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ABSTRACT

EXPERIMENTATION METHODOLOGIES FOR EDUCATIONAL RESEARCH
WITH AN EMPHASIS ON THE TEACHING OF STATISTICS

by

Herle Marie McGowan

Co-Chairs: Brenda K. Gunderson and Vijayan N. Nair

In this thesis, I explore the state of quantitative research in the field of statistics

education. First, a content review from several prominent sources in statistics edu-

cation is conducted. Based on this review, recommendations are made for advancing

methodological research in this field.

Next, the design and analysis of a randomized experiment in an introductory

statistics course are presented. In this experiment, factorial and crossover designs

were used to explore several implementation aspects of “clickers”, a technology for

collecting and displaying, in real time, student responses to questions posed by the

instructor during class. One goal was to determine which aspects were most effective

in helping improve engagement and learning; another goal was to explore issues

involved with implementing a large-scale experiment in an educational setting. The

aspects explored were the number of questions asked, the way those questions were

incorporated into the material, and whether clicker use was required or monitored.

There was little evidence that clicker use increased engagement but some evidence

xi



that it improved learning, particularly when a low number of clicker questions were

well incorporated into the material (vs. being asked consecutively).

Finally, a strategy for exploiting interactions between design factors and noise

variables in the educational context is examined. The objectives of this strategy

are: 1) Identify a teaching method that is robust to the effects of uncontrollable

sources of variation on the outcome, or 2) Identify when a teaching method should

be customized based on a noise variable. Achieving the first objective is desirable

when there is heterogeneity in the noise variable within a class, for example, when

the noise variable represents characteristics of the students themselves. The second

objective involves using information in the interaction to proactively customize a

teaching method to particular groups, and is easiest for noise variables measured at

the instructor or classroom level.

xii



CHAPTER I

Introduction

Over the past decade, there have been many changes in the way statistics is taught,

several of which are described in the Guidelines for Assessment and Instruction in

Statistics Education (GAISE) College Report [1]. Technology, from Power Point R©

to real-time simulations, has become increasingly pervasive in our classrooms. New

learning methods, including more active learning, are now common to our pedagog-

ical approach. Even the use of non-traditional assessment, such as data analysis

projects, is becoming more popular. In addition to changes in how we teach, there

have also been changes in who we teach. Enrollments in statistics courses are grow-

ing, bringing not only more students but also a more diverse student population, with

a wide range of prior exposure to statistical content, majors, and expectations for

learning in our course, among other things. The GAISE report focuses on practical

recommendations for improving statistics instruction to help deal with such changes.

While the report encourages continued use of technology, active learning, and alter-

native assessment, it recognizes that there is room for improvement in each of these

areas. The GAISE recommendations help address what is probably the most preva-

lent challenge for the educator: How to best help students learn. Certainly this is a

great concern for educators in any field, but there is an extensive body of literature
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that discuss why this is particularly difficult in statistics—namely that patterns of

incorrect reasoning about concepts such as probability and variability abound and

are very difficult to change [e.g. 42–44, 65, 99]. (Further discussion of these issues

is not the goal of this thesis; instead the reader is referred to these references for

in-depth coverage.) In addressing the issue of how to best help students learn, other

challenges arise: What new technology or pedagogical approach should be used; how

to assess if these new approaches are helping students learn more and/or are worth

the time (and money). Well-designed research can be a powerful tool for addressing

these challenges.

The recent report Using Statistics Effectively in Mathematics Education Research

(SMER [4]) describes several goals of research and discusses the components of well-

designed research programs that would be necessary to accomplish each goal. From

this report, the goals of research are:

• Generate ideas: Identifying ideas and hypotheses to be studied.

• Frame research: Define constructs and measurement tools, consider logistics

and feasibility.

• Examine research: Design and implement initial, small-scale studies to test

hypotheses.

• Generalize research: Design and implement larger studies to confirm results in

general population.

• Extend research: Design and implementation of follow-up studies to improve

treatment or explore long-term effects.

Much of the current research in statistics education utilizes qualitative methodologies

to generate and frame research questions that address the specific challenges in
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teaching statistics (see [44]). As more sophisticated research questions are being

identified, we need to transition to the use of quantitative research methodologies

to examine particular ideas or interventions. The ability to generalize and extend

research depends not only on the actual success of the interventions, but also on

the quality of the research methodologies used to investigate them. My research

assesses the feasibility and effectiveness of applying quantitative methodologies in an

educational setting to gain a better understanding of how to advance to the latter

research goals stated in the SMER report.

In this thesis, I explore the state of quantitative research in the field of statistics

education and make recommendations for advancing this field. In Chapter II, findings

from a content review of relevant publications form several prominent sources in the

field of statistics education are presented. Based on this review, recommendations

are made for advancing methodological research in this field.

In Chapter III, findings from a randomized experiment in an introductory statis-

tics course are presented. In this experiment, factorial and crossover designs were

used to explore several implementation aspects of “clickers”, a technology for col-

lecting and displaying, in real time, student responses to questions posed by the

instructor during class. One goal was to determine which aspects were most effec-

tive in helping improve engagement and learning; another goal was to explore issues

involved with implementing a large-scale designed experiment in an educational set-

ting. Finally, in Chapter IV, a strategy for exploiting interactions between design

factors and noise variables in the educational context is examined. The objectives

of this strategy are: 1) Identify a teaching method that is robust to the effects of

uncontrollable sources of variation on the outcome, or 2) Identify when a teaching

method should be customized based on a noise variable.



CHAPTER II

Critical Review of Research Methodology in Statistics
Education

2.1 Introduction

Reviews of educational research in general, and statistics specifically, have been

conducted before. Garfield and Ben-Zvi [44] focused on statistics education by re-

viewing research from diverse sources and fields such as psychology, mathematics

education, and science education, looking primarily at the research question being

asked. In contrast, others have conducted complete content reviews of research pub-

lished in specific educational journals, such as the American Education Research

Journal, the Journal of Educational Psychology, or Research in Higher Education

[e.g. 36, 47, 48, 56, 63]. Many of these simply cataloged the analytic procedures

used, recording the type and frequency of each procedure in order to gauge the level

of statistical training an educational researcher would need to understand and eval-

uate the results of the published research. Exceptions to this include Hutchinson

and Lovell [56], who cataloged aspects of study design and reporting in addition to

analysis, and Kieffer, Reese and Thompson [63], who went beyond reporting a simple

tally and examined if analysis and reporting in the reviewed studies were consistent

with recommendations made by the Task Force on Statistical Inference [113]. This

current review differs from these previous reviews in two important ways. First, all

4
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aspects of the methodological process are considered: The research question being

investigated, the choices in study design, outcome considered, and analysis, and the

issues in reporting of this process. Second, implications for conducting quantitative

research in educational settings are discussed.

The goals of this chapter, therefore, are two-fold: 1) Examine current method-

ological practice in the field of statistics education by conducting a content review

of prominent sources of research in this field and, 2) using this content review as a

basis, discuss the challenges of conducting research in educational settings. Areas

where further methodological research is needed to address these challenges are pos-

tulated throughout the discussion. This discussion has wider relevance to educational

interventions conducted in disciplines other than statistics.

2.2 Methods

Three sources were considered for this review: the Statistics Education Research

Journal (SERJ), the Journal of Statistics Education (JSE), and the Proceedings of

the International Conference on Teaching Statistics (ICOTS). JSE and the proceed-

ings of ICOTS were reviewed over the ten-year period from 1998 to 2007. SERJ was

reviewed from the publication of its first volume in 2002 until 2007. These sources

were selected because they pertain exclusively to statistics education and are promi-

nent within this field. From these sources, individual studies were selected for review

if they met two criteria:

1. There had to be at least one quantitative outcome considered. Studies that used

both quantitative and qualitative methods were included in this review, but the

qualitative methods were not reviewed in detail. Studies that exclusively used

qualitative data collection and analysis techniques were not included.
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2. There had to be inference about the success of an educational intervention.

For the purposes of this review, an educational intervention is defined as an

active change in curriculum, pedagogical approach, or use of technology in the

classroom that is compared to some baseline or standard method of teaching.

Studies could consider either paired comparisons (pre vs. post), or comparisons

of two or more independent groups; they could consider just one change in

standard practice (simple interventions; e.g. having students work in groups)

or multiple simultaneous changes (complex interventions; e.g. group work and

use of computer applets). Studies that were only descriptive or correlational

in nature (for example, a study seeking to identify predictors of success in a

course) were not included.

Papers that were not empirical (e.g. theoretical, expository, or editorial pieces) were

excluded. From JSE, the “Teaching Bits” and “Datasets and Stories” sections were

excluded from this review, as were the posters presented at ICOTS. These choices

help maintain focus on the types of studies that could be used to examine, generalize,

or extend a research question.

Thirty-two studies—six from SERJ, five from JSE, and twenty-one from the pro-

ceedings of ICOTS—met the criteria of being a quantitative educational intervention.

For each study, the following characteristics were recorded (with the categories con-

sidered, where applicable):

• Student level (Elementary or Middle School; High School; Undergrad; Post-

undergrad)

• Question asked (Use of technology; Non-technological new pedagogical approach;

Other)

• Outcome (Attitudinal—Validated; Attitudinal—Not validated; Learning—Validated;
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Learning—Not validated)

• Design (Randomized control trial; Paired (pre vs. post) design; Crossover (2

or more conditions); Observational—Case/Control; Observational—Matched;

Other)

• Sample Size(s)

• Length of study (Less than full term; Full term; More than full term—Where

“term” refers to the normal academic period for the student level/institution

considered)

• Analytic technique(s) used (After observing which techniques had been used,

this variable was categorized into: Analysis of variance; Regression; t-procedures

for means; Other)

• Tool(s) used to deal with variation, including:

– Blocking (whether is was used and, if so, what the specific blocking factors

were)

– Covariate adjustment (whether it was used and, if so, what the specific

covariates were)

– Random effects (whether they were used and, if so, what the specific effects

were)

• Quality of reporting, including:

– Which statistics were reported

– If course or lecture descriptions were included

– If baseline equivalence was addressed

– If study attrition was addressed
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For the categorized characteristics, Table 2.2 lists the number of studies reviewed

that fell into each category.

Table 2.1: Summary of Research Study Characteristics for the 32 Educational Interventions Reviewed
Characteristic Categories (# of Studies in Each Category)
Student level Elementary or Middle School (7)

High School (1)
Undergrad (21)
Post-undergrad (3)

Question asked Use of technology (21)
New pedagogical approach (9)
Other (2)

Outcome Attitudinal—Validated (7)
Attitudinal—Not validated (2)
Learning—Validated (0)
Learning—Not validated (30)

Design Randomized control trial (7)
Paired: pre vs. post design (5)
Crossover: 2 or more conditions (1)
Observational - Case/Control (17)
Observational - Matched (0)
Other / Design not clear (2)

Length of study Less than full term (11)
Full term (19)
More than full term (2)

Analytic technique Analysis of variance (8)
Regression (4)
t-procedures for means (10)
Other (8)

Tools to deal with variation Blocking (16)
Covariate adjustment (11)
Random effects (8)

2.3 Findings

Findings from this content review are summarized and presented in six broad

categories: Research questions, outcomes considered, design, analysis, tools to deal

with variation, and issues in reporting. The appendix at the end of this chapter lists

the papers reviewed. It is appropriate to mention here that specific examples are

sometimes provided within each of the six categories considered, but the detailed

findings of the reviewed studies are not discussed as to allow the focus to be on the

research methodology.
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2.3.1 Types of research questions asked

A review of the literature shows that use of technology is the hottest topic in

research. With continual advancements in capability and decreases in cost, it is no

wonder that educators are turning to technology in an effort to enhance teaching and

learning. As the GAISE report notes, “technology has changed the way statisticians

work and should change what and how we teach” [1, p. 12]. Research on technology

has focused on using it to change how we teach. Several studies investigated changes

in delivery systems for course content, either within the traditional classroom setting

(for example, through use of video [e.g. 11]), or to replace the classroom entirely with

online courses [e.g. 35]. Technology has been used to aid student understanding by

illustrating difficult concepts (for example, using computer applets [e.g. 5]) or by

reducing the need for hand calculation.

Most of studies reviewed asked the question: “Is this technology better than the

standard way of teaching?” An important follow-up question should have been:

“Why is this new technology better?” Technology is rapidly changing—new forms

are always being developed and current forms are continually advancing in features

and capabilities. For instructors, there are often large start-up costs to incorporating

a technological advance into the classroom—with respect to both the financial invest-

ment in physical resources and the investment of time to learn a new technology or

develop new classroom activities and assessments. Knowing that some form of tech-

nology improves student learning is of limited use once that technology is obsolete.

We need to utilize methods that allow us determine the “active ingredient”—what

particular aspect(s) of that technology is helping students learn—in order to recre-

ate its success in future innovations. Clearly this would also be beneficial when

considering educational interventions of a non-technological nature. Methods such
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as multifactor designs, which allow simultaneous investigation of several factors of

interest, may be useful in distinguishing active components from inactive ones. How-

ever, they are rarely used in educational research (see Section 2.3.3).

Interestingly, no studies looked at technology to change what we teach. Cobb

[3] has argued that wide-spread use of distribution-based tests—for example, the

t-test—in the introductory statistics curriculum is a hold-over from the days of poor

computing power. He advocates that randomization-based permutations tests—

which he believes are more intuitive—could now be taught since computer power

is no longer a concern. However, Kaplan [60] noted that current students may not

have sufficient background in programming to implement these tests. Cobb’s sug-

gestion and Kaplan’s concern could easily be transformed into research questions

for future study—testing what effect the use of randomization tests has on student

understanding, or exploring what computational skills/training students would need

to successfully implement them.

Studies that did not focus on technology considered a diverse range of pedagogical

practices. Several looked at active learning techniques (such as working in groups

[e.g. 45]). Several explored the benefit of using particular approaches to develop

statistical reasoning (for example, using concept maps [e.g. 17]). Interestingly, only

one study investigated the effects of teacher training on student learning [61] and

only one explored changes to curriculum [112]; perhaps this is reflective of a general

lack of focus on statistics in primary and secondary school.

One point to be noted is that the changes studied were generally incremental

rather than radical (e.g. adding or changing one component of a course, not re-

structuring the course or content completely; an exception to this would be studies

of online learning). Small changes may be more practical to implement. Also, rad-
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ical changes to a course may not be ethical for students’ learning. However, if in-

cremental changes in pedagogy are associated with incremental changes in “signal,”

learning or attitudinal effects may be difficult to detect. This is especially problem-

atic given the numerous noise factors—related to student, instructor, or institution

characteristics—that are present in educational data, and power that is restricted

by classroom sample sizes. Large-scale, multifactor experiments could be used to

test several treatments of interest without sacrificing power. Such designs are not

without practical and ethical concerns, however; see Section 2.3.3 for a discussion

on the use of multifactor designs in educational settings. And while many analytic

techniques exist for reducing measured variation, a fundamental difficulty in educa-

tional research is that many important sources of variation are latent and cannot be

measured directly (for example, student motivation to learn). The same is true for

many of the outcome variables considered in educational research. Issues pertaining

to measurement of latent variables involve a large body of research in and of them-

selves, spanning many disciplines. Educational researchers need to participate in this

research by systematically identifying potentially important sources of variation that

arise in educational settings and working to develop accurate measures of them.

2.3.2 Outcomes considered

Learning Outcomes

Nearly every reviewed study measured considered student learning as the pri-

mary outcome. Without exception, learning outcomes were measured using a non-

validated measure, such as a course exam or activity. Use of course exams as an

outcome is easy to implement and should result in “high quality” data (since all

students have a vested interest in taking and trying their best on a course exam).
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Unfortunately, reliance on course grades is problematic for several reasons. Courses

differ with respect to topics covered, emphasis placed on each topic, and exam struc-

ture. An exam in one course may measure students’ ability to reason statistically

while an exam in another course may measure students’ computational prowess. It

follows that similar scores on different exams may reflect different levels of under-

standing. Also, to see if the results from one study are reproducible, researchers

need to repeat the design, implementation, and assessment used as closely as possi-

ble. This cannot be done if the precise assessment instrument is not available.

Instead of course exams, researchers should use common, reliable and valid mea-

sures of student understanding. One newly published journal, Technology Innova-

tions in Statistics Education, even states that papers using quantitative assessments

should provide evidence of reliability and validity, and that “Student performance on

a final exam or end of course grade would not generally pass these tests” (see http:

//repositories.cdlib.org/uclastat/cts/tise/aimsandscope.html). The As-

sessment Resource Tools for Statistical Thinking project (ARTIST; https://app.

gen.umn.edu/artist/) has developed several instruments with demonstrated relia-

bility and validity, including topic-specific scales and the Comprehensive Assessment

of Outcomes for a first Statistics course (CAOS [31]), which could be used to mea-

sure students’ conceptual understanding. However, widespread adoption of these

instruments seems slow in coming—none of the studies reviewed here used them.

These multiple-choice assessments do not involve any mathematical calculation, so

it may be that educators do not want to use them in place of traditional course

exams (which often do involve some calculations). An alternative is to use these

assessments in addition to the standard final exam, but clearly this could lead to

problems with lower student response rates or reduced data quality if many students
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do not take these assessments seriously. As an illustration of this, evidence of exten-

sive guessing by students was found by researchers using an assessment that did not

count towards students’ course grades [83]. Perhaps a good compromise would be to

include topic scale or CAOS questions as part of a course exam while also including

problem solving involving calculation. Of course, care would need to be taken to

ensure that such an exam is not too long.

There is an additional point of discussion here—namely that any assessment in-

strument is measuring student performance, perhaps more so than student learning.

There are two issues with this: 1) Students may recreate or identify a correct an-

swer without understanding why it is correct, and 2) students come into a course

with varying levels of conceptual understanding, which affects our ability to detect

learning that occurred during the course.

The first issue is difficult to deal with. Certainly course exams that focus on

procedures will suffer greatly from this problem. An exam that focuses on the appli-

cation and extension of concepts will be provide a more accurate measure of actual

learning, but the format in which such an exam is presented may affect its ability

to do so. For example, even a well-constructed multiple choice question (i.e. where

each alternative represents a plausible answer) does not allow students to demon-

strate their thought process and skilled test takers may be able to identify correct

answers without understanding why they are correct. Questions that allow for an

open-ended or essay-type response are the best format to allow students to demon-

strate their understanding, but would be difficult to implement in large classes. Such

an instrument would also be difficult to grade consistently, both within a class and

across the range of classrooms that use it for research assessment. The college AP-

Statistics course exam includes a section for open-response, but grading this exam
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is highly centralized and coordinated. Surely a set of validated open-response ques-

tions could be developed for use in statistics education research, but could such an

exam be graded consistently across the various researchers who will use it? Also,

students might be able to better recall (and circulate among their peers) a few essay

questions (as opposed to the 40-multiple choice questions that comprise the CAOS

exam), weakening the measure the longer it is used. Perhaps a compromise would be

a series of short answer questions, which allow for free response but might be easier to

score consistently. Future work could explore the feasibility of creating open-ended

assessments that would be widely useful as research instruments.

The second issue is more mathematical in nature, and perhaps more concrete to

deal with. We want to measure what students have learned above and beyond the

knowledge they came into a course with. The use of difference scores [Ypost − Ypre]

has been proposed as a solution to measure gains in knowledge, but are not without

their problems. Consider, for example, those students with extremely high scores

on a pretest. These students have little room for improvement and their scores will

likely change on the posttest—even in the absence of any intervention—simply as a

result of regression to the mean. Gain scores [(Ypost− Ypre)/(max score− Ypre)] have

been used in physics education to address this issue, but the use of both difference

scores and gain scores remains controversial [see, for example 79, 80, 114]. An alter-

native solution to transforming the analyzed response could be to simply subset the

sample data based on pretreatment scores. There are statistical trade-offs with this

approach: Students with either extremely high or low scores are adding noise to the

data so precision could be gained by removing their data from analysis, but this of

course lowers the effective sample size and decreases power. Future research is needed

to explore the use of each of these alternative to measuring learning, including iden-
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tifying the circumstances under which each is (and is not) most effective. Attempts

to resolve the controversy surround the use of difference and gain scores could more

systematically explore the circumstances under which their use is appropriate [e.g.

114] or is not appropriate [e.g. 80]. Similarly, studies could explore the conditions

under which the benefit of excluding extreme scores from analysis outweigh the costs.

Attitudinal Outcomes

Only two studies considered student attitudes as the primary outcome [7, 16],

though several measured attitudes in addition to learning. When studies measured

student attitudes, they typically used a reliable, validated instrument to assess atti-

tudes. Several studies used the Survey of Attitudes Towards Statistics (SATS [98]),

sometimes supplementing this with additional questions. While this is an improve-

ment over the measurement of learning outcomes, problems with the measurement

of attitudinal outcomes still exist. In particular, attitudes are often measured on or-

dered categorical (e.g. Likert) scales but little attention is paid to the variability that

can arise through this measurement process. For example, one student’s operational

definition of “Likely” or “Unlikely” may differ from another student’s definition, or

a student’s definition may change from the beginning to the end of term. Addition-

ally, this data is often coded and analyzed as if it were truly numeric, ignoring the

variability that exists in the distance between categories within a person or across

different people. Future research is needed to develop methods that could quantify

the sources and magnitude of variability that can arise when using ordered cate-

gorical scales. Perhaps something can be learned from the engineering literature on

Gauge R&R (repeatability and reproducibility) studies. Gauge R&R is a technique

used in industrial design to characterize the basic capability of a measurement sys-
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tem. Repeatability characterizes the within-instrument variability: When the same

machine used by the same operator on the same part produces different measure-

ments. Reproducibility characterizes the between-instrument variability: When the

same machine used by multiple operators on the same part produces different mea-

surements. On many survey instruments participants are required to map qualitative

responses to numeric labels, such as rating their “agreement” with a statement on

a 5-point scale. In these terms, repeatability characterizes the variation that could

arise if the same person used different mappings each time they took the same survey

(resulting perhaps from a change in mood or perception). Reproducibility character-

izes the variation that could arise from different people each using different mappings

when taking the same survey. Repeatability and reproducibility parallel the concept

of reliability in the psychometric literature (they are distinct from the concept of

validity, which pertains to bias rather than variability). Reliability is rarely reported

and often misunderstood; few educational researchers recognize the need to calculate

the reliability of an instrument or scale for each sample on which it is administered

[52, 55]. Educational researchers need to pay careful attention to the variability that

can arise through the measurement process, either through consideration of reliabil-

ity or through the an adaptation of the principles of gauge R&R. In particular, it

is important to characterize the sources and potential magnitude of such variation

prior to using an instrument as they could overwhelm any treatment effects if not

taken into account. One goal would be to develop methods to identify which sources

of variation could be controlled for. Another goal would be to determine how many

replications would be needed to detect a signal when averaging over uncontrollable

variations.
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2.3.3 Types of research designs used

It is well-know in the Statistics community that random assignment of individual

participants to treatment groups is the best way to guarantee that those groups will

be comparable prior to treatment. However, this can be difficult to do in educational

settings. A handful of studies reviewed were able to randomly allocate individual

students to treatment conditions. Still, in many of these cases there was a reliance on

student volunteers to participate in the research, which could limit generalizability

of the results. Randomization of individual students to different sections of the

same college course may be difficult if those sections do not meet at the same time.

Then researchers will have to content with students’ scheduling constraints. At the

elementary or high school levels, it may be easier to randomize individual students

since they are all in school for the same hours.

When it is not possible to randomize individual students, entire groups (such

as different sections of a large class) can be randomly assigned to treatment condi-

tions. Group randomization cannot offer the same promise of baseline equivalence

of groups as can individual randomization. These groups are often self-selected and

compositional differences may exist between them. When there is only one group per

treatment condition, treatment will be confounded with section (or instructor, day,

time, etc). It would instead be better to randomize several groups to each treatment

condition so that existing differences can be averaged over, but this would require

extremely large class sizes or the accumulation of data over time. For example, one

study accumulated a sample size of over 5,000 college students by repeating the treat-

ment conditions over four semesters [54]. The majority of studies reviewed were not

randomized on either the individual or group level, but were instead observational

in design. When random assignment is based on existing groups or is not used at
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all, for ethical or logistical reasons, it is especially important that any pretreatment

differences between groups be addressed. However, many studies failed to discuss

pretreatment differences in their write-up or account for pretreatment differences in

their analysis (see Sections 2.3.4 and 2.3.6 for further discussion).

Beyond the two-group comparison

Nearly all of the studies discussed in this review involved two-group comparisons

of some new technology or teaching method to some “standard” teaching practice.

Only a handful of reviewed studies compared more than two treatment groups—

one study compared three groups (two new treatments to one standard treatment

[37]) and four used a factorial design. These factorial experiments ranged from basic

22 designs (two factors of interest with two levels each, resulting in four possible

treatment combinations) to 23 designs (three factors with two levels each, resulting

in eight treatment combinations). While each of these was a full factorial—including

one group for each combination of treatment factors—the studies with the larger 23

design used interesting methods to maximize their available power. For example,

one administered the eight treatment combinations in a crossover fashion, where

students experienced a different treatment combination each class period, instead of

as separate groups (each treatment combination was replicated two times throughout

the term) [72].

Perhaps the prevalence of simple comparisons among the studies reviewed relates

to sample size and the corresponding considerations of time and money. Sample sizes

in educational research are clearly limited by class sizes. Larger sample sizes can be

accumulated by including multiple classes or schools. Larger sample sizes can also

be accumulated over time, though this would obviously delay the results of the study
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and care would need to be taken to account for any time effects in the results. Limit-

ing research to two-group comparisons could help make the most of available power,

especially when considering the high level of noise that usually exists in human-

subjects data. However, this limits the type of research questions that can be asked.

As noted in Section 2.3.1, most studies asked the question “Is some new treatment

(like a new technology) better than the standard way of teaching?” and that a neces-

sary follow-up question is “Why is the new treatment better?” Being able to answer

the second question allows us to discover what about that treatment is successful

for helping students learn so that we can recreate this success in future treatments.

Multifactor designs, like factorial and fractional-factorial designs, can be used for

this purpose. They could also be used as screening experiments to explore complex

educational interventions (those composed of several distinct treatments), then to

refine and optimize important components of an intervention [see, for example, 27].

These designs can maximize available power while simultaneously investigating the

effects (including interactions) of several treatments. Large, multi-section courses are

becoming increasingly common in statistics. Additionally, there has been a recent

focus on collaborative research in education [see 4]. Both of these could increase the

feasibility of implementing such designs. However, they require a great deal of plan-

ning and coordination, especially to ensure that each course section has an equitable

learning experience. Moreover, studying many treatments simultaneously may not

be reasonable in the educational context. The practical issues of using multifactor

designs in educational research need to be thoroughly explored. As a start, a case

study of the design, implementation, and analysis of a 2-factor experiment in a large

introductory statistical methods course is provided in Chapter 3.5.
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2.3.4 Analytic techniques used

In the reviewed studies, the most common methods of analysis were analysis of

variance and regression procedures. Other analytic techniques including paired t-

tests [68, 76, 111, 112]; paired or independent z-procedures [25, 61, 105]; Wilcoxon

signed rank tests [11, 88]; and Chi-square tests [103]. Interestingly, more than half of

the observational studies reviewed used an analytic technique that did not account

for any baseline differences between treatments groups. In any study, care should

be taken—either through design or analysis—to reduce the biasing effects of pre-

treatment differences. Thoughtful analysis is especially important in observational

studies where no protection from bias is afforded via design. A few studies used

nonparametric techniques, such

Perhaps the most striking feature discovered during this review is that the analytic

methods used seem oversimplified given the complexity of the data being analyzed.

The lack of attention paid to pretreatment differences between groups is one illustra-

tion of this. The use of groups—specifically group assignment to treatment and group

delivery of treatment—leads to other fundamental complexities of educational data

that needs to be considered when selecting a method of analysis. Many of the stud-

ies reviewed here used group assignment to treatment, but for most the analysis was

conducted at the individual level. Even when individual assignment to treatment is

used, given the very nature of educational research, treatment is delivered to a group;

that is, all members of a group are exposed to the exact same treatment under the

exact same conditions. So students are nested within classrooms which in turn are

nested within schools. Student responses may be influenced by the mix of course,

instructor, and school characteristics that become unintended but integral parts of

their treatment experience. When student is the unit of analysis despite such use of
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groups, the assumption of independence between units—required for most statistical

tests—is violated (see page 37 of the SMER report for a discussion of this). The

grouped structure of educational data can be addressed through the use of hierarchi-

cal linear modeling [93], however only one study reviewed used this analytic approach

[45]. Hierarchical modeling (also called multilevel modeling) will be especially im-

portant as the number of research collaborations—with data collected from many

different classrooms that are each nested within different institutions—increases.

2.3.5 Tools to deal with variation

The tools used to deal with variation cover aspects of both design and analysis. In

terms of design, blocking was used to reduce the influence of the blocking factor on

the results. Blocking factors included site [61], instructor [e.g. 27, 46], textbook [e.g.

33, 101], prior student knowledge or ability [e.g. 30, 37], and time of day [54, 111].

In terms of analysis, covariate adjustment and random effects were each used to

deal with variation. Most studies that adjusted for pretreatment covariates used

measures of academic ability or knowledge that came from sources outside of the

course itself, such as SAT/ACT scores or GPA [e.g. 101, 109]; pre-treatment measures

of the outcome, such as a previous course exam, were used as covariates less often.

Use of external measures of knowledge could reduce the burden of assessment (e.g.

time alloted to complete an assessment, student anxiety in being assessed) during the

course of the experiment. Most studies that used covariate adjustment only included

one or two variables. Similarly most studies that used random effects typically

only included an effect for student (though one study did include random effects

for semester, instructor, class and lab section, as well as student [54]).

Given the myriad of potential sources of noise that can arise in educational
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settings—related to student, instructor, course, and school characteristics—dealing

with variation should be of utmost concern to educational researchers. Standard

techniques such as blocking, randomization, and covariate adjustment were used

quite often in the studies reviewed. There is a data analysis strategy that could

also be useful for dealing with uncontrollable sources of noise. This strategy involves

exploiting interactions between design factors in a multifactor experiment and noise

variables to achieve one of two objectives: 1) Identify a teaching method that is

robust to the effects of uncontrollable sources of variation on the outcome (called

robust design [106]), or 2) Identify when a teaching method should be customized

based on a noise variable. Achieving the first objective is desirable when there is het-

erogeneity in the noise variable within a class, for example, when the noise variable

represents characteristics of the students themselves. The second objective involves

using information in the interaction to proactively customize a teaching method to

particular groups, and is easiest for noise variables measured at the instructor or

classroom level. In Chapter IV, application of this strategy is illustrated within the

context of a hypothetical multifactor experiment in statistics education.

2.3.6 General issues in reporting

The studies reviewed varied greatly in the level of detail that was reported in

the paper, with respect to both implementation and analysis of the research. There

are many aspects to implementation to consider: Ideal implementation (what would

be best to address the research question while minimizing bias and noise), planned

implementation (given the constraints, what is the proposed design), and actual

implementation (what was and was not accomplished). At the very least, actual

implementation needs to be described in every research report. In the educational
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setting, this should include details about the course (e.g. topics covered; grading

policies), students served (e.g. year in school, whether course fulfills a requirement

for them), and instructor characteristics (e.g. years of experience). It should also

include details pertaining to the treatment itself:

• What was the treatment? (e.g. use of software to illustrate concepts)

• How was the treatment used? (e.g. in guided laboratory sessions; on homework)

• Who used the treatment? / How was the treatment assigned? (e.g. self selection;

only certain sections were given access)

Clearly the above is not an exhaustive list. The SMER Report [4] lists comprehensive

reporting guidelines for various components of a research program. Perhaps the best

all-encompassing guideline is to “provide enough information to allow replication of

the study” (p. 18).

There was great variety in how studies chose to report on the existence of baseline

differences between the treatment and control groups. A few addressed this explic-

itly through formal testing of group demographic variables; many more addressed

it implicitly through the use of covariate adjustment. However, there were several

studies that only mentioned differences could exist but did not report any pretreat-

ment information on groups; several studies failed to discuss relevant differences at

all. Similarly, many studies failed to discuss missing data or attrition in their report.

Only one study reported results from a significance test to compare retention rates

between the treatment and control groups, as well as interviews with students to find

out why they had withdrawn from the class [111].

In terms of inferential analysis, most studies reported the value of the test-statistic,

degrees of freedom, and p-value. Studies were not as consistent in the reporting

of group means or standard deviations. Only two studies reported effect sizes or
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confidence intervals, which could be useful for gauging the magnitude of effects in

addition to their significance. No study reported on the reliability and validity of

their assessment instruments, or the soundness of assumptions that accompany their

analyses.

The lack of reporting of some issues, such as baseline equivalence or inference

assumptions, does not imply that such issues were not explored or analyzed—it’s

just that the corresponding information was not included in the paper. Of course,

manuscripts often must meet page limits in order to be published, and there are

practical limits to how much detail can be provided. Consensus should be reached

within, and possibly across, statistics education journals as to what information is

most important to include in each manuscript, perhaps with additional information

available in an online appendix. This will make the body of research more transparent

and enable replication of studies and comparison of results across many different

settings.

2.4 Summary

Overall, thirty-two studies—six from SERJ, five from JSE, and twenty-one from

the proceedings of ICOTS—met the criteria of being a quantitative educational in-

tervention. The comparatively low number of quantitative studies in SERJ and JSE

seems to reflect the general focus on qualitative research in statistics education, which

centers on ideas such as identifying difficulties in learning or patterns of reasoning. In

contrast, the International Conference on Teaching Statistics seems to attract more

quantitative studies on the actual practice of teaching.
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2.4.1 Summary of current research

A review of these thirty-two studies revealed several features about the current

state of quantitative research in statistics education:

1. Statistics educators are very interested in the use of learning technologies to

improve the teaching of Statistics.

2. Most researchers focus specifically on improving student learning, as measured

through grades on course exams or activities.

3. Group assignment to treatment, which is often observational, and group delivery

of treatment are common.

4. A wide variety of analytic methods are employed, the simplicity of which belie

the complex nature of educational data.

5. To deal with expected sources of variation, most researchers use blocking, co-

variate adjustment, or a combination of both.

6. Reporting about study implementation and analysis is inconsistent, making it

difficult to replicate studies in the future.

Discussion specific to many of these points was included in the corresponding sub-

sections of Section 2.3.

The most striking overall conclusion of this review is the disjointed, ad-hoc nature

of quantitative research in statistics education. Specifically, there does not appear to

be any systematic approach to studying problems. Studies are conducted in isolation,

without much connection to previous research—either qualitative or quantitative—

limiting the gain and application of knowledge from such research. Garfield and

Ben-Zvi [44] noted this in their review as well. However, it appears as though many

researchers are interested in similar topics and could learn from the experiences of
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others. To address this, there has been a call for the development of collaborative

research programs and the creation of groups to facilitate this collaboration (see, for

example, the research arm of the Consortium for the Advancement of Undergraduate

statistics education, http://www.causeweb.org/research/).

Recommended guidelines for future research into teaching and learning

As collaborative research programs are developed and the number of quantita-

tive studies increases, it is important that consistent methodological guidelines be

followed. Several recommendations can be made based on the findings of this re-

view. Certainly these ideas are not new, nor are they exhaustive, but they are worth

revisiting here.

• Follow-up questions of treatment efficacy with with questions that will allow for

identification of the “active” ingredient(s) in the success of a treatment so that

ingredient could possibly be replicated in future treatments.

• Use valid and reliable assessment instruments when measuring outcomes, par-

ticularly learning outcomes. Such outcomes already exist—the CAOS test, for

example—and could easily be incorporated as part of existing course exams.

• Use multifactor designs to explore and refine complex treatments. This may

be especially helpful for identifying active ingredients, as mentioned in the first

recommendation. Further research is needed to explore the feasibility of imple-

menting such designs (see Section 2.4.2).

• Take care in both the design and analysis of educational data to account for

bias due to pretreatment differences, which could arise as a result of group

assignment or group delivery of treatment.
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• Use hierarchical modeling to analyze nested data. Given that nearly every ed-

ucational intervention is implemented on groups of students nested within a

classroom (and these classrooms are nested within schools, and schools within

communities/cities, etc.), nearly every analysis in education should be hierar-

chical.

• Be detailed when describing the design and implementation of treatment and

when reporting results such as means, standard deviations, test statistics, confi-

dence intervals and/or effect sizes. Guidelines specifying the minimum amount

of detail that needs to be reported should be developed and applied consistently

across journals (see Section 2.4.2).

2.4.2 Summary of areas of need pertaining to methodological research

There are several areas of quantitative research methodology that need to be

addressed with future research, which would enhance the recommendations above.

These have been discussed throughout this chapter and are summarized here.

Pertaining to design, a systematic exploration of the feasibility of implementing

multifactor designs in educational settings needs to conducted. These designs are

uniquely suited to breaking down a treatment into parts in order to determine the

“active ingredient” in the success of that treatment. In terms of analysis, future re-

search could lead to improved measurement of ordered, categorical data (e.g. student

attitudes measured on a Likert scale). There are existing statistical methods—like

Gauge R&R studies—that could be used to quantify and account for the variability

inherent in these scales. To better deal with the myriad of sources of variation that

are present in education studies, there is an analytic strategy that could be used

to exploit interactions between design factors and noise variables in order to design
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educational interventions that are either robust to uncontrollable variation or that

have been customized to particular groups of students or instructors. Feasibility of

applying this strategy in the educational context needs to be explored.

Finally, there needs to be a more consistent set of guidelines for the reporting of

educational research. Enough information needs to be included in a published paper

so that the results can be properly evaluated (within the context of the design and

analysis) by readers and so that the study could be replicated. These guidelines could

be developed through a survey of researchers to determine what information they

believe is most pertinent to report, or perhaps the editors of the various statistics

education journals could join together and develop guidelines based on their expertise

and experience.

2.4.3 Final thoughts

Much of current research in statistic education is small and fragmented. Collabo-

rative research programs are needed to systematically study the practices of teaching

and learning statistics. The success of such research endeavors depends on the qual-

ity of each individual study conducted. Current quantitative research practices could

be immediately improved by implementing some of the guidelines presented above.

Quantitative research would be further improved through future contributions to the

methodological challenges presented throughout this paper.
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Appendix: Citations (in alphabetical order) for Sections 2.3.1 to 2.3.5

• For Section 2.3.1: Types of research questions asked

– Pertaining to technology: Aberson et al. [5]; Alldredge and Brown [7];

Alldredge and Som [9]; Alldredge et al. [8]; Ayres and Way [11]; Enders and

Diener-West [37]; Cicchitelli and Galmacci [25]; Collins and Mittage [27];

Davies et al. [30]; Dinov and Sanchez [33]; Dutton and Dutton [35]; Hilton

and Christensen [54]; Lee [68]; Lipson [69]; Meyer and Lovett [76]; Meyer

and Thille [77]; Stephenson [103]; Sundefeld et al. [105]; Utts et al. [109];

Ward [111]; Watson and Kelly [112]

– Non-technological pedagogical approach: Bijker et al. [16]; Bolzan

[17]; Enders and Diener-West [37]; Giambalvo et al. [45]; Ip [57]; Luchini et

al. [70]; Mahmud and Robertson [72]; Periasamy [88]; Stangl et al. [101];

– Other research questions: Kataoka et al. [61]; McLeod et al. [75]

• For Section 2.3.2: Outcomes considered

– Learning only: Aberson et al. [5]; Ayres and Way [11]; Bolzan [17]; Enders

and Diener-West [37]; Cicchitelli and Galmacci [25]; Collins and Mittage

[27]; Davies et al. [30]; Giambalvo et al. [45]; Gonzalez et al. [46]; Ip [57];

Kataoka et al. [61]; Lee [68]; Lipson [69]; Luchini et al. [70]; Mahmud and

Robertson [72]; McLeod et al. [75]; Meyer and Lovett [76]; Meyer and Thille

[77]; Periasamy [88]; Stangl et al. [101]; Stephenson [103]; Sundefeld et al.

[105]; Watson and Kelly [112]

– Attitudinal only: Alldredge et al. [8]; Bijker et al. [16]

– Both learning and attitudinal: Alldredge and Brown [7]; Alldredge
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and Som [9]; Dinov and Sanchez [33]; Dutton and Dutton [35]; Hilton and

Christensen [54]; Utts et al. [109]; Ward [111]

• For Section 2.3.3: Types of research designs used

– Randomized control trial—individual assignment: Enders and Diener-

West [37]; Cicchitelli and Galmacci [25]; Davies et al. [30]; Gonzalez et al.

[46]; McLeod et al. [75]

– Randomized control trial—group assignment: Alldredge et al. [8];

Hilton and Christensen [54]

– Observational case-control: Aberson et al. [5]; Alldredge and Brown [7];

Alldredge and Som [9]; Ayres and Way [11]; Bijker et al. [16]; Bolzan [17];

Collins and Mittage [27]; Dinov and Sanchez [33]; Dutton and Dutton [35];

Ip [57]; Kataoka et al. [61]; Lipson [69]; Luchini et al. [70]; Stangl et al.

[101]; Stephenson [103]; Utts et al. [109]; Ward [111]

– Paired (pre vs. post) or Crossover: Lee [68]; Mahmud and Robertson

[72]; Meyer and Lovett [76]; Periasamy [88]; Sundefeld et al. [105]; Watson

and Kelly [112]

• For Section 2.3.4: Analytic techniques used

– Analysis of variance procedures—ANOVA, ANCOVA, MANOVA:

Aberson et al. [5]; Alldredge and Brown [7]; Alldredge and Som [9]; All-

dredge et al. [8]; McLeod et al. [75]; Stangl et al. [101]; Utts et al. [109];

Ward [111]

– Regression: Enders and Diener-West [37]; Collins and Mittage [27]; Dut-

ton and Dutton [35]; Giambalvo et al. [45]; Gonzalez et al. [46]; Hilton and

Christensen [54]; Mahmud and Robertson [72]; Stangl et al. [101]
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– Independent-samples t-test: Lipson [69]; Dinov and Sanchez [33]; Ip

[57]; Bijker et al. [16]; Dutton and Dutton [35]

– Paired-samples t-test: Lee [68]; Meyer and Lovett [76]; Utts et al. [109];

Ward [111]; Watson and Kelly [112]

– Other analytic methods: Ayres and Way [11]; Bolzan [17]; Cicchitelli

and Galmacci [25]; Kataoka et al. [61]; Luchini et al. [70]; Periasamy [88];

Stephenson [103]; Sundefeld et al. [105]

• For Section 2.3.5: Tools to deal with variation

– Blocking: Aberson et al. [5]; Alldredge and Brown [7]; Alldredge and Som

[9]; Alldredge et al. [8]; Enders and Diener-West [37]; Collins and Mittage

[27]; Davies et al. [30]; Dinov and Sanchez [33]; Dutton and Dutton [35];

Gonzalez et al. [46]; Hilton and Christensen [54]; Kataoka et al. [61]; Lee

[68]; Mahmud and Robertson [72]; Stangl et al. [101]; Stephenson [103];

Utts et al. [109]; Ward [111]

– Covariate adjustment: Aberson et al. [5]; Alldredge and Brown [7]; All-

dredge and Som [9]; Alldredge et al. [8]; Collins and Mittage [27]; Dutton

and Dutton [35]; Hilton and Christensen [54]; Mahmud and Robertson [72];

McLeod et al. [75]; Stangl et al. [101]; Utts et al. [109]

– Random effects: Enders and Diener-West [37]; Giambalvo et al. [45];

Hilton and Christensen [54]; Gonzalez et al. [46]



CHAPTER III

A Large-scale Designed Experiment Exploring the Effects of

Clicker Use on Student Engagement and Learning

3.1 Introduction

As discussed in the previous chapter, the majority of quantitative studies in statis-

tics education used 2-group, case-control designs to address the question: “Is some

new technology/teaching method better than some standard approach?” It is im-

portant to follow up such a research question with an investigation into why or how

a new method is successful. In this chapter, the experimental exploration of several

aspects of “clicker”—a technology for collecting and displaying, in real time, student

responses to questions posed by the instructor during class—is considered in an large

introductory Statistics course.

3.1.1 A review of the literature on clickers

Clickers go by several names in the literature: Personal, student, audience, or

classroom response systems are some of the most common. They have been used

extensively in college courses, first and foremost in the field of Physics [e.g. 12,

29, 34, 38, 59]. They are also gaining attention in other fields, such as Medicine

32



33

[e.g. 85, 90, 96, 108], Engineering [e.g. 32, 100, 118], Biology and Life Sciences [e.g.

18, 40, 91], Psychology [26, 81], Accounting [14, 23], Agriculture [28], Computer

Science [62], Earth Science [49], and Statistics [94, 115]. More recently, clickers have

been used in elementary and secondary education as well [24, 28, 51, 87].

Clickers have been used in the classroom for a variety of purposes. Predominantly,

they are used to check students’ understanding of a topic soon after it has been

covered in class [e.g. 14, 49, 64, 66, 92]. They can also be used to check students’ prior

knowledge on a topic [12] or to see if assigned reading was completed [14]. Clickers

can be used as a tool to gather data for analysis or case study [19, 26, 50, 53, 94],

and they can facilitate the administration of quizzes or exams [21]. Clickers can

be used to practice calculations or check understanding of vocabulary [49, 115],

however many proponents of clickers suggest that the questions should be conceptual

in nature rather than focus on procedures or memorization [e.g. 12, 29, 34]. For

example, questions can be written to point out common misconceptions [12, 49],

draw connections between distinct topics [12, 14], or distinguish between similar

concepts [12]. Clickers can be used to stimulate classroom discussion by pointing

out student perceptions of a situation or exploring the implications of an idea [12].

Discussion could also be stimulated through questions with multiple or subjective

answers, however Greer and Heaney [49] found that this could frustrate students.

Several guides for writing good conceptual clicker questions exist in the literature,

including Beatty [12] (referenced several times in this paragraph already), Duncan

[34], Beatty et al. [13], Zhu [117] and Caldwell [22].

Overwhelmingly, proponents of clickers cite two perceived strengths that could

make them a valuable tool for education. First, clickers provide immediate feedback

to both students and instructors during a lesson. Student responses to a question
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can be tallied in just a few seconds and displayed in bar-graph form, giving the

instructor a chance to gauge the understanding of the class as a whole and students

the ability to gauge their own personal understanding [20, 22, 32, 95]. Second,

clickers may help students engage more fully with the material. Since individual

responses are aggregated and displayed anonymously to the class (so that is it not

possible to know which answer a particular student selected), students tend to feel

more comfortable responding than if they had to offer a verbal answer [22, 58, 95].

Also, the interactive nature of clickers may help students pay more attention to each

question [67, 78, 108]. Many students who have used clickers report that they improve

the classroom experience [10, 67, 71, 107] and improve their own understanding of

the material taught [10, 20, 22, 71, 91, 107, 108].

Unfortunately, empirical evidence to support student perceptions of increased en-

gagement and learning has been mixed. In terms of engagement, few studies have

gone beyond measurement via student report. Exceptions to this have focused specif-

ically on student participation. For example Carnaghan and Webb [23] measured

participation by counting the number of questions asked per student during lectures

in which clickers were used as compared to lectures when clickers were not used.

They found a significant decrease in the number of questions asked when clickers

were used, perhaps because students are less likely to ask clarifying questions when

they see a large proportion of their classmates answered correctly. VanDijk et al.

[110] observed a similar decrease in questions asked by students when clickers were

used, though they did not track this formally. On the other hand, Stowell and Nelson

[104] measured participation as the number of questions answered—both formally,

by responding to displayed multiple-choice review questions, and informally, by vol-

unteering to answer an open-ended questions verbally posed by the instructor. They
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compared participation rates between three groups: one that used clickers, one that

used lettered response cards, and one that simply raised their hands. They found

no significant difference in informal participation rates between the three groups and

found that formal participation was higher in the clicker and card sections than in

the hand-raising section. Taken together these studies point to a potential trade-off

when using clickers: students seem more comfortable responding to questions but

less comfortable asking them.

In terms of learning, many studies have found higher exam scores when clickers

were used [28, 40, 66, 85, 90, 91, 110]. It should be noted, though, that several of

these studies demonstrated only conditional improvement. For example, Carnaghan

and Webb [23] and Schackow et al. [96] found a significant improvement in scores only

for those exam questions that were most closely related to the clicker questions asked

during class. Kennedy and Cutts [62], Lass [66], and Nosek et al. [85] found that

improved understanding was associated with increasing amounts of clicker use and/or

better performance on clicker questions (i.e. answering more questions correctly).

Unfortunately, analyses based on self-selected dose (i.e. student selected amount of

clicker use) could be subject to selection bias, if it was the better students who

chose to use clickers more and/or answered more questions correctly. Only one

study formally manipulated the number of clicker questions asked during a semester:

Preszler et al. [91] changed the number of questions asked in each lecture of several

Biology courses between low (0-2 questions), medium (2-4 questions) or high (4-

6 questions). They found a significant increase in exam scores as the number of

clicker questions increased. There were also several studies that found no significant

difference in exam scores for students who use clickers versus those who did not

[73, 78, 96, 102, 104]. One study even found significantly worse exam scores for
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students using clickers: VanDijk et al. [110] compared three groups of students:

1) those in a traditional lecture section, 2) those in a clicker-only section, where

questions were posed only once before an instructor-lead discussion of the answers

and 3) those in a clicker section with Peer Instruction, where questions were posed

twice with group discussion in between (see Mazur [74] for more on this). They found

that students in the clicker-only group had lower exam score than students in the

other two groups, which were similar in performance to each other. VanDijk et al.

[110] attributed this lower performance to the fact that students in the clicker-only

group seemed to ask fewer clarifying questions.

To add to the current understanding of clickers as a pedagogical tool—specifically

to explore which features of clicker use might increase student engagement or learning—

an experiment was conducted from January to April 2008 at the University of Michi-

gan. This experiment took place in the laboratory sessions of a large, introductory

data analysis course called Statistics 350: Introduction to Statistics and Data Anal-

ysis.

3.1.2 Description of Statistics 350

Statistics 350 is a 4-credit course taught every semester (14 week term) at the

University of Michigan. Historically, most students taking this course are under-

graduates who need to fulfill some graduation requirement, either for their major or

the University in general. Course topics include descriptive statistics (numerical and

graphical summaries), probability, sampling distributions, and inference procedures.

The inference procedures covered include confidence intervals and hypothesis test-

ing for proportions (one- and two-sample), means (one-sample, paired, independent,

and one-way analysis of variance), simple linear regression, and chi-square analyses
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(goodness-of-fit, homogeneity, and independence). Students attend three hours of

lecture and one 1.5 hour computer lab each week. The lecture sections vary in size,

ranging from 60 students to over 400 students. The schedule of the lecture sections

also varies: There are sections offered each week as three one-hour sessions, two

ninety-minute sessions, and one three-hour session. For any given week, however,

the same basic material is covered in all lecture sections. During the experimental

semester there were six lecture sections taught by a team of four instructors.

Lab sections are more uniform than lecture sections in terms of size and structure;

there are also many more lab sections, which allows for replication of treatment

conditions. For these reasons, the experiment was implemented in the lab sections

of the course. The goal of the labs is to reinforce concepts presented in lecture and

provide hands-on examples of data analysis using the statistical analysis package

SPSS. Occasionally some material is covered in lab before it has been presented in

detail during lecture. The same activities—involving either computer-aided data

analysis or solving word problems—are covered during each 90-minute lab under the

guidance of a Graduate Student Instructor (GSI). During the experimental semester,

there were 50 lab sections taught by a team of 24 GSIs (22 GSIs taught two sections

each, two taught three sections each). The lab sections had a maximum enrollment

of either 21 or 27 students, depending on classroom size. The sequence of topics

covered during lab the semester were:

• Lab 1 : Descriptive statistics and graphs

• Lab 2 : Sequence and quantile-quantile (QQ) plots (not taught in lecture)

• Lab 3 : Random variables

• Lab 4 : Central Limit Theorem; Confidence intervals for a population proport

• Lab 5 : Testing for a population proportion; Review for Exam 1
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• Lab 6 : Confidence intervals for a population mean

• Lab 7 : One sample t procedures and paired t procedures for means

• Lab 8 : Independent samples t procedures for the difference in means

• Lab 9 : Independent samples z procedures for the difference in proportions

• Lab 10 : One-way analysis of variance; Review for Exam 2

• Lab 11 : Simple linear regression

• Lab 12 : Chi-square analyses; Final Review

3.1.3 Previous clicker use in Statistics 350

Clickers have been used in Statistics 350 in a limited way since September 2006.

From September to April 2006, clickers were used predominantly in labs and rarely in

lectures. The TurningPoint R© personal response system (www.turningtechnologies.

com), which was recommended by the course textbook publisher, was used. With

this system, students were only able to respond to multiple-choice questions. A set

of the TurningPoint remotes was provided by the Statistics Department for use in

the laboratory sections of the course, so that students did not need to purchase their

own remote. This necessitated the time-consuming distribution and collection of the

remotes during any lab period in which clickers were used. For this reason, they

were only used in lab for three weeks of each semester to help students review for

exams. Clickers were also used for a few lecture sessions per semester, but only in

the smallest lecture section of the course (an evening section offered once per week

with 60 out of approximately 1200 enrolled students).

Starting in May 2007, a new clicker system was introduced to Statistics 350, with

the capability for students to input numeric responses as well as respond to multiple-

choice questions. This new system—Qwizdom R© (www.qwizdom.com)—was adopted
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as the official personal response system of the College of Literature, Science, and the

Arts at The University of Michigan. The college provides technical support to both

instructors who choose to use clickers and to students, who may use the same clicker

remote for several classes throughout their college years. Students were required to

purchase their own remote, which allowed clickers to be used in every lecture and

lab session of the course. In lectures, clicker questions were typically interspersed

throughout the material, often to view student responses to practice problems solved

during class. Most lecture instructors asked the same questions, though they were

not required to. In labs, a handful of clicker questions were usually asked at the end

of lab, on the concepts that had been reviewed in that lab session. All GSIs were

required to ask the same base set of questions but were allowed to add additional

questions if desired, though this was rarely done. During the experimental semester,

clicker use in lab was controlled (as described below) while clicker use in lecture

continued as usual.

3.2 Design and Hypotheses

As stated previously, the goal of this experiment was to add to current under-

standing of clickers as a pedagogical tool—to explore which uses might increase en-

gagement or learning. The specific research questions and hypothesis to be explored

with this experiment were:

RQ1. Can you “overdose” on clickers by asking too many questions?

RQ2. What is the best way to distribute clicker questions throughout a class session?

H1. There will be a negative effect of clicker overuse—too many clicker questions

asked consecutively.



40

RQ3. Are students motivated to use clickers even when it is neither required nor

monitored?

The motivation for the first two research questions as well as the hypothesis came

directly from my classroom experience. As a laboratory instructor when the Turn-

ingPoint system was first incorporated into Statistics 350, I noticed an increase in

classroom disruption on the days clickers were used. The disruption occurred primar-

ily while waiting for students to enter in their responses—some students responded

quickly and became distracted (e.g. began talking or looking online) while waiting

for the rest of the class to respond. This lead me to develop the belief that clicker

overuse could actually be detrimental to students, particularly that there could be

a negative interaction between the number of clicker questions asked and the way

those questions are incorporated into the lesson. The motivation for the third re-

search question arose from my review of the literature on clickers. Nearly every

study about clickers reports that students perceived a benefit, in terms or increased

engagement and/or learning, to clicker use. However, in each of these studies clicker

use was required. The third research question seeks to see if students perceived ben-

efit to using clickers will be enough to motivate their use when instructor-imposed

incentives to do so are removed.

The primary outcomes of interest in this experiment are “engagement” and “learn-

ing.” These terms are admittedly very broad in nature and difficult to measure.

A review of the literature on engagement reveals that there are three aspects of

engagement—behavioral, emotional, and cognitive [39]. Behavioral engagement in-

volves doing the work and following the rules. Emotional engagement incorporates

interest, values, and emotions. Cognitive engagement includes self-regulation, moti-

vation, and effort. Studies with engagement as an outcome typically measure only the
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emotional aspect through student self-report of feelings and interest on a Likert-type

scale. However, in this experiment all three aspects of engagement were consid-

ered (see Section 3.4). There has been a demonstrated link between engagement and

learning, particularly when cognitive engagement takes place [39]. Student learning is

typically defined as an improvement on a course-specific exam (e.g. a higher score on

a posttest than on a pretest, or higher grades for one treatment group than another).

As discussed in Section 2.3.2, one difficulty with the use of course exams to measure

learning is that similar scores on different exams may in fact reflect different levels

of understanding. To avoid such problems, several validated instruments, each from

the Assessment Resource Tools for Improving Statistical Thinking project (ARTIST;

https://app.gen.umn.edu/artist/), were used to measure student learning (see

Section 3.4).

The treatment considered in this experiment is “clicker use.” To define this more

precisely, we focused on three specific components of clicker use which we believed

might affect engagement and learning. These components, along with their measured

levels, are:

1. Frequency: The number of clicker questions asked during a session

(a) High: At least 6 clicker questions were asked

(b) Low: 3-4 clicker questions were asked

2. Clustering: Asking all questions consecutively in a “cluster”

(a) Off: Clicker questions were dispersed throughout the session

(b) On: All clicker questions were asked consecutively, usually at the end of the

session (operationally, a “cluster” was defined as 3 or more clicker questions

in a row)
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3. External Incentive: Whether clicker use was required, monitored, or not

(a) High: Clicker use was required; student names were tracked using the clicker

software and grades were assigned based on participation

(b) Moderate: Clicker use was optional; student names tracked but no grades

were assigned

(c) Low: Clicker use was optional and anonymous; student names were not

tracked (responses were saved under the anonymous heading “Participant

i” for each student using clickers) nor were grades assigned

A 2 × 2 factorial design was used with the factors Frequency and Clustering to

address the first two research questions and the hypothesis. The effects of Fre-

quency and Clustering on emotional engagement, cognitive engagement and learn-

ing was explored. A crossover design was used to address the remaining research

question. Specifically, the effect of External Incentives on behavioral engagement—

namely, whether students choose to use the clickers when it was neither required nor

monitored—was investigated. Since all students were required to purchase a clicker,

all students were required to use their clicker at some point during the semester, so

that no one felt their purchase had been unnecessary. For the High level of External

Incentive, grades may be a powerful motivator to ensure that (most) students use the

clickers. It should be noted, though, that grades were based on the student’s gen-

eral effort in answering clicker questions, not the number of questions they answered

correctly. This was done primarily to reduce student anxiety about the questions; it

has also been observed that grading based on effort ensures a more honest reflection

of the class’s level of understanding [59]. For the Moderate level, the incentive (or

fear, as the case may be) of grading is removed, but the incentive of “we’re watch-
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ing you” remains. Students are perhaps so concerned about grades that even the

potential to be graded may motivate them to use clickers. For the Low level, all

external incentives have been removed—there is no way to even determine which

students used the remotes. The belief is that if students perceive some value in the

use of clickers—either that clickers make class more engaging or are helping them

learn—then they will be motivated to use the clickers even as the level of external

incentive decreases. In contrast, if students do not perceive real value in the use of

clickers, they may not bother using the remotes when it is not required of them.

3.2.1 Assignment to treatment groups

During the semester in which the experiment was implemented, there were a to-

tal of 50 lab sections taught by 24 GSIs. Twenty-two of these GSIs taught two lab

sections each, and two GSIs taught three lab sections each. Two separate random-

izations were undertaken for the factorial and crossover designs. For the factorial

design, the 24 GSIs were randomly assigned to one of four treatment groups and

remained in this group for the entire semester. These treatment groups were iden-

tified by color for easy GSI reference. A summary of the design for the factorial

experiment, along with the sample size for each group, is provided in Table 3.1.

Table 3.1: Factorial Design
Clustering

On Off

Frequency
Low

Team: Green Team: Blue
n = 305 (93%)a n = 279 (95%)

High
Team: Orange Team: Yellow
n = 289 (93%) n = 324 (96%)

a n represents the number of students in each group who
consented to have their data used in the experiment.
The number in parentheses is the participation rate for
that group—i.e. the percent of students assigned to the
group who consented to have their data used.

For the crossover design, four crossover sequences were created based on possible
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combinations of the levels of External Incentive under the constraint that a switch

between required (External Incentive = High) and optional (External Incentive =

Moderate or Low) clicker use be made only once during the semester. The resulting

sequences, along with the sample size for each, is presented in Table 3.2. The 24

GSIs were randomly assigned to one of the four sequences, independent of their

randomization to the treatment groups of the factorial experiment. Within each

sequence, GSIs remained at a given level for three weeks before switching to the next

level in the sequence.

Table 3.2: Crossover Design
Sequence Sample Sizea

Low – Moderate – High n = 297 (95%)
Moderate – Low – High n = 287 (94%)
High – Low – Moderate n = 306 (95%)
High – Moderate – Low n = 307 (93%)
a n represents the number of students in

each sequence who consented to have their
data used. The number in parentheses is
the participation rate for that sequence.

3.2.2 Correcting a limitation of previous studies on clicker use

One important aspect of the design of this experiment was to avoid confusion

between the treatment of interest (roughly, “clicker use”) and the simple pedagogical

change of asking more interactive questions in class. This is a distinction that many

studies on clickers have failed to make, so that results reported by these studies

cannot be attributed to clickers themselves—it is possible that they are simply due

to the practice of breaking up traditional lectures with questions [23]. A few studies

did address this design flaw. For example, Schackow et al. [96] and Carnaghan

and Webb [23] used crossover designs where students responded to multiple-choice

questions verbally (presumably on a volunteer basis) or with clickers. Freeman et al.

[40] compared two sections of a biology course; one section used clickers to respond
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to multiple-choice questions and the other used lettered cards to respond to the same

questions. Similarly, my experiment was designed so that the exact same questions

(with the same answer choices, when appropriate) were asked in every lab section.

The sections differed with respect to the number of questions asked using clickers, the

order of the clicker questions within the lesson (depending on whether or not those

questions were clustered together) and the level of external incentive in encouraging

students to use the clicker remotes.

3.3 Implementation Procedures

The experiment was conducted during the Winter 2008 term, which ran from

January to April 2008 at the University of Michigan. The timeline of labs and the

experimental procedures described here is given in Table 3.3. The treatment period

did not begin until after the University’s drop/add deadline, to ensure that class ros-

ters were fixed (with the exception of a few students who dropped the course late).

Prior to this, students experienced about three and a half weeks of lecture and three

weeks of lab. Lecture topics covered during this pretreatment period included: de-

scriptive statistics and graphs; sampling/gathering useful data; probability; random

variables (binomial, uniform, normal); and inference for a single population propor-

tion. Lab topics included: descriptive statistics and graphs; sequence and QQ-plots;

and random variables.

A brief introduction to the experiment was provided to students during the first

week of labs. Specifically, students were shown a slide with the following bulleted

information:

• We believe using clickers will improve your learning experience, but are not sure

of the best ways to use them.
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Table 3.3: Experimental Timeline and Activities
Date Lab Week Activity for Experiment

PRETREATMENT
January 3 – None (1st day of lectures; No labs)
January 7-9 1 Brief experiment introduction; Background information col-

lected
January 14-16 2 None
January 21-23 – None (No labs for MLK, Jr. Day)
January 23 – NA (Drop/add deadline)
January 28-30 3 Formal experiment introduction; Informed Consent; First at-

titudes survey and CAOS
TREATMENT PERIOD

February 4-6 4 Normal Distribution topic scale; Informed Consent for those
absent from previous lab

February 11-13 5 (None other than clicker questions)
February 14 – NA (Exam 1)
February 18-20 6 Sampling Distributions topic scale
February 22 – Second CAOS due
February 25-27 – None (Spring Break)
March 3-5 7 Confidence Intervals topic scale
March 10-12 8 (None other than clicker questions)
March 17-19 9 Hypothesis Testing topic scale
March 21 – Third CAOS due
March 24-26 10 (None other than clicker questions)
March 27 – NA (Exam 2)
March 31-April 2 11 (None other than clicker questions)
April 7-9 12 (Final attitudes survey and CAOS)

POST-TREATMENT
April 15 – None (Last day of lectures; No labs)
April 17 – NA (Final Exam)

• So we will conduct an experiment with the clickers in labs this term, looking at

– The number of questions asked in a session

– How questions are incorporated into labs

• More info will come later . . .

• But don’t worry—this will not mean any additional work outside of labs (unless

it is for extra credit!)

At this point, students were asked to complete a background information survey.

Note that while this was prior to completion of the formal informed consent process,

it is common in the course for GSIs to collect similar information on their students

to create example summary statistics and graphs.

There was no further mention of the experiment until the third week of labs,

when students were given a formal description and asked to provide or refuse their
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consent to have their data used in our analyses. It should be noted that the entire

assessment process, including the instruments selected and the manner in which

they were administered, was designed to be an integral part of the course. This

ensured that all students who were registered for the course after the drop/add

deadline participated in experimental procedures—students provided consent only

to allow their data to be analyzed. After the consent process, all students completed

the pretreatment survey of attitudes towards Statistics and clickers as well as the

pretreatment CAOS.

The treatment period began in the fourth week of labs. During the fourth week,

students completed the ARTIST topic scale about the normal distribution. The

other three topic scales were completed approximately every other week after that.

As mentioned in Section 3.4, CAOS was completed around the time of each midterm

exam in the course—at week six of the term and again at week nine. A final admin-

istration of CAOS and the attitudes survey took place during week 12. Throughout

the treatment period (weeks four to twelve), several clicker questions were asked in

each lab. The planned number of clicker questions for each week are presented by

treatment group for the factorial experiment (Team) are provided in Table 3.4.

Table 3.4: Planned Number of Clicker Questions by Team
Teama

Week Green Blue Orange Yellow
4 3 3 6 6
5 4 4 11 11
6 3 3 7 6
7 4 4 6 7
8 4 3 9 9
9 4 3 11 8
10 4 3 10 10
11 3 3 8 8
12 3 3 6 6

a The teams are:
Green (Frequency=Low, Clustering=On);
Blue (Low, Off ); Orange (High, On);
Yellow (High, Off ).
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3.3.1 Implementation infidelity

To better ensure consistency in teaching and grading among the 50 lab sections,

there are weekly meetings for all GSIs to discuss what did or did not go well in the

previous lesson, address questions about grading the homework, and to go over the

lesson plan for the coming week. Every GSI gets a weekly memo with the meeting

agenda as well as a schedule of specific activities to cover in the following lab. While

consistency across labs is key, GSIs are still allowed freedom in how they will present

the material (e.g. whether they create Power Point slides and how much content

review to provide before starting the activities), allowing their own personality and

teaching style to come though. During the experimental semester, it was necessary

to reduce this freedom to some extent. For example, all GSIs were required to use

the Power Point presentations with the questions for their treatment group (the

questions were the same for each group, but the number and order of those asked

with clickers varied) and were provided some guidance as to how to incorporate

these questions into lab (e.g. to ask all questions at the end of the activity/lab or to

incorporate the questions into the activity). However, restrictions on GSIs were kept

to a minimum to avoid conflicts in the team or with the experimental procedure.

In hindsight, the guidance provided as to the placement of clicker questions was

not specific enough. GSIs varied in their interpretation of this guidance and their

ultimate placement of the questions. It was not always clear to GSIs (especially

those who were supposed to integrate questions throughout the lab material) when

a question was to be asked before the corresponding material as opposed to after.

This could affect the cognitive level of the question—a question which would have

required deep thought before presentation of corresponding material simply requires

recall ability when asked after.
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During the experimental semester, the memos for the weekly meetings were per-

sonalized for each GSI, indicating their experimental conditions at the top of the

page. This was to help them identify the appropriate presentation to use in lab—

based on their assignment for the factorial experiment—and their crossover status

for the week—based on their assignment for the crossover experiment. With this

information, there were no GSIs who used the wrong team presentation. However,

there were some discrepancies in the number of clicker questions assigned and the

number actually asked due to technical or other issues in individual labs. Sometimes,

due to technical or other issues, no questions could be asked with clickers. Consid-

ering all lab sections over the nine weeks of the treatment period, this occurred a

total of 17 times (8 for labs assigned to High Frequency; 9 for labs assigned to Low).

This discrepancy is perhaps more serious for those labs assigned to High Frequency,

as they were essentially running at Low Frequency for those sessions. In addition to

those times when no clicker questions could be asked, there were seven times when

the High Frequency labs also ran under Low Frequency conditions (where the ac-

tual number of questions asked with clickers in a High Frequency lab was less than

or equal to the planned number of clicker questions to be asked in Low Frequency

labs). While the conditions of the crossover experiment were less subject to technical

problems, there was confusion among GSIs that resulted in discrepancies between

the assigned and the actual condition run. Recall that there were three crossover

conditions—Low, Moderate, and High External Incentive, respectively—that were

supposed to be run for three weeks at a time and then switched according to a ran-

domly assigned sequence. While the condition to be used that week was included

at the top of the memo, there were several GSIs who missed or did not understand

this information. Two GSIs started the semester under the wrong condition; one of
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these realized their mistake and ran under the correct condition for the last week

of the three week block (the other ran the incorrect condition for the entire three

weeks). Seven GSIs did not make the switch properly at the end of the first three

week block—six missed the switch and ran at their previous status and one switched

to the wrong condition. In light of this, greater care was taken to emphasize the

second switch the week before it was to take place. Still, one GSI missed the sec-

ond switch and ran at their previous status for an additional week. Additionally,

over the course of the experiment, GSIs reported that they forgot to announce their

crossover condition to students about 6% of the time (when accounting for missing

GSI reports regarding the announcement, the percentage could be as large as 17%),

severely weakening any potential impact the External Incentive factor could have on

student behavior.

3.4 Measures

Recall that three aspects of engagement—emotional, cognitive, and behavioral—

were considered in this experiment. These were measured using various assessment

instruments and methods, including:

1. Four subscales from the Survey of Attitudes Towards Statistics (SATS) [98]:

• Affect: Positive and negative feelings about statistics

• Value: Attitudes about the usefulness, relevance, and worth of statistics in

personal and professional life

• Cognitive competence: Attitudes about the intellectual knowledge and skills

when applied to statistics

• Effort: Amount of work expended to learn statistics
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2. A survey on attitudes towards clickers, developed by the Center for Research

on Learning and Teaching (CRLT) at the University of Michigan

3. By tracking the number of participants using clickers during each class

Questions from the SATS subscales were combined with questions from the CRLT

survey on clickers to form a single assessment that was administered both prior to

and at the conclusion of the treatment period. The Affect and Value subscales were

used as measures of emotional engagement, while questions from the Cognitive Com-

petence and Effort subscales of SATS were used as measures of cognitive engagement.

Questions from the CRLT survey questions pertaining to clickers includes aspects

of both emotional and cognitive engagement. Behavioral engagement was measured

using the percent of students per lab section that used clickers under each level of

External Incentive, where two levels of “clicker use” were considered: 1) Answer-

ing at least one clicker question; 2) Answering at least 50% of the clicker questions

with the clicker remote during a given lab session. Note that is was not possible to

track individual changes in clicker use across the three levels, as there was no way to

identify individual students under the Low incentive level.

Learning was measured using several instruments from the ARTIST project:

1. Four topic scales:

• Normal Distribution

• Sampling Distributions

• Confidence Intervals

• Significance Tests

2. The Comprehensive Assessment of Outcomes in a first Statistics course (CAOS)

[31]
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The ARTIST topic scales served as proximal measures of learning—the topic was

covered in labs one week and then the corresponding topic scale was administered as

soon after the corresponding topic had been introduced as the class schedule would

allow (see Table 3.3 for the exact timeline). In contrast, CAOS is a comprehensive

exam which meant to measure longer-term learning. CAOS was administered at

four points throughout the experiment. The first administration took place during

the third week of labs, the week before the treatment period officially began. The

second and third times students completed CAOS outside of lab for extra credit;

these took place during the sixth and ninth week of labs, respectively (around the

week of each of two midterm exams). Finally, CAOS was completed during the last

week of labs for the semester. CAOS served as both a pretreatment assessment of

statistical knowledge and as a relatively distal, comprehensive measure of statistical

knowledge. Each outcome measure—the SATS, CAOS, and ARTIST topic scales—

was selected for use in this experiment because it is nationally available and has

demonstrated content validity.

Measures of the planned treatment and the actual treatment received, where

available, were also recorded. Indicators of the assigned treatment levels were coded

as +1 for both the High level of Frequency and the Off level of Clustering, and -1

for both the Low level of Frequency and the On level of Clustering. Additionally,

the actual number of clicker questions asked for each lab section was reported by the

GSI each week. It was not possible, though, to collect specific details on the actual

placement of each clicker question each week.

Finally, several student, lab, and GSI covariates were measured. Student back-

ground and demographic information included:

• Grade point average: Categorized as 1.7 to 2.6, 2.7 to 3.6, or 3.7 to 4.0
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• Year in school: Freshman, Sophomore, Junior, or Senior

• Gender: 1 if male, 0 if female

• Lecture instructor: One, Two, Three, or Four

• Calculus experience: 1 if previously completed single- or multiple-variable cal-

culus course, 0 otherwise

• Pre-calculus experience: 1 if previously completed pre-calculus or algebra course,

0 otherwise

• Credits: Number of other credit hours enrolled for during the term (not includ-

ing the 4-credits for Statistics 350)

• Work: Average number of hours worked per week for pay (not on coursework)

during the term

Lab and GSI characteristics included:

• Lab start time: Categorized as

– Early morning: 8:30 am

– Late morning: 10 or 11:30 am

– Afternoon: 1, 2:30, or 4 pm

– Evening: 5:30 or 8 pm

• Experience: Number of semesters the GSI had taught Statistics 350 prior to the

start of the experimental semester

These particular variables were identified as potentially important covariates using

two sources. Several variables were used for covariate adjustment in the studies

reviewed in Chapter II. Additional variables were identified by the course instructors

as sources of variation between students, labs or GSIs.
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3.4.1 Sample characteristics

Any student who was registered for Statistics 350 after the drop/add deadline was

eligible to participate in this study. Great care was taken to design an experiment

that would fit seamlessly into the existing lab structure. As a result, all students

were required to complete assessments for the experiment (or, in the case where

assessments were optional, all students were given the same opportunity for extra

credit). Therefore, students only had to provide consent for their data to be used

for analysis. Students were assured that there would be no work above and beyond

normal coursework and that their data would be confidential if they provided their

consent. The overall consent rate was high—1197 (94%) of the 1277 enrolled students

agreed have their data used in analyses.

Tables 3.4.1 and 3.4.1 have descriptive statistics for the covariates described above,

for the entire sample (Overall) and by treatment group (Team). Some imbalances

between the treatment groups can be seen. These likely result from the use of group

randomization—students self-selected the lab section they wanted to attend and

then entire sections were randomly assigned to treatment groups. The most notable

imbalances are with the covariates Year and GSI Experience: The Blue Team has

a disproportionately large number of Freshman and small number of Juniors and

Seniors (see Table 3.4.1); additionally, the Yellow Team has a disproportionately

larger average GSI experience (see Table 3.4.1). Covariate adjustment in analytic

regression models can easily account for any discrepancies between the treatment

groups due to the pretreatment covariates. Descriptive statistics show almost no

imbalance for the covariate Credits and only minor imbalance for the variable Hours

Worked, however, there is a large amount of missing data for Hours Worked (see

Table 3.4.1). This suggests that little would be gained from including these two
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covariates in analytic models. For each analysis undertaken, model fitting will be

employed to select relevant covariates for which to adjust (see Section 3.5).

Table 3.5: Summary of Student-level Covariates
1.7 to 2.6 2.7 to 3.6 3.7 to 4.0 N

Grade Overall 60 (5%) 748 (66%) 320 (28%) 1128
Point Greena 14 (5%) 194 (67%) 82 (28%) 290
Average Blue 12 (4%) 178 (66%) 79 (29%) 269

Orange 17 (6%) 182 (69%) 64 (24%) 263
Yellow 17 (6%) 194 (63%) 95 (31%) 306

Freshman Sophomore Junior Senior N
Overall 206 (17%) 473 (40%) 326 (27%) 189 (16%) 1194

Year Green 42 (14%) 120 (39%) 98 (32%) 45 (15%) 305
Blue 72 (26%) 116 (42%) 59 (21%) 31 (11%) 278
Orange 37 (13%) 107 (37%) 93 (32%) 51 (18%) 288
Yellow 55 (17%) 130 (40%) 76 (24%) 62 (19%) 323

Female Male N
Overall 634 (57%) 473 (43%) 1107

Gender Green 167 (58%) 121 (42%) 288
Blue 161 (60%) 107 (40%) 268
Orange 160 (60%) 105 (40%) 265
Yellow 146 (51%) 140 (49%) 286

One Two Three Four
Overall 412 (34%) 592 (49%) 53 (4%) 140 (12%) 1197

Instructor Green 94 (31%) 164 (54%) 8 (3%) 39 (13%) 305
Blue 100 (36%) 121 (43%) 9 (3%) 49 (18%) 279
Orange 81 (28%) 163 (56%) 24 (8%) 21 (7%) 289
Yellow 137 (42%) 144 (44%) 12 (4%) 31 (10%) 324

Yes No N
Completed Overall 881 (80%) 226 (20%) 1107
Calculus Green 233 (81%) 55 (19%) 288
Course Blue 213 (79%) 55 (21%) 268

Orange 203 (77%) 62 (23%) 265
Yellow 232 (81%) 54 (19%) 286

Yes No N
Completed Overall 560 (51%) 547 (49%) 1107
Pre-calculus Green 153 (53%) 135 (47%) 288
Course Blue 128 (48%) 140 (52%) 268

Orange 144 (54%) 121 (46%) 265
Yellow 135 (47%) 151 (53%) 286

Min Median Mean (SD) Max N
Overall 2 12 11.490 (1.980) 18 1113

Number of Green 3 12 11.440 (1.955) 18 286
Credits Blue 2 12 11.580 (1.918) 18 265

Orange 3 12 11.450 (1.884) 17 262
Yellow 3 12 11.500 (2.141) 18 300

Min Median Mean (SD) Max N
Overall 0 10 10.820 (8.133) 40 500

Weekly Green 1 10 10.820 (7.689) 35 126
Hours Blue 0 10 11.500 (9.111) 40 113
Worked Orange 0 10 11.450 (8.338) 40 121

Yellow 0 8 9.707 (7.445) 40 140
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
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Table 3.6: Summary of Lab and GSI-level Covariates
Early Morning Late Morning Afternoon Evening N

Lab Overall 170 (14%) 320 (27%) 497 (42%) 210 (18%) 1197
Start Greena 49 (16%) 121 (40%) 111 (36%) 24 (8%) 305
Time Blue 72 (26%) 50 (18%) 95 (34%) 62 (22%) 279

Orange 25 (9%) 74 (26%) 163 (56%) 27 (9%) 289
Yellow 24 (7%) 75 (23%) 128 (40%) 97 (30%) 324

Min Median Mean (SD) Max N
GSI Overall 0.0 1.0 2.2 (1.7) 6.0 1197
Experience Green 1.0 1.0 1.8 (1.0) 3.0 1197

Blue 1.0 1.0 2.1 (1.2) 4.0 1197
Orange 0.0 1.0 1.5 (2.1) 6.0 1197
Yellow 1.0 3.0 3.1 (1.7) 6.0 1197

a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off ); Orange (High, On);
Yellow (High, Off ).

3.5 Analysis of the Experiment

This section presents analyses of all outcomes considered for the factorial and the

crossover experiment. Outcomes pertaining to engagement are presented first, fol-

lowed by outcomes pertaining to learning. For each analysis presented, the assigned

treatment, rather than the treatment actually received, was analyzed to avoid bias

in the estimated effects that could result from infidelity in the treatment implemen-

tation.

3.5.1 Emotional and cognitive engagement outcomes: The Survey of Attitudes To-

ward Clickers and Statistics

Recall that statements on the attitude survey were drawn from the Survey of

Attitudes Towards Statistics (SATS) [98], as well as a survey on attitudes towards

clickers developed by the Center for Research on Learning and Teaching (CRLT) at

the University of Michigan. The Affect and Value subscales of the SATS were used

as measures of emotional engagement. Statements from the Cognitive Competence

and Effort subscales of the SATS were used as measures of cognitive engagement.

Statements from the CRLT survey pertaining to clickers included aspects of both

emotional and cognitive engagement. Students rated their agreement with each

statement on a 5-point Likert scale ranging from Strongly Disagree (1) to Strongly
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Agree (5), with a rating of “3” indicated neutrality (“Neither agree nor disagree”).

statements that were negatively worded were reverse coded for the analyses.

Students completed the entire attitudinal survey both before and after the treat-

ment period. Table 3.5.1 presents descriptive statistics, including Cronbach’s α, of

the pretreatment mean ratings for each of the five subscales for the entire sample

(Overall) as well as by treatment group (Team). Table 3.5.1 presents the same in-

formation for the post treatment average ratings. Cronbach’s α [86] is a measure of

the reliability of the attitude ratings for this sample. Values range between 0 and 1,

with higher values indicating better reliability. It is commonly held that values of

α ≥ 0.70 demonstrate acceptable reliability. With the exception of the pretreatment

Effort subscale, the values of Cronbach’s α for this data are indeed high. Students

were apparently not very consistent in their initial responses to the four items on

Effort subscale, but these reliabilities improve to reasonable levels on the post treat-

ment survey. Interestingly, the average of the mean ratings is largest for the Effort

subscale at both timepoints, while average ratings were lowest for the Affect subscale

both before and after treatment. For all scales, there appears to be a slight decrease

in the average of the mean ratings from pre to post treatment. Similar decreases

have been observed using the SATS before [97]. Also, it is possible that this decrease

was influenced by grades on the course midterms: Students had received their scores

on the second midterm (which are typically lower than scores on the first midterm;

during the experimental semester, the average score decreased by three points from

midterm one to midterm two) the week before completing the post treatment survey.
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Table 3.7: Descriptive Statistics for Average Ratings on the Pretreatment Attitude Survey
Teama Cronbach’s α Min Median Mean (SD) Max N
Overall 0.82 1.00 3.50 3.42 (0.72) 5.00 1160

Affect Green 0.84 1.00 3.50 3.43 (0.73) 5.00 1148
(Mean of Blue 0.83 1.00 3.50 3.44 (0.73) 5.00 1149
6 Statements) Orange 0.82 1.33 3.50 3.41 (0.73) 5.00 1157

Yellow 0.80 1.17 3.50 3.40 (0.69) 5.00 1149
Overall 0.86 1.89 3.78 3.80 (0.56) 5.00 1157

Value Green 0.86 2.11 3.78 3.76 (0.58) 5.00 1144
(Mean of Blue 0.84 1.89 3.89 3.87 (0.52) 5.00 1147
9 Statements) Orange 0.86 2.00 3.78 3.75 (0.58) 5.00 1152

Yellow 0.86 2.00 3.78 3.80 (0.56) 5.00 1145
Overall 0.85 1.17 3.83 3.76 (0.66) 5.00 1155

Cognitive Competence Green 0.86 1.17 3.83 3.79 (0.69) 5.00 1141
(Mean of Blue 0.85 1.83 3.83 3.77 (0.66) 5.00 1144
6 Statements) Orange 0.82 2.00 3.83 3.80 (0.63) 5.00 1150

Yellow 0.84 1.33 3.83 3.70 (0.67) 5.00 1143
Overall 0.49 1.75 4.50 4.40 (0.52) 5.00 1163

Effort Green 0.46 2.00 4.50 4.38 (0.51) 5.00 1153
(Mean of Blue 0.43 2.00 4.50 4.46 (0.50) 5.00 1152
4 Statements) Orange 0.57 1.75 4.50 4.40 (0.53) 5.00 1159

Yellow 0.46 2.00 4.25 4.35 (0.53) 5.00 1154
Overall 0.90 1.00 3.75 3.67 (0.62) 5.00 1136

Clickers Green 0.90 1.00 3.75 3.66 (0.61) 5.00 1118
(Mean of Blue 0.89 2.08 3.75 3.72 (0.58) 5.00 1120
12 Statements) Orange 0.91 1.17 3.75 3.67 (0.64) 5.00 1128

Yellow 0.90 1.08 3.67 3.62 (0.63) 5.00 1117
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off ); Orange (High, On);

Yellow (High, Off ).

Emotional Engagement

Figure 3.1 plots the average of the mean post treatment ratings by treatment

factor for the Affect and Value subscales of the SATS, used to measure emotional

engagement. In both plots, there appears to be an interaction. For the Affect

subscale, this interaction is qualitative—that the On level of Clustering appears

better than Off when Frequency is High, but not when Frequency is Low. In contrast,

for the Value subscale, the Off level of Clustering is always better than On, with the

difference being larger for the Low level of Frequency. However, the magnitude of

the differences between the team averages for each scale are extremely small. To test

if there is a significant effect of Frequency and Clustering on emotional engagement,

two hierarchical linear models (HLM) were fit including nested random effects for

GSI and lab section. For the first model, the response was the average rating on

the Affect subscale; for the second, the response was based on the Value subscale.
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Table 3.8: Descriptive Statistics for Average Ratings on the Post treatment Attitude Survey
Teama Cronbach’s α Min Median Mean (SD) Max N
Overall 0.83 1.00 3.50 3.37 (0.77) 5.00 1118

Affect Green 0.84 1.00 3.50 3.35 (0.78) 5.00 1100
(Mean of Blue 0.84 1.00 3.50 3.38 (0.78) 5.00 1105
6 Statements) Orange 0.84 1.00 3.50 3.41 (0.79) 5.00 1091

Yellow 0.82 1.00 3.50 3.34 (0.74) 5.00 1097
Overall 0.86 1.00 3.67 3.66 (0.62) 5.00 1105

Value Green 0.86 1.00 3.67 3.63 (0.61) 5.00 1085
(Mean of Blue 0.86 2.22 3.78 3.73 (0.57) 5.00 1088
9 Statements) Orange 0.89 1.78 3.78 3.65 (0.66) 5.00 1074

Yellow 0.85 1.89 3.67 3.66 (0.62) 5.00 1081
Overall 0.83 1.17 3.67 3.63 (0.69) 5.00 1116

Cognitive Competence Green 0.82 1.17 3.83 3.63 (0.67) 5.00 1100
(Mean of Blue 0.83 1.33 3.67 3.65 (0.71) 5.00 1102
6 Statements) Orange 0.83 1.67 3.83 3.67 (0.70) 5.00 1089

Yellow 0.81 1.17 3.67 3.56 (0.67) 5.00 1092
Overall 0.88 1.00 4.25 4.05 (0.74) 5.00 1122

Effort Green 0.94 1.00 4.25 4.06 (0.77) 5.00 1104
(Mean of Blue 0.83 1.00 4.25 4.06 (0.72) 5.00 1110
4 Statements) Orange 0.89 1.25 4.25 4.03 (0.76) 5.00 1095

Yellow 0.82 1.50 4.00 4.04 (0.71) 5.00 1104
Overall 0.92 1.08 3.75 3.63 (0.69) 5.00 1101

Clickers Green 0.91 1.25 3.75 3.61 (0.68) 4.92 1081
(Mean of Blue 0.92 1.17 3.75 3.62 (0.72) 4.92 1088
12 Statements) Orange 0.92 1.33 3.75 3.63 (0.69) 5.00 1068

Yellow 0.92 1.08 3.83 3.66 (0.69) 5.00 1071
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off ); Orange (High, On);

Yellow (High, Off ).

Use of hierarchical modeling is necessary throughout the analyses here to account for

complexities in the design. Specifically, students were nested within a lab section,

lab sections were nested within a GSI, and GSI was the unit of random assignment.

Additionally, to account for baseline differences between treatment groups that could

exist due to the use of group randomization, several potential confounding variables

were considered for inclusion in this model. A two-step backward selection procedure

was used to identify important covariates:

1. All covariates described in Section 3.4 were initially included in the model.

(Recall from the discussion in this section that the variables Credits and Hours

worked were not considered for inclusion in the full model.) Covariates were

included in the model in their order of believed importance (i.e. the variables

believed to have the largest potential to impact the analysis were included in

the model first; those believed to have smaller potential to impact the analysis
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Figure 3.1: Average Mean Post Treatment Ratings by Design Factor for Scales Measuring Emotional Engagement.

In each plot, the solid line corresponds to Clustering On, the dashed line to Clustering Off. Both plots

are scaled to have the same range of 0.2 points on the y-axis.

were included last). Covariates that were insignificant at the 10% level were

individually dropped from the model until only significant covariates remained,

subject to the following constraints:

• The pretreatment measures of statistical knowledge (percent correct on the

first CAOS) and general attitude toward statistics and clickers (average rat-

ing from the entire pretreatment attitudinal survey) could not be dropped.

Note that these covariates were each centered at their respective overall

mean.

• Levels of categorical variables were dummy (0/1) coded so that the largest

category was the reference group. If one level of a categorical variable was

significant, the entire variable was included in the model.

• Indicators of the crossover sequence that a particular GSI had been random-

ized to could not be dropped. These were included in the model to account
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for any effects of the treatment factor External Incentive, which were not of

particular interest when estimating the effects of Frequency and Clustering

but needed to be accounted for.

• The main effects and interaction of Frequency and Clustering could not

be dropped. To establish statistical significance of these effects, a 5% sig-

nificance level used for the main effects and a 10% level was used for the

interaction. (Also, recall that these effects were coded as -1/+1, not as

0/1.)

2. After all non-significant covariates were removed, the Akaike information cri-

terion (AIC) [6] for the reduced model was compared to the AIC for the full

model, and the one with the smaller AIC was taken as the final model. AIC is

a tool for model comparison and selection that tries to balance model fit with

the number of parameters. The model with the lowest AIC has the best fit for

the smallest number of parameters.

Table 3.9 shows results for the hierarchical models for the Affect and Value sub-

scales resulting from this selection procedure. For the model of students’ affective

feelings toward statistics, the estimated effects were 0.045 points for Frequency, -

0.071 points for Clustering, and -0.003 points for their interaction (see top half of

Table 3.9). The estimated variance components for this model were σ̂gsi = 0.062,

σ̂lab ≈ 0 , and σ̂ε = 0.619. For the model of students’ value of statistics, the esti-

mated effects were 0.017 points for Frequency, 0.004 points for Clustering, and 0.020

points for their interaction (see bottom half of Table 3.9). The estimated variance

components for this model were σ̂gsi = 0.019, σ̂lab = 0.027 , and σ̂ε = 0.514. In both

cases, the estimated effects are non-significant and each of the estimated variance

components is small. The largest relative contribution to variation in each model
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is not surprisingly due to residual factors, including differences between individual

students.

Table 3.9: HLM Results for Subscales Measuring Emotional Engagement
Affect Subscale

Estimate Std.Error DF P-value
Intercept 3.157 0.074 877 0.000
Pretreatment CAOS 0.012 0.002 877 0.000
Pretreatment Attitudes 0.913 0.053 877 0.000
Year: Freshman -0.037 0.060 877 0.533
Year: Junior -0.121 0.052 877 0.021
Year: Senior 0.070 0.063 877 0.269
Calculus 0.300 0.054 877 0.000
Crossover Sequence 2 0.072 0.076 17 0.353
Crossover Sequence 3 0.051 0.074 17 0.506
Crossover Sequence 4 0.020 0.072 17 0.785
Frequency 0.045 0.025 17 0.383
Clustering -0.071 0.028 17 0.225
Interaction -0.003 0.026 17 0.949

Value Subscale
Estimate Std.Error DF P-value

Intercept 3.577 0.062 863 0.000
Pretreatment CAOS 0.006 0.002 863 0.000
Pretreatment Attitudes 0.773 0.044 863 0.000
Grade Point Average: Low 0.027 0.086 863 0.757
Grade Point Average: High 0.074 0.039 863 0.058
Year: Freshman -0.052 0.049 863 0.292
Year: Junior -0.002 0.043 863 0.971
Year: Senior 0.194 0.053 863 0.000
Gender: Male -0.169 0.035 863 0.000
Calculus 0.076 0.045 863 0.089
Crossover Sequence 2 0.204 0.057 17 0.002
Crossover Sequence 3 0.063 0.055 17 0.269
Crossover Sequence 4 0.037 0.054 17 0.498
Frequency 0.017 0.018 17 0.658
Clustering 0.004 0.021 17 0.923
Interaction 0.020 0.019 17 0.608
Note: Estimates reported for Frequency, Clustering, and the Interaction reflect the
coding of these factors. That is, since these factors were coded as -1/+1, the
estimated regression coefficient was multiplied by two to find the effect of going
from the lower level of the factor to the higher level.

Cognitive Engagement

Figure 3.2 plots the mean post treatment ratings by design factor for the Cognitive

Competence and Effort subscales of the SATS, used to measure cognitive engage-

ment. As with the subscales measuring emotional engagement, there appears to be

an interaction in both plots, though it is slight for the Effect subscale. In fact, the

magnitude of the differences between means for the Effort subscale are nearly zero.

For the Cognitive Competence subscale, On level of Cluster actually appears better
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than Off for the High level of Frequency and no worse than Off for the Low level of

Frequency. Here again the differences in means is small, indicating that there may

not be a significant difference between the treatment groups.
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Figure 3.2: Average Mean Post Treatment Ratings by Design Factor for Scales Measuring Cognitive Engagement.

In each plot, the solid line corresponds to Clustering On, the dashed line to Clustering Off. Both plots

are scaled to have the same range of 0.2 points on the y-axis.

Hierarchical models were fit using the average ratings for each of these subscales

as responses, and following the selection procedure described in the previous sub-

section. Table 3.10 provides results for the final models. For the model of students’

percieved competence in statistical ability, the estimated effects were 0.015 points for

Frequency, -0.073 points for Clustering, and 0.027 points for their interaction. For

the model of students’ effort expended in completing statistical tasks, the estimated

effects were nearly zero points for Frequency, -0.054 points for Clustering, and 0.049

points for their interaction. None of the effects for these models were significant. The

estimated variance components for each model were small, with the largest being for

residual variation: σ̂gsi = 0.056, σ̂lab ≈ 0, and σ̂ε = 0.556 for Cognitive Competence
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and σ̂gsi = 0.070, σ̂lab = 0.58, and σ̂ε = 0.687 for Effort.

Table 3.10: HLM Results for Subscales Measuring Cognitive Engagement
Cognitive Competence Subscale

Estimate Std.Error DF P-value
Intercept 3.455 0.065 877 0.000
Pretreatment CAOS 0.010 0.002 877 0.000
Pretreatment Attitudes 0.713 0.047 877 0.000
Grade Point Average: Low -0.180 0.090 877 0.046
Grade Point Average: High 0.115 0.042 877 0.006
Calculus 0.208 0.048 877 0.000
Lab Start Time: Early Morning 0.155 0.070 23 0.036
Lab Start Time: Late Morning 0.034 0.050 23 0.507
Lab Start Time: Evening -0.021 0.060 23 0.726
Crossover Sequence 2 -0.025 0.072 17 0.737
Crossover Sequence 3 0.028 0.067 17 0.680
Crossover Sequence 4 -0.009 0.065 17 0.891
Frequency 0.0015 0.022 17 0.749
Clustering -0.073 0.026 17 0.172
Interaction -0.027 0.024 17 0.579

Effort Subscale
Estimate Std.Error DF P-value

Intercept 4.191 0.080 870 0.000
Pretreatment CAOS -0.002 0.002 870 0.343
Pretreatment Attitudes 0.252 0.059 870 0.000
Grade Point Average: Low -0.221 0.111 870 0.047
Grade Point Average: High 0.223 0.052 870 0.000
Year: Freshman 0.086 0.073 870 0.241
Year: Junior -0.029 0.060 870 0.634
Year: Senior -0.142 0.073 870 0.052
Gender: Male -0.278 0.048 870 0.000
Instructor 1 -0.121 0.057 870 0.035
Instructor 3 -0.151 0.125 870 0.227
Instructor 4 -0.145 0.080 870 0.069
Lab Start Time: Early Morning -0.081 0.095 23 0.402
Lab Start Time: Late Morning -0.132 0.067 23 0.062
Lab Start Time: Evening 0.004 0.086 23 0.959
Crossover Sequence 2 0.142 0.095 17 0.153
Crossover Sequence 3 0.130 0.088 17 0.157
Crossover Sequence 4 0.026 0.086 17 0.761
Frequency 0.0004 0.029 17 0.994
Clustering -0.054 0.033 17 0.433
Interaction 0.049 0.031 17 0.437
Note: Estimates reported for Frequency, Clustering, and the Interaction reflect the
coding of these factors. That is, since these factors were coded as -1/+1, the
estimated regression coefficient was multiplied by two to find the effect of going
from the lower level of the factor to the higher level.

Attitudes Towards Clickers

Figure 3.3 plots the mean post treatment ratings by design factor for those state-

ments from the CRLT survey measuring attitude toward clickers. These statements

include aspects of both emotional and cognitive engagement, and they are specific to

the technology used in this experiment. Again, there there appears to be slight evi-

dence of an interaction between Frequency and Clustering, but of small magnitude.
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A hierarchical model confirms that the effects are not significant. The estimated

effects were were 0.050 points for Frequency, 0.004 points for Clustering, and 0.069

points for their interaction. Additionally, the estimated variance components are

small (σ̂gsi = 0.090, σ̂lab ≈ 0, and σ̂ε = 0.607).

3.
50

3.
55

3.
60

3.
65

3.
70

Attitude Toward Clickers Subscale

Frequency

A
ve

ra
ge

 o
f M

ea
n 

R
at

in
g

High Low

Figure 3.3: Average Mean Post Treatment Ratings by Design Factor for Attitude Toward Clickers. The solid line

corresponds to Clustering On, the dashed line to Clustering Off. The y-axis is scaled to a range of 0.2

points, as in Figures 3.1 and 3.2.

Examining Individual Attitude Statements

In the analyses above, average rating per student was treated as a continuous re-

sponse variable. While this is common practice, and provides a good idea of “overall”

attitudes, it does not account for the fact that the underlying ratings for individual

statements are in fact ordinal. To account for this, hierarchical ordinal regressions

using the cumulative probit model were run separately for each of the 37 statements

on the attitude survey. A modified version of the backward selection procedure pre-

sented earlier was used to identify important covariates to include in the model. First,

all potential covariates were included model (note that the pretreatment rating for a
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Table 3.11: HLM Results for Attitude Toward Clickers Subscale
Estimate Std.Error DF P-value

Intercept 3.643 0.070 860 0.000
Pretreatment CAOS 0.001 0.002 860 0.604
Pretreatment Attitudes 0.734 0.053 860 0.000
Year: Freshman 0.173 0.061 860 0.005
Year: Junior 0.011 0.053 860 0.833
Year: Senior -0.028 0.065 860 0.667
Gender: Male -0.191 0.042 860 0.000
Instructor 1 0.027 0.050 860 0.591
Instructor 3 0.028 0.110 860 0.800
Instructor 4 -0.125 0.070 860 0.073
Crossover Sequence 2 0.054 0.086 17 0.540
Crossover Sequence 3 0.090 0.085 17 0.307
Crossover Sequence 4 0.073 0.082 17 0.390
Frequency 0.050 0.028 17 0.392
Clustering 0.004 0.032 17 0.953
Interaction 0.069 0.030 17 0.258
Note: Estimates reported for Frequency, Clustering, and the Interaction reflect the
coding of these factors. That is, since these factors were coded as -1/+1, the
estimated regression coefficient was multiplied by two to find the effect of going
from the lower level of the factor to the higher level.

particular question was included, rather than average pretreatment attitude rating).

Second, any covariates that were not significant at the 10% level were removed from

the model, subject to the constraints described earlier. Seven statements showed

significant effects of the design factors, using a 5% level for the main effects and a

10% level for the interaction:

1. The clicker questions asked in this lab helped me learn course concepts.

2. I liked using the clickers.

3. I learned more in this lab due to the use of clickers that I would have learned

without them.

4. I am scared by statistics.

5. I made a lot of math errors in statistics.

6. I will have no application for statistics in my profession.

7. I use statistics in my everyday life.

For each of these statements, results from the hierarchical ordinal models, as well

as the probabilities of giving a particular rating for that statement on the post
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treatment survey, are provided in Tables 3.5.1 to 3.5.1. In each table, the probabilities

are calculated within each treatment group (Team), for a student who earned the

average percent correct on the pretreatment CAOS, provided a neutral rating for the

corresponding statement on the pretreatment survey, and is in the reference category

for each other covariate. For example, in Table 3.5.1, for a female student assigned

to the first crossover condition that received the average score on the first CAOS

and provided a neutral pretreatment rating to the statement “The clicker questions

asked in this lab helped me learn course concepts,” the probability of providing a

post treatment rating of “Agree” to the same statement is 0.50 if that student was

assigned to the Green Team, 0.46 if she was assigned to the Blue Team, etc.

Table 3.12: Results for the Statement: The clicker questions asked in this lab helped me learn course concepts
Estimate Std.Error P-value

Threshold1 0.624 0.289 0.031
Threshold2 1.487 0.281 0.000
Threshold3 2.172 0.283 0.000
Threshold4 4.050 0.300 0.000
Pretreatment CAOS 0.008 0.003 0.012
Pretreatment Rating 0.630 0.051 0.000
Gender: Male -0.230 0.079 0.003
Crossover Sequence 2 0.350 0.136 0.010
Crossover Sequence 3 0.210 0.133 0.113
Crossover Sequence 4 0.118 0.128 0.355
Frequency 0.109 0.045 0.015
Clustering -0.004 0.050 0.935
Interaction 0.065 0.047 0.165

Probabilityb of Post treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.05 0.17 0.24 0.50 0.04
Blue 0.06 0.19 0.26 0.46 0.03
Orange 0.04 0.15 0.23 0.53 0.05
Yellow 0.03 0.13 0.22 0.56 0.06
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

As can be seen in the top half of these tables, there is variation both in the

included covariates and the significant treatment factor, perhaps reflecting differences

in the statements. Some consistencies can be seen, however. For example, when

the effect of Frequency is significant at the 5% level, it is positive, indicating that
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Table 3.13: Results for the Statement: I liked using clickers
Estimate Std.Error P-value

Threshold1 1.192 0.238 0.000
Threshold2 2.062 0.239 0.000
Threshold3 3.103 0.247 0.000
Threshold4 4.709 0.265 0.000
Pretreatment CAOS 0.008 0.003 0.007
Pretreatment Rating 0.842 0.043 0.000
Year: Freshman 0.137 0.107 0.202
Year: Junior 0.015 0.093 0.875
Year: Senior -0.249 0.113 0.027
Gender: Male -0.182 0.077 0.018
Crossover Sequence 2 0.136 0.118 0.251
Crossover Sequence 3 0.010 0.114 0.932
Crossover Sequence 4 0.130 0.111 0.240
Frequency 0.058 0.039 0.130
Clustering 0.096 0.044 0.028
Interaction -0.020 0.040 0.628

Probabilityb of Post Treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.05 0.18 0.39 0.35 0.03
Blue 0.03 0.13 0.36 0.42 0.05
Orange 0.04 0.14 0.37 0.41 0.04
Yellow 0.03 0.12 0.35 0.45 0.05
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

asking more clicker questions is better. When the interaction between Frequency and

Clustering is significant at the 10% level, it is negative (see Tables 3.5.1 and 3.5.1),

consistent with Hypothesis 1 in Section 3.2. Interestingly, the effect of Clustering

(when significant at the 5% level) is positive for a statement pertaining to clickers

(“I liked using the clickers”) and negative for a statement pertaining to statistics

(“I made a lot of math errors in statistics”). It would seem unlikely that asking

all clicker questions in a row would increase the number math errors made by a

student; of course, it is plausible that this relationship is simply spurious. Pertaining

to clickers specifically, it seems as though students liked using them more when

the clicker questions were well-integrated into the lesson rather than asked in a

row. Considering the probabilities provided in the second half of these tables, the

largest probability of moving from a pretreatment rating of “Neutral” to a post

treatment rating of “Agree” is generally largest for the Yellow Team (Frequency =
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Table 3.14: Results for the Statement: I learned more using clickers than I would have learned without them
Estimate Std.Error P-value

Threshold1 0.565 0.240 0.018
Threshold2 1.611 0.239 0.000
Threshold3 2.604 0.246 0.000
Threshold4 4.017 0.259 0.000
Pretreatment CAOS 0.008 0.003 0.010
Pretreatment Rating 0.631 0.044 0.000
Crossover Sequence 2 0.139 0.114 0.223
Crossover Sequence 3 0.033 0.111 0.765
Crossover Sequence 4 0.074 0.107 0.489
Frequency 0.116 0.037 0.002
Clustering -0.027 0.042 0.515
Interaction 0.054 0.039 0.170

Probabilityb of Post Treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.05 0.21 0.38 0.33 0.04
Blue 0.06 0.25 0.38 0.28 0.03
Orange 0.03 0.19 0.37 0.36 0.05
Yellow 0.03 0.17 0.36 0.38 0.06
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

High, Clustering = Off ). For all teams and across all statements, the probability of

making this improved rating is encouragingly high—ranging from 28% to 56% and

often higher than making the change to a negative rating of “Strongly Disagree”

or “Disagree.” An exception to this (not too surprisingly) is the last statement,

“I use statistics in my everyday life.” Also calculated, but not shown here, were

the probabilities of improving from a pretreatment rating of “Disagree” to a post

treatment rating of “Agree”. While these probabilities were understandably lower

than those presented in the tables, the were still encouraging—ranging from 12% to

36% across all teams and statements (excluding the last statement).

3.5.2 Behavioral engagement outcome: Clicker use and External Incentive

GSIs were randomly assigned to one of four treatment sequences based on possible

combinations of the three levels of External Incentive the constraint that a switch

between required (External Incentive = High) and optional (External Incentive =

Moderate or Low) clicker use be made only once during the semester. The resulting
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Table 3.15: Results for the Statement: I am scared by statistics
Estimate Std.Error P-value

Threshold1 0.856 0.216 0.000
Threshold2 2.096 0.216 0.000
Threshold3 2.826 0.223 0.000
Threshold4 4.355 0.240 0.000
Pretreatment CAOS 0.014 0.003 0.000
Pretreatment Rating 0.674 0.039 0.000
Grade Point Average: Low -0.358 0.182 0.049
Grade Point Average: High 0.092 0.085 0.280
Calculus 0.270 0.097 0.005
Crossover Sequence 2 -0.036 0.118 0.757
Crossover Sequence 3 0.051 0.114 0.654
Crossover Sequence 4 -0.237 0.111 0.033
Frequency -0.005 0.038 0.897
Clustering -0.073 0.044 0.093
Interaction -0.096 0.041 0.018

Probabilityb of Post Treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.03 0.24 0.28 0.41 0.05
Blue 0.03 0.22 0.27 0.42 0.06
Orange 0.02 0.19 0.26 0.46 0.07
Yellow 0.04 0.28 0.28 0.36 0.04
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

sequences were:

1. Low – Moderate – High

2. Moderate – Low – High

3. High – Low – Moderate

4. High – Moderate – Low

Two analyses of clicker use were performed. For the first, clicker use was defined

the number of students answering at least one clicker question during a given week,

weighted to account for varying lab sizes. For the second, clicker use was defined as

the number of students answering at least 50% of the clicker questions during a given

week, again weighted to account for varying lab sizes. Each of these is discussed in

turn below.
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Table 3.16: Results for the Statement: I made a lot of math errors in statistics
Estimate Std.Error P-value

Threshold1 0.038 0.234 0.870
Threshold2 1.400 0.230 0.000
Threshold3 2.080 0.235 0.000
Threshold4 3.633 0.247 0.000
Pretreatment CAOS 0.010 0.003 0.002
Pretreatment Rating 0.478 0.042 0.000
Grade Point Average: Low -0.320 0.181 0.077
Grade Point Average: High 0.145 0.083 0.082
Year: Freshman 0.122 0.105 0.244
Year: Junior -0.157 0.093 0.089
Year: Senior 0.076 0.112 0.498
Calculus 0.181 0.096 0.059
Crossover Sequence 2 -0.107 0.116 0.358
Crossover Sequence 3 0.057 0.113 0.612
Crossover Sequence 4 -0.212 0.110 0.055
Frequency 0.011 0.038 0.769
Clustering -0.097 0.043 0.025
Interaction -0.040 0.040 0.315

Probabilityb of Post Treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.02 0.25 0.26 0.42 0.05
Blue 0.03 0.28 0.26 0.38 0.04
Orange 0.02 0.22 0.25 0.45 0.06
Yellow 0.04 0.30 0.26 0.37 0.04
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

Students answering at least one clicker question

Table 3.5.2 shows the proportion of students in each sequence (as defined above)

who answered at least one clicker question for a particular week of the semester

(recall that weeks 4–12 of the experimental semester defined the treatment period).

Figure 3.4 plots the same information. All sequences show some decrease in the

proportion of users over the course of the treatment period, though the magnitude

of these decreases is often small. Sequence 4, where the level of External Incentive

steadily decreases from the beginning to the end of the treatment period, shows

the largest decline in clicker use—from over 90% use when clickers were required

(External Incentive = High) to less than 70% use when clicker use was anonymous

(External Incentive = Low). This trend certainly is not surprising, as grades are a

powerful motivator for students to use clickers when they were required, but there is
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Table 3.17: Results for the Statement: I will have no application for statistics in my profession
Estimate Std.Error P-value

Threshold1 1.013 0.264 0.000
Threshold2 2.033 0.259 0.000
Threshold3 2.983 0.265 0.000
Threshold4 4.691 0.282 0.000
Pretreatment CAOS 0.011 0.003 0.001
Pretreatment Rating 0.732 0.049 0.000
Year: Freshman -0.066 0.107 0.539
Year: Junior -0.029 0.095 0.758
Year: Senior 0.239 0.115 0.039
Gender: Male -0.316 0.078 0.000
Calculus 0.261 0.097 0.007
Crossover Sequence 2 0.259 0.120 0.031
Crossover Sequence 3 0.199 0.116 0.085
Crossover Sequence 4 0.024 0.112 0.833
Frequency -0.025 0.039 0.514
Clustering -0.009 0.044 0.841
Interaction -0.069 0.041 0.089

Probabilityb of Post Treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.04 0.20 0.36 0.38 0.03
Blue 0.03 0.17 0.35 0.42 0.03
Orange 0.04 0.18 0.35 0.40 0.03
Yellow 0.05 0.21 0.36 0.35 0.02
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

no accountability when clicker use was anonymous. For sequence 3, there is a sharp

drop-off in clicker use during the final period of the crossover experiment (week 10–

12), when the level of External Incentive was Moderate for this group. Apparently,

even the tracking of individual student’s clicker use was not enough incentive to use

clickers by the end of the term.

To explore if External Incentive had any significant effect on behavioral engage-

ment, as measured through students’ self-selected clicker use, a hierarchical linear

model with nested random effects for GSI and lab section was fit accounting for

sequence, period and week effects. It was not possible to include individual student-

level covariates in this model, as there was no way to identify individual students

under the Low level of External Incentive. Therefore, the model fitting procedure

for this outcome was:

1. The GSI and lab level covariates described in Section 3.4 were initially included
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Table 3.18: Results for the Statement: I use statistics in my everyday life
Estimate Std.Error P-value

Threshold1 0.274 0.233 0.240
Threshold2 1.811 0.233 0.000
Threshold3 2.930 0.240 0.000
Threshold4 4.477 0.263 0.000
Pretreatment CAOS 0.002 0.003 0.433
Pretreatment Rating 0.602 0.045 0.000
Calculus 0.338 0.095 0.000
Lab Start Time: Early Morning -0.013 0.125 0.915
Lab Start Time: Late Morning 0.011 0.093 0.909
Lab Start Time: Evening -0.214 0.109 0.050
Crossover Sequence 2 0.138 0.124 0.264
Crossover Sequence 3 0.060 0.113 0.599
Crossover Sequence 4 0.033 0.110 0.760
Frequency 0.077 0.038 0.042
Clustering 0.052 0.043 0.233
Interaction 0.024 0.040 0.554

Probabilityb of Post Treatment Rating
Teama Strongly Disagree Disagree Neutral Agree Strongly Agree
Green 0.06 0.43 0.37 0.13 0.00
Blue 0.05 0.42 0.38 0.14 0.00
Orange 0.05 0.40 0.39 0.15 0.01
Yellow 0.04 0.36 0.41 0.19 0.01
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).
b Probabilities are calculated for students with the average score of the

pretreatment CAOS, a neutral rating for the corresponding pretreatment
statement, and in the reference category for all other covariates.

Table 3.19: Proportion of Students Answering At Least One Clicker Question
Week

Sequencea 4 5 6 7 8 9 10 11 12
1 0.916 0.911 0.869 0.850 0.835 0.818 0.827 0.869 0.869
2 0.896 0.921 0.921 0.869 0.849 0.869 0.865 0.883 0.876
3 0.918 0.938 0.913 0.851 0.831 0.817 0.826 0.717 0.722
4 0.911 0.953 0.937 0.824 0.849 0.849 0.741 0.689 0.640

a The sequences are: 1 (Low-Mod-High External Incentive); 2 (Mod-Low-High);
3 (High-Low-Mod); 4 (High-Mod-Low)

in the model. Covariates that were insignificant at the 10% level were individ-

ually dropped from the model until only significant covariates remained.

• Indicators of the treatment group from the factorial experiment that a par-

ticular GSI had been randomized to could not be dropped. These were

included in the model to account for any effects of the design factors Fre-

quency and Clustering, which were not of particular interest when estimat-

ing the effects of External Incentive but needed to be accounted for.

• Indicators of the Moderate and High levels of External Incentive (using the

Low level as the reference group) could not be dropped.



74

Week

P
ro

po
rt

io
n

4 5 6 7 8 9 10 11 12

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 3.4: Proportion of Students Answering At Least One Clicker Question. The solid represents the proportion,
for each week of the treatment period, of students in sequence 1 (Low-Mod-High External Incentive)
who answered at least one clicker question; the dashed line represents the corresponding proportions
for students in sequence 2 (Mod-Low-High); the dotted line represents sequence 3 (High-Low-Mod);
and the dashed and dotted line represents sequence 4 (High-Mod-Low).

2. After all non-significant covariates were removed, the Akaike information crite-

rion (AIC) for the reduced model was compared to the AIC for the full model.

The model with the smaller AIC was taken as the final model.

The response for this model was the number of students in each lab section answering

at least one clicker question for a given week, with weights equal to the number of

students in attendance for that section that week. (When attendance numbers were

missing for a particular lab section on a given week, weights were set equal to the

number of students enrolled in that section after the drop/add deadline. Since this

number should be greater than or equal to actual attendance figures each week, this
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should be a conservative estimate of the appropriate sample size.) Results from this

model are shown in Table 3.20. It can be seen that the estimated number of clicker

users significantly increases with each level of External Incentive: 0.751 and 1.792

additional students used clickers to answer at least one question under the Moderate

and High levels, respectively, of External Incentive as compared to under the Low

level. The largest sources of variation is due to GSI, with variation due to lab a close

second: σ̂gsi = 1.958, σ̂lab = 1.779 and σ̂ε = 0.478.

Table 3.20: HLM Results for Behavioral Engagement—Number of Students Answering At Least One Clicker Ques-
tion

Estimate Std.Error DF P-value
Intercept 20.91571 1.497912 308 0.000
Team: Blue -0.718 1.513 17 0.641
Team: Yellow 0.027 1.493 17 0.986
Team: Orange 0.857 1.409 17 0.551
Crossover Sequence 2 0.614 1.537 17 0.694
Crossover Sequence 3 -1.463 1.522 17 0.350
Crossover Sequence 4 -1.465 1.451 17 0.327
Period 2 -1.069 0.571 308 0.062
Period 3 -3.588 0.940 308 0.000
Week 0.032 0.150 308 0.831
Incentive: Moderate 0.751 0.299 308 0.013
Incentive: High 1.792 0.332 308 0.000

Students answering at least 50% of the clicker questions

Table 3.5.2 and Figure 3.5 show the proportion of students in each sequence who

answered at least 50% of the clicker questions for a particular week of the semester.

Due to the stricter definition for clicker use, the proportions are understandably

lower for each sequence in each week than with the previous definition of clicker

use. As previously, however, all sequences show some decrease in the proportion of

users over the course of the treatment period, with Sequences 3 and 4 showing the

largest declines. Here, the sharp decline in clicker use for sequence 3 occurs during

the second period of the crossover experiment (weeks 7–9, when the level of External

Incentive was Low for this group) and continues through the final period (weeks

10–12; Moderate External Incentive).
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Table 3.21: Proportion of Students Answering At Least 50% of the Clicker Questions
Week

Sequencea 4 5 6 7 8 9 10 11 12
1 0.865 0.857 0.841 0.825 0.804 0.791 0.808 0.853 0.844
2 0.879 0.900 0.901 0.838 0.824 0.838 0.834 0.862 0.853
3 0.843 0.899 0.905 0.728 0.760 0.747 0.768 0.674 0.684
4 0.893 0.946 0.921 0.816 0.806 0.801 0.683 0.644 0.597

a The sequences are: 1 (Low-Mod-High External Incentive); 2 (Mod-Low-High);
3 (High-Low-Mod); 4 (High-Mod-Low)

Again a hierarchical linear model, weighted by the number of students in atten-

dance for a particular lab section and week, was fit. Here the response was the

number of students in each lab section answering at least 50% of the clicker ques-

tions for a given week. Results from this model are shown in Table 3.22. Consistent

with previous findings, the estimated number of clicker users significantly increases

with each level of External Incentive after accounting for sequence, period, and week

effects: 1.275 and 2.347 additional students used clickers to answer at least 50% of

the clicker questions under the Moderate and High levels, respectively, of External

Incentive as compared to under the Low level. Here GSI and lab represent almost

equally large sources of variation: σ̂gsi = 1.991, σ̂lab = 1.941 and σ̂ε = 0.561.

Table 3.22: HLM Results for Behavioral Engagement—Number Answering At Least 50% of the Clicker Questions
Estimate Std.Error DF P-value

Intercept 19.407 1.626 308 0.000
Team: Blue -0.827 1.587 17 0.609
Team: Yellow -0.968 1.566 17 0.545
Team: Orange 0.619 1.477 17 0.680
Crossover Sequence 2 0.658 1.615 17 0.689
Crossover Sequence 3 -1.900 1.598 17 0.251
Crossover Sequence 4 -1.712 1.521 17 0.276
Period 2 -1.780 0.671 308 0.008
Period 3 -4.744 1.105 308 0.000
Week 0.206 0.177 308 0.245
Incentive: Moderate 1.275 0.351 308 0.000
Incentive: High 2.347 0.390 308 0.000

3.5.3 Learning outcome: The Comprehensive Assessment of Outcomes in a first

course in Statistics

The primary measure of learning for this experiment was the Comprehensive As-

sessment of Outcomes in a first course in Statistics (CAOS) instrument. Students
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Figure 3.5: Proportion of Students Answering At Least 50% of the Clicker Questions. The solid represents the
proportion, for each week of the treatment period, of students in sequence 1 (Low-Mod-High External
Incentive) who answered at least 50% of the clicker questions; the dashed line represents the corre-
sponding proportions for students in sequence 2 (Mod-Low-High); the dotted line represents sequence
3 (High-Low-Mod); and the dashed and dotted line represents sequence 4 (High-Mod-Low).

completed CAOS four times throughout the term. The first, which was considered

as a pretreatment measure of statistical understanding, took place during the third

lab session. This was done to accommodate the drop/add period at the start of the

semester, during which the course roster changes often. After the drop/add deadline

had passed, course enrollment was fixed (with the exception of a handful of students

who dropped late), making it more feasible to regularly collect measurements on

the students. By the time they completed the first CAOS, students had learned

about graphical and numeric data summaries, including the mean, standard devia-

tion, quartiles, range, histograms and boxplots. Based on this, students could have
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correctly answered about 30% of the 40 CAOS questions; in actuality, students on

average correctly answered about 52% of the questions at this time (see Table 3.23).

All students were required to complete the first and final administrations of CAOS.

Completion of the second and third installments was optional; students were awarded

a small amount of extra credit for answering most of the questions. Extra credit was

added to the corresponding midterm exam score (i.e. two points were added to the

first midterm score for completing the second CAOS; two points were added to the

second midterm score for completing the third CAOS). Descriptive statistics for each

of the CAOS exams, for the entire sample (Overall) and by treatment group (Team),

are given in Table 3.23. While the values of Cronbach’s α are just below the conven-

tional threshold of 0.70 for the pretreatment CAOS, the values improve to acceptable

levels for the remaining time points. The treatment groups had roughly equivalent

scores on the first CAOS, with the Green Team (Frequency = Low, Clustering = Off )

having a slightly higher mean than the other teams. Overall, the average CAOS score

increased at each assessment period, increasing by 13.7% (equivalent to 5 and a half

points) from pre- to post treatment. It can also be seen that the number of students

completing the second and third CAOS assessments was quite a bit lower than the

number completing the first and final CAOS. For this reason, the final installment

of CAOS was the primary outcome of interest, adjusting for the pretreatment CAOS

score.

Figure 3.6 plots the average percent correct on the final CAOS by treatment

factor. Interestingly, the lines in this picture appear parallel, indicating that there

is no interaction between Frequency and Clustering. The Low level of Frequency

always appears to be better than the High level, and the Off level of clustering

always appears to be better than On. To test if Frequency and Clustering had
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Table 3.23: Descriptive Statistics for CAOS
Teama Cronbach’s α Min Median Mean (SD) Max N
Overall 0.67 7.5 50.0 52.1 (12.3) 92.5 1163
Green 0.69 17.5 55.0 54.0 (12.6) 87.5 1150

First CAOS Blue 0.67 7.5 50.0 51.5 (12.4) 92.5 1153
Orange 0.69 25.0 50.0 51.7 (12.6) 85.0 1158
Yellow 0.62 20.0 50.0 51.0 (11.5) 85.0 1157
Overall 0.79 2.5 60.0 58.7 (14.9) 92.5 758
Green 0.77 22.5 60.0 59.4 (14.3) 90.0 645

Second CAOS Blue 0.80 22.5 60.0 58.3 (15.5) 92.5 657
Orange 0.79 2.5 60.0 59.3 (14.9) 87.5 650
Yellow 0.78 5.0 57.5 57.9 (14.9) 87.5 641
Overall 0.77 20.0 62.5 61.2 (14.1) 90.0 688
Green 0.76 27.5 65.0 62.2 (13.6) 90.0 574

Third CAOS Blue 0.78 20.0 62.5 62.5 (14.0) 90.0 568
Orange 0.79 20.0 60.0 60.2 (14.7) 90.0 554
Yellow 0.76 30.0 60.0 60.0 (14.2) 90.0 547
Overall 0.76 20.0 67.5 65.7 (13.1) 97.5 1128
Green 0.75 27.5 67.5 66.4 (12.8) 95.0 1112

Fourth CAOS Blue 0.74 20.0 67.5 67.3 (12.6) 95.0 1118
Orange 0.79 25.0 65.0 64.2 (14.1) 92.5 1101
Yellow 0.73 20.0 65.0 65.2 (12.6) 97.5 1112

a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );
Orange (High, On); Yellow (High, Off ).

significant effects, a hierarchical linear model was fit including nested random effects

for GSI and lab. To identify important confounding variables the same backward

selection procedure presented in Section 3.5.1 was used, with the exception that the

pretreatment measure of attitudes toward statistics and clickers included was the

average rating from the entire attitude survey rather than ratings for a particular

subset of questions.

Table 3.24 provides the final model produced by this fitting procedure. The

response for this model is the percent correct on the final CAOS. After adjusting

for several important confounders, the main effect of Frequency is estimated to be

-1.370 percent; the main effect of Clustering is estimated to be 1.605 percent; and

the effect of the interaction is estimated to be -1.494 percent. These estimated

effects all correspond to a change of less than 1 point (out of 40 points possible)

on the final CAOS. The interaction is significant at the 10% level; the main effects

of Frequency and Clustering are both insignificant at the 5% level. This analysis

indicates that, holding all else equal, asking a low number (3–4) of clicker questions
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Figure 3.6: Average Percent Correct for Final CAOS by Treatment Group. The solid line corresponds to Clustering

On, the dashed line to Clustering Off.

and incorporating those questions throughout a class led to an increase of 4.469

percent correct, or roughly 2 points, on the final CAOS (as compared to asking a high

number [more than 6] of clicker questions and asking those questions consecutively

[i.e. in a “cluster”]).

To ensure that the model fitting process did not produce a model that was too

sample-specific, a simple validation procedure was used. Specifically, the sample of

complete cases was divided into quarters, and a different quarter was excluded from

each of four subsamples of data. The covariate selection procedure was repeated

using each of the resulting three-quarter subsamples and the final validation models

produced were examined for consistency with the final model presented in Table 3.24.

The overall substantive conclusions about the magnitude and significance of the

design factors was consistent for each of these four validation models (not shown).

Question-level Analysis of CAOS

Since the 40 CAOS questions were not of equal difficulty, several descriptive anal-

yses were undertaken to explore the performance of the treatment groups (Team)
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Table 3.24: HLM Results for Percent Correct on Final CAOS
Estimate Std.Error DF P-value

Intercept 64.280 1.091 876 0.000
Pretreatment CAOS 0.599 0.029 876 0.000
Pretreatment Attitudes 1.773 0.832 876 0.034
Grade Point Average: Low -3.679 1.562 876 0.019
Grade Point Average: High 2.752 0.730 876 0.000
Year: Freshman -2.699 1.028 876 0.009
Year: Junior -2.260 0.848 876 0.008
Year: Senior 1.224 1.026 876 0.233
Gender: Male 1.575 0.671 876 0.019
Instructor 1 1.797 0.805 876 0.026
Instructor 3 -0.114 1.761 876 0.948
Instructor 4 0.749 1.123 876 0.505
Lab Start Time: Early
Morning

2.596 1.305 23 0.059

Lab Start Time: Late
Morning

2.516 0.934 23 0.013

Lab Start Time: Evening 0.698 1.187 23 0.562
Crossover Sequence 2 -0.940 1.275 17 0.471
Crossover Sequence 3 0.563 1.177 17 0.638
Crossover Sequence 4 -0.913 1.146 17 0.437
Frequency -1.370 0.395 17 0.101
Clustering 1.605 0.448 17 0.091
Interaction -1.494 0.413 17 0.088
Note: Estimates reported for Frequency, Clustering, and the Interaction reflect the
coding of these factors. That is, since these factors were coded as -1/+1, the
estimated regression coefficient was multiplied by two to find the effect of going
from the lower level of the factor to the higher level.

by question. Figure 3.7 shows the proportion of correct responses to each of the

40 questions. In the plot there are four points for each question, one for each

team. Regressions lines provide an idea of the average performance for each team.

The line that stands out the most is the solid line, which corresponds to the Blue

Team (Frequency=Low,Clustering=Off ), indicating that asking a few clicker ques-

tions throughout a class results in the highest percentage of correct responses, on

average. To look at the team performances on each question in more detail, questions

were grouped based on topic. The resulting topics were:

• sampDist: Sampling distribution (Questions 16,17,32,34,35)

• pvalue: Interpretation of p-value (19,25-27)

• confInt: Confidence intervals (28-31)

• data: Making sense of data (11-13,18)

• reg: Regression - dangers of extrapolation (39)
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• dist: Understanding distribution (1,3-5)

• hist: Reading a histogram (6,33)

• boxplot: Reading a boxplot (2,9-10)

• gatherData: Gathering data (7,38,22,24)

• stdDev: Understanding standard deviation (8,14,15)

• cor: Correlation (20,21)

• practSig: Practical significance (23)

• chiSq: Chi-square / categorical comparisons (36)

• permTest: Permutation test / simulation (37)

• hypTest: Hypothesis test conclusion (40)

For each student, the proportion of questions answered correctly for each topic

was calculated. These proportions were then averaged over all students in a team

to get the team proportion correct. Figure 3.8 plots these values by topic. For

each topic, the teams show improvement from pre- to post- treatment. (The only

exception to this was on the question involving simulation and permutation tests

[permTest], which was not explicitly covered during the course.) While the team

proportions do not differ substantially, there are a few topics for which the Blue

Team performed best. These topics included: confidence intervals, making sense of

data, understanding distribution, reading a histogram, and gathering data.
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Figure 3.7: Proportion of Correct Responses for Each CAOS Question by Team. Plotting character corresponds to

team name: g=Green (Frequency=Low, Clustering=On); b=Blue (Low, Off ); o=Orange (High, On);

y=Yellow (High, Off ). Linear regression lines provide an idea of the average performance for each

group. The solid line corresponds to the Blue Team. The dotted & dashed line corresponds to the

Yellow Team. The lines corresponding to the Green Team (dashed) and the Orange Team (dotted) are

nearly indistinguishable.
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Figure 3.8: Proportion of Correct Responses for Each CAOS Topic by Team. Plotting character corresponds to

team name: g=Green (Frequency=Low, Clustering=On); b=Blue (Low, Off ); o=Orange (High, On);

y=Yellow (High, Off ). Each axis has been scaled to have the same range of 0.20, or 20%.
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3.5.4 Learning outcome: ARTIST topic scales

Table 3.25 provides descriptive statistics for each of the four ARTIST topic scales—

Normal Distribution, Sampling Distributions, Confidence Intervals, and Significance

Tests—for the entire sample (Overall) and by treatment group (Team). The values

of Cronbach’s α for each scale are notably low—only the scores for the Sampling

Distribution scale even approach the acceptable threshold of 0.70. Such low reliabil-

ities might indicate that students did not take these assessments very seriously, or

try very hard when answering the questions. Each topic scale was administered at

the beginning of a lab session, with students getting between 10 and 15 minutes to

answer all questions. They were graded informally—students received a portion of

the day’s participation points for completing the scale online. Interestingly, though,

students performed very well on these scales—the mean and the median scores were

well above the 60% mark for each. The online order of the questions and answer

choices were not randomized; it is possible then that, given their low-stakes nature,

students tended to “work together” more than they should have. While the overall

scores were very good, it should be noted that, the Blue team (Frequency = Low,

Clustering = Off ) had the highest average score for each topic scale.

Figure 3.9 shows the average percent correct for each of the topic scales by treat-

ment factor. Several plots show evidence of an interaction. In nearly every case, the

the Off level of Clustering appears to be better than On, and the magnitude of this

difference is often larger when Frequency is at the Low level. However, for each scale,

hierarchical models using percent correct as the response did not show significant ef-

fects for Frequency, Clustering, or their interaction (results not shown). Given the

extremely low reliability shown in Table 3.25, this is not surprising. Because of this,

further analysis of the topic scale data was not conducted.
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Table 3.25: Descriptive Statistics for the ARTIST Topic Scales
Teama Cronbach’s α Min Median Mean (SD) Max N
Overall 0.47 0.0 62.5 64.4 (20.4) 100 1109

Normal Green 0.45 12.5 62.5 65.0 (20.1) 100 1089
Distribution Blue 0.43 12.5 62.5 66.2 (19.1) 100 1083
(15 Questions) Orange 0.51 12.5 62.5 63.9 (20.7) 100 1089

Yellow 0.49 0.0 62.5 62.8 (21.3) 100 1087
Overall 0.64 13.3 66.7 65.7 (18.1) 100 1070

Sampling Green 0.67 13.3 66.7 64.9 (18.8) 100 1050
Distribution Blue 0.67 13.3 66.7 67.2 (18.5) 100 1048
(15 Questions) Orange 0.61 13.3 66.7 65.3 (17.5) 100 1009

Yellow 0.61 20.0 66.7 65.4 (17.6) 100 1046
Overall 0.54 10.0 70.0 70.4 (19.1) 100 1098

Confidence Green 0.52 10.0 70.0 70.9 (18.6) 100 1075
Intervals Blue 0.50 10.0 70.0 72.2 (18.3) 100 1074
(10 Questions) Orange 0.55 10.0 70.0 68.6 (19.6) 100 1067

Yellow 0.56 10.0 70.0 69.8 (19.6) 100 1077
Overall 0.50 0.0 70.0 66.4 (19.1) 100 1076

Significance Green 0.52 0.0 70.0 66.2 (19.8) 100 1041
Tests Blue 0.47 20.0 70.0 68.2 (18.2) 100 1054
(10 Questions) Orange 0.48 10.0 70.0 65.3 (18.6) 100 1034

Yellow 0.53 10.0 70.0 66.0 (19.7) 100 1054
a The teams are: Green (Frequency=Low, Clustering=On); Blue (Low, Off );

Orange (High, On); Yellow (High, Off ).

3.6 Discussion: The Effect of Clickers on Engagement and Learning

In Section 3.2, the relevant research questions and hypotheses for the experiment

were presented as:

RQ1. Can you “overdose” on clickers by asking too many questions?

RQ2. What is the best way to distribute clicker questions throughout a class session?

H1. There will be a negative effect of clicker overuse—too many clicker questions

asked consecutively.

RQ3. Are students motivated to use clickers even when it is neither required nor

monitored?

Discussion about each follows.

3.6.1 Discussion of RQ1.

Table 3.6.1 shows the estimated main effects and standard errors for Frequency,

Clustering, and their interaction from the hierarchical analyses of engagement and
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Figure 3.9: Average Percent Correct for the ARTIST Topic Scales. The solid line corresponds to Clustering On,

the dashed line to Clustering Off.

learning outcomes. As can be seen from the first column of Table 3.6.1, the main

effect of Frequency on engagement was estimated to be positive—indicating that

asking more than 6 clicker questions is better than asking 3–4 questions—for each

attitudinal outcome but was never significant at the 5% level. For each of the five

subscales of the attitude survey, the estimated magnitudes of this effect were less

than one-tenth of a percent (on a five point scale). The main effect of Frequency on

learning, however, was negative. The estimated magnitude of this effect 1.4 percent

(0.56 points on the 40-point scale for CAOS) and was non-significant at the 5% level.

There are several possible explanations for these results, the simplest being that
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Table 3.26: Summary of Effects of Design Factors on Learning and Engagement
Frequency Clustering Interaction

Estimate Std.Error Estimate Std.Error Estimate Std.Error
Emotional Engagement
Affect Subscale 0.04 0.02 -0.07 0.03 0.00 0.03
Value Subscale 0.02 0.02 0.00 0.02 0.02 0.02
Cognitive Engagement
Cognitive Competence Subscale 0.01 0.02 -0.07 0.03 -0.03 0.02
Effort Subscale 0.00 0.03 -0.05 0.03 0.05 0.03
Attitude Toward Clickers
Clickers Subscale 0.05 0.03 0.00 0.03 0.07 0.03
Learning
CAOS -1.37 0.39 1.60 0.45 -1.49 0.41

there is no effect of the number of clicker questions asked on engagement or learning.

However, it is also possible that these results reflect limits in the design of this

treatment factor. Recall from the description of the experimental design that the

clicker questions were based on existing questions in the lab workbook, which contains

activities that are more procedural in nature. Additionally, all lab sections were

asked the same number of questions, with the same possible answer choices; the

treatment groups differed with respect to the number of questions asked with clickers.

Therefore, it is possible that:

1. There may have been a misalignment between the focus of the clicker questions

and that of the CAOS and topic scale questions. The CAOS and topic scale

questions were specifically written to capture students’ conceptual understand-

ing of Statistics, but many of the clicker questions were more factual in nature.

This was due in part to the very purpose of the lab sections (and the questions in

the lab workbook)—to reinforce and check understanding of concepts presented

during lecture.

2. The differences between the treatment groups may have been too subtle to

measure, since all sections were asked the same overall number of questions and

differed only with respect to the physical clicking of the remote and display of

the students’ responses in bar-graph form.
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3. Alternatively, there may have been too many questions at the High level, re-

sulting in a general decrease in question quality. In particular, when more

clicker questions were asked, there tended to be a higher proportion of quick

check/recall questions (i.e. Do you remember that definition/rule?). Students

may not have perceived much value in these questions and correspondingly pro-

vided lower ratings for those questions on the attitude survey pertaining to

clickers. Indeed, the ratings for the emotional engagement sub-scale of the atti-

tude survey, which contained questions specific to clickers, were lower than for

the cognitive engagement sub-scale, which did not have any questions pertaining

to clickers.

3.6.2 Discussion of RQ2

From the second column of Table 3.6.1, the main effect of Clustering on engage-

ment was estimated to be negative for both subscales measuring cognitive engage-

ment, as well as the Affect subscale measuring emotional engagement. However

these effects were small and non-significant, each less than one-tenth of a percent

(on a five point scale). For the Value and Clickers subscales, the estimated effect was

nearly zero. The main effect of Clustering on learning was estimated to be positive—

indicating that incorporating clicker questions throughout a class is better than ask-

ing them consecutively. The effects of Clustering on learning were larger than the

effects of Clustering on engagement—1.6 percent (0.64 points on the 40-point scale

for CAOS). While this effect was not significant at the 5% level, it was marginally

significant at the 10% level. Additionally, the plots of performance on individual

CAOS questions showed that the Blue Team, and to a lesser extent the Yellow Team

(both with Clustering = Off ), tended to outperform the teams where Clustering =
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On. The Blue Team also outperformed the other teams for several CAOS topics.

This provides some evidence that incorporating clicker questions throughout a class

led to an increase in learning.

Logistically, it can be simpler to ask all clicker questions in a row, but the results of

this experiment seem to imply that this may not benefit the students’ understanding.

This could be due in part to the position of the clicker questions within the material.

Specifically, when clicker questions were clustered together during a lab session, they

tended to come at the end of the lesson as a wrap-up, to review the concepts covered.

Pedagogically, this could be useful to both student and instructor to see if the day’s

important points had been understood; there were several reports of this type of

clicker use in the literature. However, this could change the cognitive level of a

question and, correspondingly, the students’ perceived value of the question. For

example, a question asked before a topic is introduced could require students to

apply existing knowledge to a new situation—extending their understanding—while

the same questions asked after discussion of the topic could require students simply

to remember what they had been told [12].

3.6.3 Discussion of H1

Looking at the final column of Table 3.6.1, the effect of the interaction be-

tween Frequency and Clustering was estimated to be positive—in contrast to the

hypothesis—for four of the five attitudinal subscales, but the magnitudes of these

effects were extremely small and non-significant at the 10% level. The effect of the

interaction on learning was estimated to be negative. The magnitude of this effect

was 1.49 percent (0.60 points on the 40-point CAOS scale) and was significant at the

10% level. In addition to this, several plots of the mean response, for both engage-
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ment and learning, by treatment factor did show descriptive evidence of interaction.

All of this provides some evidence (albeit more qualitative than quantitative) for the

hypothesis that asking too many clicker questions consecutively is not conducive to

engagement nor to learning. Again, it is possible that limitations of the design fac-

tors affected the ability to measure this interaction. Refining and re-implementing

this experiment may help shed light on the true effect of the interaction between

Frequency and Clustering.

3.6.4 Discussion of RQ3.

Table 3.6.4 shows the number of additional students estimated to have used click-

ers under the Moderate and High levels of External Incentive as compared to the Low

level, both when clicker use was defined as answering at least one clicker question

and when it was defined as answering at least 50% of the clicker questions. Fig-

ure 3.10 shows the proportion of students using clickers for each level of External

Incentive, collapsing over sequence and week. Based on these, it can be seen that

clicker use significantly increases as the level of External Incentive increases. While

this result is not necessarily surprising, it is somewhat disappointing. Previous stud-

ies have consistently indicated (based on student self-report) that students enjoyed

using clickers and perceived some benefit, in terms of engagement and even learning,

to their use. For the current experiment, it was hoped that this perceived value

would affect students behavior, motivating them to use clickers even when there was

no (or little) external influence to do so. However, this data does not support the

idea that students perceived some inherent value to the clickers, at least not enough

to affect their use of clickers. Even for those students who were required to use them

early in the semester, and thus would have experienced their benefits, there was a
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decline in clicker use once it was no longer required (see Figures 3.4 and 3.5).

Table 3.27: Summary of Effects of External Incentive on Behavioral Engagement
External Incentive

Clicker Use Moderate High
Estimate Std.Error Estimate Std.Error

At least one clicker question 0.751 0.299 1.792 0.332
At least 50% of the clicker questions 1.275 0.351 2.347 0.390
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Figure 3.10: Proportion of Students Using Clickers by Level of External Incentive. The solid represents the propor-

tion of students who answered at least one clicker question; the dashed line represents the proportion

of students who answered at least 50% of the clicker questions.

3.7 Discussion: Experimental Design and Procedures

3.7.1 What went well in the experiment

A primary concern in designing this experiment was to ensure that experimental

procedures were not too obtrusive or disruptive of normal class procedures. This

is important for several reasons. As educators, our first responsibility is to our

students, and we would not want an experiment that was detrimental to their learning

experience or made them feel like experimental “guinea pigs.” As researchers, we

are under the governance of institutional review boards (IRB), which make sure that
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students’ rights are protected. To achieve this end, several non-obtrusive elements

were included in the design and implementation of this experiment.

First, the clicker questions were taken directly from existing questions in the

students’ lab workbook, so that no extra material was added into all ready full lab

periods. Using questions that would have been asked anyway ensures that clicker

use was seamlessly integrated into labs, increasing the intrinsic value of the questions

and the clickers (i.e. clicker use is a part of the course, not something additional that

students do not have to take seriously). Using existing questions also allowed for

the same questions to be asked in every lab section, so that all students had access

to the same material—a requirement of the University’s IRB. Labs differed only

with respect to the conditions under which clickers were used (e.g. the number of

questions asked with clickers), correcting a design flaw in several previous clicker

studies where clicker use was confounded with more general incorporation of active

learning strategies (see Section 3.2.2 for further discussion on this).

Additionally, the instruments used to assess student learning were selected to

provide formative feedback to students as well as summative assessment for the

purposes of the experiment. Great care was taken to select instruments that could

that could not only provide early feedback to students on their level of understanding

(before losing points on homework assignments or exams), but also help increase their

broad conceptual understanding. Use of nationally available, validated instruments

corrected a common limitation of research in education: These instruments can be

fully known by other researchers, helping frame the context of the results of the

present research (e.g. Do higher scores indicate better conceptual understanding or

better procedural ability?), as well as allowing for easier comparison of results across

studies using the same outcome and easier reproduction of experimental conditions
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in future studies (see Section 2.3.2 for further discussion).

Finally, class time was provided for most assessments to be completed, placing

minimal burden on the students’ out-of-class time and ensuring higher completion

rates for experimental activities. Often assessments were completed at the beginning

of lab, hopefully decreasing the urge to rush through just to get it over with and

get out the door. Extra credit—which is not typically available in the course—was

offered as an incentive to complete two assessments that were not offered during class

time.

Taking these steps lead to success on several fronts. First, it increased the lead

course instructor’s and several GSIs’ ease with the experiment in general. They

were all concerned about the well-being of the students, particularly that an equi-

table learning experience was maintained. GSIs were also concerned about their own

workload, as they were taking several courses of their own. GSIs have specific work-

load restrictions negotiated and enforced by the University of Michigan’s Graduate

Employees Organization (GEO); care had to be taken to not exceed these restrictions.

It also made seeking IRB approval easier, since the same workload and handling was

guaranteed for every student in the course—those who provided consent to partici-

pate and those who did not. By making the experiment an integral part of the course,

we did not have to seek student consent to participate in experimental procedures.

Instead we sought student consent simply to use the data we collected for analysis

and publication (students were ensured that their data would be used anonymously).

Indeed, having well-planned and considerate experimental procedures lead to an ex-

tremely high consent rate—nearly 94% of the students enrolled in the course after

the drop/add deadline agreed to participate.

Another successful, truly pragmatic, aspect of this experiment was the process



95

for data collection and management. Having an easy-to-use, accurate system would

be important in any experiment, but it becomes especially critical in such a large,

complex experiment as this. Most data was collected using the online University of

Michigan software called UM.Lessons. This software allowed data for every student

in the class to be collected (and scored, when applicable) in one central database—

without any data entry on the part of the researcher. This database was password

protected, so only students enrolled in the course had access. Additionally, access

could be set for certain days and times for students to complete the assessments, as

well as view the questions or correct answers after submission. Data was securely

backed-up on University servers and could be outputted in several formats for ex-

ploration and analysis. While the UM.Lessons service is specific to the University of

Michigan, similar services may be available at other Universities. If not, there are

several online data collection services available commercially. Certainly the use of

online data collection is not new, but it is worth noting that implementation of this

experiment really would not have been feasible without it.

3.7.2 What did not go well in the experiment

Despite best-efforts in planning, things are bound to go wrong (or at least not

according to plan) in any experiment. For example, while great care was taken to

select assessment instruments that would be beneficial to students, these instruments

may not have been used to their fullest potential. Students completed COAS four

times throughout the semester—prior to the start of treatment, the weeks near each

of the two midterm exams, and after the completion of treatment. While the 40

questions and their answer choices were randomized each time, and students were at

no point provided with solutions, students still became too familiar with the ques-
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tions. It is possible that students did not take the final administration of CAOS

seriously—answering based on familiarity rather than knowledge. Indeed, during

mid-semester conversations, some students indicated that the questions were repet-

itive. So, as an incentive to increase effort in completing the final CAOS, students

were awarded extra credit on their final exam for answering every question—and at

least 50% of questions correctly. Additionally, feedback from students revealed that

they did not consider the questions on CAOS or the in-lab reviews to be in line

with questions on the course homework or exams. While the instruments were cho-

sen specifically for their focus on conceptual issues—something that students often

struggle with—many homework and several exam questions were problem-solving or

procedurally based. A few of the CAOS questions were included on exams, but not

enough to make students value use of this instrument in class. If this experiment

were repeated, it would be better to have students complete CAOS only twice (pre-

and post treatment) and would incorporate more of the CAOS and in-lab review

questions directly on homework and exams. It could even be possible to have entire

assessments take the place of a few standard homework assignments or a portion of

the final exam, to increase their impact on course grades and thus naturally increase

students’ incentive to take them seriously.

As discussed in Section 3.3.1, there were inconsistencies in the implementation of

each treatment factor. Variations in the number of clicker questions asked was often

due to technical difficulties, which often cannot be controlled. Of greater concern

was variation in the specific placement of individual clicker questions within a class

period, since these variations could affect the cognitive level of the question. It

would have been better for the integrity of this experiment to provide plans for

each treatment group detailing exactly which questions were to be asked when and
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offering some scripted material for setting-up and debriefing questions. However,

this would have been procedurally prohibitive, both in terms of time to develop such

plans for four treatment groups over nine weeks, and in terms of excessive reduction

of GSI freedom in teaching. In conversations with GSIs after the conclusion of the

experiment, it was suggested that an alternative experimental procedure would be

to manipulate clicker use during only a few weeks during the term, which might

then make more extensive scripting and GSI training feasible. Also of concern were

mistakes in the implementation of the crossover sequences. Several weeks were run

at the wrong level of External Incentive. Additionally, on occasion, GSIs forgot to

announce the crossover condition to students. If this experiment were repeated, more

emphasize would need to be placed the pivotal switch points, as well as the weekly

announcements of crossover condition to students.

Finally, it is possible that the very choice to implement the treatment in labs rather

than lectures had serious, unintended consequences on the outcomes of the exper-

iment. As has been mentioned before, lab sections were more plentiful in number

and more uniform in terms of size and material taught. (While all lectures covered

the same material using the same lecture notes, differences in their weekly scheduled

meeting times resulted in differences in the timetable for covering the material.) The

consistent schedule of lab once a week for 1.5 hours, with the exact same activities

covered in each section, was much more conducive to the implementation of a fac-

torial design. However, the very purpose of lab is to reinforce concepts presented

during lecture. As a result, the clicker questions tended to be of lower cognitive

value—focusing on recall or basic application, for example—thus reducing the need

for deep thought on the part of the student to answer the question. Ultimately, this

likely reduced the engagement and learning benefits of the clicker questions. This,
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in fact, could explain why there were so few significant results in the analyses.

3.8 Brief Summary and Overall Conclusions

This chapter presented the design and analysis of a experiment on the use of

clickers in an introductory statistics course. The experiment had two main designs,

run concurrently:

1. A two-factor design was used to explore the effects that the number of ques-

tions asked during a class period (Frequency) and the way those questions were

incorporated into the material (Clustering) had on emotional and cognitive en-

gagement as well as on learning.

2. A crossover design was used to explore the effect that grading or monitoring

clicker use (External Incentive) had on behavioral engagement, as measured by

the number of students who chose to use clickers.

Several hierarchical linear models of both engagement and learning outcomes were

fit. Based on these analyses, there was little evidence that clicker use increased

students’ engagement, either emotionally, cognitively, or behaviorally. There was

some evidence, however, that clicker use improved students learning. Increases in

learning seemed to take place when the clicker questions were well incorporated into

the material, particularly if the number of questions asked was low.

Taken together, the findings of this experiment provide a cautionary note for the

educator interested in using clickers: As with any new technology or pedagogical

technique, clickers may not be successful if they are not used in a well-planned,

purposeful manner. The mere presence of clickers does not seem to be enough to

engage students and thus improve learning. While the instant visual display of

feedback from these devices is unique, it may not be valuable to students if the
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questions are poorly constructed.



CHAPTER IV

Exploiting interactions between educational interventions

and ‘noise’ variables

4.1 Introduction

In this chapter, we discuss how to exploit interactions between design factors (ed-

ucational interventions) and uncontrollable noise variables (e.g. student and instruc-

tor characteristics, classroom environments) to achieve two objectives: 1) Choose the

settings of the educational interventions to reduce the sensitivity of the intervention

to the noise variables, and 2) Choose the settings of the educational interventions to

maximize their effects for subgroups of students and/or instructors.

The first approach has been used extensively in industries, especially manufactur-

ing industries. It is referred to as robust design and was popularized by the Japanese

quality consultant G. Taguchi [see 82, 89, 106, 116]. In the manufacturing context,

robust design uses planned experiments to improve the design of products or manu-

facturing processes. In traditional approach to design of experiments, it is commonly

assumed that the variance of the response is constant (or at most varies with the

mean in a known way). In practice, however, both the means and variances depend

on the input parameters (i.e. the design factors). The variance can be attributed to

variations in the manufacturing, customer use or environmental conditions. The idea

100
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in robust design is to identify the important noise variables explicitly up front (in

off-line experiments), vary them systematically, and find the influence of the design

factors on both the mean response as well as the variance over the settings of the

noise factors. Then, we choose the settings of the design factors so that we have

as small variance as possible while also getting as close as possible to the desired

response level on the average. There is an extensive literature on this topic, and a

modern treatment can be found in Nair [82] and Wu and Hamada [116].

In many situations, however, the noise variables cannot be controlled even in off-

line experiments. In such case, Freeny and Nair [41] proposed an approach where

the values of the noise variables can be measured, and their interactions between the

design factors and noise variables can be exploited to achieve robustness. This is

the approach we will take in this chapter. In the educational context, this would be

especially important for noise variables that are heterogeneous within a classroom—

those variables that represent characteristics of the students themselves.

In the second objective, we do not want to select the design factor settings to

mitigate the effect of noise factors. Rather, we want to use the information in the

interaction to proactively customize the intervention to particular groups. In this

case, we are tailoring the treatment to groups. In the educational context, this would

be best for noise variables that are homogeneous within a classroom—those variables

that represent class or instructor characteristics.

4.2 Simulated Example and Data

The response Y for this example is the level of statistical knowledge obtained by

a student at the end of an introductory statistics course. Y is measured by score

on the post treatment Comprehensive Assessment of Outcomes in a first Statistics



102

course (CAOS) instrument [31]. The treatments of interest represent combinations

of three design factors, each with two levels:

A. Use of computer applets to demonstrate concepts

Low: Not used

High: Used

B. Use of clickers

Low: Not used

High: Used

C. Type of homework questions

Low: Basic applied repetition

High: Open-ended problem solving

Table 4.1: The design matrix
Factor

Run (i) A B C
1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

We use the 23 full factorial design in Table 4.2 to study the resulting eight treat-

ment combinations (also called runs). Each row represents a possible treatment

combination. For each factor, -1 indicates the low level of that factor, while +1 indi-

cates the high level. Since this is a full factorial design, we can study the individual

effects of each factor and also investigate all interactions. We use eight replicates—

i.e. we implement each of the treatment combinations in eight different classrooms.

With eight treatment combinations and eight replicates, we need 64 classrooms to

fully implement this experiment.
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There are many potential sources of noise that could affect a student’s response

to the treatments, or that could affect our ability to detect true treatment effects.

In this example, we consider seven noise variables:

• n1: The size of the class,

• n2: The time of day at which the class starts,

• n3: The instructor’s attitude toward reform-oriented teaching,

• n4: The instructor’s teaching experience,

• n5: A student’s baseline knowledge of statistics,

• n6: A student’s attitude toward statistics, and

• n7: A student’s general scholastic aptitude.

We use the notation ntijs to represent the value of the noise variable for student

s in a class assigned to treatment combination i and replicate j. (For noise variables

measured at the classroom-level (e.g. n1 and n2) or instructor-level (e.g. n3 and n4),

the subscript s is dropped.) Recall that there is only one classroom assigned to each

combination of run and replicate, for a total of 64 classrooms participating in the

experiment. The total number of students is 3,055.

n1 Class size was coded as 1 (“Large”) if a section’s enrollment is more than 50

students and coded as -1 (“Small”) otherwise. Half of the participating classes

were large, accounting for 75% of the students in the sample.

n2 Class start time was coded as 1 if a section starts during the “Prime” hours of

the day—namely, 11am to 3pm—and coded as -1 (“Off-prime”) otherwise. Half

of the start times were prime, accounting for 53% of the students in the sample.

n3 Instructor’s attitude toward reform-oriented teaching was measured by the Fac-

ulty Attitude Towards Statistics (FATS) [2]. This instrument has twenty-five
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statements that are rated on a 5-point scale. Instructor ratings greater than

85 points on the FATS were coded as 1, indicating a “Good” attitude toward

reform-oriented teaching; rating of 85 points or less were coded as -1, indicat-

ing a “Poor” attitude. Thirty-eight of the 64 instructors had good attitudes,

accounting for 62% of the students in the sample.

n4 Instructor experience was measured as years teaching any class at the university

level. It was coded as 1 if the instructor had been teaching for at least three

years, indicating “High” experience and coded as -1 otherwise (“Low” experi-

ence). Thirty-five of the instructors had high teaching experience, accounting

for 59% of the students in the sample.

n5 A student’s baseline knowledge of statistics was measured (on a continuous

scale) by their pretreatment score on CAOS. Individual pretreatment CAOS

scores were centered at the overall mean of 21 points.

n6 A student’s attitude toward statistics was measured by the Survey of Attitudes

Toward Statistics (SATS) [97]. This instrument has thirty-six statements rated

on a 7-point scale. Student ratings greater than 144 points on the SATS were

coded as 1, indicating a “Good” attitude toward statistics; ratings of 144 points

or less were coded as -1, indicating a “Poor” attitude. 70% of the students in

the sample had good attitudes.

n7 A student’s general scholastic aptitude was measured by their grade point av-

erage (GPA) prior to the start of the experiment. GPA was coded as 1 is the

student’s GPA was average or above (at least 3.00 points; “High”) and coded

as -1 (“Low”) otherwise. 46% of the students in the sample had a high GPA.

The response of interest is Yijs, the post treatment CAOS score for student s in

a class assigned to treatment combination i and replicate j. Table 4.2 shows the
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average of the centered post treatment scores for all students in a class. This table

also shows the mean and standard deviation for each run of the experiment. For

example, the average post treatment CAOS score for students in the second class

(i = 1, j = 2) is 2.65 points above the average post treatment score.

Table 4.2: Average centered post treatment CAOS score
Replicate (j)

Run (i) 1 2 3 4 5 6 7 8 Ȳi si

1 0.05 2.65 -0.35 -0.11 -2.39 0.54 0.54 0.25 0.00 3.86
2 -1.57 1.94 -2.97 4.90 -0.15 1.05 1.31 3.95 0.39 4.16
3 -1.35 4.19 0.15 4.72 0.42 0.65 3.01 -0.95 1.18 3.96
4 -2.01 1.80 0.97 -0.75 -1.01 -0.38 4.47 -0.11 0.17 3.60
5 2.42 2.29 0.49 1.55 1.44 -3.25 1.80 -1.58 0.00 3.91
6 0.57 -2.69 -3.83 -2.96 3.70 1.30 -1.42 4.90 -1.00 4.32
7 -0.80 -0.42 4.03 1.58 -1.14 1.85 -0.23 4.94 1.52 4.34
8 -1.04 -2.23 -3.88 -2.61 -0.27 -0.61 1.24 -1.05 -1.60 3.53

4.3 A General Model to Account for Multiple Noise Variables

In general, suppose that we model the response for student s in a class assigned

to treatment combination i and replicate j as:

(4.1) Yijs = x′
iα+

r∑
t=1

(x′
iφt)ntijs + εij + δijs,

where xi represents the ith row of the design matrix (the ith treatment combination)

for i = 1, . . . ,m, j = 1, . . . , k corresponds to a repetition of that treatment combina-

tion, and t = 1, . . . , r corresponds to the number of noise variables. Here α represents

a vector of location effects, or the effects of the design factors on the average value

of the response. There are r vectors φt—one for each noise variable—that represent

the effect of the interaction between noise variable nt and the design factors on the

response. The φt are referred to as dispersion effects.

We seek to exploit this functional relationship to 1) identify particular settings of

the design factors for which the variation in the response due to each noise variable

is minimal, or 2) identify particular groups to which we should tailor treatment. The
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steps of an analytic strategy to accomplish these goals are given within the context

of the statistics education example presented in the previous section.

4.4 Illustrating the Analysis Strategy to Exploit Interactions

Using the data described in Section 4.5, the analytic strategy will be implemented

in five steps.

Step 1: Determine the appropriate functional relationship between the response and

each continuous noise variable.

The functional functional relationship between the response and each continuous

noise variable could be determined based on prior knowledge, or it could be deter-

mined graphically based on data from the experiment. It this example, the only

continuous noise variable is the student’s baseline knowledge of statistics, as mea-

sured by their pretreatment CAOS score. Figure 4.1 plots the relationship between

the pre and post treatment scores for each treatment combination. Least-square

linear regression lines are superimposed and appear to be a good fit for this data,

indicating that a linear relationship between pre and post treatment CAOS scores is

reasonable.
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Figure 4.1: Post Treatment vs. Pretreatment CAOS Scores for the Eight Treatment Combinations. These plots
are used to suggest the functional relationship between the response (post treatment scores) and the
continuous noise variable (pretreatment scores). Least-square linear regression lines are superimposed,
and appear to be a good fit for each plot. This indicates that a liner relationship between pre and post
treatment CAOS scores is reasonable.
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Step 2A: Obtain initial estimates of the location effects α and dispersion effects φt.

Initial estimates of all location and dispersion effects are obtained by fitting the

full model (4.1) for the response. Since the data in example represents students who

are nested within classrooms, a hierarchical linear model is fit with random effects

for each of the 64 classes. Table 4.4 presents partial results from this model; due to

the length of the output, only those effects with p-values less than 0.200 are shown.

Estimated effects that are significant at the 5% level are shown in bold. These

significant effects will be used in Step 2B to refine model for the response.

Table 4.3: Initial estimates of location and dispersion effects
Estimate Std.Error DF p-value

Intercept 0.025 0.223 2932 0.912
A 1.056 0.125 2932 0.000
B 0.421 0.123 2932 0.001
n1 -0.944 0.212 59 0.000
n3 0.890 0.218 59 0.000
n4 0.359 0.212 59 0.095
n5 0.490 0.007 2932 0.000
n6 0.985 0.035 2932 0.000
n7 0.514 0.032 2932 0.000
A:B 0.206 0.116 2932 0.076

B:n1 0.436 0.100 2932 0.000
C:n1 0.192 0.112 2932 0.087
A:n3 0.185 0.092 2932 0.044
B:n3 0.542 0.094 2932 0.000
A:n4 -0.385 0.089 2932 0.000
C:n4 -0.174 0.077 2932 0.024
B:n5 0.009 0.007 2932 0.160
A:n6 -0.506 0.035 2932 0.000
B:n6 0.488 0.035 2932 0.000
A:n7 -0.061 0.032 2932 0.062
A:B:n1 -0.152 0.106 2932 0.151
A:C:n1 0.206 0.099 2932 0.038
A:B:n2 0.136 0.090 2932 0.131
A:C:n6 -0.048 0.035 2932 0.171
A:B:n7 0.070 0.033 2932 0.032
B:C:n7 -0.077 0.032 2932 0.018

Step 2B: Refine the model for the response.

Those effects estimated to be significant at the 5% level in Step 2A are fit in a

reduced model for the response. In the cases where an interaction was significant,

the corresponding main effects were also included even if they were not individually

significant (this is referred to as the “hierarchy principle” in experimental design).
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For example, the interaction B:C:n7 was significant at the 5% level, so each of the

main effects for B, C, and n7 were also included in the reduced model. Results for

the reduced model are shown in Table 4.4. Again, effects which are estimated to be

significant at the 5% level are in bold. This model can be refined further—the effects

A:n4, C:n4, and A:C:n1 can be removed without violating the hierarchy principle.

After removing these terms, no further reductions can be made. The final model for

the response is presented in Step 3.

Table 4.4: Refined estimates of location and dispersion effects
Estimate Std.Error DF p-value

Intercept -0.116 0.204 2972 0.571
A 1.107 0.069 2972 0.000
B 0.373 0.077 2972 0.000
C 0.044 0.053 2972 0.406
n1 -0.922 0.199 60 0.000
n3 0.965 0.203 60 0.000
n4 0.352 0.200 60 0.085
n5 0.489 0.006 2972 0.000
n6 0.988 0.035 2972 0.000
n7 0.516 0.032 2972 0.000
A:n1 -0.051 0.068 2972 0.449
B:n1 0.471 0.071 2972 0.000
A:n3 0.075 0.052 2972 0.147
B:n3 0.566 0.057 2972 0.000
A:n4 -0.388 0.052 2972 0.000
C:n4 -0.057 0.052 2972 0.272
A:n6 -0.512 0.035 2972 0.000
B:n6 0.485 0.035 2972 0.000
A:n7 -0.057 0.032 2972 0.075
B:n7 0.007 0.032 2972 0.839
C:n7 -0.003 0.032 2972 0.921

A:B:n7 0.069 0.032 2972 0.033
B:C:n7 -0.076 0.032 2972 0.019

Step 3: Estimate the model for the response based on the active location and dispersion

effects identified in Step 2.

Now, using the final reduced model identified in Step 2B, we re-estimate the

parameter values and compute fitted values for the response. The final model for the

response is presented in Table 4.4. The parameter estimates from this model will

be used in Step 4 to select settings of the design factors for which the response is

maximized but the dispersion effects are minimized, or cases where settings of the
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design factors should be customized.

Table 4.5: Final estimates of location and dispersion effects
Estimate Std.Error DF p-value

Intercept -0.142 0.204 2975 0.488
A 1.078 0.051 2975 0.000
B 0.381 0.077 2975 0.000
C 0.031 0.050 2975 0.530
n1 -0.923 0.200 60 0.000
n3 0.967 0.204 60 0.000
n4 0.348 0.201 60 0.089
n5 0.489 0.006 2975 0.000
n6 0.990 0.035 2975 0.000
n7 0.516 0.032 2975 0.000

B:n1 0.465 0.071 2975 0.000
B:n3 0.568 0.055 2975 0.000
A:n4 -0.359 0.049 2975 0.000
A:n6 -0.513 0.035 2975 0.000
B:n6 0.485 0.035 2975 0.000
A:n7 -0.056 0.032 2975 0.078
B:n7 0.007 0.032 2975 0.819
C:n7 -0.004 0.032 2975 0.903

A:B:n7 0.068 0.032 2975 0.034
B:C:n7 -0.078 0.032 2975 0.016

Step 4: Determine improved settings of the design factors.

Table 4.4 shows the effects of the design factors on the average post treatment

CAOS score. Figure 4.2 also shows these effects. Two things should be mentioned

here before interpreting these specific effects. First, recall that this data was simu-

lated; this example is meant to illustrate how this analytic strategy could be imple-

mented in an educational setting, and the substantive conclusions are meant to be

representative of the types of conclusions that could made when using this strategy.

Second, the response was centered before fitting any regression models, so that a Y

value of zero represents the average post treatment CAOS score.
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Table 4.6: Estimated effects of design factors
Location Effects:

Complete notes provided Partial notes provided
Clickers Clickers

Applets Not used Used Applets Not used Used
Not used -1.632 -0.870 Not used -1.570 -0.808

Used 0.524 1.286 Used 0.586 1.348

Dispersion Effects Due To:

Class Size Instructor Attitude Instructor Experience
Clickers Clickers Applets

Not used -1.388 Not used 0.399 Not used 0.707
Used -0.046 Used 1.535 Used -0.011

Student Attitude
Clickers

Applets Not used Used
Not used 1.018 1.988

Used -0.008 0.962

Student Grade Point Average
Complete notes provided Partial notes provided

Clickers Clickers
Applets Not used Used Applets Not used Used

Not used 0.599 0.593 Not used 0.707 0.429
Used 0.311 0.617 Used 0.459 0.453
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Figure 4.2: Effect of Interaction Between the Design Factors and Noise Variables on the Average Fitted Post
Treatment CAOS Score. For each panel, the solid line corresponds to the high level of the noise
variable given in the panel title; the dashed line corresponds to the low level.
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Based on these effects, we could make the following conclusions:

• All of the design factors have an effect on post treatment CAOS scores, though

the effect of provision of lecture notes was not significant at a 5% level. From

Table 4.4, using applets results in a 1.078 point increase above the average

posttreatment CAOS score while using clickers results in a 0.381 point increase.

When evaluating the location effects, the goal is to find the treatment combina-

tion that maximizes the response. The largest total effect occurs when partial

notes are provided and both applets and clickers are used—this will lead to a

predicted 1.348 point increase in the average post treatment CAOS score (see

“Location Effects” in Table 4.4).

• There is an interaction between class size and use of clickers. Dispersion effects

due to class size could be minimized by using clickers (see the section of Table 4.4

and Figure 4.2 entitled “Class Size”). However, from the figure, it can be seen

that the estimated gains in the response from using clickers is greater in large

classes. Here is an instance where treatment could be tailored—a large course

clearly benefits from the use of clickers, while a small class performs similarly

regardless of clicker use. Other considerations, such as the cost of incorporating

this technology, could influence the decision to use (or not use) clickers in a

small class.

• There appear to be no effects of class start time on the average post treatment

CAOS score, since it was not included in the final model for the response.

• There is an interaction between instructor attitude and use of clickers. Disper-

sion effects due to instructor attitude could be minimized by not using clickers,

however, instructors with good attitudes have much to gain from clicker use.

Again, it may be reasonable to tailor treatment here. An instructor who has
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a favorably disposed reform-oriented teaching should consider using clickers,

whereas an instructor who is not so favorably disposed might as well not use

clickers.

• There is an interaction between instructor experience and use of applets. Dis-

persion effects due to instructor experience could be minimized by using applets

(see “Instructor Experience” in Table 4.4). Additionally, post treatment CAOS

scores are higher on average when applets are used regardless of whether the in-

structor has a high level of teaching experience or not (see corresponding section

of Figure 4.2). Together, these provide support for using computer applets.

• There is no interaction between a student’s baseline knowledge of statistics and

any of the design factors, indicating that changing the settings of the design

factors cannot mitigate the effect of baseline knowledge on the student’s knowl-

edge at the end of the course. From Table 4.4, the coefficient for n5 is 0.489

points. For each point increase above the average pretreatment CAOS score,

post treatment CAOS score is expected to increase nearly half a point above

the post treatment average.

• There is an interaction between student attitude and the use of applets and

also between student attitude and the use of clickers. Since we can expect

heterogeneous student attitudes within a class, it would be better to find settings

of the design factors which are robust to this noise variable, rather than to

tailor treatment. Dispersion effects due to student attitude are minimized when

applets are used but clickers are not (see Table 4.4, as well as the two panels

entitled “Student Attitude” in Figure 4.2). In fact, the estimated effect of

student attitude at these settings of the design factors is nearly zero (-0.008),

indicating that the response is robust to changes in student attitude under this
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treatment combination.

• While estimates of an interaction between student grade point average and the

design factors were statistically significant at the 5% level (see Table 4.4, there

appears to be little practical effect of this interaction on post treatment CAOS

scores. This can be seen by this similar magnitude of the effects presented in

Table 4.4, as well as the parallel lines in the three panels entitled “GPA” in

Figure 4.2. It would seem that changing the settings of the design factors does

not really mitigate the dispersion effects due to grade point average. Also, there

does not seem to be a subgroup of students for whom it would make sense to

customize treatment for any of the design factors.

After assessing the effects of the individual noise variables, the conclusions should

be evaluated in light of the current understanding of each factor, as well as current

theories on teaching and learning, to design an effective treatment for all students,

or to identify case when it might make sense to customize treatment for a subgroup

of students/instructors.

4.5 Summary and Discussion

This chapter illustrated, in an educational context, the application of a data

analytic strategy that exploits interactions to identify the best treatment, either

overall or for a particular subgroup. This strategy can be implemented in four steps:

Step 1 Determine the appropriate functional relationship between the response and

each continuous noise variable.

Step 2A Obtain initial estimates of the location effects α and dispersion effects φt.

Step 2B Refine the model for the response.
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Step 3 Estimate the model for the response based on the active location and dis-

persion effects identified in Step 2.

Step 4 Determine improved settings of the design factors.

In general, studies that employ this strategy require one more replication than

the number of noise variables to be studied. Given the numerous noise variables

that could be present in educational data, most of these studies in education will

need to be large, involving many classrooms. Replications could be accumulated

through coordination between universities, by including courses of different levels

or from different disciplines, or by repeating the experiment over time. Due to

their size, these studies are best suited as well-planned follow-up studies. It will be

important to identify several design factors for which effectiveness has already been

demonstrated. It will also be important to identify those noise variables that are most

likely to interact with treatment, affecting the response to that treatment. Candidate

noise variables can be identified using expert opinion, current theory on teaching

and learning, or through previous research. To minimize the differences between the

classrooms in which the study is implemented, common assessment instruments and

implementation procedures will need to be used in all classrooms, to the greatest

extent possible. Remaining differences between classrooms could be included as

noise variables to be studied. This could include characteristics of the course itself

(e.g. level, meeting time, length, size), the instructor (attitude, experience), the

institution (liberal arts college vs. research institution, rural vs. urban elementary

school, quality of facilities), or even the degree of implementation fidelity. In fact,

details pertaining to implementation should likely be key noise variables in these

studies. This is because it is so difficult in educational settings to separate treatment

from the mechanism through which it is delivered [e.g. 15, 84]. One area of future
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research that could increase the potential of these studies to impact education will be

the systematic identification and quantification of treatment implementation—which

aspects of implementation are truly important to measure and how to measure them.

Once identified, characteristics of implementation could be divided into two groups:

those that we would like to learn about explicitly, and those that we would like the

response to be robust to. Characteristics of the first kind could be studied as design

factors (e.g. whether it is better to ask a large or small number of clicker questions);

characteristics of the second kind could be studies as noise variables (e.g. instructor

enthusiasm toward treatment).

The unavoidable intertwining of treatment and its implementation in educational

research relates to a major concern in this research field: The ability to attribute an

improvement to the treatment itself, rather than the natural growth of students or

other confounding factors. It also has direct implications on the ability to generalize

findings from one research study to another group of students. For example, it has

been noted that some studies which seek to determine the effectiveness of clickers by

comparing a section where clicker questions are asked to a traditional lecture section

are in fact measuring the effect of active learning strategies in general—clicker use is

incidental [23]. As another example, suppose two studies report on the effectiveness

of using computer applets to demonstrate concepts. In one study, students work

on the applet in groups but with little guidance from the instructor; in the other

study, student groups are given clear objectives to work toward and a final “wrap-

up” of the concepts demonstrated. The results of each study would then reflect their

implementation differences as much as the actual effectiveness of the treatment (if

any). The primary consequence of this intertwining is that we cannot be sure of

our ability to replicate the findings from one educational research study in other
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classrooms. The “gold standard” in establishing causality is random assignment,

however this is difficult to achieve in educational settings. It is rare to randomize

individual students (as indicated by the review in Chapter II), and randomization of

self-selected groups does not afford baseline equivalence the same way the individual

randomization can. An alternative method for establishing causality is to repeat

a study over time in diverse settings—if similar results can be obtained, this will

build support that they are due to the treatment itself rather than the nuances of

implementation. This, however, requires many small studies over a long period of

time. Additionally, the ability for a study to be properly replicated can be limited

by inconsistencies in the reporting of study conditions (see Section 2.3.6). Use of

this strategy is an improvement over this process, since all replications take place

at the same time and the treatment protocol is know explicitly by all sites (the

classrooms). While these studies would not be trivial to implement, the end result

could be more generalizable research—successful treatments that can be reproduced

in a broad array of classrooms.
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Appendix: Data Simulation

Values for the seven noise variables were selected to plausible within an educa-

tional context. For example, it would seem reasonable to obtain a number of classes

that start at prime or off-prime hours, since classes could start at the top or bot-

tom of each hour from 8am to 6pm. Each of the dichotomous noise variables, as

well as the continuous, centered measure of baseline knowledge of statistics, were

used to generate the post treatment CAOS scores. The entire process of generating

the response was completed in steps. First, the ability for student s in a classroom

receiving treatment combination i and replicate j to answer CAOS question q was

generated according to the model

Zijsq = αAi + αBi + (φ10 + φ1Bi)n1ij + (φ30 + φ3Bi)n3ij + (φ40 + φ4Ai)n4ij

(4.2) +φ50n5ijs + (φ60 + φ6Ai+ φ6Bi)n6ijs + φ70n7ijs + εij + δijs + νijsq,

where εij, δijs and νijsq were each generated to have a normal distribution with a

mean of 0 and a standard deviation of 3. Next, a difficulty score for each CAOS

question q was generated as

(4.3) Dq = Φ−1
E(Z),var(Z)(dq),

where dq represents the percent of incorrect responses to question q (forty values for

dq were selected between 30% and 70%). Finally, the total post treatment CAOS

score Yijs was calculated as the sum of the forty indicators that Zijsq −Dq ≥ 0.
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