Härkeg̊ard and Mann [39], has shown that finite element results
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agree very well with analytical solutions, especially for shallow mild defects.

The above theoretical solutions will be mainly applied on a limited scale of com-

ponents with defects in regular shapes. For more practical problems, it is very

likely that theoretical stress concentration factors are not available. Under such cir-

cumstances, experimental methods show their powerful and indispensable abilities.

Photoelasticity is an experimental method extensively used in many types of plane

stress concentration problems [77], especially for structures under combined loading

conditions and with multiple notches or holes [33, 42, 45, 110].

As mentioned in the previous chapters, among all geometrical or material defects,

especially for ships or offshore structures, pit corrosion is inevitable and can be

critical. According to statistics of hull structure damage [79, 80], corrosion (including

pit corrosion) starts to appear often roughly at about eight years [54], and older

ships are susceptible to fracture mainly due to severe corrosion. The reduction of

hull cross sectional area due to pit corrosion may cause fractures to occur. The

study of stress concentration resulting from pit corrosion becomes significant and

indispensable in the design, testing and maintaining of ship and offshore structures.

However, compared to the available SCF formula for notches or holes, that for pit

corrosion has not been fully developed.

Eubanks [31] in 1954 first derived the analytical solution of a semi-infinite elastic

body containing a hemispherical pit under hydrostatic tension parallel to the free

surface. Yet, later on, Fujita [34] and Atsumi [9] pointed out that Eubanks overesti-

mated the SCF at the bottom of the pit. Saito et al. [95] and Tsuchida [111] analyzed

the similar half-space problem under uniaxial tension and axisymmetric pressure, re-

spectively. Fujita et al. [108] worked on the approximate analytical solution of a

thick plate corroded by a hemisphere pit under biaxial loading. Those mentioned
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hemispherical pit problems were solved with the help of stress functions. Yet the

convenience of using the stress functions were only represented for hemispherical

pits under limited loading conditions.

Reliability analysis has been widely used in structure system design, testing and

maintenance to estimate the structure failure probability. The analysis is related

to the definition of a limit state; for example a limit state can be when load ap-

plied on a structure exceed the structure’s resistance. The limit state design was

developed by the Comité Européen du Béton and the Fédération Internationale de

la Précontrainte [56]. Based on a certain failure criteria, limit state design is estab-

lished by including randomness appearing “in the loads acting on the structure or

in the strength of structural materials” [56]. Statistical methods are employed to

reveal different uncertainty levels of these random variables in the limit state design.

A limit state function is usually used to express critical load-strength (resistance) ef-

fects. Through a limit state function, structure integrity is quantified by a reliability

safety index corresponding to the probability of failure.

In general, there are two major limit states used in design: the ultimate limit

state and the serviceability limit state [19]. In the words of the researcher Burdekin,

“the ultimate limit state is when the structure actually fails and the serviceability

limit state is when the performance of the structure is impaired to an unacceptable

extent” [19]. In different fields of reliability application, the limit state can be de-

fined variously. For example, in the structural analysis of ship hulls and pipelines,

four kinds of limit states relate the failure modes: “the ultimate limit state, the

serviceability limit state, the fatigue limit state and the accidental limit state” [84].

Based on the classification system of the Joint Committee on Structural Safety [46,

47], there are three methods for structure reliability analysis and design: Level 3,
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Level 2 and Level 1. Level 3 directly uses the full probabilistic description (joint

probability density function) of all random quantities to determine the exact failure

probability for structures. Level 2 avoids using the full probabilistic description.

Instead, it applies certain iteration procedures to connect the failure probability to

a structure safety index. Level 1 can be regarded more as a design method as the

structural reliability level is determined by the use of partial safety factors. The

structure safety level is actually the result of the cumulation of partial safety factors

for structural strength and load variables [109].

Both analytical and numerical simulation methods are generally applied to the

limit state function and to solve for failure probability [12]. Analytical methods

include fully probabilistic method, the first-order and the second-order (second-

moment) reliability method (FORM and SORM). FORM and SORM are simple to

apply and do not require extremely large computational resources and time. How-

ever, as a result of certain assumptions, these methods unavoidably give only ap-

proximate results. Monte Carlo (MC) simulation method is an alternative tool for

the failure probability prediction [12]. It is a simple method for application and relies

on repeated random input to compute the corresponding output. Many researchers

describe this method as a “black box” as the method itself is actually a class of

computational algorithms [120]. The advantage of MC simulation is that it is easy

enough to be implemented into a computer program for even very large sample sizes.

Therefore, the estimated MC probabilistic descriptions are convergent to exact re-

sults. However, it is often not efficient, as the calculation itself requires a very large

number of repetitions of the same procedure of simulation.

Reliability analysis has not only been widely developed and used in civil engi-

neering, but also in the naval architecture and marine engineering, often taking
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into account corrosion effect considerations. Dunbar et al., Garbatov and Guedes

Soares [5, 105, 106] presented time variant formulations to account for the effect of

corrosion and fatigue on the reliability of ship hulls. The degrading effect of general

corrosion is reflected in the decreased thickness of the plate which in turn decreases

the moment of inertia of the ship cross section and thus induces higher stress level

for the same applied bending moments. The formulation is able to accurately assess

the degrading effects of both crack growth due to fatigue and corrosion on both in-

stantaneous and time-dependent reliability. Parunov and Guedes Soares [86] further

considered the reinforcement of initial designed members and calculated ultimate

strength failure probability of both initial designed and reinforced ship hulls. Ship

hull failure modes for sagging and hogging are considered in the limit state develop-

ment, respectively. Both sensitivity and parametric studies are performed and the

results show that the uncertainty in the ultimate strength is the most important

random variable for the reliability calculation [86].

My work targets reliability analysis of a representative pit-corroded plate, whose

nominal deformation is amplified by the presence of a center pit. The amplification

effect is induced by Neuber’s stress/strain concentration factor, which depends on

pit geometry. Section 5.1 briefly introduces the Neuber’s theory for both elastic

and inelastic material response. The analytical solution is calculated for a notched

specimen, whose geometry is related to the pitted plate. In Section 5.2, the focus

is put on the numerical study of stress concentration factor by applying the finite

element (FE) method. The FE method is verified by Neuber’s analytical solution

and further applied on the stress concentration factor estimation for a pitted plate.

In Section 5.3, different levels of reliability analyses are discussed in detail. The

iterative procedure for partial safety factor calculation is introduced. In an example
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of dented bottom shell panel in ship grounding, reliability analyses are conducted to

calculate the reliability safety index of the panel based on a strain control and partial

safety factors of two random variables which describe pit corrosion geometry and the

nominal strain level, respectively. The Neuber’s stress/strain concentration factor for

this pitted bottom plate is incorporated into the reliability study. Recommendations

for the use of partial safety factors are provided. These values will be of great interest

and of practical use for naval architects.

5.1 Neuber’s Theory: Elastic and Inelastic Material Response

For an isotropic homogeneous component, nonuniform distribution of the stress

may occur because of the geometry or material changes in the cross section. For

a specimen with area A subject to an axial force P , nonuniform stress distribution

may lead to a maximum stress, σmax, greater than the average stress, σave = P
A

[16].

As a leading researcher, Neuber first studied notch-induced stress concentration

factors in 1946. In Neuber’s elastic rule, the stress concentration factor is first defined

as

Scc =
σmax

σn

(5.1)

where σmax is the maximum stress at the root of a notch or other defect and σn is

defined as the nominal stress on the cross section at a notch or other defect. By

obtaining Scc in the elastic regime, Neuber’s inelastic rule can be further applied

to predict the maximum effective stress/strain when the plastic deformation is only

dominant around the notched area [39]. Effective stress and strain are defined in

Eq. 5.2 and 5.3.

σe =

√
3

2
σ

′
ijσ

′
ij (5.2)

εe =

√
2

3
ε
′
ijε

′
ij (5.3)
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where σ
′
ij and ε

′
ij are denoted the deviatoric stress and deviatoric strain respec-

tively [1]. The Neuber’s inelastic rule applied in uniaxial tension P is shown in

Fig. 5.1 [16]. In Fig. 5.1(a) and (c), curves CD and C
′
D

′
stand for the stress and

strain distributions, respectively. Exceeding the elastic regime, the maximum effec-

tive stress σmax can be determined in terms of stress concentration factor as

σmax = Sceσne (5.4)

where Sce represents the effective SCF in the inelastic regime to differentiate from

Scc, which describes the SCF in the elastic regime.

Figure 5.1: Neuber’s inelastic stress concentration factor (a) Stress distribution (b) Stress-strain
curve (c) Strain distribution, from “Advanced Mechanics of Materials” [16] page 599

Correspondingly, Neuber defined an effective strain concentration factor Ece by

the relation

Ece =
εmax

εne

(5.5)
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where εmax and εne denote maximum effective strain and effective nominal strain,

respectively. Note that (εne, σne) are the coordinates of point A and (εmax, σmax) of

point B in Fig. 5.1(b) [16]. Taking the advantage of uniaxial loading, effective stress

and strain values are related to axial stress and strain values, respectively. Hence,

point A and B both sit on the stress-strain curve. According to Neuber’s rule [16],

Scc, Sce and Ece are related by,

S2
cc = SceEce (5.6)

i.e.

S2
cc =

σmax

σne

εmax

εne

(5.7)

These stress concentration factors are, for the most part, conservative estimates [98].

The theory has been widely applied to notches of different geometry on plates and

cylinders to date. The beauty of the theory is to relate the stress concentration factor

from the elastic range, which is easier to obtain, to the plastic range under arbitrary

loading conditions.

In Neuber’s book [78], he also introduced formulae of analytical elastic solutions of

SCF for both deep and shallow defects under different loading conditions. Thereby,

the calculation of SCF of specimens under combined loading conditions is obtained.

As an example, a plate with a notch in the middle under uniaxial loading is studied

with t = 3mm, b = 17mm, ρ = 18.167mm and h = 100mm as shown in Fig. 5.2.

Uniform tensile load P is applied at the middle of the far end cross section as shown

in Fig. 5.2(a). This load P only stretches the plate elastically. Neuber derived the

calculated elastic stress concentration factor Scc

Scc = 1 +
(Scs − 1)(Scd − 1)√

(Scs − 1)2 + (Scd − 1)2
(5.8)

where Scs and Scd represent the elastic SCF for shallow and deep notch, respectively.
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In general, the calculated SCF requires the combination of these two SCF’s. In

Neuber’s book [78], he showed the Scs and Scd for notched specimens under different

loading conditions. Additionally, Neuber applied loads at a distance of b
2

from the

plate bottom for both Scs and Scd calculation. Therefore, to use Neuber’s formulas

on the plate under a load P as shown in Fig. 5.2(a), it is required to translate load

P from the distant t+b
2

to b
2

(as shown in Fig. 5.2(b)). Such translation requires a

statically equivalent moment M = P t
2

(as shown in Fig. 5.2(c)) added at the same

cross section. This linear combination is valid for the elastic study.

 

 

 

(a) 

(b)

(c) 

 

Figure 5.2: Applying Neuber’s theory on notched specimen under uniaxial loading

For uniaxial tension as in Fig. 5.2(b), Neuber derived Scs and Scd as

Scs = 1 + 2

√
t

ρ
(5.9)
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Scd =
η1 − 2c

1− c√
b
ρ
+1

(5.10)

where

η1 =
2( b

ρ
+ 1)

√
b
ρ

( b
ρ

+ 1)(arctan
√

b
ρ
) +

√
b
ρ

(5.11)

c =
η1 −

√
b
ρ

+ 1

4
3η2

√
b
ρ

+ 1− 1
(5.12)

η2 in c is defined as

η2 =
4 b

ρ

√
b
ρ

3[
√

b
ρ

+ ( b
ρ
− 1)(arctan

√
b
ρ
)]

(5.13)

Note that η1 represents the SCF of the double externally deep notched specimen un-

der uniaxial tension; and η2 represents the double externally deep notched specimen

under pure bending.

For t = 3mm, b = 17mm and ρ = 18.167mm, the calculated stress concentration

factor for uniaxial tension corresponding to Fig. 5.2(b) is denoted Scc,b and Scc,b =

1.1387.

For pure bending as in Fig. 5.2(c), Scs and Scd are

Scs = 1 + 2

√
t

ρ
(5.14)

Scd =
2( b

ρ
+ 1)− η1

√
b
ρ

+ 1

4
η2

( b
ρ

+ 1)− 3η1

(5.15)

where η1 and η2 are the same as defined in Eq. 5.11 and 5.13. For Fig. 5.2(c), the

calculated stress concentration factor for bending moment is found to be Scc,c =

1.3073.

Elastic deformation allows the linear combination of the above Scc for uniaxial

tension as shown in Fig. 5.2(b) and that for pure bending as shown in Fig. 5.2(c).
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The maximum stress at the notch root for uniaxial tension in Fig. 5.2(b) is

σmax,b = Scc,b ∗
P

bh
(5.16)

That for pure bending in Fig. 5.2(c) is

σmax,c = Scc,c ∗
6M

b2h
= Scc,c ∗

6Pt
2

b2h
(5.17)

The maximum stress at the notch root in Fig. 5.2(a) is thus

σmax = σmax,b + σmax,c (5.18)

and by definition, the final calculated stress concentration factor Scc for constant

load P applied at the middle of the far end cross section as shown in Fig. 5.2(a) is

Scc =
σmax

P
bh

(5.19)

For this example, the final calculated stress concentration factor is Scc = 1.831.

In the following FE analyses, the same model is studied with uniformly distributed

tension applied at the far end cross section. The resulting stress concentration factor

in FE analyses is found to be in favorable agreement with Neuber’s theory.

5.2 FE Analysis Comparison with Neuber’s Theory

As mentioned before, FE method has been widely used for the study of stress/strain

concentration of notched bodies in plane stress or plane strain. Härkeg̊ard and

Mann [39] applied the generalized Neuber’s rule in large-scale yielding (LSY) con-

dition formulated by [40] for tensile notched specimens. Härkeg̊ard and Mann used

FE method to find the notch stress and strain in LSY condition and their results

show good agreement with Neuber’s rule. Sharpe and Wang [99] modified Neuber’s

relation and applied it on notch strain prediction. Finite element analysis was pre-

formed for the calculation of elastic SCF calculation. The capacity of the modified
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Neuber’s relation is validated by comparing the formula predicted results to experi-

mental test results. These studies show the success of using FE method in stress or

strain concentration studies based on Neuber’s rule. Thereby, in this section, the FE

method is used to estimate stress concentration factors due to pit corrosion.

Before employing the FE method, the validation of this method is first carried

out. The discussion of validation includes the meshing sensitivity analyses and the

comparison to Neuber’s theory.

5.2.1 Meshing Sensitivity Analysis

First, we carried out plastic FE analyses in ABAQUS [3] and studied a plane

stress specimen, with the length 220mm, width 100mm, thickness 20mm, notch

depth 3mm and notch axial length 20mm, as shown in Fig. 5.3. These geometries

are consistent to those in the previous pitted plate analyses, except for the change

from pit to notch. The model is assumed to be made of A36 steel. The power law

definition σ = Kεn is applied for plastic deformation constitutive relations, with

n = 0.2 and K = 870MPa. The yielding stress is σY = 250MPa; the Young’s

modulus is E = 200GPa and the Poisson’s ratio is ν = 0.33. Surface tractions are

applied at both ends. Thus, the specimen is under uniaxial tension, the same as

shown in Fig. 5.2(a).

 

 

 

 

 

 

 

 

 

 

 

3mm 
20mm 

20mm 

220mm 

Figure 5.3: FE notch specimen

The initial FE analyses were conducted on a 3D model, as shown in Fig. 5.4(a).

However, the 3D model was challenged by the meshing convergence and the CPU

time, when the element size decreases from 0.8mm to 0.5mm. Therefore, the decision
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(a)  3D notch meshed model with element size 1mm 

 

(b)  2D notch meshed model with element size 0.2mm 

Figure 5.4: FE notch specimen

was made to switch to 2D model for the element size of 0.5mm, 0.2mm, 0.1mm, and

0.05mm, respectively. Such switch is based on the assumption that the plate can be

regarded as a semi-infinite notched plate. Figure 5.5 shows the meshing sensitivity

analyses results of both 3D and 2D models. The calculated stress concentration

factor reaches convergence as the element size is smaller than 0.2mm.

Roy [93] introduced a detailed procedure to “estimate the numerical errors that

occur in computational simulation”. He defined the discretization error in Eq. 5.20

as the difference between a numerical solution and the exact solution solved in the
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Figure 5.5: Meshing sensitivity analyses of both 3D and 2D models

continuum field.

DEz = fz − fexact (5.20)

where z refers to the mesh level. He applied the posteriori methods based on Richard-

son extrapolation to estimate the discretization error only after the numerical solu-

tion is computed. We, first, apply Roy’s solution verification procedure to test our

FE meshing sensitivity analyses results error.

For the meshing sensitivity analyses described above, we found three numerical

solutions (calculated stress concentration factors) on different meshing refinement

levels: on the element size of z1 = 0.05mm, z2 = 0.1mm and z3 = 0.2mm. The exact

stress concentration factor is estimated by these three numerical solutions according

to the posteriori method based on Richardson extrapolation as described by Roy [93].

For this case, a constant grid refinement factor r is obtained as

r =
z3

z2

=
z2

z1

= 2 (5.21)
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Details have been provided by Roy [93]. For this example, by defining r,

z2 = rz1 (5.22)

and

z3 = rz2 = r2z1 (5.23)

The three discretization error equations introduced by Roy [93] for a pth-order accu-

rate solution are

f1 = fexact + gpz1
p + O(z1

(p+1)) (5.24)

f2 = fexact + gp(rz1)
p + O([rz1]

(p+1)) (5.25)

f3 = fexact + gp(r
2z1)

p + O([r2z1]
(p+1)) (5.26)

Neglecting higher order terms and solving these equations for p

p =
ln(f3−f2

f2−f1
)

ln(r)
(5.27)

The estimated exact solution on the accurate order of p is

fexact = f1 +
f1 − f2

rp − 1
(5.28)

Values of fi’s are summarized in Table 5.1 for meshing sensitivity analyses re-

sults and the corresponding exact stress concentration factor is 1.879 by applying

Eq. 5.28. The difference between this estimated exact stress concentration factor

based on Roy’s procedure and the analytical solution of Neuber (1.831, as calculated

in Section 5.1) is only 2.55%. The good agreement between these two solutions shows

the reliability of the results of FE meshing sensitivity analyses. For the specimen

of the same geometry, the element size of 0.2mm is applied in the FE analyses, as

shown in Fig. 5.4(b), because its SCF is close enough to the estimated SCF value.
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Table 5.1: Meshing Sensitivity Analyses Results Verification

h1 h2 h3

Element size [mm] 0.05 0.1 0.2

f1 f2 f3

Stress concentration factor 1.879 1.875 1.859

5.2.2 The Comparison between FE Analyses and Neuber’s Theory in Plasticity

As introduced in Section 5.1, Neuber’s theory relates the SCF in the elastic range

to that in the plastic range. When a specimen deforms plastically, its effective stress

concentration factor is below the corresponding elastic SCF, while the effective strain

concentration factor exceeds the elastic counterpart. Based on the meshing sensi-

tivity study, the FE analyses results are compared to those predicted by Neuber’s

theory. Figure 5.6 presents the maximum axial stress at the notch root predicted by

Neuber’s inelastic formula and that by the FE analyses. In the maximum axial stress

calculation, the stress concentration factor Scc = 1.831 is used for both analytical

and FE calculations. Very good agreement has been achieved, which indicates the

accuracy of Neuber’s approximation. With these studies and comparisons, FE anal-

yses can be relied on for broader SCF estimation for other defect geometries whose

analytical solution is not included in Neuber’s book.

5.2.3 Elastic Stress Concentration Factor Calculation for an Semi-oblate Spheroidal
Pit-corroded Plate

After intensive literature research, no literature was found regarding the analyt-

ical elastic stress concentration factor of the specimen with a shallow semi-oblate

spheroidal pit on one side. As FE method has been tested and verified with success

in Section 5.2.2, this method is thus employed for the elastic stress concentration

factor estimation for a pitted plate.
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Figure 5.6: Maximum axial stress at the notch root predicted by analytical and FE methods

The geometries and the material properties of the pitted plate are identical to

those introduced in Section 5.2.1. The diameter of the pit is 20mm and depth is

3mm. Because of symmetry, only a quarter of the plate is modeled in ABAQUS [3].

A traction is applied at the far end and the elastic stress concentration factor is

calculated based on Neuber’s definition. Refined meshing is performed at the area

close to the center pit. Table 5.2 presents the meshing sensitivity analyses results.

Solution verification procedure (Eq 5.28) is then employed and the calculation shows

that the estimated SCF based on the meshing sensitivity study for a centered pitting

plate is fexact = 1.550. The ratio of SCF of the semi-oblate spheroidal pit in the

example above to that of a shallow notched plate of the same depth and on-surface

radius in the example in Section 5.1 is

ζ =
1.550

1.879
= 0.825 (5.29)

Thus, we find an approximate analytical solution for the elastic stress concentra-

115



tion factor for a shallow semi-oblate spheroidal pit by assuming their ratio remains

constant for arbitrary ratios of t
ρ
.

Sp = ζ ∗ (1 + 2

√
t

ρ
) (5.30)

Table 5.2: Meshing Sensitivity Analyses of pit-corroded Model

Element size [mm] 0.2 0.3 0.5

Stress concentration factor 1.542 1.538 1.530

5.3 Reliability analyses

In the following reliability analysis of ship hull damage in grounding, this SCF

will be applied to quantify the ship hull strength reduction due to pit corrosion.

5.3.1 Probabilistic Analysis with One Random Variable

In the above analyses and comparisons, the notch geometry is defined as a fixed

value. In real cases, however, notch length or depth are random variables. Therefore,

a probabilistic analysis is needed for the maximum stress/strain prediction due to

such geometrical defects.

Presumably knowing the analytical formula for the stress concentration factor,

the probabilistic analysis is able to relate the randomness of the defect geometries to

that of the stress concentration factor. We need to obtain the probabilistic properties

of the stress concentration factor to know probabilistic properties of the maximum

stress/strain, which directly leads to the fracture of structures.

Consistent with the previous denotation, ρ, the notch radius, is defined as a

random variable. We assume ρ follows the lognormal distribution. The lognormal

distribution is closely tied to normal distribution [4]. If X follows the lognormal

distribution, then log(X) follows the normal distribution. The normal distribution
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is usually denoted by N(µ, σ); the corresponding two-parameter (2-piece) lognormal

distribution is usually denoted by ∧(µ, σ). µ and σ are mean and standard deviation

of normal distributed variable, respectively. The probabilistic density function of X

having ∧(µ, σ) is

f(x) =
1√

2πσx
exp{−(log(x)− µ)2

2σ2
} (5.31)

The range of X is 0 < X < ∞.

Furthermore, as introduced in many references, for example [4, 24], a random vari-

able X which can take any value exceeding a fixed value τ , is said to be lognormally

distributed with three parameters τ , µ and σ if Y = log(X − τ) follows N(µ, σ).

This three-parameter (3-piece) lognormal distribution is denoted by ∧(τ, µ, σ). The

parameter τ is called the threshold parameter. In this case, the range of X is

τ < X < ∞ [4]. More details of three-piece lognormal distribution can be referred

to some fundamental textbooks, for example [4]. The lognormal distribution some-

times is preferable as it automatically avoids negative values of the random variable.

Additionally, when exact distribution information is not known as a priori, normal

or lognormal distributions can be assumed [12]. These are reasons we assume the

radius of curvature at notch root ρ follows the lognormal distribution.

The probability density function (pdf) of ρ is then

fρ =
1√

2πσρ
exp{−(ln(ρ)− µ)2

2σ2
} (5.32)

The previous section showed that for a shallow notch, Neuber’s prediction (Eq.5.9)

of elastic SCF is

S = 1 + 2

√
t

ρ
(5.33)

By knowing this relation between S and ρ, we derived the pdf of S as follows

fs =
1√

2πσ(s− 1)
exp{− ln[4t(s− 1)−2]− µ

2

2σ2
} (5.34)
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The fracture failure probability of a notched structure under a fixed (deterministic)

uniaxial loading thus can be determined by Eq. 5.35

Pf = P (S ∗ σ ≥ F ) = 1− P (S <
F

σ
) = 1−

∫ F
σ

0

fs(t)dt (5.35)

where, F denotes the structural fracture strength.

For example, considering the mean value for ρ is assumed 18.167mm and the

standard deviation is 5mm. This mean value is consistent to the deterministic calcu-

lation in Section 5.1 and 5.2. These probabilistic properties of ρ are defined so that

the notch geometry falls into the shallow category. Consistent with Section 5.1, the

notch depth of t = 3mm is used (see Fig. 5.2).

Matlab [64] and Minitab [67] packages were also employed to run MC simulations

for S. The distribution fitting is performed on the simulated S. The repeated number

of sampling ρ in these packages is N = 100, 000. Results show that among widely

applied distributions, generalized extreme value (GEV) and three-piece lognormal

distribution fit the simulated S the best as presented in Fig. 5.7(a). The estimated

τ for the three-piece lognormal is 0.996. Figure 5.7(b) presents the comparison

between distribution fittings and analytical derived pdf of S (Eq. 5.34). In Fig. 5.7(b),

both GEV and three-piece lognormal distribution fit the actual pdf with success.

Comparing the peak values, three-piece lognormal fits even better. This should not

be surprising as the analytical pdf formula of S is in a log form. The exciting outcome

of the comparison shows the these methods are capable to predict the undetermined

stress concentration factor induced by random structure geometrical defects.

5.3.2 Level 3 Reliability Analysis Based on Fully Probabilistic Method

The nomenclature used here is that used by Mansour [63]. Level 3 reliability

study uses the direct integration of the joint probability density function fX (pdf)

118



1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

4

S

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

 

 

MC simulation
GEV fitting
3-piece lognormal fitting

(a) Comparison between MC simulation and distribution fitting

(b) Comparison between analytical derivation and distribution fitting

Figure 5.7: Probability density function comparison between analytical derivation and distribution
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of the random variables, xi, used to define the limit state. As shown in [63], the

probability of failure is given by,

Pf =

∫
· · ·

∫
fX(x1, x2, · · ·, xn)dx1dx2 · · · dxn (5.36)

The limit state function, g(x1, x2, · · ·, xn) defines the failure state of the structure.

The unsafe region is

g(x1, x2, · · ·, xn) 6 0 (5.37)

Note that the limit state function is often a simplified mathematical expression of

the actual failure state [12]. The most widely used limit state function for engineering

application is in the load resistance format. For a notched plate under uniform

tension, the limit state function is,

F − (1 + 2

√
t

ρ
)σn = 0 (5.38)

where F is denoted the fracture strength and σn is the nominal stress at the notch

cross section. The nominal stress σn is able to be related to the stress applied at the

far end by knowing the plate geometry change.

Rewriting Eq. 5.38, we find

M = g(ρ, σn) =
F

(1 + 2
√

t
ρ
)
− σn = 0 (5.39)

Equation 5.39 presents the limit state in a convenient way as the first term is the

strength term, where the defect deterioration effect is taken into account by the stress

concentration factor term. The second term is the loading term. M is thus simply

the difference between the structural capacity and the applied load. When failure

occurs, the probability of failure is thus able to be simply described as

Pf = P [g 6 0] = P [
F

(1 + 2
√

t
ρ
)

6 σn] (5.40)
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In Eq. 5.40, two random variables are ρ as defined in Section 5.3.1 and σn. ρ con-

sistently follows lognormal distribution, i.e. ρ ∼ ∧(µ1, σ1). For ship hull structures,

Parunov and Soares [86] suggested a gaussian distribution as the stochastic model

for still water bending moment. The applied uniform tensile stress in my model is

considered as a result of such random still water bending moment. As the stress

only takes the positive value here, a lognormal distribution is thus assumed for σn,

i.e. σn ∼ ∧(µ2, σ2). As ρ and σn are assumed to be statistically independent, the

joint pdf of them equals the product of marginal pdf of each individual variable.

Therefore, the above failure probability (Eq. 5.40) is able to be evaluated for the

limit state given by Eq. 5.39, as shown in Eq. 5.41.

Pf = P [g 6 0]

= P [
F

(1 + 2
√

t
ρ
)

6 σn]

= 1− P [σn <
F

(1 + 2
√

t
ρ
)
]

=

∫ ∞

0

∫ F

(1+2
√

t
ρ )

0

fρ,σn(ρ, σn)dσndρ

=

∫ ∞

0

∫ F

(1+2
√

t
ρ )

0

fρ(ρ) ∗ fσn(σn)dσndρ

=

∫ ∞

0

1

ρ
√

2πσ1

exp−(ln(ρ)− µ1)
2

2σ1
2

[

∫ F

(1+2
√

t
ρ )

0

1

σn

√
2πσ2

exp−(ln(σn)− µ2)
2

2σ2
2

dσn]dρ

(5.41)

By substituting numbers as listed in Table 5.3 for coefficients in Eq. 5.41, the Level

3 reliability is calculated numerically using Matlab [64]. The failure probability of

the notched plate with the strength 250MPa under a random nominal stress (mean

value 75MPa and standard deviation 20MPa) is 0.0094. Based on the conventional

safety factor definition, the safety factor for this problem is SF = F

(1+2
√

t
µρ

)∗µsigman

.
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Plugging the mean value of ρ, the corresponding SCF is identical to what we found

in the deterministic study in Section 5.1: 1.831. The conventional safety factor for

this pitted plate is SF = 250
1.831∗75 = 1.82. Partial safety factor for individual random

variable based on Level 1 reliability analysis will be discussed later.

Table 5.3: Coefficients for the Level 3 Failure Probability calculation

µρ[mm] σρ[mm] µσn [MPa] σσn [MPa] F [MPa] t [mm]

18.167 5 75 20 250 3

5.3.3 Level 2 Reliability Analysis

Because of the difficulties in obtaining the joint pdf of the variables and in obtain-

ing solutions of the integrals, Level 3 reliability analysis is often not practical. Hence,

Level 2 reliability analysis is introduced. Level 2 connects the failure probability to

a reliability index, which is called a “safety index”. The approximate probability of

failure can be directly obtained if this index is determined [63].

The method used in Level 2 as well as the following Level 1 reliability analysis is

named “first-order reliability method (FORM)”. A brief introduction of this method

is presented with the safety index concept. More details of this method can be found

in Thoft-Christensen and Baker [109].

5.3.3.1 First-order reliability method (FORM)

The limit state function is defined in Eq. 5.42, which is the same as in the Level

3 reliability analysis in Section 5.3.2. We have, similar to Eq. 5.39, generally:

M = g(x1, x2, · · ·, xn) (5.42)
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Retaining only the first order terms of a Tayler series expansion of the limit state

function:

M = g(x1, x2, · · ·, xn) ' g(x∗1, x
∗
2, · · ·, x∗n) +

∑
i

(xi − x∗i )(
∂g

∂xi

)|x∗
i

(5.43)

where x∗i is the linearization point and also called a “checking point”. The function

M is thus approximately evaluated at x∗i . The point x∗i is usually the mean value.

The mean and standard deviation of M are approximated by Eq. 5.44 and 5.45

by neglecting higher order terms in Eq. 5.43, which can be referred to [63, 109]

µM ' g(x1, x2, · · ·, xn) (5.44)

σM '
√∑

i

∑
j

(
∂g

∂xi

)|xi
∗ (

∂g

∂xj

)|xj
∗ %xi,xj

∗ σxi
∗ σxj

(5.45)

where %xi,xj
is the correlation coefficient of xi and xj.

To better understand the safety index in Level 2 reliability analysis, a simple

example is first followed as discussed by [63, 109]. The limit function of the example

is simply defined as

M = S − L (5.46)

where S is the strength (resistance) of a structure and L is the applied loading. S

and L are assumed to be independent and both follow normal distribution, with the

mean µS and µL and standard deviation σS and σL, respectively. As this limit state

function itself is a first order linear function, no Tayler’s expansion is needed. The

mean and standard deviation of M is easily to be found,

µM = µS − µL (5.47)

σM =
√

σ2
S + σ2

L (5.48)

Because M also follows the normal distribution, the failure probability Pf is

Pf = P (M ≤ 0) = UM(0) (5.49)
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where UM denotes the cumulative distribution function of M . The standard form of

M can be written as T = M−µM

σM
so that T follows the standard normal distribution.

Therefore the failure probability is

Pf = P (M ≤ 0) = UM(0) = ΦT (
−µM

σM

) = ΦT (−β) (5.50)

where ΦT is the cumulative distribution function of standard normal distribution.

“β” is defined as the safety index. It is a measure of safety, which is associated to

the failure probability. β is defined as the ratio of µM to σM

β =
µM

σM

(5.51)

For the case of normal variables and linear state function, the safety index takes the

form of

β =
µM

σM

=
µS − µL√
σ2

S + σ2
L

(5.52)

In this way, the failure probability is related to β. In another words, β is associated

with the safety (or failure) margin under a limit state. In this example, β is in

an explicit expression. However, this may be not the case for other problems with

complex limit state functions, where iterative computation is needed for β.

Continuing this example, if we normalized S and L as S ′ = S−µS

σS
and L′ = L−µL

σL
,

the limit state function M = 0 can be rewritten in the normalized space as

M = σSS ′ − σLL′ + µS − µL = 0 (5.53)

which is a straight line shown in Fig. 5.8.

This straight line separates the space into two regions: a failure region (M < 0)

and a safe region (M > 0). The shortest distance D from the origin to the line is

calculated from the simple geometry.

D =
µβ

σβ

=
µS − µL√
σ2

S + σ2
L

(5.54)
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Figure 5.8: Limit state function in the space of normalized variables for a simple example, from [63]

In the figure, the distance is a measure of safety or reliability. Note that this distance

D is exactly equal to the safety index β, as shown in Eq. 5.52. So, the fundamental

geometrical interpretation of a safety index is the shortest distance from the ori-

gin to a surface, which is defined by the limit function equal to zero. Thus, the

corresponding checking point x∗i represents the most likely failure point.

The derivation of how the safety index β is related to the failure probability is

described in [63] and is

“based on the following assumptions/limitations:

• The limit state function is linearized at the mean value. Higher order

terms are neglected.

• β is dependent on how the limit state function is formulated. For

example, if the limit state function is defined as M = S2 − L3, from

Eq. 5.52, β is not the same as that for the example with M = S −

L. However, limit state definitions follow the same mechanical failure

formulation, i.e. M = strength− loading.

• All random variables follow normal distribution.”[63]
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These assumptions are easily violated. For example, for ship hull ultimate collapse

reliability analysis, the water wave bending moment follows a Weibull distribution

but not normal distribution [63]. The limit state function is a nonlinear equation

involving ship hull bending moment capacity, still water bending moment, wave

bending moment and influence factors among each other as random variables. The

safety index calculation only based on their mean values may be inaccurate as higher

order terms are neglected. Thus, the following procedure is introduced to avoid the

first two limitations.

5.3.3.2 The Hasofer/Lind Transformation

Hasofer/Lind [43] developed a procedure in which the limit state function is still

interpreted as a failure surface and the failure probability is associated with the point

on the surface and of the shortest distance to the origin.

As is commonly done, the random variables are normalized using the relations:

yi =
xi − µi

σi

(5.55)

where µi and σi are respectively the mean and the standard deviation of xi. Further

details can be found in Ang and Tang [7]. The limit state function is then transferred

from the original space to the normalized space, as defined in Eq. 5.56.

G(y∗1, y
∗
2, · · ·, y∗n) = 0 (5.56)

The variables y∗i define the point closest to the origin in the normalized space.

The safety index β is defined as the shortest distance from the origin to the

failure surface in the normalized space. The safety index and the corresponding point

coordinates y∗i are calculated by iteratively solving the following set of equations.

G(y∗1, y
∗
2, · · ·, y∗n) = 0 (5.57)
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y∗i = −α∗
i β (5.58)

α∗
i =

( ∂G
∂yi

)|y∗i√∑
i

(
∂G

∂yi

)2|y∗i

(5.59)

where α∗
i is “the direction cosines at the most likely failure point” [63]. Back to the

original space, the most likely failure point corresponding to y∗i is

x∗i = µi + σiy
∗
i = µi − σiα

∗
i β (5.60)

This procedure yields the same result as the FORM method for a linear limit state

function, see page 130 in [63] and page 110 in [66].

5.3.3.3 Non-normal Distribution

If random variables xi do not follow normal distributions as assumed in equa-

tions 5.57 to 5.59. A procedure of distribution transformation is needed.

Rachwitz and Fiesler suggested that “most of the contribution to the probability

of failure comes from the tail of the distribution” [90]. The non-normal distribution

is approximated as a normal distribution by equating the cumulative (c.d.f) and

probability density functions of the actual distribution to the normal distribution at

the linearization point x∗i . Mathematically then,

Fx(x
∗) = Φ(

x∗ − µ′

σ′
) (5.61)

fx(x
∗) =

1√
2πσ′

exp[−(x∗ − µ′)2

2σ′2
] =

1

σ′
ϕ{Φ−1[Fx(x

∗)]} (5.62)

where Φ(•) and ϕ(•) are standard normal cdf and pdf, respectively. Mansour [63]

solved equations 5.61 and 5.62 for µ′ and σ′.

σ′ =
ϕ{Φ−1[Fx(x

∗)]}
fx(x∗)

(5.63)

µ′ = x∗ − Φ−1[Fx(x
∗)]σ′ (5.64)
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This procedure can become “more inaccurate if the original distributions are in-

creasingly skewed” [10, 11]. This approximation is valid only at the most likely

failure points x∗i for determining the reliability safety index.

5.3.4 Level 1 Reliability Analysis

Level 2 reliability analysis focuses on the development of the safety index. How-

ever, in the limit state function, there are more than one random variable. Each

has different levels of uncertainties which may affect the safety index or may be af-

fected by the safety index to different degrees. These safety factors are applied to

the corresponding random variables, with the name “partial safety factors” [63].

The partial safety factor (psf) is usually applied to the corresponding basic design

value. For example, civil engineers need safety factors to apply to the yield strength

or to the loads in the design or testing process. These partial safety factors calculation

are based on Level 2 reliability analysis. Compared to Level 2, Level 1 reliability

analysis is more practical to engineers. Usually reliability engineers take the mean

value as the basic design values and thus, the limit state function may be rewritten

as

g(∆1µ1, ∆2µ2, · · ·, ∆nµn) = 0 (5.65)

where ∆i is psf. The most likely failure point is then

x∗i = ∆iµi (5.66)

Either by definition or by the transformation, original random variables are also

normalized by the mean and standard deviation as in the Level 2 reliability analysis.

By comparing Eq. 5.66 to equations 5.55 and 5.58, we are able to write

x∗i = µi − α∗
i βσi = µi(1− α∗

i βvi) (5.67)
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where vi is the coefficient of variance of x∗i . Then from Eq. 5.66 and 5.67

∆i = (1− α∗
i βvi) (5.68)

For nonlinear limit state functions, the determination of partial safety factors

and the reliability safety index needs an iterative computation by applying equa-

tions 5.57, 5.58 and 5.59. The detailed iterative procedure is described by Man-

sour [63]. The probability of failure is calculated by Eq. 5.69.

Pf = Φ(−β) (5.69)

The same example as described in Section 5.3.2 is studied here using Level 1

reliability study. The notched plate is 220mm in length, 100mm in width and 20mm

in thickness. The radius of the curvature at notch root and the nominal stress

on the cross section where the notch is are two random variables. Both of them

follow lognormal distributions. Their means and standard deviations are referred to

Table 5.3. The limit state function is defined as in Eq. 5.39. The strength of the

plate is reduced because of the notch; the nominal stress σn is able to be related to

the stress applied at the far end by knowing the plate geometry change.

The partial safety factors of ρ and σn are denoted as ∆ρ and ∆σn , respectively.

First the equivalent normal variables of both ρ and σn are found by applying the

distribution transformation as described in Section 5.3.3.3. Then the iteration com-

putation is performed on equations 5.57, 5.58 and 5.59 till convergence is achieved

between the assumed ρ∗ and σ∗n and the calculated correspondents. Iteration stops

when convergence is achieved. The threshold is 0.05 for the convergence of ρ∗ and

σ∗n. Results are shown in Table 5.4.

In Table 5.4, β is the reliability safety index. The most likely failure points ρ∗ and

σ∗n are calculated by multiplying the psf to the representative mean value. Comparing
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Table 5.4: Level 1 reliability calculation results

β Pf ρ∗ [mm] ∆ρ σ∗
n [MPa] ∆σn

2.3578 0.0092 15.1 0.83 132.1 1.76

the failure probability to Level 3 full probabilistic calculation, the difference is about

2.1%. The difference mainly lies in the distribution transformation from lognormal

to normal distribution. In this example, both safety index and partial safety factors

are calculated simultaneously. The reliability safety index is dependent on individual

partial safety factor; or in another word, partial safety factor can be viewed as discrete

safety index for each random variable. Compared to Level 3 study, the safety factor

of each individual variable is calculated. From these partial safety factors, how each

random variable effects the structure failure is indicated. It is common sense that

the plate is more likely to fail when notch is deep and the applied load is large. Then

how deep of the notch and how large of the load are shown by the corresponding

partial safety factors. If this example were a real problem, the provided partial safety

factors will benefit engineers on design or test, as the product of psf and the mean

value gives an estimation of critical design or test variables for a certain overall safety

index.

5.4 Reliability Analysis of Double-hull Oil Tanker Bottom Shell Damage
in Ship Grounding

The purpose of this example is to present an analysis of how pit corrosion affects a

bottom shell’s reliability level in large deformation in ship grounding. This example

is motivated by oil spill when tankers ground on a relatively flat seabed. Bottom

shells can be torn during ship grounding. However, depending on the penetration

depth, denting alone or denting plus fracture may be produced [70]. In the example,
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only denting is produced; but with the presence of corrosion, the maximum strain

at the pit center of the bottom shell may exceed the fracture strain even though

the nominal strain at the pit cross section is lower than the fracture strain. In this

case, fracture may not be directly caused by grounding, but the amplified strain level

due to corrosion may lead to fracture failure. As a result of the randomness of pit

geometry and the nominal strain, the reliability of such a dented shell is evaluated

based on the Level 1 calculation. Two random variables relating to plate strength

and load are defined; and the partial safety factors of of these two variables will be

calculated.

The double-hull oil tanker is considered to be a very large crude oil carrier (VLCC).

It was considered in the study of bottom structure resistance in grounding by Zhang [124].

The ship and bottom shell dimensions are presented in Table 5.5. Figure 5.9 shows

the grounding scenario. In grounding, the bottom shell is indented by seabed rock

and is under large deformation. This large deformation may be far beyond the order

of shell thickness and is comparable in size to the dimension of the struck panel.

As detailed in Chapter 2, in the sufficiently large out-of-plane deformation, it is the

membrane stress that dominates the dented bottom shell and compared to which

the bending stress is negligible. Different from the problem in Chapter 2, the shell

deformation is in the plastic regime and not restricted to the elastic regime. For such

large deformation, strain level is very critical for fracture failure. This strain level

is reduced when corrosion occurs on the bottom shell as we presented in Chapter 3.

The scenario in this example is that a corroded bottom shell panel is under large

plastic deformation under uniaxial tension induced by membrane stress in grounding.

To relate the maximum strain and the nominal strain of the bottom shell, Neuber’s
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Table 5.5: Dimensions of a double-hull oil tanker and its bottom parameters, from “Plate Tearing
and Bottom Damage in Ship Grounding” [124]

Name Data

Ship length, Lpp[m] 320.0

Breadth, B[m] 58.0

Depth, D[m] 31.25

Design draught, T [m] 22.3

Displacement, [ton] 303, 655

Design speed, [knot] 15.0

Inner bottom thickness, [mm] 19.5

Inner bottom longitudinal size, [mm] 600× 15 + 180× 25

Inner bottom spacing of longitudinales, [mm] 915

Outer bottom thickness, [mm] 23.5

Outer bottom longitudinal size, [mm] 580× 11.5 + 180× 25

Outer bottom spacing of longitudinales, [mm] 915

Double bottom height, [m] 3.0

 

Figure 5.9: Denting in ship grounding, from “Plate tearing and bottom damage in ship ground-
ing” [124]

inelastic formula is employed again,

S2
cc =

σmax

σne

εmax

εne

(5.70)

where σne and εne represent effective stress and strain on the cross section at the pit

corrosion; σmax and εmax are maximum effective stress and strain at the center of the

pit corrosion. The power law definition for material is still assumed as σ = Kεn0 .
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Substituting σmax and σne in Eq. 5.70

S2
cc =

(Kεn0
max)

(Kεn0
ne)

εmax

εne

(5.71)

For a shallow pit elastic stress concentration factor, as discussed in Section 5.2.3 it is

approximated by that of the shallow notch multiplied by a factor, which is calculated

in the FE analysis. Therefore, Scc is assumed, as per Section 5.2.3, in the form of

Sp = ζ ∗ (1 + 2

√
t

ρ
) (5.72)

In Eq. 5.72, the radius of the curvature at the pit center and the pit depth affect the

stress concentration factor.

In the analysis of corrosion on ship hull plates, it is a common practice to employ

a pit geometry parameter to describe the pit geometry. The parameter is defined as

a radius to depth ratio, i.e. r
t
. The radius is the pit radius on the top surface of the

plate. By denoting η as the pit geometry parameter and η = r
t
, Eq. 5.72 is rewritten

as

Sp = ζ ∗ (1 + 2

√
2

1 + η2
) (5.73)

Then, the maximum strain at the pit center by substituting the pit stress concentra-

tion factor is

εmax = εne[ζ(1 + 2

√
2

1 + η2
)]

2
n0+1 (5.74)

In this example, even though only denting is assumed to occur in the grounding,

the maximum strain of dented bottom panel may still exceed the fracture strain as a

result of pit corrosion. Therefore, the limit state function of this bottom shell panel

is

M = εf − εmax = εf − εne[ζ(1 + 2

√
2

1 + η2
)]

2
n0+1 (5.75)
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In Eq. 5.75, the nominal effective strain εne and the pit geometry parameter η are

random variables and assumed to follow lognormal distributions.

Nakai and Yamamoto [75] did intensive research on the effect of pit corrosion

occurring to bulk carriers and oil tanker. They measured the pit corrosion geometry

on both types of ships and found that the ratio of radius to depth is between 2 to 5.

Based on what they found, the mean value of η is 3.5 and the standard deviated is

assumed 1.0. In Section 5.2.3, the pit radius to depth is equal to 3.3, which is close

to the mean value of η. Hence, ζ = 0.825 is applied in Eq. 5.75 to approximate the

difference between pit and notch induced stress concentration.

For εne, no closely related data were found from literature regarding its value. The

Naval Surface Warfare Center (NSWC), USA, performed four large-scale grounding

tests to simulate grounding of an assembled ship bottom structure on a pinnacle rock

at a scale of 1 : 5 [104]. One test is on a conventional double-bottom model, which

corresponds to an oil tanker of about 30, 000 and 40, 000 DWT . The measured

energy absorbed during the test till the model is torn is 3.25MJ . The absorbed

energy is proportional to the deformed volume of the material, which is 0.245m3.

The average effective strain is able to be calculated by

E = σ0ε̄RT (5.76)

where E is the measured energy; RT is the deformed material volume; σ0 is the flow

stress, which is 314MPa for the test material; and ε̄ is the average effective strain

level. By Eq. 5.76, the average effective plastic strain is 0.042. This effective strain

provides an average strain level when fracture occurs in the whole deformed model

in ship grounding, which may represent a nominal strain level for plate indentation.

Hence, we assume the mean value of the nominal strain for an indented plate is 0.042.

The standard deviation of εne is 0.01, which represents a moderate variation. The
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failure strain is assumed εf = 0.2.

The pit geometry parameter η and the nominal strain are assumed statistically

independent. Level 1 reliability as described in Section 5.3.4 is conducted. The

iterative procedures are applied. Table 5.6 summarizes the reliability safety index of

this bottom shell panel, the failure probability, the most likely failure point of the

nominal strain and the pit geometry parameter and the corresponding partial safety

factors, respectively.

Table 5.6: Level 1 reliability calculation for an oil tanker dented bottom shell in ship grounding

β Pf ε∗ne ∆εne
η∗ ∆η

2.974 0.0015 0.07 1.64 1.94 0.55

From Table 5.6, the failure probability is very low, equal 0.15%. The correspond-

ing most likely failure point of εne is 0.07 and η is 1.94. The partial safety factors are

estimated by dividing the above checking points by their mean values, respectively.

The Level 3 reliability is also calculated by employing Eq. 5.41. The probability
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of failure is formulated as follows:

Pf = P{M 6 0}

= P{εf 6 εne[ζ(1 + 2

√
2

1 + η2
)]

2
n0+1}

= 1− P{0 ≤ εne ≤
εf

[ζ(1 + 2
√

2
1+η2 )]

2
n0+1

}

= 1−
∫ ∞

0

∫ εf

[ζ(1+2

√
2

1+η2 )]

2
n0+1

0

fη,εne(η, εne)dεnedη

= 1−
∫ ∞

0

∫ εf

[ζ(1+2

√
2

1+η2 )]

2
n0+1

0

fη(η) ∗ fεne(εne)dεnedη

=

∫ ∞

0

1

η
√

2πσ1

exp−(ln(η)− µ1)
2

2σ1
2

[

∫ εf

[ζ(1+2
√

2
1+η2 )]

2
n0+1

0

1

εne

√
2πσ2

exp−(ln(εne)− µ2)
2

2σ2
2

dεne]dη

(5.77)

Eq. 5.77 is numerically evaluated by the Matlab [64] application. The calculated

failure probability is 0.0015 which is in an excellent agreement with Level 1 reliability

calculation.

For the same ship hull bottom shell, under the same nominal strain, but without

corrosion, the failure probability is also evaluated by the limit state as shown in

Eq. 5.78.

M = εf − εne (5.78)

The failure probability is simply P (M ≤ 0) = P (εf ≤ εne). Calculation shows that

the failure probability is 7.43 × 10−6, extremely small. So compared to this failure

probability of a non-corroded ship hull plate, corrosion does bring in a much higher

failure probability and such plates thus needs attention in operation.

Furthermore, the Level 1 reliability study is performed on the same example with

the mean value of nominal strain εne equal to 0.084, double of the previous mean

value. The results are shown in Table 5.7. Under a higher nominal strain, the failure
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probability increases dramatically from 0.0015 to 0.1808. The partial safety factor

of εne is closer to 1, which indicates that this higher mean value of εne gets closer

to the critical value; meanwhile, the partial safety factor of η increases from 0.55 to

0.77, which means that with a relative shallow pit, the bottom shell will fail with a

high probability. However, the failure probability of non-corroded plate under the

nominal strain, whose mean value is 0.084, is 1.28 × 10−5. The failure probability

increases but not as rapidly as that of a corroded plate. This is exactly because

of the appearance of pit corrosion. These calculations again show the deteriorating

effect of pit corrosion on a plate capacity; thus, pit-corroded structure should be

given certain attention during its operation.

Table 5.7: Level 1 reliability calculation for an oil tanker dented bottom shell in ship grounding for
the mean value of εne equal to 0.084

β Pf ε∗ne ∆εne
η∗ ∆η

0.912 0.1808 0.09 1.05 2.70 0.77

5.5 Conclusion

Neuber’s elastic and inelastic stress concentration theory are applied with success

on the stress and strain concentration caused by corrosion pits on plates. Finite

element method shows its capability and accuracy to calculate the stress concentra-

tion factor for pit-corroded plates. A meshing sensitivity study is conducted to show

how sensitive this problem to meshing and also is applied to predict the exact solu-

tion based on available numerical ones. Agreement is achieved with success between

Neuber’s analytical solution and the finite element study prediction.

A new method of incorporating the stress and strain concentration factor in the

reliability study is developed for pit-corroded plate to further provide the failure
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probability under uncertain loading conditions. In this new method, the partial

safety factors of both pit geometry and the nominal stress or strain are provided for

a prediction of the possible most likely failure points.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

The corrosion effects on the ductile fracture, buckling and reliability of mem-

branes, plates and shells have been addressed. The study is divided into four main

parts: nonlinear elastic annular membrane problem; pit corrosion effect on duc-

tile fracture initiation induced by strain localized plates; bending capacity study of

corroded pipelines and pit corrosion induced stress and stress/strain concentration

reliability analyses. For these analyses, analytical derivations finite element analyses

and experimental testing programs are conducted. The corresponding failure modes:

ductile fracture and buckling are critical for corroded ship hull and offshore struc-

tures. The study of these effects highlight the structural failure mechanism variation

as a result of pit corrosion. The reliability study of corroded plates merits critical

failure prediction in structure design. Detailed conclusions are summarized in the

following:

• The nonlinear axisymmetric elastic annular membrane problem is solved for

prescribed edge loading. Vertical and horizontal displacements and radial and

circumferential stresses of the membrane are determined. Axisymmetric closed-

form solutions for membrane displacements are derived for all possible Poisson’s

ratios, some of which are not found from previous literatures.
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– Analytical solutions are provided with particular emphasis on solutions for

various values of the constant a2. Solutions show that a2 is an important

constant proportional to the membrane radial strain. Bifurcation of solu-

tions occurs for some cases in which a2 < 0. Also, the small slope assump-

tion of the Föppl theory corresponds to a certain range of the constant a2.

Under certain boundary conditions (u(ri) = u(ra) = w(ra) = 0), for Pois-

son’s ratio equal to 1
3
, zero membrane radial displacement is found. Under

these circumstances, positive a2 corresponds to positive radial displacement

and negative a2 to negative radial displacement.

– Closed-form solutions are derived for both friction and frictionless indentor

conditions. By applying various vertical displacements at the inner radius,

the center load needed is calculated for both cases for materials with dif-

ferent Poisson’s ratio. As expected, in the frictionless case, the center load

needed is smaller than that in the friction case.

– Furthermore, the comparisons are made to Schwerin’s [96] studies and

Tuan’s [112] ponding problem, respectively. Finite element analysis is

employed to simulate Tuan’s ponding problem for a comparison of mem-

brane vertical displacement and Von Mises stress. Excellent agreements are

achieved for both comparisons, which again validates the accuracy of the

derived analytical solutions.

• In the study of ductile fracture initiation on pit-corroded plates, we have devel-

oped models for predicting rupture strain for power law plastic material with

corrosion pit imperfections: a 3D model based on the finite element method.

The results are compared to those of a 1D model based on a single localization

zone. Similar trends of the overall average strain dependency on model length
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confirm the application of 1D model on the analysis of pit-corroded plate ductile

fracture initiation. Both models provide quantitative relationships for size ef-

fects relating overall length to strain-to-failure. This is valuable for the element

size decision in the pit-corroded plate modeling. Both models also indicate a

strong reduction in fracture elongation in the presence of imperfections caused

by corrosion pits. The pit corroded plate fracture initiation study is also ex-

tended to plates under different biaxial loading conditions, with different pit

intensities and pit distributions. Under two fracture failure criteria, far field ef-

fective plastic strain level is calculated according to various loading conditions.

– The 3D model is more capable of accurately capturing effects of general

geometric imperfections including arbitrary corrosion pit shapes.

– Using the local maximum effective strain criterion, the far field fracture

strain is not strongly dependent on pit intensity and distribution. Under

biaxial tension conditions, corroded plates are less susceptible to fracture;

a nearly constant strain amplification factor is found regardless of loading

ratio under biaxial loading condition.

– Using the local maximum shear stress criterion, higher strain localization is

revealed again in the pit corroded plate than in the uniform corroded plate.

Pit distribution is also a factor influencing corroded plate deformation.

– Pit distribution influences plate deformation differently under biaxial ten-

sion and under tension-compression for a given failure criterion. Therefore,

to confirm this point, plates under other loading conditions, such as biaxial

compression or even bending, are suggested to study in the future.

– As the stress distribution at the far field is not uniform, difficulties occur
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to quantify the far field or global fracture stress levels under the displace-

ment control. How pit geometries and loading conditions affect the stress

distribution is recommended in the future study.

• In the study of bending capacity of corroded pipelines, an experimental testing

program is preformed to test the corrosion effect on pipeline’s bending capacity.

Test results verify the finite element analysis results. Key issues in modeling

and analyzing this test program in FE is discussed in great detail.

– Corrosion reduces the pipes bending capacity.

– Finite element studies show that for the accurate computation of bending

capacity of corroded pipelines: quadratic brick or tetrahedral elements are

recommended; accurate modeling of the edge smoothness of the LTA was

not important; and some examples of adequate refinement are given in the

thesis. Properly executed, the finite element approach recommended accu-

rately predicts the maximum moment capacity of a corroded cross section,

and the buckled shape.

– Significant secondary effects are apparent from the experimental measure-

ments. Due to experimental setup, a gross tensile loading develops in the

specimen that affects the bending moment. Using a full-scale FEA model,

this tensile force was analyzed. Such test set-ups thus produce both mo-

ment and a (stabilizing) axial force. Moment capacity prediction may thus

be unconservative. The end cap also contributed to the moment capacity

reported from the test. The best approach is to carefully include both the

end cap loading and the gross tensile load that develops due to the test

setup.
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– For this D/t ratio and strength (i.e. D/t = 17.25, X − 52), the applica-

tion of an internal pressure reduced the LTA’s bending capacity. For large

D/t specimens where the compressive buckling initiates elastically, internal

pressure has the potential of increasing the moment capacity. This effect

merits further study.

• Neuber’s elastic and inelastic stress concentration theory are applied with suc-

cess on the stress and strain concentration caused by corrosion pits on plates.

Finite element analysis shows its capability and accuracy to calculate the stress

concentration factor for pit-corroded plates. A meshing sensitivity study is

conducted to show how sensitive this problem to meshing and also is applied

to predict the exact solution based on available numerical ones. Agreement is

achieved with success between Neuber’s analytical solution and the finite ele-

ment study prediction.

A new method of incorporating the stress and strain concentration factor in

the reliability study is developed for pit-corroded plates to further provide the

failure probability under uncertain loading conditions. In this new method, the

partial safety factors of both pit geometry and the nominal stress or strain are

provided for a prediction of the possible most likely failure points.

6.2 Future Work

Some effects of pit corrosion on representative structures mechanical failures have

been analyzed. Nevertheless, more challenges and opportunities are presenting them-

selves on this topic so that my research can be extended in the following directions:

Based on the available axisymmetrical elastic membrane closed-form solutions,

membrane instability analysis can be conducted. For a negative a2 two membrane
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deformation status are found, both resulting in compressive radial stress. From

Fig. 2.7, the membrane deformation is different between the two. Detailed studied

are suggested to seek the reasons for the existence of both status corresponding to

the same a2.

In the ductile fracture initiation of pit-corroded plate, studies address importance

of applying other combined loading conditions on the pit-corroded plate. Meanwhile,

they also show the complex and less-systematic qualities of these studies. In order

to develop a methodology including pit geometry, intensity and loading condition,

a detailed database may be needed, which may take years and tremendous effort.

Experimental tests and finite element methods are powerful tools to assist the study.

However, to quantify the time effect in corrosion in either method requires further

study.

In the study of bending capacity of corroded pipelines, further work is proposed

to investigate the internal pressure effect on corroded pipes of various dimensions

and grades. Also future work is to be done by using the finite element models for the

assessment of bending capacity for the generation of simplified closed form formulas

for corroded pipelines only under bending, which is similar to B31G for internal

pressure.

Base on the study, a time-dependent reliability analysis of the corroded struc-

ture failure is promising and capable to including additional random factors. This,

however, requires a long-time recorded, real database to quantify random factors,

especially the pit geometry variation and pit propagation time-dependency. By in-

cluding such information, predictions of failure probability and random variables’

partial safety factors will merit future structure design. An approximation is made

on the pit elastic stress concentration factor. For an accurate stress/strain concentra-
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tion prediction, efforts need to put on the analytical solution derivation; or employing

finite element method may be an alternative route.

For the exploration of some pit corrosion effects on structure failure study, the

modeling of pit corrosion is limited to an idealized representative center pit. This sim-

plification benefits the study in the initial step to reveal the fundamental mechanism

while keeping the calculation possible. However, to properly model real scenarios,

complex and real corrosion modeling and complex loading conditions need to be

considered. To include all these information may result in long, challenging work.
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