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Abstract 

Hot Dirac Fermion Dynamics and Coherently Controlled Photocurrent 
Generation in Epitaxial Graphene 

By 
Dong Sun 

 

Co-Chairs: Theodore B. Norris and Roberto D. Merlin 

  
 

We investigate the ultrafast relaxation dynamics of hot Dirac Fermionic quasiparticles in 

multilayer epitaxial graphene using ultrafast optical differential transmission (DT) 

spectroscopy. We observe DT spectra which are well described by interband transitions 

with no electron-hole interaction. Following the initial thermalization and emission of 

high-energy phonons, electron cooling is determined by electron-acoustic phonon 

scattering. The spectra also provide strong evidence for the multilayer structure and a 

measure of the doping profile, thus giving insight into the screening length in thermally 

grown epitaxial graphene on SiC. From the zero crossings of the differential transmission 

(DT) signal tails, we can resolve 4 heavily doped layers with Fermi levels of 361meV, 

214meV, 140meV, 93meV above the Dirac point in the sample, respectively. The 

screening length is determined to be 2-3 layers in carbon face grown epitaxial graphene. 

The measured DT spectrum can be well explained by a dynamic conductivity simulation 
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incorporating the in plane disorder and an elevated lattice temperature. We observed 

evidence for thermal coupling of hot carriers between graphene layers by ultrafast 

degenerate pump-probe spectroscopy and determined the interlayer thermal coupling 

time to be below the time resolution of the experiment (100fs).  

A second series of experiments focuses on the generation of ballistic electric currents in 

unbiased epitaxial graphene at 300 K via quantum interference between phase-controlled 

cross-polarized fundamental and second harmonic 220- fs pulses. The transient ballistic 

currents are detected via the emitted terahertz radiation. Due to graphene’s special 

structural symmetry, the injected current direction can be well controlled by the 

polarization of the pump beam in epitaxial graphene. The results match theoretical 

calculations showing that the current direction can be controlled through changing the 

relative phase between two pump beams. By pre-injecting background hot carriers into 

the system, we study the enhancement of hot carriers in phase breaking scattering due to 

hot carriers and the results show that this scattering rate increased monotonically with the 

hot electron temperature. This all-optical current injection provides not only a non-

contact way of injecting directional current into graphene, but also new insight into 

optical and transport processes in epitaxial graphene.  

 
  



 1

Chapter I 

Introduction to Graphene and Its Electronic Properties 

Graphene is an individual atomic plane of carbon atoms densely packed in a honeycomb 

lattice, or it can be viewed as a single layer of bulk graphite. It has attracted a great deal of 

interest since this ideal two-dimensional physical system was isolated successfully in 2004 

by scotch tape [1]. 

As the first truly two dimensional system ever made by the human beings, graphene exhibits 

unique physical properties: the carriers in graphene follow the 2 dimensional Dirac equation 

instead of the usual Schrödinger equation, which makes it an excellent condensed matter 

analog of quantum electrodynamics. So graphene attracts considerable interest in the field of 

fundamental physics[2, 3].  On the other hand, due to its unique electronic properties and its 

compatibility with the existing CMOS fabrication technologies, graphene has great potential 

as a platform for carbon-based nanoelectronics and this has further amplified interest in this 

material in the electronics community [4].  

For graphene based high-speed electronic devices such as field-effect transistors, p-n junction 

diodes and photonic devices, understanding the carrier dynamics of graphene will be critical 

to its device applications. In steady-state transport measurements, the transport of carriers is 

controlled by the electrons near the Fermi level; transport in high speed devices, however, is 

determined by the dynamics of hot carriers. The investigation of hot carrier effects thus plays 
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a central role in device physics, and provides a key link between fundamental physics and 

high-speed devices.  

On the other hand, optical spectroscopy has unique strengths in providing fundamental 

information about nonequilibrium, nonlinear and transport properties of semicondcutors. If 

combined with femtosecond laser pulses it can provide new insights into different aspects of 

semiconductors including photoexcitated non-equilibrium carrier distribution functions and 

the dynamics of the relaxation of these excitations. It also provides the ability to investigate 

the nonlinear properties in semiconductors such as many-body effects, coherent effects and 

dephasing phenomena. Part of this dissertation is a discussion of some of these aspects in 

epitaxial graphene as measured through the use of ultrafast spectroscopy.  

In this chapter, I’ll start with an introduction to various techniques for the fabrication of 

graphene, followed by a discussion of the basic electronic properties of graphene that are 

related to this thesis. Since all the experiments in this dissertation have been performed on 

samples of epitaxial graphene, a structurally different material from exfoliated graphene, I 

have included a separate section to describe epitaxial graphene in more detail. At the end, we 

will specify the motivation and outline of this thesis. 

1.1 Graphene and Its Fabrication  

When one presses a pencil against a sheet of paper, among those graphene stacks, there 

should be individual graphene layers. Despite this no one actually expected graphene to exist 

in a free state because from the theoretical aspect, Mermin and Wagner concluded that, 

because of the periodic order of carbon, the atoms cannot be maintained in an infinite two-

dimensional crystal about 40 years ago [5, 6]. In contrast to these predictions are recent 

observations of individual layers derived from layered materials [1]. Later experiments and 
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theoretic work explained this contradiction and revealed that a free-hanging graphene sheet is 

buckled rather than flat [7, 8]. The discovery of the first graphene flake is not easy, since it’s 

either expected or there exists any experimental tools exist to search for graphene among the 

pencil debris covering macroscopic areas. Graphene was eventually discovered due to a 

subtle optical effect created on top of a chosen SiO2 substrate with a certain thickness that 

allows its observation under an ordinary optical microscope [1]. 

1.1.1 Exfoliated Graphene 

So far the samples most widely used by experimental groups are obtained by 

micromechanical cleavage of bulk graphite, the same technique that allowed isolation of 

graphene for the first time [1]. This relatively simple and low cost technique can provide 

individual samples for research purposes with high-quality graphene crystallites up to several 

hundred micrometers in size, which is sufficient for most research purposes. The critical 

ingredient for success with this method was the observation that graphene becomes visible in 

an optical microscope if placed on top of a Si wafer with a carefully chosen thickness of SiO2.  

The visibility is due to an interference-like contrast with respect to an empty wafer. For this 

purpose, a Si substrate with t = 300 nm is used. Only a 5% difference in SiO2 thickness (315 

nm instead of the current standard of 300 nm) can make single-layer graphene become 

completely invisible. A color map of few layer graphene on this substrate is provided in the 

supplementary material of reference [1]. To make a larger graphene flake, careful selection 

of the initial graphite material (so that it has largest possible grains) and the use of freshly 

cleaved and cleaned surfaces of graphite and SiO2 are necessary.  

The micromechanical cleavage method is simple and produces high-quality graphene 

crystallites, which is excellent for research purposes. However, the production of single layer 
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graphene films this way is random and the maximum size of the flake is quite limited. With 

this method there is no possibility of quality control for mass production and industrial 

fabrication of graphene based chips. For large scale device application purposes, more 

efficient fabrication methods are expected.  

1.1.2 Chemically Derived Graphene 

Even before the success of the micromechanical cleavage method, there were significant 

efforts towards the chemical exfoliation of graphite. To this end, bulk graphite was 

intercalated so that graphene planes became separated by layers of intervening atoms or 

molecules [9]. In certain cases, large molecules could be inserted between atomic planes 

providing greater separation than a graphene layer so that the resulting compounds could be 

considered as isolated graphene layers embedded in a 3D matrix; however, this is essentially 

a new 3D material. In recent years, major progress has been made in the development of 

chemically derived graphene nanoribbons [10] and graphene-polymer composites [11]. The 

chemically derived graphene nanoribbons can be sub-10-nanometers thick and open enough 

bandgap to turn off a graphene based transistor at room temperature. However, the mobility 

of this device is only 200 cm2/Vs [10]. Chemically derived graphene-oxide [12] also shows a 

bandgap opening and an epitaxial-graphene/graphene-oxide junction device has been 

demonstrated with 850 cm2/Vs mobility [13]. Although chemical fabrication of graphene is 

cheap and provides mass production, the chemically derived graphene nanoribbons and 

graphene-polymer composites share the same problem with carbon nanotubes in terms of real 

device applications: the graphene suspended in the solvents is hard to locate and fabricate for 

device mass production.  
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1.1.3 Epitaxial Graphene  

Graphene grown epitaxially on single crystal silicon carbide can be patterned using standard 

lithography methods and thus is compatible with current CMOS fabrication technologies. 

The method is very simply to heat SiC in ultrahigh vacuum. The Si atoms will then be 

desorbed from SiC and leave carbon to form graphene. Although epitaxial graphene grown 

this way has multiple layers, it is a different material from exfoliated graphene. It may seem 

that epitaxial graphene is simply ultrathin graphite, but the stacking order is very different 

from graphitic A-B stacking. The epitaxially grown material has a special rotational stacking 

order and exhibits the same linear dispersion curve as seen in single layer graphene. Thus 

these chemically synthesized samples look more like multiple graphene layers than graphite. 

This will be discussed further in the Section 1.3 of this Chapter. Experimentally, the charge 

carriers in epitaxial graphene are found to be chiral [14] and the band structure is clearly 

related to the Dirac cone [15, 16]. Epitaxial graphene possesses the unique electronic 

structure of ideal single layer graphene but due to its mass producibility and compatibility 

with current manufacturing technology, it is the most promising form of graphene for use in 

electronics and optoelectronic devices. Since this thesis focuses on epitaxial graphene, there 

will be a separate section covering the fabrication and electronic properties of epitaxial 

graphene later.      

1.1.4 Chemical Vapor Deposition Grown Graphene 

Although chemical vapor deposition (CVD) has been used to grow carbon nanotubes for a 

long time, progress in growing graphene by CVD has only started recently [17-19]. Using 

this method, few-layer graphene can be grown via ambient pressure methane-based CVD on 

polycrystalline Ni films deposited on Si/SiO2. Large area (~cm2) films of single to few-layer 
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graphene can be fabricated and the films transferred to nonspecific substrates. The films are 

continuous over the entire area and can be patterned lithographically or by pre-patterning the 

underlying Ni film. Chemical vapor deposition grown graphene opens another promising 

avenue beyond epitaxial graphene for device applications. However, the single- or bilayer 

regions are 20 μm in lateral size and the details of their properties have yet to be 

characterized. 

1.2 Electronic Properties of Graphene  

The electronic properties of graphene have been reviewed in detail by Castro Neto et al. [20]. 

Here I review two important concepts central to this dissertation. First, I review the tight-

binding calculation for the electronic structure of a hexagonal carbon lattice. This is followed 

by a discussion of the unique properties of a Dirac Fermion in graphene.  

1.2.1 Tight-binding Calculation 

Graphene is made out of carbon atoms arranged in a hexagonal structure. The structure can 

be seen as a triangular lattice with a basis of two atoms per unit cell as shown in Fig. 1.1. The 

lattice vectors can be written as: 

1 2(3, 3), (3, 3)
2 2
a a

= = −a a ,                                                                                              (1.1) 

where Aa 42.1≈  is the carbon-carbon distance. The reciprocal lattice vectors are given by: 

1 2
2 2(1, 3), (1, 3)
3 3a a
π π

= = −b b .                                                                                          (1.2) 
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Figure 1.1: Lattice Structure and Brillioun Zone of Graphene. Left: Lattice structure of 
graphene, made out of two interpenetrating triangular lattices. 1a and 2a are the lattice unit 
vectors, and iδ , i=1, 2, 3 are the nearest neighboring vectors; Right: corresponding Brillouin 
zone. The Dirac cones are located at the K and K′ points. Figure taken from ref. [21]. 

Two points K and 'K  at the corners of graphene’s Brillouin zone (BZ) are the so called Dirac 

points which are of particular importance for the physics of graphene. Their positions in 

momentum space are given by:  

2 2 2 2( , ), ' ( , )
3 33 3 3 3a aa a
π π π π

= = −K K .                                                                                   (1.3) 

The three nearest neighbor vectors in real space are given by: 

1 2 1(1, 3), (1, 3), (1,0)
2 2
a a a= = − = −δ δ δ .                                                                           (1.4)  

While the six second-nearest neighbors are located at: 

' ' '
1 1 2 2 3 2 1, , ( )a a a a= ± = ± = ± −δ δ δ .                                                                                         (1.5) 

The energy bands derived from the tight-binding Hamiltonian that considers electron 

hopping both to nearest and next nearest neighboring atoms have the following form [22]: 

( ) 3 ( ) ' ( ),

3 3( ) 2cos( 3 ) 4cos( )cos( ),
2 2y y x

E t f k t f k

f k a k a k a

± = ± + −

= +

k

k
                                                                  (1.6) 
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where the plus and minus signs apply to the upper (π ) and lower ( ∗π ) band, respectively. 

( 2.8 )t eV≈ is the hopping energy of the nearest neighbor and 't  is the hopping energy of the 

next nearest neighbor. Fig. 1.2 shows the full band structure of graphene. When 't  is zero, the 

spectrum is symmetric around zero energy. For a finite value of t′, Eq. 1.2 can be expanded 

close to the Dirac points as = +k K q , with |||| Kq << [22]: 

2( ) | | (( / ) ),FE v q Kε± ≈ ± +q q                                                                                                 (1.7) 

where q  is the momentum measured relative to the Dirac points and Fv  represents the Fermi 

velocity, given by 2/3tavF = , with a value smvF /101 6×≈ . The Fermi velocity at these 

Dirac points is a constant which doesn’t depend on the energy or momentum as do typical 

semiconductors with parabolic energy dispersion curves. This result was first obtained by 

Wallace [22]. 

The expansion around Dirac points including 't  up to second order in Kq / is given by: 

2 2
29 ' 3( ) 3 ' | | ( sin(3 )) | | ,

4 8F
t a taE t v θ± ≈ ± − ± qq q q                                                                 (1.8) 

where 

arctan( ),x

y

q
q

θ =q                                                                                                                      (1.9) 

is the angle in momentum space. Hence the presence of next nearest neighbor hopping shifts 

the energy of the Dirac points and breaks electron-hole symmetry. Up to the order of 2)/( Kq  

the dispersion depends on the direction in momentum space and has three-fold symmetry. 

This is called trigonal warping of the electron spectrum [9, 23]. 

1.2.2 Dirac Fermion Properties 

The linear energy dispersion shown in Eq. (1.6) resembles the energy dispersion of ultra-
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relativistic particles; these particles are quantum mechanically described by the massless 

Dirac equation. The effective mass is thus zero due to the linearity of the dispersion curve 

and at the first quantized language, the two-component electron wavefunction, closed to the 

Κ point, obeys the 2D Dirac equation:  

( ) ( )Fiv Eψ ψ− ⋅∇ =σ r r  ,                                                                                                      (1.10) 

The wavefunction, in momentum space, for the momentum around Κ has the form: 

/ 2

, / 2

1( )
2

i

i

e
e

θ

θψ
−

±

⎛ ⎞
= ⎜ ⎟

±⎝ ⎠

k

k
Κ k ,                                                                                                       (1.11) 

for FH v= ⋅k σ k , where the ± signs correspond to the eigenenergies FE v k= ± , that is, for the 

π and π ∗ band, respectively, and kθ  is given by Eq. (1.9). The wavefunction for the 

momentum around K' has the form: 

/ 2

, / 2

1( )
2

i

i

e
e

θ

θ
ψ ± −

⎛ ⎞
= ⎜ ⎟

±⎝ ⎠

k

kK' k ,                                                                                                     (1.12) 

for 'K FH v ∗= ⋅σ k . So the wavefunctions at K and K' are related by time-reversal symmetry. 

If the phase θ k is rotated by 2π , the wavefunction changes sign indicating a phase of π , 

which is commonly called a Berry’s phase. This change of phase by π radians under rotation 

is a characteristic of spinors and in fact the wavefunction is a two-component spinor. 

A relevant quality used to characterize eigenfunctions is their helicity defined as the 

projection of the momentum operator along the spin direction. The quantum mechanical 

operator for helicity has the form: 

1ˆ
2 | |

h = ⋅
pσ
p

.                                                                                                                        (1.13) 
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Figure 1.2 Graphene Band Structure. Left: Energy spectrum (in units of t ) for finite values of 
t  and 't , with 2.7t eV= and ' 0.2t t= . Right: zoom-in of the energy bands close to one of the 
Dirac points. Figure taken from ref [21]. 

It’s clear from the definition of ĥ  that the states ( )ψK r and ' ( )ψK r are also eigenstates of ĥ : 

1ˆ ( ) ( )
2

hψ ψ= ±K Kr r ,                                                                                                            (1.14) 

and an equivalent equation for ' ( )ψK r  with inverted signs. Therefore electrons (holes) have a 

positive (negative) helicity. Eq. (1.13) implies that σ  has its two eigenvalues either in the 

direction of or against the momentum p . This property says that the states of the system 

close to the Dirac point have well defined chirality or helicity. Since chirality is not defined 

in regards to the real spin of the electron, it’s also called pseudo-spin. The helicity values are 

good quantum numbers as long as the Hamiltonian is valid. Therefore the existence of 

helicity quantum numbers holds only as an asymptotic property, which is well defined close 

to the Dirac points K and K' . Either at larger energies or due to the presence of a finite 't , 

the helicity stops being a good quantum number. 

The tight-binding structures of bilayer graphene are addressed in reference [24] and are not 
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considered further in this dissertation. There are two major features of bilayer graphene that 

are different from single layer graphene: first, the dispersion relationship is no longer linear; 

second, there are two closed parabolic bands instead of one.  

1.3 Epitaxial Graphene 

Epitaxial graphene, grown by high temperature desorption of Si from SiC, has a very 

different structure from that of an exfoliated graphene sheet and thin graphite; they have 

similarities in some respects, but they are essentially different materials. In this section, I’ll 

give detailed descriptions of epitaxial graphene covering various aspects including 

fabrication, atomic structures and electronic structures. 

1.3.1 Fabrication of Epitaxial Graphene 

Epitaxial graphene is grown on Silicon Carbide when it’s heated to about 1300 °C in ultra-

high vacuum (UHV) or moderate vacuum conditions using ovens with controlled background 

gas. The Silicon Carbide is hydrogen etched beforehand to remove polishing scratches to 

obtain large atomically flat terraces. The epitaxial growth is established by examining the 

low energy electron diffraction (LEED) pattern after various growth times [4, 15].  

SiC is a wide-bandgap, compound semiconductor. It has high breakdown field, electron 

saturation and thermal stability which make it an ideal material for today’s high temperature, 

high power and high frequency device applications. In the prime structure, SiC has a 

hexagonal frame with a carbon atom situated above the center of a triangle of Si atoms and 

underneath a Si atom belonging to the next layer as in Fig. 1.3. The distance between 

neighboring silicon or carbon atoms is approximately 3.08 Å. The carbon atom is positioned 

at the center of mass of the tetragonal structure surrounded by four neighboring Si atoms so 

that the distance between a C atom and each of the Si atoms is the same, approximately equal 
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to 1.89 Å. The distance between two silicon planes is approximately 2.52Å, which is the 

height of the unit cell [25].  

 

Figure 1.3: Tetrahedron Crystal Structure of SiC. Figure taken from Ref. [21].   

SiC has more than 200 polytypes, all of which have the same chemical composition but 

different stacking orders of the double layers of carbon and silicon atoms (Fig 1.4 a). If the 

first double layer is called the A position, the next layer will be placed on the B position or 

the C position according to a closed packed structure (Fig 1.4 b). The different polytypes are 

constructed through permutations of these three positions. The three most common polytypes 

are 3C-SiC (cubic, Fig 1.4c), 4H-SiC (hexagonal, Fig 1.4d) and 6H-SiC (hexagonal, Fig 

1.4e). 3C-SiC is the SiC polytype with 3 layers per period along the stacking direction with a 

cubic crystal system. Similarly, 4H-SiC and 6H-SiC are the SiC polytypes with 4 and 6 

layers, respectively, per period along the stacking direction with hexagonal crystal systems. 

Graphene films have been grown on both 6H-SiC and 4H-SiC substrates. The samples grown 

on 6H-SiC and 4H-SiC can exhibit very different physical properties including substrate 

induced bandgap opening [26] and nonlinear optical signals [27, 28]. The origin of these 

differences is still largely unexplored. All the experiments in this dissertation were conducted 

on 4H-SiC samples.     
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Figure 1.4: Polytypes of SiC. (a) A single carbon and silicon atom are connected together and 
denoted as a ball. (b) The first layer marked as “A”, there are two equivalent positions, “B” 
and “C” to form the second layer. (c) 3C-SiC stacking direction (d) 4H-SiC stacking 
direction (e) 6H-SiC stacking direction. Figure taken from Ref. [21].  

It’s clear that the carbon atom is closer to the plane of the three bottom silicon atoms (0.63Å) 

than to the top silicon atom (1.89 Å), so that cutting SiC perpendicular to the (0001) direction 

will most likely break the bonds between carbon atoms and the top Si atoms, splitting the 

crystal into two different faces, one denoted as the C-face ( 0001) and the other as the Si-face 

( 0001 ). Growth on the Si face is slow and terminates after relatively short times at high 

temperatures. The growth on the carbon face apparently does not self-limit so that relatively 

thick layers (~4 up to 100 layers) can be achieved. The graphene thickness can be estimated 

for thin layers by modeling measured Auger-electron intensities or photoelectron intensities. 

For the relatively thicker multilayer graphene the thickness can be measured via conventional 

ellipsometry. 
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Figure 1.5: Interface Geometry: (a) Schematic 13 13 46.1R×  fault pair unit cell (dashed 
line). Dark circles are R30 C atoms. Gray circles are C atoms in the R2+ plane below, rotated 
32.204° from the top plane. (b) STM image of C-face graphene showing a periodic 
superlattice with a 13 13×  cell. (c) High resolution STM image of the top view of the 

13 13 46.1R× unit cell and the principle graphene directions. Figure taken from ref [29]. 

1.3.2 Atomic and Electronic Structure of Epitaxial Graphene 

The first C layer on top of a SiC surface acts as a buffer layer and allows the next graphene 

layer to behave electronically like an isolated graphene sheet. There exists strong covalent 

bonds between the substrate and the first layer; charge can be transferred from SiC to the 

graphene layers depending on the interface geometry and results in doping of these layers 

[30]. This charge transfer process doesn’t rely on doping of the SiC substrate. It originates 

from the SiC and graphene interface only. Both first principle calculation and X-ray 

reflectivity data confirm that the first graphene layer is 1.65 0.05± Å above the last bulk C 

layer, this bond length is nearly equal to the bond length of diamond (1.54 Å) and suggests 

that the substrate bond to the first graphene layer is much stronger than a Van der Waals 

interaction. The next graphene layer is separated from the first by 3.51 0.1±  Å (slightly 

larger than the bulk value of 3.354 Å), so the first layer is strongly bonded to the C face with 

a well isolated graphene layer above it [30, 31].  
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As claimed earlier in this chapter, epitaxial graphene is emphatically not simply ultrathin 

graphite even though it has multiple layers. Experimentally, the charge carriers in carbon 

face epitaxial graphene are found to be chiral and the band structure is clearly related to the 

Dirac cone[14-16, 32, 33]. These electronic properties can be explained by the epitaxial 

graphene structure. Instead of Bernal stacking, as in graphite, it’s found that epitaxial 

graphene grown on the carbon-terminated surface contains rotational stacking faults related 

to the epitaxial condition at the graphene-SiC interface. A 13 13×  graphene cell can be 

rotated by either 30° or 2.2±  to be commensurate (~0.14% smaller) with a SiC 

6 3 6 3 30R×  cell. Two stacked graphene sheets can rotate relative to each other in a 

number of ways to make the two sheets commensurate. The lowest energy corresponds to 

rotational angles of 30 2.204± . This bi-layer structure corresponds to a graphene 

13 13( 46.1 )R× ±  cell as shown in Fig. 1.5. First principle calculation shows that such 

faults produce an electronic structure indistinguishable from an isolated single graphene 

sheet in the vicinity of the Dirac point as shown in Fig 1.6. 

Graphene grown on Si face typically has low electron mobility compared to C face samples. 

The different interfacial structures and the stacking order can be responsible for the observed 

electronic property differences. The graphene layer is found to be Bernal stacking instead of 

rotational stacking on Si face sample. The interface of a Si face sample is not composed of a 

simple graphene-like layer above a relaxed SiC bilayer, it is comparable to a substantially 

relaxed SiC bilayer, above which lies a dense carbon layer containing a partial layer of Si 

atoms which separates it from the graphene film. The carbon density in this intermediate 

layer is approximately 2.1 times larger than in a SiC bilayer. The bond distance between the 

Si adatom layer and the first graphene layer is 2.32 0.08± Å. While this distance is short 
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compared to the interplanar graphene spacing, it is still larger than the corresponding distance 

measured on C-face graphene, indicating that the graphene on Si-face is less tightly bound to 

the substrate than C-face graphene. This dense carbon layer with Si adatoms plays the role of 

the buffer layer and partly isolates subsequent graphene layers from interactions with the 

substrate [31]. 

 

Figure 1.6: Calculated Band Structure for Three Forms of Graphene. (i) Isolated graphene 
sheet (dots), (ii) Bernal stacked graphene bi-layer (dashed line) and (iii) R30/R2+ fault pair 
(solid line). Inset shows details of band structure at the K-point. Figure taken from ref [30]. 

1.3.3 Epitaxial C-face Graphene Behaves as Multilayer Graphene 

The conclusion from all the facts above is that epitaxial graphene is a form of multilayered 

graphene that is structurally and electronically distinct from graphite. There is a buffer layer 

on the SiC substrate and the subsequent interfacial graphene layer starts to recover the 

electronic properties of graphene. The layer is also heavily doped due to the built-in electric 

field at the SiC-graphene interface. The number of these heavily doped layers and doping 

profile will be measured in this dissertation. The doped layers carry most of the current and 

cause Shubnikov–de Haas (SdH) oscillations C. Berger et al. [32]. The charge density of the 

top layers is more than 2 orders of magnitude smaller, and they are expected to be much 

more resistive. The magnetoresistant measurement shows the charge density of 
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123.8 10× electons/cm2. The undoped layers contribute signal mainly to the Landau level 

spectroscopy measurement [16, 33]. This measurement suggests 101.5*10n ≈  electrons/cm2 

for the lightly doped layers (or specified as “undoped” layers with respect to those heavily 

doped). The Landau level spectroscopy also demonstrates that epitaxial graphene consists of 

stacked graphene layers, whose electronic band structure is characterized by a Dirac cone 

with chiral charge carriers. It also shows that the low energy part of the spectrum of electrons 

in graphene is well described by a linear dispersion relation. Any deviation from ideal 

behavior of the Dirac particles is not observed until 500meV above the Dirac point. At an 

energy of 1.25eV, the deviation from linearity is around 40meV from magneto-optical 

transmission spectroscopy [34].  

1.4 Toward Graphene Electronics and Optoelectronic Devices  

Graphene’s mobility μ can exceed 15,000 cm2V-1s-1 even under ambient conditions in those 

exfoliated samples[1-3], and the mobility of epitaxial graphene is refered to be as high as 

250,000 cm2V-1s-1 from magneto far infrared spectroscopy measurement [35]. Moreover, the 

observed mobilities depend weakly on temperature and remain high at high doping 

concentrations (>1012 cm-2). Add to this the excellent compatibility of graphene’s epitaxial 

counterpart with current CMOS fabrication technologies and graphene’s potential to 

substitute for silicon in the next generation electronic and far infrared and THz region 

optoelectronic device materials is unprecedented.  

Before jumping to the fabrication of successful graphene based electronics and 

optoelectronic devices, it would be crucial to understand the related device physics since the 

fundamental operation of electronic devices is ultimately governed by the carrier dynamics. 

Specifically, scattering processes such as carrier-phonon interaction and carrier-carrier 
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scattering determine energy/momentum relaxation and transport properties of devices. For 

high speed devices, electrons will be accelerated to high energy, thus the dynamics of hot 

carriers will come into play.  

Over the years a diverse community of researchers has used ultrafast spectroscopy to study 

mainly III-V semiconductors to address problems in making electronics and optoelectronic 

devices. Mechanisms we can study and measure include hot electron relaxation, various 

carrier-carrier and carrier-photon scattering, carrier recombination, ballistic acceleration and 

velocity overshoot. Ultrafast spectroscopy can also be used to probe quantum interference, 

interband and intersubband transitions and the role of decoherence in dephasing. We can also 

look into coherent coupling, Rabi oscillations between discrete levels, time-dependent 

tunneling processes, coherent plasmons and even ballistic electron wave packets.  

In part of my research I have utilitzed ultrafast spectroscopy to address problems like hot 

electron cooling, thermal coupling between layers, carrier-carrier scattering, hot phonon 

effects and some material properties like the doping profile of multiple layer systems and 

screening length.  

On the other hand, we try to generate directional current by a non-contact all optical method 

using quantum interference effect in epitaxial graphene. This method serves as a clean 

method to study the ballistic current scattering mechanism without any side effects due to the 

electrodes.  

1.5 Dissertation Chapter Outline  

There are two categories of work in this dissertation: first, I used ultrafast, time-resolved 

pump-probe techniques to investigate the various electron transport dynamics and 

material characteristics in epitaxial graphene. Various probe wavelength-, temperature-, 
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intensity-, and polarization-dependent studies enable a comprehensive understanding of 

the relaxation of hot Dirac Fermions, electron-electron scattering, electron-phonon 

coupling, interlayer thermal coupling, doping profile and screening length in carbon face 

epitaxial graphene. Second, I all-optically generated coherently controlled ballistic 

currents in epitaxial graphene using quantum interference between phase related 

fundamental and second harmonic pulses. By pre-injection of background hot carriers, I 

studied the enhancement of hot carriers in phase breaking scattering processes and 

correlated this scattering rate to the hot electron temperature.  

After introducing the electronic properties of graphene and epitaxial graphene in this 

chapter, the dynamic conductivity and transfer matrix method is discussed in Chapter 2. 

This method widely used to explain most of the pump-probe data. The concept of 

ultrafast pump-probe spectroscopy and the experimental setup will be outlined in Chapter 

3. Chapter 4 addresses all the experimental results from ultrafast pump-probe 

spectroscopy. Chapter 5 describes coherent control related work and results. Final 

conclusions and future work will be explained in Chapter 6. 
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Chapter II 

Dynamic Optical Conductivity of Graphene and Transfer Matrix 
Approach 

The optical, DC and Hall conductivities of graphene have been considered in several works 

[1-9]. Magneto-optical conductivity of graphene has been considered in Gusynin et al [4]. 

Work without a magnetic field was pioneered by Ando et al [10], who considered the effect 

of frequency-dependent conductivity of short and long range scatterers in a self-consistent 

Born approximation. Gusynin et al. [3] describe several anomalous properties of the 

microwave conductivity of graphene. These properties are directly related to the Dirac nature 

of quasiparticles. Several analytic formulae for the longitudinal as well as Hall AC 

conductivity are given in the paper [2]. They also present extensive results for DC properties. 

Peres et al. [7, 8] treat localized impurities in a self-consistent fashion as well as extended 

edge and grain boundaries. They also include the effects of electron-electron interactions and 

self-doping. Since optical conductivity is widely used in this dissertation to describe 

experimental data from pump-probe differential transmission experiments I have focused a 

section of this chapter on the deduction of the optical conductivity of a single graphene layer 

under various conditions. I have also included a section focused on the transfer matrix for 

ultrathin layers.  This important tool is used widely in this dissertation to connect the optical 

conductivity and the response of graphene layers to probe photons of different wavelengths.   
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2.1 Dynamic Conductivity of a Single Graphene Layer 

Here I concentrate on the optical (dynamic or AC) conductivity of graphene, which will be 

widely used in this dissertation to explain the experimental phenomena. I start from the 

expression deduced by Kubo [7]: 
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where e is the charge of an electron, / 2h π=  is the reduced Planck’s constant, 

( ) / 1( ) ( 1)Bk T
df e ε με − −= +  is the Fermi-Dirac distribution, and Bk  is the Boltzmann constant. 

The first term in Eq. (2.1) is due to intraband contributions and the second term is due to 

interband contributions. 

For an isolated graphene sheet, the chemical potential, μ , is determined by the carrier density 

sn , 

2 2 0

2 [ ( ) ( 2 )]s d d
F

n f f d
v

ε ε ε μ ε
π

∞
= − +∫ ,                                      (2.2) 

where Fv  is the Fermi velocity. Typical doping intensity of the heavy doped layer in 

epitaxial graphene is about 1013 cm-2 and the undoped layer (lightly doped layer) is about 

1010 cm-2 which corresponds to the Fermi level at about 350 meV and 12 meV above the 

Dirac point, respectively. The carrier density can be controlled by an application of a gated 

voltage and/or chemical doping.  

In the limit of the high carrier concentration, kv0<< (T, EF), the dynamic conductivity of 

graphene is given in summation form in ref.[6]. It consists of interband and intraband 

contributions, respectively: 
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Next, the summation notations of the inter- and intra-band conductivity are simplified to to 

analytic formulae or integral forms that can be easily simulated. 

2.1.1 Intraband Complex Dynamic Conductivity 

The intraband part of the complex dynamic conductivity is:  
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where, 

( 1)l
klE Vk= − ,                                                          (2.5) 

2 2( , ),x y x yk k k k k k= = + , , ,x yα β = , V is the Fermi velocity, l = 1 for a hole and l = 2 for an 

electron, ( )klf E  is the Fermi distribution function. Plugging these into equations (2.4) and 

(2.5), and approximating the summation 
k
Σ  by integration:
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4( ) {2 log[1 exp ] 1}
16 ( 0)

intra s v B e

B e

e g g k Ti
i k Tαβ

μ μσ ω
π ω μ

= + −
+

.                       (2.6) 

Here μ is the Fermi level. The factors gs and gv are due to spin and valley degeneracy, 

respectively, and are both 2. While μ->0, 

2
int 8( ) ln 2

16 ( 0)
ra s v B eie g g k T

iαβσ ω
ω π

=
+

,                                          (2.7) 

This coincides with the formula given in reference [6], 
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Another simple case is when Te->0, 

2 4( )
16 ( 0)

intra s ve g g i
iαβ

μσ ω
π ω

=
+

,                                              (2.8) 

2.1.2 Interband Complex Dynamic Conductivity 

The summation form of the interband contribution is also given in [6]: 

2
'

, ' ' '

( ) ( ) 1 ˆ ˆ( ) | | ' ' | |
( 0)

inter kl kl

k l l kl kl kl kl

f E f Eie kl v kl kl v kl
S E E i E Eαβ α βσ ω

ω≠

−
= × < >< >

− − + −∑ ,       (2.9) 

v̂ Vα ασ=  is the velocity operator, where ασ is the Pauli matrix. The wavefunctions follow 

the following forms as described in the previous chapter and in reference [11]: 
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/ 2

/ 2

/ 2
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θ
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−

−

⎛ ⎞
= ⎜ ⎟

−⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,                                                      (2.10) 

arctan( / )k x yk kθ = ,                                                      (2.11) 

Plugging this into (2.9) and approximating the summation by an integration, when the Fermi 

level is not 0, we get: 

2

int
1 1( ) [ ]/ 2 / 216 1 exp 1 exp

s v
er

B e B e

e g gReal

k T k T

σ ω μ ω μ= −
+ −+ − +

,                    (2.12) 
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16

exp exp
1 2 ( 0)[ ( ) log }]
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B e B e

B e

B e B e

e g gIm

E E
k T k T E iPI dEE E k T E i
k T k T

σ
π

μ μ
ω

μ μ ω

∞

= −

− +
−

+ +
+

− + − ++ + −
∫

,   （2.13） 

When μ->0, the real part can be expressed in an analytic form: 
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2

int
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B e B e

e g gReal

k T k T

σ ω ω= −
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,                          (2.14) 
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exp exp
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−
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∫
,     (2.15) 

When Te->0, equation (2.13) can be simplified to be: 

2 2

int
1 2(| | 2) ( ) log | |)

16 16 2
s v s v

er
e g g e g giσ θ

π
Ω +

= Ω − + −
Ω −

,                          (2.16) 

where ω
μ

Ω = . Equation (2.16) coincides with the result given in reference [6] for this 

special case.  

2.1.3 Low Frequency Limit of Dynamic Conductivity 

The results in the previous section apply in the high frequency limit which only includes the 

infrared experiments in this dissertation. The dynamic conductivity of graphene in the low 

frequency limit is needed to understand the low energy photon probe experiment, specifically 

the THz probe experiment. In this situation, the intraband part of the dynamic conductivity 

starts to contribute significantly to the signal compared to the high frequency limit since 

phonons, defects and other scattering mechanisms can provide enough momentum to assist 

this transition at low transition energy. The specific form of the dynamic conductivity in this 

limit is beyond the scope of this dissertation and will not be discussed [3]. 



 27

2.2 Transfer Matrix of Ultrathin Layer with Dynamic Conductivity σ 

A transfer matrix defines the relationship between the dynamic conductivity and the optical 

absorption and reflection properties of the material in question. It builds upon the fact that, 

according to Maxwell’s equations, there are simple continuity conditions for the electric field 

across boundaries from one medium to the next. If the field is known at the beginning of a 

layer, the field at the end of the layer can be derived from a simple matrix operation. In this 

section, we start from the Maxwell’s equations and boundary conditions and derive the 

transfer matrix of an ultrathin layer with dynamic conductivity σ . Since graphene is a 

fundamentally two-dimensional material with only one atomic layer, an ultrathin conducting 

layer is a perfect model for a graphene sheet in all the cases considered in this dissertation. 

2.2.1 Transfer Matrix of Normal Incidence 

I consider the simple case with normal incidence first, assuming Ei
+, Ei

- are the incident and 

reflected fields, respectively, and Ej
+, Ej

- are the transmitted and reflected fields in the 

forward and backward directions. Hi
+, Hi

-, Hj
+, Hj

- are the corresponding magnetic fields 

defined similarly. Consider the following boundary conditions:  

Transverse E continuity:  

i i j jE E E E+ − + −+ = + ,                                                     (2.17) 

Transverse H field boundary condition: 

( )i j i iH H E Eσ + −+ = + ,                                                   (2.18) 

Now, given the dependence of H on E it follows that 

( ) /

( ) /
i i i i

j j j j

H E E

H E E

η

η

+ −

+ −

= −

= −
,                                                      (2.19) 
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where i
i

i

μη
ε

=  is the dielectric impedance. These results can be written succinctly in the 

form of a transfer matrix as 

1 1
2 2 2 2 2 2

1 1
2 2 2 2 2 2

i i i i

j j ji

ji i i ii

j j

EE
EE

η η σ η η σ
η η

η η σ η η σ
η η

++

−−

⎡ ⎤+ + − +⎢ ⎥ ⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− − + −⎢ ⎥
⎢ ⎥⎣ ⎦

,                                     (2.20) 

This result, derived from simple boundary conditions, coincides with that derived from the 

Dyadic Green function method in Ref [5].  

2.2.2 Transfer Matrix with Oblique Incidence Angle 

Now let’s consider the case where the incident field has angle θ with respect to normal 

incidence. Just as before, we assume Ei
+, Ei

- are the incident and reflected fields, respectively, 

and Ej
+, Ej

- are the transmitted and reflected fields in the forward and backward directions. 

Hi
+, Hi

-, Hj
+, Hj

- are the magnetic fields defined in the same manner as the electric fields. 

From the boundary condition requiring continuity of the transverse E field we get  

i i j jE E E E+ − + −+ = + ,                                                     (2.21) 

Similarly, the transverse H field boundary condition gives: 

( )sin ( )sin 0i i i j j jH H H Hθ θ+ − + −+ − + = ,                                      (2.22) 

and the normal H field boundary condition gives: 

( ) cos ( )cos ( )i i i j j j i i j jH H H H E E E Eθ θ σ+ − + − + − + −− − − = + + + ,                     (2.23) 

As before the relationship between the H fields and E fields is needed: 

, , ,/i j i j i jH E η± ±= ,                                                         (2.24) 

where, again, ,
i

i j
i

μη
ε

=  is the dielectric impedance. 
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Solving equations (2.21-2.24), I find the transfer matrix to be: 

cos cos1 1 1 1 1 1
2 2 cos 2 cos 2 2 cos 2 cos

cos cos1 1 1 1 1 1
2 2 cos 2 cos 2 2 cos 2 cos

i j i ji i

i j i i j i ji

ji j i ji i i

i j i i j i

EE
EE

η θ η θση ση
θ η θ θ η θ

η θ η θση ση
θ η θ θ η θ

++

−−

⎡ ⎤
− − − +⎢ ⎥ ⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥+ + + −

⎢ ⎥⎣ ⎦

，               (2.25) 

 

Figure 2.1: Schematic Diagram for an Oblique Angle of Incidence. 

The relationship between iθ  and jθ  is determined from Equations (2.22) and (2.21) to be: 

sin sini i j jη θ η θ= ,                                                      (2.26) 

which is simply Snell’s law. It’s fairly straightforward to verify that equation (2.25) is 

compatible with equation (2.20) when 0iθ = . 

2.3 Transfer Matrix Method 

The beauty of the transfer matrix method is that a stack of layers can be represented as a 

system matrix and this matrix is simply the product of the individual layer matrices. To see 

this assume N stacked graphene layers on a SiC substrate with one doped layer on the bottom 

and N-1 undoped layers on top. Denote the transfer matrix of the ith layer as Mi. Also note 

that since the distance between two layers is ~3 Å, which is << λ, the identity matrix is a 
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good approximation for each propagation matrix. After all this the transfer matrix of the 

whole epitaxial graphene sample M is simply: 

N
ii

A B
M M

C D
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

Π ,                                                  (2.27) 

ji

ji

EA BE
EC DE

++

−−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
,                                                   (2.28) 

The system matrix simplifies further since there is no backwards propagating transmitted 

electric field, so 0jE− = . 

We can derive the transmission coefficient T and reflection coefficient R from the system 

transfer matrix to be: 

2 2
2 1j

i

E
T t

E A

+

+= = = ,                                                    (2.29) 

2 2
2 i

i

E CR r
E A

−

+= = = ,                                                    (2.30) 

The absorption coefficient is simply A=1-R-T if scattering from the surface can be neglected. 

Thus we can get the transmission, reflection and absorption coefficients directly from the 

transfer matrix calculation. 
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Chapter III 

Time-Resolved Differential Transmission Spectroscopy 

3.1 Differential Transmission Spectroscopy 

Ultrafast optical spectroscopy provides insights into carrier dynamics with femtosecond 

temporal resolution. In order to understand the ultrafast dynamics in epitaxial graphene, 

time-resolved differential transmission (DT) spectroscopy is used in this dissertation. The 

DT measurement is a pump-probe technique. Pump pulse comes in to excite the carriers 

from their equilibrium distribution; the excitation is probed by a relatively weaker pulse 

with a variable time delay. The time delay is typically achieved by mechanically 

changing the optical path. The resolution is limited by the duration of the pulses instead 

of the time delay stage which is tens of femtosecond in this dissertation. The delay time 

measurement window ranges from picosecond to nanosecond depending on the travel 

range of the mechanical stage.  

DT spectroscopy measures the induced transmission change by the pump pulse. The DT 

signal normalized by the transmission T can be expressed as: 

0

0

0 , , ,0 ,0

0 , , ,0 ,0

exp{ [1 ( ) 1 ( )]} 1

[( ) ( )]

p

e p h p e h

e p h p e h

T TDT
T T

l f f f f

l f f f f

α

α

−
=

= ⋅ − + − + + −

≈ ⋅ + − +

                                                      (3.1) 
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where 0α is the absorption coefficient and proportional to the product of the interband 

transition probability and the joint density of states of the conduction and valence bands. 

The subscripts p and 0 denote quantities with and without pump pulse respectively. Since 

typical DT/T results are on the order of 10−4, the approximation in the last step of 

equation (3.1) is valid. DT/T is a direct measurement of the population change in the 

conduction and valence bands.  

3.2 Laser Systems 

The central tools for a time-resolved pump-probe experiment are the sources of ultrafast 

laser pulses. Pulse durations on the order of 100fs contribute temporal resolution in time-

resolved experiments. Moreover, the corresponding high peak power allows for the great 

tunability from visible to the mid-infrared spectrum through nonlinear processes. In our 

measurement of carrier dynamics in graphene, near IR to mid-IR pulses are needed to 

probe the carriers around the Fermi levels of different doped layers of epitaxial graphene. 

Ultrafast laser pulses of such varied wavelengths can be obtained through one master 

source: a Ti: Sapphire regenerative amplified system. Supercontinuum generation is used 

to produce a broadband source and optical parametric processes are implemented to 

achieve wavelength conversion. 

3.2.1 Ti: Sapphire Oscillator 

The schematic diagram of our oscillator is shown in Fig. 3.1. There is an independent 

pumping mechanism of a 5W continuous-wave, frequency-doubled Nd: YVO4 laser at 

532nm. The oscillator produces 60fs, 5nJ pulses at a repetition rate of 76 MHz and 

average power of 400mW at 800nm center wavelength. The cavity is a standard 

astigmatically-compensated Z-cavity. Although the center wavelength of the output laser 
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beam can be tuned by tilting the birefringent filter at the end of the cavity, it is usually set 

at 800 nm with a typical spectral bandwidth larger than 25 nm. The gain spectrum of the 

Ti: Sapphire crystal ranges from 770 nm to 875 nm, however the tuning range of our 

oscillator is limited by the bandwidth of the mirrors rather than the gain spectrum of the 

Ti: Sapphire crystal. Anti-parallel equilateral DF-10 prisms are used to compensate the 

accumulating intra-cavity dispersion. The laser is mode-locked due to the Kerr-lens 

mode-locking which is induced by a combination of the third-order process of self-

focusing and spatial beam-loss modulation by the hard aperture of the end slit. 

 

Figure 3.1: Ti: Sapphire Oscillator. Figure taken from ref. [1]. 

3.2.2 Ti: Sapphire Regenative Amplifier 

The nJ pulse from the oscillator is amplified in the regenerative amplifier system using 

chirped pulse amplification (CPA) to get enough power to pump the IR-OPA after it [2]. 

The ultrashort pulse from the oscillator is first stretched, using a multi-pass holographic 

grating pair, by a factor of 500 to 10,000 in the time domain before the amplification so 

that the peak intensities is low enough to be safely amplified to high energy levels 

without any nonlinearities and material breakdown. The stretched nanosecond pulse is 

injected into the amplifier cavity; it is then amplified and ejected out of the cavity. It is 
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compressed to its original pulse width using another grating pair with dispersion opposite 

to that of the stretcher. The schematic diagram of a regenerative amplifier system is 

shown in Fig. 3.2 [3]. The amplifier has the same standard Z-cavity design as the 

oscillator. Q-switching in the system sets the target repetition rate at 250 kHz, which is 

limited by the Ti: Sapphire ~3 μs lifetime. While the Q-switch is closed the system 

cannot achieve lasing because of the low Q of the cavity and a population inversion 

develops in the Ti:Sapphire crystal. When the Q-switch is open, a stretched pulse from 

the oscillator is injected by a short RF-driven pulse through the acousto-optic Bragg cell 

cavity dumper. While the pulses are circulating in the cavity they are amplified by a 

factor of a few hundred until they saturate the available Ti: Sapphire gain. The repetition 

rate can be lowered to 100 kHz to achieve higher energy per pulse. Injected pulses 

typically make twenty five to twenty-eight round trips. After saturating the gain, the 

stretched pulse is ejected out of the cavity by the same Bragg cell in the cavity dumper. 

After passing through the Faraday isolator which isolates the back-reflection light from 

the oscillator, the ejected pulse is recompressed to 80 fs 5 μJ pulses at 250 kHz.  

 

Figure 3.2: Ti: Sapphire Regenerative Amplifier. Figure taken from ref. [1]. 
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3.2.3 White Light Super-Continuum Generation 

Ultrashort optical pulses can be used to generate a white light super-continuum to extend 

the spectral tunability. White light super-continuum is used in our OPA system as a seed 

pulse for the nonlinear parametric amplification of infrared pulses. White light generation 

has previously been observed with a 530 nm picosecond pulse in glass [4]. In general, it 

is possible to generate optical pulses with a very broad spectral range by the interaction 

of materials with intense ultrashort light pulses. So far it has been observed in many 

different material systems: glass [4], solids [5], liquid [6], and gases [7].  

Self-phase modulation with self-steepening is considered as the main physical 

mechanism behind the white light generation process [8-10]. The generated spectrum has 

an asymmetric profile with a cut-off on the short-wavelength side and a decaying tail 

towards the longer wavelengths. A Ti:Sapphire laser can generate a supercontinuum 

ranging from 400 nm to 1500 nm. We generated white light super-continuum in a 2 mm 

thick sapphire disk with a 5 cm plano-convex lens. It is crucial to obtain a stable white 

light continuum with minimal intensity fluctuations. The generated white light usually 

shows a round-shape filament with center-positioned bright white light and can be seen 

by projecting the supercontinuum onto a white card. The generated continuum is 

collimated with an achromatic doublet lens at a point where the nonlinear effects and the 

diffracted beam are balanced. A stable white light continuum is obtained when the input 

pulse power is increased until a red ring pattern appears around the uniform white light 

disk. If the input power is over this threshold, an iris before the lens is needed to control 

the beam size otherwise the nonlinear process generates multiple white light filaments 

and it reduces the stability of the generated supercontinuum.  
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3.2.4 Optical Parametric Amplifier 

The 80 fs, 5μJ pulse produced by the Ti: Sapphire regenerative amplified system is used 

to pump an infrared optical parametric amplifier (OPA) to generate wavelengths between 

1.1 μm -2.5 μm. The schematic of the OPA is shown in Fig. 3.3; 80 fs 800 nm pulse from 

the RegA are splitted into two arms: one arm (25%) is used to generate the white light 

supercontinuum as described above and is reflected with protected silver mirrors before 

focusing onto a Beta-Barium Borate (BBO) crystal, while the other arm (75%) the 

polarization is rotated by 90° to provide the pump for the amplification process. The 

pump is put on a translation stage to compensate the group velocity mismatch and the 

walk-off between the white light seed and 800 nm pulse. The two pulses are recombined 

through a dichroic mirror and focused onto the type-II BBO crystal cut at µ =32° [11]. 

The nonlinear parametric amplification process is achieved through the 2nd order 

nonlinearity of the BBO crystal. In this double pass configuration, the first pass weakly 

saturates the amplifier's gain while the second pass extracts ~10% of the pump energy. In 

order to match the peak gain between the first and second pass, each pass is kept in the 

same horizontal plane.  

 

Figure 3.3: OPA Schematic: 800 nm denoted by thick gray line; the seed and amplified 
beam by black line. Figure taken from ref. [1]. 
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3.2.4.1 Parametric Amplification 

Here we briefly describe the principle of parametric amplification following the 

description by Wu [1]. We assume that the material’s response is instantaneous. The 

nonlinear response is often described by the induced polarization P(t) as a power series of 

the oscillating electric field E(t): 

(1) (2) (3)

0[ ( ) ( ) ( ) ( ) ( ) ( ) ...]P E t E t E t E t E t E tε χ χ χ= + + +                                                   (3.4)    

where ( )iχ ’s are the ith order susceptibilities in tensor form. Consider two monochromatic 

plane waves in the material:  

(2),( ) (2) [( ) ( ) ]
0( , ) . .i j i j i ji k k z t

i jP z t D E E e c c
ω ω ω ωε χ
+ − + − += ⋅ +                                                       (3.5) 

where ω extends over all positive and negative frequencies and D is the degeneracy factor, 

D=1/4 if ωi=ωj or 1/2 if ωi≠ωj. The time-varying polarization field can act as the source 

term for new components of the electromagnetic field. For a new frequency component 

3E at ω3=ω1+ω2, the wave equation can be written as  

3 1 2

2 2
(2),( )2 (1)

3 3 02 2 2

1 (1 )E E P
c t t

ω ω ωχ μ = +∂ ∂
∇ − + = −

∂ ∂
                                                        (3.6) 

With  

3 3( )
3 3

i k z tE E e ω− −= , 

2 2
2 (1) 2

2 2(1 )i i
i i ik n

c c
ω ωχ= + =                                                                                                 (3.7) 

By carrying out the differentiation with the slowly varying envelope approximation and 

defining the new field variable Ai by  

i
i i

i

nA E
ω

=                                                                                                                       (3.8) 
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we get:  

3
1 2

i kzdA i A A e
dz

κ − Δ= − ⋅ ⋅                                                                                                      (3.9) 

1
3 2

i kzdA i A A e
dz

κ ∗ Δ= − ⋅ ⋅                                                                                                      (3.10) 

2
3 1

i kzdA i A A e
dz

κ ∗ Δ= − ⋅ ⋅                                                                                                     (3.11) 

where  

 (2)1 2 3

1 2 3

1
c n n n

ωω ωκ χ= ⋅                                                                                                      (3.12) 

1 2 3k k k kΔ = + −                                                                                                              (3.13) 

The field amplitudes of the three frequencies are coupled via the 2nd order nonlinear 

process. Optical parametric amplification in our system can be described with the 800nm 

pump pulse as A3, the white light seed pulse as A1 and no input field at ω2 initially. Fig. 

3.6 shows a schematic drawing of the parametric process. The coupled equations can be 

solved in a simple way in the non-depleted-pump approximation where the energy loss in 

the pump wave is negligible (dA3/dz=0). With A2(0)=0, we can obtain  

1
2

1 1
1( ) (0)[cosh sinh ]
2 2

i kz kA z e A bz i bz
b

Δ Δ
= +                                                                   (3.14) 

1
2

2 1( ) (0)sinh
2

i kz gA z e i A bz
b

− Δ
=                                                                                      (3.15) 

where  

32 (0)g Aκ=                                                                                                                   (3.16) 

2 2( )b g k= − Δ                                                                                                             (3.17) 

Under phase matching conditions (Δk=0), the oscillatory behavior disappears and both 
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waves experience monotonic growth which increases asymptotically as exp(gz) (until the 

non-depletion assumption breaks down). The “signal” wave at ω1 is amplified by the 

nonlinear mixing process and an idler wave at ω2=ω3-ω1 is generated by the process. In 

other words, the 800nm photon is “split” into the signal and idler photons when both 

energy and momentum (phase matching) conservation are met. 

The phase matching is achieved by changing the BBO orientation, i.e. the angle between 

the propagation direction and the crystal axis. BBO is a negative uniaxial crystal where 

the light polarized along the optical axis experiences a smaller refractive index ne than 

light polarized along some other axis. The type-II phase matching requires  

3 1 2k k k= +                                                                                                                      (3.18) 

,3 3 0,1 1 ,2 2e en n nω ω ω= +                                                                                                     (3.19) 

 

Figure 3.4: OPA Phase Matching Angle. Figure taken from ref.[12]. 

And the ne’s depend on the angle θ between the optical axis and k 

2 2

2 22
, , 0,

1 sin cos
( )e i e i in n n

θ θ
θ

= +                                                                                                 (3.20) 
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where ,e in  is the principle value of the extraordinary refractive index. In the OPA setup, 

the 800nm and the idler wave are polarized in the vertical plane containing the optical 

axis while the signal is polarized in the horizontal plane. For amplification of different 

frequency bands in the white light seed, angle θ is adjusted to satisfy the above 

constraints. Fig 3.5 shows the phase match angle for the type-II BBO crystal calculated 

from the Sellmeier equation given by Kato [11]: 

2 2
0 2

0.018782.7359 0.01354
0.01822

n λ
λ

= + −
−

                                                                      (3.21) 

2 2
2

0.012442.3753 0.01516
0.01667en λ

λ
= + −

−
                                                                      (3.22) 

where λ is the wavelength in μm. 

 

Figure 3.5: Parametric Amplification: (a) typically no input field applied at ω2. Net 
energy flows from the pump field into the two lower frequency fields. (b) Photon energy. 
Figure taken from ref.[1]. 

3.2. Infrared OPA system 

The OPA incorporates a double-pass configuration with the layout shown in Fig. 3.3. 

Two mechanical translation stages are used to compensate for the group delay mismatch 

and walk-off between the 800nm pump and signal pulse for each pass. After the first 

amplification the idler pulse is removed using a polarizing beam splitter so that only the 

signal and OPA pump pulse participate in the second pass. Removing the idler from the 
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second pass prevents the interferometric nonlinear mixing between the phase-sensitive 

idler and OPA pump [13]. This significantly reduces the output noise and time-

delay/alignment sensitivity, especially for long wavelength operation when the signal and 

idler pulses have similar wavelength close to the degeneracy at 1.6 μm. The total power 

generated is around 150mW over most of the tuning range. In daily operation, we see a 

reduction in power below 1.2μm due to the strong group velocity mismatch while above 

1.6μm the power is limited by the decaying energy tail of the white light generation at 

long wavelength. 

 

Figure 3.6: OPA Signal Wavelength Characteristics. Figure taken from ref.[12].  

3.2.5 Differential Frequency Generator 

In the second stage of wavelength conversion, the signal and idler of the OPA are used to 

pump the difference frequency generator (DFG) shown in Fig. 3.7. The pulses are 

separated with a dichroic mirror, which reflects the signal and transmits the idler. A delay 

stage is placed in the idler arm to compensate group delay mismatch and walk-off 

between the two pulses. The OPA signal and idler pulses are focused onto a type-I 

AgGaS2 crystal for difference frequency generation [14, 15]. The principle behind the 



 43

difference frequency generation is the same as the parametric amplification described in 

the previous section. The difference is that, for the DFG, the OPA signal pulse is now the 

higher frequency and is represented as A3 in Eq. (3.9) to (3.11). A1 now represents the 

OPA idler pulse and the generated pulse is at the difference frequency ω2=ω3-ω1. The 

type-I phase matching is given by 

,3 3 0,1 1 0,2 2en n nω ω ω= +                                                                                                     (3.23) 

The Sellmeier equations are provided by Fan [16]: 

2
0 2 2

2.3982 2.16403.3970
1 0.09311/ 1 950.0 /

n
λ λ

= + +
− −

                                                               (3.24) 

2
0 2 2

1.9533 2.33913.5873
1 0.11066 / 1 1030.7 /

n
λ λ

= + +
− −

                                                             (3.25) 

 

Figure 3.7: DFG Schematics. Figure taken from ref. [12]. 

where λ is the wavelength in μm. Fig. 3.8 shows the calculated phase matching angle for 

for the DFG with respect to the OPA signal wavelength. For the measurements reported 

in this thesis, the DFG is tuned from 2.7 to 7 μm for different excitation. Fig. 3.9 shows a 

tuning record of the OPA and DFG with respect to the AgGaS2 crystal orientation 

(inferred by the stage position reading). The mid-IR pulse was re-collimated with a gold-

coated 90°-turning off-axis parabola. The pulse width of the mid-IR pulse is measured by 
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cross correlating with a 100 fs 800 nm gating pulse in a KTA (KTiOAsO4) crystal. As 

shown in Fig. 3.10, when tuned to 5 μm, the cross correlation has a width of 220 fs. The 

average DFG power typically falls within 3 to 6mW, decreasing exponentially over 7 μm. 

A different AgGaS2 crystal is used for wavelengths beyond 5 μm to get power over 2 mW. 

 

Figure 3.8: DFG Phase Matching Angle. Figure taken from ref. [12].  

           

Figure 3.9: DFG Wavelength Characteristics. Figure taken from ref.[12]. 



 45

 

Figure 3.10: DFG Tuning Characteristics. (a) Tuning of DFG wavelength by crystal 
orientation (inferred by stage position). (b) A typical cross-correlation trace for DFG 
temporal characteristics. Figure taken from ref. [12]. 

3.3 Experiment Setup for Ultrafast Pump Probe Spectroscopy 

3.3.1Ultrafast Non-degenerate Pump Probe Spectroscopy 

 

Figure 3.11: Non-degenerate Experiment Setup. Experimental setup for the time-resolved 
nondegenerate pump probe experiment with 800nm pump and OPA probe.  

Femtosecond time-resolved nondegenerate pump-probe DT spectroscopy results in this 

thesis typically relied on 800 nm pump pulses. Occasionally other wavelengths from 
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either the white light generation module or the OPA are used as the pump to detect some 

dynamics. For those experiments a 10 nm bandwidth filter is used to narrow the pump 

bandwidth. The experiment scheme using the OPA probe is shown in figure 3.11 and is 

very similar to the one using the DFG. A 100-fs 250-kHz amplified Ti: Sapphire laser 

centered at 800 nm is used to pump the infrared OPA described above in Sec. 3.2 with 

signal wavelength tunable from 1.1 to 1.6 μm and idler wavelength tunable from 1.6-2.6 

μm. Both the idler and the signal pulses have been used as the probe in some of these 

experiments with pulse width estimated to be less than 150 fs. For some other 

experiments, the signal and idler from the OPA are used to pump the DFG to generate 2.6 

μm-7 μm probe wavelengths with pulse widths measured to be around 220 fs. The 

dispersion-compensated residual 800-nm beam after the OPA is used as the pump. The 

pump and probe beams are usually co-linearly polarized unless specifically noted and 

focused to about 80-μm and 40-μm diameter spots respectively on the sample. The probe 

beam after the sample is filtered in a monochrometer with 3-nm resolution and detected 

by a photo detector and lock-in amplifier referenced to the 4.2-kHz mechanically 

chopped pump. Depending on the probe wavelength, different photo detectors must be 

used. An InGaAs detector is used for the OPA probe while nitrogen cooled HgCdTe and 

InSb detectors are used for the DFG probes. The temperature of the sample is stabilized 

in a helium-flow cryostat with a feedback-heater controller over a range 10-300K. For 

some experiments, an additional beam path with a He-Ne laser is used. The beam from 

the He-Ne laser is focused through a pinhole on the sample holder and detected by a Si 

detector to register any sample position movement due to temperature change or some 

other factors during the experiment.  
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3.3.2Ultrafast Degenerate Pump Probe Spectroscopy 

 

Figure 3.11: Degenerate Experiment Setup. Experimental setup for the time-resolved 
degenerate pump probe experiment with OPA idler or signal as pump and probe. 

The experiment setup for ultrafast degenerate pump probe spectroscopy is identical to the 

ultrafast non-degenerate pump probe spectroscopy except that the pump and probe 

wavelengths are the same. The degenerate pump probe setup is shown in figure 5.12, 

since single chopping is used and the monochrometer can not filter the pump wavelength 

in this case, the pump beam causes a huge background noise floor in the experiment. 

Although an aperture is used to block the transmitted pump beam right after the sample, 

surface roughness causes some of the pump beam to be scattered in the direction of the 

probe and detector. To reduce this scattered pump noise we cross polarize the pump and 

probe in our setup. A periscope is used to rotate the probe beam polarization by 90 

degrees and a linear polarizer is inserted before the monochrometer to eliminate the 

scattered pump while letting the probe beam through. In this way, good signal to noise 

ratios can be obtained. A double chopping scheme is another way to get rid of the pump 

noise floor. It has been tried in this experiment to significantly reduced the signal level.  
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Chapter IV 

Ultrafast Spectroscopy on Epitaxial Graphene 

The transport of massless Dirac Fermions in graphene is a subject of intense interest at 

present due to graphene’s unusual electronic properties and the potential for carbon-based 

electronic devices [1-5]. In steady-state transport measurements, the transport is controlled 

by the electrons near the Fermi level. Transport in high-speed devices, however, is 

determined by the dynamic conductivity of hot carriers. With the application of high electric 

fields, carrier gain energy at a rate much faster then that for carriers to lose energy to the 

lattice, creating a non-equilibrium carrier population which subsequently comes to an internal 

thermal equilibrium among the carriers themselves through carrier-carrier scattering. These 

carriers (called hot electrons) have a higher temperature Te then the lattice temperature TL, 

will then relax towards a thermal equilibrium with the lattice by losing energy to the lattice. 

As transport properties at high fields are determined by these hot carriers, a quantitative 

understanding of the hot carrier dynamics is a crucial issue affecting the performance 

characteristics of ultrafast, high-field devices. Also the investigation of hot carrier effects, 

plays a central role in the science of semiconductors and provides a key link between 

fundamental physics and high speed devices [6]. In this chapter I describe a series of 

experiments applying ultrafast pump-probe spectroscopy to investigate the dynamics of hot 

Dirac Fermions, electron-phonon coupling, carrier-carrier scattering, interlayer thermal 
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coupling, hot phonon effect, doping profile, screening length and a new electromagnetic 

mode seen in epitaxial graphene. Most of the experimental results in this chapter have been 

modeled using the idea of a temperature-dependent dynamic conductivity including both the 

interband and intraband contributions. At the end I will also describe my effort in probing the 

new TE mode in graphene using pump probe spectroscopy. 

4.1 Ultrafast Relaxation of Hot Dirac Fermions   

Our approach to the study of hot Dirac Fermion relaxation is to utilize ultrafast pump probe 

spectroscopy. The ultrafast pump-probe experiment setup is described in Chapter 3. 

4.1.1 Experimental Setup   

In most experiments in this section, the dispersion-compensated residual 800-nm beam after 

the OPA is used as the pump and the 1.1 to 2.6 μm signal and idle from the OPA is used as 

the probe. The probe pulse width is estimated to be less than 150 fs. The pump and probe 

beams are colinearly polarized and focused to 80-μm and 40-μm diameter spots on the 

sample respectively. The temperature of the sample is stabilized in a He flow cryostat with a 

feedback-heater controller over a range of 10-300K. The sample number used in this 

experiment is #598 grown by Prof. Walt De Heer’s group in Georgia Institute of Technology, 

which is an ultrathin epitaxial graphene film produced on the C-terminated (000 1 ) face of 

single-crystal 4H-SiC by thermal desorption of Si. The details of the growth processes and 

characterizations of surface quality using low energy electron diffraction (LEED), and 

scanning tunneling microscopy (STM) have been discussed elsewhere [7]. Fig. 4.1 shows the 

structure of the sample: the first carbon layer (green) is covalently bonded to the 4H-SiC 

substrate and acts as a buffer layer; the following layer (red) exhibits the graphene electronic 

spectrum and is doped by charge transfer from SiC. From the measured Fermi level (see 
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below), the charge density is estimated to be 9x1012 electrons/cm2. The graphene layers (blue) 

above the doped layer are essentially neutral before we find the exact the doping profile 

afterwards [8, 9]. For the growth conditions employed, the number of neutral layers has been 

estimated to be in the range of 15-20. Steady-state transport measurements on similar 

samples give phase coherence lengths of 1.2 μm at 4 K and 500 nm at 58 K [2] (the doped 

layer dominates steady-state transport properties in those measurements).  

 

Figure 4.1: Sample Structure and Energy Dispersion Curve. Sample structure and energy 
dispersion curves of doped and undoped graphene layers. The sample has a buffer layer 
(green) on the SiC substrate and 1 heavily doped layer (red) followed by 20 undoped layers 
(blue) on top. The Fermi level is labeled with a dashed line (brown) lying at 348 meV (from 
the later data) above the Dirac point of the doped graphene layer or passing through the Dirac 
point of the undoped graphene layers. The blue solid line shows the transitions induced by 
the 800-nm optical pump pulse; the three dashed lines correspond to probe transitions at 
different energies with respect to the Fermi level (discussed in the text). 

As illustrated in Fig. 4.1, a 100-fs near-infrared (800-nm) optical pulse excites quasiparticles 

from the valence to the conduction band across the Dirac point; the optical response of a 

multilayer graphene structure containing both doped and undoped layers is measured via the 

differential transmission (DT) of a tunable probe pulse as a function of pump-probe delay. 
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The electrons have an initial energy of 428 meV above the Fermi level in the doped layers 

and 777 meV in the undoped layers. Due to rapid carrier-carrier scattering, a hot thermal 

distribution is established within the time resolution of the experiment. The thermal 

distribution then cools towards the lattice temperature, initially via the emission of high-

energy (194 meV and 330 meV) phonons [28] and later via the interaction with acoustic 

phonons. In these experiments, the elevated temperature of the quasiparticles is manifested 

primarily through the modification of the probe-beam absorption by Pauli blocking of 

interband transitions. 

4.1.2 Experimental Results  

Figure 4.2(a) shows DT spectra for a single position on the epitaxial graphene sample at 

various probe time delays, for a substrate temperature of 10 K and 500-μW pump power 

(corresponding to a photon fluence of 1.6 x 1014 photons/cm2 per pulse). The DT amplitude 

peaks near zero time delay for all probe wavelengths, consistent with the establishment of a 

hot thermal carrier distribution within the experimental time resolution. The DT amplitude 

then relaxes toward zero on a time scale of 15 ps. The most notable feature of the DT 

spectrum is that the DT signal flips from positive on the blue (high-energy) side of a probe 

wavelength of 1.78 μm to negative on the red (low-energy) side of 1.78 μm, and flips back 

from negative to positive again at 2.35 μm. Positive DT corresponds to pump-induced 

transmission of the probe; negative DT corresponds to pump-induced probe absorption. The 

two zero crossings thus divide the DT spectrum into 3 different regions, which we will 

consider in more detail below.  

Figures 4.2 (b) and (c) show DT time scans for selected probe wavelengths on both red and 

blue sides of the two zero crossings. Immediately following the pump pulse at time zero, the 
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DT signal is positive over the entire probe spectral range. The DT signal becomes negative 

within 2 ps if the probe wavelength falls between 1.78 μm and 2.35 μm, otherwise it remains 

positive until the signal decays away. The DT signal relaxes to zero on the time scale of 1-10 

ps depending on probe wavelength (discussed further below). Experiments at different 

locations on the sample reveal that the sample is somewhat inhomogeneous, with the upper 

(1.78μm) zero crossing varying between 1.75 to 1.95 μm and the lower crossing (2.35μm) of 

2.2 to 2.45 μm. The lack of the data in the two blank regions of Fig. 2(a) is due to limitations 

in tuning our OPA. 

Figure 4.2: DT Spectrum and Zero Crossings. (a) DT spectra on epitaxial graphene at 10 K, 
with 500 μW at 800-nm pump with less than 100-fs pulse width at probe delays of 10 ps, 5 ps, 
2 ps, 1 ps, 0.5 ps and background (50 ps before the pump arrives). The arrows at 1.78 μm and 
2.35 μm indicate where the DT signals flip sign. (b) DT time scan of the two probe 
wavelengths marked in part a at the red (1.85 μm) and blue side (1.75 μm) of the 1.78 μm DT 
crossing point. (c) Time scan of the two probe wavelengths marked in part a at the red (2.40 
μm) and blue side (2.25 μm) of the 2.35 μm DT crossing point. In all figures, the dashed line 
(brown) marks where the DT signal is zero. The DT tails in b and c are simply fitted by 
sigmoidal curve.   

In order to study the effect of lattice temperature on the carrier dynamics, we show in Fig. 4.3 

temperature-dependent DT time scans for selected probe wavelengths in the three different 
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spectral regions of Fig. 4.2. For spectral regions where the DT sign is positive (above the 

upper zero crossing, and below the lower zero crossing), the DT dynamics show little 

temperature dependence (Fig. 4.3 (b), (c)), apart from minor amplitude changes and slightly 

different relaxation times. When the probe wavelength falls between 1.78 μm and 2.35 μm, 

the DT signal is positive at early times and becomes negative within a few picoseconds. The 

amplitude of the negative DT component decreases with increasing temperature and almost 

disappears for temperatures above 180 K. The delay time at which the DT crosses zero 

increases monotonically with temperature (Figure 4.3 (a) inset). 

 
Figure 4.3: Temperature-dependent DT Spectra. (a) DT time scans at temperature 10K, 30K, 
50K, 77K, 130K and 180K with 500μW pump at 800nm and 2.25μm probe. The DT 
time scans were fit with a sigmoidal curve to show the behavior of the zero crossings more 
clearly. In the inset the DT zero-crossing points at different temperatures are marked with 
different colors. (b) DT time scans at temperatures of 10K, 77K and 287K with 1mW pump 
at 800nm and 1.57μm probe. c, DT time scans at temperatures of 77K and 290K with 1mW, 
800nm pump and 2.4μm probe. In all figures, the dashed line (brown) marks where DT 
signals are zero.  

4.1.3 Interpretation of the Results  

We now turn to the interpretation of the DT data and the origin of the zero-crossings. From 

the simplest point of view, the differential probe transmission spectrum simply arises from 
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the change in carrier occupation functions in the bands, since generally the probe absorption 

is proportional to fv 1− fc( )  where fv (fc) is the occupation probability in the valence 

(conduction) band. Following the excitation of quasiparticles high into the conduction band 

by the pump pulse, electron-electron scattering on a time scale short compared to 150 fs 

establishes a hot thermal distribution characterized by an electron temperature Te. Since the 

carrier occupation probability above the Fermi energy is increased (relative to the occupation 

without the pump pulse), the DT signal is positive due to reduced probe absorption. The 

probe DT is negative below the Fermi level, however, since heating of the electron plasma 

reduces the occupational probability for low energies. Thus the upper zero crossing at 1.78 

μm probe wavelength is interpreted as arising from smearing of the Fermi level in the doped 

layers, Assuming no bandgap [10] (or any possible bandgap to be less than the probe energy), 

we find the Fermi level to be 348 meV above the Dirac point for the doped layers. This result 

is close to the predicted Fermi level in the carbon-deficient geometry from first-principles 

calculations[11] and is consistent with the results of transport studies on epitaxial graphene 

grown on the C-terminated ( 000 1 ) face [2]. Scanning tunneling spectroscopy [12] and 

angle-resolved photoemission spectroscopy (ARPES) of epitaxial graphene grown on the Si-

terminated (0001) also find similar values for the Fermi level [13, 14]. We note additionally 

that there is no peak in the DT spectrum near the Fermi level; this indicates that there is no 

Fermi edge singularity [15] due to electron-hole interactions in the interband absorption 

spectrum of graphene, as may be expected from the massless nature of the quasiparticles. 

At very long probe wavelengths, i.e. for final states well below the Fermi level of the doped 

layers, one may expect the DT spectra to be determined primarily by the carrier occupations 

in the undoped layers; since the pump pulse generates hot carriers in the undoped layers, the 
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sign of the DT signal arising from the undoped layers should be positive for all wavelengths. 

However, for probe wavelengths below the Fermi level of the doped layer, the contribution of 

the doped layer to the DT is negative. Thus one expects that for some probe energy the net 

DT signal should flip sign; this is the origin of the lower zero crossing at 2.35 μm. 

A convenient approach to calculate the probe transmission and reflection spectra for a multi-

layer structure is the transfer-matrix method described in Chapter II. A transfer matrix relates 

the total field (incident plus reflected) electric field on one side of a reference plane to the 

opposite side. For a 2D layer with complex conductivity, the transfer matrix may be written 

as, 
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where Ei and Ej are electric fields on incident and transmitted sides, respectively, the 

superscripts + and – refer to forward and backward directions, ηi and ηj are dielectric 

impedances of the incident and transmitted sides, respectively (defined in terms of the 

background dielectric permittivity εi and permeability μi by /i i iη μ ε= ). 

In general, there are two contributions to the dynamic conductivity (or dielectric constant) of 

a thin layer as shown in Chapter II; that due to interband transitions, and a component due to 

intraband transitions. Although we shall see below that the DT spectra are dominated by the 

real part of the interband conductivity, for completeness we include the full conductivities 

(ignoring scattering) from recent theoretical work as following [16]: 
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where f(E) is the Fermi distribution function, f’ is /f E∂ ∂ , kB is the Boltzmann constant, μ is 

the Fermi energy and gs=2, gv=2 are the spin and valley degeneracies [17]. Although we 

know from Mid-IR DT spectrum later that there are multiple doped layers in the sample, for 

the simulations here, we still calculate the transmission spectrum of the multilayer structure 

of Fig. 4.1, with transfer matrices for 20 undoped graphene layers (Fermi level at the Dirac 

point) and 1 doped layer with a Fermi level of 350 meV. This model is close enough to 

explain the main feature of the experiment data at this spectrum range, since the contribution 

from other doped layers at this energy range doesn’t give significant contribution to the main 

feature as we will see later.  The matrices are multiplied together to give the total 

transmission of the probe beam through the multilayer epitaxial graphene structure; the 

contribution from the buffer layer is ignored, and a dielectric constant of 9.66 is used for 4H-

SiC substrate. 

The calculated transmission spectrum is shown in Fig. 4.4 for various electron temperatures, 

where for simplicity we have assumed the temperature to be the same for all layers (in reality 

Te may differ for the doped and undoped layers). At low temperature (10K), the transmission 

spectrum shows an absorption edge at   =ω = 2μd (where dμ  is the Fermi level relative to the 

Dirac point in the doped layer) as one would expect from the simple picture of interband 

absorption discussed previously. As the temperature increases, the absorption edge due to the 

doped layers broadens due to smearing of the carrier distribution around the Fermi level, and 

the undoped layers contribute a broad peak at low energy.  
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Figure 4.4: DT Signal Simulation. (a) Simulated transmission curves at different electron 
temperatures. In the inset, the transmission curves at low electron temperatures are shown 
expanded for frequencies around the two DT zero-crossings. (b) Simulated DT/T curves at 
different electron temperatures with lattice temperature at 10K. In the inset, the DT/T curves 
for low electron temperatures are expanded in the vicinity of the two DT crossing points. 
Both figures share the same legend. 

In order to compare simulations with experiments directly, we show in Fig. 4(b) the 

calculated DT spectrum for an initial electron temperature of 10 K (i.e. the DT spectrum is 

the transmission spectrum for an elevated electron temperature minus the transmission 

spectrum for 10 K). The DT spectra show the upper and lower zero crossings at energies 

(   =ω = 2μd and   =ω ≈1.5μd respectively) close to those observed in the experiment. 

Immediately following the pump pulse, the initial hot electron temperature is higher than 

1200 K for our experimental excitation intensity; from the simulation this implies a positive 

DT signal over the entire spectral range, exactly as observed.  

The simulation indicates that the DT spectra should show a sharp slope around the upper 

(  =ω = 2μd ) zero crossing, whereas the experimental DT spectra show a rather shallow slope.  

This could occur if the substrate temperature is slightly elevated above the cold finger 

temperature. Alternatively, this may be a consequence of sample inhomogeneity: the 40-μm 

probe spot is relatively large compared to the coherence length of the graphene layers, which 

evidently has a significant variation of the Fermi level with positions. Similar indications of 
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inhomogeneity have been found in transport measurements, indicating a transport phase 

coherence length in excess of 1 μm2 and in recent measurements of the spatial variation of 

the local carrier density [18]. DT spectra and time scans were also taken at various positions 

on the sample over several square millimeters of area, revealing the effects of inhomogeneity 

on a large domain. The effect of the varying Fermi level on the DT time scans is shown in 

Fig. 4.5. Shifts of the DT zero crossings with position showed that the Fermi energy varies 

by as much as 35 meV across this sample surface. 

 

Figure 4.5: Sample Inhomogeneity. DT time scans taken on different positions of the sample. 
(a) and (b) The upper zero crossing shifts at two different positions of the sample. (c) and (d) 
Shifts of the other lower zero crossing points at two different positions of the sample. All the 
data are taken at 10K, with 500uW at 800nm pump. The dashed lines (wine) marks where the 
DT signals are zero. All the DT tails are simply fitted by sigmoidal curve. 

Close examination of Fig. 4.4 shows that when the probe energy is between the two zero DT 

crossings (inset, Fig. 4.4(b)), the transmission curve (inset, Fig. 4.4(a)) does not relax 
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monotonically with decreasing electron temperature; it decreases to a minimum around 400 

K and then turns back and increases with decreasing temperature. Thus we can interpret the 

dynamics of the DT signal when probe beam is tuned just below the Fermi level. The 

electron temperature following the pump pulse is in excess of 720K and the DT signal is 

positive; as the carriers lose energy due to electron-phonon interactions, the DT amplitude 

decreases and becomes zero for an electron temperature of approximately 700 K. The DT 

signal is then negative and reaches its maximum negative amplitude for an electron 

temperature of 400 K. With further cooling, the DT amplitude approaches zero. The time 

delay at which the DT flips sign should be expected from the model to increase with the 

lattice temperature, which is exactly observed in the experiment (inset of Fig. 3(a)). 

Additionally, the amplitude of the negative component in DT signal decreases quickly with 

increasing lattice temperature, and almost disappears at 180 K in the experiment.  

In contrast, when the probe wavelength is either above the upper or below the lower zero 

crossing, the transmission decreases monotonically with the electron temperature, and the DT 

decay curves are only weakly dependent on lattice temperature, as is apparent in Figs. 4.3(b) 

and 4.3(c). 

Additional simulations performed by excluding various contributions to the total conductivity 

reveal that the dominant contribution is the real part of the interband conductivity. Recent 

theoretical work has predicted that the imaginary part of the interband contribution to the 

conductivity is negative, leading to a novel TE mode propagating in the plane of the 

graphene layer in the frequency range of 1.667 2μ ω μ< <= (i.e. between the zero-crossings 

of the total imaginary part of the conductivity). This mode is unique in graphene and does not 

exist in conventional 2D electron systems such as GaAs/AlGaAs quantum-well structures 
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[16]. We note however that the lower zero crossing observed in our experiment has a 

different origin, since our probe beam is normally incident on the sample and does not couple 

to the plasmon mode, we find that including the imaginary intraband conductivity only 

results in a shift of the lower zero crossing (less than 5%), and this contribution to the 

conductivity cannot be isolated in our normal-incidence DT experiment. Our DT spectra are 

well described by interband transitions, the single-particle density of states for linear 

dispersion, and no electron-hole interaction. 

 

Figure 4.6: DT Crossing Points Shift with the Number of Undoped Layers. (a) Transmission 
spectrum with no undoped layers. (b) Transmission spectrum with 1 undoped layer. (c) 
Transmission spectrum with 20 undoped layer. (d) Transmission spectrum with 100 undoped 
layer. All the figures share the same legend. 

Simulations also show that the DT spectrum depends, in detail, on the multi-layer structure of 

the epitaxial graphene. This is shown in Fig. 4.6: if only the doped layer is included, and the 

undoped layers are ignored, we find the 2.35-μm (lower) zero crossing disappears. When a 
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single undoped layer is added to the simulation, zero crossing appears at around μd; this zero 

crossing shifts quickly from 1.1 μd to 1.5 μd as the number of undoped layers is increased 

from 1 to 20, and slowly afterwards to 1.6 μd; for 100 layers. Thus, our DT experiment 

provides a strong corroborating evidence for the epitaxial graphene structure determined 

using other methods [8, 9, 19, 20]; our best fit to the data is obtained for one conducting layer 

and 20 undoped layers. 

We note that our calculations of the DT spectra assume that the quasiparticle plasma can be 

described by a thermal distribution characterized by a single electron temperature Te in all 

layers; this corresponds to an assumption of a relatively fast electron-electron scattering 

process. The 100-fs, 800-nm pump pulse excites electrons from the valence band to 428 meV 

above the Fermi level in the conducting layer and 777 meV above the Fermi level (Dirac 

point) in the undoped layers. Within the time resolution of the experiment, the electron 

distribution appears to be thermal in the experimental DT spectra. From the time delay of 

zero crossing DT point at 10 K, we find that the hot electron temperature relaxes to around Te 

= 420 K (36 meV) on the time scale of 1.7 ps by emitting two or three 197 meV [21] optical 

G phonons or one to two 330 meV D phonons [21]. The relaxation afterwards is mainly due 

to the relatively slow acoustic phonon scattering process.  

The dynamics of the DT amplitudes [Figs. 2(b, c) and 3] do not give the hot carrier cooling 

directly. To determine the electron temperature Te as a function of time it is necessary to use 

the simulation results to calculate the DT amplitude at a given probe wavelength for each 

value of the temperature. This will be discussed in a separate section later. 

4.2 Doping Profile and Screening Length 
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One of the key questions to be addressed for the development of epitaxial graphene devices 

is: what is the actual doping profile of the layers? A determination of the exact doping 

profiles and interlayer screening effect of stacked graphene layers is desired to understand the 

electric field effect for future multilayer epitaxial graphene based nanoelectronic device. The 

dielectric screening of two-dimensional electron gases has been of interest to fundamental 

physics since the 1970s [22-25]. Accumulating pieces of evidence indicate that epitaxial 

graphene behaves as multilayered graphene (as opposed to graphite) [19, 26], where the layer 

closest to the substrate is highly doped and the electron density drops rapidly for subsequent 

layers. The doping of the first few layers in epitaxial graphene is caused by a built-in electric 

field at the SiC-graphene interface [7, 11]. Strong covalent bonds exist between the substrate 

and the first layer and since charges can be transferred from SiC to the graphene layers 

(depending on the interfacial geometry) this results in a net doping of these layers. This 

charge transfer process doesn’t rely on the doping of the SiC substrate. It originates from the 

SiC and graphene interface only [14]. Theoretical calculation in absence of interlayer 

hopping in a stack of 2D electron gases was considered back to 1971[22]. Interlayer hopping 

modifies the picture significantly, and this is considered with a simple theoretic model of 

finite stacks of graphene planes with interlayer electronic hybridization described by a 

nearest-neighbor hopping term. The interlayer hopping enhances Friedel-like oscillations in 

the charge distribution and lead to the changes in the sign of the charge in the neighboring 

layers and thus the screening length is determined to be 2-3 graphene layers superimposed to 

significant charge oscillations [27]. To be closer to epitaxial graphene, the rotationally 

stacked layers under an external field are considered in the context of graphene bilayers only 

[28, 29]. A more realistic model with rotationally stacked multiple graphene layers on an 
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interfacial carbon buffer layer covalently bonded to a SiC substrate is expected on the 

theoretical side to address this problem. Experimentally, electronic transport measurements 

are primarily sensitive to the highly conducting layer [30], while Landau level spectroscopy 

is mainly sensitive to the nearly-neutral layers on the top [9, 31]. Angle resolved 

photoemission spectroscopy (ARPES) is used to study the doping level of the very top layer 

of thin Si-face grown samples with 1-4 layers respectively [32]. In another work, a 

configuration of field-effect transistor with top and bottom gate electrodes was used to 

measure the change in resistance of various exfoliated graphite-film thicknesses as a function 

of the voltages applied to the two gates. The results theoretically fit the screening length to be 

1.2±0.2 nm which is away from the theoretical prediction [33]. A direct measurement of the 

doping profiles of different layers in a single epitaxial graphene sample is not available so far 

due to experimental limitations.  

4.2.1 Experimental Setup 

In the previous section we show that ultrafast infrared probe spectroscopy provides an 

accurate determination of the Fermi level in the highest conducting layer [18]. In this work, 

we extended the spectral range of the probe to longer wavelengths so that we could 

determine the doping density in each of the first three monolayers of a multilayer sample, and 

therefore obtain a quantitative measurement of the interlayer screening length.  

The principle of the experiment is to excite electrons high into the conduction band by an 

800-nm pump; electron-electron scattering on a time scale short compared to the 150 fs pulse 

width establishes a hot thermal distribution, followed by acoustic-phonon-mediated carrier 

cooling. Since the carrier occupation probability above (below) the Fermi energy is increased 

(decreased) by the pump, the differential transmission (DT) signal of probe transition above 
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(below) the Fermi level is positive (negative). Thus, after the initial carrier cooling, the DT 

signal crosses zero at a photon energy corresponding to twice the Fermi level for each doped 

layer. By determining the positions of the zero crossings we thus determine the Fermi levels 

present in the sample. The Fermi levels are sufficiently different (i.e. the screening length is 

short) that the layers can be well separated spectrally. 

The sample used in this experiment, #7J8 from Georgia Tech, is different from sample #598 

referred to in the previous section since the later was irretrievably damaged in an accident. 

#7J8 is also an ultrathin epitaxial graphene film produced on the C-terminated face of single-

crystal 4H-SiC by thermal desorption of Si. The structure of the sample is shown in Fig. 

4.7(c); it consists of 63 layers with multiple doped and undoped graphene layers. The 

experimental setup is similar to those described in Chapter 3 and previous sections, except 

that a DFG is used to generate mid-IR probe wavelengths after the OPA. The pump and 

probe beams are collinearly polarized and focused onto the sample to ~80 μm and 40μm 

diameter spots in the case of the OPA probes or ~150 μm and ~80 μm spots with the DFG 

probes. The probe beam after the sample is filtered in a monochromator and detected by 

either an InGaAs photodetector or liquid nitrogen cooled HgCdTe or InSb photo detector and 

a lock-in amplifier referenced to the 4.2-kHz mechanically chopped pump. Since the negative 

DT tails are washed out at room temperature as shown in Fig. 4.3, the sample is mounted in 

Helium flown cooled cryostat and all the experimental results shown in this paper are 

performed at 10 K. 

A broad range of probe wavelengths from 1.2 μm to 7 μm was scanned except in the gap 

between 2.5-2.7 μm and another gap between 5.8-6.7 μm (and beyond 7μm). This first was 

due to the laser tunability gap between the far end of the OPA idler and the near end of the 
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DFG. The longer wavelength gap was due to multi-photon absorption by the SiC substrate 

[19]. The DT signal from the SiC substrate contributes to the time-zero signals (within the 

pulse width only) and is typically two orders of magnitude smaller than the graphene DT 

signal. Different pump powers were used over a different range of probe wavelengths to get 

good signal to noise ratios – the determined Fermi level position is insensitive to pump power.  

4.2.2 Experimental Results 

Between 1.4 μm and 2.0 μm, this sample shows a very similar behavior to sample #598. As 

shown in Fig. 4.1(b), immediately following the pump pulse, the DT signal is positive over 

the entire probe spectral range. The electron temperature is above 1000 K right after the 

pump excitation and fast initial thermalization process for any pump power used in this 

experiment. Depending on the probe wavelength, the DT signal becomes negative within 

several ps if the probe transition falls right below the Fermi level, otherwise it remains 

positive until the signal decays away. The top plot of Fig. 4.7 (b) shows the DT tails flip sign 

between 1.7 μm and 1.75 μm which indicates a Fermi level of 355 meV-365 meV above the 

Dirac point for the most heavily doped layer. However, the DT tails don’t flip back to 

positive value at 2.35 μm as happened in the previous sample; the second plot in Fig. 4.7(b) 

shows that the positive DT tails recover around 2.7 μm and flip back to negative values at 3.0 

μm which indicates a Fermi level of 207-222 meV above the Dirac point. Since 

inhomogeneous broadening for the most heavily doped layer of this sample was measured to 

be less than 10%, this crossing point is due to another doped graphene layer. The third DT 

tail crossing is between 4.38 μm and 4.45 μm as shown in the third plot in Fig. 4.7(b), which 

corresponds to 139 meV -142 meV above the Dirac point. The exact position of the fourth 

zero crossing is not clear as shown in the bottom plot of Fig. 4.7(b). Due to the SiC 
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absorption between 5.8 μm and 6.76 μm and beyond 7 μm, differential reflection will have to 

be used to investigate this energy range in the future. However from the trend of the 

relaxation of negative DT tails as shown in Fig. 4.7(b), the fourth zero crossing is estimated 

to be a little bit over 6.9 μm. 
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Figure 4.7: Sample Structure and DT Crossings. (a) Schematic diagram of sample structure, 
energy dispersion and Fermi levels of the graphene layers. The sample has several highly 
doped layers (red) near the SiC substrate, followed by multiple undoped layers (green) on top. 
The energy dispersion near the Dirac point of each layer is schematically shown. The Fermi 
level is labeled with a dashed line (black). Blue solid lines show the transitions induced by an 
800-nm optical pump pulse; the red lines correspond to probe transitions at different energies 
around the DT/T zero crossings (discussed in the text).  (b) Time scans of different probe 
wavelengths around four DT zero crossings. In the insets the DT/T relaxation tails are shown 
expanded around zero DT/T. The dash line (brown) marks where the DT/T is zero. The 
800nm pump powers are 1mW, 9mW, 9mW and 1 mW from top to bottom respectively.  
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4.2.3 Interpretation of the Results  

Figure 4.8(a) shows the calculated DT spectra with an initial electron temperature of 10 K 

using the same dynamic conductivity simulation as in the previous section. In this simulation 

I included four highly doped layers with doping densities identical to those measured in the 

experiment. However, there are two significant discrepancies between this simulation and the 

experimental results: first, the slope of the DT curve around the Fermi crossing is not as 

sharp as the one measured in the experiment; second, the DT tails stay negative over most of 

the scanning spectra range except the in the narrow range close to the DT crossing.  

 

Figure 4.8: DT Signal Simulation. (a) Simulated DT/T curves at different electron 
temperatures with lattice temperature at 10K with no inhomogeneous broadening. (b) 
Simulated DT/T curves at different electron temperatures with lattice temperature at 50K 
with no inhomogeneous broadening. (c) Simulated DT/T curves at different electron 
temperature with lattice temperature at 10K with a 10% inhomogeneous broadening of the 
Fermi level. All the figures share the same legend.  
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Possible reasons for these discrepancies could include an elevated lattice temperature and 

inhomogeneous broadening due to sample nonuniformity. The elevated lattice temperature is 

an experimental artifact due to the temperature gradient between the temperature sensor and 

the graphene sample. Fig. 4.8(b) shows the DT spectrum simulation with an initial electron 

temperature of 50K. From the simulation, the positive DT signal at low electron temperature 

decreases significantly, and the DT curve slope at crossing points get smoother when 

simulated at elevated lattice temperature. The interfacial geometry and charge impurity 

fluctuation causes the inhomogeneity of the doping profiles in graphene layers. A typical 

intrinsic disorder length scale is measured to be 30 nm in exfoliated graphene [34], which is 

far less than the extent of my probe spots. Since DT experiments over different points on this 

sample show fluctuations of the DT crossing points of the most heavily doped layer to be less 

than 10%, in Fig. 4.8(c) DT spectrum with initial electron temperature of 10 K, but including 

an inhomogeneous broadening of the Fermi level of 10% of each layer. Numerically, this is 

done by convoluting with a Gaussian distribution function is simulated. We can see that 

adding both effects brings the simulation closer to the experimental observation. However, 

the DT signs still flip at the Fermi level transitional energy. 

Figure 4.9(a) shows a fitting of the Fermi level with a simple decay curve; the best fit 

indicates the doping intensity decays by a factor of 0.38 in each layer. Assuming this decay 

rate, it takes about 8-9 layers to decay to the “undoped” carrier density of 1.5*1010 cm-2 as 

measured in a recent Landau level spectroscopy experiment [9, 31]. This decay rate 

corresponds to a screening length of 3.41 Å or converted to single graphene layer which 

matches the 2-3 layers screening length predicted from the theoretical work considering an 

external field on finite stacks of graphene planes [27]. and theoretical calculations for 
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graphite intercalation compounds give similar screening lengths of 3.8 – 5 Å [23, 24].  

ARPES measurement [32] gives a shorter screening length of 1.4 -1.9 Å on a Si face 6H-SiC 

sample. However Si-face grown epitaxial graphene has an interface and structure very 

different from C-face grown samples [35]. In addition, the measurements are done on the top 

face for samples of different thicknesses instead of different layers on a single sample.  

 

Figure 4.9: Screening Length Fitting. The limit of the error bar is determined from the probe 
wavelength before and after the DT tails crossing with a clear positive or negative DT sign. 
For the uncertainty of the fourth doped layer, we set the low energy limit of the error bar at 
7.5μm which is far beyond the scanning range for confidence. The solid curve is the fit with 
linear decay 1 1 1* *exp( /n n

n sN N r N l l−= = − ) , where 1 12 29.56*10N cm−=  is the Fermi level 
of the first doped layer, r=0.379562 is the decay of the doping intensity by each layer, ln is 
the distance between the nth layer and the first doped graphene layer and ls=3.41 Å is the 
screening length which is about one graphene layer.  

In conclusion, I have spectrally resolved the precise doping profile of heavily doped layers 

and determined the screening length to be 1 layer in carbon-face grown epitaxial graphene 

using ultrafast pump-probe spectroscopy. The measured DT spectrum feature can be well 

explained by a dynamic conductivity simulation when the in-plane disorder and elevated 

lattice temperature effect are incorporated.  

4.3 Interlayer Thermal Coupling of Hot Electrons 
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The distance between adjacent graphene layers is measured to be 3.368 A in carbon-face 

epitaxial graphene which is between the value of bulk graphite and turbostratic graphite. This 

large spacing suggests a relatively weak coupling between layers. X-ray diffraction reveals a 

significant density of stacking faults which eliminate the effect of AB stacking order that can 

destroy the graphene electronic characteristics. Experimentally, the charge carriers in 

epitaxial graphene are found to be chiral and the band structure is clearly related to the Dirac 

cone[1, 2, 9, 13], thus the epitaxial graphene appears to consist of stacked, non-interacting 

graphene sheets, and this is the model we have used for simulation in previous sections. The 

doped layer is believed to contribute to the electric transport in the magneto transport 

measurement [2]. However the role of the multiple undoped layers in electric transport is 

largely unexplored [20]. The understanding of existence and dynamics of coupling between 

the carriers in doped and undoped layers is an important issue for high-field transport in 

epitaxial graphene and epitaxial graphene based optoelectronic and plasmonics. 

4.3.1 Experimental Setup 

The sample used here is still #7J8. Its most heavily doped layer is characterized to be 355- 

365 meV above the Dirac points from the previous section. To study the interlayer thermal 

coupling, instead of using an 800-nm pump to excite hot carriers in all the layers, here we 

excite the hot carriers in the undoped layers using 1.9-μm (1.8-μm) pump pulse. This 

corresponds to the transition below the Fermi level of the most heavily doped layers (the 

inhomogeneity is measured to be about 15 meV in this layer on this sample). So carriers in 

the first doped layers aren’t excited by the pump pulse directly due to Pauli blocking. 

Electrons in all the other layers can be excited.  A weak probe pulse with degenerate 

wavelength of 1.32 μm (1.4μm) at various time delay respective to the pump pulses is used to 
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probe right below or high above (110 meV or 68meV) the Fermi level of the most heavily 

doped layer. 

 

Figure 4.10 Sample Structure, Energy Dispersion Curve and Experimental Scheme. The 
sample has a buffer layer (green) on the SiC substrate followed by several heavily doped 
layer (red) and many undoped layers (blue) on top. The Fermi level is labeled with a dashed 
line (brown) lying at 360 meV (from the later data) above the Dirac point of the most heavily 
doped graphene layer and passing through the Dirac point of the undoped graphene layers. 
On the left,we also plot of filling of the electrons of other well characterized doped layers. 
The blue solid lines show transitions induced by the 1900-nm optical pump pulse where the 
dashed lines correspond to the transitions of the probe. 

Since hot carriers in the undoped layers are below the probe photon energy, it can only 

contribute to the positive DT signal. The negative DT signal, if it is observed, comes from 

the Fermi level smearing in the most heavily doped layers. The beam is then moved onto a 

GaAs sample afterward with all the same experimental conditions, since the two photon 

energy is barely above the bandgap of GaAs, the resulting two photon DT signal on GaAs is 

considered as a cross correlation of the pump and probe pulses. It is also used as a reference 

for time-zero to determine the rising time of the DT signal on expitaxial graphene to obtain 

coupling strength between doped and undoped layers at the initial stage. 

The degenerate pump-probe setup is described in Chapter 3: a 100-fs 250-kHz amplified Ti: 

Sapphire laser at 800 nm pumps an infrared optical parametric amplifier (OPA) with signal 
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wavelength tunable from 1.1 to 1.6 μm and idler wavelength tunable from 1.6-2.6 μm. The 

idler goes through a 1.9-μm (1.8-μm) filter (with 10 nm bandwidth) and is used as a pump 

beam. The signal goes though a 1.32-μm (1.4-μm) filter (with 10 nm bandwidth) and is used 

as a probe beam. The pulse widths of both pump and probe beams are estimated to be around 

250 fs after broadening of the polarized beam splitter and other optics. The beams are 

collinearly polarized and focused to about 50-μm and 100-μm diameter spots sizes in 

diameter on the sample, respectively. The probe beam, after the sample is detected by an 

InGaAs photodetector and lock-in amplifier referenced to the 4.2-kHz mechanically chopped 

pump. The sample temperature is controlled over a range of 10-300 K.  

4.3.2 Experimental Results  

Figure 4.11 shows a DT scan on a graphene sample with 1.9-μm degenerate pump-probe at 

10K: the DT signal goes to negative in 2 ps after the pump excitation. Since the signal from 

other doped or undoped layers only contribute to a positive signal, this negative DT signal 

can only come from the Fermi level smearing due to hot carriers in the most heavily doped 

layer. The excitation of the hot carriers in this layer doesn’t come from direct pump 

excitation and there must be interlayer thermal coupling going on to transfer heat to the most 

heavily doped layer to excite the hot carriers. 

To understand the interlayer coupling mechanism, the beam is moved on to a GaAs sample 

afterward to determine the in-situ time-zero. Since the two-photon energy at 1.8 μm  for the 

degenerate pump-probe, is below GaAs band-gap; 1.9 μm /1.32 μm and 1.8 μm/1.4 μm 

pump-probes are used instead. The two photon DT signal on GaAs is considered as the cross-

correlation of the pump and probe pulses, which has intermediate response time. This can be 
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used as a time-zero reference to determine the rise time of the DT signal on expitaxial 

graphene to acquire coupling time between layers at the initial stage. 

 

Figure 4.11, Degenerate Pump-probe DT Time Scan. DT time scan with 0.6-mW 1.8-μm 
pump and 1.8-μm probe at 10 K.  

Figure 4.12 (a) and (c) show the rise time of the DT signal on the sample and the full DT 

scans at different temperatures are shown in (b) and (d).  Since the signal on the GaAs is two 

-photon absorption which follows the cross-correlation of the pump-probe pulses. However, 

the DT on the epitaxial graphene follows the integration of the pump-probe cross-correlation 

instead. From the Fig. 4.12 (d), we see the DT signal on graphene sample generally follows 

the integration of the cross correlation signal on GaAs which means the coupling time is 

almost instantaneous. 
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Figure 4.12: Rise Time of the Interlayer Thermal Coupling (a) DT time scans on epitaxial 
graphene and GaAs with 400μW pump at 1.9 μm and 1.32 μm probe. (b) The full DT time 
scan on epitaxial graphene at different temperatures with 1.9 μm pump and 1.32 μm probe. (c) 
DT time scans on epitaxial graphene and GaAs with 500μW pump at 1.8 μm and 1.4 μm 
probe. (d) Integration of GaAs cross-correlation signal with 1.9 μm pump and 1.32 μm probe. 
The dash line marks where the DT singal is zero in all figures.  

4.3.3 Interlayer Thermal Coupling Mechanism 

This experiment, to our knowledge, is the first direct experimental observation of heat 

transfer between hot carriers of different graphene layers. There are many possible coupling 

mechanisms account for this effect. Heat transfer between graphene layers can be due to 

phonon-phonon coupling between layers. The hot electrons in each layer can transfer their 

heat to the in-plane phonons and they can couple to each other and then transfer the heat back 

to heat the electrons. The hot phonon effect is still under investigation and is discussed later 

in this chapter. However, from the electron-phonon coupling time measured from previous 

section, this mechanism doesn’t match the instantaneous coupling time observed in the 
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experiment. So, the direct coupling between the electron states of the doped and undoped 

layers is more likely the main mechanism that contributes to the instantaneous coupling 

process. Although stacked graphene layers are electronically decoupled in a perfectly 

rotationally stacked structure, defects in one layer can introduce scattering within the layer 

and coupling to electron states in the other layers. The speed of this process is comparable to 

the electron-electron scattering rate [20]. Remote polar phonon scattering due to the SiC 

substrate can be another possible medium. However this effect is considered to be ineffective 

due to weak polarizability of the substrate and  relatively high phonon frequencies associated 

to hard Si-C bonds [36]. Also, all the phonon related processes need a relative longer 

coupling time to transfer the heat. 

In conclusion, we have observed the coupling of the hot carriers between different layers in 

epitaxial graphene. A direct coupling between electronic states due to defects is considered to 

account for most interlayer heat transfer mechanisms shown in the experimental results. 

However, theoretical work is expected to fit the experimental data to explain the detailed 

mechanism accounted for this effect. 

4.4 Polarization Dependence  

The pump-probe beam polarizations are changed to various combinations of circularly and 

linear polarized light to study possible dynamics of excited spin polarized carriers in epitaxial 

graphene. However, within the time resolution of this experiment, we observe no polarization 

anisotropy. 

4.4.1Experimental Setup 

For polarization-dependent measurements, a probe beam (idler of OPA) and 800nm pump go 

through a half or quarter waveplate respectively to get right/left circularly polarized light or 
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switching between crossed-linear and collinear beams. The beams are respectively focused to 

40-μm and 80-μm diameter spot size in diameter on the sample. All the experiments are 

performed in a 10K environment. The probe wavelength is fixed at 1.8 μm due to the high 

cost of the waveplate. Different samples are probed so that wavelengths on each sample can 

be both right above and below the Fermi level of the most heavily doped layer. The pump 

and probe polarizations are switched between linear, right or left circularly polarized to get 

the polarization dependent results. The two samples used in this experiment are the same 

ones used in the experiment described in section 4.1 and 4.2  Both samples (#598 and #7J8) 

are ultrathin epitaxial graphene films produced on the C-terminated ( 0001 ) face of single-

crystal 4H-SiC by thermal desorption of Si.  

4.4.2 Experimental Results  

Figure 4.13 shows DT time scans at probe energy above the Fermi level of most heavily 

doped layer with 9 different polarization combinations at 10K. This is measured on the 

sample with 20 undoped layers. Time scans around time-zero peaks are zoomed in and 

shown in the Fig. 4.13(b).  From the experimental results, all time scans overlap with each 

other, and fluctuations between different polarization combinations are within the DT noise 

levels. This means no polarization anisotropy is observed in the DT measurement within the 

experimental time resolution. Similarly, Fig. 4.14 shows DT time scans at probe energy 

below the Fermi level with different polarization combinations on the sample with 62 

undoped layers. Now the probe wavelength corresponds to the transition below the Fermi 

level of the most heavily doped layer. The time scans also overlap with each other and show 

no polarization anisotropy within the DT noise level.  
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Figure 4.13: Polarization Dependence above the Fermi Level (a) Full DT/T time scans taken 
at 10K with linear, right and left circularly polarized 800nm pump and linear, right and left 
circularly polarized 1.8 μm probe respectively. The probe wavelength corresponds to the 
transition above the Fermi level of the doped layer on the studied sample position. The pump 
power is 1mW. The part in the rectangular is zoomed into Fig. 4.13 (b). Dashed line marks 
where the DT signal is zero. Both figures share the same legend. (b) Zoomed in time scans 
around time-zero peaks at different pump-probe polarization combinations.  

 

Figure 4.14: Polarization Dependence below the Fermi Level. (a) Full DT/T time scans taken 
at 10K with linear, right and left circularly polarized 800nm and 1.80um for pump probe 
beams. The probe wavelength corresponds to a transition below the Fermi level of the doped 
layer on the studied sample position that is different from the one used in Fig.4 2. The pump 
power is 1mW. The part in the rectangle is zoomed into Fig. (b). Dashed line marks where 
DT signal is zero. Both figures share the same figure legend. (b) Zoomed in time scans 
around the time-zero peaks at different pump-probe polarization combinations.  

4.4.3 Experiment Discussion  

Now we turn to the interpretation of the lack of polarization anisotropy observed in the 

experiment.  There is some spin polarization anisotropy when the pump beam is right or left 



 80

circularly polarized. However this anisotropy disappears after the fast electron-electron 

scattering occurs because the electron-electron scattering breaks the spin polarization. So a 

lack in polarization anisotropy observed in the experiment is simply due to the limit of the 

time resolution, and 150fs pulse width in this experiment sets an upper bound of the electron-

electron scattering time.   

This result also coincides with the rise time of the time-zero DT/T signal. If thermalization 

time of electron gas due to electron-electron scattering has occurred on a time scale long 

compared to the pump pulse, then DT signal shows a rise time longer than the integral of the 

pump-probe cross-correlation. However, this is not the case observed in the experiment; the 

rise time of the DT signal is about the same with the cross-correlation of the pump-probe 

from both Fig. 4.13(b) and Fig. 4.14(b), which means the electron-electron scattering time is 

below the time resolution of the experiment. 

In conclusion, we haven’t observed any polarization anisotropy within experimental time 

resolution, thus we set the upper limit of the electron-electron scattering time in epitaxial 

graphene through polarization-dependent ultrafast pump-probe DT measurements. The 

observed upper limit of electron-electron scattering time is below 150fs. A more accurate 

experiment to further resolve the carrier-carrier scattering dynamics involving higher time 

resolution is expected in the near future.  

4.5 Electron Cooling in Epitaxial Graphene 

So far, we have a relative clear picture of excited hot carriers cooling process in epitaxial 

graphene from the previous experimental results. After the pump excitation of hot electrons, 

the electrons reach a quasi equilibrium that can be characterized by a single electron 

temperature within the pulse width in each layer. Due to the fast interlayer coupling, different 
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layers can interact with each other and reach equilibrium between layers during the pulse 

width. The very hot electrons then interact with optical phonon modes to reach relative low 

temperature, say several hundred K, in ps time scale. The slow cooling after is mainly due to 

the interaction with acoustic phonon modes.  

Energy exchange between the electrons and their environment is a key issue in the design of 

electronic circuits. It is going to play a role in any future graphene-based electronics. Thus 

it’s very important to understand the electron cooling process in epitaxial graphene. As 

discussed in the previous section, DT amplitudes from our experimental can be correlated to 

the electron temperature through the electron temperature dependent dynamics conductivity. 

Thus it is possible to use the same simulation tools to fit the electron temperature cooling in 

epitaxial graphene. For this purpose, a suitable electron cooling model is needed. 

The known system that is closed to graphene is thin metal film. A two quasi-temperature 

model is used in reference [37] for copper film is described as follow: we assume two 

separate quasi equilibrium temperature ,e lT  for the electron and the lattice respectively, they 

follow the following coupling equations: 

2
0( ) ( ) ( , )e

e e e e l
TC T T G T T P r t
t

κ∂
= Δ − − +

∂
,                                                                              (4.4) 

( )l
l e l

TC G T T
t

∂
= −

∂
,                                                                                                                (4.5)  

where ,e lC  is the heat capacity of electron and lattice, G  is the electron-phonon coupling 

coefficient. The first term on the right side of equation (4.4) represents thermal-conductivity 

losses and this term is neglected in the simulation since thermal conductivity is thought to 

have negligible contribution at the time scales of interest. The second term represents 

electron-phonon coupling and G  is assumed to be constant in this model. The third term 
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represents the laser-heating source.  The essential of this model is to assume two separate 

quasi-equilibrium temperature for electron and lattice. The heat transfer as also assumed to 

be proportional to the temperature difference. However this model doesn’t fit the data very 

well, the electron temperature are more likely to decay with a stretched exponential 

exp − t τ( )1 h[ ] with a heterogeneity parameter h=3 than the exponential decay from this 

model. 

The dominant cooling mechanism is the energy transfer to phonon modes in nearly any solid 

state environment. Energy relaxation in a graphene sheet is dominated by transfer to the 

acoustic and optical phonon modes. The initial cooling of very hot electron plasmas has been 

discussed  by Butscher et al.[38]. The energy relaxation thereafter at relative low temperature 

are dominated by acoustic phonon modes which has been discussed by R. Bistritzer et al. 

[39]. In this section, we only focus on the fitting of this slow acoustic phonon cooling part 

from our pump probe spectroscopy data.  

According to the work of Bistritzer et al. [39], the two quasi-temperature model still applies, 

but the cooling rates are different in the neutral regime and the heavily doped regime. For 

neutral regime, the electron temperature follows the following equation: 

2 ( )t e e e LT T T Tγ∂ = − − ,                                            (4.6) 

where 3 2 2 11.18*10 ( * )D meV sγ −= ,where D is the deformation potential measured in eV, the 

value of D has been bounded by the transport measurement to be between 10 eV and 50 eV 

[40],  when e LT T� , Eq. (4.6) is solved to be: 
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with a characteristic time 0 2 2
0

424 s
D T

τ μ= . 

On the other hand, for heavily doped layers, the electron temperature follows: 

e L
t e d

e

T TT
T

γ −
∂ = − ,                     (4.8) 

where 2 3/ 20.133 / secd D n meV nγ = , with n  being measured in units of 12 210 cm− .  

So from the theory above, the cooling rate is different for the different layers with different 

doping intensity in epitaxial graphene. With the probe wavelength very close to the Fermi 

level of the most heavily doped layer, our DT signal is mainly from this most heavily doped 

layer below 400K, this is shown in Fig. 4.15. The simulation assumes a single electron 

temperature for all the layers. This is not true when the interlayer thermal coupling is not fast 

enough to balance the temperature between different layers. The answer to this question is 

unknown so far.  

 

Figure 4.15: The Role of Graphene Layers in Contribution to DT signal. DT/T signal 
simulation at different electron temperatures with probe wavelength at 1.88 μm, and lattice 
temperature of 10 K. We assume the doping profile the same as measured in Section 4.2. The 
black line simulation includes all 59 undoped layers and 4 doped layers. The blue line has 
only the most heavily doped layer and 59 undoped layers included. The red line, however, 
includes all 3 lightly doped layers, but not the most heavily doped layer. The black box 
region is zoomed into the inset.  
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The simulation of the electron temperature cooling is still in progress as this dissertation is 

being written. We hope to get more insight into the electron phonon cooling process by fitting 

our pump probe differential transmission spectroscopy and get the deformation potential D 

from the fitting.  

4.6 Pump Power Dependence-- Hot Photon Effect  

The electron-phonon coupling rate is of fundamental interests in device physics. Pump power 

dependent time-resolved ultrafast spectroscopy, has been demonstrated to be a powerful tool 

for this purpose. Back in early 90s, this method has been used to determine the electron-

phonon couplings in metals like copper [37]. By changing the optical pumping energy and 

using 2 two quasi-temperature models, we are able to extract the electron temperature and 

lattice temperatures at various time delays from the transfer matrix simulation, thus we can 

fit electron-phonon coupling rate from the experimental data. 

4.6.1 Experimental Setup 

For this experiment, the optical setup is almost the same as the one used in Sec. 4.1. But here, 

a tunable neutral density filter is added to change the pump power intensity.  Sample #598 is 

again used in this experiment. The characterization of the sample with 800 nm pump beam in 

Sec. 4.1 shows that the DT signal flips sign at 1.78 µm. This indicates that the Fermi level is 

between these two probe transitions and it is 350 meV above the Dirac point. Other crossing 

points are not measured on this sample and we assume the same screening factor with sample 

#7J8 in the simulation.  

4.6.2 Experimental Results 

Figure 4.16 (a) shows a DT time scan with different pump pulse energies.  The probe 

wavelength is 1.88 µm which is well below the Fermi level of a doped layer. Following the 
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transfer matrix method described in Chapter II, a typical simulated DT/T curve of similar 

situation is shown in Fig. 4.16. It has positive DT signal at the time zero after an excitation 

and thermalization of hot carriers; the initial electron temperature varies with different pump 

pulse energies and gives different DT peaks as shown in Fig. 4.17 (b). Then, the hot electrons  

cool down to a certain electron temperature value (755 K from the simulation) and start to 

give a negative DT signal as shown in Fig. 4.17 (c). From the transfer-matrix simulation with 

one heavily doped layer, a negative DT signal can reach its minimum at electron temperature 

of 375K at any excitation pulse energy so the minimum DT signal should be a constant. This 

is true for low pump excitation as shown in Fig. 4.17 (d): the curve is almost flat below 80 nJ. 

 

Figure 4.16: Simulated DT/T Time Scan Curve Through Transfer-matrix Method. An 
exponential decay of the electron temperature is assumed:  Te (t) = 10+1155*exp (-t/3ps). The 
electron temperature of the zero DT crossing and the minimum DT are labeled. The model 
used in this simulation is 17 undoped layers and 4 doped layers with the Fermi level of 
350meV above the Dirac point and the screening factors the same as measured in the 
previous experiment. 

However, this is not the case when the pump excitation gets higher. The minimum DT signal 

starts to drop after some limit. To see this more clearly, we decrease the pulse repetition rate 

to 62.5 kHz and further increase the pump excitation energy. A DT time scan and zoomed 

portion at minima are shown in Fig. 4.18 (a) and Fig. 4.18 (b). The pump power dependent of 

a minimum DT/T signal is shown in Fig 4.18 (c). The minimum DT/T decreases 
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monotonically with increasing pump power, this high-power effect is beyond the current 

transfer-matrix simulation and the mechanism is unexplored. 

 

Figure 4.17: Low Pump Power Dependence (a) Full DT/T time scan taken at 10K with 
800nm pump power of  8 nJ,12 nJ,16 nJ,28 nJ,36 nJ,40 nJ, 48 nJ,64 nJ and 80nJ. The probe 
wavelength is 1.88 µm which corresponds to the transition below the Fermi level of a doped 
layer. Boxed regions from plot (a) are zoomed into figures (b) and (c). (b) Zoomed in DT/T 
signal around the time-zero peaks (c) Zoomed in time scans around minimum DT/T signals. 
All three figures share the same figure legend. Dashed lines mark where the DT/T signal 
level is zero. (d) The pump power dependent of the minimum DT/T signal level. All the data 
in these figure is taken with 250 kHz repetition rate. 
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Figure 4.18: High Pump Power Dependence (a) Full DT/T time scans taken at 10K with 
800nm pump power of 40 nJ, 80 nJ, 160 nJ, 240 nJ and 320 nJ. The probe wavelength is 1.88 
µm which corresponds to a transition below the Fermi level of a doped layer. The part in a 
rectangle is zoomed and shown in Fig. (b). A dash line marks where the DT signal is zero (I 
can’t even see the dashed line). Both figures share the same legend. (b) Zoomed in time scans 
around DT/T minima at different pump powers. (c) Pump power dependence at a minimum 
DT/T signal level. All the data in figures is taken with 62.5 kHz repetition rate. 

4.6.3 Experimental Fitting at Low Pump Excitation 

At low pump excitation, constant minimum DT/T can be used as a good reference to 

normalize simulated DT/T with the experimental results, so that we can extract the exact 

electron temperature at various time delays from the simulation. To fit the electron-phonon 

coupling dynamics, we use the same two quasi-temperature models in reference [37] that is 

described in Sec. 4.5. The result is shown in Fig. 4.19. The simulation has been carried out 

prior to knowing the precise doping profile. Thus the one heavily doped layer has been used 

as a model for the simulation. From Fig. 4.15, we know that this simulation doesn’t actually 
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match the electron temperature when it is higher than 500K. So the result here related to high 

temperature behavior is not accurate. The updated results from this simulation are being 

generated as this dissertation is being written.  

 

Figure 4.19: Low Pump Power Dependentce Analysis (a) Peak electron temperature at different 800nm 
pump power excitations at lattice temperature of 10K. (b) The energy absorbed by the sample at different 
pump power excitations. (c) Lattice temperature when electrons temperature relaxes to 845K (star) and 
475K (rectangular) respectively. (d) The relaxation time from electron temperature of 845K to 475K at 
different lattice temperatures. All the results are extracted from the experimental data shown in Fig. 4.17. 

The electron heat capacity of doped and undoped graphene layers are deducted in Appendix 

A. For the lattice heat capacity, we use the value in reference [41]. The electron temperature 

of DT/T peaks at different pump energies as shown in Fig. 4.19 (a). From the electrons’ heat 

capacity, the heat absorbed by the sample at different excitation energies can be calculated. 

This is shown in Fig. 4.19 (b). Data points are fitted very well using a straight line whose 

slope is about 5% which corresponds to the pump absorption efficiency. This is much lower 
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than the well known 2.3% absorption coefficient of each layer, the reason for this huge 

discrepancy is due to the ignorance of the other doped layers. 

There are two special points in a DT/T time scan: they are zero cross points and minimum 

DT/T points which corresponds to electron temperatures of 845K and 475K ( this is different 

from Fig. 4.15, since 3 lightly doped layers are not included in this simulation) respectively. 

For different pump energies, the relaxation times from 845K to 475K are different which 

infers the hot phonon effect. Assuming an electron temperature relaxes through transferring 

heat to the lattices only, we can obtain lattice temperatures at 845 K and 475 K as shown in 

Fig. 4.19 (c). Due to a relatively much larger lattice heat capacity, the lattice temperature is 

almost constant during this relaxation process. Fig. 4.19 (d) shows that the relaxation from 

845 K to 475 K gets slower with increasing phonon temperature, which is an indication of 

hot phonon effect. 

In conclusion, electron and lattice temperatures at various time delays can be extracted from 

power-dependent data. The electron-phonon coupling slows down with increasing phonon 

temperature which indicates a hot phonon effect. 

4.7 Probing the New Electromagnetic Mode in Graphene 

Isotropic and uniform three-dimensional plasmas can support both longitudinal and 

transverse electromagnetic modes. However, in conventional 2D electron gas, only the 

longitudinal modes may exist under standard experimental conditions. This is due to the fact 

that the imaginary part of the conductivity is always positive in conventionals 2D electron 

gas system such as GaAs/AlGaAs quantum-well structures. This system can only support TM 

modes [42]. TE modes can propagate only when the imaginary part of conductivity is 

negative [43]. Due to an unique band structure of graphene, theoretical calculation by S. A. 
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Mikhailov and K. Ziegler [16] shows that in the frequency window of 1.667 2< Ω < ,where 

/ω μΩ = = , Im ( ) 0σ ω < , which means that TE modes can be supported in this frequency 

range. According to reference [16], at a finite electron temperature, a TE mode acquires a 

finite damping due to the real part of conductivity at a finite temperature, however, this 

damping is very small with high doping level. With electron temperature 0.1eT μ= , this 

effect is still very small. Considering an electron density of the most heavily doped layer in 

#598, the Fermi energy corresponds to 4000T K� , so that TE mode should be easily 

observable at room temperature. 

To couple a mid-infrared beam into the TE mode of graphene, special dispersion relationship  

have to be satisfied and this is given by the equation (8) in reference [16]: 

2
2 2 2( 2)

4 2 2
s vg g eQ In

c
Ω +Ω

−Ω = −
−Ω=

,                                                                                  (4.6) 

where Q is a normalized wavevector, /Q cq μ= = . Since the factor 
2e
c

α =
=

 is very small, the 

deviation of the wave vector from frequency Ω  is very small, which means that the TE mode 

propagates laterally with the velocity close to the velocity of light. Thus this dispersion curve 

is very closed to cqω ≤ . So if a prism is used to couple an evanescent wave into this mode, 

the coupling angle is slightly below the critical total reflection angle.  

The sample used in this experiment is #598; the Fermi level of the most heavily doped layer 

is measured to be 350 meV above the Dirac point. From the frequency windows, the TE 

mode support:1.667 2< Ω < , meaning the coupling wavelength needs to be between 1.77 μm  

and 2.1 μm.  

The experimental setup is shown in Fig. 4.20. It’s a pump-probe setup similar to the one used 

in the previous sections, except that a BK7 prism is used to couple a probe pulse to graphene. 
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The probe beam is s-polarized; its infrared spectrum is fixed in the frequency windows that 

support the TE-mode. The incident angle of the probe beam is tuned right below the critical 

total reflection angle in a BK7 prism as shown. An 800 nm pump pulse arrives before the 

probe pulse to change the electron temperature and thus the Fermi level in the sample, so that 

only after a certain time delay, the Fermi level and the electron temperature can satisfy the 

right condition to support a TE mode which is indicated as a reflection dip in a DR time scan 

due to the coupling of the probe pulse into the supported TE mode. The experiment is not 

successful due to either misalignment or the approximations made in the theory. Further 

improvement on the experiment setup or more detail theoretical work is needed in this 

direction. 

 

Figure 4.20 Experimental Setup for Probing TE Mode.  
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Chapter V 

Coherently Controlled Photocurrent in Epitaxial Graphene  

5.1 Introduction 

Usually optical beam can’t generate photocurrent, since the generated photo-carriers have 

equal probability in moving in all directions, thus cancelling each other and give no net 

current. However, by using two phase related beams, directional photocurrent can be 

generated and controlled by the relative phase between the two beams. This optical coherent 

control process can be understood in terms of interference between two or more optical fields 

coupled to the same initial and final states of a system as shown in Fig 5.1. Interference 

between transition amplitudes can occur because an electron in the lower level can reach the 

upper level via two pathways. By controlling the relative phase of the beams, the overall 

transition rate can be modified. In semiconductor, the quantum mechanical interference 

between pathways coupling the same initial valence state and final conduction state leads to 

an optically induced asymmetrical distribution of free carriers in momentum space. That’s 

the overall rate of interband transitions induced by simultaneous one and two photon. 

Excitation can be different for two states with anti-parallel wavevectors. The resulting 

anisotropic distribution of carriers in the conduction band creates a net current flow that can 

be controlled by adjusting the relative phase of the beams. This phenomenon can also be 

understood in terms of phase interference of the electron wave-function. Electrons are excited 
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by single- or two- photon transitions to states of different parity. These symmetric and 

antisymmetric wave-functions can in turn interfere constructively in one spatial direction and 

destructively in the other direction depending on the optical phase.  

  

Figure 5.1: Schematic Diagram of General Coherent Control. (a) Schematic diagram of 
electron eigenstates coupled by electric fields at frequencies ω and 2ω between two discrete 
energy levels. (b) Schematic band diagram of a bulk semiconductor with electrons excited 
into preferential states in momentum-space. The resulting distribution of carriers creates a net 
current flow. Figure is taken from Ref. [1]. 

Optical coherent control has been demonstrated in discrete energy level systems, such as 

atomic media [2], Xenon gas [3, 4], mercury [5] and atomic gases such as Krypton [6], 

Rubidium [7] and Barium [8] as early as 1960s. Later, this effect has been exploited in 

molecules with the intention of manipulating chemical reactions [9-15]. Coherent control 

effect in solids, especially in semiconductor has once been speculated as not observable in 

experiment due to the continuum of the available states in conduction and valance bands and 

the short electronic dephasing time associated with them.  Later it is shown by first principle 

theoretical calculations, that coherent control using interband transitions in bulk 

semiconductors can also yield controllable photocurrents even though both the initial and 

final states lie in the continuum [16]. Shortly thereafter optical coherent control has been 

shown to induce electrical currents in bulk GaAs [17], and later in quantum well materials 

[18] and carbon nanotubes [19]. These are three dimensional (3-D), two dimensional (2-D) 
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and one dimensional (1-D) semiconductors. Optical coherent control in indirect bandgap 

semiconductor like silicon has also been demonstrated experimentally recently using THz 

detection technique [20].   

Although coherent controlled photocurrent has been demonstrated in various materials, 

similar experiments in epitaxial graphene are still of great interest for the following reasons: 

first, due to its high symmetry of the graphene sheet, the direction of  injected current can be 

controlled by relative polarizations of the incident fields [21]; second, quantitative studies of 

the magnitude of the effect can be very useful as a probe of the scattering processes which 

control the dynamics of hot photoexcited carriers in these systems; third, this method 

provides means for current injection without electrical contacts.  

5.2 Tight Binding Calculation 

Calculation of the optical injection and coherent control in graphene through tight-binding 

approach has been done separately in collaboration with Julien Rioux et. al. [22] and E. J. 

Mele et al [21]. Here we summarize relevant theoretical results from Julien Rioux and John 

Sipe’s work. 

5.2.1 Current Injection Rate 

Assuming a simple-parameter effective Hamiltonian: 

0
0eff F

k
H v

k
−

+

⎛ ⎞
− > ⎜ ⎟

⎝ ⎠
,                                                                                                         (5.1) 

where x yk k ik± = ± . Fv  is the Fermi velocity, and a linear energy bands: ( ) FE v k= ±k . The 

carrier injection rate for one-photon absorption 1(2 )ξ ω  and two-photon absorption 2 ( )ξ ω in 

rate equation * *
1 1 2 2(2 )ab a bn E Eω ωξ ω=  and * *

2 2 ( )abcd a b c dn E E E Eω ω ω ωξ ω=  can be calculated following 

Fermi’s golden rule to be: 
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 4 2 5
2 ( ) 8 (2 )s v Fg g e vξ ω ω −= ,                                                                                                (5.3) 

where sg  and vg are spin and valley degeneracy.  

The one photon absorption process has no polarization dependence, however, the two photon 

absorption process does. Consider a general field 1 ˆ ˆ( ' ' )
2

iE E x y e δφ
ω ω= + , with the primed 

unit vector denoting any two perpendicular directions, the two-photon absorption rate is: 

4 2
2 2 ( ) | | (1 sin ( ))n Eωξ ω δφ= + .                                                                                             (5.4) 

So circular polarization provides twice the two-photon absorption compared to linearly 

polarized light. 

5.2.2 Tensor Element 

The current injection due to interferences of one- and two-photon absorption is a third order 

nonlinear process. The corresponding tensor of graphene evaluated within the tight-binding 

model has a single independent component: 

xxxx xyxy xxyy xyyx
II I I Iη η η η η= = = − ≡ ,                                                                                           (5.5) 

and 

4 2 3( ) (2 )I s v Fig g e vη ω ω −= ,                                                                                                    (5.6)  

The current density generation rate associated with interference between single and two 

photon absorption processes of beams at 2ω and ω is of the form: 

 2
2: sin(2 )ω ω ω

ω ωη φ φ= −J E E E ,                                                                                           (5.7)                       

where ,2ω ωE and ,2ω ωφ are the optical fields and phases, and η  is a fourth rank current 

injection tensor whose symmetry properties are governed by the illuminated material. 
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5.2.3Polarization Effect 

Due to the symmetry of graphene and all its tensor elements are equal to  each other as 

shown in Eq. (5.5), the coherently controlled current direction has some special polarization 

dependence and thus can be controlled by the polarization of the fundamental beam and its 

second harmonic. If both beams are linearly polarized at normal incidence to the graphene 

layers, the current injection rate is: 

2 *
2 2 2ˆ ˆ2 Im[ ] ( )[ cos 2 sin 2 ]I IJ E Eω ω ω ωη ω θ θ⊥= +e e .                                                                   (5.8)  

The injected current changes its orientation depending on the angle θ  which the two 

polarization vectors make. For collinear and cross-linear geometries, the current is parallel to 

the polarization of the 2ω  light. The component perpendicular to the 2ω polarization 

direction is maximal when the polarization vectors make an angle of 45  with each other. 

With both beams circularly polarized with normal incidence, the rate of injection is:  

2 * 2 *
2 2ˆ ˆ2 2 ( )( Im[ ] Re[ ]I IJ E E E Eω ω ω ωη ω= +x y .                                                                         (5.9) 

So in this configuration, the phase difference parameter controls the direction of the current.  

5.2.4 Bad Electrons 

Since graphene is a zero bandgap semimetal, one-photon absorption of fundamental beam is 

forbidden in the doped graphene layer. However, in undoped layers the one photon 

absorption of fundamental beam is not forbidden if the transition is below the Fermi level as 

in common semiconductors as shown in Fig. 5.2. So some of the fundamental beam floods 

the sample with carriers those are not taking part in the interference process in those undoped 

layers. This is in contrast to the usual semiconductors with a nonzero bandgap, where ω  and 

2ω  can be adjusted so there is no one-photon absorption. These carriers have no net velocity, 



 99

they scatter and break the phase relationship when the directional “good” electrons are 

injected by quantum interference, thus the  term “bad” electrons. 

 

Figure 5.2: Schematic Diagram of Coherent Contol in Epitaxial Graphene. Red is associated 
with the ω beam, blue with the 2ω beam. Asymmetric electron populations at k±  and hence 
current generation, is indicated by shaded patches. The dash line goes across the Fermi level 
of doped and undoped graphene layers. 

If we define a swarm velocity by:  

1

1
1 2
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where 2
2

| |
| |
Ex
E

ω

ω

= . The velocity per carrier is maximized by balancing one- and two-photon 

absorption process in the denominator of the above expression, which gives max ( ) Fv vω = , this 

maximal velocity is independent of the excitation frequency, due to linearity in the graphene 

bands. The work of Julien Rioux and John Sipe shows that when the injection rates of “good” 

and “bad” electrons are balanced, the overall swarm velocity is reduced by 2/3 compared to 

the optimal case. 
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5.3 Dynamics of Injected Coherent Control Current 

Here we qualitatively discuss how the various scattering processes are going to affect the 

injected coherent controlled current. These effects include carrier, phonon, impurity and 

defect processes and space charge relaxation. We see that current decay time in graphene are 

longer compared to common semiconductor like GaAs due to its unique Dirac Fermion 

properties.  

Carrier-carrier scattering rate is measured to be below 100 fs in Chapter IV. Elastic scattering 

between e-e and h-h doesn’t affect injected current in graphene. However, elastic scattering 

between electrons and holes does, due to different effective masses in common 

semiconductors. However, this is not the case in graphene, electrons and holes are both 

massless in graphene and elastic e-h scattering doesn’t cause current decay. 

Inelastic scattering time with optical phonons is measured to be on the order of ps from 

Chapter IV. The phonon scattering process in graphene is different from those in common 

semiconductor. In semiconductor, the relaxation from high energy to lower energy in the 

parabolic band decreases the electron velocity; this is not the case in graphene due to 

graphene’s linear energy dispersion curve as long as the scattering process doesn’t flip the 

sign of the carrier velocity. However, in case the phonon scattering flips the sign of carrier 

velocity, current relaxes. Inelastic scattering with long length scale disorder is suppressed in 

graphene due to the conservation of the pseudospin freedom. The suppressing of this kind of 

backscattering is unique in graphene materials which increases the current decay time. 

However this doesn’t apply to the short length scale disorder [23].   

The space charge effect in quantum wells has been discussed extensively by W. Sha et al. in 

Ref [24]. The time scale of space charge effect is determined by the dielectric relaxation time 
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in graphene. The dielectric relaxation time dt  can be estimated from the Debye length DbL  

and Einstein diffusion coefficient D through the relationship
2
Db

d
Lt
D

= , using the parameters 

in the literature, ~ 1 5DbL nm nm− [25, 26], and 2 2~ 2.2 *10 /D m s− [27]. The dielectric 

relaxation time is estimated to be on the order of 1 fs. In essence, each pair of pulses at ω and 

2ω  incident on the sample produces a current burst: the electrons move to one side of the 

sample and the holes move to the other side of the sample. An internal electric field builds up 

due to the transient accumulation of charges. The resulting potential difference causes back 

drift of carriers which produce a back drift current and degrade the coherently controlled 

injected current. This back drift current is related to the instant conductivity of graphene 

layers, as a semimetal, graphene is always conductive. This is in contrast to the case in 

conventional semiconductor like GaAs, which becomes resistive after the recombination of 

the carriers. Moreover, the injection of “bad” carriers can increase the conductivity of the 

sample and make the space charge effect more notable.  

5.4 Experiment Setup and Detection Techniques  

The space charge effect is used by A. Hach et al. to detect coherent control injected current in 

low temperature grown GaAs (LT-GaAs) using current integration [17]. Two metal 

electrodes are fabricated on LT-GaAs to form a metal semiconductor metal device, since the 

generated carriers recombined quickly, LT-GaAs becomes very resistive shortly after the 

excitation, and the potential difference build by the space charge can accumulate and be 

measured by a voltmeter. Nevertheless, due to the semimetal property of graphene and the 

injected “bad” electrons in graphene, this detection technique doesn’t apply in our 

experiment. An alternative way to detect the injected coherently controlled current is 
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measuring the radiated THz field from the sub-picoseconds burst of coherently controlled 

photocurrent [19, 20]. Initial effort in this direction was reported by R. W. Newson et al.on 

thin graphite samples [19], due to a very low signal level observed in graphite, they claimed 

that the coherently controlled THz emission was not strong enough to be detected in 

graphene. 

5.4.1 Free Space Electro-optics Sampling of THz Field with ZnTe 

Free space electro-optic sampling (EOS) with ZnTe crystal is so far the primary method to 

characterize freely propagating THz field in the time-domain [28, 29]. The basic working 

principle is based on Pockels effect or more specifically; when a THz field goes through an 

EO crystal like ZnTe, it modulates birefringence of this optical medium. A differential 

detector measures orthogonal components of the polarization of the optical probe beam to 

determine the THz field strength. Since Pockels effect is a non-resonant phenomenon, the 

polarizability of the material has temporal response on the order of a few femtoseconds 

which shifts the limit of the temporal resolution to the duration of the laser pulse itself.   This 

technique allows for contact-free means of measuring the THz wave with temporal resolution 

limited only by pulse duration and group velocity mismatch.  

A detailed experimental setup is shown in Fig. 5.3, after the 800nm optical probe beam co-

propagation along with the THz wave through the ZnTe sensor crystal, a quarter-wave plate 

induced a π/2 phase retardation on the beam. A Wollaston prism is used to separate the 

orthogonal components of the polarization, which are then sent to a balanced photodiode pair 

for differential detection.  

Here we start with the electro-optic tensor and derive the relationship between the 

polarization rotation of the probe beam and the THz electric field strength. The deduction 
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follows the routes in Ref. [28]. For crystal such as ZnTe with cubic symmetry, the electro-

optic tensor is:  
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                                                                                                                    (5.11) 

which yields the following equation for the index ellipsoid in the presence of a biasing field, 

( , , )x y zE E E=E : 

2
41 41

2
41 41 2

2
41 41

1/
11/
'

1/

z y

z x

y x

n r E r E
r E n r E V V

n
r E r E n

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎝ ⎠ ,     

                                                                                   (5.12) 

Eigenvectors V are the principal axes and eigenvalues 'n  are the principal indices in the 

presence of an electric field. 

For a terahertz field in the <110> direction, we have 1
2x y THzE E E= = , 0zE = . The solution 

to equation (5.12) gives both the principal indices, 'n , 

3
' 41

1
2x THzn n n r E= + , 3

' 41
1
2y THzn n n r E= − , 'zn n=  ,                                                              (5.13) 

As well as their corresponding principal axes, ê , 

'
1ˆ ˆ ˆ ˆ( 2 )
2x x y ze e e e= + − , '

1ˆ ˆ ˆ ˆ( 2 )
2y x y ze e e e= + + , '

2ˆ ˆ ˆ( )
2z x ye e e= −  ,                                  (5.14) 

Just as with the terahertz field, the optical probe beam is polarized in the <110> direction. 

The birefringence seen by the optical beam is 3
' ' 41x y THzn n n r E− = . Thus, the phase 

accumulated by the optical beam after passing through a zinc telluride crystal of length L is  
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3
41

2
ZnTe THzn r E Lπ

λ
Γ =  ,                                                                                                        (5.15) 

The probe beam also passes through a quarter-wave plate, so the total phase from the 

detection system is / 2ZnTe πΓ = Γ + . The normalized Jones vector of the incident probe beam 

is 
0
1inE ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. The polarization state after the system is the product of the detection system’s 

Jones matrix with the input Jones vector: 

cos( / 2) sin( / 2) 0 sin( / 2)
sin( / 2) cos( / 2) 1 cos( / 2)out

i i
E

i
Γ − Γ − Γ⎛ ⎞⎛ ⎞ ⎛ ⎞

= =⎜ ⎟⎜ ⎟ ⎜ ⎟− Γ Γ Γ⎝ ⎠⎝ ⎠ ⎝ ⎠ ,     
                                                (5.16) 

Independent detection of the vertical and horizontal polarization components gives the 

following measured intensities: 

2 1cos ( / 2) [1 cos( )]
2VI = Γ = + Γ  ,                                                                                         (5.17) 

2 1sin ( / 2) [1 cos( )]
2VI = Γ = − Γ  ,                                                                                          (5.18) 

The balance detector measures the difference between the two intensities: 

3 3
41 41

2 2cos( ) sin( )H V THz THzI I I n r E L n r E Lπ π
λ λ

Δ = − = − Γ = ≈  ,                                           (5.19)  

which gives us the desired result that the measured intensity difference is directly 

proportional to the terahertz electric field.  

5.4.2 Experimental Setup 

For our experiment, a commercial 250 kHz Ti: sapphire oscillator/amplifier operating at 

800nm is used to pump an optical parametric amplifier (OPA) to generate 1.2 μm-1.6 μm 

signal and 1.6 μm-2.4 μm idle light. The signal and idle beams from the OPA are used to 

pump a differential frequency generator (DFG) to generate 2-4 mW of 3.2 μm or 4.8μm (ω 
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beam) with 220 fs pulse width. ω beam passes through a AgGeS2 (for 3.2μm) or ZnGeP2 (for 

4.8 μm) crystal (type I) to generate 1.6 μm or 2.4μm (2ω beam). The AgGeS2 crystal has 

about 10% conversion efficiency and the conversion efficiency of the ZnGeP2 is expected to 

be even higher according to the manufacturer. Then ω/2ω pulses pass through a CaF2 plate 

with tunable tilt angle to adjust the relative phase. All the optics after the second harmonic 

crystal are reflection optics with λ/10 flatness generally to minimize the phase front distortion. 

The two emerging pump beams are cross polarized and overlapped on the samples with a 15 

μm diameter spot size as measured using 10-90 percent power method with a razor blade. 

The two pump beams produce peak focus irradiation intensities for the 3.2 μm and 1.6 μm 

beams of 2.8 GW/cm-2 and 0.45 GW/ cm-2 on the sample after the loss of all intermediate 

optics. A high-density polyethylene (HDPE) plate which has 90% transmission to THz is 

used to block the transmitted Mid-IR beam which can give optical rectification generated 

THz signal on ZeTe crystal. The emitted terahertz radiation is measured by electro-optic 

sampling, whereby a weak probe pulse from the Ti: sapphire oscillator at 800nm is 

temporally scanned through the terahertz pulse in a 1 mm thick (110)-oriented ZnTe crystal. 

Because of phase mismatch between the terahertz and the probe beams, the effective 

bandwidth of the electro-optic detection system is estimated to be ~2 THz. An optional beam 

path is an 800nm prepulse focused to a 120 μm spots on the sample with 45 incident angle 

to excited background hot carriers with tunable power and relative delay before the arrival of 

the ω/2ω pulses.  
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Figure 5.3: Experimental Setup for Coherent Control Experiment with Pre-pulse Excitation 
of Background Hot Carriers.    

The samples are ultrathin epitaxial graphene films produced on the C-terminated face of 

single-crystal 4H-SiC by thermal desorption of Si. Four different samples with different 

thicknesses are used in this experiment: #8B2 (9 layers), #1104 (13 layers), #1133 (35 layers) 

and #7J8 (63 layers). The major experimental data shown in this thesis is on the sample (#7J8) 

unless otherwise specified. The doping profile of the sample (#7J8) has been determined 

from the pump-probe experiment in Chapter IV. The first few layers are heavily doped and 

the doping intensity decreases to zero gradually. The Fermi levels of the first four doped 

layers are measured to be about 365 meV, 220 meV, 140 meV, 93 meV above the Dirac 

point, respectively. From the pseudopotential simulation, both the two photon absorption and 

one photon absorption rate increase with longer excitation wavelength which means higher 

injection efficiency at lower photon energy. As shown in Fig. 5.1(a) the pump wavelength is 

selected right above the Fermi level of the most heavily doped layer. One-photon absorption 
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of ω beam is not allowed in this doped layer due to Pauli blocking, however this process 

would inject ‘uncontrolled’ carriers with no net velocity in undoped layers. 

5.5 Experiment Results and Discussion 

5.5.1 Coherent Controlled Photocurrent in Epitaxial Graphene 

Figure 5.4 (a) shows the THz field as a function of time delay between 3.2 μm/1.6 μm pump 

pulses and an electro-optic sampling 800 nm probe pulse; traces are shown for values of ΔΦ 

separated by π. The oscillatory structure reflects the narrow bandwidth of the electro-optic 

detection system. As shown in Fig. 5.4 (a), the THz field reverses sign when ΔΦ changes by 

π which is consistent with a coherence-induced current source. The current amplitude and 

scalar direction can be controlled through the phase parameter, ΔΦ alone. The current vector 

can also be controlled by redirecting the beam polarization.  

Figure 5.4 (b) shows the contour plot of the terahertz radiation field from epitaxial graphene 

as a function of ΔΦ=2Φω-Φ2ω and the time delay between the 3.2 μm/1.6μm pump pulses and 

800 nm probe beam. A typical terahertz pulse trace as a function of the probe pulse time 

delay with constant ΔΦ is shown in the top panel corresponding to the horizontal dashed line 

on the contour plot. The main emission peak at time zero is followed by weaker oscillatory 

trace (only partial shown in Fig. 5.4 (b)). This oscillatory behavior reflects the limited 

bandwidth of the terahertz detection scheme rather than the intrinsic temporal behavior of the 

current. Specifically, charge displacement is expected to rise with the 220 fs pulse and decay 

through the development of space-charge fields and carrier momentum relaxation. The right 

panel shows the dependence of the terahertz field with ΔΦ for constant pump/probe delay. 

The current reverse direction as the phase varies and more generally follows a sin(ΔΦ) 

dependence, consistent with the coherently controlled photocurrent description of Eq. (5.7).  
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Figure 5.4: Phase Controlled THz Emission from Injected Photocurrent. a, Time-dependent 
electro-optic signals of THz fields from epitaxial graphene for different values of ΔΦ. 
b.Time-dependent terahertz radiation field from epitaxial graphene as a function of time 
delay between 3.2 μm/1.6 μm pump and 800nm probe pulse and the phase parameter, ΔΦ, 
between cross polarized pump beams. Top panel: terahertz trace time delay dependence for 
constant ΔΦ represent by the horizontal dashed line on the contour plot. Right panel: 
terahertz field ΔΦ dependence for constant time delay represented by the vertical dashed line 
on the contour plot. 

5.5.2 THz Signal Strength 

Preliminary experiment of coherent control in bulk graphite has been performed by R. W. 

Newson et al. using 1.4 μm /0.7μm beam [19]. Due to the very weakly emitted THz signal 

observed in bulk graphite, they stated that “given graphite’s absorption depth and our signal-

to-noise ratio, we do not expect to observe current injection in graphene samples with the 

present experimental configuration (barring any enhancement effects in the atomically thin 

films), since the signal from graphene is expected to be about 2 orders of magnitude 

weaker.”  

With the same THz detection techniques, the coherent controlled THz signal from epitaxial 

graphene can be observed in our experiment for the following reasons: first, we are using 

lower energy photon, which has much larger two-photon absorption efficiency according to 

Eq. (5.3). Second, the epitaxial graphene sample used in this experiment has multiple layers 

and each layer behaves like single layer graphene which can enhance the signal magnitude. 
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The details of the contribution of graphene multiple layers are going to be discussed later. 

Third, benefitting from the high transmission coefficiency of SiC at THz, a transmission 

scheme is  used in our experiment which easily achieves higher THz collection efficiency 

comparing to the reflection scheme that has been used in the previous work [19, 20].  

To estimate the signal level of peak THz field from epitaxial graphene sample, we replace the 

epitaxial graphene sample with a 100 μm thick (110) oriented ZnTe crystal and keep all the 

other experimental conditions the same. The s-polarized 220 ps 3.2 μm mid-IR beam 

generates THz in the ZnTe crystal due to the optical rectification effect [28] and is used as a 

reference for the coherent control signal. The peak amplitude level of the THz from the 

coherent controlled signal with 3.2 μm/1.6 μm beam on sample #7J8 is about the same as the 

optical rectification THz signal from ZnTe crystal.  

5.5.3 Polarization of the Emitted THz  

To determine the relationship between the ejected current direction and ω/2ω pump 

polarization, we measure the polarization of the emitted THz field. For this purpose, we put a 

THz polarizer with known polarization axis between the two collection parabolas after the 

sample as shown in Fig 5.3. The polarization of the emitted THz field is measured by rotating 

the THz polarizer to measure the THz field after the polarizer. The fundamental beam from 

the DFG is horizontally polarized and polarization of the second harmonic generated 2ω is 

perpendicular to the fundamental polarization in type I phase matching condition. From Eq. 

5.10, the injected current direction is predicted to be the same as 2ω polarization which is 

vertical in this configuration.  
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Figure 5.5: THz Field vs Polarizer Orientation. The x-axis is the angle between the 
polarization direction of THz polarizer and the vertical direction. The y-axis is the THz field 
peak to peak amplitude. The data is fitted by sinusoidal curve.  

The experimental data is shown in Fig. 5.5; the peak amplitude is off by 20 degree from the 

theoretical prediction, the 20 degree discrepancy can be due to the following factors: first, the 

fundamental beam polarization is supposed to be horizontal, but it can be some small angle 

off after several reflection optics. Second, the second harmonic polarization can be a small 

angle off from the perpendicular direction due to non-ideal phase matching orientation of the 

second harmonic crystal. Third, the discrepancy partly comes from the deviation of the ZnTe 

crystal orientation from the optimum direction for vertical polarized THz direction. The 

ZnTe crystal orientation is fixed during the experiment, when the polarizer projects the THz 

signal to different directions, the ZnTe crystal is no longer at corresponding optimum 

detection orientation, so the detected THz field is smaller than those prediction from a 

sinusoid fitting, which explains the deviation of the shape of the experimental curve from the 

sinusoidal fitting curve. 
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Figure 5.6: THz Field vs Wave Plate Main Axis Orientation. The x-axis is the angle between 
the main axis of the 3.2 μm half waveplate and the horizontal direction of THz polarizer and 
the vertical direction. The y-axis is the THz filed peak to peak amplitude. The data is fitted 
by sinusoidal curve.  

We fix the THz polarizer orientation and use a half wave plate to rotate the fundamental 

beam polarization. This is done to circumvent the complex correction due to the non 

optimum ZnTe crystal orientation with respect to the changing THz polarization, The second 

harmonic crystal is rotated following the half wave plate to optimize the second harmonic 

generation. In this way, the polarization of the generated second harmonic beam is always 

orthogonal to the polarization of the fundamental beam. If the theoretical calculation is valid, 

the coherently controlled generated current direction and thus the THz polarization follows 

the polarization of the second harmonic beam, after projecting on a fix THz polarizer. The 

transmitted THz field follows a cosinusoidal curve.  

Figure 5.6 shows peak-peak THz field amplitude as a function of wave plate rotational angle. 

This experiment is performed with 3.2μm/1.6μm beam. The x-axis is the angle between the 

main axis of the 3.2 μm half wave plate and the vertical direction (orthogonal to the 
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polarization of the fundamental beam), the polarization of the 3.2 μm signal is rotated twice 

of this angle. The THz polarizer is aligned so that the detected THz is maximized when the 

waveplate rotational angle is at 90 degree.  Instead of using main peak amplitude as shown in 

Fig. 5.4 (a), we use the peak-peak THz field amplitude difference between the main positive 

peak and the main negative peak amplitude as shown in the y-axis. In this way, we can get rid 

of possible constant negative or positive background which adds error to the result. The 

experimental data shown in Fig. 5.6 follows the sinusoidal fitting very well which verifies 

that THz polarization and the current direction is fully controlled by the fundamental beam 

polarization and has nothing to do with the graphene crystal orientation which coincides with 

the theory. 

5.5.4 Fundamental Beam Power Dependence 

To verify the nonlinear dependence of the coherent control signal on the beam power, the 

peak THz field amplitude is measured as a function of the fundamental beam average power 

Pω before the doubling crystal. A separate measurement of the peak THz field amplitude as a 

function of second harmonic beam power is not available due to the copropagating 

experiment configuration; there is no good way to change the power of the second harmonic 

beam while keeping the fundamental beam power and all other experimental conditions the 

same in the copropagating setup. From a simple analysis, one can expect the fundamental 

beam power dependence to be quadratic: from Eq. (5.7), the injected current change rate 

satisfies the following relationship: 2ω ω ω∝J E E E . In a second harmonic process: 2
2ω ω∝E E , 

so 4 2Pω ω∝ ∝J E , where Pω  is the power of the fundamental beam, since the emitted THz 

field THzE J∝ , it is proportional to Pω  with a power law of  2: 2
THzE Pω∝ .  
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Figure 5.7: Fundamental Beam Power Dependence. The green line gives the dependence of 
the second harmonic power with respect to the fundamental beam power and the blue line 
gives the dependence of the generated THz peak field on the fundamental beam power. Log-
Log plots are used to find the power dependent. The fundamental beam wavelength is 4.8 μm 
in this experiment.  

For this purpose, a continuous tunable neutral density filter is used to attenuate the OPA 

signal and idle power to change the mid-IR power from the DFG. The reason we attenuate 

the OPA signal instead of mid-IR power directly is simply due to the lack of a tunable mid-

IR attenuator. The power law dependence is shown in Fig. 5.7. The fundamental beam used 

in this experiment is 4.8 μm, as fitted in the figure: the generated second harmonic power 

follows 1.96
2 ( )E Eω ω∝  and the generated THz field follows 3.82 1.91( ) ( )THzE E Pω ω∝ ∝ . It’s not 

possible at this point to determine whether the slight disagreement between theory and 

experiment comes from additional physical effects not included in the model. However, the 

power dependent data is very good and coincides with the theoretical prediction. The small 

deviation can be due to increasing space charge effect with increasing power, bad electrons 

effect, etc…   
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5.5.5 Second Harmonic Beam Power Dependence 

To independently tune the second harmonic beam power without changing the power of the 

fundamental beam power is not convenient due to the limitation of the setup. However, this 

can be accomplished by mismatching the second harmonic generation crystal phase matching 

angle to change the second harmonic generation efficiency. Again a THz polarizer is inserted 

between the two collecting parabolas with the polarization direction well oriented to 

maximize detection efficiency at the SHG crystal phase matching angle. However, the effects 

of rotating the second harmonic crystal are multifold and not limited to the change of second 

harmonic power. First of all, it results in a change of polarization of the second harmonic 

beam. Second, the fundamental beam power changes slightly due to different conversion rate 

to second harmonic. Third, the second harmonic crystal is birefringent, so the linear 

polarization of the fundamental beam can be changed to elliptical when the polarization 

direction is rotated away from the crystal main axis. These effects added together make the 

experiment below not adequate to efficiently test the second harmonic power dependence.  

Figure 5.8 shows the linearly fitted experimental results for both 3.2 μm/1.6 μm and 4.8 

μm/2.4 μm pump beam, the power law fitting in Fig. 5.8 (a) and (c) show a power index of 

1.8 and 11, respectively. A large discrepancy of simple power law fitting with different pump 

wavelengths is not a surprise considering all the factors described above. The peak THz 

signals does not follow a linear dependence of the 2ω beam power in this experiment as 

expected from independently tuning the second harmonic power. For a clean experiment, a 

Michelson interferometer setup is expected, so that the fundamental beam and the second 

harmonic beam can be separated in two different arms and changed separately.     
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Figure 5.8: Second Harmonic Beam Power Dependence. (a) Log-log plot of THz peak-peak 
dependence on the second harmonic power with 2.4 μm/4.8 μm pump beam, the data can be 
fitted by simple power law dependence with power index of 11. (b) THz peak-peak plot as 
function of P1/2

2.4μm*cos(2θ) with 2.4 μm/4.8 μm pump beam, where θ is the SHG crystal 
phase mismatching angle, the linear fitting shows: ETHz∝P1/2

2.4μm*cos(2θ).  (c) Log-log plot of 
THz peak-peak dependence on the second harmonic power with 1.6 μm/3.2 μm pump beam, 
the data can be fitted by power law dependence with power index of 1.8. (d)  THz peak-peak 
plot as function of P1/2

2.4μm*cos(2θ) with 1.6 μm/3.2 μm pump beam, where θ is the SHG 
crystal phase mismatching angle ,the linear fitting shows: ETHz∝P1/2

1.6μm*cos(2θ). 

Despite the complexity of the multiple effects of phase mismatch of SHG crystal, we find the 

experimental data follows a fitting of 1/ 2
2 *cos(2 )THzE P ω θ∝ as shown in Fig. 5.8 (b) and (d) 

for both pump wavelengths. If we neglect the effect of the birefringent of the SHG crystal 

and assuming the generated second harmonic beam polarization rotates the same angle with 

the SHG crystal. This can be easily understood from the fact that only the projection of the 

fundamental beam on the phase matching angle direction can generate the perpendicular 
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polarized (relative to the projection of the fundamental polarization to the phase match angle) 

second harmonic beam. Then the angle between the second harmonic beam polarization and 

the fundamental beam polarization is θ, and from Eq. 5.8, the generated current direction and 

thus the polarization of the generated THz field is rotated by 2θ degree, after the THz 

polarizer, and the emitted THz signal has linear dependent on the second harmonic beam 

power 1/ 2
2THzE P ω∝ , we can get 1/ 2

2 *cos(2 )THzE P ω θ∝ . Unfortunately, both SHG crystals used 

in this experiment give significant birefringence when the fundamental beam doesn’t 

propagate along the main axis of the crystal, which can change the polarization into 

elliptically polarized light depending on the rotation angle and crystal thickness which 

complexes the interpretation and fitting of the data. 

5.5.6 Sample Dependence   

Although the data shown so far are all taken on sample #7J8 (63 layers), experiments with 

both 1.6 μm/3.2 μm and 2.4 μm/4.8 μm are performed on other three samples (#8B2 (9 

layers), #1104 (13 layers), #1133 (35 layers)) with different numbers of layers. Beside layer 

number dependence, another motivation of this experiment is to determine whether major 

contribution of coherent control signal comes from all graphene layers or it’s only dominated 

by the doped layers. Since the 1.6 μm/3.2 μm pump beam wavelength is well selected to be 

the transition right above the Fermi level of the most heavily doped layer, so that the injected 

directional electron is very close to the Fermi energy of this layer, where the scattering 

processes are suppressed compared to the undoped layers and thus allowing us to have a very 

long mean free path when we initially designed the experiment.  

Figure 5.9 shows peak THz amplitude of different positions on different samples with either 

3.2 μm/ 1.6μm or 4.8 μm/ 2.4 μm pump wavelengths. Sample #7J8 (63 layers) shows the best 
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homogeneity which coincides with the homogeneity of the infrared DT signal. Sample #1133 

(35 layers) shows 50% THz amplitude changes on different positions on the sample. The 

other two samples are also quite inhomogeneous but the variation of the THz signal over 

different positions of the sample is less observable due to the relative low THz signal level.  

 

Figure 5.9: Sample Dependence. Coherent control generated THz peak-peak amplitude with 
4.8 μm and 3.2 μm fundamental beam wavelengths on different positions on different 
graphene samples are plotted as a function of the number of graphene layers. The data with 
different fundamental beam wavelength are normalized with each other according to the 
same average THz peak signal on sample #7J8 in the plot and fit together with a single fitting 
curve.  

From Fig. 5.9, we can rule out the possibility that the doped layers dominate the contribution 

to the THz signal for at least two experimental facts: first, although the 35 layers sample and 

63 layers sample have similar amplitudes, the other two thin samples show significantly 

lower signal levels. Second, both 3.2 μm/ 1.6 μm and 4.8 μm/ 2.4 μm pump show similar 

sample layer number dependent trends, where 3.2 μm/ 1.6 μm pump excites carriers right 

above the Fermi level of the most heavily doped layer while 4.8 μm/ 2.4 μm doesn’t.  

Now we assume all the layers have the same THz response to the pump beam regardless 

whether it’s undoped or doped layers, this is a good assumption only when the doped layer 
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doesn’t have significantly large signal contribution compared to the undoped layers. Since 

the number of undoped layers always dominates in any of the samples, the assumption that 

doped and undoped layers contributes the same to the signal doesn’t significantly affect our 

fitting. Under this assumption, the signal amplitude doesn’t increase monotonically with 

increasing number of graphene layers for the simple reason that each graphene layer absorbs 

both THz radiation and mid-IR pump beam, and the THz generated in the top layers is 

greatly attenuated by the bottom layers if there are too many layers. To modeling this, we 

assume a flat spectrum absorption coefficient of 2.3% at any wavelength [30], although the 

absorption changes slightly when shifting to lower photon energy end [31]. The emitted THz 

is proportional to the 2
2THzE ω ω∝E E , so the enhancement factor of N layers respect to a single 

layer is: 1 3
1
( )N k N k

k
En x x− −

=
=∑ , where 1/ 2(1 2.3%)x = −  is the transmission coefficient of 

electric field by one graphene layer. Figure 5.9 shows that this model fits the experiment very 

well, and the fitting predicts the optimum layer number to be 47 layers.  

5.5.7. The Effect of Pre-injected Hot Carriers  

Another interesting experiment which can give fundamental insight into dephasing of 

quantum coherence is pre-injecting hot carriers with an 800nm pulse before the arrival of the 

3.2 μm/ 1.6 μm pump beam to see how the pre-injected hot carriers affect the coherent 

controlled current and its THz emission. For this purpose, a beam path of an 800nm pre-pulse 

is added and focused to a 120 μm spots on the sample with 45 incident angle to excite 

background hot carriers with tunable relative delay before the arrival of the ω/2ω pulses. The 

intensity of the pre-pulse is also continuously tunable with a neutral density filter. At the 

same time a flip mirror is added right after the ZnTe crystal to switch the transmitted mid-IR 

beam to a monochromator, followed by an InSb photo detector to get the in-situ mIR-IR 
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differential transmission signal as shown in Fig. 5.10. When switching to the differential 

transmission experiment, the HDPE plate has to be removed to unblock the transmitted mid-

IR and the chopper is switched to chop the 800 nm pre-pulse.  For coherent control 

experiment, the chopper is also moved to chop the pre-pulse to measure the differential 

coherently controlled THz signal due to the pre-pulse injected hot carriers. 

 

Figure 5.10: Experiment Setup for Coherent Control Experiment with In-situ Differential 
Transmission Measurement.   

Figure 5.11 shows the emitted coherent controlled THz at different pre-pulse injection power 

and different time delays. In this experiment, the rotational angle of CaF2 retardation plate is 

fixed at the position that gives the maximum THz signal, both pre-pulse power and the time 

delay between the pre-pulse and pump beam are tuned to see how it affects the emitted THz 

signal. From the Fig. 5.11, the THz signal amplitude decreases monotonically with increasing 

pre-pulse energy and increase monotonically with the relative delay after the pre-pulse 

injection.  However, in any cases, the THz waveform doesn’t change with the pre-pulse 

injection which indicates that the space charge effect is not significant at these hot carrier 

injection intensities, this can be due to the very fast dielectric relaxation time and generated 

space charges are quickly screened and don’t give any effect in the signal. In case the space 

charge effect plays a role, the generated spatial separated charges can build up an internal 
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electrical field which makes the electrons move in opposite direction away from the injected 

coherent controlled current. The pre-injected hot carries also increase the conductivity of the 

graphene sheet, which can enhance the current intensity from the space charge effect. Since 

the THz emission from this current has a relative delay with respect to the coherently 

controlled THz emission, this back drift current can affect the emitted THz waveform shape 

besides the amplitude. 

Besides the space charge effect, the injected hot carriers can occupy high energy levels in the 

conduction band and cause Pauli blocking to the absorption of the ω/2ω pump beam which 

can also decrease current generation and THz signal. To measure this effect quantitatively, 

we conduct an in-situ pump-probe experiment with the coherent control experiment, since an 

infrared differential transmission signal from the pump-probe experiment is supposed to be 

mainly due to the Pauli blocking effect of hot carrier occupations of high energy levels from 

the previous results in Chapter 3. The pump probe DT/T signal is plotted along with the 

differential THz signal normalized by the THz signal without pre-pulse in Fig. 5.12, the 

prepulse power are 4.1 mW and 20.6 mW respectively in Fig. 5.13. The experiment shows 

two important features: first, the time-zero DT signal from pump-probe experiment is about 

an order of magnitude smaller than the normalized differential THz signal, which means 

Pauli blocking is not the main contribution to the differential THz signal; second, the decay 

of the differential THz signal follows the decay of the DT signal closely which is supposed to 

be related to the decay of the hot electron temperature and we’ll discuss this effect in details 

later. 
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Figure 5.11: Coherent Controlled THz Waveform. THz waveform with different pre-pulse 
injection intensity at different pre-pulse delays. All the data are taken with 3.2 μm/1.6 μm 
pump and 800 nm pre-pulse with 45 degree incidence angle and 120μm diameter focal spot 
on the sample.    (a), (b) and (c) THz waveform at 0 ps, 0.5 ps and 1 ps time delay with pre-
pulse power of 0 mW, 0.56 mW, 1.17 mW, 2.92 mW, 6.42 mW, 9.93 mW, 13.43 mW, 20.44 
mW and 26.66 mW, respectively. (d) THz waveform with pre-pulse power of 26.86 mW at 0 
ps, 0.5 ps, 1 ps and 2 ps time delay, respectively. In each of above, a set of data without any 
pre-pulse injection is used for reference.    

Another significant effect of the hot carriers is that it can significantly increase absorption in 

THz frequency region, this is observed in 800 nm pump THz probe experiment conducted by 

Chuck Divin in our group. Since the probe focal spots in THz pump-probe experiment is 

limited by the diffraction limit of THz wavelength, the highest 800nm pump power intensity 

is many orders smaller than the pre-pulse intensity used in the coherent control experiment. 

A pump-probe experiment with the same pump intensity with that used in the pre-pulse 

experiment is not available. However, a pump power dependent study of 800 nm pump THz 
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probe experiment shows a saturation effect at high pump power as shown in Fig. 5.14 

(courtesy of Chuck Divin): the interpolation of 280K data shows that even with 1 mW/cm2 

pump fluency, the dt/t is about 25%.  Since in pump probe experiment, all the graphene 

layers contribute to the change of THz absorption, while in pre-pulse experiment, only half of 

the layers on average contribute to the change of THz absorption, which further deducts the 

contribution from this effect to be 12%.     

  
Figure 5.12: Differential THz Signal Waveform. Here is pre-pulse power is 23.6 mW, data 
are taken at various delay times relative to the pre-pulse. The coherent control experiment is 
pumped with 1.6μm/3.2 μm in all the plots.  

Figure 5.15 plots together the normalized differential THz signal with 1 mW/cm2 pre-pulse 

influence and dt/t signal of pump-probe experiment with 17 μJ/cm2 pump intensity to 

compare the relaxation process. The data shows that the dt/t signal relaxes significantly 

slower than the differential THz signal, which provides evidence that the hot carries induced 

THz transmission change is not the dominating effect to give the differential THz signal. 
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Figure 5.13: Differential THz Signal and In-situ Mid-IR Pump-probe Signal. (a) Time scan of 
normalized differential THz signal and in-situ differential transmission signal with 1.6μm, 
3.2 μm probe wavelength, all pumped with 4.1 mW 800nm. (b) Time scan of normalized 
differential THz signal and in-situ differential transmission signal with 1.6μm, 3.2 μm probe 
wavelength, all pumped with 20.6 mW 800nm pre-pulse. The coherent control experiment is 
pumped with 1.6μm/3.2 μm in all the plots.  



 124

 

Figure 5.14: Power Dependent THz Probe dt/t Data at Different Temperature. Here dt is the 
change of transmission of the THz field, the interpolation of the 280 K data shows the that 
even with pump fluency of 1 mW/cm2, the peak dt/t signal is about 25%. Courtesy of Chuck 
Divin.  

If we take off the contribution from Pauli blocking of the pump beam absorption and hot 

carrier induced THz absorption, there is still more than 40% differential THz signal due to 

other mechanisms. The injected hot carriers increases the electron-electron scattering rate; 

however the elastic scattering doesn’t affect the current, since this process simply transfers 

the momentum of one electron to another and there is no net momentum loss during this 

scattering. So the electric current is conserved after this scattering. Electron-phonon 

scattering changes the electron velocity and thus degrades the generated ballistic current. 

However it takes almost 1 ps time scale for the hot electrons to emit optical phonon, so there 

is not enough time for the phonon scattering to give a big differential THz signal at zero time 

delay. So hot carriers won’t affect THz signal significantly once coherent controlled 

directional current is generated.  
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Figure 5.15: Normalized Differential THz Signal and dt/t Signal. Normalized differential THz signal 
with 1 mJ/cm2 and pre-pulse fluence at varies time delays and time scan of 800nm pump and THz probe 
dt/t signal with 17 μJ/cm2 pump power. The pump probe experiment is performed at 280 K instead of room 
temperature. The coherent control experiment is pumped with 1.6μm/3.2 μm.  

To summarize the above analysis, the injected hot carriers contribute to the differential THz 

during the current generation process. This is not a big surprise since the directional current 

generated from coherent control process relies on the interference effect between one photon 

and two photon transition paths. If the phase relationship between these two paths is broken 

during the optical transition process, the injected carriers have an equal possibility to move in 

any directions and contribute no net current. The broking of this phase relationship is simply 

due to fast electron-electron scattering and happens almost instantaneously. From Fig. 5.11, 

we can see that the phase breaking process is more notable at high electron temperature and 

decreases monotonically with electron temperature. The almost synchronized relaxation 

curves between the differential THz signal and pump probe DT signal shown in Fig. 5.13 

indicate that the phase breaking scattering simply follows hot electron temperature relaxation. 
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This results is a high electron temperature extension of reference [32], where they show that 

the phase breaking collisions in steady state transport region yields a phase breaking time 

inversely proportional to the carrier temperature from 1.4 K to room temperature, which is 

the same behavior we observed in the high electron temperature region. 

5.6 Optical Effect 

In this section, we discuss the factors that can potentially affect photo current injection in the 

coherent control experiment from the optical aspects. This includes pulse broadening, 

temporal walk-off, chirp and delayed pulses.  

5.6.1 Spectrum Bandwidth in Second Harmonic Generation  

Second harmonic generation is used to create phase related ω and 2ω beams in the coherent 

control experiment. A detailled theoretical treatment of second harmonics generation can be 

found in any nonlinear optics textbook [33]. Here we discuss the spectrum bandwidth in 

second harmonic generation only. For monochromatic beams, collinear phase matching 

requires that n(ω)=n(2ω), when a finite bandwidth is involved this condition extends to:  

( ) (2 ) 0dn dn
d d
ω ω
ω ω

− = .                                                                                                           (5.20) 

Here the derivatives are associated with the group velocity of each pulse. Consequently, in 

the presence of unequal group velocities, phase matching is not satisfied for the whole pulse 

spectrum and the 2ω pulse time envelope and spectrum is affected.  

Let’s assume that the pump pulse remains undepleted throughout the interaction, which is an 

acceptable approximation for the low conversion efficiency in our experiments (less than 

10%). Then we can identify two regimes for the parametric process: the first when the 

interaction length l (or crystal length, whichever is shorter) is smaller then l′, and the second 

when l>l′, where l′ is the walk-off length defined as  
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1 1' (| | )gl v ω− −= Δ Δ ,                                                                                                               (5.21) 

ωΔ is the frequency bandwidth and 1
gv−Δ  is the inverse group velocity mismatch given by 

1 1 (2 ) ( )( (2 ) ( ) )g
dn dnv n n

c d d
ω ωω ω ω ω
ω ω

−Δ = − + − ,                                                                 (5.22) 

The length 'l corresponds to the distance over which the relative phase of the pulses changes 

by 1 radian due to dispersion. When 'l l>  the frequency doubling process takes place almost 

the same way as under conditions of perfect group velocity matching: the full spectrum is 

phase matched, the pulses are overlapped in time (no group delay) and 2 / 2ω ωτ τ= . Since 

phase matching is satisfied, the phase relationship between ω and 2ω is preserved across the 

pulse even in the presence of a frequency chirp. 

In the situation where 'l l> , the pulse time delay at the exist of the crystal can be shown to 

be: 

2d
g

lt
v

≈
Δ

.                                                                                                                           (5.23) 

As a result of this time delay, the 2ω pulse spreads from minimum time duration of / 2ωτ  

to 

2
2 1/ 2

2 ( ( ) )
2 g

l
v

ω
ω

ττ ≈ +
Δ

.                                                                                                        (5.24) 

5.6.2 Pulse Broadening and temporal walk-off 

Femtosecond ultrafast pulse has a minimum frequency bandwidth determined by their 

duration. When it propagates through media such as lenses, windows, polarizers and 

waveplates introduces pulse broadening, chirping and temporal walk-off between the ω and 
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2ω pulses. In phase sensitive experiments, these effects can be crucial.  

As the two pulsed exit the doubling crystal and propagate through other optical elements, 

pulse broadening and temporal walk-off take place. The broadening pulse duration is:  

( ) ( )z D zτ λΔ ≈ Δ ,                                                                                                                (5.25) 

where z is the propagation distance. λΔ is the spectral width and D is the broadening 

coefficient given by: 

2

2( )nD
c
λ

λ
∂

=
∂

.                                                                                                                       (5.26) 

The effect of D, either compressing or broadening the pulse-depends on the sign of the 

frequency chirp. For D>0 (normal dispersive medium), a positively chirped pulse 

experiences increasing chirp and duration, but starts compressing if D<0. The converse 

situation applies to a pulse with negative chirp.  

5.6.3 Current Injection with Chirped and Delayed Pulses 

To a first approximation, a frequency chirp in a pulse can be expressed by a linear term such 

that: 

0( ) 2t btω ω= + ,                                                                                                                   (5.27) 

with ω0 the center frequency and b the chirp parameter. Assuming a Gaussian pulse envelope, 

the relationship of b to the pulse duration τΔ  and frequency bandwidth ωΔ  is given by 

2 1/ 2
2

2 ln 2 [( ) 1]
4 ln 2

b τ ω
τ

Δ Δ
= − .                                                                                                  (5.28)  

Hence, if bω  and 2b ω  are the chirp parameters for ω  and 2ω and the pulses are delayed 

relative to each other by a time dt , the phase difference as a function of time is: 

2 2
2 2( ) 2 ( ) ( ) 2 ( )d dt t t t b t t b tω ω ω ωφ φ φΔ = + − = + − .                                                                (5.29) 
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When pulse broadening is relatively small, one can assume that 2 2b bω ω= , since ω and 

2ω are phase-related. In this case, 

2( ) 2 (2 )d dt b tt tωφΔ = + .                                                                                                         (5.30) 

Therefore, a general criterion for chirping to be an important factor in the current injection 

rate is that: 

4 1db tω ωτ >  .                                                                                                                        (5.31) 

This corresponds to a phase variation greater then 1 radian within the pulse duration. Note 

that φΔ  remains constant if 0dt = . 

The rate equation for the current injection can be written as: 

2 2
2| | | | sin( )I

c

JJ E Eω ωη φ
τ

= Δ − ,                                                                                       (5.32) 

which becomes: 

5/ 2 3/ 4 1/ 2 2
0 0 2 2( , ) 2 ( / ) ( ) ( ) cos(4 )I

d d d
c

JJ b t n n I t I t t b t tω ω ω ω ω ωη μ ε
τ

= − − ,                                    (5.33) 

where η  is the proper tensor element of η̂ . Any delay between the pulses then reduces the 

amount of current injection because of non-ideal pulse overlap and also reduces the 

integrated current because of the variation in φΔ .   

5.7 Conclusions 

In conclusion, we have generated coherently controlled electrical currents in epitaxial 

graphene using both 3.2 μm/1.6 μm and 4.8μm/2.4 μm, 280fs pulse. These ballistic currents 

depend on the relative phase between pulses, and the direction of generated current follows 

closely with the theoretical prediction. Our results are encouraging for all-optical generation 

of electrical currents in epitaxial graphene and may bring new understanding to 
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optoelectronic functionalities. By pre-injection background hot carriers in the system, we 

have studied the enhancement of the hot carriers in phase breaking scattering process and our 

results show that this scattering rate increase monotonically with the hot electron temperature.  
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Chapter VI 

Contributions, Conclusions, and Future Work 

In this Chapter, I will summarize the work in this dissertation and look into the experiments 

and research directions for the future.  

6.1 Contributions and Conclusions  

The work in this dissertation consists of two major parts: using ultrafast pump-probe 

spectroscopy to study the hot Dirac Fermion dynamics and using coherent control to generate 

ballistic currents in carbon-face epitaxial graphene. 

In the spectroscopy part, I described the first non-degenerate ultrafast pump-probe 

experiment on epitaxial graphene in which we observed ultrafast relaxation dynamics of hot 

Dirac fermionic quasi-particles. The DT spectra are well described by interband transitions 

with no electron-hole interaction. The temporal resolution of our experiments allowed us to 

differentiate between the optical phonon and acoustic phonon scattering processes. Following 

the initial thermalization and emission of high-energy phonons, cooling is determined by 

electron-acoustic phonon scattering. We observed thermal coupling of hot carriers between 

graphene layers in epitaxial graphene and determined the interlayer thermal coupling time to 

be instantaneous within the resolution of the experiment.  

We have spectrally resolved the precise doping profile of heavily doped layers and 
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determined the screening length to be 2-3 layers in carbon-face grown epitaxial graphene 

using ultrafast 800 nm pump, mid-infrared probe spectroscopy. The measured DT spectrum 

feature can be well explained by a dynamic conductivity simulation when plane disorders 

and elevated lattice temperature effects are incorporated into the simulation. 

Polarization dependent and pump intensity dependent experiments were also performed to 

study the carrier-carrier scattering time and electron-phonon coupling strength. The intensity 

dependent study reveals an interesting hot phonon effect on the electron-phonon coupling.  

In the coherent control part, we have generated coherently controlled electrical currents in 

epitaxial graphene using both 3.2 μm/1.6 μm and 4.8 μm/2.4 μm, 280fs pulses. These 

ballistic currents depend on the relative phases between pulses, and the direction of generated 

current is close to the theoretical prediction. The injected current direction doesn’t rely on the 

graphene crystal orientation and can be fully controlled by either changing the relative angle 

between two linearly polarized pumps or the relative phase of two circularly polarized pumps. 

Current degradation is found to be different from traditional semiconductors due to 

graphene’s unique electronic structure. The results are encouraging for all-optical generation 

of electric currents in epitaxial graphene and may bring new understanding to optoelectronic 

functionalities. By pre-injecting background hot carriers into the system, we studied the 

enhancement of hot carriers in phase-breaking scattering process and the results show that 

this scattering rate increases monotonically with hot electron temperature.  

6.2 Future Work 

6.2.1 Magneto Ultrafast Nonlinear Spectroscopy 

Landau level splitting in graphene is unusual compared to equal Landau level splitting in 

common semiconductors due to its linear energy dispersion. Previous quantum Hall effect 
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experiments [1] and magneto infrared linear spectroscopy experiments [2] on graphene all 

show the interesting, new and unique physics of Dirac Fermions. However, the magneto 

infrared nonlinear spectroscopy of epitaxial graphene has been left unexplored so far. This 

research will provide an in-depth understanding of the physics of hot Dirac Fermions and 

build the foundations for using graphene in future spintronic and valleytronic devices.                                    

An effort in this direction was made last August with an 800 nm pump, scanning probe 

wavelength around 2.4μm and 3T magnetic field to look for the expected Landau level 

splitting. When the probe wavelength corresponds to the transition between the Landau 

levels, the pump probe DT signal should be non zero, otherwise no DT signal would be 

observed due to the lack of the change of electron occupation function due to pump 

excitation when there is no density of state. However, the Landau level splitting was not 

observed since the photon energy of the 2.4 μm probe corresponds to a Landau level with 

broadening larger than the Landau level spacing itself. This was basically due to two 

limitations in the experimental conditions: an insufficient magnitude of the magnetic field 

and a probe photon energy that was not low enough. With improvement in either limitation, 

this experiment should have been successful. Figure 6.1 shows the landau level energy with 3 

T and 5 T respectively. For a 5 T magnetic field and 5.4 μm probe from the DFG, the Landau 

level splitting could be as large as 26 meV. This energy is larger than the Landau level 

broadening measured by Orlita et al. [1] and should be easily resolved.  

Time resolved spectroscopy would provide detailed scattering processes on discrete Landau 

levels. Rabi oscillations between discrete Landau levels has been proposed theoretically [2] 

and it would be interesting to look at experimentally. Observation of Rabi oscillations could 
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lead to the next step in quantum control of these states. Population inversion and lasing with 

discrete Landau levels in graphene is also an interesting direction. 

 

Figure 6.1: Landau Level Energy vs Landau Level Number under Different Magnetic Fields.  
The three horizontal dashed lines label, from highest to lowest respectively, the energy of the 
Fermi level of the most heavily doped layer, the lowest probe photon energy of the IR-OPA 
and the preferred probe photon energy of the DFG. The Landau level number is labeled at 
which landau level energy the probe photon corresponds to at different magnetic field 
strength. 

6.2.2 Exfoliated and CVD Grown Graphene, Graphene Bilayer   

As a spontaneous yet nontrivial extension of my research described above parallel work 

(with or without magnetic fields) is expected on exfoliated and CVD grown graphene 

samples as well as graphene bilayers to study how different growth mechanisms and 

substrates affect ultrafast carrier dynamics.  

Exfoliated graphene as a clean graphene sample provides a hygienic platform to study 

intrinsic graphene properties and the role of naturally formed ripples [3, 4] on transport 

properties. Back electrical gate can be relatively easily fabricated by doping a Si substrate 

which provides flexibility for gate controlled studies [5, 6].  

CVD grown graphene is still a very new material and its properties are largely unexplored. 

This growth method, however, holds great promise for future industrial fabrication of low-
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cost graphene devices with CMOS compatibility and flexibility of transferring onto various 

substrates [7-9].  

Graphene bilayers have parallel parabolic band structures with no bandgap. What makes this 

interesting is that a bandgap can be easily opened by applying an electric field [10, 11]. 

Comparison between bilayer and single layer graphene can provide a physical insight for an 

effect of linear dispersion curve in graphene transport properties. Also the bilayer shows 

interesting integer quantum hall effect anomalies [12], so it would be interesting to look into 

its behavior under a magnetic field. 

6.2.3 Nonlinear Frequency Multiplication    

The nonlinear frequency multiplication effect of graphene has been investigated theoretically 

by S. A. Mikhailov and K. Ziegler [13]. This effect is a direct result of graphene’s unique 

linear dispersion curve as shown in the following. 

For a 2D particle, the energy spectrum is 2 2
2p x yE V p p= + . According to Newton’s equation 

of motion, / ( )x xdp dt eE t= − , under an external time-dependent harmonic electric field 

0( ) cosxE t E t= Ω , the momentum ( )xp t  is then given by the sine function 

0( ) ( / )sinxp t eE t= − Ω Ω . In conventional 2D electronic systems with parabolic energy 

dispersion, the response is linear with the same frequency. This is simply due to the fact that 

under parabolic energy dispersion the velocity xv and hence the current x s xj en v= −  are 

proportional to the momentum xp . However, in graphene, the velocity 

2

2 2

p x
x

x x y

E pv V
p p p

∂
= =

∂ +
,                                                                                                       (6.1) 
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which is a strongly nonlinear function of xp . Therefore the local field polarization has a 

substantially anharmonic response. Also, the nonlinear response only has odd harmonics 

whose coefficients fall off very slowly with the harmonic number.  S. A. Mikhailov and K. 

Ziegler also give the threshold intensity of the external field to see the nonlinear response 

[13]. 

This odd high harmonics response has been observed experimentally in carbon nanotubes 

which have a similar linear dispersion curve [14, 15]. Our attempt to generate a third 

harmonic response on sample #7J9 with 4.8 μm pulse was not successful, although the Mid-

IR intensity was far above the nonlinear threshold. A possible reason may be that the 

condition [13] max( , )TμΩ <<  was not well satisfied since the 4.8μm fundamental beam 

was quite close to the Fermi level of the most heavily doped layer. For this reason, further 

work could include testing with higher intensity THz fields.  

6.2.4 Generation and Probe the Pseudospin /Valley Polarization  

Pseudospin is a unique quantum number due to graphene’s Dirac Fermion properties[16]. It 

originates from the two triangular sub-lattices in graphene’s honeycomb structure. 

Pseudospin is interesting to  both fundamental physics and for device applications that have 

been termed pseudospintronics or Valleytronics [17, 18]. Optical generation of the Valley 

and pseudospin polarization have been proposed theoretically in the literature recently [19, 

20] by using a polarized THz field. Experimental generation and probe of the this 

polarization will have a profound impact on graphene based valley optoelectonics.  

6.2.5 Reflection of Coherent Controlled Ballistic Current 

Although all optical generation of photocurrent using a quantum interference effect has been 

demonstrated in this dissertation, the ballistic nature and the mean free path of this generated 
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photocurrent remain unproven. A straightforward way to address this problem is by 

measuring roundtrips of ballistic electrons bounded back and forward by the edges of a 

graphene nanoribbon or well defined potential well on epitaxial graphene. This back 

reflected ballistic electron can generate a THz field with the direction of polarization reversed. 

The THz field would have a time delay corresponding to the roundtrip time which would 

give a good measurement of the mean free path and the swarm velocity of the generated 

current. 

6.2.6 Ballistic Dirac Fermions in Magnetic Field  

Another extension of the current control work would be putting optically injected ballistic 

Dirac Fermions in a magnetic field to look into their cyclotron motion. The radially polarized 

THz field emitted in this configuration should convey the rich time-resolved magnetic 

transport mechanisms in the sample.    

6.2.7 Toward Graphene Based Optoelectronic Devices 

Although the major effort so far has been a focus on graphene based electronic devices, 

graphene’s potential in THz and mid-infrared optoelectronic devices should not be 

underestimated. The tuneable narrow-bandgap and gating feature [6] of graphene hold 

promise for infrared and THz lasers, detectors, tuneable optical switches and modulators. 

There will be long-term efforts devoted to this direction from both the fabrication and device 

physics aspect. 
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Appendix A 

Electron Heat Capacity of Single Graphene Layer 

In this appendix, we calculate the electron heat capacity for single graphene layer in both 

neutral and heavily doped region. For this purpose, first, we calculate the density of state for 

2 dimensional Dirac Fermion, we assume a linear E-k dispersion curve:  

( )E k v k± = ± ,                                                                                                           (A.1) 

Here v  is the Fermi velocity. The number of state in energy interval EΔ  is  

2 2( )
(2 ) (2 ) k

A A dlZ E dldk E
Eπ π

Δ Δ = = Δ
∇∫ ∫                                                                            (A.2) 

Add 2 fold spin degeneracy and 2 fold valley degeneracy, so the density of state is: 

2 2 2

2( )
(2 ) k

A dl A EN E
E vπ π

= =
∇∫                                                                                           (A.3) 

Then we can calculate the electron heat capacity using standard statistic mechanic method. 

We have to distinguish two different cases, the layer with neutral doping intensity and the 

layer in heavily doped region. 

A.1 Electron heat capacity of the undoped graphene layer 
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For undoped graphene layer, the Fermi level sits at the Dirac point at any temperature, and 

this is enforced by the particle-hole symmetry of graphene, so the mean excitation energy of 

this system at finite temperature satisfies: 

,
( ) (0) [ ( ) ( ) 1 ( ) ) ( )] 2 2 ( ) ( )

zk s k
E T E n k E k n k E k n k E k+ + − − + +− = < > + < − > = < >∑ ∑ ,             (A.4) 

which can be converted to: 

0

( )( ) (0) 4
( )exp( ) 1x

B e
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k T

∞
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+

− =
+

∫ ,                                                                              (A.5) 

where x ckβ= : 

2
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So: 
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T v
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π
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,                                                                                         (A.7) 

where
2

3 0 1x

xdx
e

ζ
∞

=
+∫  is the Riemann zeta function. 

A.2 Electron heat capacity of the doped graphene layer  

Since the temperature dependent of the Fermi level need to be taken into account in 

calculating the electron heat capacity in this case, we tried to get the temperature dependence 

of the Fermi level first. This calculation follows the standard method used to determine the 

Fermi level of metal in any solid state text books. 

Suppose N is the number of free electrons then: 

0
( ) ( )N f E N E dE

∞
= ∫ ,                                                  (A.8) 
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And we introduce a function defined as 
0

( ) ( )
E

Q E N E dE= ∫  which means the total number of 

quantum state below energy E and do partial integration we get: 

0
( )( )fN Q E dE

E
∞ ∂

= −
∂∫ ,                                                                                                        (A.9) 

We do Taylor expansion of Q(E) around EF to the second order: 
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Then  
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which can be simplied as following: 
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,                                                   (A.12) 

When T=0K, 0( )FN Q E=  where 0
FE  is the Fermi level when the electron temperature is 0 K. 

For temperature above 0K, we do a taylor expansion of ( )FQ E around 0
FE  and only keep the 

terms to T2 
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So we can get 
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From the definition of Q(E), Q’(E) is the density of state N(E),so  
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For two dimensional Dirac-Fermion in graphene, N (E) is proportional to E, so  
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Then we try to calculate the heat capacity of electron. The total energy of electron can be 

written as: 

0
( ) ( )U Ef E N E dE

∞
= ∫ ,                (A.17) 

To calculate the integration, we introduce function
0

( ) ( )
E

R E EN E dE= ∫ , which means the 

total energy of the electron when the quantum states were fully filled with electrons, 

integration by part we can get: 
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Since  
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We have '( ) ( )R E EN E= , so 
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Thus we can get the unit area electron heat capacity:  
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Here we get the heat capacity proportional to T instead of T2 in contradict to the case where 

the Fermi level is at K point.  

Assuming a Fermi level of 348meV, 
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