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ABSTRACT 

 

We apply an accelerated molecular dynamics (MD) methodology to simulate 

Atomic Force Microscope (AFM) experiments. New methods using hyperdynamics and a 

parallel algorithm make it possible to extend the simulation time scale and to model an 

AFM tip with a sliding velocity close to the actual experimental values. MD simulations 

of AFM models with simple geometry validate these methodologies. We model AFM 

experiments by which researchers observed ultralow friction forces between 

incommensurate surfaces, a phenomena called superlubricity. The simulation results 

reveal that superlubricity breaks down with softer tips and at higher normal loads, and 

that several metastable states exist during the stick phase with softer tips. Additional 

simulations with a silicon tip and a silicon surface with oxidized layers model recent 

AFM experiments regarding variations in the relationship between friction force and 

sliding velocity with respect to changes in temperature. The simulations utilize a 

modified Stillinger-Weber potential, which can treat both pure silicon and silica 

simultaneously, and the bond-boost method for hyperdynamics simulation. We compare 

the simulation results with the experimental data to elucidate the atomic level processes 

that occur during sliding. The simulation results indicate that the deviation from the 

Tomlinson model predictions at higher temperatures and lower sliding velocities may 

arise from the bond breaking and formation mechanism at the interface. 
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CHAPTER I 

Introduction 

 

1.1 Nanotribology 

Friction has presented a significant challenge since man’s earliest technological 

feats. As shown in Fig. 1.1, thousands years ago the ancient Egyptians made use of 

lubricant to reduce friction enabling the transport of heavy artifacts [1]. However, in spite 

of its long history, friction remains poorly understood. Although familiar macroscopic 

friction laws, such as Coulomb’s observation that the frictional force is linearly 

proportional to the applied force normal to the contact surface and independent of both 

the apparent contact area and the sliding velocity, hold in many instances, there is no 

fundamental understanding of the origin of these laws and many exceptions exist. 

Moreover, estimates indicate that addressing wear and friction issues can save 1.3% to 

1.6% of GNP in the U.K. alone [2]. Furthermore, it is conjectured that the first 20% of 

the economic savings can be obtained without making any significant investment. 

In recent years, friction on a micro or nano scale has been a growing concern as 

nanotechnology, particularly micro/nano electro-mechanical systems (MEMS/NEMS), 

advances. In MEMS/NEMS development, preventing wear and adhesion is one of the 

most critical issues affecting the performance and fabrication of MEMS/NEMS devices 

due to their large surface-to-volume ratios. The problems arising from adhesion and wear 
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have prevented MEMS/NEMS devices with sliding interfaces in rotary and linear motion 

from being marketed [3]. For this reason and others, significant effort has been focused 

on understanding the origins of adhesion, friction, and wear on a micro/nano scale. This 

research is commonly termed nanotribology. 

At present, nanotribology is intensively studied by experimental tools newly 

invented in the 1970’s and 1980’s. These devices include the Surface Forces Apparatus 

(SFA) [4] and the Atomic Force Microscope (AFM) [5]. Moreover, the Quartz-Crystal 

Microbalance (QCM), originally used to measure the mass of adsorbed films, has a new 

application measuring the viscosity of the film-substrate interface [6]. Unlike its 

precursor, the Scanning Tunneling Microscope (STM), AFM can be used with both 

conductors and insulators and in less ideal environments like ambient air. This has greatly 

broadened the range of applications. Moreover, AFM has provided an opportunity to 

investigate friction with a single-asperity contact and the measurement of atomic scale 

forces. The radii of typical AFM tips range from 10 nm to 100 nm [7]. Due to these 

advantages, AFM is most widely used in the study of nanotribology. AFM experimental 

results will be presented in the next section. 

To explain the experimental results and understand the physical origin of atomic 

scale friction, several theories have been proposed [8-11] based on the Tomlinson model 

[12], and have succeeded in explaining some fundamental aspects of atomic scale friction 

such as the stick-slip behavior and the logarithmic dependence of the frictional force on 

the sliding velocity [8]. However, these theories are too simple to explain more 

complicated triobological behaviors such atomic mixing, and bond breaking and 

formation during atomic scale sliding. Less reductive theories are needed to elucidate the 
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experiments that give limited insight into the detailed atomic process in the absence of 

theoretical interpretation. 

In this sense, computer simulation can play an important role in the research of 

triobological properties of nano scale materials, bridging the gap between the simplistic 

Tomlinson model and real experiments. Computer simulations can yield a solution to a 

problem in statistical mechanics which is intractable with analytical methods, and the 

simulation results can be compared with experimental results. If the mathematical model 

solved using computers can capture important physical features of a real process, then the 

results of the simulation will show substantial agreement with experimental observations 

and provide meaningful insight [13]. Moreover, in a computer simulation of a working 

model, we can directly observe what is taking place on an atomic scale, which is 

currently impossible in real experiments. 

The methodologies of atomic scale computer simulations used in materials 

science primarily derive from the molecular dynamics (MD) method and the Monte Carlo 

(MC) method. MC samples the points in the phase space according to the ensemble 

distribution of a given system and is, therefore, applicable to equilibrium systems only, 

but MD calculates trajectories of the atoms using classical mechanics and can simulate 

both equilibrium systems and non-equilibrium systems. Recently, another dynamics 

method called Kinetic Monte Carlo (KMC) has been used for the transient systems. The 

differences between MD and KMC will be discussed in detail in the next chapter. 

In this study, molecular dynamics has been used. We model AFM experiments 

and attempt to directly observe and explain the fundamental processes of atomic scale 

friction. MD simulation has been widely used for the investigation of nano scale physics, 



4 

 

and has been applied to the study of friction in various cases, which will be reviewed in 

Sec. 1.3. It has not been possible, however, to directly compare simulation results with 

experimental data because of the limited time scales accessible using standard MD 

techniques, sub-micro seconds. Thus, the sliding speed required to scan a reasonable 

length scale (> 10 nm) must be larger in MD simulations than in the actual experiments 

by several orders of magnitude. In specific cases several methodologies that circumvent 

direct dynamics of particles have been proposed to address the time-scale problems [14, 

15]. Performing direct simulation on longer time scales has been a long-term goal of MD 

simulators. 

A majority of the research presented here focuses on extending the simulation 

time scale in order to model an AFM tip with a sliding velocity close to the actual 

experimental values. The methodologies used for this goal will be presented in the 

subsequent chapters. The next section reviews some interesting AFM experiments 

motivating this study. Sec. 1.3 will describe the MD method, several simulation results, 

and the time-scale problem. 
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1.2 AFM experiment 

AFM was first invented by Binnig, Quate, and Gerber in 1986 [5] to image the 

morphology of a surface. Nowadays, it has become a major tool in the investigation of 

nanotribology and is widely used to measure the frictional force acting on a sharp tip 

scanning a flat sample surface. For this application, AFM is also called the Lateral Force 

Microscope (LFM) or the Friction Force Microscope (FFM). 

As shown in Fig. 1.2, an AFM consists of a tip and a cantilever. The tip is 

attached to the end of the cantilever and scans a sample surface while the other end of the 

cantilever moves at a constant speed. As the tip scans a surface, it experiences a frictional 

force, and due to this force, the cantilever deforms by bending and twisting. This curves 

the path of a laser beam reflected by the cantilever to be modified and, in turn, creates a 

voltage difference in a photo detector receiving the laser beam. Finally, through proper 

calibration the quantitative value of friction can be obtained. 

A typical AFM tip is sharp enough to guarantee a single asperity contact with a 

sample surface (the radii of the tips range from 10 to 100 nm) as seen in Fig. 1.3 [7], but 

the contact area usually consists of multiple atoms. Macro scale friction can be 

understood as an accumulation of the processes occurring at the individual asperities 

comprising the contact surface. Thus, the investigation of single-asperity friction using 

AFM is of fundamental importance. 

Typical data from an AFM experiment is shown in Fig. 1.4 [16], where the lateral 

force is measured as a function of the tip position. This saw-tooth shape is typical in an 

AFM experiment and is an artifact of the so-called “stick-slip” motion. In the stick-stage, 

the atoms at the interface are arranged in a local equilibrium configuration, and the tip 
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and the cantilever deforms elastically as the other end of the cantilever moves in the 

sliding direction. As a result, the lateral force, measured by the deformation of the 

cantilever, increases almost linearly. When the force exerted on the tip due to the elastic 

deformation exceeds the maximum force which the interface can withstand (the static 

friction), the tip disengages from the surface and suddenly moves in the sliding direction, 

sticking to the surface again in a new equilibrium configuration. During the slip phase, 

the deformation of the cantilever is relieved, the elastic energy is transformed into kinetic 

energy, and the measured lateral force drops suddenly. The kinetic energy is dissipated 

into atomic vibration (phonon) or the excitation of electrons, and this is the source of the 

kinetic friction.  

At a finite temperature, the slip from one local equilibrium configuration to 

another can occur before the lateral force reaches the maximum frictional force of a given 

interface due to thermal activation. Thus, friction on the nano scale exhibits strong 

dependence on temperature and sliding rate. However, precise measurements of the 

relationships between friction and such external parameters have only recently been 

performed. Nevertheless, several recent achievements both in experiments and in theories 

have broadened our understanding of atomic scale friction. In the remaining of this 

section, we will review several experimental results, and the theories for atomic scale 

friction will be presented in Chap. III. 

As an earliest attempt to study friction using AFM, Mate et. al. conducted an 

experiment with a tungsten tip scanning a graphite surface in ambient air and observed 

that the frictional force exhibits the stick-slip behavior with a periodicity corresponding 



7 

 

to the surface structure of graphite [17]. They also reported that the frictional force has 

little dependence on the sliding speed over the range of 4 nm/s to 400 nm/s.  

Tsukruk et. al. conducted experiments with mono-layers of a classic boundary 

lubricant, stearic acid (STA) and its cadmium salt (STCd) by varying the sliding 

velocities (20 nm/s ~ 1000 μm/s) [18] and found that in the solid state the frictional force 

reduces logarithmically as the velocity decreases while the fluid-state mono-layers 

displayed non-monotonic behaviors with the peaks around 0.2 μm/s. The logarithmic 

dependence of the frictional force on the sliding velocity was also observed by Gauthier 

et.al. [19]. They studied silane molecules (mono- and trichlorosilanes and mono- and 

triethoxysilanes) grafted on the silica surface by AFM and used the characteristic velocity 

dependencies to distinguish the surfaces obtained by different grafting processes. Later, 

Bouhacina et. al. showed the logarithmic dependence again with a polymer grafted on a 

silanized silica surface [20] and also constructed a model to explain this behavior using a 

thermally activated Eyring model [21].    

The velocity dependence was also studied by Zwörner et. al [22]. They measured 

the frictional force of three different carbon compounds (diamond, highly oriented 

pyrolytic graphite (HOPG), and amorphous carbon) with a silicon tip in ambient air, but 

observed constant frictional force over a wide range of velocities (100 nm/s ~ 24.4 μm/s). 

 A decade ago, Gnecco et. al. reported a logarithmic dependence of the frictional 

force on velocity in the AFM experiments conducted in UHV (< 10-10 mbar) and at room 

temperature [8]. They varied the velocity from 5nm/s to 1 μm/s and observed the 

frictional force decreases logarithmically as the velocity decreases. More interestingly, 

they constructed a simple but very successful model considering the finite temperature 



8 

 

effect based on the Tomlinson model [12] and were able to explain the logarithmic 

dependence. The detailed discussion of Gnecco’s theory and several improved theories 

will be revisited in Chap. III. 

Although a good deal of experimental data regarding the velocity dependence of 

atomic scale friction has been accumulated, the results are still puzzling; often 

logarithmic dependence is observed [8, 18-20], but in other cases the frictional force 

appears independent of the sliding rate [17, 22]. Moreover, the influence of temperature 

has been rarely reported until recently although a few interesting results have been 

reported [23-25]. Liang et. al. observed the frictional force of C60 molecules abruptly 

increases below ~260K where a first-order phase transition occurs from face-centered 

cubic (fcc) to simple cubic (sc) [23]. It is hypothesized that in the latter structure the free 

rotations of the C60 molecules are hindered. Sills and Overney varied both temperature 

(300 K ~ 365 K) and sliding velocity (30 nm/s ~ 2 μm/s) in the experiment with a silicon 

tip and an amorphous glassy polymer (the glass transition temperature is 373 K) [24] and 

observed the logarithmic dependence. Moreover, in an AFM experiment with a silicon tip 

and a silica substrate in humid air, a gas-liquid phase diagram of water at the interface of 

the tip and the substrate was constructed by varying the sample temperature (12 oC ~ 60  

oC) with the environment temperature fixed at 20 oC  [25]. 

A systematic measurement of the relationship between the frictional force and the 

sliding velocity over a wide range of temperatures was first performed by Schirmeisen et. 

al. [26]. They used a silicon tip scanning a silicon surface in [111] direction with natural 

oxide layers unremoved. The sliding velocity ranged from 100 nm/s to 16 μm/s, and they 

varied the temperature between 55 K and 255K and the experiment was conducted in 
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UHV (5 × 10-10 mbar). The frictional force displayed a varying relationship with the 

sliding velocity depending on temperature. For the temperatures below approximately 

150 K, the frictional force showed the typical logarithmic dependence, but above 150 K 

the frictional force had no dependence on the sliding velocity. Moreover, they observed 

the friction coefficient and the jump-off force as temperature decreases, and instead of a 

monotonic increase, the results showed a peak of around 100 K and a subsequent drop. 

Zhao et. al. [27] also conducted an AFM experiment with a silicon nitride (Si3N4) tip and 

a graphite (HOPG) surface with a wide range of temperatures (140 K ~ 300 K) in UHV 

(< 2 × 10-10 torr), and reported an exponential increase in the frictional force as 

temperature decreases. 

It is not likely that these observations of the dependence of atomic scale friction 

on sliding rate and temperature can be explained by a simple model like the Tomlinson 

model. This will require a realistic model that can consider the multi-atom nature of the 

contact, the atomic mixing between a tip and a substrate during the sliding, and the 

details of bond breaking and formation. 
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1.3 Molecular Dynamics Simulation 

Molecular dynamics applies the laws of classical mechanics to deduce the 

properties of a system from the positions and momenta of the atoms comprising the 

system. The motions of the atoms are determined by a Hamiltonian, H, which is a 

function of all the particle positions, ir , and velocities, iv , as expressed in   

),(),(),,,( 1111 NNNN vvKrrVvvrrH +=  ,                          (1-1) 

where V is the potential energy, K is the kinetic energy, and N is the total number of 

atoms. 

The potential energy, ),( 1 NrrV , can be modeled by empirical potentials fit to 

experimental results or, when a higher accuracy is required, from quantum mechanical 

calculations. The system evolves in time according to Newton’s equations of motion, 

),,1()(1 Nk
r
rV

m
v

vr

kk
k

kk

=
∂

∂
−=

=

  ,                                                       (1-2)  

where km  is the mass of kth atom. 

 As the total energy of a system is conserved on the trajectory obtained from Eq. 

(1-2), the dynamics corresponds to sampling the points in the phase space according to 

the microcanonical ensemble (NVE) distribution. When the simulated system is not 

isolated such as the canonical ensemble (NVT), a different set of equations of motion 

must be employed to reproduce the corresponding probability distribution in phase space. 

To simulate the canonical ensemble in which the number of atoms (N), the volume (V), 

and the temperature (T) are constant, we can use the Nose-Hoover thermostat [28-31] 

with the equations of motion 
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where η  and s  are the thermostat variables, Q  is the thermostat mass, and Bk  is the 

Boltzmann constant. It can be proven that the trajectory obtained from Eq. (1-2) 

generates the canonical ensemble [32]. 

 When a system is in a transient state, where one of the external parameters like 

the volume changes, the Monte Carlo method cannot be used because it can only model 

systems in equilibrium. However, the MD method can still be applied to these systems as 

it is a direct simulation of the system dynamics. The accuracy of the MD simulation, 

however, depends on the ability of the potential energy function to describe the system as 

it evolves. 

In many cases, MD simulations have been used to help explain the physical 

origins of experimental results. For example, in 1991, Krim et. al. reported QCM 

experimental results with Kr monolayers adsorbed on smooth and rough Au and Ag 

surfaces [33]. The magnitude of energy dissipation was quantified by simultaneously 

measuring the shift in the resonance frequency and the broadening of vibration resonance 

of quartz crystals with adsorbed monolayers. In this way, they observed that fluid films 

exhibited larger friction than solid films on a smooth Au surface, which was opposite to 

intuition. Three years later, Cieplak et. al. could explain the physical origin of the 

experimental results using MD simulations and perturbation theory [34]. They verified 
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that solid monolayers comprising incommensurate interfaces can slide more easily than 

fluid monolayers. Moreover, recently, Wu et. al. conducted a pin-on-disk experiment of 

diamond-like carbon (DLC) with nanocomposite coatings [35] and also performed MD 

simulations to verify the triobological mechanism dominating the process. They found 

that the formation of lubricious layers at the interface by mixing of the materials can 

explain the low friction of WCS (DLS/WC/WS2) coatings. 

MD simulations were also used to investigate the fundamentals of friction. He et. 

al. [36] performed MD simulations to explain the discrepancy between the experimental 

results of two clean crystalline surfaces in UHV exhibited vanishing static friction in 

most cases while the real macroscale surfaces exhibited a nonzero static friction. These 

simulations employed a bead-spring model, representing hydrocarbons (common third 

bodies in the real interfaces) confined between two surfaces modeled by the Lennard-

Jones potential. They showed that even incommensurate surfaces exhibit nonzero static 

friction in the presence of adsorbed molecules, so-called “the third bodies”. The normal 

force dependence of the frictional force agreed well with the Amontons’ macroscopic 

frictional law. 

As nanotechnology advances and new experimental tools on a nano scale are 

invented and widely used, it has become possible to model some of experiments directly 

using MD. Three years after the AFM was first invented, Landman et. al. [37, 38] 

attempted to simulate the AFM experiment with a model consisting of a silicon tip and a 

silicon substrate. They used both sharp and larger tips and the larger tips had an ordered 

or disordered configuration. The silicon interactions were modeled by the Stillinger-

Weber potential [39], and the simulation was performed at room temperature. They 
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observed the stick-slip behavior and the transient and permanent changes in the local 

structure of the substrate depending on tip-substrate separation distance. Another attempt 

to model an AFM experiment of a copper tip and a copper substrate was made by 

Sørensen et. al. [40]. They simulated the system at the temperatures of 12 K and 300 K 

and at the sliding velocities of 1 m/s, 2m/s, and 10 m/s, and observed that the stick-slip 

motion depending on the tip and the substrate crystalline orientations and wear during the 

sliding. As one of the most recent examples, a realistic modeling of AFM tips using MD 

simulations was performed by Chandross et. al. [41]. They simulated AFM tips scanning 

amorphous silica substrates with alkylsilane self-assembled monolayers (SAMs). The tips 

were also made of amorphous silica and they realized amorphous structure by the melting 

of crystalline silica and the subsequent quenching. They found that the standard theories 

of contact mechanics based on the JKR (Johnson-Kendall-Roberts) [42] and DMT 

(Derjaguin-Muller-Toporov) [43] models cannot properly predict the relations between 

the applied load and the contact area mainly due to the intermediate layers. In the sliding 

simulation, they also observed that the frictional force does not depend on the chain 

length of the adsorbed monolayers. However, the sliding velocity used in the simulation 

was still large, 2 m/s.  

 Attempts to study the temperature and the sliding rate dependence of the frictional 

force using MD simulations have rarely been made. One notable exceptional study was 

conducted by Brukman et.al. [44]. AFM experiments with crystalline diamond tips and 

substrates at the temperatures ranging from 24 K and 225K exhibited a modest increase 

in shear strength with decreasing temperature. This dependence was also reproduced in 

the MD simulation.   
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 One of the main problems of the previous studies using MD simulations is that the 

sliding rate is much higher than the actual AFM experimental values by several orders of 

magnitude. Thus, while the experiments have been performed at sliding velocities 

ranging from nm/s to μm/s, the simulations employed the sliding velocity of m/s. These 

simulation results obtained with the much larger sliding speed may not correctly 

reproduce the triobological behaviors of the system at the lower sliding rates. In the next 

three chapters, we will discuss these problems further and describe possible solutions. 
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Figure 1.1 An ancient Egyptian picture that describes the transportation of a colossus on a 

sled. A person in the red circle is pouring an unknown liquid in front of the sled to facilitate 

the sliding [1].  
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Figure 1.2 A schematic diagram of AFM in process. 
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Figure 1.3 SEM micrograph of an AFM tip 

          (http://www.nanoscience.com) 
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Figure 1.4 A typical AFM experimental result showing stick-slip behavior [16]. 
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CHAPTER II 

Transition State Theory 

 

2.1 Introduction 

Most of the transient phenomena macroscopically observed in solid materials 

such as diffusion and creep are related to thermally activated changes in configuration of 

the atoms comprising the material. Atoms make transitions from one meta-stable 

potential energy basin to another when they gain enough energy to overcome the energy 

barrier due to thermal fluctuations. In these dynamical systems, the information about the 

waiting times at each state and the transition mechanisms leading to other states as well 

as their relative probabilities is essential to understand the underlying physics of the 

phenomena. 

In many cases, before hopping to other states, the system stays in the 

neighborhood of a potential energy minimum for a very long time compared to the 

typical atomic vibration periods and a transition itself occurs in a relatively short time. In 

these situations, the transition rate is an equilibrium property that is independent of 

specific trajectories of the system. If we were able to enumerate all transitions and the 

rates, this would allow us to advance the system from one state to another, without 

following detailed trajectory in the configuration space. This is the fundamental 

assumption of Kinetic Monte Carlo (KMC) [1], which advances a system from one state 
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to another according to known transition probabilities. Moreover, transition state theory 

(TST) can provide an analytical expression for the transition rates in an infrequently 

hopping system if a proper dividing surface that the system crosses in transitions can be 

constructed. 

However, determining all transition mechanisms becomes more and more 

intractable as system complexity increases. For example, a replacement mechanism for 

surface diffusion, which was not recognized until 1990, later turned out to be a dominant 

mechanism in some metallic systems [2]. Direct simulation methods like MD do not 

assume any prior knowledge about how a system will evolve in time, and can be used to 

simulate unknown transition mechanisms. However, the limitation of time scales 

accessible with MD makes it difficult to use the methodology for infrequent event 

problems. Due to the short atomic vibration period, which is on the order of picoseconds, 

the overall time scale reachable by conventional MD technique is sub-microseconds. 

The subsequent sections present preliminary information before we discuss a 

novel method to extend time scales accessible to direct simulations. In Sec. 2.2, the 

fundamental concepts of infrequent events are described. Sec. 2.3 reviews transition state 

theory and the concept of dividing surfaces. Finally, a comparison of the KMC method 

and the MD method is presented in detail in Sec. 2.4. 
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2.2 Infrequent Events 

In infrequent events, the waiting times between successive transitions are much 

longer than the transition times so that we can assume that the system loses memory 

between transitions and the escape events from each state are uncorrelated with one 

another. This memoryless transition can be mathematically expressed as 

)()()( 2121 ttpttptttp AAA >×>=+>  ,                                                  (2-1) 

where )( ttp A >  is the probability that the waiting time at a state labeled by A, At , is 

longer than t. The probability density distribution satisfying the condition Eq. (2-1) is a 

Poisson distribution expressed as 

)exp()( tRttp AA −=>  ,                                                                                (2-2) 

)exp()()( tRR
td

ttpdttp AA
A

A −=
>

−==  ,                                              (2-3) 

where AR  is a rate constant that characterizes the transition. The rate constant can also be 

expressed as  

A

A
A p

R υ
=  ,                                                                                                        (2-4) 

where Aυ is the mean frequency of escape events from the state A, and Ap is the 

equilibrium population density in the state A, defined by 

τ
υ

τ

A
A

N
∞→

= lim    ,                                                                                               (2-5) 

and 

τ
τ

τ

A
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∞→
= lim     ,                                                                                               (2-6) 
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where τ  is the total time elapsed by the system; AN  is the total number of escape events 

from A in this time interval; Aτ  is the total time the system stays in A. If we further 

assume that the system stays at each state longer than the thermal equilibration time scale 

thτ , then the system will sample the state A according to the equilibrium probability 

distribution. Thus, all measurables the system exhibits on a macroscopic time scale, 

including the transition rate, become equilibrium properties defined by the local state A. 

In the same way, we can define the rate constant for each transition from A to one 

of its adjacent states (e.g., BAR →  for the transition from A to B), using the mean 

frequency of the corresponding events such that 

A

BA
BA p

R →
→ =

υ
  ,                                                                                              (2-7) 

and 

τ
υ

τ

BA
BA

N →

∞→→ = lim   ,                                                                                       (2-8) 

where BAN →  is the total number of transitions from A to B in the time interval ],0[ τ . 

Then, the total rate constant is given by the sum of all the individual rate constants 

corresponding to a transition from A to one of its neighboring state, 

+++= →→→ DACABAA RRRR  ,                                                               (2-9) 

as +++= →→→ DACABAA NNNN . The relative probabilities of the transitions to 

different states are given by 
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where BAp →  refers to the relative probability to the transition from A to B such 

that 

1=+++ →→→ DACABA ppp   .                                                                (2-11) 

 Therefore, all the information needed to understand a dynamical system 

undergoing infrequent events can be obtained from the rate constants or equivalently the 

mean transition frequencies.  
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2.3 Transition State Theory 

 To obtain the frequency of transitions in Eq. (2-5), we need to observe a statistical 

number of escapes from the state in question so that we can count the total number of 

escapes to each neighbor and measure the escape time. Practically it is hard to observe 

even a single transition if we use a conventional dynamics scheme. Another approach 

would be to obtain the mean frequency using an ensemble average. This approach is 

called transition state theory (TST) and it was proposed as early as the 1930’s [3]. In TST, 

a dividing surface separating a potential energy basin from others is defined. Then, the 

mean frequency of escape from the state A in Eq. (2-5) is replaced by the mean frequency 

of crossing the dividing surface and the population density of the state A in Eq. (2-6) can 

be approximated by the population density of a volume in the configuration space 

surrounded by the surface. It can be shown that these quantities are equivalent to the 

integrals, 

∫ ∫
∫ ∫

+−

+−
=

]/)([exp

]/)([exp)(||
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TkKVvdrd
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  ,                                                                   (2-13) 

where r  is the 3N-dimensional position vector in the configuration space (N is the total 

number of particles); v  is the 3N-dimensional velocity vector; nv  is the velocity normal 

to a dividing surface S; )(rSδ is a Dirac-delta function located at the surface; Bk is the 
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Boltzmann constant, and T is the temperature. Note that it is assumed that the dynamics is 

ergodic. 

Then, the TST rate constant, TST
AR , is expressed as  

  
∫ ∫

∫ ∫
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A B
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R
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 .                         (2-14) 

Using the relation ∫∫ =
SS dSrfrdrfr )()()(δ , an alternative expression can be 

obtained.  
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Eq. (2-15) can be regarded as the flux of the probability density in phase space, 

TkKV Bevr /)(),( +−=ρ , exiting the surface S. Note that different dividing surfaces have 

different rates. The expression in Eq. (2-15) can be more simplified by formally 

integrating out velocity in specific cases: 

∫
∫

−

−
=

A B

S B
BTST

A TkVrd

TkVdSTkR
]/[exp

]/[exp

2 μπ  ,                                                      (2-16) 

where μ is the effective mass. One trivial example is the case where all the atoms have 

the same mass m. In this case, m=μ . If a hyperplane is used for a dividing surface, the 

effective mass is given by 

 )(
1

i

N

i
ii nnm∑

=

⋅=μ  ,                                                                                     (2-17) 
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where in  is a vector with three components of ith particle in the unit vector normal to the 

hyperplane such that 1)(
1

=⋅∑
=

N

i
ii nn  [4]. 

Because the TST rate constant is related to the mean frequency for crossing a 

given dividing surface, if a crossing of the surface exactly corresponds to an actual 

transition event, i.e. there is no recrossing of the surface, then the TST rate is identical to 

the actual rate. Otherwise, the TST rate always overestimates the actual rate, and 

A
TST
A RR ≥   .                                                                                                   (2-18) 

Therefore, it is possible that a TST rate can be a poor approximation for the actual rate 

depending on which dividing surface is used; the choice of a proper dividing surface is 

critical for the success of TST.  

One natural choice for a dividing surface is looking for a surface minimizing 

)(SR TST
A , or equivalently minimizing the integral  

∫ −=
S

TkrV dSeSI B/)()(  ,                                                                              (2-19) 

because the smallest TST rate achievable is closest to the actual rate we can achieve with 

TST. This approach is referred to as variational TST and we can also derive a differential 

equation for such a surface by taking variation on Eq. (2-19) [5, 6]. However, in most 

cases it is too difficult to find such a surface, and it is more common to construct the 

dividing surface using a simple form like a plane [4, 6]. 

 Further improvement can be achieved by introducing a dynamical correction 

factor df (< 1) which accounts for recrossing events [7-9]. df  can be calculated by 
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constructing trajectories initiated at the dividing surface. Once we compute the dynamical 

correction factor, the corrected rate is given by 

TST
Adcorrected

TST
A RfR =)(   .                                                                            (2-20) 

 One method for constructing a TST dividing surface uses the steepest 

ascent/descent path described by 

|| V
V

sd
rd

∇
∇

±=   ,                                                                                             (2-21) 

where |)|( rdsd =  is the arc length of the 3N-dimensional curve in the configuration 

space [10]. All the points which can be led to a minimum by the steepest descent path 

comprise the state defined by the minimum, and the points on the boundary, which 

converge to one of the first-order saddle points instead of the minimum points, define the 

TST dividing surface. In this case minimization can be used to verify whether or not a 

system crosses the dividing surface on the fly, by following the path described by Eq. (2-

21) and checking if the current position converges to the original minimum. However, it 

is not practical to construct such a surface because we would need to identify all the first-

order saddle points. Moreover, at a finite temperature, there is no guarantee that the TST 

dividing surface defined by the steepest ascent/descent path is equivalent to the 

variational TST dividing surface. 

 When a certain first-order saddle point is identified, an approximate expression 

for the TST rate constant corresponding to a transition via the saddle point can be 

obtained by an approach known as the harmonic TST [11]. First, to calculate the integral 

in the denominator of Eq. (2-16), the potential energy is expanded using Taylor series 

around the minimum, 
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)()(
2
1)( 3rOrHrVrV M +⋅+=   ,                                                           (2-22) 

where MV  is the potential energy at the minimum, and H is the Hessian matrix 

( jiji rrVH ∂∂∂= /2 ). Note that the coordinates are centered at the minimum. Then, the 

integral is given by 

∫∫
⋅−−− ≈

A

TkrHrTkV
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TkV rderde BBM
B

/)(
2
1//

                                        (2-23-a) 
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                                      i
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k
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π23

1

/
=

=

− Π=    ,                                           (2-23-d) 

where i
Mk  is the ith eigenvalue of the Hessian matrix at the minimum. Note that the local 

integral in Eq. (2-23-a) is approximated by the global integral in Eq. (2-23-b) because the 

expanded potential energy is dominant around the minimum, and in Eq. (2-23-c) the 

coordinates are transformed into a new coordinates system defined by the eigenvectors 

( iq is a component along the ith eigenvector). 

 For the surface integral in the numerator of Eq. (2-16), the dividing surface is 

approximated as a hyperplane normal to the eigenvector corresponding to the lowest 

eigenvalue of the Hessian at the saddle point and passing through the saddle point. Then, 

the potential energy on the plane can be expanded around the saddle point with a new 

coordinates system defined by the 3N-1 eigenvectors,   
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where i
Sk  is the ith eigenvalue of the Hessian matrix at the saddle point and the indices 

are relabeled excluding the lowest one. Then, the integral is given by 

∫∫ −∑−
−−

−

=≈ 1321/)(
2
1

//
13

1

2
NTkqkTkV

S

TkV dqdqdqeeSde
B

N

i

ii
S

BSB         (2-25-a) 

                                      i
S

B
Ni

i

TkV

k
Tke BS

π213

1

/
−=

=

− Π=  .                                            (2-25-a) 

 Finally, the harmonic TST rate constant when the two states are labeled by A and 

B is given by 
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           ]/exp[ TkV BO Δ−= υ  .                                                                  (2-26-b) 

where Oυ  is the attempt frequency and VΔ  is the energy barrier, which are defined by 
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For simplicity, it is assumed that all the particles have the same mass m.  

From these observations, it is worth noting that the TST dividing surface depends 

on the global properties of a given potential energy surface. Thus, we cannot, in general, 

determine whether or not a system crosses the surface just by looking at the 

neighborhood of the position. Ideally we must solve the variational TST dividing surface 

problem or, alternatively, all the first-order saddle points must be identified. In most 

cases either presents a formidable task. 

There are several ways which have been proposed to approximate a dividing 

surface using local properties. One of those methods was proposed by Sevick et. al. [10]. 

In their approach, they noticed that at a saddle point, which provides the dominant 

contribution to the numerator of Eq. (2-15) or Eq. (2-16), the lowest eigenvalue 1ε  of the 

Hessian matrix is negative and the corresponding eigenvector 1C  is perpendicular to the 

dividing surface based on the steepest ascent/descent method. Thus, they constructed a 

surface satisfy the following conditions 

01 =∇⋅ VC    and   01 <ε  .                                                                          (2-31)   

Fig. 2-1 shows various dividing surfaces and the dividing surface constructed by Eq. (2-

31) can be a good approximation near the saddle point. 
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2.4 Kinetic Monte Carlo and Molecular Dynamics 

 Suppose a system evolving via infrequent transition events among various 

potential energy wells. Molecular dynamics simulations compute the positions and 

momenta of the system following a trajectory of the particles as time passes. Thus, it 

corresponds to simulating real dynamics. After initially setting the system in progress, we 

monitor the system for a time period as in real experiments. We do not need to know a 

priori which pathways the system will follow when making transitions. 

 Unlike the Monte Carlo Method, the Kinetic Monte Carlo method treats 

dynamical systems evolving in time. However, its approach is different from the MD 

method. In KMC, we assume that all the transition mechanisms and their transition rates 

are known. These are inputs for KMC simulations. Then, KMC can advance the system 

according to these transition rates. For example, suppose that we have three transition 

modes, labeled by 1, 2, and 3, and their transition rates are known and expressed as 

1R , 2R , and 3R . Then, their relative transition probabilities are 321 :: RRR  as seen in Eq. 

(2-10), and we can choose one transition mode to advance the system according to these 

probabilities, e.g., by generating a random number. Moreover, we can estimate the escape 

time corresponding to this transition. Recall that the escape time does not have a 

determined value, but has a probability distribution as in Eq. (2-3). Then, it can be shown 

that a variable t calculated by 

  
R

rt )(ln
−=    ,                                                                                                 (2-32) 

where r is a random number uniformly distributed in [0,1] and R is the total rate 

(= 321 RRR ++ ), has the Poisson distribution tReR − . 
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 Surprisingly, we can advance the system from one state to another just by 

generating two random numbers. If we performed a MD simulation, we would have to 

continually trace a trajectory until the system undergoes a transition. Thus, KMC has 

significant advantages over MD in rare events problems. 

 The weak point of KMC is the assumption that all the major transition modes are 

identified and their rates are known. In complicated systems this is an intractable 

condition. In chapter IV, we will introduce a novel method to extend MD time-scales 

using TST. 
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Figure 2.1 Contours and dividing surfaces of the two-dimensional Muller potential energy 
surface. The surface has three minima, labeled A, B, and C, and two saddle points, labeled 

BA ↔ and CB ↔ . The thin solid curve is obtained from the steepest ascent/descent 
method, the dashed straight line is the hyper-surface perpendicular to the eigenvector for the 
lowest eigenvalue at the saddle point, and the thick solid line represents the dividing surface 
based on Eq. (2-21) [10]. 
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B 

C CB ↔

BA ↔
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CHAPTER III 

Theories of Atomic-scale Friction 

 

3.1 Introduction 

In an AFM experiment, only a small number of atoms at the end of a tip are in 

contact with the atoms in the substrate. They are initially equilibrated at a local potential 

energy minimum, but as the slider moves and the cantilever deforms, the initial minimum 

configuration becomes unstable and the atoms rearrange into a more stable new minimum 

releasing the elastic energy stored in the cantilever. This process: equilibration at a local 

minimum, escape from the minimum and establishment of a new local minimum, is 

repeated as the slider advances. 

To quantitatively explain the characteristics of atomic-scale friction observed in 

the AFM experiment, several theories, based on the Tomlinson model [1], have been 

proposed [2-5]. Although they cannot explain every detail of the various phenomena that 

accompany frictional sliding, these theories give us insight into the underlying physics, 

and exhibit a velocity and temperature dependent friction force and stick-and-slip motion. 

In this chapter, we will present the Tomlinson model and then consider theories arising 

from the model that take into account thermally activated transitions. Other models 

considering the vibrational coupling between atoms (the Frenkel-Kontorova model [6, 7]) 
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and the coupling between atoms and the sliding body (the Frenkel-Kontorova-Tomlinson 

model [8]) are discussed in Sec. 3.4. Finally, Sec. 3.5 will discuss the contact mechanics. 

 

3.2 Tomlinson Model 

Let us consider a simple system consisting of one atom which interacts with a 

crystalline surface and is attached to a spring as seen in Fig. 3.1 (a). The crystalline 

surface is modeled by a sinusoidal function, which has a periodicity of a , and the other 

end of the spring is a slider moving at a constant speed, Sυ . We can regard this system as 

an AFM experiment with an extremely sharp tip having a single-atom contact and 

scanning a crystalline surface. The spring models the combined stiffness of the tip and 

the cantilever.   

The total potential energy of the system, U , is the sum of the surface interaction 

potential, iE , and the harmonic potential due to the spring, hE , expressed as 

),()(),( ShiS xxExExxU +=    ,                                                                    (3-1)                         

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

a
xExE O

i
π2cos1

2
)(   ,                                                                     (3-2) 

2)(
2

),( xxkxxE SSh −=  ,                                                                                (3-3) 

 tvx SS =  ,                                                                                                        (3-4)    

where OE  is the energy barrier of the surface interaction and k  is the spring constant. 

Fig. 3.1 (a) shows the potential energy curves when the spring is unstretched. In 

this configuration, the atom is at the initial minimum indicated by the green triangle in 

the figure. As the slider moves to the right (the sliding direction) and stretches the spring, 
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the location of the harmonic potential and the shape of the total potential change and, in 

turn, the location of the initial minimum moves continuously. The energy barrier to the 

right side (state B) of the initial minimum (state A), BAE →Δ , also reduces as successively 

shown in Fig. 3.1 (b) ~ (f). At a finite temperature, the atom will vibrate around this 

instantaneous minimum, but for the present let us assume that the atom is always located 

at the minimum. When the slider reaches a critical point ( +
Sx ), where the energy barrier 

completely vanishes as shown in Fig. 3.1 (f), the atom can hop from the initial minimum, 

1x , to the next one, 2x , and the friction force drops abruptly as the tip slips to a new 

stable configuration. A typical tip motion and a friction force graph are illustrated as 

functions of the slider position in Fig. 3.2. When the atom hops to a new local minimum, 

the stored elastic energy due to the spring is released and transforms into kinetic energy. 

In a real material, this kinetic energy gain is dissipated via phonons and the electronic 

excitations, and this mechanism is the source of kinetic friction. In the present model, we 

will simply assume kinetic energy is fully dissipated as heat and the atom at the tip is 

always at the minimum. 

Now let us derive several analytical expressions that will be important for our 

discussion in the subsequent section. The energy barrier is a function of the slider 

position given by 

),)((),)(()( min SSSSsadSBA xxxUxxxUxE −=Δ →   ,                                    (3-5) 

where sadx  and minx refer to the saddle point and the initial minimum and are also 

functions of the slider position. sadx  and minx can be obtained by solving the following 

equations, 
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and 
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S

Sh xxk
x

xxE
−=

∂
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  .                                                                               (3-8) 

As illustrated in Fig. 3.3 (a), sadx  and minx correspond to the crossing points of the two 

curves corresponding to Eq. (3-7) and Eq. (3-8), and the energy barrier is the area 

between two curves bounded by sadx  and minx . We can also show that the following 

relationship holds, 

 )()(
min sad

S

BA xxk
xd

Ed
−=

Δ →  .                                                                         (3-9) 

Note that Eq. (3-9) is always negative. Moreover, the dependence of sadx  and minx on the 

slider position can be shown as 
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i xxatk
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Ed

=−<2

2

 . 

The lateral force, F, is defined as  
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)( minxxkF S −=  ,                                                                                         (3-12) 

and we define the upper critical lateral force, +
CF , as the lateral force when the energy 

barrier completely vanishes ( minxxx sadC == and Sx  becomes +
Sx ). Cx  and +

Sx  can also 

be expressed as 
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In the derivations above, we assumed that there is more than one local minimum, 

i.e. there are always saddle points, but the number of wells depends on the spring 

stiffness. As shown in Fig. 3.3 (b), when the stiffness is larger than 1crk , initially there 

exists only one well and as the slider advances additional wells appear. If 2crkk > , 

regardless of the slider position there is only one local minimum. The critical 

stiffnesses, 1crk  and 2crk , can be expressed as 

)cos(2
12

2

1 s
a

Ek O
cr

π
−=    ,                                                                             (3-14) 

and 

2

2

2
2

a
Ek O

cr
π

=   ,                                                                                             (3-15) 

where 493.41 ≅s  is one of the roots of the equation ss =)tan( . When 2crkk >  there is 

no stick-slip motion and no energy dissipation in the model because there is no transition. 

This is the regime exhibiting so-called superlubricity, almost vanishing friction force 

which will be discussed in detail in Sec. 3.4 [9]. 
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 The upper critical lateral force can be expressed in terms of 2crk , as 

2

2

1 ⎟⎟
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⎞
⎜⎜
⎝

⎛
−=+

cr

O
C k

k
a
EF π

  .                                                                        (3-16) 

If 1crkk < , there are multiple wells when the spring is not stretched and the atom 

has a probability to make a transition to neighboring states.  

 

3.3 Thermally Activated Transition 

Temperature affects transitions between states and alters the frictional behavior. 

The positions of atoms comprising a material in the solid state fluctuate in a way 

characterized by the temperature. As a result of these fluctuations, even though there is a 

non-vanishing energy barrier, the system can overcome the barrier and make a transition 

to one of the neighboring minima due to the thermal energy. In general, with a given 

energy barrier, the transition is more probable at a higher temperature. Thus, we can 

expect that in the sliding system, the tip can make a transition at earlier slider positions as 

the temperature becomes higher, resulting in a smaller friction force.  

To analyze the thermally activated transition in a systematic way, let us consider 

transitions between two wells (or states) illustrated in Fig. 3.4, where two states are 

labeled by A and B, respectively. Assuming the potential energy is not changing and the 

system is initially at A, the probabilities that the system will be at A and B at the time t, 

)(tp A  and )(tpB , can be given by the following rate equations   

BABABA
A pRpR
td

tpd
→→ +−=

)(
  ,                                                              (3-17) 
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BABABA
B pRpR
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→→ −+=
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  ,                                                              (3-18) 

with 1)0( =Ap  and 0)0( =Bp , where BAR →  and ABR →  are the transition rates from A 

to B and from B to A, respectively. If we further assume that the transition from B to A is 

much less probable compared to the transition from A to B ( ABBA EE →→ Δ<<Δ ), the rate 

equations can be simplified as 

ABA
A pR
td

tpd
→−≅

)(
  .                                                                                  (3-19) 

The rate BAR →  can be estimated by transition state theory. In this one-dimensional case 

Eq. (2-16) gives 
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If we use the harmonic approximation, a simpler expression can be used to estimate the 

rate constant BAR →  as 
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where mk  is the curvature at the minimum and Of is the attempt frequency. Moreover, 

the probability that the system hops from A to B at time t, )(tg A , is given by 

 )()()( tpR
td

tpdtg ABA
A

A →+=−=  .                                                             (3-23) 
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 In the Tomlinson model, the energy barrier is not fixed, but changes as a function 

of the slider position Sx . If we assume that the slider moves so slowly that the system is 

at near equilibrium at any slider position, although AEΔ  changes in time, Eq. (3-19) is 

still valid with the transition rates given by Eq. (3-20) or Eq. (3-21). Then, with Eq. (3-4), 

we can rewrite these equations in terms of the slider position as, 
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and 

)()()( SASBASA xpxRxg →=  .                                                                       (3-26) 

The solutions under these assumptions are 
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The most probable slider position for the transition, Sx~ , can be found by the condition, 

0
~

=
SxS

A

xd
gd

 .                                                                                                   (3-29) 

Using Eq. (3-26) and Eq. (3-28), this condition becomes  
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and from (3-25) and assuming Of  is constant , we can obtain a general relation that holds 

in the harmonic limit, 

SxS
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 Now let us express these relations in terms of the lateral force defined in Eq. (3-

12). If the contact stiffness, ⎟⎟
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Ed

k i
C , is constant, Eq. (3-12) can be rewritten as 

Seff xkF =  ,                           (3-32) 

where )/( kkkkk CCeff +=  is the effective stiffness. Then, we can show that the 

probability that the system hops from A to B at force F, )(Fg A , is 
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where ⎟⎟
⎠

⎞
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⎝

⎛ Δ
−=→ Tk

FEfFR
B

A
OBA

)(exp)( . From the position dependence of the energy 

barrier and the lateral force, we can obtain )(Fg A  by solving Eq. (3-33). In this way we 

can demonstrate that the average lateral force at the transition is given by 

 ∫
+

= CF

A FdFgFF
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)(   .                                                                             (3-34) 

 Gnecco et. al. first derived a relation of this sort by assuming the energy barrier 

reduces linearly as the slider moves [2],   

)( FFE CA −=Δ +λ  ,                                                                                       (3-35) 
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where λ is a constant and AEΔ  becomes zero as F approached to +
CF . Then, the most 

probable lateral force for the transition, F~ , becomes    

⎥
⎦

⎤
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⎣

⎡
+= +

Tkf
vkTkFF

BO

SeffB
C

λ
λ

ln~
  .                                                                      (3-36) 

Note that the lateral force is logarithmically proportional to the sliding velocity. 

 In subsequent work, Sang et. al. [3] showed that when the lateral force is close to 

the critical force, the correct relation of AEΔ  is  

2/3)( FFE CA −=Δ +γ  ,                                                                                   (3-37)  

which is the same relation Maloney and Lacks derived based on Catastrophe theory [10]. 

From this assumption they derive an expression for the transition probability near the 

critical force, 

]/)(exp[
2
3)( *2/3

*

2/1
2/3

vef
v
ffg f

A
−−−=   ,                                              (3-38) 

where )(1 FFCf C −= +  and SvCv 2
* =  ( 1C  and 2C are constants). A typical 

distribution is shown in Fig. 3.5 (a). They also obtained the relationship between the 

average force Eq. (3-34) and the sliding velocity in this limit, 

3/2)(ln SvBAF −=   ,                                                                                   (3-39) 

where A and B are constants. 

Later, Riedo et. al. derived a formula for the most probable transition force and 

the velocity relation using Sang’s equation and assuming Of  is constant [4], 

⎥
⎦

⎤
⎢
⎣

⎡
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=− ++

+

CSCeff

OB
C

B F
F

vFk

fTkFF
Tk

~
1ln

2
1

3

2ln)~( 2/3

γ

γ
 .                         (3-40) 
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Note that in Eq. (3-40), F~ approaches +
CF  asymptotically as the sliding velocity increases 

and there is a plateau region at the higher velocity region as shown in Fig. 3.5 (b). 

 In the above derivations, we considered a unidirectional transition from A to B 

and ignored other possibilities. Recently, Krylov et. al. [5] proposed another mechanism 

for superlubricity, called thermolubricity, by studying all the possible transitions in the 

Tomlinson model. They solved a set of rate equations including all the minima of the 

model, 

1111)()(
+

−
+−

+
−

−+ +++−= iiiiiii
i pRpRpRR
td
tpd

   ,       ),,1( wNi =          (3-41) 

⎥
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B

i
Oi exp   ,                                                                                (3-42) 

01 == +−
wNRR  ,                                                                                               (3-43) 

where wN  is the total number of wells, +
iR  is the transition rate from the ith well to the 

right, −
iR  is the transition rate from the ith well to the left, and ±Δ iE  are corresponding 

energy barriers. Moreover, they introduced a non-dimensional parameter β  given by 

2

1

τ
τβ =    ,                                                                                                        (3-44) 

⎥
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exp1
1τ   ,                                                                                     (3-45) 

Sv
a

=2τ   .                                                                                                        (3-46)  

When 1<<β  ( 21 ττ << ), called the thermal drift regime, the tip can exhibits many back-

and-forth transitions among adjacent wells before the slider substantially moves. In this 
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regime, the stick-slip breaks down and a significant reduction of friction force could be 

obtained. This can be confirmed by the analytical solution in this regime.  
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S exp~   .                                                                 (3-47) 

Eq. (3-47) implies that the friction force becomes zero at zero velocity limit and increases 

exponentially as temperature decreases. While the criterion for superlubricity, 2crkk > , 

considers only mechanical properties of the system, the superlubricity observed in the 

thermal drift regime is mainly due to thermally effects and called thermolubricity. 

 

3.4 Frenkel-Kontorova-Tomlinson Model 

In Sec. 3.2 and Sec. 3.3 we discussed the Tomlinson model and the theories based 

on this model and considering thermally activated transitions. However, since the model 

assumes that one single atom of the tip is in contact with the substrate, it cannot explain 

the frictional behavior of sliding systems where multiple tip atoms are in contact with the 

surface. 

One extension of the Tomlinson model is to consider a chain of atoms interacting 

with each other as well as the substrate as shown in Fig. 3.7 (a). This model is called the 

Frenkel-Kontorova (FK) model [6] and can be regarded as a model for a single layer of 

adsorbed atoms. In case the atoms contacting the substrate are constrained by the atoms 

of the upper layer such as two bulk bodies in contact, we can modify FK model by 

coupling the atoms in contact to a sliding body as illustrated in Fig. 3.7 (b). The resulting 

model is known as the Frenkel-Kontorova-Tomlinson (FKT) model [8]. Because FK 
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model can be regarded as a special case of FKT model, we present the main ideas of FKT 

model below. 

In the FKT model, the interaction between the atoms and the interaction between 

the atoms and the upper body are modeled by harmonic potentials. The interaction 

between the atoms and the lower body is modeled by a sinusoidal function. The lengths 

are non-dimensionalized with the lattice parameter of the lower body and the stiffnesses 

are non-dimensionalized with the stiffness between the atoms.  

The resulting potential energy of FKT model is given by 
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π
ξκξξξξ ∑∑∑

===
− ++++−=

            BxF−   ,                                                                             (3-48) 

where c is the lattice parameter of the upper body; N is the number of lattice points in 

the upper body; Bx is a reference position of the upper body; jξ is the distance of jth 

atom from the jth lattice point of the upper body; κ is the stiffness of the interaction 

between the atoms and the upper body; F is a driving force applied to the upper body, 

and b is the energy barrier of the interaction potential between the atoms and the lower 

body. Note that when 0=κ , the FKT model becomes the FK model.  

 Because the periodic boundary condition ( 11 ξξ =+N ) is used, Nc× , the number 

of the wells in the lower interaction potential must be an integer. Thus, if c is a rational 

number, the system has commensurate surfaces with a periodicity of cN. If c is an 

irrational number, the periodicity of the model must be infinite and the resulting surfaces 

are incommensurate. 
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 The model exhibits strong dependence on the commensurability of the surfaces 

and the magnitude of b. For b, there are three critical values labeled by S
cb , K

cb , and 

m
cb which denote the following transitions. 

 (1)  S
cbb < : Static friction is zero. 

(2)  K
cbb < : Kinetic friction becomes zero as velocity approaches zero. K

cbb > : 

Finite kinetic friction. 

(3)  m
cbb < : There is only one stable state. m

cbb > : Metastable states exist 

depending on the magnitude of b. 

Moreover, for commensurate surfaces, 

 m
c

K
c

S
c bbb <<=0  ,                                                                                         (3-49) 

and for the incommensurate surfaces, 

m
c

K
c

S
c bbb ==<0  .                                                                                         (3-50) 

A simulation study with a finite area of incommensurate interfaces is discussed in 

Chap. VI.    

 

3.5 Contact Mechanics    

In recent AFM experiments performed in the low normal load regime, it is 

believed that a tip forms a single asperity contact with a surface and the deformation of 

the tip and the surface is completely elastic [11]. In the single asperity contact, the real 

contact area is important because we can expect that, according to Bowden and Tabor’s 

theory [12], the following relation holds. 

realS AF τ=   ,                                                                                                   (3-51) 
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where Sτ  is the shear stress at the contact and realA  is the real contact area. Using the 

principles of contact mechanics we can calculate the relationship between the real contact 

area and the normal load. 

 When two smooth and non-adhesive spheres are in elastic contact as shown in Fig. 

3.8, the Hertzian contact theory gives the radius of the contact area, a , as a function of 

the applied normal load, LF ,    

K
FRa L=3   ,                                                                                                    (3-52) 
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=  ,                                                                                                 (3-53) 
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 ,                                                                                          (3-54) 

where 
1

2
1

1
1

E
vk

π
−

= and 
2

2
2

2
1

E
vk

π
−

= ; v is the Poisson’s ratio and E is the Young’s 

modulus of each material. Note that the stress inside the contact area is purely 

compressive and the contact radius a  becomes zero when the applied normal load is zero. 

When a sphere contacts a semi-infinite plane, Eq. (3-52) can still be used with R as the 

radius of the sphere. Moreover, because there is no adhesion between the two spheres, 

there is no surface energy and no mechanical work is needed to remove the contact 

surface. 

 Now let us consider the contact of adhesive surfaces. Due to the adhesive forces, a 

contact surface is created by sacrificing the free surfaces of the spheres and the spheres  
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are deformed until the stored elastic energy and the reduced surface energy balance out. 

In this case, the stress around the edge of the contact area becomes tensile and the stress 

around the center becomes compressive. Moreover, some mechanical work will be 

needed to separate the two spheres and remove the contact surface. 

If we assume that the adhesive forces act only inside the contact area, the 

analytical expression for the relationship between the contact radius and the normal force 

is given by the Johnson-Kendall-Roberts (FKR) theory [13], 

))3(63( 23 RFRRF
K
Ra LL πγπγπγ +++=  ,                                     (3-55) 

where γ  is the surface energy per unit area.  

 On the contrary, the Derjaguin-Muller-Toporov (DMT) theory [14] assumes that 

the adhesive forces are dominant outside the contact area and the Hertzian deformed 

contact profile is not changed inside the contact area. In this theory, the contact radius is 

given by 

  )2(3 RF
K
Ra L πγ+=  .                                                                                  (3-56) 

 In the modeling of AFM systems using molecular dynamics, we cannot deal with 

a surface with an infinite depth. Thus, we need to determine the deformation range inside 

a surface pressed by an AFM tip to determine a proper depth of the simulated surface. 

The penetration depth can give an estimate to this. Using the JKR theory, the penetration 

depth of a sphere from the original height of a semi-infinite surface, δ , is given by 

2/12

3
8

⎟
⎠
⎞

⎜
⎝
⎛−=

K
a

R
a γπδ   .                                                                                  (3-57) 
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Therefore, we can expect that substrates in MD simulations should have depths of at least 

δ3~2 . 
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Figure 3.1 Potential energy curves at different slider positions, illustrating the Tomlinson 

model. As the slider advances to the right, the harmonic potential (blue) shifts and the total 

potential (red) changes. The green triangles indicate the initial minimum.   

(a)  (b)  (c)  

(d)  (e)  (f)  
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Figure 3.2 Typical behaviors in the stick-slip motion. (a) Tip position vs. slider 

position; (b) Friction Force vs. slider position. 

(a) 

(b) 
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Figure 3.3 Illustration of the graphical methods to find the solutions of the Tomlinson model 
at zero temperature. (a) minx and sadx indicate the minimum and the saddle point 

respectively, and the yellow area corresponds to the instantaneous energy barrier, BAE →Δ  

and )( minxxkF S −=  (b) when 1crkk >  initially there is only one well, but as the 

slider moves new wells appear. When 2crkk >  there is always only one well. 

(a) 

(b) 
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Figure 3.4 A potential energy curve with two wells. The red triangle indicates 

the saddle point. 
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Figure 3.5 Illustrations of (a) the distribution of the force at the transition and (b) the sliding 

velocity dependence of the most probable transition force. 

(a) 

(b) 
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Figure 3.6 A diagram of the total energy U(x) as a function of the tip position x. The minima 

are labeled by ascending indices from the left to the right. 
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Figure 3.7 Illustrations of friction models. (a) Frenkel-Kontorova model and (b) Frenkel-

Kontorova-Tomlinson model. 

(a) 

(b) 
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Figure 3.8 A diagram of two elastic spheres contacting each other. 
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CHAPTER IV 

Hyperdynamics 

 

4.1 Introduction 

As discussed in chapter II, we have two major methodologies for dynamical 

systems. One is the KMC method and the other is the MD method. KMC can access 

much longer time scales than MD by several orders of magnitude, but transition 

mechanisms and rates should be known a priori. In the MD simulation, a system evolves 

naturally without requiring any prior information about the transition modes the system 

will take when making transitions. However, it has not been possible to perform MD 

simulations longer than microseconds. An ideal solution would allow us to perform 

dynamics simulations on time scales reachable by KMC. 

About a decade ago, Voter proposed a novel method to extend the MD time-scale, 

now called hyperdynamics [1]. In hyperdynamics, a given potential energy function is 

modified such that the energy barriers are reduced while the characteristic dynamics are 

preserved. In principle hyperdynamics simulation can advance the system at an 

accelerated pace while preserving the correct relative transition probabilities. 

Furthermore, the acceleration rate can be calculated concurrently during the simulation. 
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The subsequent sections present a systematic review of the hyperdynamics 

method. Sec. 4.2 presents a general review of hyperdynamics, and critical issues are 

discussed in Sec. 4.3. Finally, the modifications of the original hyperdynamics method 

and a parallel algorithm for an externally driven system are described in Sec. 4.4. 

 

4.2 General Review  

 Let us consider a simple two-dimensional system, i.e., the potential energy of the 

system has two independent variables. As shown in Fig. 4.1, the potential has four 

minima, labeled by A, B, C, D, respectively, and initially the system resides in the state A, 

which has three adjacent states (B, C, D). We assume that there is a surface (a curve in a 

two-dimensional case) S completely surrounding the state A and the surface can be 

divided into three parts ( DCB SSSS ∪∪= ) such that whenever the system crosses one 

of them, it “hops” to the corresponding state (i.e. if the system crosses BS , it equilibrates 

in B).  

As expressed in Eq. (2-15), the TST rate constant for transition from the state A to 

one of its neighboring states (e.g. B) is given by  

∫ ∫
∫ ∫
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  ,                                                (4-1) 

and the total escape rate from A is the sum of the individual rates such that 
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Using Eq. (2-10) and Eq. (4-1), we can also calculate the relative probabilities. Thus, 
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Note that this ratio depends on the potential energy values at the surfaces only. 

 Now, our goal is to increase the overall escape rate, TST
AR , which is the same as 

the inverse of the average waiting time )/1( AA tR =  while preserving the relative 

transition probabilities shown in Eq. (4-3). Voter’s idea was to use a modified potential 

energy function instead of the original potential to accomplish this goal [1]. The modified 

potential is obtained by adding a bias potential, )(rVΔ , which has positive values in A, 

surrounded by S, and zero along the dividing surface S. Thus, the modified potential and 

the bias potential are  

)()()( rVrVrVb Δ+=   ,                                                                                (4-4) 
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)(    .                                                                        (4-5) 

Fig. 4.2 shows the original potential and the biased potential together, which are plotted 

along the dashed line in Fig. 4.1, illustrating how the potential energy changes after it is 

biased by VΔ ; the energy barrier between A and B is reduced, but the original potential 

is not modified at the saddle point.  

The rate constant in the modified potential energy, bV , becomes  
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Knowing that the modified potential has the same values at the dividing surface as 

the original potential, the ratio of the average waiting times in both potentials, denoted by 

β ,  can be obtained by 

( )
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β  .                                                       (4-7) 

Because bV  is larger than V in A, β  is always larger than 1 and the average waiting time 

in the modified potential becomes shorter than the average waiting time in the original 

potential. By manipulating Eq. (4-7), we can derive two means of calculating the boost 

factor, 
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and 

∫
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Thus, the boost factor obtained in hyperdynamics can be calculated from either the 

thermodynamic average of TkV Be /Δ+ in the biased potential or the inverse of the average 

of TkV Be /Δ− in the original potential. Note that the boost factor is easier to calculate using 

either Monte Carlo (MC) Method or MD than the transition rate as in Eq. (2-15) or Eq. 

(4-1) because the boost factor is less dependent on the potential energy values at the 

dividing surface, which is rarely visited.  

Moreover, the relative transition probability in the biased potential is given by 
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which is the same as the relative transition probability in the original potential. 

 Therefore, the system in the biased potential will evolve following the same 

stochastic sequence of states as in the original potential, but at an accelerated pace.  

 

4.3 Critical issues 

4.3.1. The Boost Factor 

 According to Voter’s guide [1], the time t  in the original potential can be 

recovered from the time bt  elapsed in the potential bV  modified with a bias potential 

VΔ using 

∑
=

Δ+Δ=
TOT

Bi

N

i

TktrV
MD ett

1

/)]([  ,                                                                           (4-10) 

where TOTN  is the total number of MD steps, MDtΔ  is the time interval for numerical 

integration, and it  is the time at ith MD step ( MDti Δ×= ). To verify Eq. (4-10), let us 

imagine that we are repeating a simulation starting in the same initial state many times to 

measure a waiting time for the same transition event in the unbiased potential. At each 

trial, the outcome will vary, but the distribution of the outcomes will converge to a 

definite distribution, given by 

)exp()( tRRtp −=  ,                                                                                    (4-11) 
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where R is the rate constant in the original potential. If we perform the same procedure 

with the biased potential, we will have another distribution of a form of Eq. (4-11), but in 

this case the rate constant will be different. 

)exp()( bbbb tRRtp −=   ,                                                                            (4-12) 

where bR  is the rate constant in the biased potential. If we assume that we can use the 

TST approximation for the actual rates, the relationship between these two rate constants 

can be given by the boost factor β , as in Eq. (4-7),  

R
Rb=β   .                                                                                                       (4-13) 

Now let us consider a distribution of a variable ξ , called a recovered time, obtained by 

multiplying the waiting time in the biased potential, bt , by the boost factor β . It can be 

shown that the distribution of the recovered time ξ  ( β×= bt ) is identical to the 

distribution of the waiting time in the original potential, using the following derivation                             

)()( b
b tp

d
tdp
ξ

ξ =                            

                      )(1
btp

β
=                              from 

βξ
1

=
d

td b  

                      )exp( ξ
ββ

bb RR
=                   from Eq. (4-12) 

          )exp( ξRR=                       from Eq. (4-13) . 

Therefore, the stochastic outcome of the waiting time in the original potential can be 

replaced by the recovered time.  
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Now return to Eq. (4-10) and consider a single transition event simulated with 

MD. We can regard this MD simulation as a sampling to obtain the ensemble average in 

Eq. (4-8-a). Then, Eq. (4-8-a) can be obtained by 
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β  .                                                                               (4-14) 

Note that the MD simulation should be performed with the biased potential, i.e., the force 

vector should be obtained from the biased potential, in order to calculate β  using Eq. (4-

8-a). Since the recovered time can be regarded as the original waiting time, we have  

βξ ×== btt  
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This agrees with the supposition in Eq. (4-10). 

In the above derivation it is assumed that Eq. (4-14) holds, an assumption that 

largely depends on the total number of MD steps sampled in each escape event. If a bias 

potential is chosen too aggressively, the system will stay in the starting state for a short 

time and hop to other states soon. Then, there will be too small a number of MD steps to 

obtain β  accurately. With an inaccurate β , the recovered time ξ  loses its statistical 

meaning and its ability to approximate the original time. In an optimistic view expressed 

in [1], even with the aggressive choice, the accumulated time error after many transitions 

may vanish because the time error in each escape is not correlated with others. However, 

it is also likely that a bad choice of a bias potential can cause the time error in a biased 
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way such that it always yields shorten estimations or lengthen estimations at every 

transition. 

Thus, we propose to use Eq. (4-8-b) to calculate the boost factor in case of 

aggressive boosting rather than Eq. (4-8-a). Then, β  is approximated by 
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This requires a pre-simulation using the original, unbiased potential before we launch the 

boosted simulation. Because this process requires extra computation, a trade-off arises 

between the choice of an aggressive bias potential with the boost factor obtained from Eq. 

(4-15) that requires pre-computation and a safe bias potential with the boost factor from 

Eq. (4-10) that does not. 

The major advantage of this pre-computation is that  once we perform a MD 

simulation with the original potential in a sufficient number of MD steps to accurately 

obtain the ensemble average in Eq. (4-8-b), we can adjust parameters in the form of a bias 

potential to maximize the boost factor. We do not need to run the simulation again when 

we modify the parameters because Eq. (4-8-b) is based on the original potential, which 

does not depend on the parameters of the bias potential. On the contrary, if we used Eq. 

(4-8-a), we would have to re-run the MD simulation with the biased potential whenever 

we modified the parameters. Moreover, the information obtained from the pre-simulation 

can be used to find the maximum allowed boost factor of a given bias potential using a 

local variable. To verify this, let us consider a bias potential which is defined by a local 

variable λ such that )(λVV Δ=Δ such that it vanishes when CRλλ < . Then, the boost 

factor is given by 
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and the maximum boost factor can be found by  
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where )(λp  is the probability density of λ  in the original potential. Therefore, the boost 

factor cannot be larger than the inverse of the probability that CRλλ < in each state. For 

example, if we use the lowest eigenvalue of the Hessian matrix as the local variable and 

set zero as the critical value, the maximum achievable boost factor is limited to the ratio 

of the phase space volume of the unboosted region, where the lowest eigenvalue of the 

Hessian matrix is negative, to that of the entire basin. 

 

4.3.2 Various Bias Potentials 

 As shown in Sec. 4.2, a bias potential )(rVΔ  must be constructed to implement 

hyperdynamics. In addition to satisfying Eq. (4-5), a proper bias potential should not 

introduce new barriers inside a state whose waiting times compete with the original one 

[1]. Moreover, the bias potential should not result in significant computational overhead 

exceeding the boost factor obtainable with the modified potential. 

 To successfully create a bias potential, we first need to identify a criterion for 

identifying the dividing surface because a bias potential should be zero at the surface. As 

discussed in Sec. 2.3, the dividing surface can be achieved either by minimizing Eq. (2-
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19) or by finding all the first-order saddle points. However, it is much more practical to 

define a bias potential based on local properties of a given potential energy surface, 

defined at a point r  in the configuration space. Candidates for such local properties 

include the potential energy )(rV , the gradient )(rV∇ , and the Hessian 

)/( 2
jiji rrVH ∂∂∂= , but may include other properties of the system energy or 

configuration. 

In [1] and [2], Voter used the lowest eigenvalues and corresponding eigenvectors 

of the Hessian to construct a bias potential, using the definition of an approximate 

dividing surface proposed by Sevick et. al. [3]. The bias potential energy has the form [2],  
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where 1A  and 2A  are parameters, 1ε  is the lowest eigenvalue, and VCg p ∇⋅= 11 , where 

1C  is the corresponding eigenvector to 1ε . Note that Eq. (4-18) vanishes when the 

condition Eq. (2-31) is satisfied. One of the most difficult barriers for implementing this 

bias potential is calculating the lowest eigenvalue. Furthermore, calculating boost forces 

requires its derivative, which is related to the third derivative of the potential. In [2], 

Voter presented an alternative method to approximate the lowest eigenvalue and its 

derivative and the method requires only first derivatives. Because the eigenvalues of the 

Hessian are the second derivatives of the potential along the direction of eigenvectors, the 

lowest eigenvalue can be obtained by finding a direction minimizing the second 

derivative of the Hessian. Moreover, instead of using the exact second derivative, he 

minimized the finite difference form for it, given by 
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where )(cκ is the approximate second derivative along a direction vector c , and h is the 

interval for the finite difference scheme. Thus, the approximate value for the lowest 

eigenvalue, appxε ,  is obtained by finding the direction minimizing )(cκ . 

)](min[ cappx κε =   .                                                                                      (4-20) 

Then, the derivative of appε  is given by 
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where g  is the gradient ( V∇= ), and minc is the direction along which Eq. (4-20) is 

minimized. Note that Eq. (4-21) is the exact derivative for Eq. (4-20). Another tricky part 

in this bias potential is to obtain the derivative of pg1 . In [2], Voter proposed a method, 

called the lambda method, to approximate pg1  and its derivative, but the method requires 

two additional minimizations and the derivative is obtained by the difference between 

two minimized quantities, which is difficult to obtain high accuracy with a reasonable 

computational load. In our implantation, when we calculate the lowest eigenvalue we use 

a Lanczos iterative method [4], which is more efficient than the Voter’s minimization 

method. After the eigenvalue and eigenvector are found, the derivative of the eigenvalue 

is obtained by Eq. (4-21). 

 While Voter’s method is well motivated, it is very expensive and therefore we 

need to examine other implementations. One of the simplest bias potential was the one 

proposed by Steiner et. al. [5]. In their method, a constant energy value BE  is chosen and 
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whenever the original potential becomes less than BE , the modified potential, which is 

the sum of the original potential and a bias potential, have this value. When the original 

potential becomes larger than BE , the bias potential becomes zero so that the modified 

potential has the same value as the original one. Thus, their bias potential is  
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For this method, BE  must be chosen as a value lower than the lowest saddle point energy 

and it is difficult to verify whether or not this is truly satisfied. Moreover, it is possible, 

particularly for complex energy landscapes, that when the condition is satisfied, the boost 

factor obtained by the bias potential is very small. 

 Recently, a more reasonable bias potential without significant computational 

overhead, called the bond-boost method, was proposed by Miron and Fichthorn [6]. The 

bond-boost method utilizes the characteristic of bond-breaking that most solid-state 

systems experience when making transitions. If we compare the configurations before 

and after a transition, the bond lengths of atom pairs in the system become different. By 

introducing the fractional bond length change of a bond, ke , defined below and assuming 

there is a threshold q such that qe >max after crossing a dividing surface, a bias potential 

can be defined by . 

∑
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where kl is a bond length of kth bond; ref
kl  is a reference bond length defined at the 

minimum configuration; bN  is the total number of bonds, and A  is an envelope function 

defined below. Vδ is a boost energy defined as 
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Thus, as ke  approaches q, Vδ decreases, and when ke  exceeds the limit q, Vδ vanishes. 

The threshold parameter q can be determined by an empirical simulation, and by 

choosing q conservatively, we can make the bias potential vanish before the system reach 

the dividing surface. Because the bond length changes depend on the reference 

configuration, when a transition is detected, a new reference configuration needs to be 

defined. After a transition is detected and some equilibration time has elapsed, the new 

reference configuration is found by minimizing the potential energy. In addition to this, it 

is required that the overall bias energy VΔ must vanish when the maximum fractional 

bond length change maxe crosses the limit. An envelope function A , which is a function of 

maxe  only, is introduced for this purpose. One common choice is 

  
⎩
⎨
⎧

>=
≤=

=
qewhen
qewhen

eA
max

max
max ,0

,1
)(   .                                                           (4-26) 

Thus, VΔ vanishes when qe >max . However, using an envelope function causes a 

significant side effect to the method [6]. There is an extra force component due to the 

bias potential which is applied only to the bond experiencing the maximum length change. 

This extra force component is much larger than other bias force components, and when 

the maximum bond pair switches, the biased force of the old maximum pair suddenly 
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disappears and the biased force of the new maximum pair appears, i.e., the force field due 

to the bias potential of the bond-boost method is discontinuous. 

 Another shortcoming of the bond-boost method is illustrated in Fig. 4.3. The blue 

curves in the figure represent the original pair interactions where bias potentials of the 

bond-boost method (shown as red curves) are added to result in biased potentials (cyan 

curves). Since the reference bond length is determined from the minimum configuration 

of the entire collection of atoms, it is different from the equilibrium position of the single 

pair interaction as shown in Fig. 4.3 (a). Depending on how far the reference position is 

from the equilibrium position, a bias potential can introduce a double-well into the pair 

interaction, which is physically unrealistic. The double-well also makes the 

hyperdynamics simulation very inefficient because when the atoms in the pair with the 

double-well are located on the farther of the two equilibrium positions, the bond length 

changes remains large most of the time without undergoing any transitions. Thus, the 

boost factor remains very small. Moreover, when a transition occurs by the formation of 

new bonds, the bond-boost method may not detect this mechanism because a bias 

potential of the bond-boost method cannot be added to an unbound pair, because it 

always creates a double well under these circumstances as shown in Fig. 4.3 (b).   

 As discussed above, several bias potentials have been proposed thus far, but some 

have significant computational overhead, which degrades an achieved boost factor, and 

others lack the generality required to detect every transition. Thus, finding a new bias 

potential that gives much larger boosting without significant extra computation remains a 

challenging problem.  
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4.3.3. General Procedure to Construct a Bias Potential, Using Local Variables 

 Like the lowest eigenvalue of the Hessian, it is desirable to use local variables for 

a bias potential, but to calculate eigenvalues requires significant computational overhead. 

Thus, identifying another local variable to approximate a dividing surface is a priority. In 

this section, we first present a general procedure to define a bias potential using a local 

variable, and then several other local variables are discussed. 

 Let us assume that there is a variable λ  that is a function of position r  and at a 

dividing surface, either the upper bound of λ , upλ , or the lower bound lowλ is known. 

For example, it seems that the lowest eigenvalue has the upper bound of zero at a 

dividing surface. If λ has the upper bound upλ , then λ should go below upλ  when the 

system crosses the dividing surface and λ can be used to define a bias potential in the 

following way:  
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Let’s consider a number of local variables that could be used in place of or in 

addition to the lowest eigenvalue of the Hessian. Fig. 4.4 (a) shows contours of a two-

dimensional potential energy function. The state A has two saddle points and the 

potential energy along a straight line passing through one saddle point, which can be 

regarded as a dividing surface, is illustrated in Fig. 4.4 (b). Since the potential energy has 

the minimum at the saddle point, this saddle point energy can be used as the critical value 
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for a bias potential using the potential energy as a local variable. This approach is the one 

by Steiner et. al. mentioned above [5]. 

 As a next candidate, consider the distance from the minimum as shown in Fig. 4.5, 

which is defined by 
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where kr  is a component of the position vector r  and kOr ,  is a component of the position 

vector Or  at the minimum. It is obvious that when a system hops to other minima, the 

distance from the starting minimum should increase. In this case, the lower bound along 

the dividing surface is not necessarily located at a saddle point, but it must exist as shown 

in Fig. 4.5 (b). Unlike the lowest eigenvalue, there is no universal critical value for the 

distance, and in this case, the critical value largely depends on a system length scale. 

However, an experimental simulation for a given system may provide a guide for the 

critical value. If this is the case, then the distance from the minimum can be used to 

construct a bias potential. Then, the derivative of the distance is given by  
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Note that the computational overhead due to the bias potential by the distance is 

negligible. 

 Another possible choice is the potential energy slope or curvature along the 

direction vector connecting a position and the minimum, drrs O /)( −= . They are 

defined by 
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In some specific systems, the slope in Eq. (4-31) and/or the curvature in Eq. (4-32) 

becomes smaller when the system approaches a dividing surfaces and in such cases it 

may be possible to determine critical values for them. The derivatives are given by 
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Note that all the higher order derivatives along a specific direction can easily be 

approximated using the finite difference scheme. 

 When we implement a bias potential, we find that combining two local variables 

is a more efficient way to obtain a larger boost factor. As discussed in Sec. 4.3.1, the 

maximum achievable boost factor is limited to the ratio of the phase space volume of the 

unboosted region to that of the entire basin. If we use one local variable 1λ  and its critical 

value is cr,1λ , the unboosted region is a set of phase space points where cr,11 λλ < . If we 
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use two local variables 1λ  and 2λ  with critical values cr,1λ and cr,2λ , then the unboosted 

region becomes a subset of the phase space where cr,11 λλ < “and” cr,22 λλ < . The phase 

space volume of this region is smaller than the volume of the region where cr,11 λλ < , 

which means a larger maximum achievable boost factor.  

Fig. 4.6 shows a bias potential which is a function of two local variables; the 

eigenvalue and the slope. Using this bias potential, we can obtain additional gain in 

computations because we can avoid computing eigenvalues, which is very expensive, 

until slope approaches its critical value. 

 

4.3.4. Useful formulas and Prediction of the behavior in the biased potential 

 I will conclude this section by describing several useful formulas for 

hyperdynamics simulation that will be important for the discussions that follows. These 

formulas provide (1) the relationship between the ensemble average in the original 

potential and that in the biased potential, and (2) the relationship between the probability 

distribution of a variable in the original potential and that in the biased potential. 

 The ensemble average, in the state A, of a variable )(rB  in the original potential 

and the ensemble average in the biased potential are given by  
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By manipulating Eq. (4-37) and Eq. (4-38), we obtain the following relationship 
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When the average value is calculated by MD, then the following equation can be used.   
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Now let us consider a conversion between the probability distribution in the 

original potential and that in the biased potential. The probability distribution of a 

variable λ  in the original potential and that in the biased potential are given by  
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It can be shown that the following relationship between Eq. (4-41) and Eq. (4-42) holds, 
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 Thus, as discussed in the previous section, once a pre-simulation with the original 

potential has been performed with a proper number of time steps to sufficiently sample 

the phase space, we can obtain the distribution of λ , and, at the same time, we can 

predict the distribution in the biased potential and how the system will behave in the 

biased potential.  
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4.4 Schemes for a Driven System 

In this section, we propose a modified hyperdynamics methodology for non-

equilibrium systems, and we develop a parallel algorithm suitable for modeling frictional 

sliding in the thermally activated regime. 

 

4.4.1. Hyperdynamics for a driven system 

Hyperdynamics is based on transition state theory, which assumes a system is 

fully equilibrated at each local state (the local minimum and its neighborhood) and the 

rate of escape from the state is governed by the equilibrium properties of the state. 

However, in a system driven by time-varying external parameters, the potential energy 

changes with time. For example, we saw the total energy of a sliding system in the 

Tomlinson model changes as a slider moves. 

Although this is the case, if the rate of change is slow enough to allow the atoms 

to equilibrate to the instantaneous potential energy, we can still apply the method 

developed from transition state theory. In deriving the analytical formulas that relate the 

friction force and the sliding velocity in the modified Tomlinson model, we used these 

same rate equations even though the potential energy changes in time. Thus, we assume 

that the framework for hyperdynamics is still valid for continuously changing potentials 

at sufficiently slow sliding rates. 

Then, the remaining problem is how to define a bias potential for such time-

varying potentials. We have several points to consider. First, continuously changing bias 

potentials are computationally expensive because the most bias potentials we discussed 

so far depend on the location of the potential energy minimum, which changes in time. 
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Second, the relationship between the time for the slider motion and the boost factor 

obtained from a bias potential is not clear in this case. Therefore, we have developed a 

modified hyperdynamics scheme to solve these problems using stepped sliding, as 

explained below.  

In our AFM model the external parameter changing in time is the slider position, 

Sx , and the potential energy is a function of the slider position as well as the atomic 

positions. In stepped sliding, the slider position is updated by σΔ  after a time period τΔ  

has elapsed instead of changing continuously as shown in Fig. 4.7. τΔ  is determined by 

the sliding rate ( Sv/στ Δ=Δ ). Because both the slider position and the potential energy 

do not change for τΔ , we can construct a bias potential for this system. For this process 

to be equivalent to the continuous sliding, σΔ should be small compared to the length 

scale that characterizes the surface corrugation. Moreover, τΔ  must be longer than the 

thermal equilibration time-scale ( eqττ >>Δ ). The validity of the stepped sliding 

simulations has been verified by direct comparison to continuous sliding as will be shown 

in Chap. V. 

 Now turn to the interpretation of the hyperdynamics simulations with the stepped 

sliding scheme. In the stepped sliding, if we use the original potential, frozen for τΔ , we 

have to run the simulation for the same period τΔ . Then, the probability for the 

transition for this time period is given by 

τΔ−− Re1  ,                                                                                                        (4-44)  

where R is the transition rate. If we perform the same simulation with a biased potential, 

which has the boost factor of β , then the transition rate becomes faster ( RRb ×= β ). 
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Note that we have the same probability for the shorter time period ( βττ /Δ=Δ b ) 

because bbRRR eee τβτβτ Δ−Δ−Δ− −=−=− 111 )/()( . Therefore, with the biased potential 

we can significantly reduce the simulation time. 

 

4.4.2 Parallel Distribution Method 

In addition to hyperdynamics, we can further reduce simulation time by using a 

parallel algorithm. Recall that transition state theory assumes each transition is 

uncorrelated. Moreover, in the previous section, we showed how we can update the slider 

position in a stepped way, assuming that the slider moves so slowly that the system is 

fully equilibrated at each slider position. Thus, the transition probabilities at each slider 

position during stepped sliding are independent of each other, and we do not necessarily 

need to perform the simulations successively. Rather, we can perform the simulations 

with different slider positions in parallel as illustrated in Fig. 4.8. For example, if we use 

the conventional serial algorithm for the system shown in Fig. 4.8, we have to first 

perform a simulation at 1=Sx (Fig. 4.8 (a)), and after it finishes, we perform another 

simulation at 2=Sx  (Fig. 4.8 (b)), etc. until we observe a transition. This corresponds to 

throwing dice and throwing again after knowing the first result. However, if these two 

events are independent of each other, we can throw both simultaneously. Thus, we can 

perform four simulations at 4,3,2,1=Sx , simultaneously. If we have a transition at 

3=Sx  and this is the latest slider position that experienced a transition in the time 

interval, then we ignore the result at 4=Sx  and redistribute the jobs starting from 

3=Sx  and restart to perform the simulations. The speed-up obtained by this parallel 
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distribution method is roughly proportional to the number of processors used for one 

system. 

If we use this method combined with hyperdynamics, we can reduce the 

simulation time at each processor by the boost factor β . The overall efficiency of this 

combined method will be  

)(
)()(#
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Figure 4.1 Contours of a two-dimensional example potential energy, which has four minima 
(dark regions labeled by A, B, C, and D). The saddle points are shown as red triangles and 
blur curves represent dividing surface separating A from others. 
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Figure 4.2 Cross-section of a two-dimensional example potential energy along the dashed 
line connecting A and B shown in Fig. 4.1.  
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Figure 4.3 Illustrations of double-well introduction in the bond-boost method. Blue

curves are the original pair interactions, red curves are bias potentials, and cyan curves

are the resulting biased potentials. (a) Large bias potentials are added to the original

potential. (b) Bias potentials are added to unbound pair.  

(a)  

(b)  
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Figure 4.4 (a) Contour lines of a potential energy. Red dots are saddle points and A labels the 

minimum. (b) Potential energy plotted along the dashed line shown in (a).  

(a)  

(b)  
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(a)  

(b)  

Figure 4.5 (a) Contour lines of distance from the minimum A. Red dots are saddle points and 

A labels the minimum. (b) Distance plotted along the dashed line shown in (a).   
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Figure 4.6 An illustration of a bias potential defined as a function of the 

eigenvalue and the slope.  
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Figure 4.7 Slider position vs. time. The Black line represents the continuous change of the 
slider position in time, and in the red lines, the slider position is fixed for τΔ  and updated 
by σΔ after this time period has elapsed.  
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Figure 4.8 An illustration of the parallel distribution method. 

(a)  1=Sx  (b)  2=Sx  (c)  3=Sx  (d)  4=Sx  
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CHAPTER V 

Methodological Validation 

 

5.1 Introduction 

In the previous chapters, we developed various efficient methods to perform 

molecular dynamics simulation of a driven system on a longer time scale. Although these 

methodologies could be applied to any driven system with time-varying external 

parameters, we will focus on simulating frictional sliding, in particular, the AFM 

experiment. To accomplish this and to systematically test our methodologies, we apply 

these procedures in succession, testing our results for consistency. We first replace the 

continuous motion of the slider by stepped motion where the slider position is fixed for a 

prescribed time period and updated to a new position after this period has elapsed. Next 

we apply the parallel algorithm during which simulations at various slider positions are 

performed simultaneously on multiple processors. Finally these simulations are 

accelerated with the hyperdynamics scheme using biased potentials.     

In this chapter, these methods are tested with simple 2-dimensional and 3-

dimenstional AFM models. We used four different methods; 

(1) Continuous sliding on a single processor,  

(2) Stepped sliding on a single processor, 

(3) Stepped sliding using the parallel method, 
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(4) Stepped sliding using a biased potential (hyperdynamics) with the parallel 

method. 

Method (4) using hyperdynamics is the most efficient method when a suitable biased 

potential can be employed that does not result in excessive computational overhead. 

In the subsequent sections, the simulation results are presented. In addition, these 

simulations have provided an opportunity to test the theories discussed in Chap. III.  

 

5.2 2-Dimensional Model 

5.2.1 Simulation 

A simple 2-dimensional AFM model is shown in Fig. 5.1. The substrate consists 

of 80 atoms marked in blue, and the tip contains 33 atoms marked in red. The tip and the 

substrate have a 2-dimensional crystalline structure corresponding to an FCC crystal in 3-

dimension. The lattice parameters of the tip and the substrate are identical. Thus, the tip 

atoms contacting the substrate are located at the lattice sites of the substrate as shown in 

Fig. 5.1. 

The atoms on the bottom layer of the substrate are fixed to prevent a rigid-body 

translation in the vertical direction, and the system is subject to the periodic boundary 

condition in the horizontal direction. The relative motions of the atoms on the top layer of 

the tip are constrained, but they can move like a rigid body. These top atoms are pulled 

by a spring and pushed downward by the applied normal force as shown in Fig. 5.1. We 

used a spring stiffness of 2/5 σε=k  and an applied normal force of σε /5=NF . All 

the quantities are expressed with the length unit σ , the energy unit ε , and the mass unit 

m. For example, the time is measured in the time unit of εστ /2m=  
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The interactions of the atoms are modeled by the Lennard-Jones potential, 
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where abε  is the bond energy between the atom of the type a and the atom of the type b, 

abσ  is the characteristic length parameter, and r  is the distance between the two atoms. 

We used the following parameters. 

σσσσ 0.1=== tsttss , εεε 0.1== ttss , εε 5.0=ts      (s: substrate, t: tip)  

Note that we used a smaller value of the bond energy for the interaction between the tip 

and the substrate to guarantee that the shear deformation always occurs at the interface 

rather than inside the tip. 

For the hyperdynamics simulations, we used bias potentials constructed using the 

eigenvalue of the Hessian and the local slope of the potential energy as defined in Chap. 

IV. The critical value for the eigenvalue can be set to zero, but to obtain the critical value 

for the local slope, we perform pre-simulations near the transitions. The detailed 

procedure is explained as follows. First, from the simulation results at higher velocities 

using the original potential we estimate the slider positions where transitions occur. Then, 

we prepare a certain number of samples (typically 100 samples are used) with different 

initial conditions at a slider position earlier than the estimated slider positions in the 

previous step. With these samples, we perform sliding simulations at a specific sliding 

velocity, which is usually lower by one order of magnitude than the sliding velocities 

used in the original simulations. During simulations, to detect the moment of transition 

and determine the local slope value at that moment, we perform minimizations 

periodically when the calculated slope is larger than a provisional limit and at every step 
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while the slope is smaller than the limit. Finally, we set the critical value to the maximum 

(with a safety factor) among these values. 

 In case a system experiences transitions in a non-uniform potential energy 

landscape, the critical values obtained at one specific transition may not be suitable for 

other transitions. With such systems, we have to use a bias potential defined only with the 

eigenvalue which has the universal critical value of zero. Therefore, devising a systematic 

scheme to estimate critical values on the fly remains as a challenge. 

Moreover, since the local slope is measured along the direction connecting a 

current position and the minimum, a new local minimum must be found whenever the 

slider position is updated to a new position. After the new minimum is indentified, the 

boost factor is calculated by a simulation with the original potential. Then, the 

hyperdynamics simulation is performed using the biased potential with the pre-calculated 

boost factor. 

 We varied the sliding velocity by 5 orders of magnitude ranging from 

24 /10 τσ−=Sv  to 810 −  and three different temperatures ( BkT /001.0,01.0,1.0 ε= ) 

have been simulated using the Nose-Hoover chain method [1]. The equations of motion 

are solved using a modified velocity-Verlet algorithm [2]. 

 

5.2.2 Simulation Results 

 The graphs shown in Fig. 5.2 through Fig. 5.5 are obtained from a simulation with 

610 −=Sv and 01.0=T (starting from this point, units are omitted unless there is 

ambiguity) and illustrate typical frictional behaviors of the model. 
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Fig. 5.2 shows the tip position as a function of the slider position, and the slider 

position is plotted together with the tip position. The tip position is measured at the top 

layer. As in the Tomlinson model, apparent stick-slip motion is observed. The tip position 

increases linearly during the stick-phase and jumps at several discrete points 

corresponding to slip events. The average distance of these points corresponds to the 

lattice parameter of the substrate. Note that the tip position, Tx , shown in the figure also 

represents the quantity averaged over a time period (otherwise the curve is very noisy due 

to thermal fluctuations) and is not identical to the location at the local minimum. Thus,  
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where MDN is the number of steps in the time period for the average and the slider 

position either is fixed (during stepped sliding) or changes a small amount (during 

continuous sliding) for this time period. In case of stepped sliding, we update the slider 

position by 01.0=Δσ  and the time period, τΔ ( Sv/σΔ= ), during which the slider 

position is fixed increases as the sliding velocity decreases. We use 10/ττ Δ=Δ dsv  for 

the time period for the average so that MDN ( MDdsv tΔΔ= /τ ) increases as the sliding 

velocity decreases. MDtΔ  is the time interval for numerical integration. For continuous 

sliding, we use as many steps for the average as used in stepped sliding at the same 

sliding velocity. 

 Fig. 5.3 (a) shows the lateral force as a function of the slider position, and Fig. 5.3 

(b) shows the lateral force as a function of the tip position. The lateral force, F , is also 

averaged over a time period and has the following relation with the tip position, 
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As expected from Fig. 5.2, where the tip position is linearly proportional to the slider 

position ( SCT xkx ≈ ), the lateral force exhibits a linear dependence on both the slider 

position and the tip position. The lateral forces at each peak are not identical to each other 

and have a distribution as we discussed in Chap. III. Fig. 5.4 shows a closer look at the 

lateral force curves near a transition. The straight line extends from the initially linear 

portion of the curves and illustrates that the lateral force deviates from the linear 

dependence near the transition. Thus, the assumption that Seff xkF =  in Eq. (3-32), used 

in the derivation of the relationship between the lateral force and the sliding velocity, is 

not strictly correct even in this simple model. 

The potential energy, which is a function of the tip position as well as the atom 

positions, );,,( 1 TN rrrV , is shown in Fig. 5.5. Fig. 5.5 (a) shows the potential energy 

as a function of the slider position, and Fig. 5.5 (b) shows the potential energy as a 

function of the tip position. The potential energy is averaged for a time period, 
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The increase in the potential energy is due to the elastic deformation of the tip and can be 

fit to a quadratic function. We expect that  

2
12

1~ SxkV    ,                                                                                                (5-5) 
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where 1k  is a constant. From Fig. 5.4, we could expect that the potential energy would 

deviate from the quadratic form near transition, but such deviation is not clear in Fig. 5.5. 

 Fig. 5.6 shows the dependence of the lateral force on the sliding velocity. At a 

temperature of 0.01 the results from five different sliding velocities ( 410 − , 510 − , 610 − , 710 − , 

810 − ) are shown. It is apparent that as the sliding velocity decreases the tip makes a 

transition at an earlier slider position, which is consistent with the prediction of the 

modified Tomlinson model [3, 4]. The temperature dependence is shown in Fig. 5.7 and 

Fig. 5.8. In Fig. 5.7, we can observe that the transition occurs at much earlier slider 

position at higher temperature, and the effective stiffness effk , the slope of the lateral 

force vs. slider position curve, slightly reduces as temperature increases due to softening 

of the tip and contact stiffness. Fig. 5.8 shows the lateral forces as functions of 

temperature with linear fits. By manipulating Eq. (3-36), we have the following relation, 
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    )0( >−≈ + αα TFC  .                                                                             (5-6-b) 

In Eq. (5-6-b), we assume that the second term on the right hand side in Eq. (5-6-a) is 

more dominant than the third term and SeffO vkf λ> . Note that α increases as Sv  

decreases, and this agrees with the trend shown in Fig. 5.8. 

 Finally, we compare the results from various methods. Fig. 5.7 summarizes the 

simulation results at various sliding velocities and various temperatures obtained from the 

four different methods listed in Sec. 5.1. At each velocity and temperature, we prepared 

10 samples for serial simulations and 5 samples for parallel simulations. Each sample has 
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different initial conditions. The lateral forces in this graph are measured at the transition 

points and averaged over eight different transition points and over different samples. 

The continuous sliding and the stepped sliding (using the original potential on a 

single processor) are tested at the velocities of 654 10,10,10 −−−  and at temperatures of 

0.001, 0.01, 0.1. All the data overlap and agree within the range of the standard deviation 

shown as the error bar in Fig. 5.7. Most data ranges even within the standard error. 

At the sliding velocity of 610 − and the temperature of 0.01, all four methods are 

tested and all the measured lateral forces agree. The simulations on a single process could 

not been performed at the sliding velocities lower than 610 −  due to excessive running 

time on a standard workstation, but all the data from the parallel simulations at 710 −  and 

810 −  using either the original potential or the biased potential range close to the trend line 

extended from the data obtained from continuous sliding. 

The lateral forces show the logarithmic dependence on the sliding velocity, and 

no plateaus are found in any velocity range. The slope of the lateral force vs. ln Sv  curve 

increases as temperature increases, and this trend agrees with the prediction of Eq. (3-36). 

 

5.2.3 Discussion 

 With the conventional method, we were not able to perform simulations at 

velocities lower than 10-6 because of the extended running time on a standard workstation. 

With the velocities above this limit, the simulation results from the stepped sliding agree 

with the results of the continuous sliding. Thus, the platform for the other methods (the 

parallel method and the hyperdynamics methods) is well verified. Using the parallel 
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method makes it possible to lower the sliding velocity by one order of magnitude, and 

with the hyperdynamics methodology we can lower the sliding velocity further.  

As discussed in Chap. IV, the maximum achievable boost factor depends on the 

phase space volume of the unboosted region. In this 2-dimensional sliding system, we 

have found that the volume of the unboosted region in the phase space is altered as the 

slider position changes. When the slider position is far from the transition point, the pre-

simulation using the original potential to calculate the boost factor does not sample any 

points in unboosted region. Thus, in principle, there is no limit for the maximum boost 

factor. However, as the slider approaches the transition point, some unboosted points are 

sampled and the maximum achievable boost factor reduces. Since as the sliding velocity 

decreases the transition occurs at earlier slider positions where the maximum boost factor 

is larger, we expect that we can reduce the sliding velocity further below 10-8. 

 Although the lateral force shows a logarithmic dependence on the sliding velocity, 

this is likely due to the simplicity of the current model. Since the tip maintains its 

crystalline structure after transitions and no defects arise inside the tip due to much 

weaker interaction between the tip and the substrate, the only possible transition 

mechanisms are backward and forward hopping, which have initially the same magnitude 

of energy barriers. As the slider advances, the forward hopping (in the sliding direction) 

becomes more favorable than the backward hopping. Moreover, the relative 

configurations of the system before and after transition do not change. 

 However, in more realistic situations, the tip may lose atoms during sliding and its 

interface configuration may be altered during transitions. In the subsequent chapters, we 
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treat more complicated models; the incommensurate surface model and the amorphous 

interface model. 

 

5.3 3-dimensional Model 

 Before moving on to more realistic models, we tested the methods using a 3-

dimensional system. This model exhibits transitions through the same mechanism as the 

2-dimensional model, but reveals the increasing difficulty of reducing the sliding velocity 

as the problem size and complexity increase.    

 

5.3.1 Simulation 

Fig. 5.10 illustrates a 3-dimenstional system modeling an AFM tip and a substrate. 

The tip has 183 atoms shown in red and the substrate consists of 1800 atoms shown in 

blue. The substrate has FCC crystalline structure, and the tip is created by carving an 

FCC crystal with the same lattice parameter as the substrate into a conical shape with flat 

ends. The tip and the substrate are joined in the [001] direction, and as shown on the right 

side of Fig. 5.10, nine atoms on the bottom of the tip are in contact with the substrate. 

Because the tip and the substrate have the same lattice parameter and are aligned in the 

same orientation the tip atoms are in registry with the substrate. 

The sliding simulation is realized in the same way as the 2-dimensional model. A 

spring ( 10=k ) is linked to the top layer of the tip and the bottom layer of the substrate is 

fixed. A normal force ( 5=NF ) is applied to the top of the tip. 
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The interaction between substrate atoms and the interaction between a substrate 

atom and a tip atom are modeled by the Lennard-Jones (L-J) potential, and the following 

parameters are used. 

σσ
σσ

0.1
0.1

=
=

st

ss   ,     
εε
εε

2.0
0.1

=
=

st

ss      (s: substrate, t: tip) 

For the interaction between tip atoms, we used a harmonic potential, which does not 

allow any bond breaking to maintain the shape of the tip and prevent wear during sliding. 

2)(
2
1)( OrrkrV −=  ,                                                                                      (5-7) 

where k  is the stiffness (= 57.2), and Or  is the equilibrium bond length (= 1.12). The 

stiffness and the equilibrium length are chosen to be identical to the values of the L-J 

potential with 1,1 == tttt εσ  at the equilibrium position. 

 We performed simulations at four different sliding velocities (10-4, 10-5, 10-6, 10-7) 

and at a temperature of 0.01. As in the 2-dimensional model, we used the Nose-Hoover 

chain method to control temperature [1] and a modified velocity-Verlet algorithm to 

numerically solve the equations of motion [2]. 

 

5.3.2 Results 

We plotted the lateral force and the potential energy as functions of both the slider 

position and the tip position in Fig. 5.11, Fig. 5.12, and Fig. 5.13, where the data are 

obtained from the simulations with 510 −=Sv  and 01.0=T . As in the 2-dimensional 

case, the lateral forces show the linear dependence (Fig. 5.11), but deviate from the 

straight lines near transition points (Fig. 5.12). The potential energy changes like a 



108 

 

quadratic function of the slider position at earlier slider positions, but shows earlier 

deviation from the quadratic fits than 2-D models and very stiff changes near transitions 

(Fig. 5.13).  

 Fig. 5.14 summarizes the simulation results. The lateral forces shown in the figure 

are the averages of the peak values at each transition over the samples and the peaks. At 

sliding velocities of 410 − and 510 − , the lateral forces measured from the continuous 

sliding show close agreement with the forces from the stepped sliding. Thus, the 

fundamental assumption of our methodologies is verified with this 3-dimensional model. 

However, although the number of atoms in this model (1,983) is not large, the 

simulations on a single processor using the conventional method at lower sliding 

velocities ( 610 −≤ ) are prohibitive due to the running time requiring more than one month 

on a standard workstation. 

 By the parallel method using 50 processors, we were able to perform MD 

simulations at a sliding velocity of 610 − . The running time was less than a week. 

However, without the aid of hyperdynamics, the simulations at lower sliding velocities 

( 710 −≤ ) are not attainable because whenever we lower the sliding velocity by a factor of 

10, we have to increase the running time 10 times. Using a bias potential constructed 

using the eigenvalue and the local slope, the simulations at a sliding velocity of 710 −  

could be performed. 

 All the data measured from the various methods show close agreement with the 

trend line obtained from the continuous method on a single processor within the standard 

deviation shown as the error bars in Fig. 5.14. Moreover, as expected from the modified 
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Tomlinson model, the lateral force exhibits the logarithmic dependence on the sliding 

velocity within the range of the parameters used in this simulation study. 

 

5.4 Conclusions 

The validity of the methodologies is well verified with the simulations of the 2-

dimensional and 3-dimensional AFM models. With both methods, the stepped sliding 

serves as a reasonable approximation for continuous sliding, and the simulation results 

using the other methods both the parallel methodology and hyperdynamics showed close 

agreements with the simulation results of the conventional method. 

Moreover, both 2-D and 3-D simulations showed that the average of the lateral 

forces at the transitions have the logarithmic dependence on the sliding velocity. 2-D 

simulation at three temperature points showed the lateral force linearly decreases as the 

temperature increases. 
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Figure 5.1 A diagram of a 2-dimensional AFM model consisting of a tip and a substrate. 

The tip atoms are shown in red and the substrate atoms are shown in blue. The top layer of 

the tip is pulled by a spring, which is attached to a slider moving in the positive x direction 

(the red arrow), and pushed by a normal force expressed as the yellow arrow.    
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Figure 5.2 Tip position as a function of slider position calculated from the 2-D 

model simulated at 610 −=Sv  and 01.0=T . Slider position is also plotted for 

comparison. 
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Figure 5.3 Lateral forces calculated from the 2-D model simulated at 610 −=Sv  and 

01.0=T . (a) Lateral force vs. slider position and (b) Lateral force vs. tip position. 

(b) 

(a) 
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(a) 

(b) 

Figure 5.4 Lateral forces (black curves) calculated from the 2-D model simulated at 
610 −=Sv  and 01.0=T  and linear fittings (red straight line) extended from initially linear 

portion (a) Lateral force vs. slider position and (b) Lateral force vs. tip position. 
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(a) 

(b) 

Figure 5.5 Potential energy curves (black curves) obtained from the 2-D model simulated 

at 610 −=Sv  and 01.0=T , and quadratic fittings (red curves). The discontinuous points 

are connected by blue arrows. (a) Potential energy vs. slider position and (b) Potential 

energy vs. tip position. The blue arrows indicate transitions.
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Figure 5.6 Sliding velocity dependence of lateral force obtained from the 2-D model 

simulated at 01.0=T . Lateral forces are shown as functions of slider position at five 

different sliding velocities ( 87654 10,10,10,10,10 −−−−−=Sv ). 
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Figure 5.7 Temperature dependence of lateral force obtained from the 2-D model 

simulated at 610 −=Sv . Lateral forces are shown as functions of slider position at 

three temperatures ( 1.0,01.0,001.0=T ). 
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Figure 5.8 Lateral forces as functions of temperature obtained from the 2-D model 

simulated at three different sliding velocities ( 654 10,10,10 −−−=Sv ). The straight lines 

are the linear fittings of the data. 
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Figure 5.9 Lateral forces as functions of sliding velocity obtained from the 2-D model 

simulated at three different temperatures ( 1.0,01.0,001.0=T ) using four different 

methods. The straight trend lines and the error bars (the standard deviation) are obtained 

from the data of the continuous sliding simulations. 

T = 0.1 (ε/kB) 

T = 0.001 (ε/kB) 

T = 0.01 (ε/kB) 
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Figure 5.10 A diagram of a 3-dimensional AFM model consisting of a tip and a substrate. 

The atoms in the tip are shown in red, and the atoms in the substrate are shown in blue. The 

top layer of the tip is pulled by a spring moving in the sliding direction (the red arrow), and 

pushed by a normal force expressed as the yellow arrow.    
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Figure 5.11 Lateral forces calculated from the 3-D model simulated at 510 −=Sv  and 

01.0=T . (a) Lateral force vs. slider position and (b) Lateral force vs. tip position. 

(b) 

(a) 



121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 5.12 Lateral forces (black curves) calculated from the 3-D model simulated at 
510 −=Sv  and 01.0=T  and linear fittings (red straight line) extended from initially linear 

portion (a) Lateral force vs. slider position and (b) Lateral force vs. tip position. 

(a) 
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(b) 

Figure 5.13 Potential energy curves (black curves) obtained from the 3-D model simulated at 
510 −=Sv  and 01.0=T , and quadratic fittings (red curves). The discontinuous points are 

connected by blue arrows. (a) Potential energy vs. slider position and (b) Potential energy vs. tip 

position. The blue arrows indicate transitions. 

(a) 
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Figure 5.14 Lateral forces as functions of sliding velocity obtained from the 3-D model 

simulated at a temperatures of 0.01 using four different methods. The straight trend lines 

and the error bars (the standard deviation) are obtained from the data of the continuous 

sliding simulations. 
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CHAPTER VI 

Friction between Incommensurate Surfaces 

 

6.1 Introduction 

Friction between two bare surfaces depends on the relative arrangement of atoms 

at the interface. If the contacting surfaces have the same crystalline pattern aligned in the 

same directions and their lattice parameters can be expressed as a ratio of two integers, 

the surfaces are commensurate and exhibit non-vanishing static friction which is 

proportional to the contact area. The 2-dimensional and 3-dimensional models studied in 

the previous chapter are the examples of commensurate surfaces. On the contrary, if there 

is no such periodicity, surfaces are incommensurate and their static friction becomes zero 

as the contact area increases. As shown in Fig. 6.1, two identical crystalline surfaces can 

easily be made incommensurate by rotating them relative to each other. Thus, unless we 

intentionally align the orientation of surfaces so as to have the identical orientation in the 

laboratory surfaces usually form incommensurate contacts. 

Ultralow friction forces have been observed between incommensurate surfaces in 

nano scale experiments [2-4]. This phenomenon is termed superlubricity. A molecular 

dynamics simulation with rigid incommensurate walls exhibited similar behavior [5]. 

Incommensurate surfaces on a macro scale do not exhibit exceptionally low friction force. 
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It is hypothesized that this is due to “third bodies” such as hydrocarbons existing between 

the surfaces [6]. 

However, even clean incommensurate surfaces do not always show superlubricity. 

Socoliuc et. al. [4] observed a transition from the superlubricity regime (zero friction 

force) to the stick-slip regime (high friction force) by increasing the applied normal load. 

The surfaces, which exhibited vanishing force at low load, showed high friction force as 

the load increases. They explained this phenomenon with the relationship between the 

strength of the lateral atomic surface potential and the contact stiffness. As an analysis 

based on the one-dimensional Frenkel-Kontorova-Tomlinson (FKT) model [7] and a 

study using MD simulations [5] have pointed out, incommensurate surfaces can show 

large static friction if the atoms of one surface are weakly bound when compared to the 

interaction between the surfaces. Under these conditions the surface atoms can be 

rearranged into local energy minima with respect to the other surface. 

In this chapter, we present MD simulation results performed with a 3-dimensional 

system modeling an AFM experiment involving incommensurate surfaces. The 

dependence of friction on the tip compliance and the normal load has been studied. The 

frictional behavior of a softer tip has been observed at different sliding velocities. We 

observe that the friction of incommensurate surfaces is a complicated phenomenon that 

involves emergence of several metastable states. In our simulations superlubricity breaks 

down with softer tips and at higher normal loads. 
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6.2 Simulation 

The simulation system is illustrated in Fig. 6.2. The system models an AFM tip 

which consists of 263 atoms shown in red and a substrate which consists of 1800 atoms 

shown in blue. The substrate is an FCC crystal, and the tip is created by carving an FCC 

crystal, which has a larger lattice parameter than the substrate, into a cylindrical shape. 

The tip is also tapered slightly to the lower side and rotated by 8 degrees about the axis 

perpendicular to the contact surface. The tip and the substrate are joined in the [001] 

direction. The mismatch of lattice parameters and the rotation prevent the tip atoms from 

being arranged into the lattice points of the substrate when the tip atoms are more tightly 

bound than the interaction between the tip and the substrate. 

A spring with a stiffness, 10=k , is linked to the top layer of the tip, which 

consists of atoms moving together without changing their relative positions, and pulls the 

tip as the other end of the spring (the slider) moves at a constant speed. All the quantities 

are expressed with the same units used in the previous chapter and omitted unless there is 

ambiguity. A normal force, NF , is applied on the top layer of the tip, and the periodic 

boundary condition is used in the [110] and [-110] directions. As in Socoliuc’s 

experiments [4], the magnitudes of the normal force are varied and we observe the 

dependence of superlubricity on the normal load. The atom positions on the bottom layer 

of the substrate are fixed to prevent a rigid-body translation in the vertical direction as we 

remove the periodic boundary condition in this direction. 

The interaction between substrate atoms and the interaction between a substrate 

atom and a tip atom are modeled by the Lennard-Jones potential as expressed in Eq. (5-1), 

and the following parameters are used. 
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Because we test very small tip stiffnesses, any potential allowing bond breaking may 

result in plastic deformation of the tip. To preserve the tip shape, we used the harmonic 

potential as in Eq. (5-7) for the interaction between tip atoms. The tip compliances are 

varied by changing the spring constant of the harmonic potential. 

 All the simulations have been performed at one temperature point (T = 0.01) and 

temperature is controlled by a variant of the Nose-Hoover thermostat [8]. All the atoms 

except in the bottom layer of the substrate and the top layer of the tip are subject to the 

thermostat. With the softest tip we prepared, the velocity dependence was tested at three 

sliding velocities ( =Sv 10-4, 10-5, 10-6). The parallel method was used to simulate the 

lowest sliding velocity (10-6), but we were unable to apply the hyperdynamics 

methodology for the reasons we will discuss in this chapter. The equations of motion are 

numerically integrated using a modified Velocity-Verlet algorithm [9]. 

  

6.3 Result 

We first observed the dependence of the friction force on the tip stiffness by 

changing the spring constant between the tip atoms. The friction force (or the lateral 

force) is measured by the deformation of the spring as in the AFM experiment. Fig. 6.2 

(b) shows the initial interface configurations with a rigid tip and a softer tip. When the tip 

atoms are more strongly bound than the interaction between the tip and the substrate (a 

rigid tip), they maintain their original crystalline configuration as shown in the left of Fig. 

6.2 (b), where the orientation of the tip is also clearly evident. As the tip becomes softer, 

the tip atoms contacting the substrate are rearranged into the lattice point of the substrate 
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as seen in the right of Fig. 6.2 (b). Thus, we can expect that the lateral force will increase 

as the tip gets softer.  

Fig. 6.3 (a) and (b) shows the friction forces measured during sliding as functions 

of the slider position with various stiffnesses. All the simulations were performed 

at NF =5.0. We can observe that the softer tips experience a larger lateral force at each 

transition than the tips with higher stiffnesses. Moreover, while rigid tips show relatively 

uniform transitions and their lateral forces oscillate around zero, the softer tips display 

irregular transitions and their lateral forces remain positive after transitions. When 

10<=k  as in Fig. 6.3 (a), the graph shows small drops in the lateral force in addition to 

major decreases. On the contrary, the tip with 2.57=k  does not show such behavior. 

To check the system-to-system variation, we simulated ten samples with different 

initial conditions. With the same stiffness value, all samples showed a similar trend. The 

lateral force is averaged over the slider position. For a rigid tip (k = 57.2), the average 

friction forces range from 0.08 to 0.1 among the samples while a softer tip (k = 3.81) 

shows a larger variation from 7.34 ~ 8.53. 

Fig. 6.4 shows the average lateral forces as a function of the stiffness. Instead of 

exhibiting monotonically increasing force with decreasing stiffness, we see an abrupt 

increase around a stiffness of 5. The regime with the stiffness larger than 5 corresponds to 

superlubric friction due to incommensurate surfaces. 

At the stiffnesses of 0.10=k , 15.0, 25.0, 57.2, we increased the normal load NF  

up to 100.0 to observe the normal force dependence of the system. All the simulations 

with these stiffnesses at the normal load of NF =5.0 showed vanishing friction forces. Fig. 

6.5 shows the lateral force vs. the slider position graphs at 0.10=k , 15.0, 25.0, 57.2 and 
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at different normal loads. At the stiffness of 0.10=k  (Fig. 6.5 (a)), larger friction forces 

are observed as the normal force increases. The existence of metastable states at higher 

normal loads can still be noticed by observing the small drops in the lateral force curves. 

At the stiffnesses of 0.15=k and 25.0 (Fig. 6.5 (b) and (c)), the lateral forces still 

fluctuate around zero, but their behaviors become non-uniform and exhibit multiple large 

drops as the normal force increases. In fig. 6.5 (d) at the stiffness of 2.57=k , the lateral 

force curves show no change regardless of the magnitude of the normal load. Fig. 6.6 

shows the average lateral forces as a function of the normal load. It is clear that the 

superlubricity breaks down as the normal load increases at 0.10=k  although this 

transition is not observed at other stiffness values. The data at 0.10=k was fit to a 

formula shown in Eq. (3-47) assuming the energy barrier OE  has a linear dependence on 

the normal load. 

  [ ]NN FCFCF 21 exp~    ,                                                                             (6-1) 

where 1C  and 2C  are fitting parameters. The fitting curve is shown as a dashed curve in 

Fig. 6.6.  

To investigate the frictional behavior of soft tips in more detail, we have 

performed further simulations with the softest tip (k = 3.81) by reducing the sliding 

velocity. Fig. 6.7 shows lateral forces as functions of slider position at three different 

sliding velocities ( 654 10,10,10 −−−=Sv ). While the highest velocity results show the 

sporadic distributions of the transition forces, the lower velocity results display the 

relatively uniform transitions. Fig. 6.8 shows details of transitions at 410−=Sv and 

510−=Sv  . Although the transitions at lower sliding velocity appear uniform, the 
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transition to slip is not a single step of transition. The system passes through several 

intermediate states shown in Fig. 6.8 (b). These states are similar at each transition. In 

most cases, two or three tip atoms in the right row are relocated into new sites in the 

sliding direction, and then the others follow resulting in a major slip motion. On the 

contrary, at higher sliding velocity ( 410−=Sv ), the system undergoes a transition through 

many complicated mechanisms including the local shear inside the tip shown in Fig. 6.8 

(a), and the mechanisms are different at each transition. 

Further analysis reveals that even in the stick phase where the tip deforms 

elastically the tip atoms at the interface continually change their configurations among 

several metastable states. Because these metastable states do not accompany a noticeable 

change in the location of the tip position, there is no significant change in the lateral force. 

We found these states by performing a potential energy minimization using the FIRE 

scheme [10]. The 8 identified metastable configurations are shown in Fig. 6.9, where 

only interface (the top layer of the substrate and the bottom layer of the tip) atoms are 

presented. Fig. 6.10 shows the potential energy differences of each of these states from 

the value of the #1 state as functions of slider position. Because not all the states are 

stable at all slider positions, the curves are not complete and appear only when a stable 

state was identified.  

Initially, the #1 state is the most stable state and there is only one metastable state 

(#2). Starting from at a slider position of 0.33, other metastable states start to appear, and 

after a slider reaches 0.52, the #2 state become more stable. Eventually, the states 

branching off from the #2 state (#3, #4, #7) become more stable than the states from the 

#1 state (#5, #6). After a slider position of 1.44, the #8 state, an intermediate state 
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through which the system passes in a major transition, becomes most stable. The 

probability for major transitions increases as the energy of state 8 approaches that of state 

2. 

The time scale for transitions among these metastable states is much shorter than 

the time scale related to the major transition. Thus, the system continually changes 

interface configuration amongst the metastable states prior to making a major transition.  

  

6.4 Discussion 

Difficulties arise from the existence of multiple low energy barriers when we 

attempt to apply the hyperdynamics methodology in simulating this system. Fig. 6.8 (a) 

illustrates a potential energy well. Suppose that this well has multiple energy barriers and 

all the barriers are large so that the transitions through these barriers are all rare events. 

By introducing a biased potential which reduces all the energy barriers by the same 

amount, we can accelerate the escape from this well preserving the relative transition 

probabilities through the energy barriers. However, in a system with incommensurate 

surfaces a different situation arises. A simple example is shown in Fig. 6.8 (b), where two 

wells are separated by a smaller energy barrier, but these two wells are surrounded by 

larger barriers. As observed in the simulations with incommensurate surfaces, the system 

hops frequently back and forth between these small wells. As we apply a biased potential 

to accelerate the escape from a single well, the biased potentials for this system will be 

the ones shown in Fig. 6.8 (b). Then, the boost factor of the biased potential will be small 

because the average escape time of the original potential is not large. In fact, we do not 

need to accelerate the escape from the small wells. They occur without the aid of biased 
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potentials. Moreover, we cannot accelerate these events with a boost factor without 

introducing systematic errors. Thus, the simulations of incommensurate surfaces at lower 

sliding velocities require long running time even when we apply the hyperdynamics 

scheme. If we could identify when a transition occurs between two wells more than once 

within a critical time window (a criterion for determining rare events), a biased potential 

as illustrated in Fig. 6.8 (c) could be applied to make the simulation more efficient. The 

construction and application of this type of bias potential remain as a future work.  
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Figure 6.1 Two surfaces contacting each other. The surface consisting of the black atoms 

are on the top of the surface of the white atoms. (a) The two surfaces are commensurate and 

the atoms on the top surface are arranged into the center of the four lattice points of the 

bottom surface. (b) and (c) The top surface is rotated about an axis perpendicular to the 

bottom surface, and each atom on the top surface is in different configurations [1]. 
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Figure 6.2 A diagram of a 3-dimensional AFM model with a tip and a substrate. The tip 

atoms are shown in red and the substrate atoms are shown in blue. (a) A 3-D perspective. 

(b) The configuration of atoms at the interface between the bottom layer of the tip and the 

top layer of the substrate. The left configuration is from a rigid tip and the right 

configuration is from a softer tip. 

(a)  

(b)  
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Fig. 5.2. Tip position vs. Slider position.    

(a) 

(b) 

Figure 6.3 Lateral force vs. slider position at different stiffnesses. All the simulations were 

performed at NF =5.0. (a) k = 3.81, 5.0, 10.0 (ε/σ2) (b) k = 15.0, 57.2 (ε/σ2). 
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Figure 6.4 The relationship between the average lateral force and the tip stiffness. The 

graph shows two distinct regimes divided by the red dashed line. When the tip stiffness is 

larger than a critical value (~7) indicated by the red line, almost vanishing average friction 

force is observed (superlubricity). When the stiffness is smaller than the critical value, it 

shows very high force. . The error bars show the standard deviation of the samples. 

FN = 5.0 (ε/σ) 
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Figure 6.5 Lateral force vs. slider position at different stiffnesses and different normal 

loads. (a) k = 10.0 ( NF =5.0, 60.0, 100.0) (b) k = 15.0 ( NF =5.0, 80.0, 100.0) (c) k = 

25.0 ( NF =5.0, 80.0, 100.0) (d) k = 57.2 ( NF =5.0, 80.0, 100.0). 

(a) (b) 

(c) (d) 
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Figure 6.6 The relationship between the average lateral force and the applied normal load 

obtained from the simulations with four different tip stiffnesses (k = 10, 15, 25, 57.2). The 

dashed curve is a fit to the data at k = 10 ( )0278.0exp(0143.0~ NN FFF ). 
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Figure 6.7 Lateral Force vs. slider position at different sliding velocities with a rigid tip 

(k = 57.2) and a softer tip (k = 3.81). 
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(b) 

Figure 6.8 Intermediate states the tip passes when making a major transition. (a) vS = 10-4  

and (b) vS = 10-5 .  

(a) 
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Figure 6.9 The metastable states among which the system hops prior to making a transition. 

Only the two layers at the interface are shown. The yellow arrows indicate the shifts of the 

atoms relative to the #1 state. The #8 state is one of the intermediate states the system passes 

when making a major transition. 
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Figure 6.10 The energy differences between the metastable states from the #1 state energy as 

functions of the slider position.  
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(c) 

Figure 6.11 Illustrations of the various situations in which hyperdynamics is applied to an 

incommensurate surface. (a) Single well with higher energy barrier (b) A large well with 

two small sub wells. The small wells are separated by small energy barrier. (c) Ideal biased 

potential (the blue curve) for the system in (b). 

(b) 

(a) 
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CHAPTER VII 

Friction between Amorphous Silica Surfaces 

 

7.1 Introduction 

 Silicon is the second most abundant element (after oxygen) in the earth’s crust 

and the most widely used material for micro/nano electro-mechanical systems 

(MEMS/NEMS) because of its economy, compatibility with integrated-circuit technology 

and many advantageous mechanical properties such as fatigue resistance [1]. Moreover, 

polycrystalline silicon can be fabricated into complex, micro-scale structures using 

surface micromachining based on selective etching of multilayered films [2]. 

 One of the current problems with MEMS/NEMS is the treatment of contacting 

surfaces. The performance and fabrication of MEMS/NEMS devices shows significant 

dependence on adhesion and friction mainly due to their large surface-to-volume ratios. 

Because of these problems, MEMS/NEMS devices with sliding interfaces in rotary and 

linear motion (Fig. 7.1) have not been marketed [3]. Therefore, the triobological 

properties of silicon surfaces have been widely investigated. 

Recently, an AFM experiment with a silicon tip and a silicon surface with 

oxidized layers revealed interesting relationships between friction force and sliding 

velocity with nontrivial temperature dependences [4]. For temperatures below 

approximately 150 K, the frictional force showed the typical logarithmic dependence, but 



147 

 

above 150 K the frictional force had no apparent dependence on the sliding velocity. 

Moreover, the researchers observed that as temperature decreases the friction coefficient 

exhibits a peak around 100 K and a subsequent drop instead of a monotonic increase.  

One possible explanation of this behavior arises from a statistical analysis of 

experimental data by Evstigneev et. al. [5] in which they hypothesized that the transitions 

of sliding systems with nanometer scale contacts can occur through multiple mechanisms 

and the dominant mechanism depends on both temperature and sliding rate. As one 

candidate mechanism they proposed the formation of new bonds at the interface of the tip 

and the substrate during stick-phase biasing the friction force.  

Currently there does not exist any clear demonstration of which mechanisms are 

actually present at various temperatures and sliding rates and the resulting affects on 

friction. In order to determine these mechanisms and explain the origin of characteristic 

temperature and sliding rate dependences, we model an AFM experiment with oxidized 

silicon surfaces using a molecular dynamics methodology.  

In the subsequent chapter we first present the potential energy function we use for 

the silica simulations. Sec. 7.3 contains the details of sliding simulations with bare silicon 

surfaces and cylindrical tips. Sec. 7.4 details the effects of oxide layers on friction 

comparing results from several models with bare and oxidized surfaces. These sliding 

simulations are performed at high sliding velocities. Finally, in Sec. 7.5 we describe 

simulation results at sliding rates close to experiments achieved using hyperdynamics 

with a bond-boost potential. 
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7.2 Silicon and Silica Potentials 

As silicon and silica are the most widely used industrial materials, a myriad of 

potentials for silicon and silica have been proposed. Stillinger-Weber (SW) [6], Tersoff 

[7], and the Environment-Dependent Interatomic Potential (EDIP) [8] are commonly 

used to model silicon, and TTAM [9], BKS [10], Feuston and Garifolini [11], Vashishta 

[12], and Huang and Kieffer [13] for have been developed for silica. Some potential 

functions have three body terms to treat covalent bonding properly [6, 11, 12, 13], others 

include coordination dependent terms [7, 8, 13] and others use a charge transfer function 

to consider charge redistribution during bond formation and breaking [13]. However, 

potential functions which can treat both silicon and silica simultaneously are rare. The 

extended Stillinger-Weber potential developed by Watanabe [14] is one such potential. 

Most of the silica potentials have a Coulomb interaction term that models the 

effective charges of silicon and oxygen atoms. The Coulomb interaction presents 

particular challenges for molecular dynamics simulation because is long-ranged and does 

not converge within typical short-range cut-off lengths [15]. Convergence is typically 

achieved by employing a conventional Ewald summation method, but this method is very 

time-consuming. The Watanabe potential does not explicitly include the Coulomb 

interaction terms, and all the interactions are modeled by short-ranged pair interactions 

and three-body interactions as in the SW potential. Long-ranged interactions are 

incorporated into the coordination-dependent Si-O pair interaction term and the three-

body term. The function form is expressed as 

∑∑ ∑∑∑
> >>

+=Φ
i ij jk

kjii
i ij

i rrrfrrf ),,(),( 32   ,                                             (7-1)  
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Here A, B, p, q, a, λ, γ, θ   are parameters that depend on the atom types. gij shown in the 

two body terms of Eq. (7-2) is introduced to treat the coordination number of oxygen. It 

becomes 1 in Si-Si and O-O interactions, and in the case of Si-O interaction it depends on 

the coordination number of O. In this case gij is a function of z, the number of 

neighboring Si atoms. To calculate z, a cut-off function Cf  is used as follows. 
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A proper functional form was chosen to make –z g(z) have minimum when z = 2 (Fig. 
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As a result, an oxygen atom is most stable when it has two neighboring silicon atoms. 

The parameters which appear in the two and three body terms are chosen by performing a 

best fit the ab initio calculations as shown in Fig. 7.3. 

 Because this potential can treat both silicon and silica, it has advantages for 

modeling an oxide film developed on a crystalline silicon surface. Using this potential 

Watanabe et. al. constructed oxide films by layer-by-layer insertion of oxygen atoms and 

found structural features that agree with the experimental results [14]. 

 

7.3 Simulations of Bare Silicon surfaces 

In this section, we present simulation results of sliding contact between bare 

silicon surfaces using the SW potential. 

 

7.3.1 Surface Reconstruction 

When silicon is cleaved, the atoms in the exposed surfaces rearrange to minimize 

their surface energies. Silicon atoms on the (001) surface dimerize. It has been known 

that the Stillinger-Weber model can reproduce this process [16], and the more complex 

surface reconstructions in (111) direction with modified parameters [17]. Our friction 

simulation is done using a silicon (001) surface, so we began by simulating the 

reconstruction of the surface. The results are shown in Fig. 7.4. The surface atoms are 

colored differently for better visualization. In the friction simulation, dimerized surfaces 

are used. 
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7.3.2 Friction Simulation 

The sliding simulations between two flat silicon surfaces dimerized in (001) 

direction were performed with cylindrical tips. The surfaces consist of only silicon atoms. 

The purpose of the simulations is to measure the frictional force of the bare silicon 

surfaces and to model the effect of the relative orientation between the dimerized surfaces. 

We used four differently oriented tips with a fixed substrate (0O, 30O, 60O, 90O)�. The 

models with 0O and 30O orientation are shown in Fig. 7.5. During the simulation we 

maintained a normal force = 8.3 nN, a sliding velocity = 38.5 m/sec, and temperatures = 

25K and 250K. The lateral forces as the functions of time are shown in Fig. 7.6. Many 

silicon atoms which comprised the tip were lost during the sliding (wear) as shown in Fig. 

7.5. Significant wear was observed in all the orientations although the relative number of 

the lost particles depends on the orientation. Moreover, the magnitude of lateral force is 

larger than the applied normal force (see Fig. 7.6). The magnitude of the static friction 

(the value at the initial onset of sliding) depends on the orientation, but subsequent 

overall lateral forces show little dependence on orientation and temperature. Both the 

very high friction coefficient and the large amount of wear can be explained by the 

significant adhesion between the bare silicon surfaces. Even when we apply an upward 

load to reduce the adhesion, the same phenomena appears, and eventually a necking 

instability causes the tip to separate from the substrate when the upward load exceeds a 

critical value (see Fig. 7.7). 

The high friction shown in bare silicon contacts arises because the silicon atoms 

at the interface have interaction energies of the same order of magnitude as the silicon 

atoms in the bulk so that they resist the shearing force like a bulk solid. The actual AFM 
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experiments that have been performed do not have bare surfaces due to the natural 

occurrence of native oxide layers [4], and the surfaces of MEMS/NEMS devices are also 

naturally oxidized.  

 

7.4 Simulations of Oxidized Silicon Surfaces 

7.4.1 Silicon Oxidation 

Oxidation of silicon surfaces has been widely investigated mainly in connection 

with the interface properties governing the performance of metal-oxide-semiconductor 

(MOS) devices [18]. Oxide films have amorphous structures and have been constructed 

through various methods in order to reproduce realistic Si/SiO2 interface structures [19-

21].  

In this study, we used a procedure proposed by Dalla Torre et. al. [22]. They 

inserted oxygen atoms into silicon-silicon bonds, but the film grows not by diffusion of 

oxygen atoms, but by the continuing insertion of oxygen atoms into the silicon-silicon 

bonds inside the film. They used the Watanabe potential [14] to oxidize both flat and 

rounded silicon surfaces. It turned out that with this method we could easily control the 

defects both at the interface and inside the film. The detailed procedure for the flat 

surface involves attaching some oxygen atoms onto dangling bonds of the silicon atoms 

at the top surface.  These sites are then used as nuclei for further oxidization.  Next 

silicon atoms with at least one oxygen atom and at most three oxygen atoms are chosen. 

Atoms with higher vertical position are preferred. Once a silicon atom is chosen, a new 

oxygen atom is inserted into the longest Si-Si bond. The new position of the inserted 

oxygen is chosen so as to have the same equilibrium length from both silicon atoms. 
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However, because only the equilibrium length for the pair interaction is considered, there 

can be an excessive force exerted by the three body terms resulting in a thermal energy 

peak after the insertion of each oxygen atom. The kinetic energies of individual atoms are 

monitored and rescaled when they exceed a critical value. The procedure for the spherical 

surface is the same as that for flat surface except that insertion points with larger radii 

from the center are preferred. The simulation results are shown in Fig. 7.8 and Fig. 7.9. 

 

7.4.2 Sliding Simulation: Comparison of bare silicon surfaces and oxidized surfaces 

We prepared three different models to determine what role silicon oxide plays on 

friction as seen in Fig. 7.10; (a) Bare silicon surfaces (# of atoms = 11,645) (b) A bare 

silicon tip and an oxidized substrate (# of atoms = 14,645) (c) An oxidized tip and an 

oxidized substrate (# of atoms = 20,518). Before oxidation, the tip radius is 5.2 nm and 

the substrate size is 9.22 nm × 9.22 nm with 12 silicon layers. The simulation cell has 

periodic boundary conditions in the [110] and [-110] directions. The bottom layer of the 

substrate is fixed. The particle interactions are modeled by the WA potential, and the 

Nose-Hoover chain thermostat is used [23].  

Fig. 7.11 shows the adhesion energy of the models, which is defined as the 

interaction energy between the atoms in the tip and the atoms in the substrate. The 

reduction of the adhesion energy of the oxidized surfaces can be explained by the 

existence of repulsive O-O bonds and multiple contacts at the interface.  

For the sliding simulations, we examined four different normal forces (8.3, 16.6, 

24.9, 33.2 nN), one sliding velocity (27.3 m/sec), and one temperature (250K). During 
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the sliding of the bare silicon model wear was evident as lost particles, but no lost 

particles were observed during simulations of the oxidized models. 

Fig. 7.12 shows the lateral force as a function of tip position. In the bare silicon 

surfaces apparent stick-slip motion and high friction is observed. With the oxidized 

surfaces stick-slip is less evident and friction is the lowest among the models. Low 

friction in the oxidized model arises from the same origins as the absence of adhesion 

discussed above: the repulsive O-O bonds and atomic scale roughness combine to greatly 

reduce attractive interactions between the surfaces. Fig. 7.13 shows the relation between 

the lateral force and the applied normal force. In our simulation regime the lateral force is 

linearly proportional to the normal force, reminiscent of Amontons law. In our graph, if 

we extend the linear fitting curve to intersect the vertical axis, i.e. zero applied normal 

force, we can see that the friction does not converge to zero. The coefficient of friction of 

oxidized silicon surfaces (~0.15) calculated from the slope is in the range of experimental 

results [4]. 

 One of the major differences of these simulations from real experiments is the 

magnitude of the sliding velocity. As seen in Chap. I, while the AFM experiments use 

sliding velocities of nm/sec to μm/sec, the current simulation velocity is 27.3 m/sec.  

 

7.5 Sliding Simulation with hyperdynamics 

7.5.1 Simulation 

 Simulations of an oxidized tip on an oxidized substrate were next performed using 

hyperdynamics to achieve slower sliding speeds.  Fig. 7.14 shows the simulation system 

and its dimensions. Both the substrate and the tip have oxide layers grown into the silicon  
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crystalline structure as described above. The substrate consists of the total 9,591 atoms 

and the tip has the total 5,162 atoms. The tip is joined to the substrate in the [001] 

direction by applying a normal force of 8.3 nN. The atoms on the bottom layer of the 

substrate are fixed to prevent a rigid-body translation in the vertical direction, and the 

system is subject to the periodic boundary condition in the horizontal directions. The 

relative motion of the atoms on the top layer of the tip is also fixed, but they can move 

like a rigid body, and they are pulled by a spring of k = 7.91 N/m. The atomic interactions 

are modeled by the Watanabe potential [14], and the Nose-Hoover chain thermostat is 

used [23]. 

 For the hyperdynamics simulation, we used the bond-boost method discussed in 

Chap. IV [24]. The bond-boost method detects transitions by monitoring the bond length 

changes from reference lengths. Each bond has individual bias potentials multiplied by an 

envelope function which is a function of the maximum bond length change. As the most 

elongated bond length approach a pre-determined limit, the total bias potential vanishes.   

 We simulated at temperatures of 100 K and 300 K and at various sliding 

velocities ranging from m/sec to nm/sec. 

 

7.5.2 Results 

From the initial configuration we randomized the initial velocities in order to 

sample 20 different instantiations and observe the first peak in the stick-slip motion. The 

lateral force was averaged from the maximum force for each measured transition. 

Fig. 7.15 shows the frictional force data at two different temperatures as functions 

of sliding velocity. The most consistent result of our simulation is that the logarithmic 
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dependence of frictional force on sliding velocity was reproduced in this amorphous 

silica model as in the 2-D and 3-D L-J commensurate surfaces, as seen in the 

intermediate velocity range. Plateau regions were observed at high velocity, which can be 

expected from a modified Tomlinson model with vanishing barrier energy EΔ of the 

form 2/3)( FFC −λ [25]. The values of transition velocity at which frictional force 

converges to a constant value showed dependence on temperature as well as the 

magnitude of critical force. The theory expects the transition velocity to depend on both 

temperature and curvature near critical force, but we would need more data to 

parameterize the variables in the theory.  

Another surprising result of the simulation is a plateau region at lower velocity 

(300 K), which indicates a deviation from the modified Tomlinson model. Thus, below 

sliding velocities of 10 μm/sec, the high temperature (300 K) results show that the lateral 

force is independent of the sliding velocity while at the low temperature (100 K), the 

lateral force is logarithmically proportional to the sliding velocity. This result is 

consistent with the experimental result [4].  

 

7.5.3 Discussion 

In this section, we discuss the possible physical origins of the above observations. 

First, Fig. 7.15 shows a difference in critical forces at different temperatures, which may 

suggest a change in effective potential energy at the interface by temperature. Thus, we 

can hypothesize that the increase in frictional force at decreasing temperature, observed 

in recent AFM experiments [4], may be due to variation in potential energy felt by the tip 

as well as different thermal activation rates by temperature. 
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Moreover, Evstigneev et. al. experimentally reported deviation from the modified 

Tomlinson model at lower velocities and discussed possible explanations [5]. Our MD 

simulation results provide an opportunity to confirm their hypotheses and observe the 

detailed atomic process during the sliding. 

In the Tomlinson model, stick-slip behavior is the result of transitions between 

energetic minima over barriers the heights of which depend on the current driving force. 

The Tomlinson model assumes unidirectional transitions. However, real systems have 

multiple transition modes whose barrier heights may change differently as the applied 

force changes, and transitions through different mechanisms may change the velocity and 

temperature dependence of the frictional force. Among several possibilities suggested by 

Evstigneev et al. [5], we observed multiple bonds forming at the interface in our model 

and a bond breaking and reformation before the slip phase.  This causes the tip to move 

backward slightly and in turn increases the lateral force (Fig. 7.16). This bond breaking 

occurred more frequently at lower sliding velocity because of the longer waiting time, 

and may explain the plateau at lower sliding velocity.  That is to say, the increase of the 

lateral force due to the bond breaking may compensate for the decrease in the lateral 

force as velocity decreases. This phenomenon did not happen in the lower temperature 

simulations.  One possibility is that at lower temperatures the potential energy is altered 

making such transition modes less probable. 
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Figure 7.1  Pinion gear used in a micro engine (Courtesy of Sandia National 

Laboratories, SUMMiTTM Technologies, www.mems.sandia.gov).  
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Figure 7.2 Total Si-O bond energies of various clusters with different coordination 

number (solid curve for –z g(z)) [14].  
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Figure 7.3 Potential energy of various silica clusters calculated from Hartree-Fock molecular 

orbital theory [14]. 
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Figure 7.4 Surface reconstruction of silicon (001) surface (Temperature = 250 K). 

(a) Before the reconstruction 

(b) After the reconstruction 
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Time = 0 ps 

Figure 7.5 Friction simulation with variously orientated cylindrical tip. (a) 

0o orientation.  (b) 30o orientation. 

Time = 114 ps 

(a) 0o orientation (b) 30o orientation 
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Figure 7.6 Lateral force as a function of time. 
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Figure 7.7 Simulation with the normal force applied upward. 

Upward Normal Force = 49.8 nN 
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Figure 7.8 Oxidation of flat silicon surface. 
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Figure 7.9 Oxidation of spherical silicon surface. 
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Figure 7.10 Sliding models with round tips. (a) Bare silicon tip and substrate. (b) 

Only substrate oxidized. (c) Tip and substrate oxidized. 

(a) Bare silicon tip and substrate 

(b) Only substrate oxidized 

(c) Tip and substrate oxidized 
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Figure 7.11 Adhesion energy. 
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Figure 7.12 Lateral forces as functions of tip position at various normal loads. 
(a) 8.3 nN. (b) 16.6 nN. (c) 24.9 nN. (d) 33.2 nN. 

(a)  (b)  

(d)  (c)  
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Figure 7.13 Lateral forces as functions of normal loads. Each slope 
corresponds to the coefficient of friction. 
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(a)  

(b)  

Figure 7.14 Simulation models. Red and yellow atoms are oxygen, and gray 
and blue atoms are silicon. (a) Top view (b) Front view.  
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Figure 7.15 Frictional force data as a function of sliding velocity obtained from the

simulations with the model shown in Fig.7.14. The error bars show the standard error. 
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(a)  

(b)  

Figure 7.16 Closer view at the interface.  Two contact regions are seen. Inside the 

red circle, (a) the bond forms and (b) it breaks. 
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CHAPTER VIII 

Conclusions 

 

In this dissertation we have developed various efficient methods to perform 

molecular dynamics simulation of a sliding system modeling the AFM experiment on a 

longer time scale. These methodologies include the parallel method and the 

hyperdynamics method. Hyperdynamics has been intensively studied and several critical 

issues including the accurate calculation of the boost factor have been discussed in detail. 

Furthermore, for efficient hyperdynamics simulations, we constructed bias potentials 

using local variables such as the slope and the curvature along the direction connecting a 

position and the minimum, and the distance of a position from the local minimum in 

configuration space. Moreover, we introduced the stepped sliding to apply the 

hyperdynamics scheme to a sliding system. These methods have been further improved 

with the aid of a parallel algorithm. 

These methodologies were tested with simple 2-dimensional and 3-dimenstional 

AFM models in Chap. V by systematically applying the procedures in succession. The 

validity of the methodologies is well verified with the simulation results of these models. 

The stepped sliding serves as a reasonable approximation for continuous sliding, and the 

simulation results using the other methods both the parallel methodology and 

hyperdynamics showed close agreements with the simulation results of the conventional 
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method. Moreover, both 2-dimensional and 3-dimensional simulations showed that the 

average of the lateral forces at the transitions have the logarithmic dependence on the 

sliding velocity. 2-D simulation at three temperature points showed the lateral force 

linearly decreases as the temperature increases. 

Chap. VI detailed the frictional behaviors of incommensurate surfaces. While 

ultralow friction forces have been observed between incommensurate surfaces in nano 

scale experiments, an analysis based on the one-dimensional Frenkel-Kontorova-

Tomlinson model and a study using MD simulations have pointed out, incommensurate 

surfaces can show large static friction if the atoms of one surface are weakly bound when 

compared to the interaction between the surfaces. Moreover, an experimental study 

observed a transition from the superlubricity regime (zero friction force) to the stick-slip 

regime (high friction force) by increasing the applied normal load. MD simulations 

performed with a 3-dimensional system modeling an AFM experiment regarding 

incommensurate surfaces observed that superlubricity breaks down with softer tips and at 

higher normal loads. The softer tips experienced the emergence of several metastable 

states, which makes the frictional behaviors more complicated. 

In Chap. VII, the frictional simulation results of amorphous silica surfaces have 

been presented. Sliding simulations of bare silicon surfaces revealed very high adhesion 

and static friction. By introducing oxide layers the reduction of frictional force and the 

transition from the apparent stick-slip regime to the smooth sliding regime have been 

observed. Moreover, hyperdynamics simulations with an oxidized silicon tip and a 

substrate using the bond-boost method achieved sliding velocities in the range of real 

experimental values. An analysis of the effects of temperature and sliding velocity on 
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friction has provided evidence for a systematic deviation from the modified Tomlinson 

model and the existence of multiple transition mechanisms. Among several possibilities, 

we observed multiple bonds forming at the interface in our model and a bond breaking 

and reformation before the slip phase. 

Finally, some remarks about new applications of our methodologies and several 

useful improvements are worth mentioning. In this research, we applied the 

hyperdynamics methodology and the parallel algorithm to AFM systems. We modeled 

frictional sliding of silicon surfaces with oxide layers because in most cases real silicon 

surfaces have native oxides.  For more realistic modeling of AFM experiments, there are 

several additional considerations.  Although many AFM experiments have been 

performed in UHV, there is a chance that molecules, particularly hydrocarbons, adsorb 

onto surfaces depending on temperature. For this reasons, the temperature dependence on 

friction force observed in the experiments may not reveal the characteristics of the 

materials of a tip and a substrate, but the characteristics of the adsorbed molecules.  It is 

also generally known that after scanning a surface, an AFM tip becomes blunt due to 

wear. New AFM models should address these issues. Furthermore, many efforts have 

been made to improve triobological properties of MEMS. These include introducing self-

assembled monolayers (SAMs) to passivate silicon surfaces [1]. Moreover, a recent 

experiment showed that exciting the mechanical resonance of the system normal to the 

contact plane significantly reduces the measured friction force [2]. These novel systems 

will be interesting new applications of our methods.  

Furthermore the methodologies we have developed have the potential applications 

beyond the sliding system because many interesting MD systems with time-varying 
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external parameters suffer from the same time scaling problem. For example, in nano 

indentation simulations, simulations of indenters involve indentation rates much faster 

than found in real experiments. Moreover, there are systems that experience infrequent 

transitions with time-invariant potential energies such as the diffusion of dopants in 

silicon. We are optimistic that the new methods developed in this work can be applied to 

those problems.  

Construction of a bias potential for systems with barriers on multiple time scales, 

as observed in the simulations with incommensurate surfaces, remains one of the largest 

remaining challenges. This must include a method for distinguishing between significant 

barriers that separate states during important kinetic processes and the internal transitions 

within energy basins. Additionally a scheme determining all the parameters of a bias 

potential on the fly without performing any pre-simulations is desirable, especially for 

systems with irregular wells this would represent a major breakthrough in accelerated 

simulation techniques. 
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