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Abstract

In this dissertation, we explore the use of polymer-tethered nanoparticles as a means to self-
assemble highly ordered arrays of nanoparticles and nanometer-sized domains. We perform
Brownian dynamics simulations to study the self-assembly of polymer functionalized spher-
ical and rod-like nanoparticles. Immiscibility between tethers and nanoparticles facilitates
assembly into highly ordered structures reminiscent of phases formed by surfactants and
block copolymers, but with greater complexity. We explore the influence of key factors such
as the nanoparticle size and shape, tether architecture, solvent selectivity, and bulk volume
fraction on the resulting structures.

In this thesis we perform several studies. First, we explore the phase behavior of mono-
tethered nanospheres. Under solvent conditions that are poor for the tethers, we find phase
behavior that is similar to surfactants with structures including lamellae, perforated lamel-
lae, hexagonally packed cylinders, and spherical micelles. We report quasicrystalline-like
ordering between the spherical micelles and propose an entropic model to explain this
behavior. We also explore the phase behavior of a mono-tethered nanosphere system where
nanospheres are in poor solvent. We find phases similar to surfactants including lamellae,
perforated lamellae, double gyroid, and hexagonally packed cylinders. We see a predom-
inance of icosahedral arrangements of nanospheres in phases with 2D confinement and
crystalline packing of nanospheres in structures with 1D confinement. We also compare and
contrast the formation of the double gyroid structure for tethered nanospheres and tethered
nanorods. We show that the ability of the nanoparticles to locally order into icosahedra
(nanospheres) and hexagonally splayed bundles (nanorods) reduces packing frustration
making these structures more stable than their block copolymer counterparts.

We also explore the phase behavior of di-tethered nanospheres. We find a complex phase
behavior for di-tethered nanospheres similar to triblock copolymers with phases including
lamellae, tetragonally packed cylinders, alternating gyroid, and alternating diamond. We
also report two novel phases not seen in triblock copolymers: NaCl ordered spherical mi-
celles with a complementary simple cubic network of nanospheres and ZnS ordered micelles

with a complementary diamond network of nanospheres.
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Throughout this thesis we focus on understanding why these complex structures form

and what trends exist.
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Chapter 1

Introduction

1.1 Motivation

Assembly of materials from the “bottom up” provides an unprecedented number of opportu-
nities for creating novel materials with specific physical properties. Applications are vast,
impacting everything from electronics to drug delivery. To date, a large variety of nanometer
scale building blocks with specific geometries, such as spheres (1)), rods (2)), cubes (3)), plates
(4;15), and tetrapods (6), have been synthesized from various materials. The development
of recent techniques, such as imprint lithography (7), have given experimentalists even
more control over shape, making for an almost limitless catalog of nanoparticle geometries.
Nanoparticles are of particular interest as bottom up materials, since they often have tunable
electrical, optical and mechanical properties that are different from their bulk counterparts.
By properly choosing the building block or combinations of building blocks, we can create
materials with specific, desirable properties.

The assembly of these nanoparticle building blocks into specific structures and devices is
a fundamental challenge if large numbers of building blocks are required. Proof of concept
devices such as single electron transistors have been created using direct mechanical manip-
ulation (8)). Such an approach might be unfeasible for large scale production of common
devices made of many transistors, e.g. current computer chips contains ~1 billion transistors
(9). Manipulation of large numbers of these building blocks into specific arrangements
seems an insurmountable task for mechanical methods. Instead, self-assembly is generally
regarded as a promising means to facilitate the assembly of large numbers of nano building
blocks into desired structures (10; [11)). For self-assembly to be a predictable method for
the design of novel materials, one must understand the roles thermodynamic parameters,
geometry, and functionalization play in the assembly process, and how this information can
be classified and used to guide the design of new materials and devices.

The literature contains many methods and demonstrations of approaches to the self-

assembly process, yet only a few demonstrate a comprehensive, predictable scheme. Current



methods for the self-assembly of nanoparticles include polymer templates whereby nanopar-
ticles are fillers in an organic medium (12), the application of external fields where shear
or magnetic fields are applied to suspended nanoparticles(13} [14), or the use of surface
stamping techniques to direct the assembly (15} [16). A method proposed by Zhang, et al.
(17) 1s to utilize soft matter to assemble nanoparticles by functionalizing the nanoparticles
with a small number of polymeric tethers, creating “tethered nanoparticles.” This scheme
relies on the thermodynamic immiscibility between nanoparticle and tether to facilitate the
assembly of the nanoparticles; the resulting structure is heavily influenced by the geometry
of the nanoparticle, location of the tether attachment, and various properties of the tether, e.g.
molecular weight. Due to the immiscibility and geometric constraints, tethered nanoparticles
constitute a new class of macromolecules referred to as “shape amphiphiles” (18)). Roughly
speaking, tethered nano building blocks share many features with block copolymers and
surfactants—each are composed of two or more immiscible blocks bonded together. It may
therefore be expected that the microphases created by these tethered nanoparticle systems
are governed by similar physics where systems seek to minimize their free energy by aggre-
gating with like species (17) (see section [2.I). Unlike traditional amphiphiles, the “head”
group of a shape amphiphile has a large excluded volume and distinct geometry, which may

heavily influence and even provide control over the self-assembly process.

1.2 Overview

In this thesis the role of immiscibility, nanoparticle geometry, and tether placement for
tethered nanoparticles is investigated with an emphasis on making comparisons with other
amphiphiles such as surfactants, diblock copolymers, and linear and star triblock copolymers.
The objectives of this work are to elucidate the key parameters that control the self-assembly
of polymer tethered shape amphiphiles and explore the vast parameter space of possible
structures.

Chapter [I] provides motivation for carrying out the research within this thesis. Chapter 2]
provides background on amphiphiles, nanoparticles, and the use of polymers to guide the
self-assembly of nanoparticles.

Chapter@ describes the simulation models, Brownian dynamics simulation method and
general simulation procedure utilized.

Chapter [ discusses the key analysis routines developed and applied throughout the
course of this dissertation. These methods include (1) the Ry/m method for determining

local structure, (2) a method for calculating the center-of-mass based on image process-



ing techniques, and (3) the bond order diagram method used to characterize crystalline
structures.

Chapter [5]discusses the self-asembly of mono-tethered nanospheres. The temperature
verses volume fraction phase behavior is investigated as a function of nanosphere diameter
and solvent selectivity. We find a variety of bulk ordered structures including lamella,
perforated lamella, the double gyroid, hexagonally packed cylinders, and ordered spherical
micelles. We also compare our results with surfactants and present a rough mapping between
model tethered nanospheres and surfactants. Additionally, we explore the local structure
of the nanospheres finding a distinct icosahedral ordering under certain conditions. We
investigate how local structure is related to the microphase ordering of the system.

Chapter [6] explores the double gyroid structure formed by both mono-tethered
nanospheres and mono-tethered nanorods. We develop a relationship for the Flory-Huggins
x parameter to allow for the direct comparison between mono-tethered nanospheres, mono-
tethered nanorods, and surfactants/diblock copolymers. We discuss the stability of the
double gyroid structure as it relates to void fraction and packing frustration. We additionally
calculate the local structure of the nanospheres and nanorods, in both cases finding a trend
towards the formation of dense, minimal energy configurations.

Chapter [/|examines the ordering present in a system of spherical micelles formed by
mono-tethered nanospheres in selective solvent. We present results that demonstrate or-
dering reminiscent of a dodecagonal quasicrystal and compare with a known quasicrystal
forming system. We also present a simplified model of the system to explain this ordering.

Chapter [§ explores the phase behavior of di-tethered nanospheres. We present the phase
behavior under melt-like conditions as a function of temperature, nanosphere diameter, and
the planar angle separating the two tethers. We find a variety of phases reminiscent of
triblock copolymers, including lamella, the alternating gyroid, alternating diamond, and
alternating tetragonally ordered cylinders. We also find two novel phases, namely NaCl
ordered spherical micelles with a complementary simple cubic network of nanospheres and
zincblende (binary diamond) ordered spherical micelles with a complementary diamond net-
work of nanospheres. We also explore the temperature verses block fraction phase behavior
under melt like conditions to understand how asymmetry impacts the phase behavior.

Chapter [9] summarizes the important results and contributions of this work. Additionally,

a short discussion of the future direction of this research is presented.



Chapter 2
Background

2.1 Amphiphiles

It is well known that certain molecules are water soluble and effectively repel each other in
water, preferring to maximize their contact with water rather than each other. In contrast,
hydrophobic molecules exhibit an effective attraction when in water and tend to minimize
their contact with water by aggregating. If we consider a simple case where equal amounts
of A and B particles are mixed in water (A being hydrophobic and B hydrophilic), the result
will be a macrophase separated system. In the macrophase separated system, most of the A
particles will reside on one side of the box and most B particles will reside on the other. If
the A and B particles were instead linked together they can no longer macrophase separate,
but instead must microphase separate. The resulting microphase separated structure will be
a compromise between the desire of A to minimize contact with water and B to maximize
contact with water. Bonding two immiscible blocks together results in what is termed an
amphiphile. The degree of miscibility or immiscibility of the two ends of an amphiphile
causes the building block to form a variety of structures, referred to by Tanford (19) as
micelles. The general class of micelles includes many structures such as spherical micelles,
bilayers, vesicles (20), oblate and prolate ellipsoids, and long cylinders (19).

Surfactants and block copolymers are common examples of amphiphilic molecules. Sur-
factants are generally made of a lyophilic (hydrophobic) species and a hydrophilic species
that are chemically bonded together. Typically the lyophilic group (referred to as the tail) is
a slender hydrocarbon chain with length of 8-20 units, and the hydrophobic group (referred
to as the head) is usually a short and bulky chain (21). Block copolymers — materials with
two more distinct monomer species — can be thought of as a more general classification of a
surfactant. A typical phase diagram for surfactants or diblock copolymers (i.e. molecules
made of two immiscible blocks) has several distinct regions; depending on concentra-
tion and/or relative size of the blocks one observes spherical micelles, wormy micelles,
hexagonally packed cylinders, the double gyroid, and lamellar sheets (215 225 235 245 25).



However, there can be much richness added to the typical phase diagram, such as BCC
ordered micelles (215 23} 25) or other bicontinuous structures (e.g. double diamond and
plumber’s nightmare)(26), depending on the relative size and interactions between the blocks
or interaction with excess monomer in the system.

Triblock copolymers are another specific instance of a block copolymer where three
distinct, immiscible blocks are joined together. Triblock copolymers can be joined together
in a linear fashion, referred to as a linear triblock copolymer, or joined to a central location,
referred to as a star triblock copolymer. Linear triblock copolymers have a richer phase
behavior than diblock copolymers and are known to self-assemble into phases such as
lamella (27), alternating diamond (28; 29;30)), alternating gyroid (27), alternating tetragonal
cylinders (275 130), and alternating spherical micelles that arrange in a CsCl structure (27; 30).
Star triblock copolymers organize into a variety of complex phases including lamella perfo-
rated with spherical micelles (31)) and alternating cylinders in a [6,6,6] Archimedean tiling
(31). Mixtures of ABC star triblock copolymers and homopolymers have been shown to
form cylinders that display quasicrystalline ordering (32) and ZnS (binary diamond) ordered
spherical micelles (33).

Surfactants and diblock copolymers are in many ways similar to some of the simpler
cases of tethered nanoparticles, such as mono-tethered nanospheres and mono-tethered
nanorods. Both surfactants and the tethered nanoparticle systems have a distinct head and
tail group that are immiscible. Similarly, triblock copolymers share many features with

di-tethered nanoparticles (i.e. they are composed of three immiscible blocks).

2.2 Nanoparticles

In the last fifteen years, the catalog of nanoparticles of various shape, size, and composition
(345 125 1355 1365 1375 165 115 1385 155 1395 1405 13; 41) has grown dramatically. These include, but
are not limited to, metallic and semiconductor nanospheres (1)), nanorods (2), nanocubes
(3), multipods (6} 42), and nanoplates (4} 5). Molecular nanoparticles of interest include
carbon fullerenes (38} 43)), porphyrin squares (44), and polyhedral oligomeric silsesquioxane
(POSS) cages (45;46).

Generally, the synthesis of metallic nanoparticles in solution is accomplished by means
of a reduction reaction. A salt solution containing a given metal is mixed with a reduc-
ing agent and a stabilizer (capping agent). A typical reaction for the synthesis of gold

nanoparticles is as follows (47):

H,0,100°C
—_

H,AuCly + C;OH(COOH)3 Citrate capped gold nanoparticle



It has been shown by Sun and Xia that a decrease in salt concentration may result in a
change in the shape of the aggregate. They observed that by decreasing the salt concentration
for a gold system wires formed rather than cubes (40). Carotenuto and Nicolais showed
that decreasing the concentration of the reducing agent resulted in a decrease in particle
size (48). Solvent interactions, specifically solvent-philicity and phobicity, are inherited
from the terminating groups on the stabilizing polymer/capping agent, and can therefore be
modified. The composition of the nanoparticle (species and crystallinity), may influence the
range/shape of particle-particle interaction (49) or result in a dipole moment (50). There
are other variables that affect the formation of nanoparticles, but by changing only a few
parameters, much about a nanoparticles geometry and interaction can be modified and even
tuned. Based on how nanoparticles are synthesized and stabilized, they lend themselves

readily to functionalization by polymeric materials.

2.3 Polymer-mediated self-assembly of nanoparticles

Polymers have been shown to act as a means to guide the self-assembly of nanoparticles
into ordered aggregates (31511551525 1535 154). Typically in these systems, nanoparticles are
coated with a large number of polymers with desirable interactions. For example, one of the
first proof-of-concept studies showed that coatings of synthetic polymers could be used to
control interparticle spacing between gold nanospheres and also facilitate the aggregation
of gold nanospheres into larger spherical aggregates (51). Other early work showed that
biopolymers, specifically DNA, can be used to create networks of nanoparticles with lock-
and-key interaction specificity in a reversible manner (15)); the reversibility and lock-and-key
functionality is currently being utilized in biosensing applications (135). More recent work
has explored using the specific interactions of DNA to allow for dynamic crystallization,
e.g. controlling lattice parameters and degree crystallinity by changing the type of linker

molecules added to the system (55)).

2.4 Polymer-tethered self-assembly of nanoparticles

Functionalization of nanoparticles with a small number of oligomeric or polymeric tethers
is a novel strategy to induce the self-assembly of nano particles in a predictable and con-
trollable manner. This method is similar to polymer-mediated self assembly, discussed in
section [2.3] however it typically involves only attaching a countable number of polymers to

a nanoparticle (e.g. one to ten), creating a building block with many levels of anisotropy.



Recent advances in synthesis techniques are providing ever-increasing control over the
ability to attach a small number of tethers to specific locations on the surfaces of nanopar-
ticles creating shape amphiphiles with both controllable nanoparticle geometry and tether
placement. Prototypical examples of experimentally synthesized tethered nanoparticles
includes mono-tethered spheres(56; 157; 58; 1595 160; 1615 162), ditethered spheres (345 163),
tethered rods (64)), and tethered cubes (45} 465 65)).

2.4.1 Experimental studies of tethered nanoparticles

There have been many studies in the literature looking at the assembly of tethered nanopar-
ticles. For example Song and coworkers created single and double Buckyball-capped
poly(ethylene oxide) (PEO) tethers, finding that the single-capped PEO tethers formed larger
aggregates than the double-capped tethers. Buckyball-capped tethers also formed larger
aggregates than paraffin-capped tethers which was postulated to be a result of the Buckyballs
being more hydrophobic than the paraffins (56). This study demonstrates that tether and
solvent conditions can be used to moderate and potentially control the self-assembly and
aggregation of nanoparticles. However, it also shows the lack of a priori predictability; Song
et al. lacked a definitive theory or framework to understand tethered assembly or to elucidate
the impact of geometry, tethering, or other thermodynamic parameters.

Similar work by Kim, et al. looked at mono-tethered nanospheres, where the sphere
portion was composed of one end of a collapsed diblock copolymer. Changing from a linear
chain to a tethered sphere was shown to change the morphology from spherical micelles
to wormy cylindrical micelles (61). Again, this study shows the control that geometry can
have on structure, but also the lack of predictability when geometric changes are made to
shape amphiphiles.

Westenhoff and Kotov created a network of quantum dots on “ropes,” where cadium
telluride (CdTe) nanoparticles were tethered to a polyelectrolyte film by anionic polyethy-
lene glycol (PEG) tethers. The relative distance between the quantum dot and the film was
controlled by changing the solvent quality, which was used to change the luminescence (38).

There are many other proof of concept studies related to the synthesis and assembly of
tethered nanoparticles. Di-tethered gold nanospheres have been shown to form ring-like
structures (34). Recent work by DeVries, et al. showed that two polymeric tethers attached to
the poles of gold nanospheres can be used to promote the formation of chain like aggregates
(63). End-tethered nanorods have also been shown to form chain aggregates (64)). These
examples of tethered nanoparticles serve as a proof of concept and represent substantial

progress toward realizing shape amphiphiles with specific geometry and structure.



2.4.2 Simulation studies of tethered nanoparticles

Zhang, et al. (17) were first to perform a simulation study of tethered nanoparticles broadly
exploring the role of nanoparticle shape, number of tethers, tether location, and solvent
selectivity. Specifically, they studied several statepoints of disks with tethers attached either
equatorially or on the faces, mono- and di-tethered spheres, triangular plates with tethers
attached at the vertices, and end-tethered rods (17). In the study of tethered disks, it was
observed that for certain temperature ranges the disks form hexagonally packed colum-
nar structures when the tethers are bonded equatorially to the disks and sheets when the
tethers are attached to opposite faces. In the study of di-tethered spheres, the nanospheres
self-assembled into cylindrical shells, spherical shells, or mono-layers depending on the
tether length and system temperature. In the study of mono-tethered spheres, it was found
that switching the solvent selectivity from being poor for the tether to good for the tether
resulted in a change from self-assembled micelles to bilayer sheets. Further it was predicted
that unlike in surfactants and flexible diblock copolymers, the rigidity of a nanorod in
a tethered nanorod system induces liquid crystalline ordering, forming a lamellar smec-
tic C structure. A host of other studies have been undertaken looking at mono-tethered
nanospheres(66; 67;168;169), di-tethered nanospheres (70; /1)), tethered rods (72} 735 [74; 168)),
tethered POSS cubes(75; [76; [77), and tethered Vs (/8)); many of these studies will be

discussed in detail in the following chapters.

2.5 Acxes of anisotropy

A first step to understanding the self-assembly of tethered nanoparticles is to understand the
various levels of anisotropy inherent to the building blocks. Anisotropy can manifest itself
in many ways; the most obvious place it appears is within the shape of the nanoparticle. For
example, we would expect that a tethered nanorod would adopt different local packing than
a tethered nanosphere as a result of the different shape of the nanoparticle. More subtle
anisotropy arises as a result of the number of tethers, length of the tether, location of tether,
and specificity of interactions. For example, we expect the structure formed by a di-tethered
nanosphere would be heavily dependent on the relative location of the two tethers, e.g.
diametrically opposed verses attached to the same location. In reference (18) we classified
several key axes of anisotropy for tethered nanoparticles, as shown in figure 2.1] In figure
[2.1] axis A classifies the number of tethers attached to the nanoparticle and axis B classifies
the relative length of the tether, which both can be varied independently. Axis C refers to the

nanoparticle shape, arising form the number of vertices, and as previously mentioned, may
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Figure 2.1 Classification of tethered nanoparticle “shape amphiphiles” anistropy. Various building
blocks are classified according to a particular measuresof anisotropy: (a) Number of tethers, (b)
relative length of tether/relative size of nanoparticle, (¢) Number of nano particle vertices, (d) Relative
location of tethers, (e) Tether interaction specificity. This is only a subset of possible axes and subset
of possible combination of axes. Complex anistropies can be described by a combination of more
simple dimensions. Reproduced from reference (18)

have a large impact on the local crystalline and liquid crystalline packing of the nanoparticles.
Axis D classifies the placement of the tethers on the nanoparticle; the location of the tethers
may strongly impact the directionality of the tether-tether interactions. Axis E refers to the
specificity of the tether-tether interaction, ranging from a homopolymer to lock-and-key
specificity of DNA. Experiments within this thesis were conducted to conform with the axes
of anisotropy in figure [2.1]to elucidate the role of relative nanoparticle size, nanoparticle

geometry, tether location, and tether interaction.



Chapter 3

Simulation models and methodology

3.1 Simulation models

To study tethered nanoparticles, we consider a general class of tethered nanoparticles rather
than any one specific system and use empirical pair potentials that have been successful in
the study of block copolymers and surfactants (79)). We utilize minimal models that capture
the essential physics of the problem. Specifically our model is designed to capture:
geometry of the nanoparticle

immiscibility between tethers and nanoparticles

flexibility of the polymer tethers
attachment location of the tether(s) on the nanoparticle

In this thesis, we examine the phase behavior of mono- and di- tethered nanospheres
and compare with tethered nanorods, diblock copolymers and surfactants. We utilize
short-ranged Lennard-Jones-like potentials to model the interactions between the individual
components in our system. In our studies, we incorporate amphiphilicity through solvent
selectivity. Solvent selectivity is modeled by treating “solvent-phobic” and “solvent-philic”
beads with different potentials. To model attractive, solvent-phobic interactions, we utilize a

shifted form of the Lennard-Jones (LJ) potential, given by:

put P
ot - { (=7
0, r—0 2 Few

>_Ushifta r—0 <Tey 3.1

where € is the attractive well depth, Uy is the energy at the cutoff, and re, = 2.50.
The parameter « is used to shift the interaction to the surface of a bead with radius larger
than o to properly account for excluded volume, such as for our model nanospheres. « is
determined by calculating & = (D; — ) /24 (D; —0)/2, where D; and D are the diameters
of our two interacting particles. This calculation effectively creates a system where there is

a “ghost” particle with diameter o at the surface of our larger particles. It is important to
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Figure 3.1 Plot of the Lennard-Jones (LJ) potential and Weeks-Chandler-Andersen (WCA) poten-
tial.

note that when the diameters of our two particles are o, o reduce to 0.

To capture non-attractive, solvent-philic interactions, we utilize the purely-repulsive
Weeks-Chandler-Andersen (WCA) potential which captures excluded volume and very short
ranged-repulsion. The WCA potential can be described by the LJ equation (eqn. [3.1), with
Usnifr = € and reyy = 21/65. Under neutral or melt-like solvent conditions, all like species
are modeled using the LJ potential and all dislike species are modeled using the WCA
potential.

The connectivity between beads is modeled using finitely extensible non-linear elastic
(FENE) springs(80). The FENE spring is given by:

2
Uppne(r) = —%kR%ln [1 . (r; a) ] 3.2)

o

where k is the spring constant, R, is the maximum allowable separation, and « is the same
shifting parameter described above. The FENE spring has a maximum separation preventing
unphysical chain crossings. Within this thesis, all systems utilizing the FENE interaction
have k=30 and R,= 1.5. In select cases, such as setting the planar angle in di-tethered
nanospheres (discussed in chapter [§] and below), harmonic springs are used. The harmonic
spring is given by:

1
Uharmonic(r) = _Ek(r_Ro)z 3.3)
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Figure 3.2 (a) Schematic of a mono-tethered nanosphere, (b) schematic of a di-tethered nanosphere
(¢) schematic of a flexible amphiphile, and (d) schematic of a tethered nanorod. Representative labels
of the connectivity used are labeled in the figures.

where the spring constant, k=30 and R, is the equilibrium separation.

Our basic model of a mono-tethered nanosphere consists of a sphere of diameter D
connected via a FENE spring to an N-bead polymer chain, where FENE springs are also
used to model the connectivity between beads in chain; a schematic of this building block is
shown in figure [3.2a. The amphiphilic interactions between individual beads are governed
by solvent-selectivity discussed above. Di-tethered nanospheres are modeled similarly, but
instead two polymer tethers are attached with FENE springs to our nanosphere. The angle
between the two polymer tethers is controlled by using a harmonic spring between the
first beads of the tethers, as shown in figure [3.2b. Diblock copolymers and surfactants are
modeled as two FENE polymer chains of length N4 and Np connected together by a FENE
spring, as shown in figure 3.2c. Tethered nanorods are modeled in a similar fashion to
diblock copolymers, however one block is composed of a rigid collection of beads, as shown
in[3.2d. The specific individual models used are discussed in their corresponding sections.

The natural units of these systems are: o, the diameter of a tether bead; m, the mass
of a tether bead; and €, the Lennard-Jones well depth. Bulk system volume fraction, ¢, is
defined as the ratio of volume of the beads to the system volume, the dimensionless time
is t*=0+/m/€, and the degree of immiscibility and solvent quality are determined by the

inverse temperature, 1/7*% = € /kpT .
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3.2 Brownian dynamics method

There are several computational methods that can be employed to study the self-assembly
and phase behavior of tethered nanoparticle and polymeric systems. These methods include
Brownian dynamics (BD), molecular dynamics (MD), dissipative particle dynamics (DPD),
and Monte Carlo (MC). BD was chosen over the other methods for several reasons. First,
BD allows for longer timescales than MD by eliminating the need to explicitly model
solvent particles; the dissipative and random forces inherent in BD implicitly include solvent
effects and also allow for larger timesteps. DPD is a mesoscale method that allows for even
longer timescales than BD, however, this gain comes at a price. In DPD, beads represent
fluid elements and all interactions are treated with short-ranged, soft, repulsive interactions
that allow particles to pass through each other—since particles can pass through each other,
capturing the geometry and excluded volume of a nanoparticle is a challenge. Many of our
studies are conducted at high density states, making an off-lattice MC method potentially
slow to explore phase space. Lattice-based MC simulations perform better at high density
states, however, the lattice may be incapable of properly capturing the geometry of our
nanoparticles.

To properly include nanoparticle geometry and allow for the realization of longer time
scales and larger number of tether nanoparticles, surfactants, and block copolymers, we
utilize the BD method. As shown by reference (80; 1815 82), BD is capable of capturing the
appropriate details of the simulations for surfactants and block copolymers, while making
the simulations less computationally expensive. BD is a subset of Langevin dynamics

wherein the trajectory of each “bead” is governed by the Langevin equation:

mi¥(t) = F (ri(t)) + FR(£) — yvilt) (3.4)

where m;, r;, v;, FlC Ff and 7; correspond to the mass, position, velocity, conservative force,
random force, and friction coefficient of bead i, respectively (80). We assume that there are
no spatial or temporal fluctuations in the friction coefficient and fix % = 1.0 which limits the
range of ballistic motion of a bead to approximately 1.06. The random force is independent

of the conservative force and satisfies the fluctuation-dissipation theorem:

(Ffi(1)) =0

(B ()P (1)) = 674578, (1 ) G

The friction coefficient and random force act as a non-momentum-conserving heat bath;
the combination of these two terms helps to minimize numerical roundoff errors that can

occur over long simulations runs. The stationary solution of the Langevin equation is the
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Boltzmann distribution and therefore BD samples the canonical (NVT) ensemble. In our
simulations, solvent particles are not explicitly included; however, the frictional and random
forces in the Langevin equation help to implicitly account for some of the effects of solvent
(e.g. random bombardment and viscosity). It is important to note that BD does not include
hydrodynamic interactions, however, we showed that this is unimportant to the resulting
equilibrium morphology or the time to order for block copolymer systems in reference (72)).

Particle beads are advanced through time using the leapfrog algorithm (83). A timestep
of A t=0.01 1s utilized for almost all tethered systems; high temperature and high density
often required a smaller timesteps, with A t=0.005. For studies of linear nanorod building
blocks, the equations of rotational motion of linear are objects are implemented to properly

account for rotational degrees of freedom (84)).

3.2.1 General simulation procedure

We employ a similar simulation procedure for most of the systems simulated in this dis-
sertation. First, individual building blocks are initialized on a simple cubic lattice within
the simulation box. Individual bead-bead interactions are treated using the purely repulsive
WCA potential. This allows the system to melt off the lattice and become well mixed without
a strong desire to phase separate; alternatively this can be thought of as equivalent to running
at high temperature, well above the order-disorder transition. After this initialization stage,
bead-bead interactions are set to their prescribed potentials. The system is then incrementally
cooled. For each temperature, the system is allowed to run for several million time steps,
allowing it to reach equilibrium at that statepoint. The potential energy is monitored and
allowed to fully reach a minimum to help ensure that equilibrium is reached.

Simulation caveats

This simulation procedure does not completely ensure that a global minimum in the free
energy landscape is achieved, but rather only that a low-energy, local minimum is achieved.
To help ensure that we have reached a global equilibrium and not just a metastable state,
we perform multiple, independent cooling sequences to establish path independence and
reproducibility of our results. By performing several independent runs we decrease the
likelihood of exploring the same regions of phase space. Since we often perform a series of
simulations as a function of, for instance, volume fraction, we can gain additional confidence
in our results by considering our closely related neighboring phases.

Additionally, we typically perform simulations at multiple system sizes to ensure that
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our structures are not a result of finite size effects. Phases that are triply periodic (e.g. BCC
ordered micelles and the double gyroid network) are particularly sensitive to box size, requir-
ing a system size that is commensurate with the periodic spacing of the structure. Performing
simulations that include multiple unit cells in each direction often avoids many of the box
size issues associated with small systems, however such systems may be computationally
intractable.

Systems with 2D periodicity (e.g. hexagonally packed cylinders) or 1D periodicity (e.g.
lamellar sheets) can orient themselves within the box to find the appropriate spacing under
most conditions. In these cases, the structures do not form parallel to any of the principle
axes in the system. Care should be taken if the structure is oriented in the box such that
its periodic direction(s) are oriented along the largest direction(s) (i.e. the diagonal(s) of
the box). This condition suggests that the structure requires a larger periodic spacing than
the box can accommodate and as such, larger systems should be explored; this does not
necessarily mean that the bulk classification of the structure is wrong, but rather that the
potential energy, order-disorder transtion, and periodic spacing may not be correct. Two
commonly encountered situations occur when the normal of a lamellar sheet is parallel to
the diagonal of the cubic simulation box and when the long axis of a cylinder is parallel to
the diagonal of the cubic simulation box. Additionally, this behavior can be evaluated by
calculating the stress tensor and comparing the values of the diagonal components; if the
diagonal components of the stress tensor are not approximately equal, the system is likely to
be experiencing finite size effects.

The box length search algorithm developed by Schultz, et al. (85) has been successfully
used to orient 1D and 2D structures along the principle axes of the simulation box by distort-
ing the simulation box shape so as to equalize the pressure in each direction. However, it is
often easier to manually calculate the approximate periodic spacing of a non-aligned system
and adjust the system size appropriately in a separate simulation to achieve alignment with

the principle axes.
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Chapter 4
Analysis methods

To analyze the results of the simulations presented in this thesis, we utilize a variety of anal-
ysis techniques. In this chapter we discuss novel analysis methods developed and applied in
this dissertation. In section we discuss the Ry;,, method based on spherical harmonics
that we developed in references (675 68). The R,;,, method is used to determine the local
structure of particle aggregates. In section .2] we outline a method for calculating the center
of mass of spherical aggregates utilized in references (71; [86)) that is an extension of an
image processing technique typically used in the colloidal community. In section 4.3] we
discuss the bond order diagram used to determine the structure of bulk crystalline materials

utilized in references (715 86). Other common analysis methods utilized are discussed in
Appendix

41 R,;, method

The structures formed by tethered nanoparticles often contain multiple levels of ordering.
Within these structures, nanoparticles and micellar aggregates typically adopt ordered lo-
cal configurations that we would like to identify and quantify. In references (67; 68) we
introduced the R,;,, method based on spherical harmonics (87) to determine the structure of
nanoparticles/micelles. The general R;,, method relies on creating a rotationally invariant
spherical harmonic “fingerprint” of a structure and using a matching metric to determine the
best match from a library of known structures.

The first step in this procedure is to determine our nearest neighbors. We use a simple
cutoff based procedure (e.g. any particles that are closer than the cutoff are neighbors). The
cutoff is set such that it encompassed the first peak of the pair correlation function, g(r).
Note that since our systems utilize periodic boundary conditions we use the minimum image
convention to construct our clusters. Next we calculate the spherical harmonics fingerprint.
To calculate the fingerprint, we first calculate ¢’ by summing over all nearest neighbor

directions between particles:
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» L
g0 = A Yo [6(:)).0 (1),

where 7; ; is the vector drawn from particle i to its nearest neighbor j, N, is the total number
of neighbors, £ is the specific harmonic, and Yy, is the spherical harmonic expansion (87)).
From this we can construct two rotationally invariant measures of cluster shape, Qy, the
vector magnitude of gj’, and wy, the rotationally invariant combination of the average values
of g;' (87). As defined by Steinhardt, ez al. :
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where ( ) is the Wigner 3j symbol(87).

Our fingerprint is composed of the Qy and wy values for [ = 4, 6,...12. Table 4.1/ shows
fingerprints of some commonly found structures, including BCC, FCC, HCP, and an icosa-
hedron. To determine our local configuration, the residual value with respect to a library of

known structures with matching coordination is calculated (67)):

R; = \/ Y12, (0 - Qreﬁ)2 + X124 (i — Wreff)z'

A particle is considered to be in the local configuration i that minimizes the residual R;.
Since there is no way to construct a disordered configuration, a particle is considered to be
disordered if the residual value exceeds a certain cutoff. The value of the residual cutoff is
a subjective measure of how much disorder we are willing to accept in our configuration;
a small value of the residual cutoff will make the structure classification more sensitive to
thermal disorder.

The Ry, method is well suited to accurately identify particle configurations as it pro-
vides a rotationally invariant description of a local structure and does not rely on multiple
cutoff values to determine the configuration, minimizing potential error. Additionally, this
metric relies on a variety of harmonics, not just one or two, allowing for better differentiation
between structures. This method also has the advantage that we can evaluate a match with
any arbitrary structure, not just mathematically perfect ones. This allows us to compare with

non-ideal structures, such as an icosahedron missing particles, as we do in chapters |5 and [6]
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Table 4.1 Common spherical harmonics fingerprints. Note that BCC, FCC and HCP are mathemat-
ically perfect structures, while the icosahedra (Z12) is a thermally cluster from simulation.

Q4 Q6 Q8 Q10  QIl2 w4 wb w8 wl0 wl2

BCC 0.036 0.511 0.429 0.195 0405 0.159 0.013 0.058 -0.090 -0.050
FCC 0.191 0.575 0.404 0.013 0.600 -0.159 -0.013 0.058 -0.090 0.087
HCP 0.097 0485 0.317 0.010 0.565 0.134 -0.012 0.051 -0.080 0.095
Z12 0.028 0.653 0.052 0.355 0.555 -0.036 -0.169 0.007 -0.090 0.096

It should be noted that this method is only as good as the library of known structures. It
is impossible to determine a match that is absent from the library. Thus it is important to

have a robust library of possible structures to avoid making erroneous structure assignments.

4.1.1 Average descriptors

Rather than matching the ylm fingerprint of individual clusters, we can average together
the individual fingerprints to create a single fingerprint that describes the system (i.e. an
average descriptor). This average descriptor can then be compared with a reference library
to determine the average order of a system.

Alternatively, we can compare the average descriptor to a single descriptor of another
system or another point in time, providing us an easy to construct order parameter. This is
particularly useful for comparing the evolution of periodic structures. An average descriptor

order parameter is used in chapter

4.2 Center of mass calculation

To analyze and classify spherical micelle structures it is often necessary to locate the center
of mass of each micelle. The center of mass is often calculated using a recursive neighboring
routine. A recursive technique can be computationally expensive and has the additional
drawback that it requires the micelles be well spaced. If micelles are not well spaced, two
neighboring micelles may be incorrectly considered a single micelle. Another common
technique is to calculate the Fourier transform of the system in 3-d followed by the inverse
transform of the main peaks. This technique works well, but requires that micelles are
arranged in a periodic crystal; this method would not work for a system of disordered

spherical micelles or in quasicrystalline materials that lack translational symmetry.

18



To approximate the center of mass we modified an image processing technique that is
typically used to identify the center of colloidal particles from microscopy data, developed
by Crocker and Grier (88) and later extended to 3D systems by Varadan and Solomon (89)
. This technique only requires that the micelles are roughly monodisperse in diameter. In
this method, we start by constructing a density profile of the system by creating a 3-d grid
of cubic cells and calculating the number of particles in each cell (i.e. we convert our
position data to voxels). We then apply a 3-d Gaussian filter to the density data where the
diameter of the filter corresponds to the approximate diameter of the spherical micelles.
This weights the center of a spherical object greater than the edges. It is important to note
that any filter that associates a high weight to the center should work for this application.
We then calculate the cell with the highest weighted value in each region, where a region is
defined by the approximate diameter of the micelles. This calculation produces a set of cells
that correspond to the centers of mass of the micelles in the system. A schematic of this

method applied to a 1-d density profile is shown in figure @.1]

a bl l l

Figure 4.1 (a) 1-d example of a density profile. (b) The density profile shown in a processed with
a Gaussian filter. The arrows indicate the local maximum that are identified as micelle centers of
mass.

Accuracy of this calculation can be increased by using many closely spaced snapshots to
construct the density profile, e.g. using 50 snapshots spaced 50 timesteps apart to average
over the time-dependent shape of the micelles. It is important to make sure that the snapshots
occur in a small enough time window that the bulk structure is still correlated.

To avoid artifacts of the size of the grid (i.e. locations that are integer multiples of grid
size), several different methods can be used. The simplest method is to use a small grid
size to better approximate a continuous density profile. However, as the grid size becomes
smaller than the characteristic dimension (i.e. size of the smallest particle), it is necessary to
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create the density profile using multiple snapshots, to avoid having “holes” (i.e. empty cells)
within the micelles. In general, the more snapshots averaged over, the smaller the grid size
that can be used. Another method to avoid artifacts requires calculating the centroid around
each center-of-mass cell, as is typically done in colloidal applications (88). Additionally,
performing the calculation at different grid sizes and averaging together the results should
also avoid artifacts; note that either cell positions or centroid data can be averaged together

to improve accuracy.

4.3 Bond order diagram

To identify orientational order, we utilize the bond order diagram (BOD). The BOD shows
the directions of all vectors drawn from a particle or micelle to neighboring particles/micelles
projected on the surface of a sphere, creating an “average” picture of the orientational order
in the system. Systems that have highly correlated neighbor directions (e.g. bulk crystalline
materials) will show distinct groupings of points on the surface of the sphere, as shown in
figure 4.2pa. In contrast, a disordered system will appear as points randomly distributed on

the surface, as shown in figure .2p.

Figure 4.2 (a) BOD of a BCC crystal showing distinct groupings of points on the surface of the
sphere. (b) BOD of a disordered liquid.

To calculate the BOD, we first must create clusters of particles containing neighbors.
In principle, the BOD can be constructed with any number of neighboring shells (i.e. first,
second, third, etc.) on a single diagram or separate diagrams. In the application of the BOD

in this thesis, we utilize only the first neighbor shell (i.e. nearest neighbors). Particles are
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clustered using the same scheme employed in the Ry/m method (see section#.T)) where two
particles within a certain cutoff are considered to be neighbors; the cutoff is chosen such that
it includes the first peak of the pair correlation function, g(r). Note that since our systems
utilize periodic boundary conditions we use the minimum image convention to construct our
clusters. Once the nearest neighbors are determined, each cluster is translated to the origin,
and the distances between the center particle and neighboring particles are normalized to
unity.

It is important to note that the bond order diagram is rotationally dependent; if direct
comparisons are going to be made between a two systems, care should be taken to properly
orient the two BODs. Alternatively, this information can be presented in the form of a
histogram on the surface of a sphere (commonly known as the shape histogram (90)). A
histogram will properly weight each region of the sphere, making areas with highly corre-
lated bond angles more apparent and suppressing thermal noise. However, in most cases,

the calculation of the shape histogram is not necessary.
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Chapter 5
Mono-tethered nanospheres

One of the simplest examples of a tethered nanoparticle is the mono-tethered nanosphere.
Mono-tethered nanospheres are composed of a single polymer tether attached to the surface
of a uniform spherical nanoparticle. This building block can be thought of as replacing
the headgroup of a surfactant, or alternatively replacing one of the blocks of a diblock
copolymer, with a large sphere. Due to the architectural similarities with surfactants and
diblock copolymers, we expect mono-tethered nanospheres to exhibit similar morphologies
and phase behavior trends. In this chapter we investigate the behavior of a model system
of mono-tethered nanoparticles to 1) predict the possible morphologies, 2) understand the
similarities and differences with flexible amphiphiles, and 3) create a datum for future
studies of tethered nanoparticle shape amphiphiles. In particular, we are interested in the
extent to which a tethered nanosphere qualitatively behaves like a traditional surfactant
molecule. We first investigate a system where the solvent is good for the nanoparticle
(i.e. the tethers wish to aggregate). Within this context, we explore the role of volume
fraction, immiscibility, and nanoparticle diameter on the phase behavior and compare this
with surfactant systems. We predict that in contrast to flexible amphiphiles the nanospheres
are locally ordered and there is an increase in the local order with an increase in volume
fraction or relative nanoparticle diameter. We present the temperature vs volume fraction
phase diagram for a system of mono-tethered nanospheres and propose a dimensionless
scaling factor F, (headgroup volume/tether volume) that allows a comparison between the
morphologies formed from mono-tethered nanospheres and traditional surfactants. This
work is published in reference (66). We next investigate a system where the solvent is
poor for the nanosphere (i.e. the nanospheres wish to aggregate) and explore the role of
volume fraction, immiscibility, and confinement on the overall phase behavior. We show
that microphase separation of the immiscible tethers and nanospheres causes confinement
of the nanoparticles. We find a predominance towards icosahedral ordering between the
nanospheres for systems with 2D confinement, and crystalline ordering for systems with 1D

confinement. This work is published in reference (67).
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5.1 Phase behavior of tethered aggregating nanospheres

An impressive variety of nanoparticles of different materials and geometries has been synthe-
sized (1)), including but not limited to Au nanospheres (3451535 9151351355 139), Ag nanocubes
and polyhedra (415 36} 140), AI(OH)s platelets (92} 4), Ag (3;137) and Au (93)) triangles, etc
(15 385 16). This vast library of nanoparticles will provide the building blocks for tomorrows
materials (94) if they can be assembled from the “bottom up” into ordered arrays. Bottom-
up assembly provides an unprecedented number of opportunities for engineering novel
materials with specific physical properties. However, the size scale and potentially large
number of nanoparticles required to assemble macroscopic materials precludes mechanical
methods as a viable means for bottom-up assembly. Self-assembly is generally regarded
as a promising means to reliably facilitate the assembly of large numbers of nano building
blocks (NBBs) into desirable structures (11)), but a predictive theory of assembled phases
for nanoparticle systems is not yet in hand.

Functionalization of nanoparticles with a small number of oligomeric or polymeric
tethers (17) is a novel strategy to induce the self-assembly of NBBs in a predictable and
controllable manner. In this scheme, thermodynamic immiscibility between nanoparticle
and tether, induced by temperature, concentration, or solvent selectivity, facilitates assembly
and the building block topology and nanoparticle shape influence the structure formed by
the self-assembly process (17). To this extent, recent advances in synthesis techniques are
providing ever-increasing control over the size and shape of nanoparticles and it is now
possible to attach a small number of polymer tethers to specific locations on the surface of
the nanoparticles (335 54; 1525 1565 1575 158; 159; 160; 162), creating “shape amphiphiles™ (93))
with controlled topology. For example, Westenhoff and Kotov attached a single tether to the
surface of a CdTe quantum dot (58); Alivisatos and coworkers demonstrated their ability
to attach one, two, three, or more tethers to the surface of spherical, Au nanoparticles (96));
Stellacci and coworkers developed a technique that allows them to pattern the surface of
spherical, Au nanoparticles with rings of tethers (34)) or to attach diametrically opposing
carboxylic acid tethers to Au spheres (63)). These and other tethered nanoparticles (97) serve
as a proof of concept and represent substantial progress toward realizing NBBs with specific
geometry and topology. It may be expected that shape amphiphiles will self-assemble into
microphases similar to those observed in block copolymers (BCP) and surfactants and that
the underlying self-assembly process is governed by similar physics, whereby systems seek
to minimize their free energy through aggregation of like species. One distinct difference
between tethered NBBs and BCPs and surfactants is that the “head” groups of the NBBs are

rigid, resulting in a large excluded volume for which the effects on the self-assembly process
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are unclear. The overall concentration-dependent phase behavior of surfactant solutions has
been studied computationally via lattice and off-lattice Monte Carlo (MC) (98; [99), most
notably by Larson (22;23). Computational studies of surfactants using molecular and Brow-
nian dynamics methods have thus far been limited to small regions of the phase diagram
(8151825 1005 11015 1025 1035 79; 11045 [105). Recently, Bourov and Bhattacharya studied a
two- and three-dimensional system of surfactants with large head groups (100;[101). In their
study, they used a model and method similar to that proposed by Zhang, et al. (17) where
the surfactant was modeled as a large spherical particle permanently bonded to a flexible
chain. They showed the impact of head group size on the critical micelle concentration was
commensurate with experimental predictions. Since their work was limited to the study of
micelles (100; [101)) the effects of a large rigid head group on other phases was not reported.

We report such effects here.

5.1.1 The role of volume fraction, immiscibility, and nanoparticle di-
ameter

To explore the impact of nanoparticle diameter on the overall phase behavior of TNS, we
have conducted a series of studies where the length of the bead-spring tether is fixed and the
nanoparticle diameter is varied. Simulations are performed for a tether length of 8 beads of
diameter o and nanoparticle diameters of D = 1.56, 2.00, and 2.56. The nanospheres are
modeled as being in a good solvent and the tethers in a bad solvent. Thus, tethers aggregate
and are treated using the Lennard-Jones (LJ) potential and nanospheres are modeled using
the Weeks-Chandler-Andersen (WCA) potential, as discussed earlier in section [3.1} For
direct comparison to surfactant systems, we also study flexible chains of two head beads
(h2t8) and eight head beads (h8t8) all with tether length of 8 beads. Surfactant tails are
modeled as being in poor solvent, thus treated with the LJ potential, and head groups are
modeled as in good solvent, and thus treated with the WCA potential, as outlined in section
The method of Brownian dynamics (BD) is utilized, as discussed in section We
present a temperature vs. volume fraction phase diagram for a three-dimensional system
of TNS and compare the TNS phase diagram to that of surfactants. We further present a
“phase diagram” given by a scaling factor, (F,) = (head-group volume/tether volume), plotted
versus volume fraction (i.e. concentration), ¢. We predict the existence of three distinct
regimes in the phase behavior of TNS. The first regime is where the head group volume
is small compared to the tether volume and lamellar phases are predominant, the second
regime is where head-group and tether volumes are similar, resulting in a rich combination

of phases, and the third is where the head group volume is larger than the tether volume and
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Figure 5.1 Temperature vs. ¢ phase diagrams for h1t8 TNS systems, with schematic represen-
tations of simulated TNS displayed above diagrams. Data points indicate performed runs. Phases
are defined as lamellae (L), perforated lamellae through the head group (PLH), hexagonally packed
cylinders (H), perforated lamellae through tethers (PLT), cubic ordered spherical micelles (C). (a)
Phase diagram for TNS with particle diameter D = 1.50, (b) particle diameter D = 2.00, (c) particle
diameter D = 2.50. In (a-c), the phase boundaries are approximate and drawn as guides for the eye.
Reproduced from reference (66).

phases with high a high degree of curvature are dominant.

Nanoparticle volume smaller than tether volume

We predict for TNS with a nanoparticle diameter of D = 1.5¢ and a fully extended tether
length of 8¢ that the equilibrium structures are limited to sheet-like (lamellar) structures
over a wide range of concentrations, ¢ ~0.3-0.5, as shown in the phase diagram presented
in Figure[5.Ta. For ¢ ~0.3-0.35 we observe the formation of lamellar (L) sheets for tem-
peratures below the order-disorder temperature, Topr. For ¢ ~0.35-0.4, we observe the
formation of a perforated lamellar phase (PLH) for higher temperatures and the formation
of a lamellar phase for lower temperatures provided T<Top7r. For ¢ ~0.4-0.5, we predict
only the PLH phase, shown in Figures [5.2a-b. The PLH phase observed for the higher
volume fractions is limited to perforations through the layer formed by the head group;
in contrast, the inverse of this—the perforated lamella through the tether region (PLT)-is
typically reported for surfactant systems (shown in Figures [5.2k-d). For concentrations
outside those discussed above the system is either disordered or comprised of disordered

micelles.
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Figure 5.2 (a) Perforated lamella through the heads (PLH) for D = 1.50, ¢ =0.45, T*=1.0. (b) A
single sheet showing perforations as dotted in (a). (c¢) Perforated lamella through the tethers (PLT) for
D =250, ¢ =0.525, T* = 1.5. (d) A single sheet showing perforations as dotted in (d). Reproduced
from reference (66).

Nanoparticle volume as large as tether volume

For a nanoparticle diameter of D = 2.00 connected to a tether with a fully extended length
of 80, we observe the formation of hexagonally packed cylinders (H), lamellae (L), and
perforated lamellae (PLT), where the perforations are through the tether layers, as shown in
the phase diagram presented in Figure [5.1b. For ¢ ~0.25-0.35 we observe the formation of
the H phase (a simulation snapshot is shown in Figure[5.3j), for intermediate ¢ ~0.35-0.4
we observe the PLT phase, and for ¢ ~0.4-0.55, we observe the L phase (a simulation
snapshot is shown in Figure[5.3p). Here the volume of the head group is equivalent to the
volume of the tether and for most of the phase diagram sheet-like structures are favored.
However, in contrast to the case with the small head group we observe the formation of a

curved structure, the H phase, at lower concentrations.
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(d)

Figure 5.3 (a) Hexagonally packed cylinders (H) for D =2.00, ¢ = 0.3, T* = 1.0. (b) Lamellar
bilayers (L) for D =2.00, ¢ =0.55, T* = 1.8. (¢) Hexagonally packed cylinders (H) for D=2.50, ¢
=0.45, T* = 1.25. (d) Cubic ordered micelles for D =2.50, ¢ = 0.275, T* = 1.2. Reproduced from
reference (66).

Nanoparticle volume larger than tether volume

For a nanoparticle diameter D = 2.50 connected to a tether with a fully extended length
of 80, we observe the formation of cubic micelles (C), hexagonally packed cylinders (H),
lamellar (L), and perforated lamellar (PLT), where the perforations are through the tether
layers, as shown in the phase diagram presented in Figure[5.Ik. For this case, the head-group
volume is larger than the tether volume and we observe the formation of an additional
curved structure, cubically ordered micelles (C). A simulation snapshot of the cubically
ordered spherical micelle phase is shown in Figure [5.3d. We further observe that the curved
structures now dominate the majority of the phase diagram and that the only sheet-like

phase is limited to the PLT phase; simulation snapshots of the PLT phase are shown in
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Figure 5.4 (a) Radial distribution function, g(r), calculated for nanoparticles (headgroups) center-
to-center, for D = 1.50, ¢ = 0.3 and ¢ = 0.45, T* = 1.0. (b) g(r) for D =2.00, ¢ =0.3 and ¢ =0.45,
T* =1.0. (¢) g(r) for D=2.50, ¢ =0.3 and ¢ =0.45, T* = 1.0. Reproduced from reference (66).

Figure [5.2k-d. Here the H phase, shown in Figure [5.3f, is stabilized over a broad range
of concentrations, as compared to smaller head groups. As head group diameter is further
increased to 3.00, this trend towards increased curvature of the assembled mesophases

continues and the phase behavior is primarily limited to spherical micelles.

Discussion

We observe that as the nanoparticle increases in size relative to the size of the tether, sheet-

like structures are destabilized while structures with curved interfaces are stabilized. The
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Figure 5.5 A depiction of the impact of interface curvature on the effective volume for tethered
nanoparticles in three example mesophases observed. Reproduced from reference (66).

limiting case of TNS with a relatively small nanoparticle is restricted to sheet-like structures,
while the limiting case of a TNS with a relatively large head group is restricted to structures
with curved interfaces. For intermediate cases the phase diagram exhibits a combination of
curved and sheet-like structures. In all cases of nanoparticle size, we predict an increase
in the ordering of the nanoparticles (headgroups) with an increase in concentration of the
system; this trend is shown by the number and intensity of peaks of the radial distribu-
tion function as concentrations of ¢ = 0.3 and 0.45 are compared in Figure [5.4] As the
system concentration is increased, the structures tend toward sheet-like structures where
the nanoparticles arrange themselves within the sheets into hexagonal patterns, the most
efficient packing of spheres in two-dimensions. Additionally, we predict that as particle
diameter is increased, the temperature at which ordered phases form increases, as can be
seen by comparing the phase diagrams represented in Figure[5.1]

The perforated lamella has been observed for surfactants both computationally(106; [72)
and experimentally (107} [108)) at concentrations very close to where the gyroid phase is
observed (235 [107; [109). This phase can be understood as arising from a competition
between the formation of curved interfaces and planar interfaces. For large nanoparticles, as
concentration is increased from low to high, there is a tendency for the interface curvature
to decrease; however, this behavior is to some extent mitigated by the desire of the tails
to maintain maximum contact, resulting in the PLT phase (a simulation snapshot is shown
in Figures [5.2k-d). Conversely, for small nanoparticles increasing concentration tends to
induce inverted interface curvature because now the tails stretch, decreasing the effective
grafting density of the tethers, and resulting in the PLH phase (a simulation snapshot is
shown in Figure[5.2p-b). This interface behavior is illustrated in Figure 5.

This phase behavior can, in part, be rationalized by examining the packing factor, S,

developed for surfactant systems (20). The packing factor is a purely geometric argument as

29



to why certain structures form in surfactants. The geometry of associated structures depends
upon “packing” properties of the amphiphile: the optimal area of the head group, a,, volume
of the chain, V, and the critical length of the tether, /, :

_V
S=Y.

Qolo

It is reasonable to assume and we observe that with a fixed tether length, the effective
tether volume and length remain roughly constant regardless of head size, for the range of
sizes studied. The effective area depends on the square of the diameter of the head group;
therefore, large diameters result in a large ao and S decreases with the square of the diameter
of the head group. Based on the arguments given by Israelachvili, represented in Table
curved structures are favored for large head groups. Conversely, if the diameter is small, ao

is small, and therefore S is large, favoring sheet-like and inverted structures.

Table 5.1 Values of the Israelachvili packing factor, S, and the expected structure. Adapted from
ref (20).

S Structure
S<1/3 Spherical Micelles
1/3 < § < 1/2 Cylindrical Micelles
12<S5<1 Flexible Bilayers
S~1 Planar Bilayers
S>1 Inverted Micelles

The Israelachvili packing factor can also help to explain the specific transitions we
see regarding the perforated lamella phases. Starting from the H phase, increasing the
concentration requires the head-groups to pack more densely, resulting in a decrease in ao
and consequently an increase in S, favoring sheet-like structures over curved ones. If instead,
we start with the L phase at low concentration and subsequently increase the concentration,

a, will again decrease, favoring structures with inverted curvature.

5.1.2 Comparison to surfactants

Since measurements of the various quantities in S are often difficult to determine, especially
when trying to compare a rigid sphere to a chain, a relationship that includes easily deter-
minable quantities should be developed to allow for direct comparison between a variety
of different systems. We first discuss the comparison of the flexible head-group surfactant
to the TNS. We obtain the phase behavior of a symmetric h8t8 surfactant system using our

modified Larson model, where both head and tail beads are modeled as flexible chains,
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connected by FENE springs within a BD simulation. In the standard Larson model, a
surfactant is modeled by i “head” units connected to j “tail” units, where each unit occupies
a site on a simple cubic lattice (23). We find remarkable agreement with the phase diagrams
plotted by Larson for h4t4 symmetric surfactant systems (23) as well as with the phase
behavior mapped by Prinsen, et al. using dissipative particle dynamics (DPD) (110). Figure
5.6 shows the h2t8 surfactant phase diagram, Figure [5.6b shows the phase diagram for a
system of TNS with nanoparticle diameter of D = 2.00, and Figure shows the phase
diagram for h8t8 surfactant (modeled systems are inset in Figure[5.6). By examining the
overall behavior, it is clear that comparing amphiphiles with similar linear length, namely
comparing D = 2.00 TNS to the h2t8 surfactant, does not provide similar results. The h2t8
system more closely resembles Figure 1a, most notably exhibiting a PLH phase as well as an
inverted hexagonally-packed cylinder phase (IH), which is a natural progression as the head
group gets increasingly forced into a curved structure due to the geometric constraints of the
tail at high concentration. However, there are distinct similarities between the D= 2.00 TNS

and h8t8 surfactant, and we therefore propose the following relationship be utilized:
F, = (Excluded volume of the head)/(Excluded volume of the tail).

For both the D = 2.00 TNS and h8t8 systems F,, = 1.0, whereas the dissimilar h2t8
system has a value of F, = 0.25. Examining the phase diagram presented in Figure [5.6] for
the flexible surfactant, we again see the same trends with F,, as with S, since small head
groups result in a small value of F,, and F,, is large for large head groups. Applying F, to
systems studied by Larson (23)) and surfactants studied in Figures[5.6p and c, we see good
agreement in the trends and phase diagrams between both TNS systems and surfactants.
Thus the quantity F, allows a direct, albeit rough, comparison between computational studies
of coarse-grained surfactants and TNS models.

The geometric packing of the nanoparticle head groups of the monotethered nanosphere
model cannot be captured by standard surfactant models, which treat the head-group as a
flexible chain. However, there are additional entropic differences that also arise as a result of
the head-group treatment. This can be seen by comparing the D = 2.06 TNS and h8t8 phase
diagrams. We observed that the TNS model does not exhibit a cubic ordered micelle phase
at low concentration, as did the surfactant model. This can most closely be attributed to the
increased configurational entropy associated with the bead-spring model of the head group
in surfactants. That is, the head group of the flexible surfactant has greater entropy, and a
larger effective volume, as compared to the head group of the TNS with equivalent excluded
volume. This can be illustrated by looking at the theoretical radius of gyration for a freely

jointed chain in comparison to the radius of the TNS particle. For a freely jointed chain (21)),
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Figure 5.6 Temperature vs. volume fraction phase diagrams for surfactant and TNS systems, with
the schematics of modeled systems in inset. Phases are defined as lamellae (L), perforated lamellae
through the head group (PLH), hexagonally packed cylinders (H), perforated lamellae through tethers
(PLT), cubic ordered spherical micelles (C), and inverted hexagonally packed cylinders (IH). (a)
Phase diagram for h2t8 surfactant system. (b) Phase diagram for TNS with particle diameter of D =
2.00. (¢) Phase diagram for h8t8 surfactant system. In (a-c), the phase boundaries are approximate
and drawn as guides for the eye. Reproduced from reference (66).
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R, = V' NoonasLvond/ V6 =1.08, as compared to R=1.0 for the TNS; when the values are
cubed to give relative volumes the differences can become rather significant, specifically
the volume ratio of (surfactant head group)/(TNS head group) is 1.26/1.00. F, attains the
value 1.26 for the surfactant when utilizing the radius of gyration in calculating the head
group volume. At lower concentrations, this slightly increased volume manifests itself
in the stabilization of additional phases, therefore, direct comparisons between phases of
surfactants and TNS may not be applicable at low concentrations. At higher concentrations
this increased volume does not manifest itself as additional phases, but rather as an increase

in the order-disorder transition temperature.

5.1.3 F, verses volume fraction phase diagram

We can additionally utilize F, to more explicitly show the impact of nanoparticle size on
the concentration dependent phase behavior. We can construct a diagram of F, versus
volume fraction, shown in Figure that unifies the previously plotted temperature versus
volume fraction phase diagrams for different nanoparticle diameters. This diagram does not
include order-disorder transitions as a function of temperature, but for temperatures below
the order-disorder transition temperature, it may be used as a guide to the types of structures

that might form and their relationship to each other.

5.1.4 Summary

We predict that mono-tethered nanospheres form phases that strongly resemble the phases
observed in surfactant systems. For certain nanoparticle diameters, concentration, and
temperature, we observe the formation of cubic micelles, hexagonal cylinders, lamellar
sheets, and perforated lamellar sheets. We demonstrate that for small nanoparticles relative
to tether size the equilibrium structures favor sheet-like morphologies and for nanoparticles
that are as large or larger than the tethers, curved morphologies are favored. We present a
temperature vs. volume fraction phase diagram for a three-dimensional system of TNS and
a dimensionless scaling factor Fv that relates the size of the head-group to that of the tether.
F, provides a mapping that may be useful when comparing between amphiphiles consisting
of flexible chains to those containing a rigid and a flexible component. By mapping F,
vs. volume fraction it is possible to ascertain the stable morphology for either a flexible
surfactant or a TNS. Finally, in contrast to the flexible surfactants, we observe an increase

in the local geometric ordering of the nanoparticle as the size of the particle increases or
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Figure 5.7 F, vs. volume fraction “phase diagram” for T*=1.0 for TNS. Phases are defined as
lamellae (L), perforated lamellae through the head group (PLH), hexagonally packed cylinders (H),
perforated lamellae through tethers (PLT), cubic ordered spherical micelles (C), and disordered (D).
Reproduced from reference (66).

as the concentration increases for a TNS tending toward local hexagonal packing at high

concentrations.

5.2 Phase behavior of nanosphere aggregating mono-tethered
nanospheres

The ability of block copolymers (BCPs) to order into periodic micro-domains makes them a
choice building block for applications ranging from drug delivery (111)) to photonic-bandgap
materials (112)). The BCP bi-continuous phases, when modified with nanoparticles (NPs),
are ideal candidates for catalytic materials and high conductivity nanocomposites (113).
Polymer-tethered NPs provide a novel route for the self-assembly of ordered arrays of NPs
where the bulk phases formed resemble the complex morphologies found in BCPs and
surfactants (73;166). Polymer-tethered NPs constitute a class of “shape-amphiphiles” where

microphase separation occurs due to the immiscibility between the NP and tether (17). In
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these systems, the geometry of the NP influences the bulk structure and local arrangement
of NP by inducing liquid crystalline ordering (73} [17). Simulations of polymer-tethered
nanorods highlight the interplay between microphase separation and particle geometry; e.g.,
the phase behavior for tethered rods includes a chiral cylinder phase and ordered smectic
phases (73), not observed in flexible BCPs. Additional work suggests that morphologies
may adopt unique structures as a result of confinement, including helical structures formed
by colloids confined in v-shaped grooves (114) and helices and tori formed from BCPs
confined in cylindrical pores (115).

Here, we examine the bulk-phase microstructures formed by polymer-tethered nanospheres
(TNS) with attractive nanoparticles of diameter D=2.00 (i.e. in poor solvent) connected
to repulsive polymer tethers (i.e. good solvent) composed of eight beads of diameters o;
a schematic of the building block is shown in Figure [5.8] The nanospheres are modeled
as being in a poor solvent and the tethers in good solvent. Thus, nanospheres aggregate
and are treated using the Lennard-Jones (LJ) potential and tethers do not aggregate and
are modeled using the Weeks-Chandler-Andersen (WCA) potential, as discussed earlier in
section [3.1] The method of Brownian dynamics (BD) is utilized, as discussed in section
We demonstrate via simulation the first NP-based double gyroid phase. We present a
new metric of local order based on spherical harmonics and use this to explore the impact
of microphase-separation induced confinement on the local ordering of spherical particles.
We show that this confinement promotes icosahedral packing of hard attractive particles,
which helps to stabilize certain microphase-separated structures with limited stability in

BCP systems, including the double gyroid.

5.2.1 The r ole of volume fraction and immiscibility

To examine the bulk phase ordering of the TNS system with attractive NP headgroups,
we explore the T* vs. ¢ phase diagram. Simulations are conducted at ten fixed volume
fractions between 0.15 < ¢ < 0.45. Disordered systems are incrementally cooled until
bulk ordered phases are reached, as determined by visual inspection and discontinuities
in potential energy as a function of T* (76). For each ¢, multiple runs are conducted at
various cooling rates and system sizes to avoid dynamically trapped structures and finite
size effects. Our results presented are based on ~40 independent runs of ~250 state points
for T* between 0.21 to 2.0, for systems of 500 to 4000 TNS, (4500 to 36000 individual
beads). A phase diagram summarizing the observed phases is presented in Figure[5.§]; each
data point represents a state point arrived at using multiple cooling rates and system sizes.

With increasing ¢, we observe disordered wormy micelles (DWM), hexagonally packed
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Figure 5.8 T* vs. ¢ phase behavior for D=2.0c, where solid lines represent approximate phase
boundaries determined by ~250 state points. Stars indicate simulated disordered phases. With
increasing ¢ we observe disordered wormy micelles (DWM), hexagonally packed cylinders (H),
double gyroid (DG), perforated lamellae with perforations through the NPs (PLH), and lamellar
bilayers (L). A schematic of the model tethered nanosphere is shown at right. Adapted from reference
(67).

cylindrical micelles (H), the bi-continuous double gyroid (DG), perforated lamellae with
perforations through the NP layer (PLH), and lamellar bilayers (L). At T* > T*ppr, we
find disordered aggregates and at sufficiently high T* we find no aggregates.

Interestingly, we observe both DG and PLH phases between ¢ ~0.30 - 0.45. A snapshot
of the DG phase is shown in Figure 5.9 and a snapshot of the PLH phase is shown in
Figure[5.9p. In BCP systems, both the DG and PLH phases have been reported in similar
regions of the phase diagram (107); however, the DG phase is considered to be an equilib-
rium morphology (116)) and the PLH phase is considered to be metastable, stabilized by
compositional fluctuations (117). Few examples of the DG phase exist for the simulation
of BCPs and surfactants using non-lattice, dynamics based methods (118} [119) making
this result unusual. For the TNS system, the dominance of the PLH phase outside of the
DG region suggests that over this ¢ range it is stable and reproducible; we did not observe
bi-continuous structures within the PLH region. As in the case of the polymer-tethered rods,

the perforations result from competition between the NPs tending to locally order and the
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Figure 5.9 Images of self-assembled structures with tethers removed for clarity. (a) DG phase;
the minimal unit cell was duplicated and found to be stable over ~10 million time steps. (b) Indi-
vidual sheet of PLH. (¢) Node of the DG, showing icosahedral rings; perfect icosahedron inset. (d)
Crystalline packing of L. Reproduced from reference (67).
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Figure 5.10 Void fraction of a node vs. r.,,. For small rcut values, void fraction is lower than the
bulk, approaching the bulk value of 0.7 (dotted in the figure) as r.,, is increased. Reproduced from
reference (67).

tether tending to maximize its configurational entropy (73)).

The limited stability of the DG phase in BCP systems has been attributed to packing
frustration within the connection points (nodes) (120;|121)), which arises due to a high void
fraction (low packing density) within the nodes. To examine this, we look at relative trends
in void fraction. We approximate the center of a node and calculate the void fraction within
a spherical volume drawn from the center, repeating for various sphere radii, r.,,. We find
that for small values of r.,, the void fraction is lower than in the bulk, starting at ~0.44, and
as Iy is increased we approach the bulk void fraction of 0.7 as shown in Figure[5.10] Thus
particles within the nodes pack more densely than in the bulk. Ref. (122) used a similar
analysis to compare a monodisperse BCP system to a blend of two different length BCPs. In
the blend, the authors found that the longer of the two polymers occupied the nodes of the
DG, resulting in a larger range of stability compared to the monodisperse system (122). For
the monodisperse system, the authors found that the void fraction is higher than the bulk for
small values of r.,;, and decays to the bulk value as r.,; becomes large (122)). In the blend,
the authors found that, like our system, the void fraction is lower than the bulk for small
values of r.,; and approaches the bulk value from below as r.,, becomes large (122)). This
similarity in trends suggests that the ability of the TNS system to realize the DG phase is
linked to the ability of NPs to locally order into dense structures, decreasing the packing
frustration. In section [0 we discuss the stability of the double gyroid phase in more detail

and compare with the double gyroid formed by tethered nanorods.
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5.2.2 Local structure of nanospheres

We observe visually that the nanoparticles tend to form ring-like structures resembling
icosahedral clusters in the H, DG, and PLH phases. Unlike icosahedral ordering observed
in dense liquids, the tether sterically restricts particle packing, resulting in clusters with
only partial coordination. To verify our visual findings, we utilize the Ry,;,, method detailed
in section @ We incorporated into the Ry, reference database icosahedral clusters that
maintain the same bond angles, but possess only partial coordination numbers (e.g. we
remove 1 to 4 particle(s) from a perfect 13-particle icosahedral cluster). These clusters are in-
distinguishable from the minimum potential energy clusters found by Doye and Wales (123).
Our reference library additionally contains other polyhedra and crystalline arrangements

with full and partial coordination.

Icosahedral nanoparticles : 10% 15% 20% 25%
0.5 X X LXT X

Y X 30%
S
A 0%

DWM H 95% HCP nanoparticles
0.2 0.25 0.3 0.35 0.4 0.45
volume fraction, ¢

0.2

Figure 5.11 T* vs. ¢ phase behavior, as previously shown in Figure Dotted lines fit data points
indicating values of T* and ¢ at which the indicated percentages of icosahedral clusters formed by
NP headgroups are found. The shaded region indicates the range of T* and ¢ over which crystalline
ordering of the NPs is observed. A schematic of the model tethered nanosphere is shown at right.
Reproduced from reference (67).

Applying the Ry, algorithm to the DG phase, we confirm that the local arrangements
of NPs are icosahedral with partial coordination as observed in Figure [5.9k. Applying this
analysis to the entire T* vs. ¢ phase diagram, we observe that as T* is decreased, there is an

increase in the number of icosahedrally ordered NPs with partial coordination corresponding

39



to increased aggregation of NPs. Figure[S.11]shows the general trend of icosahedral ordering
overlaid on the bulk phases; dotted lines indicate the set of values of T* and ¢ at which
10, 15, 20, 25, and 30% of the NPs are central particles in icosahedral clusters. Each line
is interpolated from the analysis of the available data points (points at 6 to 16 different T*
for each ¢), where each point is averaged over ~10 samples or ~10000 NPs. While we
see a strong increase in icosahedral ordering, we see little increase in crystalline ordering
until we reach the T*ppr of the L phase, at which point NPs crystallize and the number of
icosahedrally-ordered NPs drops to nearly 0% (shaded area in Figure [5.11)). There we find
bilayers that possess distinct hexagonal closed packed ordering of NPs as shown in Figure
5.9, as compared to the liquid-like layers found in the PLH phase shown in Figure[5.9b.

Role of confinement

It is known that small clusters of LJ particles will favor icosahedral packing; however as the
system size approaches bulk behavior, such ordering is lost in favor of close-packed crystals
since icosahedra cannot tile Euclidean 3D space. The presence of icosahedral clusters in our
systems is therefore surprising, since the domains contain many particles. The bulk phases
that exhibit strong icosahedral ordering of NPs, namely the H, DG, and PLH phases, have in
common that the NP-rich domains are shaped like cylindrical tubes; the H and DG phases
are clearly tubular and the PLH phase contains interconnected tubes arranged into sheets.
We observe that there is little penetration of NPs into the polymer-rich domain, thus the
boundary between these domains can be thought of as a confining surface. It appears that
confining NPs into tubular domains, as a result of microphase separation, allows for the
formation of icosahedral clusters. To test this, we confine LJ particles of diameter 20 within
cylindrical pores of various diameters with ¢ = 0.25 and T*=0.2. The interaction between
the particles and the walls of the pore are modeled by the WCA potential. Examination of
the dimensionless pore diameter, d*= pore diameter/confined particle size, shows a strong
presence of icosahedral particles with both full and partial coordination at d* < 5, and an
associated decrease in crystalline particles (Figure[5.12)). This model cylindrical pore system
relates well to the tubular H and DG phases where d*~4.5-5.

5.2.3 Summary

Our results demonstrate the important role played by the local packing of NPs within
microphase-separated domains on the stability of the bulk structure for a tethered NP system.

We observe a particularly interesting interplay between the local packing of NPs and domain
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Figure 5.12 Percentage of icosahedral and crystalline NPs under cylindrical confinement vs. d*.
Icosahedral ordering is favored for diameters less than 5, which corresponds to the diameter of the
tubes formed in the DG and H phases. Reproduced from reference (67)).

shape. More specifically, we find that cylindrical confinement, whether from hard walls or
as a result of microphase separation, can be used to promote icosahedral ordering between

attractive spheres.
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Chapter 6

Role of nanoparticle geometry on the
stability of the double gyroid structure

In chapter [5| we explored the phase behavior of mono-tethered nanospheres in both good
and poor solvent. When the solvent was poor for the nanospheres, we found a variety
of phases, but most notably the double gyroid structure. In this chapter, we explore the
formation of the double gyroid structure for mono-tethered nanospheres in detail. We
compare and contrast with the double gyroid structure formed by end-tethered nanorods,
exploring the connection between local and global ordering. We demonstrate the ability of
these nanoparticles to adopt distinct, minimal energy local packings, in which nanospheres
form icosahedral-like clusters and nanorods form splayed hexagonal bundles. These local
structures reduce packing frustration within the nodes of the double gyroid. We argue that
the ability to locally order into stable structures is key to the formation of the double gyroid

phase in these systems. The work presented in this chapter is published in reference (68)).

6.1 Introduction

Block copolymers and surfactants have long been known to self-assemble into a wide variety
of complex structures where the assembly is driven by immiscibility between chemically
distinct blocks in the polymers (24) and between distinct head and tail groups in surfac-
tants (23). These ordered structures are highly sought for applications at the nanoscale,
ranging from photonic-bandgap materials (112) to templates for nanoparticle assembly
(124) and hydrogen storage. Hybrid building blocks have recently been created that resem-
ble block copolymers where the individual blocks consist of nanoparticles and polymers
(12551565 1615 1645 163). These hybrid building blocks, or tethered nanoparticles, constitute
a class of “shape amphiphiles™ (1265 |1'7)) where microphase separation occurs due to the

immiscibility between the nanoparticle and polymeric tether resulting in mesostructured
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equilibrium phases that resemble the morphologies of block copolymers and surfactants
(735 66).

In previous work, we examined the interplay between microphase separation and nanopar-
ticle geometry for tethered nanospheres (TNS) (67; 66) and tethered nanorods (TNR)
(73} [74)), finding unique changes to phase behavior as compared to flexible surfactants and
block copolymers. For example, the phase behavior of the nanosphere-aggregating TNS sys-
tem includes hexagonally packed cylinders, the double gyroid morphology, and perforated
lamellar phases where there is a predominance towards icosahedral ordering of nanospheres
(67) and a lamellar phase with HCP ordering of nanospheres (67). The tether-aggregating
TNS system does not form the double gyroid structure, as would be expected for surfactants,
instead forming perforated lamella (66)). The phase behavior of the nanorod-aggregating
TNR system includes a hexagonally packed cylinder phase where the nanorods twist along
the length of the cylinder, hexagonally and tetragonally perforated lamellar phases where
the nanorods form a smectic structure, and a lamellar phase with smectic C-like ordering
of the nanorods (73). A transition from hexagonally packed cylinders to the double gyroid
morphology is seen upon reducing the length of the tether in the TNR system (74), similar
to what was observered for rod-coil liquid crystals (127).

Tethered Nanosphere

Tethered Nanorod

OO,

Diblock Copolymer

Figure 6.1 Model building blocks utilized. For more details see section Reproduced from
reference (68).

In this work, we examine and compare the double gyroid (DG) microstructure formed by
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the TNS and TNR building blocks with attractive nanoparticles and repulsive tethers in order
to learn about the stability of the DG structure. The DG is a bicontinous structure where the
nanoparticles form two distinct, interpenetrating networks. The DG structure is of particular
interest as it is seen as a candidate for catalytic materials, high conductivity nanocompos-
ites (113), and photonics applications (112). In this context we study three systems. We
examine a system mono-tethered nanospheres, where nanospheres of diameter D=2.0c are
in poor solvent (i.e. nanospheres aggregate and are treated with the Lennard-Jones (LJ)
potential), attached to non-aggregating polymer chains composed of eight beads of diameter
o. Polymer chains are modeled as being in good solvent (i.e. tethers do not aggregate and
interact via the Weeks-Chandler-Andersen (WCA) potential). We also explore a system of
end-tethered nanorods, where nanorods are modeled as a collection of five rigidly connected
beads of diameter ¢ in poor solvent (i.e. they interact via the LJ potential) connected to
polymer chains composed of two beads of diameter 0. Polymer chains are modeled as being
in good solvent (i.e. they interact via the WCA potential). For additional comparison, we
look at a flexible diblock copolymer (BCP) equivalent of the tethered nanorods, where the
rigid constraint of the nanorod is removed and particle connectivity is instead treated using
the FENE potential. The building block models follow those described in section The

method of Brownian dynamics is used to simulate these systems, as described in section

6.2 Flory-huggins interaction parameter

Although the models for the TNS, TNR and BCP are very similar, key parameters such as
T* do not necessarily correspond to the same statepoint. For example, in Reference (73)) the
rigidity of the tethered nanorod induced phase separation at a higher T* than the equivalent
coil-coil BCP. Additionally, it is well known that the order-disorder temperature in BCP
systems will scale as the number of beads (128]), so we expect that a tethered nanorod system
with a 5-bead rod would order at a much higher T* than a tethered nanosphere system where
the nanoparticle is only a single bead, if the beads interactions were similar. In order to
compare between the TNS, TNR, and BCP systems we determine the relationship between
Flory-Huggins interaction parameter, ), and T* for each of the systems. The Flory-Huggins
interaction parameter allows us to make comparisons between systems regardless of the
specific model details used. For example, ¥ has been used to compare the calculated phase
boundaries of BCPs for Brownian dynamics systems that utilize attractive LJ interactions,
dissipative particle dynamics systems that utilize only repulsive interactions, and mean field

theory calculations (72). To determine ), we follow a similar procedure to that outlined in
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References (128)) and (72). For a two-component mixture the free energy can be expressed

as:

F oo fa lan+1_fA

F XSa(1 = fa)
ka VANA VBNB

(VAVB) 1/2

In(1— fa) + (6.1)

where f4 and (1 — f4) are the fraction of constituents A and B, respectively, v4 and
vp are the volume of the beads of constituents A and B, respectively, and N4 and Np are
the number of beads of constituents A and B, respectively (21). This expression assumes
incompressibility where fp = (1 — f4); note f4 should not be confused with the bulk volume
fraction ¢. If we consider the system to be in equilibrium, the free energy will be at a
minimum and thus ddTFA = 0. By taking the derivative of the free energy in Equation (6.1| with
respect to f4 and setting the resulting expression equal to zero, we arrive at the following

equation that relates ) to f4:

(vave) 2 (—=In(fa)vgNg — vaNp 4 In(1 — f4)vaNa +vaNy)
vaANAVENE(2fs — 1)

xX=- (6.2)

6.2.1 General procedure for determining y

To determine how Y scales with T* for each system, we calculate the relative solubility
of species A mixing into species B as a function of T* and solve for y from Equation[6.2]
For example, in the case of the tethered nanosphere system, we specify that the nanosphere
is species A and the 8 bead polymer chain is species B, and utilize the following general
procedure. Note that the immiscible components (here, nanospheres and tethers) are not
bonded to each other for the determination of .

Utilizing a long rectangular box with aspect ratio 1:1:4 (x:y:z), we place all the
nanospheres on one half of the box and all polymers on the other half, creating an interface
between the two immiscible species. For a specific T*, we run the system for approximately
10 million timesteps monitoring the potential energy to ensure we reach equilibrium. After
these 10 million equilibration timesteps we generate an average concentration profile along
the long dimension of the box by collecting data over the next 10 million time steps. To
solve for x, we calculate the average fraction of nanoparticles that have mixed into the
polymer region (i.e. f4) from the concentration profile, then plug this value into Equation
solving for . We then repeat for various values of T* creating a relationship between
T* and J, as shown in Figure[6.2] Typically, for incompressible mixtures, as T* is decreased
x will increase and this relationship is often described as y = % +Z (21), where R and Z

are system dependent fitting parameters; consequently, we fit our data using linear regression
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to determine the relationship. Since our systems are compressible the ¥ mapping depends
on the bulk volume fraction, ¢. Specifically, the slope of the fitting will increase as ¢ is

increased, i.e. there will be less desire for the two systems to mix.

6.2.2 x mappings for TNS, TNR, and BCP

Utilizing the same procedure for each of the building blocks, we find the following rela-
tionships for y vs. T* (also shown in Figure [6.2). These mappings were performed at
0rns = 0.3 and ¢rnyr = 0.21, corresponding to the bulk volume fractions where the DG was
simulated for each of the systems, respectively; the mapping for the BCPs was performed at

¢®pcp = 0.21 for appropriate comparison with the TNR system.

xrns = (0.93+0.06)/T* — (0.1240.05) (6.3)
Xrng = (6.89£0.53)/T* — (1.28 £0.24) (6.4)
xscp = (6.89+0.15)/T* — (1.70+0.09) (6.5)

These relationships follow the expected trends. For an equivalent ) value, T* is higher for
the TNR system than the BCP system; this corresponds to the behavior seen in reference (73)
where the TNR system microphase separated at a higher T* than the equivalent BCP system.
For an equivalent  value, T* is substantially higher for the TNR system as compared to
the TNS system; previous simulations of TNRs found the system microphase separates
at approximately T*=1 (/3)) whereas the TNS system was found to order at about T*=0.3
(67). We should be aware that these results are for moderate bulk volume fractions (¢ = 0.3
for TNS and ¢ = 0.21 for TNR and BCP); the results in References (128)) and (72) show
good agreement with theory using this procedure, however the comparisons were made at
higher values of ¢ corresponding to melt conditions (¢ = 0.45). The difference in ¢ will
manifest itself in the compressibility assumption, specifically fg = (1 — f4) may not be
completely valid at the lower ¢ values we utilize. However, since our simulations are for
building blocks in selective solvent (i.e. tether beads are treated with the repulsive WCA
potential), the tethers can fill the available space without forming low density holes and thus
the ¥ mapping should allow for reasonable comparisons among these systems at the lower

values of ¢ .
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Figure 6.2 x mappings for TNS (circles), TNR (squares), and BCP (diamonds). Reproduced from
reference (68)).

6.3 The double gyroid structure in tethered nanospheres
and tethered nanorod systems

In previous publications we reported the presence of the double gyroid (DG) structure in both
the TNS (67) and TNR (74) systems. The double gyroid is a bicontinous structure where
the minority component, in our case the nanoparticles, forms two distinct, interpenetrating
networks that never connect. The minority component organizes into a series of cylindrical
tubes (arms) where three tubes connect at each node. Figure [6.3|shows a simulation snapshot
of the DG formed by the TNS system (a) and the TNR system (b). For clarity we have
removed the tethers and show only the minority component (nanospheres or nanorods)
where the two distinct networks are colored red and white; the particles in the red domain
are chemically identically to those in the white domain. These structures were identified
both visually and by calculating the structure factor. The structure factor for the DG shows
two strong peaks with a characteristic ratio of v/3:1/4 as expected (I16). Averaging over
several runs, the DG was found to form for ¢ = 0.3 at 1/T* > 3.28 for the TNS system and
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for ¢ = 0.21 at 1/T* > 0.825 for the TNR system. Recent theoretical predictions of the
order-disorder transition for TNS agree with our simulations, reporting a value of 1/T* ~ 3
for ¢ = 0.3 (69). Using the x mappings we calculated in section [6.2.2] we find reasonable
agreement between the average order-disorder transitions for both systems as expected.
Specifically, we find that /NS .~ =3.17+0.25and y/¥% . . =4.40+0.70,

where the reported error for ¥ is calculated from the maximum error in the linear regression

of y vs. T*.

6.3.1 Packing frustration analysis

The formation of the DG in the tethered nanoparticle systems is surprising since it is known
to exist only in a small region of the phase diagram for BCPs (25; [1185 [119;1129), rod-coil
BCPs (127} 130), and surfactants (23)), and was not seen in some of our previous simu-
lations of the TNS (66) and TNR (73) systems. The limited range of stability of the DG
phase in BCP systems has been attributed to packing frustration at the nodes of the gyroid
(1205 1121). It has been shown that the standard deviation in mean curvature, Gy, correlates
to packing frustration and dictates the overall stability of a structure (120). For example,
Matsen and Bates (120) calculated oy for various structures finding oy = 0.121 for the
gyroid as compared to oy = 0.003 for cylinders and attributed this difference to the inability
of the gyroid structure to simultaneously minimize surface area and minimize packing
frustration (120). The magnitude of oy is important in determining which phase will form
as the system should selectively prefer to form a structure with less packing frustration
(120); this is why BCPs typically form the DG over, for instance, the bicontinuous double
diamond structure where oy = 0.311 (120). In BCPs, packing frustration has been shown to
manifest itself as a high void fraction (low packing density) within the nodes of the gyroid
(122)) where the polymer needs to stretch to fill the volume dictated by the interface (120).
Martinez-Veracoechea and Escobedo have shown that packing frustration in the nodes of
BCPs can be reduced by adding monomer and homopolymer to the system, increasing the
stability of phases like the DG (122) and stabilizing other structures such as double diamond
(26)).

To assess the stability of the DG structure for the TNS and TNR systems, we examine
packing frustration by calculating the relative trends in void fraction at the nodes and com-
paring this with the void fraction of the arms, since measuring oy is problematic in a system
of discrete particles. To look at this trend we approximate the center of a node and calculate
the void fraction within a spherical volume drawn from the center, repeating for various

sphere radii, r.,;. If we consider a very large value of r.,,, we capture the bulk void fraction
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Figure 6.3 (a) DG phase formed by the TNS system, (b) DG phase formed by the TNR system. In
both cases tethers have been removed for clarity. The images correspond to the minimal unit cell
duplicated once in each direction for clarity. Reproduced from reference (68)).
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of the system and as r,, is decreased, we get an increasingly localized picture of what
occurs at the nodes. We perform the same procedure on the arms, again, capturing a relative
trend in void fraction. For both the TNS and TNR systems, the void fraction of the arms
and nodes are nearly identical, as shown in Figure suggesting there is a uniform density
throughout the DG in both structures, irrespective of whether we are at the node. Hence, we
do not have a characteristic high void fraction within the nodes, as has been shown for BCPs
(122), thus the nanospheres and nanorods have reduced the packing frustration as compared
to a flexible BCP. Additionally, we can compare the void fraction between the nodes and
the bulk system. For both the TNS and TNR systems, we find that for large values of .,
the void fraction is approximately that of the bulk system and as r.,; is decreased, the void
fraction is also decreased, as shown in Figure[6.4] Specifically, for the TNS system, the void
fraction for large values of r.; is ~0.7 and for small values ~0.5. For the TNR system, the
void fraction for large values of r.,; is ~0.79 and for small values ~0.55. Thus particles
within the nodes pack more densely than the bulk system as a whole. Martinez-Veracoechea
and Escobedo used a similar analysis to compare a monodisperse BCP system to a blend of
two different length BCPs (122)). In the blend, the authors found that the longer of the two
polymers occupied the nodes of the DG, resulting in a larger range of stability compared to
the monodisperse system (122)). For the monodisperse system, the authors found that the
void fraction is higher than the bulk for small values of r.,; and for the blend the authors
found that, like our systems, the void fraction is lower than the bulk for small values of r.,;
(122). This similarity in trends suggests that the DG structures formed by the TNS and TNR
systems may be more stable than an equivalent flexible BCP system. We conclude that by
not forming low density regions at the nodes of the DG both the TNS and TNR systems have
reduced their packing frustration, and we hypothesize that this reduction is a direct result of
the geometry of the minority component and its ability to pack locally into compact, low
energy structures. We test this hypothesis in sections[6.4.1T|and [6.4.2]

We can further assess the importance of the particle geometry on stability by specifically

comparing to a BCP system. If we replace the rigid constraints in the TNR system with
FENE springs, we arrive at a simple model for a flexible coil-coil BCP, as was previously
described in section If the rigidity of the nanorod does not influence the stability and
packing frustration of the DG phase, we would expect to find the DG in the BCP system
at y >4.40+0.70 and ¢ = 0.21. Starting from the ordered DG configuration, we run the
system as a coil-coil BCP for various values of ). We find that the DG structure is not
stable for values of y <~ 8; instead, the DG falls apart and forms a disordered aggregate.
An example of the disordered structure is shown in Figure[6.5] For values of y >~ 8, the

DG structure persists, however, it is most likely a kinetically arrested structure and not at
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Figure 6.4 Relative void fraction within the nodes of the (a) TNS DG for 1/T* =3.3 (x =3.19 +
0.25) and (b) TNR DG for 1/T* =0.9 () = 4.92 £ 0.72). Reproduced from reference (68).

equilibrium due to the large value of . Starting from an athermal, disordered configuration,
we incrementally cool the system, finding only disordered structures, even for values of
X >~ 8. This supports the contention that the DG is not stable for the BCP system under
these conditions. Note that simulations were also performed with various unit cell sizes
to avoid any box size issues that are associated with 3d periodic microstructures, again,
yielding only disordered structures. Thus, we find that for equivalent statepoints, we were
unable to realize the DG phase when the rigid constraint was removed, which suggests that
the stabilization of the DG is strongly influenced and controlled by the geometry of the

aggregating species.
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Figure 6.5 Disordered structure formed by BCP system for y = 8.6+ 0.26. The tethers have been
removed for clarity, and only the minority, aggregating species is present. Reproduced from reference
(63).

6.4 Local structure of nanoparticles

6.4.1 Local structure of the TNS gyroid

The ability of the TNS system to reduce the packing frustration in the DG can be understood
by looking at the local packing of the particles at the node. Figure[6.6|shows a simulation
snapshot of the TNS DG node. We see distinct local ordering in the node, specifically
ring-like structures that resemble icosahedral clusters. An icosahedron is constructed of
a central particle surrounded by 12 nearest neighbors and is a minimal potential energy
structure for 13 Lennard-Jones particles. This ordering is not limited to the nodes and occurs
throughout the entire DG structure.

We utilize the Ry;,, method, as discussed in section@, to determine the local packing
of the nanospheres. Our reference library includes standard particle arrangements such as
the Kasper polyhedra (210, Z11, Z12, Z13, Z14, Z15) (131), face centered cubic (FCC),
hexagonally close packed (HCP), body centered cubic (BCC), and simple cubic (SC). Addi-
tionally, our library includes partial icosahedral clusters, where 1-4 particles are removed
from the ideal Z12 Icosahedron (see Figure[6.7)), and partial clusters of FCC and HCP where

1-5 particles are removed from the ideal clusters.
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Figure 6.6 Node of the DG formed by the TNS system, with a perfect icosahedron showed in inset.
Tethers have been removed for clarity. Reproduced from reference (68)).

Figure 6.7 Icosahedral clusters ranging from full coordination number (cn) of 12 to partial coordi-
nation of 8. Reproduced from reference (68)).

Using the R,;,,, method, we determined in reference (67) the packing of the nanoparticles
in the DG to be predominantly icosahedral clusters with partial coordination, i.e. we found
clusters that retain the same bond angles as a perfect icosahedron but with 1-4 particles
removed (see Figure (67); these clusters are identical to the minimal potential energy
clusters found by Doye and Wales (123). Partial clusters are formed as a result of the
steric effects of the tethers and the microphase separation that occurs. Table shows the
percentage of nanospheres that are “central” particles within partial icosahedral clusters, the

percentage of nanospheres that are “central” particles within partial crystalline cluster (HCP
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and FCC in this case) along with the average coordination number, cn, of nanoparticles for
an example cooling sequence. The double line in Table[6.1]signifies the transition from a
disordered state to the ordered DG microphase. As we increase 1/T* (i.e. cool the system),
we notice a substantial increase in the number of icosahedral-like clusters, increasing from
approximately 17.5% to 30% but very little change in crystalline arrangements, with an
average value approximately 16% within the ordered regime (1/T* > 3.25). We also see
a minor increase in average coordination number, increasing from approximately 7 to 8;
this does not change as rapidly as the percentage of icosahedral clusters since coordination

number does not differentiate between ordered and disordered local configurations.

Table 6.1 Local Structure of Nanospheres. Reproduced from reference (68)).

1/T* X =+ error % Icos. £ stdev % Crystal £ stdev cn =+ stdev
3.00 291 +£0.23 17.3 £1.97 17.1 £1.76 6.9 +23
3.15 3.05£0.24 18.5 £2091 18.1 £2.53 72+21
3.25 3.14 £ 0.25 21.7 £ 2.67 18.7 £ 2.66 74+20
3.30 3.19 £ 0.25 239 £ 1.81 169 £ 191 74+2.1
3.50 3.38 £0.26 26.4 + 2.80 16.2 + 3.13 75+20
3.60 3.47 +£0.27 28.7+2.01 15.7 £2.49 7.6 20
3.70 3.56 £ 0.27 28.6 = 3.12 15.8 £2.34 7.6 2.1
3.80 3.66 + 0.28 30.1 £2.61 155+ 1.62 7.8 +20

In Figure we also present these results grouped by the coordination of the partial
icosahedral cluster, i.e. we plot the data for each cluster arrangement separately. As the co-
ordination number suggests, at all T* we are most likely to find clusters with a coordination
number of 8 and likewise, we find only a very small number of particles with a coordination
number of 11. The summation of all of the icosahedral clusters, as reported in Table is
shown as solid diamonds in Figure [6.8] demonstrating a clear linear increase over the range
considered.

Similarly, we can group the results for crystalline partial clusters by their coordination
number. This eliminates some complexity, since for HCP and FCC there are 12 unique
partial clusters for coordination numbers ranging from 7-11; this is due to the fact that the
partial cluster we form depends on which particle(s) we choose to remove. For example,
we have two unique spherical harmonic fingerprints for an HCP cluster with coordination
number of 10 depending on which particles we remove. Additionally, because of the similar-
ities between HCP and FCC, certain partial clusters are identical and we cannot determine
whether the cluster is FCC or HCP, only that it possesses characteristics of both. As such,
we group together the partial clusters of both FCC and HCP by coordination number of the
partial cluster, as shown in Figure [6.9] We find that for all configurations, the percentage of

crystalline clusters does not change much as we increase 1/7* (i.e. cool the system); there
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Figure 6.8 Icosahedral clusters with partial coordination. Data is grouped by the coordination
number of the cluster, ranging from 8 to 11. The solid diamonds correspond to the sum of all partial
icosahedral coordinations, also reported in Table[6.1} All data was fit using a linear regression. The
error bars correspond to the standard deviation. Reproduced from reference (68).

is a minor decrease in the percentage of clusters on the order of the standard deviations.
We also see that we are most likely to have crystalline partial clusters with coordination
numbers of 9 and 7; as we saw for icosahedral clusters, we find only a small amount of
clusters with large coordination numbers of 11.

The fact that icosahedral arrangements are favored over crystalline ordering is somewhat
surprising, as we find for a large bulk system of nanopsheres without tethers that FCC/HCP
crystalline ordering is dominant; icosahedral arrangements are favored only for simulations
of small numbers of particles. In reference (67) we found that icosahedral ordering of
nanoparticles was a result of the confinement that occurs as the system phase separates. We
showed that by confining particles into cylinders with hard walls, there was a transition
from predominantly crystalline ordering to predominantly icosahedral ordering when the
diameter of the cylinder (scaled by particle size) was less than 5, corresponding to the
approximate diameter of the domains in the DG system (67). For further discussion of the

role of confinement, see section[5.2.2]
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Figure 6.9 Percentage of nanospheres that are central particles in FCC and HCP clusters with
partial coordination. Data is grouped by the coordination number of the cluster, ranging from 7 to
11. The solid diamonds correspond to the sum of all partial crystal coordinations, also reported in
[6.1] All data was fit using linear regression. The error bars correspond to the standard deviation.
Reproduced from reference (68).

6.4.2 Local structure of the TNR gyroid

Similar to the TNS system, the DG formed by the TNR system also has distinct local
ordering of the nanoparticles in addition to the bulk microphase separation. Figure
shows a simulation snapshot of the TNR node. We notice that the nanorods attempt to adopt
bundled structures, where a nanorod is surrounded by six nearest neighbors in a hexagonal
fashion; a single bundle is highlighted in Figure A six neighbor bundle is the densest,
minimal potential energy structure for seven rods, representing full coordination, analogous
to a coordination of 12 for an icosahedron. The tendency to form these bundles can be
observed by examining the histogram of coordination number of the center-of-mass of each
rod, shown in Figure for 1/T* = 0.9. There is a clear bias towards high coordination
numbers and we find no coordinations greater than six. We do find partially coordinated

clusters as a result of rods being situated on the boundary with the tether region, as was also
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Figure 6.10 Node of the DG formed by the TNR system with a hexagonal bundle highlighted.
Tethers have been removed for clarity. Reproduced from reference (68).

the case of the TNS system. Example clusters from our simulations are shown in Figure
[6.12] for coordination numbers, cn = 3 - 6, where the preference to hexagonal packing is
highlighted.

To reduce the grafting density of the tethers (i.e. the local density of tethers in a small
region), thus maximizing entropy for the tether, we expect the grafting points of the tethers
(i.e. the points in 3d space where the tether is attached to the nanorod) to be equally dis-
tributed along the interface between the nanorods and tethers. In Figure [6.11] we plot the
histogram of the coordination number of