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flow deflection angle. The instantaneous fields show the unsteady
but extremely high levels of shear that exist between the “exterior”
and “interior” regions of the boundary layer through the interaction
TECION. . . . . .

Mean turbulence kinetic energy k from the # = 12.0-deg interaction,
showing the mean SBLI structure overlayed. The turbulence kinetic
energy concentrates below the approximate sonic line and between
the Cy and C3 shock waves. . . . . . ... ... ... .. ......

Anisotropy of the turbulence in a wall-bounded shear flow from the
DNS Kim et al. (1987), shown in invariant space. The bounds of the
Lumley triangle are indicated by the solid lines. . . . . . . ... ..

The anisotropy of the turbulence along the wall-normal direction
is shown on invariant space (a) before the SBLI at z/§y = —2.5
and (b) after the SBLI at x/dy = +0.8 for the § = 7.75-deg flow
deflection angle. While the turbulence is near-isotropic throughout
the interaction far from the wall, the turbulence state is altered
significantly by the interaction closer to the wall. . . . . . . . . . ..

The anisotropy of the turbulence along the wall-normal direction
is shown on invariant space (a) before the SBLI at x/dy = —2.5
and (b) after the SBLI at x/dy = —0.2 for the § = 10.0-deg flow
deflection angle. While the turbulence is near-isotropic throughout
the interaction far from the wall, the turbulence state is altered
significantly by the interaction closer to the wall. . . . . . . .. ..

The anisotropy of the turbulence along the wall-normal direction
is shown on invariant space (a) before the SBLI at z/6y = —2.9
and (b) after the SBLI at x/dy = —0.5 for the § = 12.0-deg flow
deflection angle. While the turbulence is near-isotropic throughout
the interaction far from the wall, the turbulence state is altered
significantly by the interaction closer to the wall. . . . . . . .. ..
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4.38

4.39

4.40

4.41

4.42

5.1

5.2

2.3

Comparison of two estimations for the turbulence kinetic energy dis-
sipation rate, * from Equation 4.29 and &' from Equation 4.30. Re-
sults are shown from the 6 = 7.75-deg interaction at z/dy = —2.5.

Comparison of two estimations for the turbulence kinetic energy dis-
sipation rate, * from Equation 4.29 and &' from Equation 4.30. Re-
sults are shown from the 6 = 7.75-deg interaction at z/dy = —1.5.

Evolution of an approximation to the dissipation rate, £* defined by
Equation 4.29, through the SBLI region for a flow deflection angle
of # = 7.75-deg. The seven sampling locations correspond to 1:
/8y = —2.5, 2: x/6g = —1.9, 3: /0y = —1.5, 4: x/dy = —1.1, b5:
x/6g = —0.7, 6: 2/0p = —0.4, and 7: x/6y = +0.8. At top, colors
show the v field throughout each sampling plane, and also indicate
their relative locations. . . . . . . . ... ... ... ... ...

Evolution of an approximation to the dissipation rate, £* defined by
Equation 4.29, through the SBLI region for a flow deflection angle
of # = 10.0-deg. The seven sampling locations correspond to 1:
/8y = —2.5, 2: x/6g = —1.9, 3: /0y = —1.5, 4: x/dy = —1.1, b:
x/dy = —0.7, 6: /5y = —0.2, and 7: x/Jy = +0.3. At top, colors
show the v field throughout each sampling plane, and also indicate
their relative locations. . . . . . . . ... ... ... L.

Evolution of an approximation to the dissipation rate, £* defined by
Equation 4.29, through the SBLI region for a flow deflection angle
of 8§ = 12.0-deg. The seven sampling locations correspond to 1:
2?/5() = —3.6, 2: ZL‘/50 = —2.9, 3: ZL‘/50 = —2.3, 4: [L‘/(SO = —1.7, 5:
x/dy = —1.1, 6: /09 = —0.5, and 7: x/5y = —0.05. At top, colors
show the v field throughout each sampling plane, and also indicate
their relative locations. . . . . . . ... ... 0L

Schematics of the standard micro-ramp design are shown from (a)
a projection view and (b) looking upstream at the rearward faces of
the ramp. The induced streamwise vortices are also shown. . . . . .

The defining dimensions of the standard micro-ramp are shown, in-
cluding the ramp half-angle A,, side-length ¢, height h, and ramp
SPACINE S « v v v e e e e e e e e
Mean vorticity field w,, in this case located upstream of the interac-
tion at z/dy = —2.5 and with the 6 = 7.75-deg flow deflection angle.
Figure shows the streamwise vortex pair generated by the micro-
ramp. Superimposed on the vector field is a scale representation of
the ramp outline. . . . . . . . ... ... ... .
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5.4

2.5

5.6

2.7

2.8

2.9

Color plots of w, show the SBLI region in transverse planes for a
flow deflection angle of 6 = 7.75-deg and passive control via standard
micro-ramps located at z/dy = —8.50. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dg = —1.55, 3: x/dy = —1.2,
4: x/dg = —0.7, 5: x/0p = —0.2, and 6: x/5y = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of @, show the SBLI region in transverse planes for a
flow deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x©/§y = —1.9, 3: x/dy = —1.5,
4: x/dy = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of w, show the SBLI region in transverse planes for a
flow deflection angle of # = 12.0-deg and passive control via standard
micro-ramps located at x/dy = —9.76. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —3.6, 2: x/d = —2.9, 3: x/Jy = —2.3,
4: x/dg = —1.7, 5: x/dp = —1.1, and 6: x/6y = —0.4. The central
perspective plot shows the relative location of each plane. . . . . . .
The evolution of w, through the SBLI region is shown for a flow
deflection angle of § = 7.75-deg and passive control via standard
micro-ramps located at x/dy = —8.50. The six sampling locations
correspond to 1: x/§y = —2.0, 2: x/dy = —1.55, 3: x/5y = —1.2,
4: x/d6g = —0.7, 5: x/d = —0.2, and 6: x/Jy = +0.3. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . . ... ...

The evolution of w, through the SBLI region is shown for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x©/dy = —1.9, 3: x/§y = —1.5,
4: /6 = —1.1, 5: x/dy = —0.6, and 6: x/5y = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ..o

The evolution of w, through the SBLI region is shown for a flow
deflection angle of # = 12.0-deg and passive control via standard
micro-ramps located at x/dy = —9.76. The six sampling locations
correspond to 1: z/§y = —3.6, 2: /5 = —2.9, 3: x/d) = —2.3,
4: x/dg = —1.7, 5: x/5y = —1.1, and 6: x/5y = —0.4. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . . . ... ... ... ... ...
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5.10

5.11

5.12

5.13

5.14

5.15

5.16

Evolution of the circulation I' generated by the standard micro-
ramps, shown as a function of downstream distance z/dy for all three
shock strengths. . . . . . . .. oo

Left and right vortex centroids from the standard micro-ramp shown
at each z-location and for each shock strength. . . . . .. ... . ..

Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of # = 7.75-deg and passive control via standard
micro-ramps located at x/dy = —8.50. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dp = —1.55, 3: x/5y = —1.2,
4: x/dg = —0.7, 5: x/dy = —0.2, and 6: x/5y = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of @ show the SBLI region in transverse planes for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: z/d = —1.9, 3: x/dy = —1.5,
4: x/d = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of # = 12.0-deg and passive control via standard
micro-ramps located at z/d0y = —9.76. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: x/dy = —3.6, 2: x/dy = —2.9, 3: x/dy = —2.3,
4: x/dg = —1.7, 5: x/dy = —1.1, and 6: x/6y = —0.4. The central
perspective plot shows the relative location of each plane. . . . . . .

The evolution of w through the SBLI region is shown for a flow
deflection angle of # = 7.75-deg and passive control via standard
micro-ramps located at x/dy = —8.50. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dy = —1.55, 3: z/5y = —1.2,
4: x/d6g = —0.7, 5: x/dy = —0.2, and 6: x/Jy = +0.3. At top,
colors show the u field throughout each plane and show the relative
location of each plane. . . . . . . .. ...

The evolution of w through the SBLI region is shown for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x©/dy = —1.9, 3: x/dy = —1.5,
4: x/6p = —1.1, 5: x/d9 = —0.6, and 6: z/5y = 0.0. At top, colors
show the w field throughout each plane and show the relative location
of each plane. . . . . . . .. ..o
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5.17

5.18

5.19

5.20

5.21

5.22

5.23

0.24

5.25

The evolution of w through the SBLI region is shown for a flow
deflection angle of # = 12.0-deg and passive control via standard
micro-ramps located at x/dy = —9.76. The six sampling locations
correspond to 1: z/§y = —3.6, 2: /5y = —2.9, 3: x/§y = —2.3,
4: x/dg = —1.7, 5: x/5 = —1.1, and 6: x/5y = —0.4. At top,
colors show the u field throughout each plane and show the relative
location of each plane. . . . . . . . .. ... ... ... ... ...

Modified shape factor H* shown upstream of the § = 7.75-deg in-
teraction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with that controlled by standard micro-
TAINDPS.  « o o e e e e e e e e

Modified shape factor H* shown downstream of the § = 7.75-deg
interaction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with that controlled by standard micro-
TAINDPS.  « v e e e e e e e

Modified shape factor H* shown upstream of the # = 10.0-deg in-
teraction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with that controlled by standard micro-
TAINPS. « v v e e e e e e e e e e e

Modified shape factor H* shown downstream of the § = 10.0-deg
interaction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with that controlled by standard micro-
TAINPS.  « o v v e e e e e e e e e e

Modified shape factor H* shown upstream of the § = 12.0-deg in-
teraction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with that controlled by standard micro-
TAINDPS.  « v e e e e e e e e e e e

Modified shape factor H* shown downstream of the § = 12.0-deg
interaction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with that controlled by standard micro-
TAIMPS.  © v o o e e e e e e e

The net displacement thickness (6*) as a function of the downstream
distance x for the 6 = 7.75-deg flow deflection angle. The figure com-
pares the interaction controlled by the standard micro-ramp array
to that of the uncontrolled interaction, and demonstrates a 22% re-
duction of the peak value due to the micro-ramps. . . . ... . ..

The net displacement thickness (6*) as a function of the downstream
distance z for the § = 10.0-deg flow deflection angle. The figure com-
pares the interaction controlled by the standard micro-ramp array
to that of the uncontrolled interaction, and demonstrates a 13% re-
duction of the peak value due to the micro-ramps. . . . . . .. ..
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5.26

5.27

5.28

5.29

5.30

5.31

5.32

The net displacement thickness (§*) as a function of the downstream
distance x for the = 12.0-deg flow deflection angle. The figure com-
pares the interaction controlled by the standard micro-ramp array
to that of the uncontrolled interaction, and demonstrates a 4% re-
duction of the peak value due to the micro-ramps. . . . .. .. ..

Color plots of © show the SBLI region in transverse planes for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/0p = —1.55, 3: x/6y = —1.2,
4: x/§y = —0.7, 5: x/dy = —0.2, and 6: /09 = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .
The evolution of ¥ through the SBLI region is shown for a flow
deflection angle of § = 7.75-deg and passive control via standard
micro-ramps located at z/dy = —8.50. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dp = —1.55, 3: x/6) = —1.2,
4: x/d6g = —0.7, 5: x/d = —0.2, and 6: x/Jy = +0.3. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . .. . ... ... ... ... ...

The evolution of v through the SBLI region is shown for a flow
deflection angle of § = 10.0-deg and passive control via standard
micro-ramps located at z/dy = —9.42. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/d = —1.9, 3: x/dy = —1.5,
4: x/6p = —1.1, 5: x/dp = —0.6, and 6: x/5y = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ... ...

The evolution of v through the SBLI region is shown for a flow
deflection angle of § = 12.0-deg and passive control via standard
micro-ramps located at x/dy = —9.76. The six sampling locations
correspond to 1: z/§y = —3.6, 2: x/d) = —2.9, 3: x/§) = —2.3,
4: x/dg = —1.7, 5. x/5p = —1.1, and 6: x/dy = —0.4. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . .. . ... ... ... ... ...

Streamwise image planes along the tunnel centerline showing mean
turbulence kinetic energy fields from (a) the uncontrolled 6 = 10.0-
deg interaction and (b) the 6 = 10.0-deg interaction with standard
micro-ramp control. . . ... Lo

Color plots of u/y,,¢ show the SBLI region in transverse planes for a
flow deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x©/§ = —1.9, 3: x/§y = —1.5,
4: x/d = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
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2.33

5.34

2.35

5.36

5.37

2.38

The evolution of k& through the SBLI region is shown for a flow
deflection angle of # = 7.75-deg and passive control via standard
micro-ramps located at x/dy = —8.50. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dy = —1.55, 3: z/5y = —1.2,
4: x/dg = —0.7, 5: x/dy = —0.2, and 6: x/5y = +0.3. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . . .. ... ... ... ... ...

The evolution of k through the SBLI region is shown for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at z/dy = —9.42. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/d = —1.9, 3: x/dy = —1.5,
4: x/6yp = —1.1, 5: x/dy = —0.6, and 6: x/5y = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . . ... ...

The evolution of k through the SBLI region is shown for a flow
deflection angle of § = 12.0-deg and passive control via standard
micro-ramps located at z/dy = —9.76. The six sampling locations
correspond to 1: z/§y = —3.6, 2: x/d) = —2.9, 3: x/5) = —2.3,
4: x/dg = —1.7, 5. x/5y = —1.1, and 6: x/Jy = —0.4. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . .. . ... ... ... ... ...

Color plots of w/w’ show the SBLI region in transverse planes for a
flow deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at z/0y = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/d = —1.9, 3: x/dy = —1.5,
4: x/6g = —1.1, 5: x/dy = —0.6, and 6: x/5y = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .

Color plots of v /k show the SBLI region in transverse planes for a
flow deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at z/dy = —9.42. The averaged in-plane veloc-
ity fields (7,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/§ = —1.9, 3: x/§y = —1.5,
4: z/6g = —1.1, 5: x/dy = —0.6, and 6: z/5 = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .

Color plots of v/v/ /k show the SBLI region in transverse planes for a
flow deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/§y = —1.9, 3: x/§y = —1.5,
4: x/d = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
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2.39

5.40

5.41

5.42

5.43

0.44

Color plots of w/w’/k show the SBLI region in transverse planes
for a flow deflection angle of 6 = 10.0-deg and passive control via
standard micro-ramps located at x/dy = —9.42. The averaged in-
plane velocity fields (v,w) are overlayed as vectors. The six sampling
locations correspond to 1: z/6y = —2.5, 2: x/6g = —1.9, 3: ©/dy =
—1.5, 4 z/dy = —1.1, 5: x/dy = —0.6, and 6: x/5y = 0.0. The
central perspective plot shows the relative location of each plane. . .
Color plots of Eyy show the SBLI region in transverse planes for a
flow deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x©/§y = —1.9, 3: x/dy = —1.5,
4: x/dy = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
The evolution of S, through the SBLI region is shown for a flow
deflection angle of § = 7.75-deg and passive control via standard
micro-ramps located at z/dy = —8.50. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/0p = —1.55, 3: x/§y = —1.2,
4: x/dg = —0.7, 5: x/d = —0.2, and 6: x/5y = +0.3. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . .. . ... ... ... ... ...

The evolution of S, through the SBLI region is shown for a flow
deflection angle of § = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/§ = —1.9, 3: x/§y = —1.5,
4: x/6yp = —1.1, 5: x/dy = —0.6, and 6: z/5y = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ..

The evolution of S, through the SBLI region is shown for a flow
deflection angle of # = 12.0-deg and passive control via standard
micro-ramps located at x/dy = —9.76. The six sampling locations
correspond to 1: z/§y = —3.6, 2: /5y = —2.9, 3: x/§y = —2.3,
4: x/dg = —1.7, 5: x/5y = —1.1, and 6: x/5p = —0.4. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . . ... ..o

Color plots of €* show the SBLI region in transverse planes for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at x/dy = —9.42. The averaged in-plane veloc-
ity fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/§y = —1.9, 3: x/§y = —1.5,
4: x/d = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
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5.45

5.46

0.47

6.1

6.2

6.3

6.4

6.5

6.6

The evolution of £* through the SBLI region is shown for a flow
deflection angle of # = 7.75-deg and passive control via standard
micro-ramps located at x/dy = —8.50. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dy = —1.55, 3: z/5y = —1.2,
4: x/dg = —0.7, 5: x/dy = —0.2, and 6: x/5y = +0.3. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . . .. ... ... ... ... ...

The evolution of €* through the SBLI region is shown for a flow
deflection angle of # = 10.0-deg and passive control via standard
micro-ramps located at z/dy = —9.42. The six sampling locations
correspond to 1: x/dy = —2.5, 2: x/dy = —1.9, 3: x/dy = —1.5,
4: x/6yp = —1.1, 5: x/dy = —0.6, and 6: x/5y = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . . . ... ...

The evolution of £* through the SBLI region is shown for a flow
deflection angle of § = 12.0-deg and passive control via standard
micro-ramps located at x/dy = —9.76. The six sampling locations
correspond to 1: z/§y = —3.6, 2: /5 = —2.9, 3: x/§ = —2.3,
4: x/dg = —1.7, 5. x/5p = —1.1, and 6: x/Jy = —0.4. At top,
colors show the v field throughout each plane and show the relative
location of each plane. . . . . . . . ... ...

Schematic of the standard micro-ramp design are shown looking up-
stream at the rearward faces of the ramp. The induced streamwise
vortices and the forces arising from the vortex-vortex interaction are
also shown. . . . . . . ..
Oil streak visualizations around standard micro-ramps are shown
from the work of Ford and Babinsky (2007), demonstrating the ex-
tremely confined area of influence produced by each micro-ramp in
thearray. . . . . . . . ..

Streamlines over the standard micro-ramp produced by the RANS
simulation of Galbraith et al. (2009). . . . .. ... ... ......

Schematics of the inverse micro-ramp design are shown (a) from a
projection view and (b) looking upstream at the rearward faces of
the ramp. The induced streamwise vortices and the forces arising
from the vortex-vortex interaction are also shown. . . . . . ... ..

The defining dimensions of the inverse micro-ramp are shown, in-
cluding the ramp angle A, side-length ¢, height h, and ramp spacing

Typical mean vorticity fields w,, in this case located upstream of the
interaction at x/dy = —2.5 and with the § = 7.75-deg flow deflection
angle. Figure shows the streamwise vortex pair generated by (a) the
standard micro-ramp and () the inverse micro-ramp. Superimposed
on the vector fields are scale representations of the ramp outlines.
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6.7

6.8

6.9

6.10

6.11

6.12

Color plots of w, show the SBLI region in transverse planes for a flow
deflection angle of § = 7.75-deg and passive control via inverse micro-
ramps located at x/dy = —8.50. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: x/§y = —2.0, 2: x/dg = —1.55, 3: z/dy = —1.2,
4: x/dg = —0.7, 5: x/0p = —0.2, and 6: x/5y = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of w, show the SBLI region in transverse planes for a flow
deflection angle of # = 10.0-deg and passive control via inverse micro-
ramps located at z/dy = —9.42. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: z/§y = —1.9, 3: x/dy = —1.5,
4: x/dy = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of w, show the SBLI region in transverse planes for a flow
deflection angle of 6 = 12.0-deg and passive control via inverse micro-
ramps located at z/dy = —9.76. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —3.6, 2: x/d) = —2.9, 3: x/d) = —2.3,
4: x/dg = —1.7, 5: x/dp = —1.1, and 6: x/6y = —0.4. The central
perspective plot shows the relative location of each plane. . . . . . .
The evolution of @, through the SBLI region is shown for a flow de-
flection angle of § = 7.75-deg and passive control via inverse micro-
ramps located at x/dy = —8.50. The six sampling locations corre-
spond to 1: x/dy = —2.0, 2: x/dy = —1.55, 3: z/6y = —1.2, 4
x/dy = —0.7, 5: x/dy = —0.2, and 6: x/Jy = +0.3. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ..

The evolution of @, through the SBLI region is shown for a flow de-
flection angle of # = 10.0-deg and passive control via inverse micro-
ramps located at x/dy = —9.42. The six sampling locations corre-
spond to 1: x/dg = —2.5, 2: z/dy = —1.9, 3: z/dy = —1.5, 4
x/dg = —1.1, 5: x/dy = —0.6, and 6: x/dy = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ..o

The evolution of @, through the SBLI region is shown for a flow de-
flection angle of 8 = 12.0-deg and passive control via inverse micro-
ramps located at x/dy = —9.76. The six sampling locations corre-
spond to 1: x/dg = —3.6, 2: xz/dy = —2.9, 3: z/dy = —2.3, 4
x/dg = —1.7, 5: ©/dy = —1.1, and 6: /5y = —0.4. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . .. ...
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6.13

6.14

6.15

6.16

6.17

6.18

6.19

Evolution of the circulation I' generated by the inverse micro-ramps
shown as a function of downstream distance z/dy for all three shock
strengths. . . . . . .

The left and right vortex centroids are shown at each x-location
and for each shock strength, showing the vortex centroids from the
standard micro-ramp (open symbols) and inverse micro-ramps (filled
symbols). . . ..o

Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of = 7.75-deg and passive control via inverse micro-
ramps located at x/dp = —8.50. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/dg = —2.0, 2: z/dy = —1.55, 3: x/dy = —1.2,
4: x/0g = —0.7, 5: /5y = —0.2, and 6: /6y = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .

Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of & = 10.0-deg and passive control via inverse micro-
ramps located at x/dp = —9.42. The averaged in-plane velocity
fields (7,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x©/§ = —1.9, 3: x/§y = —1.5,
4: x/d = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of # = 12.0-deg and passive control via inverse micro-
ramps located at z/dy = —9.76. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —3.6, 2: x/d = —2.9, 3: x/§) = —2.3,
4: x/dg = —1.7, 5: x/dp = —1.1, and 6: x/6y = —0.4. The central
perspective plot shows the relative location of each plane. . . . . . .
The evolution of u through the SBLI region is shown for a flow de-
flection angle of 8 = 7.75-deg and passive control via inverse micro-
ramps located at x/dy = —8.50. The six sampling locations corre-
spond to 1: x/dg = —2.0, 2: x/dy = —1.55, 3: z/6y = —1.2, 4
x/dy = —0.7, 5. x/6y = —0.2, and 6: x/Jy = +0.3. At top, col-
ors show the u field throughout each plane and show the relative
location of each plane. . . . . . . .. . ... ... ... ... . ...

The evolution of w through the SBLI region is shown for a flow de-
flection angle of 8 = 10.0-deg and passive control via inverse micro-
ramps located at x/dg = —9.42. The six sampling locations corre-
spond to 1: z/dy = —2.5, 2: x/dy = —1.9, 3: z/6y = —1.5, 4
x/dy = —1.1, 5: x/6y = —0.6, and 6: x/dy = 0.0. At top, colors
show the w field throughout each plane and show the relative location
of each plane. . . . . . . . . ..
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6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

The evolution of w through the SBLI region is shown for a flow de-
flection angle of # = 12.0-deg and passive control via inverse micro-
ramps located at x/dy = —9.76. The six sampling locations corre-
spond to 1: x/dg = —3.6, 2: x/dy = —2.9, 3: z/dy = —2.3, 4
x/dg = —1.7, 5 x/6y = —1.1, and 6: x/5y = —0.4. At top, col-
ors show the w field throughout each plane and show the relative
location of each plane. . . . . . . . .. ... ... ... ... ...

Comparison of the controlled boundary layers using the standard
micro-ramp (SMR) and inverse micro-ramp (IMR) to uncontrolled
boundary layer at the z/dy = —1.1 location of the § = 10.0-deg inter-
action. Circles denote vortex-induced upwash regions, and diamonds
represent vortex-induced downwash regions. . . . . . .. .. ...

Modified shape factor H* shown upstream of the # = 7.75-deg in-
teraction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with those controlled by the standard
and inverse ramps. . . . . ... .. e e e e

Modified shape factor H* shown downstream of the § = 7.75-deg
interaction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with those controlled by the standard
and inverse ramps. . . ... ...

Modified shape factor H* shown upstream of the § = 10.0-deg in-
teraction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with those controlled by the standard
and Inverse Tamps. . . . . ... .. e

Modified shape factor H* shown downstream of the § = 10.0-deg
interaction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with those controlled by the standard
and INVerse ramps. . . . . ... .. e

Modified shape factor H* shown upstream of the § = 12.0-deg in-
teraction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with those controlled by the standard
and Inverse ramps. . . . . .. ... e e e e

Modified shape factor H* shown downstream of the § = 12.0-deg
interaction as a function of the spanwise coordinate, comparing the
uncontrolled boundary layer with those controlled by the standard
and Inverse ramps. . . . ... ... e e e

The net displacement thickness (6*) as a function of the downstream
distance z for the § = 7.75-deg flow deflection angle. The figure com-
pares the interaction controlled by the inverse micro-ramp array to
those using the standard micro-ramps and the uncontrolled interac-
tion, demonstrating a 34% reduction in the peak value. . . . . . . .
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6.29

6.30

6.31

6.32

6.33

6.34

The net displacement thickness (§*) as a function of the downstream
distance x for the = 10.0-deg flow deflection angle. The figure com-
pares the interaction controlled by the inverse micro-ramp array to
those using the standard micro-ramps and the uncontrolled interac-
tion, demonstrating a 21% reduction in the peak value. . . . . . ..

The net displacement thickness (6*) as a function of the downstream
distance z for the § = 12.0-deg flow deflection angle. The figure com-
pares the interaction controlled by the inverse micro-ramp array to
those using the standard micro-ramps and the uncontrolled interac-
tion, demonstrating a 17% reduction in the peak value. . . . . . . .

Color plots of v show the SBLI region in transverse planes for a flow
deflection angle of # = 7.75-deg and passive control via inverse micro-
ramps located at z/dy = —8.50. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.0, 2: x/dy = —1.55, 3: x/5y = —1.2,
4: x/dg = —0.7, 5: x/0y = —0.2, and 6: x/5y = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .
The evolution of ¥ through the SBLI region is shown for a flow de-
flection angle of # = 7.75-deg and passive control via inverse micro-
ramps located at x/dy = —8.50. The six sampling locations corre-
spond to 1: x/dg = —2.0, 2: x/dy = —1.55, 3: z/6y = —1.2, 4
x/dy = —0.7, 5: x/dy = —0.2, and 6: /5y = +0.3. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ... ...

The evolution of v through the SBLI region is shown for a flow de-
flection angle of 8 = 10.0-deg and passive control via inverse micro-
ramps located at x/dy = —9.42. The six sampling locations corre-
spond to 1: x/dg = —2.5, 2: x/dg = —1.9, 3: z/6y = —1.5, 4
x/dy = —1.1, 5: x/6 = —0.6, and 6: x/dy = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . .. ..

The evolution of v through the SBLI region is shown for a flow de-
flection angle of # = 12.0-deg and passive control via inverse micro-
ramps located at x/dy = —9.76. The six sampling locations corre-
spond to 1: x/dg = —3.6, 2: /0y = —2.9, 3: z/dy = —2.3, 4
x/dg = —1.7, 5: ©/§ = —1.1, and 6: /5y = —0.4. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ..o
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6.35

6.36

6.37

6.38

6.39

6.40

6.41

Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of § = 7.75-deg and passive control via inverse micro-
ramps located at x/dy = —8.50. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: x/§y = —2.0, 2: x/dg = —1.55, 3: z/dy = —1.2,
4: x/dg = —0.7, 5: x/0p = —0.2, and 6: x/5y = +0.3. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of w show the SBLI region in transverse planes for a flow
deflection angle of # = 10.0-deg and passive control via inverse micro-
ramps located at z/dy = —9.42. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: z/§y = —1.9, 3: x/dy = —1.5,
4: x/dy = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .

The mean streamwise velocity w fields are shown along the tunnel
centerline from the uncontrolled interaction, the vortex-induced up-
wash region produced by the standard micro-ramp, and the vortex-
induced downwash region produced by the inverse micro-ramp. All
visualizations involve the 6 = 12.0-deg flow deflection angle.

The mean spanwise vorticity component w, fields are shown along
the tunnel centerline from the uncontrolled interaction, the vortex-
induced upwash region produced by the standard micro-ramp, and
the vortex-induced downwash region produced by the inverse micro-
ramp. All visualizations involve the § = 12.0-deg flow deflection
angle. . ..

The mean turbulence kinetic energy k fields are shown along the tun-
nel centerline from the uncontrolled interaction, the vortex-induced
upwash region produced by the standard micro-ramp, and the vortex-
induced downwash region produced by the inverse micro-ramp. All
visualizations involve the 6 = 12.0-deg flow deflection angle.

The mean normal strain rate §yy fields are shown along the tunnel
centerline from the uncontrolled interaction, the vortex-induced up-
wash region produced by the standard micro-ramp, and the vortex-
induced downwash region produced by the inverse micro-ramp. All
visualizations involve the § = 12.0-deg flow deflection angle.

The mean shear strain rate ?xy fields are shown along the tunnel
centerline from the uncontrolled interaction, the vortex-induced up-
wash region produced by the standard micro-ramp, and the vortex-
induced downwash region produced by the inverse micro-ramp. All
visualizations involve the 6 = 12.0-deg flow deflection angle.
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6.42

6.43

6.44

6.45

6.46

6.47

Al

The mean normal strain rate S,, fields are shown along the tunnel
centerline from the uncontrolled interaction, the vortex-induced up-
wash region produced by the standard micro-ramp, and the vortex-
induced downwash region produced by the inverse micro-ramp. All
visualizations involve the § = 12.0-deg flow deflection angle.

The evolution of & through the SBLI region is shown for a flow de-
flection angle of § = 7.75-deg and passive control via inverse micro-
ramps located at x/dy = —8.50. The six sampling locations corre-
spond to 1: x/dy = —2.0, 2: x/dy = —1.55, 3: z/6y = —1.2, 4
x/dg = —0.7, 5: x/dy = —0.2, and 6: x/dy = +0.3. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . ..

The evolution of & through the SBLI region is shown for a flow de-
flection angle of # = 10.0-deg and passive control via inverse micro-
ramps located at x/dg = —9.42. The six sampling locations corre-
spond to 1: x/dg = —2.5, 2: x/dg = —1.9, 3: z/dy = —1.5, 4
x/dg = —1.1, 5: x/§y = —0.6, and 6: x/dy = 0.0. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . .. ..o

The evolution of & through the SBLI region is shown for a flow de-
flection angle of # = 12.0-deg and passive control via inverse micro-
ramps located at x/dy = —9.76. The six sampling locations corre-
spond to 1: x/dg = —3.6, 2: /0y = —2.9, 3: z/dy = —2.3, 4
x/dg = —1.7, 5: x/dy = —1.1, and 6: /5y = —0.4. At top, colors
show the v field throughout each plane and show the relative location
of each plane. . . . . . . . . . . . .

Color plots of k show the SBLI region in transverse planes for a flow
deflection angle of # = 10.0-deg and passive control via inverse micro-
ramps located at z/dy = —9.42. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/d = —1.9, 3: x/§y = —1.5,
4: x/dy = —1.1, 5: x/dy = —0.6, and 6: x/Jy = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .
Color plots of S, show the SBLI region in transverse planes for a flow
deflection angle of = 10.0-deg and passive control via inverse micro-
ramps located at z/dy = —9.42. The averaged in-plane velocity
fields (v,w) are overlayed as vectors. The six sampling locations
correspond to 1: z/§y = —2.5, 2: x/d = —1.9, 3: x/dy = —1.5,
4: x/d6g = —1.1, 5: x/dy = —0.6, and 6: x/5y = 0.0. The central
perspective plot shows the relative location of each plane. . . . . . .

Defining test section dimensions in (a) a streamwise-oriented cross-
section and (b) a spanwise-oriented cross-section. . . . . .. .. ..
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4.1

4.2
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5.1
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LIST OF TABLES

Inviscid state quantities computed for the three flow deflection angles
0. Pre-shock quantities are denoted by the subscript 1, quantities
between the incident and reflected shock are denoted by the subscript
2, and downstream quantities are denoted by the subscript 3. The
subscript ‘0’ denotes a stagnation quantity. . . . . ... .. 