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ABSTRACT

let V and W be a pair of dual vector spaces over a division ring
D. There is an associated weak topology on V, a subbase at zero con-
sisting of the kernels of the functionals in W. The resulting topo-
logical vector space V is said to be weakly topologized. The ring
A =c?<(V,W) of all continuous linear transformations on V is called a
continuous transformation ring. When V is one dimensional A is a
division ring. When V is a finite dimensional then A becomes a typi-
cal simple ring with minimum condition. And when W is the conjugate
space of V then A is a completely primitive ring.

The classical Galois theory consists in studying the one to one
correspondence between the groups of automorphisms of a field and the
subfields of invariant elements. Similar theories have been devel-
oped for division rings by Cartan and Jacobson, for simple rings with
minimum condition by Hochschild and Nakayama, for completely primi-
tive rings by Dieudonng and Nakayama, and for continucus transforma-
tion rings by Rosenberg and Zelinsky. In all these cases, eXxcept
when A is a field, the Galois correspondence does not pair off an
arbitrary subgroup with an intermediate subring.

One of the main theorems of classical Galois theory states that
the intermediate field E is Galois over the base field B if and only
if the Galois group, I', of A over E is normal in the Galois group, Iy,
of A over By. In proving a generalization of this theorem in the case
of continuous transformation rings, Rosenberg and Zelinsky had to make
the ad hoc hypothesis that the centralizer of E in A is a semi-simple
ring.

The principal result established in this thesis is that this
hypothesis is not necessary. In fact, one can prove the following
theorem.

let (V,W) be a pair of dual vector spaces over a division ring D.
Iet A =& (V,W) be the ring of all continuous transformations on V which
is topologized weakly by W, and let E be a subring of A which is also a
continuous transformation ring. Denote by ¥ (A) the socle of A (i.e.,
the sum of the irreducible left ideals of A) and by‘KLKE) the socle of
BE. Suppose that

(1) ¥ BV = v
(11) w?{V(E')* = W



(iii)

Y- @Y @)

(iv) V is a finitely generated\gh(E)—module,

(v)

(vi)

G is a group of automorphisms of A with [A : DT) < » where A

is the group of all semi-linear transformations on V belonging
to G and T is the group of all linear transformations on V con-
tained in A. Suppose further that

E is the fixed fing under G. Thenwth(E), the centralizer of
E in A, is semi-simple.

vi



INTRODUCTION

Let V and W be a pair of dual vector spaces over & division ring
D. There is an associated weak topology on V, a subbase at zero con-
sisting of the kernels of the functionals in W. The resulting topo-
logical vector space V is said to be weakly topologized. Let
A =ot(V}W) be the ring of all continuous linear transformations on
V. Such a ring after Jacobson [9] is called a continuous transfor-
mation ring. When V is one dimensional, A is a division ring. When
V is a finite dimensional, then A becomes a typical simple ring with
minimum condition. And when W is the conjugate space of V, then A is
a completely primitive ring.

The usual Galois theory consists in studying the one to one cor-
respondence between the groups of automorphisms of a field and the
subfields of invariant elements (see [1]). Similar theories have been
developed for division rings by Cartan [3] and Jacobson [8], for simple
rings with minimum condition by Hochschild [7] and Nakayama [15], for
completely primitive rings by Dieudonne [5] and Nakayama [15], and for
continuous transformation rings by Rosenberg and Zelinsky [16]. In all
these cases, except when A is a field, the Galois correspondence does
not pair off an arbitrary subgroup with an intermediate subring.

One of the main theorems of classical Galois theory states that

the intermediate field E is Galois over the base field EO if and only



if the Galois group, I', of A over E is normal in the Galois group, Tgs
of A over E,. 1In proving a generalization of this theorem in the case
of continuous transformation rings, Rosenberg and Zelinsky [16] had to
make the ad hoc hypothesis that the centralizer of E in A is a semi-
simple ring. The principal result established here is that this hy-

pothesis is not necessary. In fact, we prove the following theorem:

Main theorem: Let V and W be a pair of dual vector spaces over

a division ring D, and let E be a subring of A =ot(VQW) which is also
a continuous transformation ring. Denote by bAKA) the socle of A and
by BAzE) the socle of E. Suppose that
(1) Y@V = v,
(11) WY& = W,
(111) Y (E)CY(a),
(iv) V is a finitely generated zr(E)-module,
(v) G is a group of automorphisms of A with [A : DT] < c, where
A is the group of all semi-linear transformations on V belonging to G
and T is the group of all linear transformations on V contained in A.
Suppose further that
(vi) E is the fixed ring under G..
Thentljk(E), the centralizer of E in A, is semi-simple.
In Chapter 1, we will prove some lemmas which will be used in prov-
ing the main theorem. The proof of the main theorem will appear in Chap-

ter 2 and Chapter 3.
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PRELIMINARIES

let R be a ring.

Definition 0.1. A left R-module is a system consisting of an addi-

tive abelian group M, and a function defined on the product set RxM
having values in M, such that if ax denotes the element in M deter-

mined by xeM, aeR, then

(atb)x = ax + bx
(ab)x = a(bx)
a(x+y) = ax + ay

hold for any a, b in R and x, y in M.

The concept of a right module is defined in a similar fashion.
Henceforth, the term "module" without modifier will always mean left
module.

Definition 0.2. An R-module M is said to be unitary if RM = M.

Definition 0.3. A subgroup N of M is said to be an R-submodule

of M if RNCN.

Definition O.4. If N is an R-submodule of M, the factor group

M/N can be turned into an R-module by defining

a(x+tN) = ax + N.

We call this module the difference module of M relative to N, and it

will also be denoted by M/N.
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Definition 0.5. An R-module M is said to be finitely generated if

there exists a finite subset (x3, Xa,---;Xn} of M such that every ele-

ment in M can be written in the form

mpx; + meXs + ... +man + 81Xy tagXs + ... &8 X

where the m; are integers, and the a; are in R.

Definition 0.6. A module M satisfies the ascending chain condition

for submodules if for any increasing sequence of submodules

N, CNoC ...

there exists an integer n such N =N =
n nt+l

Proposition 0.1. A module M satisfies the ascending chain condition

for submodules if and only if every submodule of M is finitely generated
(see [101]).

Definition 0.7. A module M satisfies the descending chain condition

for submodules if for any decreasing sequence of submodules

N1 2Nz 2...

there exists an integer n such that N = NTl+l =

Proposition 0.2. 1If R is a ring that satisfies the descending chain

condition for left (right) ideals, then any finitely generated unitary
R-module satisfies the descending chain condition for submodules (right

submodules) {see [10]).

Definition 0.8. ILet M and MY be R-modules. A group homomorphism
& D




6 of M into M' is called an R-homomorphism if for all xeM and all acR,

(ax) = ab(x).

If © is a one to one mapping, it is called an R-isomorphism. If there
exists an R-isomorphism of M onto M', then M and M' are called isomor-
phic modules and we write M ¥M'. If M = M', an R-homomorphism of M

into M itself is called an R-endomorphism.

We will denote by EndRM the ring of R-endomorphisms on M, and de-
note by HomR(M,M‘) the group of R-homomorphisms of M into M'.

Definition 0.9. An R-module M is called irreducible if RM # (0)

and there is no proper R-submodule of M other than (0}.

Definition 0.10. An R-module M is called completely reducible if

it is a sum of irreducible R-submodules of M.

Definition 0.11. An R-module M is called a direct sum of the

family (MXIXGA] of R-submodules of M and we write M = ZWQM% if any x

in M can be written in one and only one way in the form Zxx with x%eM%.
A

_
Proposition 0.3. If M = ZEJ M, wvhere [MxlxeA] is a family of irre-

AEA

ducible R-submodules of M, then M = j{: ® My where [M6|6€A] is a sub-

seh
family of [MX|%€A} (see [12]).

IfFM=26@M =2 &N where M\ and N, are irreducible R-submodules
X A M H A H

of M, then the cardinal number of {M%] equals the cardinal number of [Nu}.



If both sets are finite, the proof of the result can be found, for exam-
ample, in [2]. For the infinite case, the proof is available in [12].
From this fact, we can define the dimension of a completely reducible

module as follows:

Definition 0.12. If M is expressed as a direct sum of irreducible

R-submodules, the cardinal number of direct summands is called the di-
mension of M over R and is denoted by dimRM.

In a particular case, if B is a ring with unit element and D a di-
vision subring with the same unit element, then B is a completely re-
ducible D-module whose dimension we write [B : D]l'

Proposition 0.4. Every R-submodule N of a completely reducible R-

module M has a complement N'; that is, an R-submodule N' of M exists

such that M = N @ N' (see [12]).

Proposition 0.5. Every R-homomorphic image and every R-submodule

of a completely reducible R-module is completely reducible (see [12]).

Proposition 0.6. Iet M be a completely reducible R-module, B =

EndRM. Then M is completely reducible as E-module (see [12]).

Definition 0.1%3. ILet M be an R-module and let [M%|X€A} be the

family of all irreducible R-modules of M, then Zi; M% is called the

AEA

socle of M and it will be denoted by J (M).

Definition 0.14. Iet M be an R-module. The sum Z My of all the
deh

irreducible R-submodules of M R-isomorphic to a given irreducible R-sub-



module N of M is called the homogeneous component of the socle deter-

mined by N.

It is easy to see that the socle of M and its homogeneous compo-
nents are fully invariant in the sense that they are mapped into them-
selves by every endomorphism of M.

Definition 0.15. If R is a ring, the socle of R as an R-module

is called the socle of R.

Note that the socle BxiR) of a ring R is the sum of irreducible
left ideals of R and so ;YYR) is a left ideal. Every right multipli-
cation x*xa is an endomorphism of R as an R-module. This maps BAZR)

into itself; hence B/?R) is also a right ideal.

Definition 0.16. An R-module M is said to be faithful if aM # 0

for each a # 0 in R.

Definition 0.17. A ring R is called primitive (right primitive)

if it admits a faithful irreducible module (right module).

Definition 0.18. A ring R is called completely primitive if it

is isomorphic to the ring of all linear transformations on a vector
space over a division ring.
Clearly, a completely primitive ring is primitive.

Proposition 0.7. ILet R be a primitive ring and let I; and Io be

non-zero ideals in R. Then I; Io # (0} (see [12]).

Definition 0.19. Let R be an arbitrary ring and let )77 be the

set of irreducible R-modules. Then the ideal



is called the (Jacobson) radical of R.

Proposition 0.8. Every element z in J(R) is left quasi-regular;

i.e., there exists an element z' in R such that

(see [121]).

Definition 0.20. A ring R is called semi-simple if the radical

J(R) of R is (0}.

Definition 0.21. A ring R is called simple if there are no

2
proper ideals in R other than (0}, and R # (0}.

Proposition 0.9. (Wedderburn's Theorem). Any simple ring R sat-

isfying the minimum condition for left ideals is isomorphic +to the
complete ring of linear transformations on a finite dimensional vector
space over a division ring (see [2]).

Definition 0.22. Iet V be a left vector space over a division

ring D and let W be a right vector space over D. A mapping f of the
product set VxW into D is called bilinear form on V and W if for all

v, Vi, V2 in V, w, w3, wo in Wand 4 in D, we have

f(Vl+V2:W) f(Vl,W) + f(V2)W))

f(V,Wl+W2) f(V)WI) + f(V)WZ))

f(dv,w) = daf(v,w),
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and

f(v,wd) = f(v,w)d

The bilinear form f is called non-degenerate if f(v,w) = 0 for all

veV implies w = 0 and f(v,w) = O for all weW implies v = O.
If there exists a non-degenerate bilinear form f on V and W, then

(V,W) is called a pair of dual vector spaces relative to f over D.

In dealing with a single bilinear form, it is convenient to use
the abbreviation (v,w) for f(v,w) and we simply say that (V,W) is a
pair of dual vector spaces over D. We shall do this from now on.

Definition 0.23. Let V be a left vector space over a division ring

D. f is called a linear function on V if f is a linear transformation

on V into the left vector space D over D.
*
The set V of all linear functions on V is a right vector space

over D relative to the laws of composition:

(f+g)v = fv + gv,

(fd)v = d(fv)

* *
for all veV, f,geV , and deD. The right vector space V is called the

conjugate space of V.

*
Let V be a left vector space over D and let V be the conjugate
*
space of V. Then (V,V ) is a pair of dual vector spaces over D with

*
the bilinear form given by (v,f) = fv, for feV , veV.

Conversely, if (V,W) is a pair of dual vector spaces, then there



11

*
is a natural isomorphism @ of W into V given by

_ *
for all veV. Therefore, we can consider W as a vector subspace of V .

Definition 0.24. Given a pair of dual vector spaces V and W,there

is an associated topology on V, a subbase at zero consisting of the ker-
1
nels f of the linear functions f in W. The resulting topological wvector
space V after Dieudonné [4] is said to be weakly topologized by W.
W can be then retrieved from the topology as the set of all contin-
uous linear transformations of V into the wvector space D over D with D

carrying the descrete topology.

Proposition 0.10. ILet V be weakly topologized by W. If U is an

open subspace of V, then U is also closed and has finite codimension.
Conversely, if a closed subspace U of V has a finite codimension, then
U is also open (see [15]).
Iet V and W be a pair of duvual vector spaces. For any subset S of
4
V and T of W, we use the notation S for [fer(v,f) = 0 for all veS}
1

and T for (veV|(v,f) = O for all feT).

Proposition 0.11. Let (V,W) be a pair of dual vector spaces over

a division ring D. If U is a vector subspace of V, then the closure

11
of U in the weak topology of V is U . Hence, a vector subspace U

41
of V is closed in the weak topology if and only if U = TU (see [12]).

If (V,W) is a pair of dual vector spaces over a division ring, we

will denote by¢§i(V,W) the ring of all continuous linear transformations



12

on the weakly topologized vector space V.

Proposition 0.12. A linear transformation a on V is continuous if

and only if for every f in W the linear function v+(av,f) is again an
element of W (see [9]). If this is the case, denote this function by
*

* *
fa so that (av,f) = (v,fa ) and a’ becomes a linear transformation on

W.

Definition 0.25. ILet V be a left vector space over a division ring

D. A ring R of linear transformations on V is said to be a dense sub-
ring of the ring of all linear transformations on V if for any natural
number k, and any linearly independent vectors Vige oo sV, and any k vec-

tors uy, u2,...,ux, there exists an a€R such that

Definition 0.26. Iet V be a left vector space over division ring

D. A linear transformation a on V is said to be of finite rank if the

dimension of the image, aV, is finite.

Suppose (V,W) is a pair of dual vector spaces. Then we denote by
f?:(V,W) the set of all continuous linear transformations of finite rank
on the weakly topologized space V.

Proposition 0.13. The following three conditions on a ring R are

equivalent:
(1) R is a primitive ring with non-zero socle.
(2) R is isomorphic to a dense subring of the ring of linear

transformations of a left vector space V over a division ring D con-
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taining non-zero linear transformations of finite rank.

(3) There exists a pair of dual vector spaces (V,W) over a divi-
sion ring D such tﬁat R is isomorphic to a subring of‘é((V,W) containing
5‘1 (V,W).

If R is represented as in (2), its socle is the set of linear trans-
formations of finite rank contained in this ring. If R is represented
as in (3), then its socle is SF(V,W). Moreover, the socle of R is a sim-
ple ring which is contained in every non-zero ideal of R (see [121]).

Proposition 0.14., Iet V and W be a pair of dual vector spaces over

a division ring D. Then any finite subset ofk§Z(V,W) can be embedded in
a subring of‘gz(V,W) which is isomorphic to a matrix ring Dn (see [13]).

Proposition 0.15. Suppose R is a ring of linear transformations on

a left vector space V over D and R is a primitive ring with minimal left
ideals (abbreviated to P.M.I. ring). Then V is a homogeneous completely
reducible R-module if and only if V = BA(R)V (see [16]).
Throughout this thesis if B and C are subrings of a ring A, we use
a[f%(c) denote the centralizer of C in B: the set of all elements in B

which commute with every element of C.

Proposition 0.16. Let Ca be the class of all subrings E of A =

Of(v,w) satisfying the conditions
(1) E is a continuous transformation ring with socle ZKYE),
(2) Y@EW =,
(3) wyte) =W,



1k

Let_fg be the class of all subrings B of é; = End(V,+) containing
D and satisfying
(1¥*) B is completely primitive with socle X(B)
(2x) Y(BW =v
(5*) The left D-dimension of a minimal left ideal of B is finite.
Then the correspondence E+¢x%é(E), Bﬂ'déé(B) is a one to one corre-
spondence between C? and,zg. If E in Ci and B in_f% correspond, then
(I) Every endomorphism of V commuting with E is continuous.
(II) If B consists of all linear transformations on a vector space
of dimension §§ then dimEV =§§.
(III) V is an irreducible BE-module
(IV) 1If veV, there is an idempotent e in BAKE) with ev = v
(V) Every E-submodule of V is closed (see [16]).

Proposition 0.17. Under the hypothesis of Proposition 0.16, if B

is a simple ring with minimum condition, then [B : D]l <o (see [16]).

Definition 0.27. A mapping A of a left vector space Vi over D3

into a left vector space Vo over Do is called a semi-linear transfor-

mation if

(1) A is a homomorphism of (Vi,+) into (Va,+),
(2) there exists an isomorphism o of Dy onto Do such that for

all veV; and deD;, we have

Adv) = o(d)av.

We call o the isomorphism associated with A.
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Proposition 0.18. Iet (V,W) be a pair of dual vector spaces over

a division ring D, and let A =<Qf(V,W). Then every automorphism g of
A is of the form.a+%_lax with A and A\ * continuous semi-linear trans-
formations on V; and conversely (see [11]). In this case, we say A
is a semi-linear transformation belonging to g.

Clearly, if A belongs to g, DA\ = N\D is exactly the set of all
semi-linear transformations which belong to g, and, moreover, if G is
a group of automorphisms of A, then the set A of all semi-linear trans-
formations on V belonging to some g in G form a multiplicative group.
We will call A the group of semi-linear transformations on V belonging
to G.

Now we define the tensor product of two modules.

Definition 0.28. let V be a right module and W a left module over

a ring R. Let F be the free abelian group generated by the pairs (v,w)
with veV, weW, and let K be the subgroup of F generated by elements of

the form
(V;W+W') - (V,W) - (V)W'))

(v+v',w) - (v,w) - (v',w),

(vr,w) - (v,rw), (reR).

Then the tensor product V&RW of V and W is defined as the quotient group
F/K, regarded as an abelian group.

Definition 0.29. Let R be an arbitrary ring and let D be a commu-

tative ring with identity. Then we shall say that R is an algebra

over D if a composition (@,x)»0x of the product set DxR into R is de-
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fined such that

(i) (R,*+) is a unitary left D-module relative to the composition
(o, x)»0x,

(ii) for all aeD and x,yeR

alxy) = (ax)y = x(ay).

Definition 0.30. If V and W are algebras over a communitative ring

D with unit element, then the tensor product module V& W is an algebra
b4

relative to the multiplication composition
N N o N 1 1
i J 1]

! t
with vi,vjeV ) Wi, WjEW.

We call this algebra the tensor product of the algebras V and W.

Proposition 0.19. ILet X be a primitive algebra over a field K

having a non-zero socle }f?x). Assume that [xl,...,xn] is a finite
linearly independent subset of X. Then there exists an element
se?ffx) such that [sxl,...,sxn} is linearly independent (see [12]).

Proposition 0.20. Iet B be an algebra over a field K which con-

tains a central simple ideal S and C an algebra over K with a unit
element. Assume that, if [bl,...,bm) is a linearly independent sub-
set of B then there exists an element XeBrBl such that [xbl,...,xbm}
is a linearly independent subset of S. Assume, moreover, that (1)

be = cb for all beB, ceC, (2) Sc = 0 for ceC implies ¢ = 0. Then BC
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= BR C (see [12]).

K

Finally, we will define quasi-Frobenius rings and list some of
their properties.

Let A be a ring with identity which satisfies the minimum condition
on left and right ideals. If S is a subset of A, we denote, respect-
ively, by r(S) and £(S) the right and left annihilators of S in A.

Definition 0.31. If for each left ideal L and each right ideal R

in A

then A is called a quasi-Frobenius ring.

Definition 0.32. If for each proper left ideal L and proper right

ideal R in A,

r(L) # 0 , I@R) # 0,

then A is called Kasch ring.

Clearly, every quasi-Frobenius ring is a Kasch ring.

Definition 0.33. let S be a ring with ring A as two-sided oper-

ator domain. A mapping © of S into A is called an operator.- homomor-

phism of S into A if

hold for all aeA, seS.
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Definition 0.34. An operator-homomorphism @ of S into A is called

a Frobenius homomorphism if there are no non-zero left ideals and non-

zero right ideals of S contained in the kernel of O.

Definition‘0.55. If there is a Frobenius homomorphism which maps

S onto A with A as two-sided operator ring of S, and, moreover, if A

is a Kasch ring, then S is called a Frobenius extension of A.

Proposition 0.21. A Frobenius extension of a quasi-Frobenius ring

is a quasi-Frobenius ring (see [14]).

Proposition 0.22. If ,}f and %are finite dimensional algebras

over a field Z and if bothbifkand'%z are semi-simple, thenJK'&Z%Z is a

quasi-Frobenius ring (see [6]).



CHAFPTER 1

SOME LEMMAS

In this section, we prove some lemmas that will be used in the

proof of our main theorem.

Lemma 1.1. Iet R be a ring and let M be a faithful completely

reducible R-module. Then R is semi-simple.
Proof: If R is not semi-simple, then by Definition 0.20 the
radical J = J(R) of R is not (0}. Since M is faithful, JM will be a

non-zero R-submodule of M. Write

where Sa are irreducible R-submodules of M. Hence, there exists an
irreducible R-submodule, say S, of M so that JS # 0, and so there
exists an seS such that Js % 0. Since Js is an R-submodule of M
and is contained in the irreducible R-submodule S of M, we have Js
= 8. Thus, s = js for some j in J. Now be Proposition 0.8, a keJ

exists such that

j+k-kj = O.

It would follow that

s = s - (Jtk-kj)s = (s-js) - k(s-js) = 0,

19
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a contradiction. Therefore, R is semi-simple.

Lemma 1.2. ILet (V,W) be a pair of dual vector spaces over a di-

vision ring D, let A =$( (V,W), and let E be a subring of A which is

also a continuous transformation ring with

\A/L(E)V v, wf®) - W, am WE)QT(A).

Then if V is completely reducible as a DE-module,olfl(E) is semi-
simple.
Proof: By Proposition 0.16, BEnd V = (B). Then according to
y Prop » Bnd V207 g
Proposition 0.6, V is completely reducible as an Jj;(E)-module. Hence
from Lemma l.l,J:XE) is semi-simple.
Lemma 1.%. Iet V be a left vector space over a division ring D
and let E be a continuous transformation ring which is a subring of
N L
A =End V. If @)W = v, 0(E)c Y(4), and, furthermore, V is &
L
finitely generatai‘X(E)-module, then \X%E) is a finite dimensional
algebra over the center Z of A.

Proof: Iet
* *
Vo= V) E) .

(1) V and W are a pair of dual vector spaces. It is trivial
that (v,f) =0 for all veV implies f = 0. On the other hand, if veV
* *
and (v,f) = O for all feW, then (v,fs ) = 0 for all feV , se}$(E)
*
and so (sv,f) = 0 for all feV , se?f%E) which implies that sv = O

for all se}sz) and hence thE)v = 0. Since zf(E)V =V, by Proposi-
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tion 0.15, V is a homogeneous completely reducible E-module. Write

where the M are irreducible E-modules. Thus,

v = Z m, with mseM;.
1

and hence
0 = bAZE)v = % ZKZE)ml,
S0
BAZE)mi = 0 for all i.
Let
Ny = [nieMiiX'(E)ni = 0}.

Then N; being an E-submodule of M; either equals (O} or M;. IfN; =M
AL
for some i, it would imply that ES(E)Mi = 0 for all i since the M; are
E-isomorphic, and then ?f(E)V = 0, a contradiction. Therefore, we have
Ni =0 for all i. So my = 0 for all i... Hence, v = Z.mi = 0. This
i

proves that V and W are a pair of dual vector spaces.

(2) let Ay = L(V,W). Then ECA,. If ack, then there exists

* % * * .

a"e€E” so that (av,f) = (v,fa’) for all veV, feV . We will show that

fa’eW for any TeW.

Write
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Then we have

* %

fa = (? fisq)a ?fi(sia ).

Since, sia'e ﬁE)*, fa eV \K‘(E)* = W. Hence, by Proposition 0.12, aeh;.
(3) Wb/zE) = W. Since E is a primitive ring, mE)‘ is a non-

. 3 . 2
zero ideal of E by Proposition 0.7. By Proposition 0.13, [ﬁE)] QﬂE)

and hence [?SC(E)]% = WE) Thus, [D/'(E)* ]‘2 = [b/\(E)2 * =\KV(E)*

Therefore,

WE* - VY et - Vet - w

(4) XL(E)E (Ag). If se mE), then se¢ ?ﬂA) and hence by Prop-
s . /~
osition 0.13, dlmDSV < w. Therefore, sc§ (Ag).
Now from (1)—(L4), we see that V, W, A, and E satisfy all assump-
tions of Proposition 0.16. Hence B =¢,C' (E) is completely primitive,
where é= End (V,+), so B is the complete ring of linear transforma-

tion on a vector space V' over a division ring D'. But by Proposition

0.16,

dim V' = dimV.

Since, dimgV < e, dimDV'< o, and hence by Proposition 0.9, B is a sim-
ple ring with minimum condition. By Proposition 0.17, [B : D]l < .
It is clear that aC/X(E)EB. Let U be D-subspace of B generated by
KA(E). Then [U : D]y <, say ti,...,t, is a basis for U over D.

Thus for any ted (E), t = £ djt; with djeD and 4t = td for all deD.
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This implies that dd; = djd for all deD and all i. Hence each djeZ and
r~ N .
(t;) spans oy (B) over Z, thus [Ap(E) : Z] < w. This completes the

proof.



CHAPTER 2

PROOF OF THE MAIN THEOREM

The main theorem has been stated in the introduction. Now to prove
this, we suppose contrarily that ,CK(E) is not semi-simple. Then ac-
cording to Lemma 1.2,

(vii) V is not a completely reducible DE-module.

Therefore, there is a sequence (Vi) of DE-submodules so that
0 = V,CV,CVaC...

where the Vi/vi is the DE-socle of V/Vi':—l

-1

We shall show first that this sequence of DE-submodules terminates.
By Proposition 0.1, it will be sufficient to show that every E- sub-
module of V is finitely generated.

Since V is a completely reducible E-module, V can be expressed as

_
Z e M7 with each M7 an irreducible E-module. By (iv)
v€rl

vV = X’(E)vl + YL(E)VZ + ...+ X"(E)vm

and since for each i

Vi€ z M7

7€Fi@

where I'; is a finite subset of I'. Thus

2k



and hence dimEV < o, Therefore, dimEU < o for any E-submodule U of V;

that is, any E-submodule is finitely generated. Hence, we have
0 = VOC VlC. . .CVn-lGVn = V

for some integer n 2 2 where Vi/Vi-l is the DE-socle of V/Vi-;i

Our next step is to establish an h # O in Hom (V/Vp-1,Vy) so that
W = Ahv  for all hen , VeV/Vp-1.

We remark that since the socle of a module is fully invariant, each Vj

is aILJEA(A)-submodule of V. Now suppose we have found such an h. Then

define heBnd_V as follows:

D
Write
V = Vp-18 U (D-direct)
and set
h(u) = h(u) for ueU
and
hVp-3 = O.

For NeA, vp-1€Vph-1, u€l, we have then

M(vp-1+u) = Au = mwu = b(du) = h(du) = bha(vn-1+u),
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so A = h)\ for all AeA and h # 0.

Consider the set
X = (acE|aUCV,_, and aV,_, = OJ.

2

It is easy to see that X is a left ideal of E and X = 0. Since E is
primitive, by Proposition 0.7, X = 0, so hng. Hence there exists ueU
with hu # 0. Also by Proposition 0.16, there exists an idempotent e in

XL(E) such that eu = u.- Thus he # 0. But

heV . ChV = O.
n-1=— 'n-1i

By the same argument as above, we have he¢E.

Since e€ XTE), dimDeV <o, let (vi,ve,...,% } be a D-basis for eV.

V, there is an s in WA) so that

By the density of X(A) in Endj

svy = hvy 1 = 1,2,...,t.

t
Hence, for any veV, ev = Z ds vy
i=1

with d;€D, and then

Thus, he = seeXL(A) and hence heeA. Furthermore, for any AeA,



n
—3

(he)h = hlen) = nle) = (hA)e = (hle = Alhe),
SO heepe'_:;(/\)a But he¢R, whence O\CX(A)DE properly, or E is not the fixed
ring under G which contradicts our assumption (vi). This proves our
main theorem except that we have yet to show the existence of such an
h #£0 in Homp(V/Vy-1,V1) with Whv = A for all )eA, vev V1.

We will proceed to do this by mathematical induction on n under the
assumptions (i)—(v) and (vii).

The proof of the case n = 2 will be postponed to Section 3. We
suppose now that n > 2. Consider the vector space V/Vl and Vl-L. The
bilinear form on V/Vy and Vit given by (V,f) = (v,f) for veV/Vy, fev,t
is non-degenerate since (v,f) = 0 for all feV,~t implies veVqyt+ = vy or
v =0 in V/Vy and (v,f) = 0 for all veV/Vy implies (v,f) = O for all
veV go f = 0. Hence, (V/Vl,Vl'L) is a pair of dual vector spaces over D.

\Z

* ¥ *
Let Ay =X (V/V1,V1h). Then for any a e& , (Vy,Vy%a")
- 1 ~) = Thi L¥*cy .t
= (aV1,V1+)C(Vy,Vy~) = 0. This means that Via CVy™, so ECA;.
Now we are ready to verify the conditions (i)—(v) and (vii) for
V/Vy and Vit
(1) Zf’(E)V/Vl = V/Vi. Clearly, X(E)V/Vlg_v/vl, On the other
4 | v
hand, since Y(E)V =V, for any veV, there exists vi€eV, sjc f (B)
(1 =1,...,k), so that
k
v = z Sivi.

i=1
k

Thus, v = z sivi in V/Vy, and hence V/Vlg_‘KKE)V/Vl.
i=1
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*

*
(11) o} @) = Vit since w = WHE)", for any few,

r
N *

f = 21) fisy with fjeW, sie'XﬁE). By proposition 0.14, there exists
i=1

an idempotent element e in ?r%E) such that sje = S{ and si* = Si* e*

for all i. Therefore,

S0

(111) Y(B)C Ya1). 1If se Y1&), then se Y(a), so, by Propo-
sition 0.16, dimDsV < . SO dimDs(V/Vl) < o and s€A;. This means
that seﬁAl).

(iv) V/Vi is finitely generated 2{%E)-module. It is an
immediate consequence from the assumption that V is a finitely gen-
erated XAYE)-module.

(v) Let A1 be the set of all semi-linear transformations on

V/Vy induced from A; i.e., A\1€A1 is given by

M(F) = My#V) = W +VL o= v
for all veV and some Ae€A.
let Gy = [81!81(&ﬁ=%;}alA1; ya1€A; and some \i€Ai)}. Evidently,
Gy is a group of automorphisms of A; and [A;:DT;] < o, where the T

is the group of all linear transformations on V/Vl contained in Aj.

(vii) V/Vl is not a completely reducible DE-module since n > 2.
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Hence, by the induction hypothesis, there exists p % 0 in
Hompy(V/V,_1, V2/V1) so that pAi¥ = A1p¥ for all AieAy and TeV/V,_ .
Now choose Q with Vo D QDVi so that the image of V/Vn_l under p is

Q/Vi. Certainly, Q admits A, it might not admit E. Let

P = E: aq.

a€eh

Then P is a DE-submodule of Vo and P/Vy is a completely reducible DE-
sutmodule of Vg/Vl by Proposition 0.5. It is easy to see that P and

W/PL are a pair of dual vector spaces with bilinear form given by

for fe W/P‘L , veP.

Now let Ap =9Z:(P, W/Pl). Since (W/Pl) E*Q;W/Pl, E can be consid-
ered as a subring of Ap. DNext, we shall again verify the conditions
(1)=(v) and (vii) for P and W/Pi.

(i) YfTE)P = P. Since ?fZE)V =V, V is a homogeneous completely
reducible E-module (by Proposition 0.15), hence, by Proposition 0.5, P
is. Applying Proposition 0.15 again, we have 2sz)P = P.

(11) (W/P0) Y(E)

e = &7 in,XLKE) so that f

*

W/Pl. We see that for any feW, there is

*
fe . Hence

— % a— — — _l.
fe = fe = f for all fe W/P

and so
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WY E) = Wk

(iii) Xb(E)g X({(Az). If seXL(E), then se)//(A), S0 dimDsV < oo,
SO dimDsP < . But seAp, so seX'(Ag).

(iv) P is finitely generated XL(E)-module. Since V is completely
reducible E-module, V is completely reducible ﬁE)-module. By Proposi-
tion 0.4, V = PGP’ (X’(E)—direct). P is then a finitely generated X((E)-
module since V is.

(v) Let
Ao = [Dalhav = v VveP and some AeA}.

Then Ao is a group of semi-linear transformationson P since A admits Q
and so admits P.

Let

-1
Gz = (g2:as™\2 ashe, Vapcho and some h2€hz].

Evidently, G2 is a group of automorphisms of Ap and [Az : DT> ] < « where

To> is the group of all linear transformations on P contained in Ao.
(vii) P is not completely reducible DE-module since P ,1- Vi.

Therefore, we can use the induction hypothesis again to obtain a g 74 0

in Homp(P/Vi, Vi) so that
Q¥ = AeqV  YAe€Az, VeP/V;.

Now since q # O and P/V; = Z a(Q/V1), there existsan acE such

ack
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that qa(Q/Vy) # 0. Consider the mapping gap in HomD(V/Vn_l,Vl),
Qap(V/Vn-y) = aal(@/Va) # 0
Also, for any

Nen, veV/V, 1,
AGEDV = A2QaDV = QAeaDV = Qalepv

= @aA\DV = Qa\Mpv = gapMV = QapAv.

Therefore, gap may be taken as the desired h.



CHAPTER 3

PROOF OF THE MAIN THEOREM (CONTINUED)

In this chapter, we will consider the case n = 2. In this case, Vi
and V/Vy are completely reducible DE-modules. Write V = V,8U (D-direct)

and let A = End V and

A; = (aeAlaViCV,).
1

It is obvious that A—V is a subring of A containing E, and we have maps
1

\

0 : AV1+EndﬁV1 = B
g : KV1+EndDU = C
8 : IV:HomD(U,Vl) = H
given by
av = 0O(a)v
au = d(a)u + 8(a)u

for aeKVl, uel, veVy. Then O and gfare ring epimorphisms and % is a

0-¢ derivation, i.e.,

5(ab)

0(a)s(b) + 5(a) #(b) a,beKVl.

We shall show that © and d are one to one maps on E.

let (= (acE|0(a)

0}. If QL # 0, then, as an ideal of E,

= XTE). It would follow that f(E)Vl = 0, a contradiction. Hence,

32
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(U= 0, 6 is a one to one mapping from E onto 6(E), and hence 6(E) is

a subring of B.

Since B can be considered as a subsalgebra of A , and

Y& ¥T8), by Lemms 1.3, L2(E) is a finite dimensional algebra
A

e )
over Z. Hence ‘/‘tz"C/B(Q(E)) being a sub-algebra of OCZ;(E), is a fi-

nite dimensional algebra over Z.

Moreover, since Vi is a completely reducible DE-module by Propo-

sition 0.6, Vi is a completely reducible x-module S0 % is semi-sim-

ple.

Now, let %= (acE|d (a) = 0). If p%zf- 0, then, as an ideal of

%5 Y(E) end this would imply that

v o= YEVeHBran

a contradiction. Hence, o%': 0, so 95 is an isomorphism from E onto

g (E).

Let ® be the projection on U along Vi. Then, for any a€E and veV,

S0

v = vy + u with vi1€Vi, uelU,

o(av) o(a(vitu)) = ofau) = o(g (a)utd(a)u)

g (a)u = ¢ (a)o(v)

]

Now, we claim that U is a finitely generated Xb(d (E))-module. To
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see this, let {vl,...,vm} generate V over Z((E). Then for any ueU,

u = ayvat...ta v, with aje XL(E) and hence

u = o(u) = <I>(a1vl+...+amvm)

1]

g(ar)o(vy) + ...+ dla Jo(v ).

This means that U is generated by (o(u1),...,0(u )} over }f"( 4 (E)).

We assert that )"(gz{ (B))C Zf‘(c). Indeed, for any se YI(E),
dimysV < w, hence dimpo(sV) < . However, o(sV) = ¢(s)o(V) = ¢ (s)U,
s dim #(s)U < w and hence #(s)eY(C). Thus ¥4 (B))

- s @y,
By Lemma 1.3, % = OC;(gf (E)) is a finite dimensional algebra

over 7.

Also, since U, D-isomorphic to V/Vl, is a completely reducible
D ¢(E)-module, by Proposition 0.6. U is a completely reducible ?%—
module and hence by Lemma 1.1, %is semi-simple.

Now, let % = End H. We have the mapping B—*% given by
(bh)u = b(hu) ,  heH,

Since HU = Vi, the above mapping is an injection. We will think of B
as a subring of (%

Likewise, we have the mapping C+(Jf given by

(ch)u = h(cu), heH,

and again this mapping has zero kernel but it switches the multiplica-
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tion so we will think of Co, the reciprocal ring of C, as a subring
of%?n

Now, we want to show that the subring generated byugf'andigtp is
isomorphic to:2592%¢9. It will suffice to show that B&E’ °§B%y9. To
see this, we will apply Proposition 0.20. Obviously B is an algebra
over Z, )‘(B) is central simple ideal of B, and [B,'Qf] = 1. Also
ZL(B)ZO = 0 with z in %Would imply X'(B)Hz =0 in H or U‘(B)Vl =0
contradicting the fact that ZfKB)Vl = V. Hence, ?rkB)zo = 0 implies
z® = 0. Moreover, by Proposition 0.19, {bl,...,bm} being a linear
independent set in B over Z assures the existence an x in BrBl such
[xbl,...,an} is a linear independent subset of Y{YB). Therefore,
by Proposition 0.20, Bgzzyb = B%%p. Sincejﬁ;and'%%o both are semi-
simple, by Proposition 0.22, z%o e 8, %O is a quasi-Frobenius ring.

Since AV CVy, we can define the mapping 6. 9{ and & on A as before:

0 : A>the group of semi-linear transformations on Vi,
gz{ : A>the group of semi-linear transformations on U,
& : A>*the set of semi-linear transformations from U to Vi,
given by
AwWo= O(N)v

for uelU, veVy and AeA.
Clearly, the mapping

p(A) ¢ me(Mhgd (A7)
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is an endomorphism on H.

First, we shall prove the following lemma :

Lemma 3.1. Under the assumptions of our main theorem with n = 2,
suppose that %l""’%t are representatives for the left cosets of DI in

A If

(A1) + ... +agp(ny) = O (1)

in End H with ;eBCS then a5 = 0, i = 1,...,t.

Proof: let g3,...,04 be the automorphisms of D associated with
A1y...,A\y respectively. Certainly, we may assume that Ay = 1. Suppose
Q; are not all zero and I is the group of inner automorphizms on D. We

. . . . -1 -1
claim that o; # o; mod I for i # 3. Indeed, if 0504 (x) = dxd * for

all xeD with deD then, for all x in D, all v in V,

-1 -1 -1 -1 -1
a Ay M) o= d T(ogay (%) (V)
-1 -1 -1 1 -1
=d Tdxd My vo= oxd TNy )V
and it would imply that
-1 -1
d 7\i>\J eT or ~)\i = d.t-)\j

for some teT a contradiction.

Now let [éj] be a D-basis for Vi. Set S : Vi?Vy given by

5, ay) = 2 0y (dy)ty, dyeD

and
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T; €EndpVy
by
T8 Z Sikjgg
J
if

with Sikj in D. Then

and
o) ZJ dyéy = 2; 01 (A )0\ ek = }: 03 (A )six s 55
k,J
80
o(n) = Ty
for all 1.

Let (C,} be a Z-basis for C and
g = %(bik)z(ck)r
with bik in B. By the above assertion, we can form the equation (1) as

byySih $0g ) = O (2)

Nl

[
o

in H for all heH, and also we can assume that bii # 0.

Since BbiB is a non-zero ideal in B, we have
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Bb1182 Y (B)
We then choose bii in Y(B) with biy # 0 and
bi1 = L bgbiiby , bp,bpeB.
Multiply the identity (2) by bf from left. We obtain
L L bebyySing(h TG = 0.
Replacing h then by b%h, we have

T . -1
L bebsySibehgd(A; )0 = O,
i,k

Sum over f. We get
1 1 -1
Z by, S:hd(\ NG = 0
i,k

for all h in H, where

ik beblkslbfsl—

in B.

Iet eeB given by e€; = €7 and eéj = 0 for J # 1. Then, obviously,

ee}(}B)e

Now we select bil = e and assume that the expression (%) has the

smallest number of non-zero by, . Then by (%)

z (1-e blk IO

1]
O
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in which the first term is
(1-e)eSihg(n1 ")Cx = O
since ea:: e, sO
(1-e )bik = 0

for all i and k.

Now if
' )
Pikby = 4 dikgeby
then
0 = (1-e)bik§j = Z}(l-e)dikjl&z = %dikjl(l-e)gl.
But
(1-e)e, = &, for all £ # 1,
hence
ey 0 for all £ # 1,
and

biV1C< €y >

the D-space generated by &1, for all i and k.
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We note that S;(l-e) = (1-e)S; for all i, since

sy

81(1-¢) 2{4 Ak = S5 ;dkgk = %Gi(dk)ék
¥ K

and

(1-e)s, Z Qb = (1-e) Z o5 (dy ) &
X k

Oi(dk)gk'
k#1

Now in (3) replacing h by (1l-e)h, we obtain

1
E: biSi(1-e)hg(A"1)Cx = O
ik
for all h in H, or
' -1
z bix(l-e)S;hg(ny ")Ck = O
i,k
for all h in H. From (3) and (4), we have by subtraction

}z [(i-e)biy-biy(1-e)]8;hd(n; )0, =
(i;k)'% (l,l)

for all h in H, in which the first term is equal to zero.

(l-e)b,, - bik(

ik l-e) = O

for all i and k.

0

Hence
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But we have seen before that

so
1 1 1
bik(l-e) = 0 or by = Dbie
for all i and k. Thus, for j # 1,
1 1
bigdy = bigeby = O
and
!
Pixbr = dyha

for some dik # 0 in D.

Now for each d % 0 in D, let Ty be the linear transformation given

by
T

afx = &

In identity (3), replace h by T4h and then multiply Ty_, from the left

in both sides of the obtained identity. We obtain

}: Ta-lbikSdehﬁ(%i'l)Ck = 0 (5)
i,k

for all h in H.
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Remark that since for all j

(sdesi-l)gj = sdegJ = sidgJ = oi(d)éj

Sde = TO’i(d)Si'

From identity (5), we have

' -1
}; Td-lbikTGi(d)Sih¢(xi )Ck = 0

for all heH.

From (3) and (6) by subtraction, we have

. , R e
}: (T 1P1i%o; (a) Pasc)S P TG = O
1,k

for all heH, in which the first term is
1 1
Td-lbllTO'i(d) - bll = O,
SO
Oix T TdflbikTUi(d)

for all i and k. It follows that

' 1
dixtr = Dbikbr = (T, 1P3kTgy(q))02
1 1
= Td_lblkol(d)gl = Td_lci(d>bik§l

-1
RRCHC I 0 (d)d;,d k1,

(6)
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or

_ -1
0;(d) = dj,dd;y

for all i and k. This means 0; = 01 mod I and hence t =1, so b33 =0
a contradiction. This completes the proof of the lemma. Notice that

the lemma generalizes the classical lemma of Dedekind.

Now we go back to our proof of the main theorem. ILet
t
0
F = %% p(?\i)
i=1

where [%l,g..,%t] is again a set of representatives for the cosets of
DT in A and N\1 = 1. Then for any i and j, there are deD, teT and a A

so that
7\i7\j = dt7\k .

Also, for heH

°
>
'——‘-
o
>
<,
&
I

o(dtn ) ng (A ~Ht7a )

0(t)e(n g Tt7T)

0(t)p (N )hg(t ™)

where t commutes with elements of E so 0(t)e X and ¢(t-l)€%?ﬁ Hence
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p(N; )0(7\3 )GZ%OQ(XK)_C_F.

Since

6(n )N e XK
and

d(ki'l)yszf(xi)e%
we have

o(n)E =X 6(ny)
and

Z1 -1
o >% = % $0 )
so F is a subring of End H containing% %O and F is a finitely generated

Z %O -module.

Now consider the mapping p from F onto ¥ go given by

b ip in
o \ 0
b zz Xijyijp(%i) = Z X591
. J=1

i=1 j=1 /
This mapping is uniquely defined since by Lemma 1.4 each element in F
has a unique expression as a linear combination on p(7\i)'s over X ?ZO'

Moreover, for any x in RE’ y in %



t m
0 0
o[ xy XiniJD(%l>
i=1 j=1
.1
3
= ZZJ Xy leySJ
J=1
t  m

I
e
<
<~ 0
>~
>~1
»
’—l.
Cie
<
[ERe!
C
ko)
>
'_0

and there are no one-sided ideals of F other than zero contained in the
kernel of p. Therefore, u is a Frobenius homomorphism from F onto 25%?0.
Thus, F is a Frobenius extension of afgf, and by Proposition 0.21, F is
quasi-Frobenius ring.

Now, we know that [A,E] = 1 and AV:CVy, so [6(A),6(E)] =1 and

[4(A),4(E)] = 1. Also, for AeA, acE,

5(&%) 6(%3))

or
8(a)p(n) + 6(a)d(n) = 8(N)g(a) + 6(N)5(a),
or
e(n)s(a) - 8(a)g(n) = o(a)s(n) - 8(N)g(a),
where

8(a)eHom (U,Vy)
D
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let
L = (neFEnh(n)eH with (a) = 6(a)h - hf(a)VacE).
If teX, Ce% nel, then

etp(M)n (a) = Ep(Aq)n (a)t

il

t0(n;) [6(a)n-nd(a) B (A ™H)¢

1l

E0(a)0(n g (ns M)t - B0 (0 (A )d(a

0(a)t0(n Jud(n ML - 80N (N ") té(a)

so L is a left ideal in F.

Furthermore, L 74 F since 1lel would imply the existence of heH with

8(a) = 6(a)h - hg(a)

for all a in E; i.e., 5|E is inner ep-derivation. Consider

X = {(u-h(u)|ueU}cV.

X is a D-module and

Xnvy = (0)

since

w = u - h(u)evy
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implies

u = h(u) + weUAVy = (0}

so h(u) = 0 and hence w

1t

0. Moreover, for any veV, v = u+w with u in

U, w in Vi and then

u - h(u) + h(u) + weX + Vi.

<
n

Hence

V = X6V, (D-direct).

Now we assert that X is a DE-module. In fact, for aecE and ueU,

1

a{u-h(u)) 0(a)u - 6(a)hu

il

6(a)u - 8(a)u - hg(a)u

d(a)u - hg(a)ueX.

I

This fact contradicts our assumption that Vi is the DE-socle of V.
Therefore, 1¢L and L # F.

Now since F is quasi-Frobenius ring and L # F, the set

(xeF|Lx = 0} # O,

50 there exists £ # O in F so that If = 0, and so a p in H exists with



h =fp #0 and Ih = 0. However,

and

and

SO

Hence

or

e(A"1)5 (N )eH,

oA T) [0(A)-°(N) JeL VheA.
o He() - = o Vhen
6(A)h - hg(A) = © VAEA.

This h induces an I # O in HomD(V/Vl,Vl) with I\ = \hv, VAeA,

VGV/Vl .

This completes the proof.
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